ETH Price: $1,848.52 (-2.40%)

Transaction Decoder

Block:
21873952 at Feb-18-2025 02:47:59 PM +UTC
Transaction Fee:
0.00053737918356116 ETH $0.99
Gas Used:
368,570 Gas / 1.458011188 Gwei

Emitted Events:

428 OriginToken.Transfer( from=[Receiver] 0x807cf9a772d5a3f9cefbc1192e939d62f0d9bd38, to=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, value=46204620462046194000000 )
429 OETHProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000006890cea9bd587c60d23cf08c714c8cbad2269ff3, 0x000000000000000000000000f081470f5c6fbccf48cc4e5b82dd926409dcdd67, 00000000000000000000000000000000000000000000000011e9f4bc7131d516 )
430 OriginToken.Transfer( from=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, to=UniswapV3Pool, value=46204620462046194000000 )
431 UniswapV3Pool.Swap( sender=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, recipient=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, amount0=46204620462046194000000, amount1=-1290831858408477974, sqrtPriceX96=419146195930866582023067187, liquidity=204754978611579455695076, tick=-104843 )
432 0xf081470f5c6fbccf48cc4e5b82dd926409dcdd67.0xddac40937f35385a34f721af292e5a83fc5b840f722bff57c2fc71adba708c48( 0xddac40937f35385a34f721af292e5a83fc5b840f722bff57c2fc71adba708c48, 0000000000000000000000006890cea9bd587c60d23cf08c714c8cbad2269ff3, 00000000000000000000000000000000000000000000000011e9f4bc7131d516, 000000000000000000000000856c4efb76c1d1ae02e20ceb03a2a6a08b0b8dc3 )
433 OETHProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000f081470f5c6fbccf48cc4e5b82dd926409dcdd67, 0x00000000000000000000000094b17476a93b3262d87b9a326965d1e91f9c13e7, 00000000000000000000000000000000000000000000000011e9f4bc7131d516 )
434 Vyper_contract.TokenExchange( buyer=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, sold_id=1, tokens_sold=1290831858408477974, bought_id=0, tokens_bought=1289790563523520169 )
435 WETH9.Deposit( dst=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, wad=1289790563523520169 )
436 0xf081470f5c6fbccf48cc4e5b82dd926409dcdd67.0xddac40937f35385a34f721af292e5a83fc5b840f722bff57c2fc71adba708c48( 0xddac40937f35385a34f721af292e5a83fc5b840f722bff57c2fc71adba708c48, 00000000000000000000000094b17476a93b3262d87b9a326965d1e91f9c13e7, 00000000000000000000000000000000000000000000000011e641af157866a9, 000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee )
437 WETH9.Transfer( src=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, dst=[Receiver] 0x807cf9a772d5a3f9cefbc1192e939d62f0d9bd38, wad=1289790563523520169 )
438 MetaAggregationRouterV2.Swapped( sender=[Receiver] 0x807cf9a772d5a3f9cefbc1192e939d62f0d9bd38, srcToken=OriginToken, dstToken=WETH9, dstReceiver=[Receiver] 0x807cf9a772d5a3f9cefbc1192e939d62f0d9bd38, spentAmount=46204620462046194000000, returnAmount=1289790563523520169 )
439 MetaAggregationRouterV2.Exchange( pair=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, amountOut=1289790563523520169, output=WETH9 )
440 MetaAggregationRouterV2.ClientData( clientData=0x )

Account State Difference:

  Address   Before After State Difference Code
0x6890cea9...ad2269fF3
(Uniswap V3: OGN-OETH)
0x8207c1Ff...c3541Ae26
0x856c4Efb...08b0b8dC3
0x86E81996...3410FC206
2.786364732393799247 Eth
Nonce: 2304
2.785245604876714721 Eth
Nonce: 2305
0.001119127517084526
0x94B17476...91f9c13E7 5,956.070104437537727 Eth5,954.780313874014206831 Eth1.289790563523520169
(beaverbuild)
15.894283338730082894 Eth15.89486508706360626 Eth0.000581748333523366
0xC02aaA39...83C756Cc2 3,009,326.14298158127306779 Eth3,009,327.432772144796587959 Eth1.289790563523520169
0xf081470f...409DcdD67

Execution Trace

ETH 0.000581748333523366 0x807cf9a772d5a3f9cefbc1192e939d62f0d9bd38.4cf3fe9c( )
  • ETH 0.000581748333523366 0xbe4e645caaae7c1d0874bb8d1c8d337f31d79dd8.4cf3fe9c( )
    • Null: 0x000...001.9b555b1b( )
    • MetaAggregationRouterV2.swap( execution=[{name:callTarget, type:address, order:1, indexed:false, value:0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, valueString:0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67}, {name:approveTarget, type:address, order:2, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:targetData, type:bytes, order:3, indexed:false, value:0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000C00000000000000000000000008207C1FFC5B6804F6024322CCF34F29C3541AE26000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000807CF9A772D5A3F9CEFBC1192E939D62F0D9BD380000000000000000000000000000000000000000000000000000000067B49DA8000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000004063407A490000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000E0000000000000000000000000F081470F5C6FBCCF48CC4E5B82DD926409DCDD670000000000000000000000006890CEA9BD587C60D23CF08C714C8CBAD2269FF30000000000000000000000008207C1FFC5B6804F6024322CCF34F29C3541AE26000000000000000000000000856C4EFB76C1D1AE02E20CEB03A2A6A08B0B8DC30000000000000000000000000000000000000000000009C8C1EB23A8F8716080000000000000000000000000000000000000000000F80D03C5BFB560814D201400000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000040D90CE49100000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000010000000000000000000000000094B17476A93B3262D87B9A326965D1E91F9C13E7000000000000000000000000856C4EFB76C1D1AE02E20CEB03A2A6A08B0B8DC3000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE0000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011E9F4BC7131D516000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, valueString:0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000C00000000000000000000000008207C1FFC5B6804F6024322CCF34F29C3541AE26000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000807CF9A772D5A3F9CEFBC1192E939D62F0D9BD380000000000000000000000000000000000000000000000000000000067B49DA8000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000004063407A490000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000E0000000000000000000000000F081470F5C6FBCCF48CC4E5B82DD926409DCDD670000000000000000000000006890CEA9BD587C60D23CF08C714C8CBAD2269FF30000000000000000000000008207C1FFC5B6804F6024322CCF34F29C3541AE26000000000000000000000000856C4EFB76C1D1AE02E20CEB03A2A6A08B0B8DC30000000000000000000000000000000000000000000009C8C1EB23A8F8716080000000000000000000000000000000000000000000F80D03C5BFB560814D201400000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000040D90CE49100000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000010000000000000000000000000094B17476A93B3262D87B9A326965D1E91F9C13E7000000000000000000000000856C4EFB76C1D1AE02E20CEB03A2A6A08B0B8DC3000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE0000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011E9F4BC7131D516000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}, {name:desc, type:tuple, order:4, indexed:false, value:[{name:srcToken, type:address, order:1, indexed:false, value:0x8207c1FfC5B6804F6024322CcF34F29c3541Ae26, valueString:0x8207c1FfC5B6804F6024322CcF34F29c3541Ae26}, {name:dstToken, type:address, order:2, indexed:false, value:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, valueString:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2}, {name:srcReceivers, type:address[], order:3, indexed:false, value:[0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67], valueString:[0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67]}, {name:srcAmounts, type:uint256[], order:4, indexed:false, value:[46204620462046194000000], valueString:[46204620462046194000000]}, {name:feeReceivers, type:address[], order:5, indexed:false, value:[], valueString:[]}, {name:feeAmounts, type:uint256[], order:6, indexed:false, value:[], valueString:[]}, {name:dstReceiver, type:address, order:7, indexed:false, value:0x807cF9A772d5a3f9CeFBc1192e939D62f0D9bD38, valueString:0x807cF9A772d5a3f9CeFBc1192e939D62f0D9bD38}, {name:amount, type:uint256, order:8, indexed:false, value:46204620462046194000000, valueString:46204620462046194000000}, {name:minReturnAmount, type:uint256, order:9, indexed:false, value:1289661584467168000, valueString:1289661584467168000}, {name:flags, type:uint256, order:10, indexed:false, value:0, valueString:0}, {name:permit, type:bytes, order:11, indexed:false, value:0x, valueString:0x}], valueString:[{name:srcToken, type:address, order:1, indexed:false, value:0x8207c1FfC5B6804F6024322CcF34F29c3541Ae26, valueString:0x8207c1FfC5B6804F6024322CcF34F29c3541Ae26}, {name:dstToken, type:address, order:2, indexed:false, value:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, valueString:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2}, {name:srcReceivers, type:address[], order:3, indexed:false, value:[0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67], valueString:[0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67]}, {name:srcAmounts, type:uint256[], order:4, indexed:false, value:[46204620462046194000000], valueString:[46204620462046194000000]}, {name:feeReceivers, type:address[], order:5, indexed:false, value:[], valueString:[]}, {name:feeAmounts, type:uint256[], order:6, indexed:false, value:[], valueString:[]}, {name:dstReceiver, type:address, order:7, indexed:false, value:0x807cF9A772d5a3f9CeFBc1192e939D62f0D9bD38, valueString:0x807cF9A772d5a3f9CeFBc1192e939D62f0D9bD38}, {name:amount, type:uint256, order:8, indexed:false, value:46204620462046194000000, valueString:46204620462046194000000}, {name:minReturnAmount, type:uint256, order:9, indexed:false, value:1289661584467168000, valueString:1289661584467168000}, {name:flags, type:uint256, order:10, indexed:false, value:0, valueString:0}, {name:permit, type:bytes, order:11, indexed:false, value:0x, valueString:0x}]}, {name:clientData, type:bytes, order:5, indexed:false, value:0x, valueString:0x}] ) => ( returnAmount=1289790563523520169, gasUsed=307545 )
      • OriginToken.transferFrom( _from=0x807cF9A772d5a3f9CeFBc1192e939D62f0D9bD38, _to=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, _value=46204620462046194000000 ) => ( True )
      • WETH9.balanceOf( 0x807cF9A772d5a3f9CeFBc1192e939D62f0D9bD38 ) => ( 586136780158126785113 )
      • OriginToken.balanceOf( _owner=0x6131B5fae19EA4f9D964eAc0408E4408b66337b5 ) => ( 0 )
      • WETH9.balanceOf( 0x6131B5fae19EA4f9D964eAc0408E4408b66337b5 ) => ( 945504614304567391 )
      • 0xf081470f5c6fbccf48cc4e5b82dd926409dcdd67.d9c45357( )
        • 0xf9e121c77caf7d8b7ac4bb58579015bc6f958b55.63407a49( )
          • OriginToken.balanceOf( _owner=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67 ) => ( 46204620462046194000001 )
          • UniswapV3Pool.swap( recipient=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67, zeroForOne=True, amountSpecified=46204620462046194000000, sqrtPriceLimitX96=299875063618244733957906452, data=0x00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000040000000000000000000000000F081470F5C6FBCCF48CC4E5B82DD926409DCDD6700000000000000000000000000000000000000000000000000000000000000600000000000000000000000006890CEA9BD587C60D23CF08C714C8CBAD2269FF30000000000000000000000008207C1FFC5B6804F6024322CCF34F29C3541AE26000000000000000000000000856C4EFB76C1D1AE02E20CEB03A2A6A08B0B8DC3 ) => ( amount0=46204620462046194000000, amount1=-1290831858408477974 )
            • OETHProxy.a9059cbb( )
            • OriginToken.balanceOf( _owner=0x6890cea9BD587C60d23cF08C714c8CBad2269fF3 ) => ( 9696829920070490546723523 )
            • 0xf081470f5c6fbccf48cc4e5b82dd926409dcdd67.fa461e33( )
            • OriginToken.balanceOf( _owner=0x6890cea9BD587C60d23cF08C714c8CBad2269fF3 ) => ( 9743034540532536740723523 )
            • 0xf9e121c77caf7d8b7ac4bb58579015bc6f958b55.d90ce491( )
              • OETHProxy.70a08231( )
                • OETH.balanceOf( _account=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67 ) => ( 1290831858408477975 )
                • Vyper_contract.exchange( i=1, j=0, _dx=1290831858408477974, _min_dy=0 ) => ( 1289790563523520169 )
                  • Vyper_contract.exchange( i=1, j=0, _dx=1290831858408477974, _min_dy=0 ) => ( 1289790563523520169 )
                  • ETH 1.289790563523520169 WETH9.CALL( )
                  • WETH9.balanceOf( 0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67 ) => ( 1289790563523520170 )
                  • OriginToken.balanceOf( _owner=0xf081470f5C6FBCCF48cC4e5B82Dd926409DcdD67 ) => ( 1 )
                  • WETH9.transfer( dst=0x807cF9A772d5a3f9CeFBc1192e939D62f0D9bD38, wad=1289790563523520169 ) => ( True )
                  • WETH9.balanceOf( 0x6131B5fae19EA4f9D964eAc0408E4408b66337b5 ) => ( 945504614304567391 )
                  • WETH9.balanceOf( 0x807cF9A772d5a3f9CeFBc1192e939D62f0D9bD38 ) => ( 587426570721650305282 )
                  • ETH 0.000581748333523366 beaverbuild.CALL( )
                    File 1 of 8: OriginToken
                    pragma solidity ^0.4.24;
                    // produced by the Solididy File Flattener (c) David Appleton 2018
                    // contact : [email protected]
                    // released under Apache 2.0 licence
                    contract ERC20Basic {
                      function totalSupply() public view returns (uint256);
                      function balanceOf(address who) public view returns (uint256);
                      function transfer(address to, uint256 value) public returns (bool);
                      event Transfer(address indexed from, address indexed to, uint256 value);
                    }
                    
                    contract Ownable {
                      address public owner;
                    
                    
                      event OwnershipRenounced(address indexed previousOwner);
                      event OwnershipTransferred(
                        address indexed previousOwner,
                        address indexed newOwner
                      );
                    
                    
                      /**
                       * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                       * account.
                       */
                      constructor() public {
                        owner = msg.sender;
                      }
                    
                      /**
                       * @dev Throws if called by any account other than the owner.
                       */
                      modifier onlyOwner() {
                        require(msg.sender == owner);
                        _;
                      }
                    
                      /**
                       * @dev Allows the current owner to relinquish control of the contract.
                       */
                      function renounceOwnership() public onlyOwner {
                        emit OwnershipRenounced(owner);
                        owner = address(0);
                      }
                    
                      /**
                       * @dev Allows the current owner to transfer control of the contract to a newOwner.
                       * @param _newOwner The address to transfer ownership to.
                       */
                      function transferOwnership(address _newOwner) public onlyOwner {
                        _transferOwnership(_newOwner);
                      }
                    
                      /**
                       * @dev Transfers control of the contract to a newOwner.
                       * @param _newOwner The address to transfer ownership to.
                       */
                      function _transferOwnership(address _newOwner) internal {
                        require(_newOwner != address(0));
                        emit OwnershipTransferred(owner, _newOwner);
                        owner = _newOwner;
                      }
                    }
                    
                    library SafeMath {
                    
                      /**
                      * @dev Multiplies two numbers, throws on overflow.
                      */
                      function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
                        // Gas optimization: this is cheaper than asserting 'a' not being zero, but the
                        // benefit is lost if 'b' is also tested.
                        // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
                        if (a == 0) {
                          return 0;
                        }
                    
                        c = a * b;
                        assert(c / a == b);
                        return c;
                      }
                    
                      /**
                      * @dev Integer division of two numbers, truncating the quotient.
                      */
                      function div(uint256 a, uint256 b) internal pure returns (uint256) {
                        // assert(b > 0); // Solidity automatically throws when dividing by 0
                        // uint256 c = a / b;
                        // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                        return a / b;
                      }
                    
                      /**
                      * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
                      */
                      function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                        assert(b <= a);
                        return a - b;
                      }
                    
                      /**
                      * @dev Adds two numbers, throws on overflow.
                      */
                      function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
                        c = a + b;
                        assert(c >= a);
                        return c;
                      }
                    }
                    
                    contract ERC20 is ERC20Basic {
                      function allowance(address owner, address spender)
                        public view returns (uint256);
                    
                      function transferFrom(address from, address to, uint256 value)
                        public returns (bool);
                    
                      function approve(address spender, uint256 value) public returns (bool);
                      event Approval(
                        address indexed owner,
                        address indexed spender,
                        uint256 value
                      );
                    }
                    
                    contract Pausable is Ownable {
                      event Pause();
                      event Unpause();
                    
                      bool public paused = false;
                    
                    
                      /**
                       * @dev Modifier to make a function callable only when the contract is not paused.
                       */
                      modifier whenNotPaused() {
                        require(!paused);
                        _;
                      }
                    
                      /**
                       * @dev Modifier to make a function callable only when the contract is paused.
                       */
                      modifier whenPaused() {
                        require(paused);
                        _;
                      }
                    
                      /**
                       * @dev called by the owner to pause, triggers stopped state
                       */
                      function pause() onlyOwner whenNotPaused public {
                        paused = true;
                        emit Pause();
                      }
                    
                      /**
                       * @dev called by the owner to unpause, returns to normal state
                       */
                      function unpause() onlyOwner whenPaused public {
                        paused = false;
                        emit Unpause();
                      }
                    }
                    
                    contract DetailedERC20 is ERC20 {
                      string public name;
                      string public symbol;
                      uint8 public decimals;
                    
                      constructor(string _name, string _symbol, uint8 _decimals) public {
                        name = _name;
                        symbol = _symbol;
                        decimals = _decimals;
                      }
                    }
                    
                    contract BasicToken is ERC20Basic {
                      using SafeMath for uint256;
                    
                      mapping(address => uint256) balances;
                    
                      uint256 totalSupply_;
                    
                      /**
                      * @dev total number of tokens in existence
                      */
                      function totalSupply() public view returns (uint256) {
                        return totalSupply_;
                      }
                    
                      /**
                      * @dev transfer token for a specified address
                      * @param _to The address to transfer to.
                      * @param _value The amount to be transferred.
                      */
                      function transfer(address _to, uint256 _value) public returns (bool) {
                        require(_to != address(0));
                        require(_value <= balances[msg.sender]);
                    
                        balances[msg.sender] = balances[msg.sender].sub(_value);
                        balances[_to] = balances[_to].add(_value);
                        emit Transfer(msg.sender, _to, _value);
                        return true;
                      }
                    
                      /**
                      * @dev Gets the balance of the specified address.
                      * @param _owner The address to query the the balance of.
                      * @return An uint256 representing the amount owned by the passed address.
                      */
                      function balanceOf(address _owner) public view returns (uint256) {
                        return balances[_owner];
                      }
                    
                    }
                    
                    contract BurnableToken is BasicToken {
                    
                      event Burn(address indexed burner, uint256 value);
                    
                      /**
                       * @dev Burns a specific amount of tokens.
                       * @param _value The amount of token to be burned.
                       */
                      function burn(uint256 _value) public {
                        _burn(msg.sender, _value);
                      }
                    
                      function _burn(address _who, uint256 _value) internal {
                        require(_value <= balances[_who]);
                        // no need to require value <= totalSupply, since that would imply the
                        // sender's balance is greater than the totalSupply, which *should* be an assertion failure
                    
                        balances[_who] = balances[_who].sub(_value);
                        totalSupply_ = totalSupply_.sub(_value);
                        emit Burn(_who, _value);
                        emit Transfer(_who, address(0), _value);
                      }
                    }
                    
                    contract StandardToken is ERC20, BasicToken {
                    
                      mapping (address => mapping (address => uint256)) internal allowed;
                    
                    
                      /**
                       * @dev Transfer tokens from one address to another
                       * @param _from address The address which you want to send tokens from
                       * @param _to address The address which you want to transfer to
                       * @param _value uint256 the amount of tokens to be transferred
                       */
                      function transferFrom(
                        address _from,
                        address _to,
                        uint256 _value
                      )
                        public
                        returns (bool)
                      {
                        require(_to != address(0));
                        require(_value <= balances[_from]);
                        require(_value <= allowed[_from][msg.sender]);
                    
                        balances[_from] = balances[_from].sub(_value);
                        balances[_to] = balances[_to].add(_value);
                        allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
                        emit Transfer(_from, _to, _value);
                        return true;
                      }
                    
                      /**
                       * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
                       *
                       * Beware that changing an allowance with this method brings the risk that someone may use both the old
                       * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
                       * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
                       * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                       * @param _spender The address which will spend the funds.
                       * @param _value The amount of tokens to be spent.
                       */
                      function approve(address _spender, uint256 _value) public returns (bool) {
                        allowed[msg.sender][_spender] = _value;
                        emit Approval(msg.sender, _spender, _value);
                        return true;
                      }
                    
                      /**
                       * @dev Function to check the amount of tokens that an owner allowed to a spender.
                       * @param _owner address The address which owns the funds.
                       * @param _spender address The address which will spend the funds.
                       * @return A uint256 specifying the amount of tokens still available for the spender.
                       */
                      function allowance(
                        address _owner,
                        address _spender
                       )
                        public
                        view
                        returns (uint256)
                      {
                        return allowed[_owner][_spender];
                      }
                    
                      /**
                       * @dev Increase the amount of tokens that an owner allowed to a spender.
                       *
                       * approve should be called when allowed[_spender] == 0. To increment
                       * allowed value is better to use this function to avoid 2 calls (and wait until
                       * the first transaction is mined)
                       * From MonolithDAO Token.sol
                       * @param _spender The address which will spend the funds.
                       * @param _addedValue The amount of tokens to increase the allowance by.
                       */
                      function increaseApproval(
                        address _spender,
                        uint _addedValue
                      )
                        public
                        returns (bool)
                      {
                        allowed[msg.sender][_spender] = (
                          allowed[msg.sender][_spender].add(_addedValue));
                        emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
                        return true;
                      }
                    
                      /**
                       * @dev Decrease the amount of tokens that an owner allowed to a spender.
                       *
                       * approve should be called when allowed[_spender] == 0. To decrement
                       * allowed value is better to use this function to avoid 2 calls (and wait until
                       * the first transaction is mined)
                       * From MonolithDAO Token.sol
                       * @param _spender The address which will spend the funds.
                       * @param _subtractedValue The amount of tokens to decrease the allowance by.
                       */
                      function decreaseApproval(
                        address _spender,
                        uint _subtractedValue
                      )
                        public
                        returns (bool)
                      {
                        uint oldValue = allowed[msg.sender][_spender];
                        if (_subtractedValue > oldValue) {
                          allowed[msg.sender][_spender] = 0;
                        } else {
                          allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
                        }
                        emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
                        return true;
                      }
                    
                    }
                    
                    contract PausableToken is StandardToken, Pausable {
                    
                      function transfer(
                        address _to,
                        uint256 _value
                      )
                        public
                        whenNotPaused
                        returns (bool)
                      {
                        return super.transfer(_to, _value);
                      }
                    
                      function transferFrom(
                        address _from,
                        address _to,
                        uint256 _value
                      )
                        public
                        whenNotPaused
                        returns (bool)
                      {
                        return super.transferFrom(_from, _to, _value);
                      }
                    
                      function approve(
                        address _spender,
                        uint256 _value
                      )
                        public
                        whenNotPaused
                        returns (bool)
                      {
                        return super.approve(_spender, _value);
                      }
                    
                      function increaseApproval(
                        address _spender,
                        uint _addedValue
                      )
                        public
                        whenNotPaused
                        returns (bool success)
                      {
                        return super.increaseApproval(_spender, _addedValue);
                      }
                    
                      function decreaseApproval(
                        address _spender,
                        uint _subtractedValue
                      )
                        public
                        whenNotPaused
                        returns (bool success)
                      {
                        return super.decreaseApproval(_spender, _subtractedValue);
                      }
                    }
                    
                    contract MintableToken is StandardToken, Ownable {
                      event Mint(address indexed to, uint256 amount);
                      event MintFinished();
                    
                      bool public mintingFinished = false;
                    
                    
                      modifier canMint() {
                        require(!mintingFinished);
                        _;
                      }
                    
                      modifier hasMintPermission() {
                        require(msg.sender == owner);
                        _;
                      }
                    
                      /**
                       * @dev Function to mint tokens
                       * @param _to The address that will receive the minted tokens.
                       * @param _amount The amount of tokens to mint.
                       * @return A boolean that indicates if the operation was successful.
                       */
                      function mint(
                        address _to,
                        uint256 _amount
                      )
                        hasMintPermission
                        canMint
                        public
                        returns (bool)
                      {
                        totalSupply_ = totalSupply_.add(_amount);
                        balances[_to] = balances[_to].add(_amount);
                        emit Mint(_to, _amount);
                        emit Transfer(address(0), _to, _amount);
                        return true;
                      }
                    
                      /**
                       * @dev Function to stop minting new tokens.
                       * @return True if the operation was successful.
                       */
                      function finishMinting() onlyOwner canMint public returns (bool) {
                        mintingFinished = true;
                        emit MintFinished();
                        return true;
                      }
                    }
                    
                    contract WhitelistedPausableToken is PausableToken {
                        // UNIX timestamp (in seconds) after which this whitelist no longer applies
                        uint256 public whitelistExpiration;
                        // While the whitelist is active, either the sender or recipient must be
                        // in allowedTransactors.
                        mapping (address => bool) public allowedTransactors;
                    
                        event SetWhitelistExpiration(uint256 expiration);
                        event AllowedTransactorAdded(address sender);
                        event AllowedTransactorRemoved(address sender);
                    
                        //
                        // Functions for maintaining whitelist
                        //
                    
                        modifier allowedTransfer(address _from, address _to) {
                            require(
                                // solium-disable-next-line operator-whitespace
                                !whitelistActive() ||
                                allowedTransactors[_from] ||
                                allowedTransactors[_to],
                                "neither sender nor recipient are allowed"
                            );
                            _;
                        }
                    
                        function whitelistActive() public view returns (bool) {
                            return block.timestamp < whitelistExpiration;
                        }
                    
                        function addAllowedTransactor(address _transactor) public onlyOwner {
                            emit AllowedTransactorAdded(_transactor);
                            allowedTransactors[_transactor] = true;
                        }
                    
                        function removeAllowedTransactor(address _transactor) public onlyOwner {
                            emit AllowedTransactorRemoved(_transactor);
                            delete allowedTransactors[_transactor];
                        }
                    
                        /**
                        * @dev Set the whitelist expiration, after which the whitelist no longer
                        * applies.
                        */
                        function setWhitelistExpiration(uint256 _expiration) public onlyOwner {
                            // allow only if whitelist expiration hasn't yet been set, or if the
                            // whitelist expiration hasn't passed yet
                            require(
                                whitelistExpiration == 0 || whitelistActive(),
                                "an expired whitelist cannot be extended"
                            );
                            // prevent possible mistakes in calling this function
                            require(
                                _expiration >= block.timestamp + 1 days,
                                "whitelist expiration not far enough into the future"
                            );
                            emit SetWhitelistExpiration(_expiration);
                            whitelistExpiration = _expiration;
                        }
                    
                        //
                        // ERC20 transfer functions that have been overridden to enforce the
                        // whitelist.
                        //
                    
                        function transfer(
                            address _to,
                            uint256 _value
                        )
                            public
                            allowedTransfer(msg.sender, _to)
                            returns (bool)
                        {
                            return super.transfer(_to, _value);
                        }
                    
                        function transferFrom(
                            address _from,
                            address _to,
                            uint256 _value
                        )
                        public
                            allowedTransfer(_from, _to)
                        returns (bool)
                        {
                            return super.transferFrom(_from, _to, _value);
                        }
                    }
                    
                    contract OriginToken is BurnableToken, MintableToken, WhitelistedPausableToken, DetailedERC20 {
                        event AddCallSpenderWhitelist(address enabler, address spender);
                        event RemoveCallSpenderWhitelist(address disabler, address spender);
                    
                        mapping (address => bool) public callSpenderWhitelist;
                    
                        // @dev Constructor that gives msg.sender all initial tokens.
                        constructor(uint256 _initialSupply) DetailedERC20("OriginToken", "OGN", 18) public {
                            owner = msg.sender;
                            mint(owner, _initialSupply);
                        }
                    
                        //
                        // Burn methods
                        //
                    
                        // @dev Burns tokens belonging to the sender
                        // @param _value Amount of token to be burned
                        function burn(uint256 _value) public onlyOwner {
                            // TODO: add a function & modifier to enable for all accounts without doing
                            // a contract migration?
                            super.burn(_value);
                        }
                    
                        // @dev Burns tokens belonging to the specified address
                        // @param _who The account whose tokens we're burning
                        // @param _value Amount of token to be burned
                        function burn(address _who, uint256 _value) public onlyOwner {
                            _burn(_who, _value);
                        }
                    
                        //
                        // approveAndCall methods
                        //
                    
                        // @dev Add spender to whitelist of spenders for approveAndCall
                        // @param _spender Address to add
                        function addCallSpenderWhitelist(address _spender) public onlyOwner {
                            callSpenderWhitelist[_spender] = true;
                            emit AddCallSpenderWhitelist(msg.sender, _spender);
                        }
                    
                        // @dev Remove spender from whitelist of spenders for approveAndCall
                        // @param _spender Address to remove
                        function removeCallSpenderWhitelist(address _spender) public onlyOwner {
                            delete callSpenderWhitelist[_spender];
                            emit RemoveCallSpenderWhitelist(msg.sender, _spender);
                        }
                    
                        // @dev Approve transfer of tokens and make a contract call in a single
                        // @dev transaction. This allows a DApp to avoid requiring two MetaMask
                        // @dev approvals for a single logical action, such as creating a listing,
                        // @dev which requires the seller to approve a token transfer and the
                        // @dev marketplace contract to transfer tokens from the seller.
                        //
                        // @dev This is based on the ERC827 function approveAndCall and avoids
                        // @dev security issues by only working with a whitelisted set of _spender
                        // @dev addresses. The other difference is that the combination of this
                        // @dev function ensures that the proxied function call receives the
                        // @dev msg.sender for this function as its first parameter.
                        //
                        // @param _spender The address that will spend the funds.
                        // @param _value The amount of tokens to be spent.
                        // @param _selector Function selector for function to be called.
                        // @param _callParams Packed, encoded parameters, omitting the first parameter which is always msg.sender
                        function approveAndCallWithSender(
                            address _spender,
                            uint256 _value,
                            bytes4 _selector,
                            bytes _callParams
                        )
                            public
                            payable
                            returns (bool)
                        {
                            require(_spender != address(this), "token contract can't be approved");
                            require(callSpenderWhitelist[_spender], "spender not in whitelist");
                    
                            require(super.approve(_spender, _value), "approve failed");
                    
                            bytes memory callData = abi.encodePacked(_selector, uint256(msg.sender), _callParams);
                            // solium-disable-next-line security/no-call-value
                            require(_spender.call.value(msg.value)(callData), "proxied call failed");
                            return true;
                        }
                    }

                    File 2 of 8: OETHProxy
                    // SPDX-License-Identifier: agpl-3.0
                    pragma solidity ^0.8.0;
                    import { InitializeGovernedUpgradeabilityProxy } from "./InitializeGovernedUpgradeabilityProxy.sol";
                    /**
                     * @notice OUSDProxy delegates calls to an OUSD implementation
                     */
                    contract OUSDProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice WrappedOUSDProxy delegates calls to a WrappedOUSD implementation
                     */
                    contract WrappedOUSDProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice VaultProxy delegates calls to a Vault implementation
                     */
                    contract VaultProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice CompoundStrategyProxy delegates calls to a CompoundStrategy implementation
                     */
                    contract CompoundStrategyProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice AaveStrategyProxy delegates calls to a AaveStrategy implementation
                     */
                    contract AaveStrategyProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice ThreePoolStrategyProxy delegates calls to a ThreePoolStrategy implementation
                     */
                    contract ThreePoolStrategyProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice ConvexStrategyProxy delegates calls to a ConvexStrategy implementation
                     */
                    contract ConvexStrategyProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice HarvesterProxy delegates calls to a Harvester implementation
                     */
                    contract HarvesterProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice DripperProxy delegates calls to a Dripper implementation
                     */
                    contract DripperProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice MorphoCompoundStrategyProxy delegates calls to a MorphoCompoundStrategy implementation
                     */
                    contract MorphoCompoundStrategyProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice ConvexOUSDMetaStrategyProxy delegates calls to a ConvexOUSDMetaStrategy implementation
                     */
                    contract ConvexOUSDMetaStrategyProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice ConvexLUSDMetaStrategyProxy delegates calls to a ConvexalGeneralizedMetaStrategy implementation
                     */
                    contract ConvexLUSDMetaStrategyProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice MorphoAaveStrategyProxy delegates calls to a MorphoCompoundStrategy implementation
                     */
                    contract MorphoAaveStrategyProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    /**
                     * @notice OETHProxy delegates calls to nowhere for now
                     */
                    contract OETHProxy is InitializeGovernedUpgradeabilityProxy {
                    }
                    // SPDX-License-Identifier: agpl-3.0
                    pragma solidity ^0.8.0;
                    import { Address } from "@openzeppelin/contracts/utils/Address.sol";
                    import { Governable } from "../governance/Governable.sol";
                    /**
                     * @title BaseGovernedUpgradeabilityProxy
                     * @dev This contract combines an upgradeability proxy with our governor system.
                     * It is based on an older version of OpenZeppelins BaseUpgradeabilityProxy
                     * with Solidity ^0.8.0.
                     * @author Origin Protocol Inc
                     */
                    contract InitializeGovernedUpgradeabilityProxy is Governable {
                        /**
                         * @dev Emitted when the implementation is upgraded.
                         * @param implementation Address of the new implementation.
                         */
                        event Upgraded(address indexed implementation);
                        /**
                         * @dev Contract initializer with Governor enforcement
                         * @param _logic Address of the initial implementation.
                         * @param _initGovernor Address of the initial Governor.
                         * @param _data Data to send as msg.data to the implementation to initialize
                         * the proxied contract.
                         * It should include the signature and the parameters of the function to be
                         * called, as described in
                         * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
                         * This parameter is optional, if no data is given the initialization call
                         * to proxied contract will be skipped.
                         */
                        function initialize(
                            address _logic,
                            address _initGovernor,
                            bytes memory _data
                        ) public payable onlyGovernor {
                            require(_implementation() == address(0));
                            assert(
                                IMPLEMENTATION_SLOT ==
                                    bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)
                            );
                            _changeGovernor(_initGovernor);
                            _setImplementation(_logic);
                            if (_data.length > 0) {
                                (bool success, ) = _logic.delegatecall(_data);
                                require(success);
                            }
                        }
                        /**
                         * @return The address of the proxy admin/it's also the governor.
                         */
                        function admin() external view returns (address) {
                            return _governor();
                        }
                        /**
                         * @return The address of the implementation.
                         */
                        function implementation() external view returns (address) {
                            return _implementation();
                        }
                        /**
                         * @dev Upgrade the backing implementation of the proxy.
                         * Only the admin can call this function.
                         * @param newImplementation Address of the new implementation.
                         */
                        function upgradeTo(address newImplementation) external onlyGovernor {
                            _upgradeTo(newImplementation);
                        }
                        /**
                         * @dev Upgrade the backing implementation of the proxy and call a function
                         * on the new implementation.
                         * This is useful to initialize the proxied contract.
                         * @param newImplementation Address of the new implementation.
                         * @param data Data to send as msg.data in the low level call.
                         * It should include the signature and the parameters of the function to be called, as described in
                         * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
                         */
                        function upgradeToAndCall(address newImplementation, bytes calldata data)
                            external
                            payable
                            onlyGovernor
                        {
                            _upgradeTo(newImplementation);
                            (bool success, ) = newImplementation.delegatecall(data);
                            require(success);
                        }
                        /**
                         * @dev Fallback function.
                         * Implemented entirely in `_fallback`.
                         */
                        fallback() external payable {
                            _fallback();
                        }
                        /**
                         * @dev Delegates execution to an implementation contract.
                         * This is a low level function that doesn't return to its internal call site.
                         * It will return to the external caller whatever the implementation returns.
                         * @param _impl Address to delegate.
                         */
                        function _delegate(address _impl) internal {
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                // Copy msg.data. We take full control of memory in this inline assembly
                                // block because it will not return to Solidity code. We overwrite the
                                // Solidity scratch pad at memory position 0.
                                calldatacopy(0, 0, calldatasize())
                                // Call the implementation.
                                // out and outsize are 0 because we don't know the size yet.
                                let result := delegatecall(gas(), _impl, 0, calldatasize(), 0, 0)
                                // Copy the returned data.
                                returndatacopy(0, 0, returndatasize())
                                switch result
                                // delegatecall returns 0 on error.
                                case 0 {
                                    revert(0, returndatasize())
                                }
                                default {
                                    return(0, returndatasize())
                                }
                            }
                        }
                        /**
                         * @dev Function that is run as the first thing in the fallback function.
                         * Can be redefined in derived contracts to add functionality.
                         * Redefinitions must call super._willFallback().
                         */
                        function _willFallback() internal {}
                        /**
                         * @dev fallback implementation.
                         * Extracted to enable manual triggering.
                         */
                        function _fallback() internal {
                            _willFallback();
                            _delegate(_implementation());
                        }
                        /**
                         * @dev Storage slot with the address of the current implementation.
                         * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                         * validated in the constructor.
                         */
                        bytes32 internal constant IMPLEMENTATION_SLOT =
                            0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                        /**
                         * @dev Returns the current implementation.
                         * @return impl Address of the current implementation
                         */
                        function _implementation() internal view returns (address impl) {
                            bytes32 slot = IMPLEMENTATION_SLOT;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                impl := sload(slot)
                            }
                        }
                        /**
                         * @dev Upgrades the proxy to a new implementation.
                         * @param newImplementation Address of the new implementation.
                         */
                        function _upgradeTo(address newImplementation) internal {
                            _setImplementation(newImplementation);
                            emit Upgraded(newImplementation);
                        }
                        /**
                         * @dev Sets the implementation address of the proxy.
                         * @param newImplementation Address of the new implementation.
                         */
                        function _setImplementation(address newImplementation) internal {
                            require(
                                Address.isContract(newImplementation),
                                "Cannot set a proxy implementation to a non-contract address"
                            );
                            bytes32 slot = IMPLEMENTATION_SLOT;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                sstore(slot, newImplementation)
                            }
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    // OpenZeppelin Contracts v4.4.1 (utils/Address.sol)
                    pragma solidity ^0.8.0;
                    /**
                     * @dev Collection of functions related to the address type
                     */
                    library Address {
                        /**
                         * @dev Returns true if `account` is a contract.
                         *
                         * [IMPORTANT]
                         * ====
                         * It is unsafe to assume that an address for which this function returns
                         * false is an externally-owned account (EOA) and not a contract.
                         *
                         * Among others, `isContract` will return false for the following
                         * types of addresses:
                         *
                         *  - an externally-owned account
                         *  - a contract in construction
                         *  - an address where a contract will be created
                         *  - an address where a contract lived, but was destroyed
                         * ====
                         */
                        function isContract(address account) internal view returns (bool) {
                            // This method relies on extcodesize, which returns 0 for contracts in
                            // construction, since the code is only stored at the end of the
                            // constructor execution.
                            uint256 size;
                            assembly {
                                size := extcodesize(account)
                            }
                            return size > 0;
                        }
                        /**
                         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                         * `recipient`, forwarding all available gas and reverting on errors.
                         *
                         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                         * of certain opcodes, possibly making contracts go over the 2300 gas limit
                         * imposed by `transfer`, making them unable to receive funds via
                         * `transfer`. {sendValue} removes this limitation.
                         *
                         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                         *
                         * IMPORTANT: because control is transferred to `recipient`, care must be
                         * taken to not create reentrancy vulnerabilities. Consider using
                         * {ReentrancyGuard} or the
                         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                         */
                        function sendValue(address payable recipient, uint256 amount) internal {
                            require(address(this).balance >= amount, "Address: insufficient balance");
                            (bool success, ) = recipient.call{value: amount}("");
                            require(success, "Address: unable to send value, recipient may have reverted");
                        }
                        /**
                         * @dev Performs a Solidity function call using a low level `call`. A
                         * plain `call` is an unsafe replacement for a function call: use this
                         * function instead.
                         *
                         * If `target` reverts with a revert reason, it is bubbled up by this
                         * function (like regular Solidity function calls).
                         *
                         * Returns the raw returned data. To convert to the expected return value,
                         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                         *
                         * Requirements:
                         *
                         * - `target` must be a contract.
                         * - calling `target` with `data` must not revert.
                         *
                         * _Available since v3.1._
                         */
                        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                            return functionCall(target, data, "Address: low-level call failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                         * `errorMessage` as a fallback revert reason when `target` reverts.
                         *
                         * _Available since v3.1._
                         */
                        function functionCall(
                            address target,
                            bytes memory data,
                            string memory errorMessage
                        ) internal returns (bytes memory) {
                            return functionCallWithValue(target, data, 0, errorMessage);
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but also transferring `value` wei to `target`.
                         *
                         * Requirements:
                         *
                         * - the calling contract must have an ETH balance of at least `value`.
                         * - the called Solidity function must be `payable`.
                         *
                         * _Available since v3.1._
                         */
                        function functionCallWithValue(
                            address target,
                            bytes memory data,
                            uint256 value
                        ) internal returns (bytes memory) {
                            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                         * with `errorMessage` as a fallback revert reason when `target` reverts.
                         *
                         * _Available since v3.1._
                         */
                        function functionCallWithValue(
                            address target,
                            bytes memory data,
                            uint256 value,
                            string memory errorMessage
                        ) internal returns (bytes memory) {
                            require(address(this).balance >= value, "Address: insufficient balance for call");
                            require(isContract(target), "Address: call to non-contract");
                            (bool success, bytes memory returndata) = target.call{value: value}(data);
                            return verifyCallResult(success, returndata, errorMessage);
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but performing a static call.
                         *
                         * _Available since v3.3._
                         */
                        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                            return functionStaticCall(target, data, "Address: low-level static call failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                         * but performing a static call.
                         *
                         * _Available since v3.3._
                         */
                        function functionStaticCall(
                            address target,
                            bytes memory data,
                            string memory errorMessage
                        ) internal view returns (bytes memory) {
                            require(isContract(target), "Address: static call to non-contract");
                            (bool success, bytes memory returndata) = target.staticcall(data);
                            return verifyCallResult(success, returndata, errorMessage);
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but performing a delegate call.
                         *
                         * _Available since v3.4._
                         */
                        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                         * but performing a delegate call.
                         *
                         * _Available since v3.4._
                         */
                        function functionDelegateCall(
                            address target,
                            bytes memory data,
                            string memory errorMessage
                        ) internal returns (bytes memory) {
                            require(isContract(target), "Address: delegate call to non-contract");
                            (bool success, bytes memory returndata) = target.delegatecall(data);
                            return verifyCallResult(success, returndata, errorMessage);
                        }
                        /**
                         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                         * revert reason using the provided one.
                         *
                         * _Available since v4.3._
                         */
                        function verifyCallResult(
                            bool success,
                            bytes memory returndata,
                            string memory errorMessage
                        ) internal pure returns (bytes memory) {
                            if (success) {
                                return returndata;
                            } else {
                                // Look for revert reason and bubble it up if present
                                if (returndata.length > 0) {
                                    // The easiest way to bubble the revert reason is using memory via assembly
                                    assembly {
                                        let returndata_size := mload(returndata)
                                        revert(add(32, returndata), returndata_size)
                                    }
                                } else {
                                    revert(errorMessage);
                                }
                            }
                        }
                    }
                    // SPDX-License-Identifier: agpl-3.0
                    pragma solidity ^0.8.0;
                    /**
                     * @title OUSD Governable Contract
                     * @dev Copy of the openzeppelin Ownable.sol contract with nomenclature change
                     *      from owner to governor and renounce methods removed. Does not use
                     *      Context.sol like Ownable.sol does for simplification.
                     * @author Origin Protocol Inc
                     */
                    contract Governable {
                        // Storage position of the owner and pendingOwner of the contract
                        // keccak256("OUSD.governor");
                        bytes32 private constant governorPosition =
                            0x7bea13895fa79d2831e0a9e28edede30099005a50d652d8957cf8a607ee6ca4a;
                        // keccak256("OUSD.pending.governor");
                        bytes32 private constant pendingGovernorPosition =
                            0x44c4d30b2eaad5130ad70c3ba6972730566f3e6359ab83e800d905c61b1c51db;
                        // keccak256("OUSD.reentry.status");
                        bytes32 private constant reentryStatusPosition =
                            0x53bf423e48ed90e97d02ab0ebab13b2a235a6bfbe9c321847d5c175333ac4535;
                        // See OpenZeppelin ReentrancyGuard implementation
                        uint256 constant _NOT_ENTERED = 1;
                        uint256 constant _ENTERED = 2;
                        event PendingGovernorshipTransfer(
                            address indexed previousGovernor,
                            address indexed newGovernor
                        );
                        event GovernorshipTransferred(
                            address indexed previousGovernor,
                            address indexed newGovernor
                        );
                        /**
                         * @dev Initializes the contract setting the deployer as the initial Governor.
                         */
                        constructor() {
                            _setGovernor(msg.sender);
                            emit GovernorshipTransferred(address(0), _governor());
                        }
                        /**
                         * @dev Returns the address of the current Governor.
                         */
                        function governor() public view returns (address) {
                            return _governor();
                        }
                        /**
                         * @dev Returns the address of the current Governor.
                         */
                        function _governor() internal view returns (address governorOut) {
                            bytes32 position = governorPosition;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                governorOut := sload(position)
                            }
                        }
                        /**
                         * @dev Returns the address of the pending Governor.
                         */
                        function _pendingGovernor()
                            internal
                            view
                            returns (address pendingGovernor)
                        {
                            bytes32 position = pendingGovernorPosition;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                pendingGovernor := sload(position)
                            }
                        }
                        /**
                         * @dev Throws if called by any account other than the Governor.
                         */
                        modifier onlyGovernor() {
                            require(isGovernor(), "Caller is not the Governor");
                            _;
                        }
                        /**
                         * @dev Returns true if the caller is the current Governor.
                         */
                        function isGovernor() public view returns (bool) {
                            return msg.sender == _governor();
                        }
                        function _setGovernor(address newGovernor) internal {
                            bytes32 position = governorPosition;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                sstore(position, newGovernor)
                            }
                        }
                        /**
                         * @dev Prevents a contract from calling itself, directly or indirectly.
                         * Calling a `nonReentrant` function from another `nonReentrant`
                         * function is not supported. It is possible to prevent this from happening
                         * by making the `nonReentrant` function external, and make it call a
                         * `private` function that does the actual work.
                         */
                        modifier nonReentrant() {
                            bytes32 position = reentryStatusPosition;
                            uint256 _reentry_status;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                _reentry_status := sload(position)
                            }
                            // On the first call to nonReentrant, _notEntered will be true
                            require(_reentry_status != _ENTERED, "Reentrant call");
                            // Any calls to nonReentrant after this point will fail
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                sstore(position, _ENTERED)
                            }
                            _;
                            // By storing the original value once again, a refund is triggered (see
                            // https://eips.ethereum.org/EIPS/eip-2200)
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                sstore(position, _NOT_ENTERED)
                            }
                        }
                        function _setPendingGovernor(address newGovernor) internal {
                            bytes32 position = pendingGovernorPosition;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                sstore(position, newGovernor)
                            }
                        }
                        /**
                         * @dev Transfers Governance of the contract to a new account (`newGovernor`).
                         * Can only be called by the current Governor. Must be claimed for this to complete
                         * @param _newGovernor Address of the new Governor
                         */
                        function transferGovernance(address _newGovernor) external onlyGovernor {
                            _setPendingGovernor(_newGovernor);
                            emit PendingGovernorshipTransfer(_governor(), _newGovernor);
                        }
                        /**
                         * @dev Claim Governance of the contract to a new account (`newGovernor`).
                         * Can only be called by the new Governor.
                         */
                        function claimGovernance() external {
                            require(
                                msg.sender == _pendingGovernor(),
                                "Only the pending Governor can complete the claim"
                            );
                            _changeGovernor(msg.sender);
                        }
                        /**
                         * @dev Change Governance of the contract to a new account (`newGovernor`).
                         * @param _newGovernor Address of the new Governor
                         */
                        function _changeGovernor(address _newGovernor) internal {
                            require(_newGovernor != address(0), "New Governor is address(0)");
                            emit GovernorshipTransferred(_governor(), _newGovernor);
                            _setGovernor(_newGovernor);
                        }
                    }
                    

                    File 3 of 8: UniswapV3Pool
                    // SPDX-License-Identifier: BUSL-1.1
                    pragma solidity =0.7.6;
                    import './interfaces/IUniswapV3Pool.sol';
                    import './NoDelegateCall.sol';
                    import './libraries/LowGasSafeMath.sol';
                    import './libraries/SafeCast.sol';
                    import './libraries/Tick.sol';
                    import './libraries/TickBitmap.sol';
                    import './libraries/Position.sol';
                    import './libraries/Oracle.sol';
                    import './libraries/FullMath.sol';
                    import './libraries/FixedPoint128.sol';
                    import './libraries/TransferHelper.sol';
                    import './libraries/TickMath.sol';
                    import './libraries/LiquidityMath.sol';
                    import './libraries/SqrtPriceMath.sol';
                    import './libraries/SwapMath.sol';
                    import './interfaces/IUniswapV3PoolDeployer.sol';
                    import './interfaces/IUniswapV3Factory.sol';
                    import './interfaces/IERC20Minimal.sol';
                    import './interfaces/callback/IUniswapV3MintCallback.sol';
                    import './interfaces/callback/IUniswapV3SwapCallback.sol';
                    import './interfaces/callback/IUniswapV3FlashCallback.sol';
                    contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
                        using LowGasSafeMath for uint256;
                        using LowGasSafeMath for int256;
                        using SafeCast for uint256;
                        using SafeCast for int256;
                        using Tick for mapping(int24 => Tick.Info);
                        using TickBitmap for mapping(int16 => uint256);
                        using Position for mapping(bytes32 => Position.Info);
                        using Position for Position.Info;
                        using Oracle for Oracle.Observation[65535];
                        /// @inheritdoc IUniswapV3PoolImmutables
                        address public immutable override factory;
                        /// @inheritdoc IUniswapV3PoolImmutables
                        address public immutable override token0;
                        /// @inheritdoc IUniswapV3PoolImmutables
                        address public immutable override token1;
                        /// @inheritdoc IUniswapV3PoolImmutables
                        uint24 public immutable override fee;
                        /// @inheritdoc IUniswapV3PoolImmutables
                        int24 public immutable override tickSpacing;
                        /// @inheritdoc IUniswapV3PoolImmutables
                        uint128 public immutable override maxLiquidityPerTick;
                        struct Slot0 {
                            // the current price
                            uint160 sqrtPriceX96;
                            // the current tick
                            int24 tick;
                            // the most-recently updated index of the observations array
                            uint16 observationIndex;
                            // the current maximum number of observations that are being stored
                            uint16 observationCardinality;
                            // the next maximum number of observations to store, triggered in observations.write
                            uint16 observationCardinalityNext;
                            // the current protocol fee as a percentage of the swap fee taken on withdrawal
                            // represented as an integer denominator (1/x)%
                            uint8 feeProtocol;
                            // whether the pool is locked
                            bool unlocked;
                        }
                        /// @inheritdoc IUniswapV3PoolState
                        Slot0 public override slot0;
                        /// @inheritdoc IUniswapV3PoolState
                        uint256 public override feeGrowthGlobal0X128;
                        /// @inheritdoc IUniswapV3PoolState
                        uint256 public override feeGrowthGlobal1X128;
                        // accumulated protocol fees in token0/token1 units
                        struct ProtocolFees {
                            uint128 token0;
                            uint128 token1;
                        }
                        /// @inheritdoc IUniswapV3PoolState
                        ProtocolFees public override protocolFees;
                        /// @inheritdoc IUniswapV3PoolState
                        uint128 public override liquidity;
                        /// @inheritdoc IUniswapV3PoolState
                        mapping(int24 => Tick.Info) public override ticks;
                        /// @inheritdoc IUniswapV3PoolState
                        mapping(int16 => uint256) public override tickBitmap;
                        /// @inheritdoc IUniswapV3PoolState
                        mapping(bytes32 => Position.Info) public override positions;
                        /// @inheritdoc IUniswapV3PoolState
                        Oracle.Observation[65535] public override observations;
                        /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
                        /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
                        /// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
                        modifier lock() {
                            require(slot0.unlocked, 'LOK');
                            slot0.unlocked = false;
                            _;
                            slot0.unlocked = true;
                        }
                        /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
                        modifier onlyFactoryOwner() {
                            require(msg.sender == IUniswapV3Factory(factory).owner());
                            _;
                        }
                        constructor() {
                            int24 _tickSpacing;
                            (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
                            tickSpacing = _tickSpacing;
                            maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
                        }
                        /// @dev Common checks for valid tick inputs.
                        function checkTicks(int24 tickLower, int24 tickUpper) private pure {
                            require(tickLower < tickUpper, 'TLU');
                            require(tickLower >= TickMath.MIN_TICK, 'TLM');
                            require(tickUpper <= TickMath.MAX_TICK, 'TUM');
                        }
                        /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
                        function _blockTimestamp() internal view virtual returns (uint32) {
                            return uint32(block.timestamp); // truncation is desired
                        }
                        /// @dev Get the pool's balance of token0
                        /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                        /// check
                        function balance0() private view returns (uint256) {
                            (bool success, bytes memory data) =
                                token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                            require(success && data.length >= 32);
                            return abi.decode(data, (uint256));
                        }
                        /// @dev Get the pool's balance of token1
                        /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                        /// check
                        function balance1() private view returns (uint256) {
                            (bool success, bytes memory data) =
                                token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                            require(success && data.length >= 32);
                            return abi.decode(data, (uint256));
                        }
                        /// @inheritdoc IUniswapV3PoolDerivedState
                        function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                            external
                            view
                            override
                            noDelegateCall
                            returns (
                                int56 tickCumulativeInside,
                                uint160 secondsPerLiquidityInsideX128,
                                uint32 secondsInside
                            )
                        {
                            checkTicks(tickLower, tickUpper);
                            int56 tickCumulativeLower;
                            int56 tickCumulativeUpper;
                            uint160 secondsPerLiquidityOutsideLowerX128;
                            uint160 secondsPerLiquidityOutsideUpperX128;
                            uint32 secondsOutsideLower;
                            uint32 secondsOutsideUpper;
                            {
                                Tick.Info storage lower = ticks[tickLower];
                                Tick.Info storage upper = ticks[tickUpper];
                                bool initializedLower;
                                (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
                                    lower.tickCumulativeOutside,
                                    lower.secondsPerLiquidityOutsideX128,
                                    lower.secondsOutside,
                                    lower.initialized
                                );
                                require(initializedLower);
                                bool initializedUpper;
                                (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
                                    upper.tickCumulativeOutside,
                                    upper.secondsPerLiquidityOutsideX128,
                                    upper.secondsOutside,
                                    upper.initialized
                                );
                                require(initializedUpper);
                            }
                            Slot0 memory _slot0 = slot0;
                            if (_slot0.tick < tickLower) {
                                return (
                                    tickCumulativeLower - tickCumulativeUpper,
                                    secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
                                    secondsOutsideLower - secondsOutsideUpper
                                );
                            } else if (_slot0.tick < tickUpper) {
                                uint32 time = _blockTimestamp();
                                (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                                    observations.observeSingle(
                                        time,
                                        0,
                                        _slot0.tick,
                                        _slot0.observationIndex,
                                        liquidity,
                                        _slot0.observationCardinality
                                    );
                                return (
                                    tickCumulative - tickCumulativeLower - tickCumulativeUpper,
                                    secondsPerLiquidityCumulativeX128 -
                                        secondsPerLiquidityOutsideLowerX128 -
                                        secondsPerLiquidityOutsideUpperX128,
                                    time - secondsOutsideLower - secondsOutsideUpper
                                );
                            } else {
                                return (
                                    tickCumulativeUpper - tickCumulativeLower,
                                    secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
                                    secondsOutsideUpper - secondsOutsideLower
                                );
                            }
                        }
                        /// @inheritdoc IUniswapV3PoolDerivedState
                        function observe(uint32[] calldata secondsAgos)
                            external
                            view
                            override
                            noDelegateCall
                            returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
                        {
                            return
                                observations.observe(
                                    _blockTimestamp(),
                                    secondsAgos,
                                    slot0.tick,
                                    slot0.observationIndex,
                                    liquidity,
                                    slot0.observationCardinality
                                );
                        }
                        /// @inheritdoc IUniswapV3PoolActions
                        function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
                            external
                            override
                            lock
                            noDelegateCall
                        {
                            uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
                            uint16 observationCardinalityNextNew =
                                observations.grow(observationCardinalityNextOld, observationCardinalityNext);
                            slot0.observationCardinalityNext = observationCardinalityNextNew;
                            if (observationCardinalityNextOld != observationCardinalityNextNew)
                                emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
                        }
                        /// @inheritdoc IUniswapV3PoolActions
                        /// @dev not locked because it initializes unlocked
                        function initialize(uint160 sqrtPriceX96) external override {
                            require(slot0.sqrtPriceX96 == 0, 'AI');
                            int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
                            (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
                            slot0 = Slot0({
                                sqrtPriceX96: sqrtPriceX96,
                                tick: tick,
                                observationIndex: 0,
                                observationCardinality: cardinality,
                                observationCardinalityNext: cardinalityNext,
                                feeProtocol: 0,
                                unlocked: true
                            });
                            emit Initialize(sqrtPriceX96, tick);
                        }
                        struct ModifyPositionParams {
                            // the address that owns the position
                            address owner;
                            // the lower and upper tick of the position
                            int24 tickLower;
                            int24 tickUpper;
                            // any change in liquidity
                            int128 liquidityDelta;
                        }
                        /// @dev Effect some changes to a position
                        /// @param params the position details and the change to the position's liquidity to effect
                        /// @return position a storage pointer referencing the position with the given owner and tick range
                        /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
                        /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
                        function _modifyPosition(ModifyPositionParams memory params)
                            private
                            noDelegateCall
                            returns (
                                Position.Info storage position,
                                int256 amount0,
                                int256 amount1
                            )
                        {
                            checkTicks(params.tickLower, params.tickUpper);
                            Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
                            position = _updatePosition(
                                params.owner,
                                params.tickLower,
                                params.tickUpper,
                                params.liquidityDelta,
                                _slot0.tick
                            );
                            if (params.liquidityDelta != 0) {
                                if (_slot0.tick < params.tickLower) {
                                    // current tick is below the passed range; liquidity can only become in range by crossing from left to
                                    // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
                                    amount0 = SqrtPriceMath.getAmount0Delta(
                                        TickMath.getSqrtRatioAtTick(params.tickLower),
                                        TickMath.getSqrtRatioAtTick(params.tickUpper),
                                        params.liquidityDelta
                                    );
                                } else if (_slot0.tick < params.tickUpper) {
                                    // current tick is inside the passed range
                                    uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
                                    // write an oracle entry
                                    (slot0.observationIndex, slot0.observationCardinality) = observations.write(
                                        _slot0.observationIndex,
                                        _blockTimestamp(),
                                        _slot0.tick,
                                        liquidityBefore,
                                        _slot0.observationCardinality,
                                        _slot0.observationCardinalityNext
                                    );
                                    amount0 = SqrtPriceMath.getAmount0Delta(
                                        _slot0.sqrtPriceX96,
                                        TickMath.getSqrtRatioAtTick(params.tickUpper),
                                        params.liquidityDelta
                                    );
                                    amount1 = SqrtPriceMath.getAmount1Delta(
                                        TickMath.getSqrtRatioAtTick(params.tickLower),
                                        _slot0.sqrtPriceX96,
                                        params.liquidityDelta
                                    );
                                    liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
                                } else {
                                    // current tick is above the passed range; liquidity can only become in range by crossing from right to
                                    // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
                                    amount1 = SqrtPriceMath.getAmount1Delta(
                                        TickMath.getSqrtRatioAtTick(params.tickLower),
                                        TickMath.getSqrtRatioAtTick(params.tickUpper),
                                        params.liquidityDelta
                                    );
                                }
                            }
                        }
                        /// @dev Gets and updates a position with the given liquidity delta
                        /// @param owner the owner of the position
                        /// @param tickLower the lower tick of the position's tick range
                        /// @param tickUpper the upper tick of the position's tick range
                        /// @param tick the current tick, passed to avoid sloads
                        function _updatePosition(
                            address owner,
                            int24 tickLower,
                            int24 tickUpper,
                            int128 liquidityDelta,
                            int24 tick
                        ) private returns (Position.Info storage position) {
                            position = positions.get(owner, tickLower, tickUpper);
                            uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
                            uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
                            // if we need to update the ticks, do it
                            bool flippedLower;
                            bool flippedUpper;
                            if (liquidityDelta != 0) {
                                uint32 time = _blockTimestamp();
                                (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                                    observations.observeSingle(
                                        time,
                                        0,
                                        slot0.tick,
                                        slot0.observationIndex,
                                        liquidity,
                                        slot0.observationCardinality
                                    );
                                flippedLower = ticks.update(
                                    tickLower,
                                    tick,
                                    liquidityDelta,
                                    _feeGrowthGlobal0X128,
                                    _feeGrowthGlobal1X128,
                                    secondsPerLiquidityCumulativeX128,
                                    tickCumulative,
                                    time,
                                    false,
                                    maxLiquidityPerTick
                                );
                                flippedUpper = ticks.update(
                                    tickUpper,
                                    tick,
                                    liquidityDelta,
                                    _feeGrowthGlobal0X128,
                                    _feeGrowthGlobal1X128,
                                    secondsPerLiquidityCumulativeX128,
                                    tickCumulative,
                                    time,
                                    true,
                                    maxLiquidityPerTick
                                );
                                if (flippedLower) {
                                    tickBitmap.flipTick(tickLower, tickSpacing);
                                }
                                if (flippedUpper) {
                                    tickBitmap.flipTick(tickUpper, tickSpacing);
                                }
                            }
                            (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
                                ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
                            position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
                            // clear any tick data that is no longer needed
                            if (liquidityDelta < 0) {
                                if (flippedLower) {
                                    ticks.clear(tickLower);
                                }
                                if (flippedUpper) {
                                    ticks.clear(tickUpper);
                                }
                            }
                        }
                        /// @inheritdoc IUniswapV3PoolActions
                        /// @dev noDelegateCall is applied indirectly via _modifyPosition
                        function mint(
                            address recipient,
                            int24 tickLower,
                            int24 tickUpper,
                            uint128 amount,
                            bytes calldata data
                        ) external override lock returns (uint256 amount0, uint256 amount1) {
                            require(amount > 0);
                            (, int256 amount0Int, int256 amount1Int) =
                                _modifyPosition(
                                    ModifyPositionParams({
                                        owner: recipient,
                                        tickLower: tickLower,
                                        tickUpper: tickUpper,
                                        liquidityDelta: int256(amount).toInt128()
                                    })
                                );
                            amount0 = uint256(amount0Int);
                            amount1 = uint256(amount1Int);
                            uint256 balance0Before;
                            uint256 balance1Before;
                            if (amount0 > 0) balance0Before = balance0();
                            if (amount1 > 0) balance1Before = balance1();
                            IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
                            if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
                            if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
                            emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
                        }
                        /// @inheritdoc IUniswapV3PoolActions
                        function collect(
                            address recipient,
                            int24 tickLower,
                            int24 tickUpper,
                            uint128 amount0Requested,
                            uint128 amount1Requested
                        ) external override lock returns (uint128 amount0, uint128 amount1) {
                            // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
                            Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
                            amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
                            amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
                            if (amount0 > 0) {
                                position.tokensOwed0 -= amount0;
                                TransferHelper.safeTransfer(token0, recipient, amount0);
                            }
                            if (amount1 > 0) {
                                position.tokensOwed1 -= amount1;
                                TransferHelper.safeTransfer(token1, recipient, amount1);
                            }
                            emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
                        }
                        /// @inheritdoc IUniswapV3PoolActions
                        /// @dev noDelegateCall is applied indirectly via _modifyPosition
                        function burn(
                            int24 tickLower,
                            int24 tickUpper,
                            uint128 amount
                        ) external override lock returns (uint256 amount0, uint256 amount1) {
                            (Position.Info storage position, int256 amount0Int, int256 amount1Int) =
                                _modifyPosition(
                                    ModifyPositionParams({
                                        owner: msg.sender,
                                        tickLower: tickLower,
                                        tickUpper: tickUpper,
                                        liquidityDelta: -int256(amount).toInt128()
                                    })
                                );
                            amount0 = uint256(-amount0Int);
                            amount1 = uint256(-amount1Int);
                            if (amount0 > 0 || amount1 > 0) {
                                (position.tokensOwed0, position.tokensOwed1) = (
                                    position.tokensOwed0 + uint128(amount0),
                                    position.tokensOwed1 + uint128(amount1)
                                );
                            }
                            emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
                        }
                        struct SwapCache {
                            // the protocol fee for the input token
                            uint8 feeProtocol;
                            // liquidity at the beginning of the swap
                            uint128 liquidityStart;
                            // the timestamp of the current block
                            uint32 blockTimestamp;
                            // the current value of the tick accumulator, computed only if we cross an initialized tick
                            int56 tickCumulative;
                            // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
                            uint160 secondsPerLiquidityCumulativeX128;
                            // whether we've computed and cached the above two accumulators
                            bool computedLatestObservation;
                        }
                        // the top level state of the swap, the results of which are recorded in storage at the end
                        struct SwapState {
                            // the amount remaining to be swapped in/out of the input/output asset
                            int256 amountSpecifiedRemaining;
                            // the amount already swapped out/in of the output/input asset
                            int256 amountCalculated;
                            // current sqrt(price)
                            uint160 sqrtPriceX96;
                            // the tick associated with the current price
                            int24 tick;
                            // the global fee growth of the input token
                            uint256 feeGrowthGlobalX128;
                            // amount of input token paid as protocol fee
                            uint128 protocolFee;
                            // the current liquidity in range
                            uint128 liquidity;
                        }
                        struct StepComputations {
                            // the price at the beginning of the step
                            uint160 sqrtPriceStartX96;
                            // the next tick to swap to from the current tick in the swap direction
                            int24 tickNext;
                            // whether tickNext is initialized or not
                            bool initialized;
                            // sqrt(price) for the next tick (1/0)
                            uint160 sqrtPriceNextX96;
                            // how much is being swapped in in this step
                            uint256 amountIn;
                            // how much is being swapped out
                            uint256 amountOut;
                            // how much fee is being paid in
                            uint256 feeAmount;
                        }
                        /// @inheritdoc IUniswapV3PoolActions
                        function swap(
                            address recipient,
                            bool zeroForOne,
                            int256 amountSpecified,
                            uint160 sqrtPriceLimitX96,
                            bytes calldata data
                        ) external override noDelegateCall returns (int256 amount0, int256 amount1) {
                            require(amountSpecified != 0, 'AS');
                            Slot0 memory slot0Start = slot0;
                            require(slot0Start.unlocked, 'LOK');
                            require(
                                zeroForOne
                                    ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
                                    : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
                                'SPL'
                            );
                            slot0.unlocked = false;
                            SwapCache memory cache =
                                SwapCache({
                                    liquidityStart: liquidity,
                                    blockTimestamp: _blockTimestamp(),
                                    feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
                                    secondsPerLiquidityCumulativeX128: 0,
                                    tickCumulative: 0,
                                    computedLatestObservation: false
                                });
                            bool exactInput = amountSpecified > 0;
                            SwapState memory state =
                                SwapState({
                                    amountSpecifiedRemaining: amountSpecified,
                                    amountCalculated: 0,
                                    sqrtPriceX96: slot0Start.sqrtPriceX96,
                                    tick: slot0Start.tick,
                                    feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
                                    protocolFee: 0,
                                    liquidity: cache.liquidityStart
                                });
                            // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
                            while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
                                StepComputations memory step;
                                step.sqrtPriceStartX96 = state.sqrtPriceX96;
                                (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
                                    state.tick,
                                    tickSpacing,
                                    zeroForOne
                                );
                                // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
                                if (step.tickNext < TickMath.MIN_TICK) {
                                    step.tickNext = TickMath.MIN_TICK;
                                } else if (step.tickNext > TickMath.MAX_TICK) {
                                    step.tickNext = TickMath.MAX_TICK;
                                }
                                // get the price for the next tick
                                step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
                                // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
                                (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
                                    state.sqrtPriceX96,
                                    (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
                                        ? sqrtPriceLimitX96
                                        : step.sqrtPriceNextX96,
                                    state.liquidity,
                                    state.amountSpecifiedRemaining,
                                    fee
                                );
                                if (exactInput) {
                                    state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
                                    state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
                                } else {
                                    state.amountSpecifiedRemaining += step.amountOut.toInt256();
                                    state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
                                }
                                // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
                                if (cache.feeProtocol > 0) {
                                    uint256 delta = step.feeAmount / cache.feeProtocol;
                                    step.feeAmount -= delta;
                                    state.protocolFee += uint128(delta);
                                }
                                // update global fee tracker
                                if (state.liquidity > 0)
                                    state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
                                // shift tick if we reached the next price
                                if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
                                    // if the tick is initialized, run the tick transition
                                    if (step.initialized) {
                                        // check for the placeholder value, which we replace with the actual value the first time the swap
                                        // crosses an initialized tick
                                        if (!cache.computedLatestObservation) {
                                            (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                                                cache.blockTimestamp,
                                                0,
                                                slot0Start.tick,
                                                slot0Start.observationIndex,
                                                cache.liquidityStart,
                                                slot0Start.observationCardinality
                                            );
                                            cache.computedLatestObservation = true;
                                        }
                                        int128 liquidityNet =
                                            ticks.cross(
                                                step.tickNext,
                                                (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                                                (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                                                cache.secondsPerLiquidityCumulativeX128,
                                                cache.tickCumulative,
                                                cache.blockTimestamp
                                            );
                                        // if we're moving leftward, we interpret liquidityNet as the opposite sign
                                        // safe because liquidityNet cannot be type(int128).min
                                        if (zeroForOne) liquidityNet = -liquidityNet;
                                        state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
                                    }
                                    state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
                                } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
                                    // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
                                    state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
                                }
                            }
                            // update tick and write an oracle entry if the tick change
                            if (state.tick != slot0Start.tick) {
                                (uint16 observationIndex, uint16 observationCardinality) =
                                    observations.write(
                                        slot0Start.observationIndex,
                                        cache.blockTimestamp,
                                        slot0Start.tick,
                                        cache.liquidityStart,
                                        slot0Start.observationCardinality,
                                        slot0Start.observationCardinalityNext
                                    );
                                (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
                                    state.sqrtPriceX96,
                                    state.tick,
                                    observationIndex,
                                    observationCardinality
                                );
                            } else {
                                // otherwise just update the price
                                slot0.sqrtPriceX96 = state.sqrtPriceX96;
                            }
                            // update liquidity if it changed
                            if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
                            // update fee growth global and, if necessary, protocol fees
                            // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
                            if (zeroForOne) {
                                feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
                                if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
                            } else {
                                feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
                                if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
                            }
                            (amount0, amount1) = zeroForOne == exactInput
                                ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
                                : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
                            // do the transfers and collect payment
                            if (zeroForOne) {
                                if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
                                uint256 balance0Before = balance0();
                                IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                                require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
                            } else {
                                if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
                                uint256 balance1Before = balance1();
                                IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                                require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
                            }
                            emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
                            slot0.unlocked = true;
                        }
                        /// @inheritdoc IUniswapV3PoolActions
                        function flash(
                            address recipient,
                            uint256 amount0,
                            uint256 amount1,
                            bytes calldata data
                        ) external override lock noDelegateCall {
                            uint128 _liquidity = liquidity;
                            require(_liquidity > 0, 'L');
                            uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
                            uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
                            uint256 balance0Before = balance0();
                            uint256 balance1Before = balance1();
                            if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
                            if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
                            IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
                            uint256 balance0After = balance0();
                            uint256 balance1After = balance1();
                            require(balance0Before.add(fee0) <= balance0After, 'F0');
                            require(balance1Before.add(fee1) <= balance1After, 'F1');
                            // sub is safe because we know balanceAfter is gt balanceBefore by at least fee
                            uint256 paid0 = balance0After - balance0Before;
                            uint256 paid1 = balance1After - balance1Before;
                            if (paid0 > 0) {
                                uint8 feeProtocol0 = slot0.feeProtocol % 16;
                                uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
                                if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
                                feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
                            }
                            if (paid1 > 0) {
                                uint8 feeProtocol1 = slot0.feeProtocol >> 4;
                                uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
                                if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
                                feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
                            }
                            emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
                        }
                        /// @inheritdoc IUniswapV3PoolOwnerActions
                        function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
                            require(
                                (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
                                    (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
                            );
                            uint8 feeProtocolOld = slot0.feeProtocol;
                            slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
                            emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
                        }
                        /// @inheritdoc IUniswapV3PoolOwnerActions
                        function collectProtocol(
                            address recipient,
                            uint128 amount0Requested,
                            uint128 amount1Requested
                        ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
                            amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
                            amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
                            if (amount0 > 0) {
                                if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
                                protocolFees.token0 -= amount0;
                                TransferHelper.safeTransfer(token0, recipient, amount0);
                            }
                            if (amount1 > 0) {
                                if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
                                protocolFees.token1 -= amount1;
                                TransferHelper.safeTransfer(token1, recipient, amount1);
                            }
                            emit CollectProtocol(msg.sender, recipient, amount0, amount1);
                        }
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    import './pool/IUniswapV3PoolImmutables.sol';
                    import './pool/IUniswapV3PoolState.sol';
                    import './pool/IUniswapV3PoolDerivedState.sol';
                    import './pool/IUniswapV3PoolActions.sol';
                    import './pool/IUniswapV3PoolOwnerActions.sol';
                    import './pool/IUniswapV3PoolEvents.sol';
                    /// @title The interface for a Uniswap V3 Pool
                    /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
                    /// to the ERC20 specification
                    /// @dev The pool interface is broken up into many smaller pieces
                    interface IUniswapV3Pool is
                        IUniswapV3PoolImmutables,
                        IUniswapV3PoolState,
                        IUniswapV3PoolDerivedState,
                        IUniswapV3PoolActions,
                        IUniswapV3PoolOwnerActions,
                        IUniswapV3PoolEvents
                    {
                    }
                    // SPDX-License-Identifier: BUSL-1.1
                    pragma solidity =0.7.6;
                    /// @title Prevents delegatecall to a contract
                    /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
                    abstract contract NoDelegateCall {
                        /// @dev The original address of this contract
                        address private immutable original;
                        constructor() {
                            // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
                            // In other words, this variable won't change when it's checked at runtime.
                            original = address(this);
                        }
                        /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
                        ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
                        function checkNotDelegateCall() private view {
                            require(address(this) == original);
                        }
                        /// @notice Prevents delegatecall into the modified method
                        modifier noDelegateCall() {
                            checkNotDelegateCall();
                            _;
                        }
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.7.0;
                    /// @title Optimized overflow and underflow safe math operations
                    /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
                    library LowGasSafeMath {
                        /// @notice Returns x + y, reverts if sum overflows uint256
                        /// @param x The augend
                        /// @param y The addend
                        /// @return z The sum of x and y
                        function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                            require((z = x + y) >= x);
                        }
                        /// @notice Returns x - y, reverts if underflows
                        /// @param x The minuend
                        /// @param y The subtrahend
                        /// @return z The difference of x and y
                        function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                            require((z = x - y) <= x);
                        }
                        /// @notice Returns x * y, reverts if overflows
                        /// @param x The multiplicand
                        /// @param y The multiplier
                        /// @return z The product of x and y
                        function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                            require(x == 0 || (z = x * y) / x == y);
                        }
                        /// @notice Returns x + y, reverts if overflows or underflows
                        /// @param x The augend
                        /// @param y The addend
                        /// @return z The sum of x and y
                        function add(int256 x, int256 y) internal pure returns (int256 z) {
                            require((z = x + y) >= x == (y >= 0));
                        }
                        /// @notice Returns x - y, reverts if overflows or underflows
                        /// @param x The minuend
                        /// @param y The subtrahend
                        /// @return z The difference of x and y
                        function sub(int256 x, int256 y) internal pure returns (int256 z) {
                            require((z = x - y) <= x == (y >= 0));
                        }
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Safe casting methods
                    /// @notice Contains methods for safely casting between types
                    library SafeCast {
                        /// @notice Cast a uint256 to a uint160, revert on overflow
                        /// @param y The uint256 to be downcasted
                        /// @return z The downcasted integer, now type uint160
                        function toUint160(uint256 y) internal pure returns (uint160 z) {
                            require((z = uint160(y)) == y);
                        }
                        /// @notice Cast a int256 to a int128, revert on overflow or underflow
                        /// @param y The int256 to be downcasted
                        /// @return z The downcasted integer, now type int128
                        function toInt128(int256 y) internal pure returns (int128 z) {
                            require((z = int128(y)) == y);
                        }
                        /// @notice Cast a uint256 to a int256, revert on overflow
                        /// @param y The uint256 to be casted
                        /// @return z The casted integer, now type int256
                        function toInt256(uint256 y) internal pure returns (int256 z) {
                            require(y < 2**255);
                            z = int256(y);
                        }
                    }
                    // SPDX-License-Identifier: BUSL-1.1
                    pragma solidity >=0.5.0;
                    import './LowGasSafeMath.sol';
                    import './SafeCast.sol';
                    import './TickMath.sol';
                    import './LiquidityMath.sol';
                    /// @title Tick
                    /// @notice Contains functions for managing tick processes and relevant calculations
                    library Tick {
                        using LowGasSafeMath for int256;
                        using SafeCast for int256;
                        // info stored for each initialized individual tick
                        struct Info {
                            // the total position liquidity that references this tick
                            uint128 liquidityGross;
                            // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
                            int128 liquidityNet;
                            // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                            // only has relative meaning, not absolute — the value depends on when the tick is initialized
                            uint256 feeGrowthOutside0X128;
                            uint256 feeGrowthOutside1X128;
                            // the cumulative tick value on the other side of the tick
                            int56 tickCumulativeOutside;
                            // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                            // only has relative meaning, not absolute — the value depends on when the tick is initialized
                            uint160 secondsPerLiquidityOutsideX128;
                            // the seconds spent on the other side of the tick (relative to the current tick)
                            // only has relative meaning, not absolute — the value depends on when the tick is initialized
                            uint32 secondsOutside;
                            // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
                            // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
                            bool initialized;
                        }
                        /// @notice Derives max liquidity per tick from given tick spacing
                        /// @dev Executed within the pool constructor
                        /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
                        ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
                        /// @return The max liquidity per tick
                        function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
                            int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
                            int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
                            uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
                            return type(uint128).max / numTicks;
                        }
                        /// @notice Retrieves fee growth data
                        /// @param self The mapping containing all tick information for initialized ticks
                        /// @param tickLower The lower tick boundary of the position
                        /// @param tickUpper The upper tick boundary of the position
                        /// @param tickCurrent The current tick
                        /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                        /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                        /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                        /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                        function getFeeGrowthInside(
                            mapping(int24 => Tick.Info) storage self,
                            int24 tickLower,
                            int24 tickUpper,
                            int24 tickCurrent,
                            uint256 feeGrowthGlobal0X128,
                            uint256 feeGrowthGlobal1X128
                        ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
                            Info storage lower = self[tickLower];
                            Info storage upper = self[tickUpper];
                            // calculate fee growth below
                            uint256 feeGrowthBelow0X128;
                            uint256 feeGrowthBelow1X128;
                            if (tickCurrent >= tickLower) {
                                feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
                                feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
                            } else {
                                feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
                                feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
                            }
                            // calculate fee growth above
                            uint256 feeGrowthAbove0X128;
                            uint256 feeGrowthAbove1X128;
                            if (tickCurrent < tickUpper) {
                                feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
                                feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
                            } else {
                                feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
                                feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
                            }
                            feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
                            feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
                        }
                        /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
                        /// @param self The mapping containing all tick information for initialized ticks
                        /// @param tick The tick that will be updated
                        /// @param tickCurrent The current tick
                        /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
                        /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                        /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                        /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
                        /// @param time The current block timestamp cast to a uint32
                        /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
                        /// @param maxLiquidity The maximum liquidity allocation for a single tick
                        /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
                        function update(
                            mapping(int24 => Tick.Info) storage self,
                            int24 tick,
                            int24 tickCurrent,
                            int128 liquidityDelta,
                            uint256 feeGrowthGlobal0X128,
                            uint256 feeGrowthGlobal1X128,
                            uint160 secondsPerLiquidityCumulativeX128,
                            int56 tickCumulative,
                            uint32 time,
                            bool upper,
                            uint128 maxLiquidity
                        ) internal returns (bool flipped) {
                            Tick.Info storage info = self[tick];
                            uint128 liquidityGrossBefore = info.liquidityGross;
                            uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
                            require(liquidityGrossAfter <= maxLiquidity, 'LO');
                            flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
                            if (liquidityGrossBefore == 0) {
                                // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
                                if (tick <= tickCurrent) {
                                    info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
                                    info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
                                    info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
                                    info.tickCumulativeOutside = tickCumulative;
                                    info.secondsOutside = time;
                                }
                                info.initialized = true;
                            }
                            info.liquidityGross = liquidityGrossAfter;
                            // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
                            info.liquidityNet = upper
                                ? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
                                : int256(info.liquidityNet).add(liquidityDelta).toInt128();
                        }
                        /// @notice Clears tick data
                        /// @param self The mapping containing all initialized tick information for initialized ticks
                        /// @param tick The tick that will be cleared
                        function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
                            delete self[tick];
                        }
                        /// @notice Transitions to next tick as needed by price movement
                        /// @param self The mapping containing all tick information for initialized ticks
                        /// @param tick The destination tick of the transition
                        /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                        /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                        /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
                        /// @param time The current block.timestamp
                        /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
                        function cross(
                            mapping(int24 => Tick.Info) storage self,
                            int24 tick,
                            uint256 feeGrowthGlobal0X128,
                            uint256 feeGrowthGlobal1X128,
                            uint160 secondsPerLiquidityCumulativeX128,
                            int56 tickCumulative,
                            uint32 time
                        ) internal returns (int128 liquidityNet) {
                            Tick.Info storage info = self[tick];
                            info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
                            info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
                            info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
                            info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
                            info.secondsOutside = time - info.secondsOutside;
                            liquidityNet = info.liquidityNet;
                        }
                    }
                    // SPDX-License-Identifier: BUSL-1.1
                    pragma solidity >=0.5.0;
                    import './BitMath.sol';
                    /// @title Packed tick initialized state library
                    /// @notice Stores a packed mapping of tick index to its initialized state
                    /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
                    library TickBitmap {
                        /// @notice Computes the position in the mapping where the initialized bit for a tick lives
                        /// @param tick The tick for which to compute the position
                        /// @return wordPos The key in the mapping containing the word in which the bit is stored
                        /// @return bitPos The bit position in the word where the flag is stored
                        function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
                            wordPos = int16(tick >> 8);
                            bitPos = uint8(tick % 256);
                        }
                        /// @notice Flips the initialized state for a given tick from false to true, or vice versa
                        /// @param self The mapping in which to flip the tick
                        /// @param tick The tick to flip
                        /// @param tickSpacing The spacing between usable ticks
                        function flipTick(
                            mapping(int16 => uint256) storage self,
                            int24 tick,
                            int24 tickSpacing
                        ) internal {
                            require(tick % tickSpacing == 0); // ensure that the tick is spaced
                            (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
                            uint256 mask = 1 << bitPos;
                            self[wordPos] ^= mask;
                        }
                        /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
                        /// to the left (less than or equal to) or right (greater than) of the given tick
                        /// @param self The mapping in which to compute the next initialized tick
                        /// @param tick The starting tick
                        /// @param tickSpacing The spacing between usable ticks
                        /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
                        /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
                        /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
                        function nextInitializedTickWithinOneWord(
                            mapping(int16 => uint256) storage self,
                            int24 tick,
                            int24 tickSpacing,
                            bool lte
                        ) internal view returns (int24 next, bool initialized) {
                            int24 compressed = tick / tickSpacing;
                            if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
                            if (lte) {
                                (int16 wordPos, uint8 bitPos) = position(compressed);
                                // all the 1s at or to the right of the current bitPos
                                uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
                                uint256 masked = self[wordPos] & mask;
                                // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
                                initialized = masked != 0;
                                // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                                next = initialized
                                    ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
                                    : (compressed - int24(bitPos)) * tickSpacing;
                            } else {
                                // start from the word of the next tick, since the current tick state doesn't matter
                                (int16 wordPos, uint8 bitPos) = position(compressed + 1);
                                // all the 1s at or to the left of the bitPos
                                uint256 mask = ~((1 << bitPos) - 1);
                                uint256 masked = self[wordPos] & mask;
                                // if there are no initialized ticks to the left of the current tick, return leftmost in the word
                                initialized = masked != 0;
                                // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                                next = initialized
                                    ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
                                    : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
                            }
                        }
                    }
                    // SPDX-License-Identifier: BUSL-1.1
                    pragma solidity >=0.5.0;
                    import './FullMath.sol';
                    import './FixedPoint128.sol';
                    import './LiquidityMath.sol';
                    /// @title Position
                    /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
                    /// @dev Positions store additional state for tracking fees owed to the position
                    library Position {
                        // info stored for each user's position
                        struct Info {
                            // the amount of liquidity owned by this position
                            uint128 liquidity;
                            // fee growth per unit of liquidity as of the last update to liquidity or fees owed
                            uint256 feeGrowthInside0LastX128;
                            uint256 feeGrowthInside1LastX128;
                            // the fees owed to the position owner in token0/token1
                            uint128 tokensOwed0;
                            uint128 tokensOwed1;
                        }
                        /// @notice Returns the Info struct of a position, given an owner and position boundaries
                        /// @param self The mapping containing all user positions
                        /// @param owner The address of the position owner
                        /// @param tickLower The lower tick boundary of the position
                        /// @param tickUpper The upper tick boundary of the position
                        /// @return position The position info struct of the given owners' position
                        function get(
                            mapping(bytes32 => Info) storage self,
                            address owner,
                            int24 tickLower,
                            int24 tickUpper
                        ) internal view returns (Position.Info storage position) {
                            position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
                        }
                        /// @notice Credits accumulated fees to a user's position
                        /// @param self The individual position to update
                        /// @param liquidityDelta The change in pool liquidity as a result of the position update
                        /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                        /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                        function update(
                            Info storage self,
                            int128 liquidityDelta,
                            uint256 feeGrowthInside0X128,
                            uint256 feeGrowthInside1X128
                        ) internal {
                            Info memory _self = self;
                            uint128 liquidityNext;
                            if (liquidityDelta == 0) {
                                require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
                                liquidityNext = _self.liquidity;
                            } else {
                                liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
                            }
                            // calculate accumulated fees
                            uint128 tokensOwed0 =
                                uint128(
                                    FullMath.mulDiv(
                                        feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
                                        _self.liquidity,
                                        FixedPoint128.Q128
                                    )
                                );
                            uint128 tokensOwed1 =
                                uint128(
                                    FullMath.mulDiv(
                                        feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
                                        _self.liquidity,
                                        FixedPoint128.Q128
                                    )
                                );
                            // update the position
                            if (liquidityDelta != 0) self.liquidity = liquidityNext;
                            self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
                            self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
                            if (tokensOwed0 > 0 || tokensOwed1 > 0) {
                                // overflow is acceptable, have to withdraw before you hit type(uint128).max fees
                                self.tokensOwed0 += tokensOwed0;
                                self.tokensOwed1 += tokensOwed1;
                            }
                        }
                    }
                    // SPDX-License-Identifier: BUSL-1.1
                    pragma solidity >=0.5.0;
                    /// @title Oracle
                    /// @notice Provides price and liquidity data useful for a wide variety of system designs
                    /// @dev Instances of stored oracle data, "observations", are collected in the oracle array
                    /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
                    /// maximum length of the oracle array. New slots will be added when the array is fully populated.
                    /// Observations are overwritten when the full length of the oracle array is populated.
                    /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
                    library Oracle {
                        struct Observation {
                            // the block timestamp of the observation
                            uint32 blockTimestamp;
                            // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
                            int56 tickCumulative;
                            // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
                            uint160 secondsPerLiquidityCumulativeX128;
                            // whether or not the observation is initialized
                            bool initialized;
                        }
                        /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
                        /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
                        /// @param last The specified observation to be transformed
                        /// @param blockTimestamp The timestamp of the new observation
                        /// @param tick The active tick at the time of the new observation
                        /// @param liquidity The total in-range liquidity at the time of the new observation
                        /// @return Observation The newly populated observation
                        function transform(
                            Observation memory last,
                            uint32 blockTimestamp,
                            int24 tick,
                            uint128 liquidity
                        ) private pure returns (Observation memory) {
                            uint32 delta = blockTimestamp - last.blockTimestamp;
                            return
                                Observation({
                                    blockTimestamp: blockTimestamp,
                                    tickCumulative: last.tickCumulative + int56(tick) * delta,
                                    secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
                                        ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
                                    initialized: true
                                });
                        }
                        /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
                        /// @param self The stored oracle array
                        /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
                        /// @return cardinality The number of populated elements in the oracle array
                        /// @return cardinalityNext The new length of the oracle array, independent of population
                        function initialize(Observation[65535] storage self, uint32 time)
                            internal
                            returns (uint16 cardinality, uint16 cardinalityNext)
                        {
                            self[0] = Observation({
                                blockTimestamp: time,
                                tickCumulative: 0,
                                secondsPerLiquidityCumulativeX128: 0,
                                initialized: true
                            });
                            return (1, 1);
                        }
                        /// @notice Writes an oracle observation to the array
                        /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
                        /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
                        /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
                        /// @param self The stored oracle array
                        /// @param index The index of the observation that was most recently written to the observations array
                        /// @param blockTimestamp The timestamp of the new observation
                        /// @param tick The active tick at the time of the new observation
                        /// @param liquidity The total in-range liquidity at the time of the new observation
                        /// @param cardinality The number of populated elements in the oracle array
                        /// @param cardinalityNext The new length of the oracle array, independent of population
                        /// @return indexUpdated The new index of the most recently written element in the oracle array
                        /// @return cardinalityUpdated The new cardinality of the oracle array
                        function write(
                            Observation[65535] storage self,
                            uint16 index,
                            uint32 blockTimestamp,
                            int24 tick,
                            uint128 liquidity,
                            uint16 cardinality,
                            uint16 cardinalityNext
                        ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
                            Observation memory last = self[index];
                            // early return if we've already written an observation this block
                            if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
                            // if the conditions are right, we can bump the cardinality
                            if (cardinalityNext > cardinality && index == (cardinality - 1)) {
                                cardinalityUpdated = cardinalityNext;
                            } else {
                                cardinalityUpdated = cardinality;
                            }
                            indexUpdated = (index + 1) % cardinalityUpdated;
                            self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
                        }
                        /// @notice Prepares the oracle array to store up to `next` observations
                        /// @param self The stored oracle array
                        /// @param current The current next cardinality of the oracle array
                        /// @param next The proposed next cardinality which will be populated in the oracle array
                        /// @return next The next cardinality which will be populated in the oracle array
                        function grow(
                            Observation[65535] storage self,
                            uint16 current,
                            uint16 next
                        ) internal returns (uint16) {
                            require(current > 0, 'I');
                            // no-op if the passed next value isn't greater than the current next value
                            if (next <= current) return current;
                            // store in each slot to prevent fresh SSTOREs in swaps
                            // this data will not be used because the initialized boolean is still false
                            for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
                            return next;
                        }
                        /// @notice comparator for 32-bit timestamps
                        /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
                        /// @param time A timestamp truncated to 32 bits
                        /// @param a A comparison timestamp from which to determine the relative position of `time`
                        /// @param b From which to determine the relative position of `time`
                        /// @return bool Whether `a` is chronologically <= `b`
                        function lte(
                            uint32 time,
                            uint32 a,
                            uint32 b
                        ) private pure returns (bool) {
                            // if there hasn't been overflow, no need to adjust
                            if (a <= time && b <= time) return a <= b;
                            uint256 aAdjusted = a > time ? a : a + 2**32;
                            uint256 bAdjusted = b > time ? b : b + 2**32;
                            return aAdjusted <= bAdjusted;
                        }
                        /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
                        /// The result may be the same observation, or adjacent observations.
                        /// @dev The answer must be contained in the array, used when the target is located within the stored observation
                        /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
                        /// @param self The stored oracle array
                        /// @param time The current block.timestamp
                        /// @param target The timestamp at which the reserved observation should be for
                        /// @param index The index of the observation that was most recently written to the observations array
                        /// @param cardinality The number of populated elements in the oracle array
                        /// @return beforeOrAt The observation recorded before, or at, the target
                        /// @return atOrAfter The observation recorded at, or after, the target
                        function binarySearch(
                            Observation[65535] storage self,
                            uint32 time,
                            uint32 target,
                            uint16 index,
                            uint16 cardinality
                        ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                            uint256 l = (index + 1) % cardinality; // oldest observation
                            uint256 r = l + cardinality - 1; // newest observation
                            uint256 i;
                            while (true) {
                                i = (l + r) / 2;
                                beforeOrAt = self[i % cardinality];
                                // we've landed on an uninitialized tick, keep searching higher (more recently)
                                if (!beforeOrAt.initialized) {
                                    l = i + 1;
                                    continue;
                                }
                                atOrAfter = self[(i + 1) % cardinality];
                                bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
                                // check if we've found the answer!
                                if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
                                if (!targetAtOrAfter) r = i - 1;
                                else l = i + 1;
                            }
                        }
                        /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
                        /// @dev Assumes there is at least 1 initialized observation.
                        /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
                        /// @param self The stored oracle array
                        /// @param time The current block.timestamp
                        /// @param target The timestamp at which the reserved observation should be for
                        /// @param tick The active tick at the time of the returned or simulated observation
                        /// @param index The index of the observation that was most recently written to the observations array
                        /// @param liquidity The total pool liquidity at the time of the call
                        /// @param cardinality The number of populated elements in the oracle array
                        /// @return beforeOrAt The observation which occurred at, or before, the given timestamp
                        /// @return atOrAfter The observation which occurred at, or after, the given timestamp
                        function getSurroundingObservations(
                            Observation[65535] storage self,
                            uint32 time,
                            uint32 target,
                            int24 tick,
                            uint16 index,
                            uint128 liquidity,
                            uint16 cardinality
                        ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                            // optimistically set before to the newest observation
                            beforeOrAt = self[index];
                            // if the target is chronologically at or after the newest observation, we can early return
                            if (lte(time, beforeOrAt.blockTimestamp, target)) {
                                if (beforeOrAt.blockTimestamp == target) {
                                    // if newest observation equals target, we're in the same block, so we can ignore atOrAfter
                                    return (beforeOrAt, atOrAfter);
                                } else {
                                    // otherwise, we need to transform
                                    return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
                                }
                            }
                            // now, set before to the oldest observation
                            beforeOrAt = self[(index + 1) % cardinality];
                            if (!beforeOrAt.initialized) beforeOrAt = self[0];
                            // ensure that the target is chronologically at or after the oldest observation
                            require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
                            // if we've reached this point, we have to binary search
                            return binarySearch(self, time, target, index, cardinality);
                        }
                        /// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
                        /// 0 may be passed as `secondsAgo' to return the current cumulative values.
                        /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
                        /// at exactly the timestamp between the two observations.
                        /// @param self The stored oracle array
                        /// @param time The current block timestamp
                        /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
                        /// @param tick The current tick
                        /// @param index The index of the observation that was most recently written to the observations array
                        /// @param liquidity The current in-range pool liquidity
                        /// @param cardinality The number of populated elements in the oracle array
                        /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
                        /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
                        function observeSingle(
                            Observation[65535] storage self,
                            uint32 time,
                            uint32 secondsAgo,
                            int24 tick,
                            uint16 index,
                            uint128 liquidity,
                            uint16 cardinality
                        ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
                            if (secondsAgo == 0) {
                                Observation memory last = self[index];
                                if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
                                return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
                            }
                            uint32 target = time - secondsAgo;
                            (Observation memory beforeOrAt, Observation memory atOrAfter) =
                                getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
                            if (target == beforeOrAt.blockTimestamp) {
                                // we're at the left boundary
                                return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
                            } else if (target == atOrAfter.blockTimestamp) {
                                // we're at the right boundary
                                return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
                            } else {
                                // we're in the middle
                                uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
                                uint32 targetDelta = target - beforeOrAt.blockTimestamp;
                                return (
                                    beforeOrAt.tickCumulative +
                                        ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
                                        targetDelta,
                                    beforeOrAt.secondsPerLiquidityCumulativeX128 +
                                        uint160(
                                            (uint256(
                                                atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
                                            ) * targetDelta) / observationTimeDelta
                                        )
                                );
                            }
                        }
                        /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
                        /// @dev Reverts if `secondsAgos` > oldest observation
                        /// @param self The stored oracle array
                        /// @param time The current block.timestamp
                        /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
                        /// @param tick The current tick
                        /// @param index The index of the observation that was most recently written to the observations array
                        /// @param liquidity The current in-range pool liquidity
                        /// @param cardinality The number of populated elements in the oracle array
                        /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
                        /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
                        function observe(
                            Observation[65535] storage self,
                            uint32 time,
                            uint32[] memory secondsAgos,
                            int24 tick,
                            uint16 index,
                            uint128 liquidity,
                            uint16 cardinality
                        ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
                            require(cardinality > 0, 'I');
                            tickCumulatives = new int56[](secondsAgos.length);
                            secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
                            for (uint256 i = 0; i < secondsAgos.length; i++) {
                                (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
                                    self,
                                    time,
                                    secondsAgos[i],
                                    tick,
                                    index,
                                    liquidity,
                                    cardinality
                                );
                            }
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity >=0.4.0;
                    /// @title Contains 512-bit math functions
                    /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
                    /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
                    library FullMath {
                        /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                        /// @param a The multiplicand
                        /// @param b The multiplier
                        /// @param denominator The divisor
                        /// @return result The 256-bit result
                        /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                        function mulDiv(
                            uint256 a,
                            uint256 b,
                            uint256 denominator
                        ) internal pure returns (uint256 result) {
                            // 512-bit multiply [prod1 prod0] = a * b
                            // Compute the product mod 2**256 and mod 2**256 - 1
                            // then use the Chinese Remainder Theorem to reconstruct
                            // the 512 bit result. The result is stored in two 256
                            // variables such that product = prod1 * 2**256 + prod0
                            uint256 prod0; // Least significant 256 bits of the product
                            uint256 prod1; // Most significant 256 bits of the product
                            assembly {
                                let mm := mulmod(a, b, not(0))
                                prod0 := mul(a, b)
                                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                            }
                            // Handle non-overflow cases, 256 by 256 division
                            if (prod1 == 0) {
                                require(denominator > 0);
                                assembly {
                                    result := div(prod0, denominator)
                                }
                                return result;
                            }
                            // Make sure the result is less than 2**256.
                            // Also prevents denominator == 0
                            require(denominator > prod1);
                            ///////////////////////////////////////////////
                            // 512 by 256 division.
                            ///////////////////////////////////////////////
                            // Make division exact by subtracting the remainder from [prod1 prod0]
                            // Compute remainder using mulmod
                            uint256 remainder;
                            assembly {
                                remainder := mulmod(a, b, denominator)
                            }
                            // Subtract 256 bit number from 512 bit number
                            assembly {
                                prod1 := sub(prod1, gt(remainder, prod0))
                                prod0 := sub(prod0, remainder)
                            }
                            // Factor powers of two out of denominator
                            // Compute largest power of two divisor of denominator.
                            // Always >= 1.
                            uint256 twos = -denominator & denominator;
                            // Divide denominator by power of two
                            assembly {
                                denominator := div(denominator, twos)
                            }
                            // Divide [prod1 prod0] by the factors of two
                            assembly {
                                prod0 := div(prod0, twos)
                            }
                            // Shift in bits from prod1 into prod0. For this we need
                            // to flip `twos` such that it is 2**256 / twos.
                            // If twos is zero, then it becomes one
                            assembly {
                                twos := add(div(sub(0, twos), twos), 1)
                            }
                            prod0 |= prod1 * twos;
                            // Invert denominator mod 2**256
                            // Now that denominator is an odd number, it has an inverse
                            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                            // Compute the inverse by starting with a seed that is correct
                            // correct for four bits. That is, denominator * inv = 1 mod 2**4
                            uint256 inv = (3 * denominator) ^ 2;
                            // Now use Newton-Raphson iteration to improve the precision.
                            // Thanks to Hensel's lifting lemma, this also works in modular
                            // arithmetic, doubling the correct bits in each step.
                            inv *= 2 - denominator * inv; // inverse mod 2**8
                            inv *= 2 - denominator * inv; // inverse mod 2**16
                            inv *= 2 - denominator * inv; // inverse mod 2**32
                            inv *= 2 - denominator * inv; // inverse mod 2**64
                            inv *= 2 - denominator * inv; // inverse mod 2**128
                            inv *= 2 - denominator * inv; // inverse mod 2**256
                            // Because the division is now exact we can divide by multiplying
                            // with the modular inverse of denominator. This will give us the
                            // correct result modulo 2**256. Since the precoditions guarantee
                            // that the outcome is less than 2**256, this is the final result.
                            // We don't need to compute the high bits of the result and prod1
                            // is no longer required.
                            result = prod0 * inv;
                            return result;
                        }
                        /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                        /// @param a The multiplicand
                        /// @param b The multiplier
                        /// @param denominator The divisor
                        /// @return result The 256-bit result
                        function mulDivRoundingUp(
                            uint256 a,
                            uint256 b,
                            uint256 denominator
                        ) internal pure returns (uint256 result) {
                            result = mulDiv(a, b, denominator);
                            if (mulmod(a, b, denominator) > 0) {
                                require(result < type(uint256).max);
                                result++;
                            }
                        }
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.4.0;
                    /// @title FixedPoint128
                    /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
                    library FixedPoint128 {
                        uint256 internal constant Q128 = 0x100000000000000000000000000000000;
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.6.0;
                    import '../interfaces/IERC20Minimal.sol';
                    /// @title TransferHelper
                    /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
                    library TransferHelper {
                        /// @notice Transfers tokens from msg.sender to a recipient
                        /// @dev Calls transfer on token contract, errors with TF if transfer fails
                        /// @param token The contract address of the token which will be transferred
                        /// @param to The recipient of the transfer
                        /// @param value The value of the transfer
                        function safeTransfer(
                            address token,
                            address to,
                            uint256 value
                        ) internal {
                            (bool success, bytes memory data) =
                                token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
                            require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
                        }
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Math library for computing sqrt prices from ticks and vice versa
                    /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
                    /// prices between 2**-128 and 2**128
                    library TickMath {
                        /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
                        int24 internal constant MIN_TICK = -887272;
                        /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
                        int24 internal constant MAX_TICK = -MIN_TICK;
                        /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
                        uint160 internal constant MIN_SQRT_RATIO = 4295128739;
                        /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
                        uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
                        /// @notice Calculates sqrt(1.0001^tick) * 2^96
                        /// @dev Throws if |tick| > max tick
                        /// @param tick The input tick for the above formula
                        /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
                        /// at the given tick
                        function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                            uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                            require(absTick <= uint256(MAX_TICK), 'T');
                            uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                            if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                            if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                            if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                            if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                            if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                            if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                            if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                            if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                            if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                            if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                            if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                            if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                            if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                            if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                            if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                            if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                            if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                            if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                            if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                            if (tick > 0) ratio = type(uint256).max / ratio;
                            // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                            // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                            // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                            sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
                        }
                        /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
                        /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
                        /// ever return.
                        /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
                        /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
                        function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                            // second inequality must be < because the price can never reach the price at the max tick
                            require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                            uint256 ratio = uint256(sqrtPriceX96) << 32;
                            uint256 r = ratio;
                            uint256 msb = 0;
                            assembly {
                                let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                                msb := or(msb, f)
                                r := shr(f, r)
                            }
                            assembly {
                                let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                                msb := or(msb, f)
                                r := shr(f, r)
                            }
                            assembly {
                                let f := shl(5, gt(r, 0xFFFFFFFF))
                                msb := or(msb, f)
                                r := shr(f, r)
                            }
                            assembly {
                                let f := shl(4, gt(r, 0xFFFF))
                                msb := or(msb, f)
                                r := shr(f, r)
                            }
                            assembly {
                                let f := shl(3, gt(r, 0xFF))
                                msb := or(msb, f)
                                r := shr(f, r)
                            }
                            assembly {
                                let f := shl(2, gt(r, 0xF))
                                msb := or(msb, f)
                                r := shr(f, r)
                            }
                            assembly {
                                let f := shl(1, gt(r, 0x3))
                                msb := or(msb, f)
                                r := shr(f, r)
                            }
                            assembly {
                                let f := gt(r, 0x1)
                                msb := or(msb, f)
                            }
                            if (msb >= 128) r = ratio >> (msb - 127);
                            else r = ratio << (127 - msb);
                            int256 log_2 = (int256(msb) - 128) << 64;
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(63, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(62, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(61, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(60, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(59, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(58, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(57, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(56, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(55, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(54, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(53, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(52, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(51, f))
                                r := shr(f, r)
                            }
                            assembly {
                                r := shr(127, mul(r, r))
                                let f := shr(128, r)
                                log_2 := or(log_2, shl(50, f))
                            }
                            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                            tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
                        }
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Math library for liquidity
                    library LiquidityMath {
                        /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
                        /// @param x The liquidity before change
                        /// @param y The delta by which liquidity should be changed
                        /// @return z The liquidity delta
                        function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
                            if (y < 0) {
                                require((z = x - uint128(-y)) < x, 'LS');
                            } else {
                                require((z = x + uint128(y)) >= x, 'LA');
                            }
                        }
                    }
                    // SPDX-License-Identifier: BUSL-1.1
                    pragma solidity >=0.5.0;
                    import './LowGasSafeMath.sol';
                    import './SafeCast.sol';
                    import './FullMath.sol';
                    import './UnsafeMath.sol';
                    import './FixedPoint96.sol';
                    /// @title Functions based on Q64.96 sqrt price and liquidity
                    /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
                    library SqrtPriceMath {
                        using LowGasSafeMath for uint256;
                        using SafeCast for uint256;
                        /// @notice Gets the next sqrt price given a delta of token0
                        /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
                        /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
                        /// price less in order to not send too much output.
                        /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
                        /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
                        /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
                        /// @param liquidity The amount of usable liquidity
                        /// @param amount How much of token0 to add or remove from virtual reserves
                        /// @param add Whether to add or remove the amount of token0
                        /// @return The price after adding or removing amount, depending on add
                        function getNextSqrtPriceFromAmount0RoundingUp(
                            uint160 sqrtPX96,
                            uint128 liquidity,
                            uint256 amount,
                            bool add
                        ) internal pure returns (uint160) {
                            // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
                            if (amount == 0) return sqrtPX96;
                            uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                            if (add) {
                                uint256 product;
                                if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
                                    uint256 denominator = numerator1 + product;
                                    if (denominator >= numerator1)
                                        // always fits in 160 bits
                                        return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                                }
                                return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
                            } else {
                                uint256 product;
                                // if the product overflows, we know the denominator underflows
                                // in addition, we must check that the denominator does not underflow
                                require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
                                uint256 denominator = numerator1 - product;
                                return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
                            }
                        }
                        /// @notice Gets the next sqrt price given a delta of token1
                        /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
                        /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
                        /// price less in order to not send too much output.
                        /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
                        /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
                        /// @param liquidity The amount of usable liquidity
                        /// @param amount How much of token1 to add, or remove, from virtual reserves
                        /// @param add Whether to add, or remove, the amount of token1
                        /// @return The price after adding or removing `amount`
                        function getNextSqrtPriceFromAmount1RoundingDown(
                            uint160 sqrtPX96,
                            uint128 liquidity,
                            uint256 amount,
                            bool add
                        ) internal pure returns (uint160) {
                            // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
                            // in both cases, avoid a mulDiv for most inputs
                            if (add) {
                                uint256 quotient =
                                    (
                                        amount <= type(uint160).max
                                            ? (amount << FixedPoint96.RESOLUTION) / liquidity
                                            : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
                                    );
                                return uint256(sqrtPX96).add(quotient).toUint160();
                            } else {
                                uint256 quotient =
                                    (
                                        amount <= type(uint160).max
                                            ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                                            : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
                                    );
                                require(sqrtPX96 > quotient);
                                // always fits 160 bits
                                return uint160(sqrtPX96 - quotient);
                            }
                        }
                        /// @notice Gets the next sqrt price given an input amount of token0 or token1
                        /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
                        /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
                        /// @param liquidity The amount of usable liquidity
                        /// @param amountIn How much of token0, or token1, is being swapped in
                        /// @param zeroForOne Whether the amount in is token0 or token1
                        /// @return sqrtQX96 The price after adding the input amount to token0 or token1
                        function getNextSqrtPriceFromInput(
                            uint160 sqrtPX96,
                            uint128 liquidity,
                            uint256 amountIn,
                            bool zeroForOne
                        ) internal pure returns (uint160 sqrtQX96) {
                            require(sqrtPX96 > 0);
                            require(liquidity > 0);
                            // round to make sure that we don't pass the target price
                            return
                                zeroForOne
                                    ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                                    : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
                        }
                        /// @notice Gets the next sqrt price given an output amount of token0 or token1
                        /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
                        /// @param sqrtPX96 The starting price before accounting for the output amount
                        /// @param liquidity The amount of usable liquidity
                        /// @param amountOut How much of token0, or token1, is being swapped out
                        /// @param zeroForOne Whether the amount out is token0 or token1
                        /// @return sqrtQX96 The price after removing the output amount of token0 or token1
                        function getNextSqrtPriceFromOutput(
                            uint160 sqrtPX96,
                            uint128 liquidity,
                            uint256 amountOut,
                            bool zeroForOne
                        ) internal pure returns (uint160 sqrtQX96) {
                            require(sqrtPX96 > 0);
                            require(liquidity > 0);
                            // round to make sure that we pass the target price
                            return
                                zeroForOne
                                    ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                                    : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
                        }
                        /// @notice Gets the amount0 delta between two prices
                        /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
                        /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
                        /// @param sqrtRatioAX96 A sqrt price
                        /// @param sqrtRatioBX96 Another sqrt price
                        /// @param liquidity The amount of usable liquidity
                        /// @param roundUp Whether to round the amount up or down
                        /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
                        function getAmount0Delta(
                            uint160 sqrtRatioAX96,
                            uint160 sqrtRatioBX96,
                            uint128 liquidity,
                            bool roundUp
                        ) internal pure returns (uint256 amount0) {
                            if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                            uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                            uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
                            require(sqrtRatioAX96 > 0);
                            return
                                roundUp
                                    ? UnsafeMath.divRoundingUp(
                                        FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                                        sqrtRatioAX96
                                    )
                                    : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
                        }
                        /// @notice Gets the amount1 delta between two prices
                        /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
                        /// @param sqrtRatioAX96 A sqrt price
                        /// @param sqrtRatioBX96 Another sqrt price
                        /// @param liquidity The amount of usable liquidity
                        /// @param roundUp Whether to round the amount up, or down
                        /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
                        function getAmount1Delta(
                            uint160 sqrtRatioAX96,
                            uint160 sqrtRatioBX96,
                            uint128 liquidity,
                            bool roundUp
                        ) internal pure returns (uint256 amount1) {
                            if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                            return
                                roundUp
                                    ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
                                    : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
                        }
                        /// @notice Helper that gets signed token0 delta
                        /// @param sqrtRatioAX96 A sqrt price
                        /// @param sqrtRatioBX96 Another sqrt price
                        /// @param liquidity The change in liquidity for which to compute the amount0 delta
                        /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
                        function getAmount0Delta(
                            uint160 sqrtRatioAX96,
                            uint160 sqrtRatioBX96,
                            int128 liquidity
                        ) internal pure returns (int256 amount0) {
                            return
                                liquidity < 0
                                    ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                                    : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                        }
                        /// @notice Helper that gets signed token1 delta
                        /// @param sqrtRatioAX96 A sqrt price
                        /// @param sqrtRatioBX96 Another sqrt price
                        /// @param liquidity The change in liquidity for which to compute the amount1 delta
                        /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
                        function getAmount1Delta(
                            uint160 sqrtRatioAX96,
                            uint160 sqrtRatioBX96,
                            int128 liquidity
                        ) internal pure returns (int256 amount1) {
                            return
                                liquidity < 0
                                    ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                                    : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                        }
                    }
                    // SPDX-License-Identifier: BUSL-1.1
                    pragma solidity >=0.5.0;
                    import './FullMath.sol';
                    import './SqrtPriceMath.sol';
                    /// @title Computes the result of a swap within ticks
                    /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
                    library SwapMath {
                        /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
                        /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
                        /// @param sqrtRatioCurrentX96 The current sqrt price of the pool
                        /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
                        /// @param liquidity The usable liquidity
                        /// @param amountRemaining How much input or output amount is remaining to be swapped in/out
                        /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
                        /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
                        /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
                        /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
                        /// @return feeAmount The amount of input that will be taken as a fee
                        function computeSwapStep(
                            uint160 sqrtRatioCurrentX96,
                            uint160 sqrtRatioTargetX96,
                            uint128 liquidity,
                            int256 amountRemaining,
                            uint24 feePips
                        )
                            internal
                            pure
                            returns (
                                uint160 sqrtRatioNextX96,
                                uint256 amountIn,
                                uint256 amountOut,
                                uint256 feeAmount
                            )
                        {
                            bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
                            bool exactIn = amountRemaining >= 0;
                            if (exactIn) {
                                uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
                                amountIn = zeroForOne
                                    ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
                                    : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
                                if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
                                else
                                    sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
                                        sqrtRatioCurrentX96,
                                        liquidity,
                                        amountRemainingLessFee,
                                        zeroForOne
                                    );
                            } else {
                                amountOut = zeroForOne
                                    ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
                                    : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
                                if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
                                else
                                    sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
                                        sqrtRatioCurrentX96,
                                        liquidity,
                                        uint256(-amountRemaining),
                                        zeroForOne
                                    );
                            }
                            bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
                            // get the input/output amounts
                            if (zeroForOne) {
                                amountIn = max && exactIn
                                    ? amountIn
                                    : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
                                amountOut = max && !exactIn
                                    ? amountOut
                                    : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
                            } else {
                                amountIn = max && exactIn
                                    ? amountIn
                                    : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
                                amountOut = max && !exactIn
                                    ? amountOut
                                    : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
                            }
                            // cap the output amount to not exceed the remaining output amount
                            if (!exactIn && amountOut > uint256(-amountRemaining)) {
                                amountOut = uint256(-amountRemaining);
                            }
                            if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
                                // we didn't reach the target, so take the remainder of the maximum input as fee
                                feeAmount = uint256(amountRemaining) - amountIn;
                            } else {
                                feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
                            }
                        }
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
                    /// @notice A contract that constructs a pool must implement this to pass arguments to the pool
                    /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
                    /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
                    interface IUniswapV3PoolDeployer {
                        /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
                        /// @dev Called by the pool constructor to fetch the parameters of the pool
                        /// Returns factory The factory address
                        /// Returns token0 The first token of the pool by address sort order
                        /// Returns token1 The second token of the pool by address sort order
                        /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                        /// Returns tickSpacing The minimum number of ticks between initialized ticks
                        function parameters()
                            external
                            view
                            returns (
                                address factory,
                                address token0,
                                address token1,
                                uint24 fee,
                                int24 tickSpacing
                            );
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title The interface for the Uniswap V3 Factory
                    /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
                    interface IUniswapV3Factory {
                        /// @notice Emitted when the owner of the factory is changed
                        /// @param oldOwner The owner before the owner was changed
                        /// @param newOwner The owner after the owner was changed
                        event OwnerChanged(address indexed oldOwner, address indexed newOwner);
                        /// @notice Emitted when a pool is created
                        /// @param token0 The first token of the pool by address sort order
                        /// @param token1 The second token of the pool by address sort order
                        /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                        /// @param tickSpacing The minimum number of ticks between initialized ticks
                        /// @param pool The address of the created pool
                        event PoolCreated(
                            address indexed token0,
                            address indexed token1,
                            uint24 indexed fee,
                            int24 tickSpacing,
                            address pool
                        );
                        /// @notice Emitted when a new fee amount is enabled for pool creation via the factory
                        /// @param fee The enabled fee, denominated in hundredths of a bip
                        /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
                        event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
                        /// @notice Returns the current owner of the factory
                        /// @dev Can be changed by the current owner via setOwner
                        /// @return The address of the factory owner
                        function owner() external view returns (address);
                        /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
                        /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
                        /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
                        /// @return The tick spacing
                        function feeAmountTickSpacing(uint24 fee) external view returns (int24);
                        /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
                        /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
                        /// @param tokenA The contract address of either token0 or token1
                        /// @param tokenB The contract address of the other token
                        /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                        /// @return pool The pool address
                        function getPool(
                            address tokenA,
                            address tokenB,
                            uint24 fee
                        ) external view returns (address pool);
                        /// @notice Creates a pool for the given two tokens and fee
                        /// @param tokenA One of the two tokens in the desired pool
                        /// @param tokenB The other of the two tokens in the desired pool
                        /// @param fee The desired fee for the pool
                        /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
                        /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
                        /// are invalid.
                        /// @return pool The address of the newly created pool
                        function createPool(
                            address tokenA,
                            address tokenB,
                            uint24 fee
                        ) external returns (address pool);
                        /// @notice Updates the owner of the factory
                        /// @dev Must be called by the current owner
                        /// @param _owner The new owner of the factory
                        function setOwner(address _owner) external;
                        /// @notice Enables a fee amount with the given tickSpacing
                        /// @dev Fee amounts may never be removed once enabled
                        /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
                        /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
                        function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Minimal ERC20 interface for Uniswap
                    /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
                    interface IERC20Minimal {
                        /// @notice Returns the balance of a token
                        /// @param account The account for which to look up the number of tokens it has, i.e. its balance
                        /// @return The number of tokens held by the account
                        function balanceOf(address account) external view returns (uint256);
                        /// @notice Transfers the amount of token from the `msg.sender` to the recipient
                        /// @param recipient The account that will receive the amount transferred
                        /// @param amount The number of tokens to send from the sender to the recipient
                        /// @return Returns true for a successful transfer, false for an unsuccessful transfer
                        function transfer(address recipient, uint256 amount) external returns (bool);
                        /// @notice Returns the current allowance given to a spender by an owner
                        /// @param owner The account of the token owner
                        /// @param spender The account of the token spender
                        /// @return The current allowance granted by `owner` to `spender`
                        function allowance(address owner, address spender) external view returns (uint256);
                        /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
                        /// @param spender The account which will be allowed to spend a given amount of the owners tokens
                        /// @param amount The amount of tokens allowed to be used by `spender`
                        /// @return Returns true for a successful approval, false for unsuccessful
                        function approve(address spender, uint256 amount) external returns (bool);
                        /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
                        /// @param sender The account from which the transfer will be initiated
                        /// @param recipient The recipient of the transfer
                        /// @param amount The amount of the transfer
                        /// @return Returns true for a successful transfer, false for unsuccessful
                        function transferFrom(
                            address sender,
                            address recipient,
                            uint256 amount
                        ) external returns (bool);
                        /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
                        /// @param from The account from which the tokens were sent, i.e. the balance decreased
                        /// @param to The account to which the tokens were sent, i.e. the balance increased
                        /// @param value The amount of tokens that were transferred
                        event Transfer(address indexed from, address indexed to, uint256 value);
                        /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
                        /// @param owner The account that approved spending of its tokens
                        /// @param spender The account for which the spending allowance was modified
                        /// @param value The new allowance from the owner to the spender
                        event Approval(address indexed owner, address indexed spender, uint256 value);
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Callback for IUniswapV3PoolActions#mint
                    /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
                    interface IUniswapV3MintCallback {
                        /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
                        /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
                        /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                        /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
                        /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
                        /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
                        function uniswapV3MintCallback(
                            uint256 amount0Owed,
                            uint256 amount1Owed,
                            bytes calldata data
                        ) external;
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Callback for IUniswapV3PoolActions#swap
                    /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
                    interface IUniswapV3SwapCallback {
                        /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
                        /// @dev In the implementation you must pay the pool tokens owed for the swap.
                        /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                        /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                        /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                        /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                        /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                        /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                        /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
                        function uniswapV3SwapCallback(
                            int256 amount0Delta,
                            int256 amount1Delta,
                            bytes calldata data
                        ) external;
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Callback for IUniswapV3PoolActions#flash
                    /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
                    interface IUniswapV3FlashCallback {
                        /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
                        /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
                        /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                        /// @param fee0 The fee amount in token0 due to the pool by the end of the flash
                        /// @param fee1 The fee amount in token1 due to the pool by the end of the flash
                        /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
                        function uniswapV3FlashCallback(
                            uint256 fee0,
                            uint256 fee1,
                            bytes calldata data
                        ) external;
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Pool state that never changes
                    /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
                    interface IUniswapV3PoolImmutables {
                        /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
                        /// @return The contract address
                        function factory() external view returns (address);
                        /// @notice The first of the two tokens of the pool, sorted by address
                        /// @return The token contract address
                        function token0() external view returns (address);
                        /// @notice The second of the two tokens of the pool, sorted by address
                        /// @return The token contract address
                        function token1() external view returns (address);
                        /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
                        /// @return The fee
                        function fee() external view returns (uint24);
                        /// @notice The pool tick spacing
                        /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
                        /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
                        /// This value is an int24 to avoid casting even though it is always positive.
                        /// @return The tick spacing
                        function tickSpacing() external view returns (int24);
                        /// @notice The maximum amount of position liquidity that can use any tick in the range
                        /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
                        /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
                        /// @return The max amount of liquidity per tick
                        function maxLiquidityPerTick() external view returns (uint128);
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Pool state that can change
                    /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
                    /// per transaction
                    interface IUniswapV3PoolState {
                        /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
                        /// when accessed externally.
                        /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
                        /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
                        /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
                        /// boundary.
                        /// observationIndex The index of the last oracle observation that was written,
                        /// observationCardinality The current maximum number of observations stored in the pool,
                        /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
                        /// feeProtocol The protocol fee for both tokens of the pool.
                        /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
                        /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
                        /// unlocked Whether the pool is currently locked to reentrancy
                        function slot0()
                            external
                            view
                            returns (
                                uint160 sqrtPriceX96,
                                int24 tick,
                                uint16 observationIndex,
                                uint16 observationCardinality,
                                uint16 observationCardinalityNext,
                                uint8 feeProtocol,
                                bool unlocked
                            );
                        /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
                        /// @dev This value can overflow the uint256
                        function feeGrowthGlobal0X128() external view returns (uint256);
                        /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
                        /// @dev This value can overflow the uint256
                        function feeGrowthGlobal1X128() external view returns (uint256);
                        /// @notice The amounts of token0 and token1 that are owed to the protocol
                        /// @dev Protocol fees will never exceed uint128 max in either token
                        function protocolFees() external view returns (uint128 token0, uint128 token1);
                        /// @notice The currently in range liquidity available to the pool
                        /// @dev This value has no relationship to the total liquidity across all ticks
                        function liquidity() external view returns (uint128);
                        /// @notice Look up information about a specific tick in the pool
                        /// @param tick The tick to look up
                        /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
                        /// tick upper,
                        /// liquidityNet how much liquidity changes when the pool price crosses the tick,
                        /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
                        /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
                        /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
                        /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
                        /// secondsOutside the seconds spent on the other side of the tick from the current tick,
                        /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
                        /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
                        /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
                        /// a specific position.
                        function ticks(int24 tick)
                            external
                            view
                            returns (
                                uint128 liquidityGross,
                                int128 liquidityNet,
                                uint256 feeGrowthOutside0X128,
                                uint256 feeGrowthOutside1X128,
                                int56 tickCumulativeOutside,
                                uint160 secondsPerLiquidityOutsideX128,
                                uint32 secondsOutside,
                                bool initialized
                            );
                        /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
                        function tickBitmap(int16 wordPosition) external view returns (uint256);
                        /// @notice Returns the information about a position by the position's key
                        /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
                        /// @return _liquidity The amount of liquidity in the position,
                        /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
                        /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
                        /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
                        /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
                        function positions(bytes32 key)
                            external
                            view
                            returns (
                                uint128 _liquidity,
                                uint256 feeGrowthInside0LastX128,
                                uint256 feeGrowthInside1LastX128,
                                uint128 tokensOwed0,
                                uint128 tokensOwed1
                            );
                        /// @notice Returns data about a specific observation index
                        /// @param index The element of the observations array to fetch
                        /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
                        /// ago, rather than at a specific index in the array.
                        /// @return blockTimestamp The timestamp of the observation,
                        /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
                        /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
                        /// Returns initialized whether the observation has been initialized and the values are safe to use
                        function observations(uint256 index)
                            external
                            view
                            returns (
                                uint32 blockTimestamp,
                                int56 tickCumulative,
                                uint160 secondsPerLiquidityCumulativeX128,
                                bool initialized
                            );
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Pool state that is not stored
                    /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
                    /// blockchain. The functions here may have variable gas costs.
                    interface IUniswapV3PoolDerivedState {
                        /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
                        /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
                        /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
                        /// you must call it with secondsAgos = [3600, 0].
                        /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
                        /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
                        /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
                        /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
                        /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
                        /// timestamp
                        function observe(uint32[] calldata secondsAgos)
                            external
                            view
                            returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
                        /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
                        /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
                        /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
                        /// snapshot is taken and the second snapshot is taken.
                        /// @param tickLower The lower tick of the range
                        /// @param tickUpper The upper tick of the range
                        /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
                        /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
                        /// @return secondsInside The snapshot of seconds per liquidity for the range
                        function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                            external
                            view
                            returns (
                                int56 tickCumulativeInside,
                                uint160 secondsPerLiquidityInsideX128,
                                uint32 secondsInside
                            );
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Permissionless pool actions
                    /// @notice Contains pool methods that can be called by anyone
                    interface IUniswapV3PoolActions {
                        /// @notice Sets the initial price for the pool
                        /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
                        /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
                        function initialize(uint160 sqrtPriceX96) external;
                        /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
                        /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
                        /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
                        /// on tickLower, tickUpper, the amount of liquidity, and the current price.
                        /// @param recipient The address for which the liquidity will be created
                        /// @param tickLower The lower tick of the position in which to add liquidity
                        /// @param tickUpper The upper tick of the position in which to add liquidity
                        /// @param amount The amount of liquidity to mint
                        /// @param data Any data that should be passed through to the callback
                        /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
                        /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
                        function mint(
                            address recipient,
                            int24 tickLower,
                            int24 tickUpper,
                            uint128 amount,
                            bytes calldata data
                        ) external returns (uint256 amount0, uint256 amount1);
                        /// @notice Collects tokens owed to a position
                        /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
                        /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
                        /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
                        /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
                        /// @param recipient The address which should receive the fees collected
                        /// @param tickLower The lower tick of the position for which to collect fees
                        /// @param tickUpper The upper tick of the position for which to collect fees
                        /// @param amount0Requested How much token0 should be withdrawn from the fees owed
                        /// @param amount1Requested How much token1 should be withdrawn from the fees owed
                        /// @return amount0 The amount of fees collected in token0
                        /// @return amount1 The amount of fees collected in token1
                        function collect(
                            address recipient,
                            int24 tickLower,
                            int24 tickUpper,
                            uint128 amount0Requested,
                            uint128 amount1Requested
                        ) external returns (uint128 amount0, uint128 amount1);
                        /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
                        /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
                        /// @dev Fees must be collected separately via a call to #collect
                        /// @param tickLower The lower tick of the position for which to burn liquidity
                        /// @param tickUpper The upper tick of the position for which to burn liquidity
                        /// @param amount How much liquidity to burn
                        /// @return amount0 The amount of token0 sent to the recipient
                        /// @return amount1 The amount of token1 sent to the recipient
                        function burn(
                            int24 tickLower,
                            int24 tickUpper,
                            uint128 amount
                        ) external returns (uint256 amount0, uint256 amount1);
                        /// @notice Swap token0 for token1, or token1 for token0
                        /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
                        /// @param recipient The address to receive the output of the swap
                        /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
                        /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
                        /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
                        /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
                        /// @param data Any data to be passed through to the callback
                        /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
                        /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
                        function swap(
                            address recipient,
                            bool zeroForOne,
                            int256 amountSpecified,
                            uint160 sqrtPriceLimitX96,
                            bytes calldata data
                        ) external returns (int256 amount0, int256 amount1);
                        /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
                        /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
                        /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
                        /// with 0 amount{0,1} and sending the donation amount(s) from the callback
                        /// @param recipient The address which will receive the token0 and token1 amounts
                        /// @param amount0 The amount of token0 to send
                        /// @param amount1 The amount of token1 to send
                        /// @param data Any data to be passed through to the callback
                        function flash(
                            address recipient,
                            uint256 amount0,
                            uint256 amount1,
                            bytes calldata data
                        ) external;
                        /// @notice Increase the maximum number of price and liquidity observations that this pool will store
                        /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
                        /// the input observationCardinalityNext.
                        /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
                        function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Permissioned pool actions
                    /// @notice Contains pool methods that may only be called by the factory owner
                    interface IUniswapV3PoolOwnerActions {
                        /// @notice Set the denominator of the protocol's % share of the fees
                        /// @param feeProtocol0 new protocol fee for token0 of the pool
                        /// @param feeProtocol1 new protocol fee for token1 of the pool
                        function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
                        /// @notice Collect the protocol fee accrued to the pool
                        /// @param recipient The address to which collected protocol fees should be sent
                        /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
                        /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
                        /// @return amount0 The protocol fee collected in token0
                        /// @return amount1 The protocol fee collected in token1
                        function collectProtocol(
                            address recipient,
                            uint128 amount0Requested,
                            uint128 amount1Requested
                        ) external returns (uint128 amount0, uint128 amount1);
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Events emitted by a pool
                    /// @notice Contains all events emitted by the pool
                    interface IUniswapV3PoolEvents {
                        /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
                        /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
                        /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
                        /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
                        event Initialize(uint160 sqrtPriceX96, int24 tick);
                        /// @notice Emitted when liquidity is minted for a given position
                        /// @param sender The address that minted the liquidity
                        /// @param owner The owner of the position and recipient of any minted liquidity
                        /// @param tickLower The lower tick of the position
                        /// @param tickUpper The upper tick of the position
                        /// @param amount The amount of liquidity minted to the position range
                        /// @param amount0 How much token0 was required for the minted liquidity
                        /// @param amount1 How much token1 was required for the minted liquidity
                        event Mint(
                            address sender,
                            address indexed owner,
                            int24 indexed tickLower,
                            int24 indexed tickUpper,
                            uint128 amount,
                            uint256 amount0,
                            uint256 amount1
                        );
                        /// @notice Emitted when fees are collected by the owner of a position
                        /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
                        /// @param owner The owner of the position for which fees are collected
                        /// @param tickLower The lower tick of the position
                        /// @param tickUpper The upper tick of the position
                        /// @param amount0 The amount of token0 fees collected
                        /// @param amount1 The amount of token1 fees collected
                        event Collect(
                            address indexed owner,
                            address recipient,
                            int24 indexed tickLower,
                            int24 indexed tickUpper,
                            uint128 amount0,
                            uint128 amount1
                        );
                        /// @notice Emitted when a position's liquidity is removed
                        /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
                        /// @param owner The owner of the position for which liquidity is removed
                        /// @param tickLower The lower tick of the position
                        /// @param tickUpper The upper tick of the position
                        /// @param amount The amount of liquidity to remove
                        /// @param amount0 The amount of token0 withdrawn
                        /// @param amount1 The amount of token1 withdrawn
                        event Burn(
                            address indexed owner,
                            int24 indexed tickLower,
                            int24 indexed tickUpper,
                            uint128 amount,
                            uint256 amount0,
                            uint256 amount1
                        );
                        /// @notice Emitted by the pool for any swaps between token0 and token1
                        /// @param sender The address that initiated the swap call, and that received the callback
                        /// @param recipient The address that received the output of the swap
                        /// @param amount0 The delta of the token0 balance of the pool
                        /// @param amount1 The delta of the token1 balance of the pool
                        /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
                        /// @param liquidity The liquidity of the pool after the swap
                        /// @param tick The log base 1.0001 of price of the pool after the swap
                        event Swap(
                            address indexed sender,
                            address indexed recipient,
                            int256 amount0,
                            int256 amount1,
                            uint160 sqrtPriceX96,
                            uint128 liquidity,
                            int24 tick
                        );
                        /// @notice Emitted by the pool for any flashes of token0/token1
                        /// @param sender The address that initiated the swap call, and that received the callback
                        /// @param recipient The address that received the tokens from flash
                        /// @param amount0 The amount of token0 that was flashed
                        /// @param amount1 The amount of token1 that was flashed
                        /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
                        /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
                        event Flash(
                            address indexed sender,
                            address indexed recipient,
                            uint256 amount0,
                            uint256 amount1,
                            uint256 paid0,
                            uint256 paid1
                        );
                        /// @notice Emitted by the pool for increases to the number of observations that can be stored
                        /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
                        /// just before a mint/swap/burn.
                        /// @param observationCardinalityNextOld The previous value of the next observation cardinality
                        /// @param observationCardinalityNextNew The updated value of the next observation cardinality
                        event IncreaseObservationCardinalityNext(
                            uint16 observationCardinalityNextOld,
                            uint16 observationCardinalityNextNew
                        );
                        /// @notice Emitted when the protocol fee is changed by the pool
                        /// @param feeProtocol0Old The previous value of the token0 protocol fee
                        /// @param feeProtocol1Old The previous value of the token1 protocol fee
                        /// @param feeProtocol0New The updated value of the token0 protocol fee
                        /// @param feeProtocol1New The updated value of the token1 protocol fee
                        event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
                        /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
                        /// @param sender The address that collects the protocol fees
                        /// @param recipient The address that receives the collected protocol fees
                        /// @param amount0 The amount of token0 protocol fees that is withdrawn
                        /// @param amount0 The amount of token1 protocol fees that is withdrawn
                        event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title BitMath
                    /// @dev This library provides functionality for computing bit properties of an unsigned integer
                    library BitMath {
                        /// @notice Returns the index of the most significant bit of the number,
                        ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                        /// @dev The function satisfies the property:
                        ///     x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
                        /// @param x the value for which to compute the most significant bit, must be greater than 0
                        /// @return r the index of the most significant bit
                        function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                            require(x > 0);
                            if (x >= 0x100000000000000000000000000000000) {
                                x >>= 128;
                                r += 128;
                            }
                            if (x >= 0x10000000000000000) {
                                x >>= 64;
                                r += 64;
                            }
                            if (x >= 0x100000000) {
                                x >>= 32;
                                r += 32;
                            }
                            if (x >= 0x10000) {
                                x >>= 16;
                                r += 16;
                            }
                            if (x >= 0x100) {
                                x >>= 8;
                                r += 8;
                            }
                            if (x >= 0x10) {
                                x >>= 4;
                                r += 4;
                            }
                            if (x >= 0x4) {
                                x >>= 2;
                                r += 2;
                            }
                            if (x >= 0x2) r += 1;
                        }
                        /// @notice Returns the index of the least significant bit of the number,
                        ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                        /// @dev The function satisfies the property:
                        ///     (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
                        /// @param x the value for which to compute the least significant bit, must be greater than 0
                        /// @return r the index of the least significant bit
                        function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                            require(x > 0);
                            r = 255;
                            if (x & type(uint128).max > 0) {
                                r -= 128;
                            } else {
                                x >>= 128;
                            }
                            if (x & type(uint64).max > 0) {
                                r -= 64;
                            } else {
                                x >>= 64;
                            }
                            if (x & type(uint32).max > 0) {
                                r -= 32;
                            } else {
                                x >>= 32;
                            }
                            if (x & type(uint16).max > 0) {
                                r -= 16;
                            } else {
                                x >>= 16;
                            }
                            if (x & type(uint8).max > 0) {
                                r -= 8;
                            } else {
                                x >>= 8;
                            }
                            if (x & 0xf > 0) {
                                r -= 4;
                            } else {
                                x >>= 4;
                            }
                            if (x & 0x3 > 0) {
                                r -= 2;
                            } else {
                                x >>= 2;
                            }
                            if (x & 0x1 > 0) r -= 1;
                        }
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.5.0;
                    /// @title Math functions that do not check inputs or outputs
                    /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
                    library UnsafeMath {
                        /// @notice Returns ceil(x / y)
                        /// @dev division by 0 has unspecified behavior, and must be checked externally
                        /// @param x The dividend
                        /// @param y The divisor
                        /// @return z The quotient, ceil(x / y)
                        function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                            assembly {
                                z := add(div(x, y), gt(mod(x, y), 0))
                            }
                        }
                    }
                    // SPDX-License-Identifier: GPL-2.0-or-later
                    pragma solidity >=0.4.0;
                    /// @title FixedPoint96
                    /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
                    /// @dev Used in SqrtPriceMath.sol
                    library FixedPoint96 {
                        uint8 internal constant RESOLUTION = 96;
                        uint256 internal constant Q96 = 0x1000000000000000000000000;
                    }
                    

                    File 4 of 8: Vyper_contract
                    # @version 0.3.7
                    """
                    @title StableSwap
                    @author Curve.Fi
                    @license Copyright (c) Curve.Fi, 2020-2021 - all rights reserved
                    @notice 2 coin pool implementation with no lending
                    @dev ERC20 support for return True/revert, return True/False, return None
                         Uses native Ether as coins[0]
                    """
                    
                    from vyper.interfaces import ERC20
                    
                    interface Factory:
                        def convert_fees() -> bool: nonpayable
                        def get_fee_receiver(_pool: address) -> address: view
                        def admin() -> address: view
                    
                    interface ERC1271:
                        def isValidSignature(_hash: bytes32, _signature: Bytes[65]) -> bytes32: view
                    
                    
                    event Transfer:
                        sender: indexed(address)
                        receiver: indexed(address)
                        value: uint256
                    
                    event Approval:
                        owner: indexed(address)
                        spender: indexed(address)
                        value: uint256
                    
                    event TokenExchange:
                        buyer: indexed(address)
                        sold_id: int128
                        tokens_sold: uint256
                        bought_id: int128
                        tokens_bought: uint256
                    
                    event AddLiquidity:
                        provider: indexed(address)
                        token_amounts: uint256[N_COINS]
                        fees: uint256[N_COINS]
                        invariant: uint256
                        token_supply: uint256
                    
                    event RemoveLiquidity:
                        provider: indexed(address)
                        token_amounts: uint256[N_COINS]
                        fees: uint256[N_COINS]
                        token_supply: uint256
                    
                    event RemoveLiquidityOne:
                        provider: indexed(address)
                        token_amount: uint256
                        coin_amount: uint256
                        token_supply: uint256
                    
                    event RemoveLiquidityImbalance:
                        provider: indexed(address)
                        token_amounts: uint256[N_COINS]
                        fees: uint256[N_COINS]
                        invariant: uint256
                        token_supply: uint256
                    
                    event RampA:
                        old_A: uint256
                        new_A: uint256
                        initial_time: uint256
                        future_time: uint256
                    
                    event StopRampA:
                        A: uint256
                        t: uint256
                    
                    event CommitNewFee:
                        new_fee: uint256
                    
                    event ApplyNewFee:
                        fee: uint256
                    
                    
                    N_COINS_128: constant(int128) = 2
                    N_COINS: constant(uint256) = 2
                    PRECISION: constant(uint256) = 10 ** 18
                    ADMIN_ACTIONS_DEADLINE_DT: constant(uint256) = 86400 * 3
                    
                    FEE_DENOMINATOR: constant(uint256) = 10 ** 10
                    ADMIN_FEE: constant(uint256) = 5000000000
                    
                    A_PRECISION: constant(uint256) = 100
                    MAX_FEE: constant(uint256) = 5 * 10 ** 9
                    MAX_A: constant(uint256) = 10 ** 6
                    MAX_A_CHANGE: constant(uint256) = 10
                    MIN_RAMP_TIME: constant(uint256) = 86400
                    
                    EIP712_TYPEHASH: constant(bytes32) = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
                    PERMIT_TYPEHASH: constant(bytes32) = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")
                    
                    # keccak256("isValidSignature(bytes32,bytes)")[:4] << 224
                    ERC1271_MAGIC_VAL: constant(bytes32) = 0x1626ba7e00000000000000000000000000000000000000000000000000000000
                    VERSION: constant(String[8]) = "v6.0.0"
                    
                    
                    factory: address
                    
                    coins: public(address[N_COINS])
                    balances: public(uint256[N_COINS])
                    fee: public(uint256)  # fee * 1e10
                    future_fee: public(uint256)
                    admin_action_deadline: public(uint256)
                    
                    initial_A: public(uint256)
                    future_A: public(uint256)
                    initial_A_time: public(uint256)
                    future_A_time: public(uint256)
                    
                    rate_multipliers: uint256[N_COINS]
                    
                    name: public(String[64])
                    symbol: public(String[32])
                    
                    balanceOf: public(HashMap[address, uint256])
                    allowance: public(HashMap[address, HashMap[address, uint256]])
                    totalSupply: public(uint256)
                    
                    DOMAIN_SEPARATOR: public(bytes32)
                    nonces: public(HashMap[address, uint256])
                    
                    last_prices_packed: uint256  #  [last_price, ma_price]
                    ma_exp_time: public(uint256)
                    ma_last_time: public(uint256)
                    
                    
                    @external
                    def __init__():
                        # we do this to prevent the implementation contract from being used as a pool
                        self.factory = 0x0000000000000000000000000000000000000001
                        assert N_COINS == 2
                    
                    
                    @external
                    def initialize(
                        _name: String[32],
                        _symbol: String[10],
                        _coins: address[4],
                        _rate_multipliers: uint256[4],
                        _A: uint256,
                        _fee: uint256,
                    ):
                        """
                        @notice Contract constructor
                        @param _name Name of the new pool
                        @param _symbol Token symbol
                        @param _coins List of all ERC20 conract addresses of coins
                        @param _rate_multipliers List of number of decimals in coins
                        @param _A Amplification coefficient multiplied by n ** (n - 1)
                        @param _fee Fee to charge for exchanges
                        """
                        # check if factory was already set to prevent initializing contract twice
                        assert self.factory == empty(address)
                    
                        # additional sanity checks for ETH configuration
                        assert _coins[0] == 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE
                        assert _rate_multipliers[0] == 10**18
                    
                        for i in range(N_COINS):
                            coin: address = _coins[i]
                            if coin == empty(address):
                                break
                            self.coins[i] = coin
                            self.rate_multipliers[i] = _rate_multipliers[i]
                    
                        A: uint256 = _A * A_PRECISION
                        self.initial_A = A
                        self.future_A = A
                        self.fee = _fee
                        self.factory = msg.sender
                    
                        self.ma_exp_time = 866  # = 600 / ln(2)
                        self.last_prices_packed = self.pack_prices(10**18, 10**18)
                        self.ma_last_time = block.timestamp
                    
                        name: String[64] = concat("Curve.fi Factory Pool: ", _name)
                        self.name = name
                        self.symbol = concat(_symbol, "-f")
                    
                        self.DOMAIN_SEPARATOR = keccak256(
                            _abi_encode(EIP712_TYPEHASH, keccak256(name), keccak256(VERSION), chain.id, self)
                        )
                    
                        # fire a transfer event so block explorers identify the contract as an ERC20
                        log Transfer(empty(address), self, 0)
                    
                    
                    ### ERC20 Functionality ###
                    
                    @view
                    @external
                    def decimals() -> uint256:
                        """
                        @notice Get the number of decimals for this token
                        @dev Implemented as a view method to reduce gas costs
                        @return uint256 decimal places
                        """
                        return 18
                    
                    
                    @internal
                    def _transfer(_from: address, _to: address, _value: uint256):
                        # # NOTE: vyper does not allow underflows
                        # #       so the following subtraction would revert on insufficient balance
                        self.balanceOf[_from] -= _value
                        self.balanceOf[_to] += _value
                    
                        log Transfer(_from, _to, _value)
                    
                    
                    @external
                    def transfer(_to : address, _value : uint256) -> bool:
                        """
                        @dev Transfer token for a specified address
                        @param _to The address to transfer to.
                        @param _value The amount to be transferred.
                        """
                        self._transfer(msg.sender, _to, _value)
                        return True
                    
                    
                    @external
                    def transferFrom(_from : address, _to : address, _value : uint256) -> bool:
                        """
                         @dev Transfer tokens from one address to another.
                         @param _from address The address which you want to send tokens from
                         @param _to address The address which you want to transfer to
                         @param _value uint256 the amount of tokens to be transferred
                        """
                        self._transfer(_from, _to, _value)
                    
                        _allowance: uint256 = self.allowance[_from][msg.sender]
                        if _allowance != max_value(uint256):
                            self.allowance[_from][msg.sender] = _allowance - _value
                    
                        return True
                    
                    
                    @external
                    def approve(_spender : address, _value : uint256) -> bool:
                        """
                        @notice Approve the passed address to transfer the specified amount of
                                tokens on behalf of msg.sender
                        @dev Beware that changing an allowance via this method brings the risk that
                             someone may use both the old and new allowance by unfortunate transaction
                             ordering: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                        @param _spender The address which will transfer the funds
                        @param _value The amount of tokens that may be transferred
                        @return bool success
                        """
                        self.allowance[msg.sender][_spender] = _value
                    
                        log Approval(msg.sender, _spender, _value)
                        return True
                    
                    
                    @external
                    def permit(
                        _owner: address,
                        _spender: address,
                        _value: uint256,
                        _deadline: uint256,
                        _v: uint8,
                        _r: bytes32,
                        _s: bytes32
                    ) -> bool:
                        """
                        @notice Approves spender by owner's signature to expend owner's tokens.
                            See https://eips.ethereum.org/EIPS/eip-2612.
                        @dev Inspired by https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy#L753-L793
                        @dev Supports smart contract wallets which implement ERC1271
                            https://eips.ethereum.org/EIPS/eip-1271
                        @param _owner The address which is a source of funds and has signed the Permit.
                        @param _spender The address which is allowed to spend the funds.
                        @param _value The amount of tokens to be spent.
                        @param _deadline The timestamp after which the Permit is no longer valid.
                        @param _v The bytes[64] of the valid secp256k1 signature of permit by owner
                        @param _r The bytes[0:32] of the valid secp256k1 signature of permit by owner
                        @param _s The bytes[32:64] of the valid secp256k1 signature of permit by owner
                        @return True, if transaction completes successfully
                        """
                        assert _owner != empty(address)
                        assert block.timestamp <= _deadline
                    
                        nonce: uint256 = self.nonces[_owner]
                        digest: bytes32 = keccak256(
                            concat(
                                b"\x19\x01",
                                self.DOMAIN_SEPARATOR,
                                keccak256(_abi_encode(PERMIT_TYPEHASH, _owner, _spender, _value, nonce, _deadline))
                            )
                        )
                    
                        if _owner.is_contract:
                            sig: Bytes[65] = concat(_abi_encode(_r, _s), slice(convert(_v, bytes32), 31, 1))
                            # reentrancy not a concern since this is a staticcall
                            assert ERC1271(_owner).isValidSignature(digest, sig) == ERC1271_MAGIC_VAL
                        else:
                            assert ecrecover(digest, convert(_v, uint256), convert(_r, uint256), convert(_s, uint256)) == _owner
                    
                        self.allowance[_owner][_spender] = _value
                        self.nonces[_owner] = nonce + 1
                    
                        log Approval(_owner, _spender, _value)
                        return True
                    
                    
                    ### StableSwap Functionality ###
                    
                    
                    @pure
                    @internal
                    def pack_prices(p1: uint256, p2: uint256) -> uint256:
                        assert p1 < 2**128
                        assert p2 < 2**128
                        return p1 | shift(p2, 128)
                    
                    
                    @view
                    @external
                    def last_price() -> uint256:
                        return self.last_prices_packed & (2**128 - 1)
                    
                    
                    @view
                    @external
                    def ema_price() -> uint256:
                        return shift(self.last_prices_packed, -128)
                    
                    
                    @view
                    @external
                    def get_balances() -> uint256[N_COINS]:
                        return self.balances
                    
                    
                    @view
                    @internal
                    def _A() -> uint256:
                        """
                        Handle ramping A up or down
                        """
                        t1: uint256 = self.future_A_time
                        A1: uint256 = self.future_A
                    
                        if block.timestamp < t1:
                            A0: uint256 = self.initial_A
                            t0: uint256 = self.initial_A_time
                            # Expressions in uint256 cannot have negative numbers, thus "if"
                            if A1 > A0:
                                return A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0)
                            else:
                                return A0 - (A0 - A1) * (block.timestamp - t0) / (t1 - t0)
                    
                        else:  # when t1 == 0 or block.timestamp >= t1
                            return A1
                    
                    
                    @view
                    @external
                    def admin_fee() -> uint256:
                        return ADMIN_FEE
                    
                    
                    @view
                    @external
                    def A() -> uint256:
                        return self._A() / A_PRECISION
                    
                    
                    @view
                    @external
                    def A_precise() -> uint256:
                        return self._A()
                    
                    
                    @pure
                    @internal
                    def _xp_mem(_rates: uint256[N_COINS], _balances: uint256[N_COINS]) -> uint256[N_COINS]:
                        result: uint256[N_COINS] = empty(uint256[N_COINS])
                        for i in range(N_COINS):
                            result[i] = _rates[i] * _balances[i] / PRECISION
                        return result
                    
                    
                    @pure
                    @internal
                    def get_D(_xp: uint256[N_COINS], _amp: uint256) -> uint256:
                        """
                        D invariant calculation in non-overflowing integer operations
                        iteratively
                    
                        A * sum(x_i) * n**n + D = A * D * n**n + D**(n+1) / (n**n * prod(x_i))
                    
                        Converging solution:
                        D[j+1] = (A * n**n * sum(x_i) - D[j]**(n+1) / (n**n prod(x_i))) / (A * n**n - 1)
                        """
                        S: uint256 = 0
                        for x in _xp:
                            S += x
                        if S == 0:
                            return 0
                    
                        D: uint256 = S
                        Ann: uint256 = _amp * N_COINS
                        for i in range(255):
                            D_P: uint256 = D * D / _xp[0] * D / _xp[1] / (N_COINS)**2
                            Dprev: uint256 = D
                            D = (Ann * S / A_PRECISION + D_P * N_COINS) * D / ((Ann - A_PRECISION) * D / A_PRECISION + (N_COINS + 1) * D_P)
                            # Equality with the precision of 1
                            if D > Dprev:
                                if D - Dprev <= 1:
                                    return D
                            else:
                                if Dprev - D <= 1:
                                    return D
                        # convergence typically occurs in 4 rounds or less, this should be unreachable!
                        # if it does happen the pool is borked and LPs can withdraw via `remove_liquidity`
                        raise
                    
                    
                    @view
                    @internal
                    def get_D_mem(_rates: uint256[N_COINS], _balances: uint256[N_COINS], _amp: uint256) -> uint256:
                        xp: uint256[N_COINS] = self._xp_mem(_rates, _balances)
                        return self.get_D(xp, _amp)
                    
                    
                    @internal
                    @view
                    def _get_p(xp: uint256[N_COINS], amp: uint256, D: uint256) -> uint256:
                        # dx_0 / dx_1 only, however can have any number of coins in pool
                        ANN: uint256 = amp * N_COINS
                        Dr: uint256 = D / (N_COINS**N_COINS)
                        for i in range(N_COINS):
                            Dr = Dr * D / xp[i]
                        return 10**18 * (ANN * xp[0] / A_PRECISION + Dr * xp[0] / xp[1]) / (ANN * xp[0] / A_PRECISION + Dr)
                    
                    
                    @external
                    @view
                    def get_p() -> uint256:
                        amp: uint256 = self._A()
                        xp: uint256[N_COINS] = self._xp_mem(self.rate_multipliers, self.balances)
                        D: uint256 = self.get_D(xp, amp)
                        return self._get_p(xp, amp, D)
                    
                    
                    @internal
                    @view
                    def exp(power: int256) -> uint256:
                        if power <= -42139678854452767551:
                            return 0
                    
                        if power >= 135305999368893231589:
                            raise "exp overflow"
                    
                        x: int256 = unsafe_div(unsafe_mul(power, 2**96), 10**18)
                    
                        k: int256 = unsafe_div(
                            unsafe_add(
                                unsafe_div(unsafe_mul(x, 2**96), 54916777467707473351141471128),
                                2**95),
                            2**96)
                        x = unsafe_sub(x, unsafe_mul(k, 54916777467707473351141471128))
                    
                        y: int256 = unsafe_add(x, 1346386616545796478920950773328)
                        y = unsafe_add(unsafe_div(unsafe_mul(y, x), 2**96), 57155421227552351082224309758442)
                        p: int256 = unsafe_sub(unsafe_add(y, x), 94201549194550492254356042504812)
                        p = unsafe_add(unsafe_div(unsafe_mul(p, y), 2**96), 28719021644029726153956944680412240)
                        p = unsafe_add(unsafe_mul(p, x), (4385272521454847904659076985693276 * 2**96))
                    
                        q: int256 = x - 2855989394907223263936484059900
                        q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 50020603652535783019961831881945)
                        q = unsafe_sub(unsafe_div(unsafe_mul(q, x), 2**96), 533845033583426703283633433725380)
                        q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 3604857256930695427073651918091429)
                        q = unsafe_sub(unsafe_div(unsafe_mul(q, x), 2**96), 14423608567350463180887372962807573)
                        q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 26449188498355588339934803723976023)
                    
                        return shift(
                            unsafe_mul(convert(unsafe_div(p, q), uint256), 3822833074963236453042738258902158003155416615667),
                            unsafe_sub(k, 195))
                    
                    
                    @internal
                    @view
                    def _ma_price() -> uint256:
                        ma_last_time: uint256 = self.ma_last_time
                    
                        pp: uint256 = self.last_prices_packed
                        last_price: uint256 = pp & (2**128 - 1)
                        last_ema_price: uint256 = shift(pp, -128)
                    
                        if ma_last_time < block.timestamp:
                            alpha: uint256 = self.exp(- convert((block.timestamp - ma_last_time) * 10**18 / self.ma_exp_time, int256))
                            return (last_price * (10**18 - alpha) + last_ema_price * alpha) / 10**18
                    
                        else:
                            return last_ema_price
                    
                    
                    @external
                    @view
                    @nonreentrant('lock')
                    def price_oracle() -> uint256:
                        return self._ma_price()
                    
                    
                    @internal
                    def save_p_from_price(last_price: uint256):
                        """
                        Saves current price and its EMA
                        """
                        if last_price != 0:
                            self.last_prices_packed = self.pack_prices(last_price, self._ma_price())
                            if self.ma_last_time < block.timestamp:
                                self.ma_last_time = block.timestamp
                    
                    
                    @internal
                    def save_p(xp: uint256[N_COINS], amp: uint256, D: uint256):
                        """
                        Saves current price and its EMA
                        """
                        self.save_p_from_price(self._get_p(xp, amp, D))
                    
                    
                    @view
                    @external
                    @nonreentrant('lock')
                    def get_virtual_price() -> uint256:
                        """
                        @notice The current virtual price of the pool LP token
                        @dev Useful for calculating profits
                        @return LP token virtual price normalized to 1e18
                        """
                        amp: uint256 = self._A()
                        xp: uint256[N_COINS] = self._xp_mem(self.rate_multipliers, self.balances)
                        D: uint256 = self.get_D(xp, amp)
                        # D is in the units similar to DAI (e.g. converted to precision 1e18)
                        # When balanced, D = n * x_u - total virtual value of the portfolio
                        return D * PRECISION / self.totalSupply
                    
                    
                    @view
                    @external
                    def calc_token_amount(_amounts: uint256[N_COINS], _is_deposit: bool) -> uint256:
                        """
                        @notice Calculate addition or reduction in token supply from a deposit or withdrawal
                        @dev This calculation accounts for slippage, but not fees.
                             Needed to prevent front-running, not for precise calculations!
                        @param _amounts Amount of each coin being deposited
                        @param _is_deposit set True for deposits, False for withdrawals
                        @return Expected amount of LP tokens received
                        """
                        amp: uint256 = self._A()
                        balances: uint256[N_COINS] = self.balances
                    
                        D0: uint256 = self.get_D_mem(self.rate_multipliers, balances, amp)
                        for i in range(N_COINS):
                            amount: uint256 = _amounts[i]
                            if _is_deposit:
                                balances[i] += amount
                            else:
                                balances[i] -= amount
                        D1: uint256 = self.get_D_mem(self.rate_multipliers, balances, amp)
                        diff: uint256 = 0
                        if _is_deposit:
                            diff = D1 - D0
                        else:
                            diff = D0 - D1
                        return diff * self.totalSupply / D0
                    
                    
                    @payable
                    @external
                    @nonreentrant('lock')
                    def add_liquidity(
                        _amounts: uint256[N_COINS],
                        _min_mint_amount: uint256,
                        _receiver: address = msg.sender
                    ) -> uint256:
                        """
                        @notice Deposit coins into the pool
                        @param _amounts List of amounts of coins to deposit
                        @param _min_mint_amount Minimum amount of LP tokens to mint from the deposit
                        @param _receiver Address that owns the minted LP tokens
                        @return Amount of LP tokens received by depositing
                        """
                        amp: uint256 = self._A()
                        old_balances: uint256[N_COINS] = self.balances
                        rates: uint256[N_COINS] = self.rate_multipliers
                    
                        # Initial invariant
                        D0: uint256 = self.get_D_mem(rates, old_balances, amp)
                    
                        total_supply: uint256 = self.totalSupply
                        new_balances: uint256[N_COINS] = old_balances
                        for i in range(N_COINS):
                            amount: uint256 = _amounts[i]
                            if total_supply == 0:
                                assert amount > 0  # dev: initial deposit requires all coins
                            new_balances[i] += amount
                    
                        # Invariant after change
                        D1: uint256 = self.get_D_mem(rates, new_balances, amp)
                        assert D1 > D0
                    
                        # We need to recalculate the invariant accounting for fees
                        # to calculate fair user's share
                        fees: uint256[N_COINS] = empty(uint256[N_COINS])
                        mint_amount: uint256 = 0
                        if total_supply > 0:
                            # Only account for fees if we are not the first to deposit
                            base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
                            for i in range(N_COINS):
                                ideal_balance: uint256 = D1 * old_balances[i] / D0
                                difference: uint256 = 0
                                new_balance: uint256 = new_balances[i]
                                if ideal_balance > new_balance:
                                    difference = ideal_balance - new_balance
                                else:
                                    difference = new_balance - ideal_balance
                                fees[i] = base_fee * difference / FEE_DENOMINATOR
                                self.balances[i] = new_balance - (fees[i] * ADMIN_FEE / FEE_DENOMINATOR)
                                new_balances[i] -= fees[i]
                            xp: uint256[N_COINS] = self._xp_mem(rates, new_balances)
                            D2: uint256 = self.get_D(xp, amp)
                            mint_amount = total_supply * (D2 - D0) / D0
                            self.save_p(xp, amp, D2)
                        else:
                            self.balances = new_balances
                            mint_amount = D1  # Take the dust if there was any
                    
                        assert mint_amount >= _min_mint_amount, "Slippage screwed you"
                    
                        # Take coins from the sender
                        assert msg.value == _amounts[0]
                        if _amounts[1] > 0:
                            assert ERC20(self.coins[1]).transferFrom(msg.sender, self, _amounts[1], default_return_value=True)  # dev: failed transfer
                    
                        # Mint pool tokens
                        total_supply += mint_amount
                        self.balanceOf[_receiver] += mint_amount
                        self.totalSupply = total_supply
                        log Transfer(empty(address), _receiver, mint_amount)
                    
                        log AddLiquidity(msg.sender, _amounts, fees, D1, total_supply)
                    
                        return mint_amount
                    
                    
                    @view
                    @internal
                    def get_y(i: int128, j: int128, x: uint256, xp: uint256[N_COINS], _amp: uint256, _D: uint256) -> uint256:
                        """
                        Calculate x[j] if one makes x[i] = x
                    
                        Done by solving quadratic equation iteratively.
                        x_1**2 + x_1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
                        x_1**2 + b*x_1 = c
                    
                        x_1 = (x_1**2 + c) / (2*x_1 + b)
                        """
                        # x in the input is converted to the same price/precision
                    
                        assert i != j       # dev: same coin
                        assert j >= 0       # dev: j below zero
                        assert j < N_COINS_128  # dev: j above N_COINS
                    
                        # should be unreachable, but good for safety
                        assert i >= 0
                        assert i < N_COINS_128
                    
                        amp: uint256 = _amp
                        D: uint256 = _D
                        if _D == 0:
                            amp = self._A()
                            D = self.get_D(xp, amp)
                        S_: uint256 = 0
                        _x: uint256 = 0
                        y_prev: uint256 = 0
                        c: uint256 = D
                        Ann: uint256 = amp * N_COINS
                    
                        for _i in range(N_COINS_128):
                            if _i == i:
                                _x = x
                            elif _i != j:
                                _x = xp[_i]
                            else:
                                continue
                            S_ += _x
                            c = c * D / (_x * N_COINS)
                    
                        c = c * D * A_PRECISION / (Ann * N_COINS)
                        b: uint256 = S_ + D * A_PRECISION / Ann  # - D
                        y: uint256 = D
                    
                        for _i in range(255):
                            y_prev = y
                            y = (y*y + c) / (2 * y + b - D)
                            # Equality with the precision of 1
                            if y > y_prev:
                                if y - y_prev <= 1:
                                    return y
                            else:
                                if y_prev - y <= 1:
                                    return y
                        raise
                    
                    
                    @view
                    @external
                    def get_dy(i: int128, j: int128, dx: uint256) -> uint256:
                        """
                        @notice Calculate the current output dy given input dx
                        @dev Index values can be found via the `coins` public getter method
                        @param i Index value for the coin to send
                        @param j Index valie of the coin to recieve
                        @param dx Amount of `i` being exchanged
                        @return Amount of `j` predicted
                        """
                        rates: uint256[N_COINS] = self.rate_multipliers
                        xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)
                    
                        x: uint256 = xp[i] + (dx * rates[i] / PRECISION)
                        y: uint256 = self.get_y(i, j, x, xp, 0, 0)
                        dy: uint256 = xp[j] - y - 1
                        fee: uint256 = self.fee * dy / FEE_DENOMINATOR
                        return (dy - fee) * PRECISION / rates[j]
                    
                    
                    @payable
                    @external
                    @nonreentrant('lock')
                    def exchange(
                        i: int128,
                        j: int128,
                        _dx: uint256,
                        _min_dy: uint256,
                        _receiver: address = msg.sender,
                    ) -> uint256:
                        """
                        @notice Perform an exchange between two coins
                        @dev Index values can be found via the `coins` public getter method
                        @param i Index value for the coin to send
                        @param j Index valie of the coin to recieve
                        @param _dx Amount of `i` being exchanged
                        @param _min_dy Minimum amount of `j` to receive
                        @return Actual amount of `j` received
                        """
                        rates: uint256[N_COINS] = self.rate_multipliers
                        old_balances: uint256[N_COINS] = self.balances
                        xp: uint256[N_COINS] = self._xp_mem(rates, old_balances)
                    
                        x: uint256 = xp[i] + _dx * rates[i] / PRECISION
                    
                        amp: uint256 = self._A()
                        D: uint256 = self.get_D(xp, amp)
                        y: uint256 = self.get_y(i, j, x, xp, amp, D)
                    
                        dy: uint256 = xp[j] - y - 1  # -1 just in case there were some rounding errors
                        dy_fee: uint256 = dy * self.fee / FEE_DENOMINATOR
                    
                        # Convert all to real units
                        dy = (dy - dy_fee) * PRECISION / rates[j]
                        assert dy >= _min_dy, "Exchange resulted in fewer coins than expected"
                    
                        # xp is not used anymore, so we reuse it for price calc
                        xp[i] = x
                        xp[j] = y
                        # D is not changed because we did not apply a fee
                        self.save_p(xp, amp, D)
                    
                        dy_admin_fee: uint256 = dy_fee * ADMIN_FEE / FEE_DENOMINATOR
                        dy_admin_fee = dy_admin_fee * PRECISION / rates[j]
                    
                        # Change balances exactly in same way as we change actual ERC20 coin amounts
                        self.balances[i] = old_balances[i] + _dx
                        # When rounding errors happen, we undercharge admin fee in favor of LP
                        self.balances[j] = old_balances[j] - dy - dy_admin_fee
                    
                        coin: address = self.coins[1]
                        if i == 0:
                            assert msg.value == _dx
                            assert ERC20(coin).transfer(_receiver, dy, default_return_value=True)
                        else:
                            assert msg.value == 0
                            assert ERC20(coin).transferFrom(msg.sender, self, _dx, default_return_value=True)
                            raw_call(_receiver, b"", value=dy)
                    
                        log TokenExchange(msg.sender, i, _dx, j, dy)
                    
                        return dy
                    
                    
                    @external
                    @nonreentrant('lock')
                    def remove_liquidity(
                        _burn_amount: uint256,
                        _min_amounts: uint256[N_COINS],
                        _receiver: address = msg.sender
                    ) -> uint256[N_COINS]:
                        """
                        @notice Withdraw coins from the pool
                        @dev Withdrawal amounts are based on current deposit ratios
                        @param _burn_amount Quantity of LP tokens to burn in the withdrawal
                        @param _min_amounts Minimum amounts of underlying coins to receive
                        @param _receiver Address that receives the withdrawn coins
                        @return List of amounts of coins that were withdrawn
                        """
                        total_supply: uint256 = self.totalSupply
                        amounts: uint256[N_COINS] = empty(uint256[N_COINS])
                    
                        for i in range(N_COINS):
                            old_balance: uint256 = self.balances[i]
                            value: uint256 = old_balance * _burn_amount / total_supply
                            assert value >= _min_amounts[i], "Withdrawal resulted in fewer coins than expected"
                            self.balances[i] = old_balance - value
                            amounts[i] = value
                    
                            if i == 0:
                                raw_call(_receiver, b"", value=value)
                            else:
                                assert ERC20(self.coins[1]).transfer(_receiver, value, default_return_value=True)
                    
                        total_supply -= _burn_amount
                        self.balanceOf[msg.sender] -= _burn_amount
                        self.totalSupply = total_supply
                        log Transfer(msg.sender, empty(address), _burn_amount)
                    
                        log RemoveLiquidity(msg.sender, amounts, empty(uint256[N_COINS]), total_supply)
                    
                        return amounts
                    
                    
                    @external
                    @nonreentrant('lock')
                    def remove_liquidity_imbalance(
                        _amounts: uint256[N_COINS],
                        _max_burn_amount: uint256,
                        _receiver: address = msg.sender
                    ) -> uint256:
                        """
                        @notice Withdraw coins from the pool in an imbalanced amount
                        @param _amounts List of amounts of underlying coins to withdraw
                        @param _max_burn_amount Maximum amount of LP token to burn in the withdrawal
                        @param _receiver Address that receives the withdrawn coins
                        @return Actual amount of the LP token burned in the withdrawal
                        """
                        amp: uint256 = self._A()
                        rates: uint256[N_COINS] = self.rate_multipliers
                        old_balances: uint256[N_COINS] = self.balances
                        D0: uint256 = self.get_D_mem(rates, old_balances, amp)
                    
                        new_balances: uint256[N_COINS] = old_balances
                        for i in range(N_COINS):
                            new_balances[i] -= _amounts[i]
                        D1: uint256 = self.get_D_mem(rates, new_balances, amp)
                    
                        fees: uint256[N_COINS] = empty(uint256[N_COINS])
                        base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
                        for i in range(N_COINS):
                            ideal_balance: uint256 = D1 * old_balances[i] / D0
                            difference: uint256 = 0
                            new_balance: uint256 = new_balances[i]
                            if ideal_balance > new_balance:
                                difference = ideal_balance - new_balance
                            else:
                                difference = new_balance - ideal_balance
                            fees[i] = base_fee * difference / FEE_DENOMINATOR
                            self.balances[i] = new_balance - (fees[i] * ADMIN_FEE / FEE_DENOMINATOR)
                            new_balances[i] -= fees[i]
                        new_balances = self._xp_mem(rates, new_balances)
                        D2: uint256 = self.get_D(new_balances, amp)
                    
                        self.save_p(new_balances, amp, D2)
                    
                        total_supply: uint256 = self.totalSupply
                        burn_amount: uint256 = ((D0 - D2) * total_supply / D0) + 1
                        assert burn_amount > 1  # dev: zero tokens burned
                        assert burn_amount <= _max_burn_amount, "Slippage screwed you"
                    
                        total_supply -= burn_amount
                        self.totalSupply = total_supply
                        self.balanceOf[msg.sender] -= burn_amount
                        log Transfer(msg.sender, empty(address), burn_amount)
                    
                        if _amounts[0] != 0:
                            raw_call(_receiver, b"", value=_amounts[0])
                        if _amounts[1] != 0:
                            assert ERC20(self.coins[1]).transfer(_receiver, _amounts[1], default_return_value=True)
                    
                        log RemoveLiquidityImbalance(msg.sender, _amounts, fees, D1, total_supply)
                    
                        return burn_amount
                    
                    
                    @pure
                    @internal
                    def get_y_D(A: uint256, i: int128, xp: uint256[N_COINS], D: uint256) -> uint256:
                        """
                        Calculate x[i] if one reduces D from being calculated for xp to D
                    
                        Done by solving quadratic equation iteratively.
                        x_1**2 + x_1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
                        x_1**2 + b*x_1 = c
                    
                        x_1 = (x_1**2 + c) / (2*x_1 + b)
                        """
                        # x in the input is converted to the same price/precision
                    
                        assert i >= 0  # dev: i below zero
                        assert i < N_COINS_128  # dev: i above N_COINS
                    
                        S_: uint256 = 0
                        _x: uint256 = 0
                        y_prev: uint256 = 0
                        c: uint256 = D
                        Ann: uint256 = A * N_COINS
                    
                        for _i in range(N_COINS_128):
                            if _i != i:
                                _x = xp[_i]
                            else:
                                continue
                            S_ += _x
                            c = c * D / (_x * N_COINS)
                    
                        c = c * D * A_PRECISION / (Ann * N_COINS)
                        b: uint256 = S_ + D * A_PRECISION / Ann
                        y: uint256 = D
                    
                        for _i in range(255):
                            y_prev = y
                            y = (y*y + c) / (2 * y + b - D)
                            # Equality with the precision of 1
                            if y > y_prev:
                                if y - y_prev <= 1:
                                    return y
                            else:
                                if y_prev - y <= 1:
                                    return y
                        raise
                    
                    
                    @view
                    @internal
                    def _calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256[3]:
                        # First, need to calculate
                        # * Get current D
                        # * Solve Eqn against y_i for D - _token_amount
                        amp: uint256 = self._A()
                        rates: uint256[N_COINS] = self.rate_multipliers
                        xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)
                        D0: uint256 = self.get_D(xp, amp)
                    
                        total_supply: uint256 = self.totalSupply
                        D1: uint256 = D0 - _burn_amount * D0 / total_supply
                        new_y: uint256 = self.get_y_D(amp, i, xp, D1)
                    
                        base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
                        xp_reduced: uint256[N_COINS] = empty(uint256[N_COINS])
                    
                        for j in range(N_COINS_128):
                            dx_expected: uint256 = 0
                            xp_j: uint256 = xp[j]
                            if j == i:
                                dx_expected = xp_j * D1 / D0 - new_y
                            else:
                                dx_expected = xp_j - xp_j * D1 / D0
                            xp_reduced[j] = xp_j - base_fee * dx_expected / FEE_DENOMINATOR
                    
                        dy: uint256 = xp_reduced[i] - self.get_y_D(amp, i, xp_reduced, D1)
                        dy_0: uint256 = (xp[i] - new_y) * PRECISION / rates[i]  # w/o fees
                        dy = (dy - 1) * PRECISION / rates[i]  # Withdraw less to account for rounding errors
                    
                        xp[i] = new_y
                        last_p: uint256 = 0
                        if new_y > 0:
                            last_p = self._get_p(xp, amp, D1)
                    
                        return [dy, dy_0 - dy, last_p]
                    
                    
                    @view
                    @external
                    def calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256:
                        """
                        @notice Calculate the amount received when withdrawing a single coin
                        @param _burn_amount Amount of LP tokens to burn in the withdrawal
                        @param i Index value of the coin to withdraw
                        @return Amount of coin received
                        """
                        return self._calc_withdraw_one_coin(_burn_amount, i)[0]
                    
                    
                    @external
                    @nonreentrant('lock')
                    def remove_liquidity_one_coin(
                        _burn_amount: uint256,
                        i: int128,
                        _min_received: uint256,
                        _receiver: address = msg.sender,
                    ) -> uint256:
                        """
                        @notice Withdraw a single coin from the pool
                        @param _burn_amount Amount of LP tokens to burn in the withdrawal
                        @param i Index value of the coin to withdraw
                        @param _min_received Minimum amount of coin to receive
                        @param _receiver Address that receives the withdrawn coins
                        @return Amount of coin received
                        """
                        dy: uint256[3] = self._calc_withdraw_one_coin(_burn_amount, i)
                        assert dy[0] >= _min_received, "Not enough coins removed"
                    
                        self.balances[i] -= (dy[0] + dy[1] * ADMIN_FEE / FEE_DENOMINATOR)
                        total_supply: uint256 = self.totalSupply - _burn_amount
                        self.totalSupply = total_supply
                        self.balanceOf[msg.sender] -= _burn_amount
                        log Transfer(msg.sender, empty(address), _burn_amount)
                    
                        if i == 0:
                            raw_call(_receiver, b"", value=dy[0])
                        else:
                            assert ERC20(self.coins[1]).transfer(_receiver, dy[0], default_return_value=True)
                    
                        log RemoveLiquidityOne(msg.sender, _burn_amount, dy[0], total_supply)
                    
                        self.save_p_from_price(dy[2])
                    
                        return dy[0]
                    
                    
                    @external
                    def ramp_A(_future_A: uint256, _future_time: uint256):
                        assert msg.sender == Factory(self.factory).admin()  # dev: only owner
                        assert block.timestamp >= self.initial_A_time + MIN_RAMP_TIME
                        assert _future_time >= block.timestamp + MIN_RAMP_TIME  # dev: insufficient time
                    
                        _initial_A: uint256 = self._A()
                        _future_A_p: uint256 = _future_A * A_PRECISION
                    
                        assert _future_A > 0 and _future_A < MAX_A
                        if _future_A_p < _initial_A:
                            assert _future_A_p * MAX_A_CHANGE >= _initial_A
                        else:
                            assert _future_A_p <= _initial_A * MAX_A_CHANGE
                    
                        self.initial_A = _initial_A
                        self.future_A = _future_A_p
                        self.initial_A_time = block.timestamp
                        self.future_A_time = _future_time
                    
                        log RampA(_initial_A, _future_A_p, block.timestamp, _future_time)
                    
                    
                    @external
                    def stop_ramp_A():
                        assert msg.sender == Factory(self.factory).admin()  # dev: only owner
                    
                        current_A: uint256 = self._A()
                        self.initial_A = current_A
                        self.future_A = current_A
                        self.initial_A_time = block.timestamp
                        self.future_A_time = block.timestamp
                        # now (block.timestamp < t1) is always False, so we return saved A
                    
                        log StopRampA(current_A, block.timestamp)
                    
                    
                    @view
                    @external
                    def admin_balances(i: uint256) -> uint256:
                        if i == 0:
                            return self.balance - self.balances[0]
                        else:
                            return ERC20(self.coins[i]).balanceOf(self) - self.balances[i]
                    
                    
                    @external
                    def withdraw_admin_fees():
                        receiver: address = Factory(self.factory).get_fee_receiver(self)
                    
                        fees: uint256 = self.balance - self.balances[0]
                        raw_call(receiver, b"", value=fees)
                    
                        coin: address = self.coins[1]
                        fees = ERC20(coin).balanceOf(self) - self.balances[1]
                        assert ERC20(coin).transfer(receiver, fees, default_return_value=True)
                    
                    
                    @external
                    def commit_new_fee(_new_fee: uint256):
                        assert msg.sender == Factory(self.factory).admin()
                        assert _new_fee <= MAX_FEE
                        assert self.admin_action_deadline == 0
                    
                        self.future_fee = _new_fee
                        self.admin_action_deadline = block.timestamp + ADMIN_ACTIONS_DEADLINE_DT
                        log CommitNewFee(_new_fee)
                    
                    
                    @external
                    def apply_new_fee():
                        assert msg.sender == Factory(self.factory).admin()
                        deadline: uint256 = self.admin_action_deadline
                        assert deadline != 0 and block.timestamp >= deadline
                        
                        fee: uint256 = self.future_fee
                        self.fee = fee
                        self.admin_action_deadline = 0
                        log ApplyNewFee(fee)
                    
                    
                    @external
                    def set_ma_exp_time(_ma_exp_time: uint256):
                        assert msg.sender == Factory(self.factory).admin()  # dev: only owner
                        assert _ma_exp_time != 0
                    
                        self.ma_exp_time = _ma_exp_time
                    
                    
                    @view
                    @external
                    def version() -> String[8]:
                        """
                        @notice Get the version of this token contract
                        """
                        return VERSION

                    File 5 of 8: WETH9
                    // Copyright (C) 2015, 2016, 2017 Dapphub
                    
                    // This program is free software: you can redistribute it and/or modify
                    // it under the terms of the GNU General Public License as published by
                    // the Free Software Foundation, either version 3 of the License, or
                    // (at your option) any later version.
                    
                    // This program is distributed in the hope that it will be useful,
                    // but WITHOUT ANY WARRANTY; without even the implied warranty of
                    // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                    // GNU General Public License for more details.
                    
                    // You should have received a copy of the GNU General Public License
                    // along with this program.  If not, see <http://www.gnu.org/licenses/>.
                    
                    pragma solidity ^0.4.18;
                    
                    contract WETH9 {
                        string public name     = "Wrapped Ether";
                        string public symbol   = "WETH";
                        uint8  public decimals = 18;
                    
                        event  Approval(address indexed src, address indexed guy, uint wad);
                        event  Transfer(address indexed src, address indexed dst, uint wad);
                        event  Deposit(address indexed dst, uint wad);
                        event  Withdrawal(address indexed src, uint wad);
                    
                        mapping (address => uint)                       public  balanceOf;
                        mapping (address => mapping (address => uint))  public  allowance;
                    
                        function() public payable {
                            deposit();
                        }
                        function deposit() public payable {
                            balanceOf[msg.sender] += msg.value;
                            Deposit(msg.sender, msg.value);
                        }
                        function withdraw(uint wad) public {
                            require(balanceOf[msg.sender] >= wad);
                            balanceOf[msg.sender] -= wad;
                            msg.sender.transfer(wad);
                            Withdrawal(msg.sender, wad);
                        }
                    
                        function totalSupply() public view returns (uint) {
                            return this.balance;
                        }
                    
                        function approve(address guy, uint wad) public returns (bool) {
                            allowance[msg.sender][guy] = wad;
                            Approval(msg.sender, guy, wad);
                            return true;
                        }
                    
                        function transfer(address dst, uint wad) public returns (bool) {
                            return transferFrom(msg.sender, dst, wad);
                        }
                    
                        function transferFrom(address src, address dst, uint wad)
                            public
                            returns (bool)
                        {
                            require(balanceOf[src] >= wad);
                    
                            if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                                require(allowance[src][msg.sender] >= wad);
                                allowance[src][msg.sender] -= wad;
                            }
                    
                            balanceOf[src] -= wad;
                            balanceOf[dst] += wad;
                    
                            Transfer(src, dst, wad);
                    
                            return true;
                        }
                    }
                    
                    
                    /*
                                        GNU GENERAL PUBLIC LICENSE
                                           Version 3, 29 June 2007
                    
                     Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
                     Everyone is permitted to copy and distribute verbatim copies
                     of this license document, but changing it is not allowed.
                    
                                                Preamble
                    
                      The GNU General Public License is a free, copyleft license for
                    software and other kinds of works.
                    
                      The licenses for most software and other practical works are designed
                    to take away your freedom to share and change the works.  By contrast,
                    the GNU General Public License is intended to guarantee your freedom to
                    share and change all versions of a program--to make sure it remains free
                    software for all its users.  We, the Free Software Foundation, use the
                    GNU General Public License for most of our software; it applies also to
                    any other work released this way by its authors.  You can apply it to
                    your programs, too.
                    
                      When we speak of free software, we are referring to freedom, not
                    price.  Our General Public Licenses are designed to make sure that you
                    have the freedom to distribute copies of free software (and charge for
                    them if you wish), that you receive source code or can get it if you
                    want it, that you can change the software or use pieces of it in new
                    free programs, and that you know you can do these things.
                    
                      To protect your rights, we need to prevent others from denying you
                    these rights or asking you to surrender the rights.  Therefore, you have
                    certain responsibilities if you distribute copies of the software, or if
                    you modify it: responsibilities to respect the freedom of others.
                    
                      For example, if you distribute copies of such a program, whether
                    gratis or for a fee, you must pass on to the recipients the same
                    freedoms that you received.  You must make sure that they, too, receive
                    or can get the source code.  And you must show them these terms so they
                    know their rights.
                    
                      Developers that use the GNU GPL protect your rights with two steps:
                    (1) assert copyright on the software, and (2) offer you this License
                    giving you legal permission to copy, distribute and/or modify it.
                    
                      For the developers' and authors' protection, the GPL clearly explains
                    that there is no warranty for this free software.  For both users' and
                    authors' sake, the GPL requires that modified versions be marked as
                    changed, so that their problems will not be attributed erroneously to
                    authors of previous versions.
                    
                      Some devices are designed to deny users access to install or run
                    modified versions of the software inside them, although the manufacturer
                    can do so.  This is fundamentally incompatible with the aim of
                    protecting users' freedom to change the software.  The systematic
                    pattern of such abuse occurs in the area of products for individuals to
                    use, which is precisely where it is most unacceptable.  Therefore, we
                    have designed this version of the GPL to prohibit the practice for those
                    products.  If such problems arise substantially in other domains, we
                    stand ready to extend this provision to those domains in future versions
                    of the GPL, as needed to protect the freedom of users.
                    
                      Finally, every program is threatened constantly by software patents.
                    States should not allow patents to restrict development and use of
                    software on general-purpose computers, but in those that do, we wish to
                    avoid the special danger that patents applied to a free program could
                    make it effectively proprietary.  To prevent this, the GPL assures that
                    patents cannot be used to render the program non-free.
                    
                      The precise terms and conditions for copying, distribution and
                    modification follow.
                    
                                           TERMS AND CONDITIONS
                    
                      0. Definitions.
                    
                      "This License" refers to version 3 of the GNU General Public License.
                    
                      "Copyright" also means copyright-like laws that apply to other kinds of
                    works, such as semiconductor masks.
                    
                      "The Program" refers to any copyrightable work licensed under this
                    License.  Each licensee is addressed as "you".  "Licensees" and
                    "recipients" may be individuals or organizations.
                    
                      To "modify" a work means to copy from or adapt all or part of the work
                    in a fashion requiring copyright permission, other than the making of an
                    exact copy.  The resulting work is called a "modified version" of the
                    earlier work or a work "based on" the earlier work.
                    
                      A "covered work" means either the unmodified Program or a work based
                    on the Program.
                    
                      To "propagate" a work means to do anything with it that, without
                    permission, would make you directly or secondarily liable for
                    infringement under applicable copyright law, except executing it on a
                    computer or modifying a private copy.  Propagation includes copying,
                    distribution (with or without modification), making available to the
                    public, and in some countries other activities as well.
                    
                      To "convey" a work means any kind of propagation that enables other
                    parties to make or receive copies.  Mere interaction with a user through
                    a computer network, with no transfer of a copy, is not conveying.
                    
                      An interactive user interface displays "Appropriate Legal Notices"
                    to the extent that it includes a convenient and prominently visible
                    feature that (1) displays an appropriate copyright notice, and (2)
                    tells the user that there is no warranty for the work (except to the
                    extent that warranties are provided), that licensees may convey the
                    work under this License, and how to view a copy of this License.  If
                    the interface presents a list of user commands or options, such as a
                    menu, a prominent item in the list meets this criterion.
                    
                      1. Source Code.
                    
                      The "source code" for a work means the preferred form of the work
                    for making modifications to it.  "Object code" means any non-source
                    form of a work.
                    
                      A "Standard Interface" means an interface that either is an official
                    standard defined by a recognized standards body, or, in the case of
                    interfaces specified for a particular programming language, one that
                    is widely used among developers working in that language.
                    
                      The "System Libraries" of an executable work include anything, other
                    than the work as a whole, that (a) is included in the normal form of
                    packaging a Major Component, but which is not part of that Major
                    Component, and (b) serves only to enable use of the work with that
                    Major Component, or to implement a Standard Interface for which an
                    implementation is available to the public in source code form.  A
                    "Major Component", in this context, means a major essential component
                    (kernel, window system, and so on) of the specific operating system
                    (if any) on which the executable work runs, or a compiler used to
                    produce the work, or an object code interpreter used to run it.
                    
                      The "Corresponding Source" for a work in object code form means all
                    the source code needed to generate, install, and (for an executable
                    work) run the object code and to modify the work, including scripts to
                    control those activities.  However, it does not include the work's
                    System Libraries, or general-purpose tools or generally available free
                    programs which are used unmodified in performing those activities but
                    which are not part of the work.  For example, Corresponding Source
                    includes interface definition files associated with source files for
                    the work, and the source code for shared libraries and dynamically
                    linked subprograms that the work is specifically designed to require,
                    such as by intimate data communication or control flow between those
                    subprograms and other parts of the work.
                    
                      The Corresponding Source need not include anything that users
                    can regenerate automatically from other parts of the Corresponding
                    Source.
                    
                      The Corresponding Source for a work in source code form is that
                    same work.
                    
                      2. Basic Permissions.
                    
                      All rights granted under this License are granted for the term of
                    copyright on the Program, and are irrevocable provided the stated
                    conditions are met.  This License explicitly affirms your unlimited
                    permission to run the unmodified Program.  The output from running a
                    covered work is covered by this License only if the output, given its
                    content, constitutes a covered work.  This License acknowledges your
                    rights of fair use or other equivalent, as provided by copyright law.
                    
                      You may make, run and propagate covered works that you do not
                    convey, without conditions so long as your license otherwise remains
                    in force.  You may convey covered works to others for the sole purpose
                    of having them make modifications exclusively for you, or provide you
                    with facilities for running those works, provided that you comply with
                    the terms of this License in conveying all material for which you do
                    not control copyright.  Those thus making or running the covered works
                    for you must do so exclusively on your behalf, under your direction
                    and control, on terms that prohibit them from making any copies of
                    your copyrighted material outside their relationship with you.
                    
                      Conveying under any other circumstances is permitted solely under
                    the conditions stated below.  Sublicensing is not allowed; section 10
                    makes it unnecessary.
                    
                      3. Protecting Users' Legal Rights From Anti-Circumvention Law.
                    
                      No covered work shall be deemed part of an effective technological
                    measure under any applicable law fulfilling obligations under article
                    11 of the WIPO copyright treaty adopted on 20 December 1996, or
                    similar laws prohibiting or restricting circumvention of such
                    measures.
                    
                      When you convey a covered work, you waive any legal power to forbid
                    circumvention of technological measures to the extent such circumvention
                    is effected by exercising rights under this License with respect to
                    the covered work, and you disclaim any intention to limit operation or
                    modification of the work as a means of enforcing, against the work's
                    users, your or third parties' legal rights to forbid circumvention of
                    technological measures.
                    
                      4. Conveying Verbatim Copies.
                    
                      You may convey verbatim copies of the Program's source code as you
                    receive it, in any medium, provided that you conspicuously and
                    appropriately publish on each copy an appropriate copyright notice;
                    keep intact all notices stating that this License and any
                    non-permissive terms added in accord with section 7 apply to the code;
                    keep intact all notices of the absence of any warranty; and give all
                    recipients a copy of this License along with the Program.
                    
                      You may charge any price or no price for each copy that you convey,
                    and you may offer support or warranty protection for a fee.
                    
                      5. Conveying Modified Source Versions.
                    
                      You may convey a work based on the Program, or the modifications to
                    produce it from the Program, in the form of source code under the
                    terms of section 4, provided that you also meet all of these conditions:
                    
                        a) The work must carry prominent notices stating that you modified
                        it, and giving a relevant date.
                    
                        b) The work must carry prominent notices stating that it is
                        released under this License and any conditions added under section
                        7.  This requirement modifies the requirement in section 4 to
                        "keep intact all notices".
                    
                        c) You must license the entire work, as a whole, under this
                        License to anyone who comes into possession of a copy.  This
                        License will therefore apply, along with any applicable section 7
                        additional terms, to the whole of the work, and all its parts,
                        regardless of how they are packaged.  This License gives no
                        permission to license the work in any other way, but it does not
                        invalidate such permission if you have separately received it.
                    
                        d) If the work has interactive user interfaces, each must display
                        Appropriate Legal Notices; however, if the Program has interactive
                        interfaces that do not display Appropriate Legal Notices, your
                        work need not make them do so.
                    
                      A compilation of a covered work with other separate and independent
                    works, which are not by their nature extensions of the covered work,
                    and which are not combined with it such as to form a larger program,
                    in or on a volume of a storage or distribution medium, is called an
                    "aggregate" if the compilation and its resulting copyright are not
                    used to limit the access or legal rights of the compilation's users
                    beyond what the individual works permit.  Inclusion of a covered work
                    in an aggregate does not cause this License to apply to the other
                    parts of the aggregate.
                    
                      6. Conveying Non-Source Forms.
                    
                      You may convey a covered work in object code form under the terms
                    of sections 4 and 5, provided that you also convey the
                    machine-readable Corresponding Source under the terms of this License,
                    in one of these ways:
                    
                        a) Convey the object code in, or embodied in, a physical product
                        (including a physical distribution medium), accompanied by the
                        Corresponding Source fixed on a durable physical medium
                        customarily used for software interchange.
                    
                        b) Convey the object code in, or embodied in, a physical product
                        (including a physical distribution medium), accompanied by a
                        written offer, valid for at least three years and valid for as
                        long as you offer spare parts or customer support for that product
                        model, to give anyone who possesses the object code either (1) a
                        copy of the Corresponding Source for all the software in the
                        product that is covered by this License, on a durable physical
                        medium customarily used for software interchange, for a price no
                        more than your reasonable cost of physically performing this
                        conveying of source, or (2) access to copy the
                        Corresponding Source from a network server at no charge.
                    
                        c) Convey individual copies of the object code with a copy of the
                        written offer to provide the Corresponding Source.  This
                        alternative is allowed only occasionally and noncommercially, and
                        only if you received the object code with such an offer, in accord
                        with subsection 6b.
                    
                        d) Convey the object code by offering access from a designated
                        place (gratis or for a charge), and offer equivalent access to the
                        Corresponding Source in the same way through the same place at no
                        further charge.  You need not require recipients to copy the
                        Corresponding Source along with the object code.  If the place to
                        copy the object code is a network server, the Corresponding Source
                        may be on a different server (operated by you or a third party)
                        that supports equivalent copying facilities, provided you maintain
                        clear directions next to the object code saying where to find the
                        Corresponding Source.  Regardless of what server hosts the
                        Corresponding Source, you remain obligated to ensure that it is
                        available for as long as needed to satisfy these requirements.
                    
                        e) Convey the object code using peer-to-peer transmission, provided
                        you inform other peers where the object code and Corresponding
                        Source of the work are being offered to the general public at no
                        charge under subsection 6d.
                    
                      A separable portion of the object code, whose source code is excluded
                    from the Corresponding Source as a System Library, need not be
                    included in conveying the object code work.
                    
                      A "User Product" is either (1) a "consumer product", which means any
                    tangible personal property which is normally used for personal, family,
                    or household purposes, or (2) anything designed or sold for incorporation
                    into a dwelling.  In determining whether a product is a consumer product,
                    doubtful cases shall be resolved in favor of coverage.  For a particular
                    product received by a particular user, "normally used" refers to a
                    typical or common use of that class of product, regardless of the status
                    of the particular user or of the way in which the particular user
                    actually uses, or expects or is expected to use, the product.  A product
                    is a consumer product regardless of whether the product has substantial
                    commercial, industrial or non-consumer uses, unless such uses represent
                    the only significant mode of use of the product.
                    
                      "Installation Information" for a User Product means any methods,
                    procedures, authorization keys, or other information required to install
                    and execute modified versions of a covered work in that User Product from
                    a modified version of its Corresponding Source.  The information must
                    suffice to ensure that the continued functioning of the modified object
                    code is in no case prevented or interfered with solely because
                    modification has been made.
                    
                      If you convey an object code work under this section in, or with, or
                    specifically for use in, a User Product, and the conveying occurs as
                    part of a transaction in which the right of possession and use of the
                    User Product is transferred to the recipient in perpetuity or for a
                    fixed term (regardless of how the transaction is characterized), the
                    Corresponding Source conveyed under this section must be accompanied
                    by the Installation Information.  But this requirement does not apply
                    if neither you nor any third party retains the ability to install
                    modified object code on the User Product (for example, the work has
                    been installed in ROM).
                    
                      The requirement to provide Installation Information does not include a
                    requirement to continue to provide support service, warranty, or updates
                    for a work that has been modified or installed by the recipient, or for
                    the User Product in which it has been modified or installed.  Access to a
                    network may be denied when the modification itself materially and
                    adversely affects the operation of the network or violates the rules and
                    protocols for communication across the network.
                    
                      Corresponding Source conveyed, and Installation Information provided,
                    in accord with this section must be in a format that is publicly
                    documented (and with an implementation available to the public in
                    source code form), and must require no special password or key for
                    unpacking, reading or copying.
                    
                      7. Additional Terms.
                    
                      "Additional permissions" are terms that supplement the terms of this
                    License by making exceptions from one or more of its conditions.
                    Additional permissions that are applicable to the entire Program shall
                    be treated as though they were included in this License, to the extent
                    that they are valid under applicable law.  If additional permissions
                    apply only to part of the Program, that part may be used separately
                    under those permissions, but the entire Program remains governed by
                    this License without regard to the additional permissions.
                    
                      When you convey a copy of a covered work, you may at your option
                    remove any additional permissions from that copy, or from any part of
                    it.  (Additional permissions may be written to require their own
                    removal in certain cases when you modify the work.)  You may place
                    additional permissions on material, added by you to a covered work,
                    for which you have or can give appropriate copyright permission.
                    
                      Notwithstanding any other provision of this License, for material you
                    add to a covered work, you may (if authorized by the copyright holders of
                    that material) supplement the terms of this License with terms:
                    
                        a) Disclaiming warranty or limiting liability differently from the
                        terms of sections 15 and 16 of this License; or
                    
                        b) Requiring preservation of specified reasonable legal notices or
                        author attributions in that material or in the Appropriate Legal
                        Notices displayed by works containing it; or
                    
                        c) Prohibiting misrepresentation of the origin of that material, or
                        requiring that modified versions of such material be marked in
                        reasonable ways as different from the original version; or
                    
                        d) Limiting the use for publicity purposes of names of licensors or
                        authors of the material; or
                    
                        e) Declining to grant rights under trademark law for use of some
                        trade names, trademarks, or service marks; or
                    
                        f) Requiring indemnification of licensors and authors of that
                        material by anyone who conveys the material (or modified versions of
                        it) with contractual assumptions of liability to the recipient, for
                        any liability that these contractual assumptions directly impose on
                        those licensors and authors.
                    
                      All other non-permissive additional terms are considered "further
                    restrictions" within the meaning of section 10.  If the Program as you
                    received it, or any part of it, contains a notice stating that it is
                    governed by this License along with a term that is a further
                    restriction, you may remove that term.  If a license document contains
                    a further restriction but permits relicensing or conveying under this
                    License, you may add to a covered work material governed by the terms
                    of that license document, provided that the further restriction does
                    not survive such relicensing or conveying.
                    
                      If you add terms to a covered work in accord with this section, you
                    must place, in the relevant source files, a statement of the
                    additional terms that apply to those files, or a notice indicating
                    where to find the applicable terms.
                    
                      Additional terms, permissive or non-permissive, may be stated in the
                    form of a separately written license, or stated as exceptions;
                    the above requirements apply either way.
                    
                      8. Termination.
                    
                      You may not propagate or modify a covered work except as expressly
                    provided under this License.  Any attempt otherwise to propagate or
                    modify it is void, and will automatically terminate your rights under
                    this License (including any patent licenses granted under the third
                    paragraph of section 11).
                    
                      However, if you cease all violation of this License, then your
                    license from a particular copyright holder is reinstated (a)
                    provisionally, unless and until the copyright holder explicitly and
                    finally terminates your license, and (b) permanently, if the copyright
                    holder fails to notify you of the violation by some reasonable means
                    prior to 60 days after the cessation.
                    
                      Moreover, your license from a particular copyright holder is
                    reinstated permanently if the copyright holder notifies you of the
                    violation by some reasonable means, this is the first time you have
                    received notice of violation of this License (for any work) from that
                    copyright holder, and you cure the violation prior to 30 days after
                    your receipt of the notice.
                    
                      Termination of your rights under this section does not terminate the
                    licenses of parties who have received copies or rights from you under
                    this License.  If your rights have been terminated and not permanently
                    reinstated, you do not qualify to receive new licenses for the same
                    material under section 10.
                    
                      9. Acceptance Not Required for Having Copies.
                    
                      You are not required to accept this License in order to receive or
                    run a copy of the Program.  Ancillary propagation of a covered work
                    occurring solely as a consequence of using peer-to-peer transmission
                    to receive a copy likewise does not require acceptance.  However,
                    nothing other than this License grants you permission to propagate or
                    modify any covered work.  These actions infringe copyright if you do
                    not accept this License.  Therefore, by modifying or propagating a
                    covered work, you indicate your acceptance of this License to do so.
                    
                      10. Automatic Licensing of Downstream Recipients.
                    
                      Each time you convey a covered work, the recipient automatically
                    receives a license from the original licensors, to run, modify and
                    propagate that work, subject to this License.  You are not responsible
                    for enforcing compliance by third parties with this License.
                    
                      An "entity transaction" is a transaction transferring control of an
                    organization, or substantially all assets of one, or subdividing an
                    organization, or merging organizations.  If propagation of a covered
                    work results from an entity transaction, each party to that
                    transaction who receives a copy of the work also receives whatever
                    licenses to the work the party's predecessor in interest had or could
                    give under the previous paragraph, plus a right to possession of the
                    Corresponding Source of the work from the predecessor in interest, if
                    the predecessor has it or can get it with reasonable efforts.
                    
                      You may not impose any further restrictions on the exercise of the
                    rights granted or affirmed under this License.  For example, you may
                    not impose a license fee, royalty, or other charge for exercise of
                    rights granted under this License, and you may not initiate litigation
                    (including a cross-claim or counterclaim in a lawsuit) alleging that
                    any patent claim is infringed by making, using, selling, offering for
                    sale, or importing the Program or any portion of it.
                    
                      11. Patents.
                    
                      A "contributor" is a copyright holder who authorizes use under this
                    License of the Program or a work on which the Program is based.  The
                    work thus licensed is called the contributor's "contributor version".
                    
                      A contributor's "essential patent claims" are all patent claims
                    owned or controlled by the contributor, whether already acquired or
                    hereafter acquired, that would be infringed by some manner, permitted
                    by this License, of making, using, or selling its contributor version,
                    but do not include claims that would be infringed only as a
                    consequence of further modification of the contributor version.  For
                    purposes of this definition, "control" includes the right to grant
                    patent sublicenses in a manner consistent with the requirements of
                    this License.
                    
                      Each contributor grants you a non-exclusive, worldwide, royalty-free
                    patent license under the contributor's essential patent claims, to
                    make, use, sell, offer for sale, import and otherwise run, modify and
                    propagate the contents of its contributor version.
                    
                      In the following three paragraphs, a "patent license" is any express
                    agreement or commitment, however denominated, not to enforce a patent
                    (such as an express permission to practice a patent or covenant not to
                    sue for patent infringement).  To "grant" such a patent license to a
                    party means to make such an agreement or commitment not to enforce a
                    patent against the party.
                    
                      If you convey a covered work, knowingly relying on a patent license,
                    and the Corresponding Source of the work is not available for anyone
                    to copy, free of charge and under the terms of this License, through a
                    publicly available network server or other readily accessible means,
                    then you must either (1) cause the Corresponding Source to be so
                    available, or (2) arrange to deprive yourself of the benefit of the
                    patent license for this particular work, or (3) arrange, in a manner
                    consistent with the requirements of this License, to extend the patent
                    license to downstream recipients.  "Knowingly relying" means you have
                    actual knowledge that, but for the patent license, your conveying the
                    covered work in a country, or your recipient's use of the covered work
                    in a country, would infringe one or more identifiable patents in that
                    country that you have reason to believe are valid.
                    
                      If, pursuant to or in connection with a single transaction or
                    arrangement, you convey, or propagate by procuring conveyance of, a
                    covered work, and grant a patent license to some of the parties
                    receiving the covered work authorizing them to use, propagate, modify
                    or convey a specific copy of the covered work, then the patent license
                    you grant is automatically extended to all recipients of the covered
                    work and works based on it.
                    
                      A patent license is "discriminatory" if it does not include within
                    the scope of its coverage, prohibits the exercise of, or is
                    conditioned on the non-exercise of one or more of the rights that are
                    specifically granted under this License.  You may not convey a covered
                    work if you are a party to an arrangement with a third party that is
                    in the business of distributing software, under which you make payment
                    to the third party based on the extent of your activity of conveying
                    the work, and under which the third party grants, to any of the
                    parties who would receive the covered work from you, a discriminatory
                    patent license (a) in connection with copies of the covered work
                    conveyed by you (or copies made from those copies), or (b) primarily
                    for and in connection with specific products or compilations that
                    contain the covered work, unless you entered into that arrangement,
                    or that patent license was granted, prior to 28 March 2007.
                    
                      Nothing in this License shall be construed as excluding or limiting
                    any implied license or other defenses to infringement that may
                    otherwise be available to you under applicable patent law.
                    
                      12. No Surrender of Others' Freedom.
                    
                      If conditions are imposed on you (whether by court order, agreement or
                    otherwise) that contradict the conditions of this License, they do not
                    excuse you from the conditions of this License.  If you cannot convey a
                    covered work so as to satisfy simultaneously your obligations under this
                    License and any other pertinent obligations, then as a consequence you may
                    not convey it at all.  For example, if you agree to terms that obligate you
                    to collect a royalty for further conveying from those to whom you convey
                    the Program, the only way you could satisfy both those terms and this
                    License would be to refrain entirely from conveying the Program.
                    
                      13. Use with the GNU Affero General Public License.
                    
                      Notwithstanding any other provision of this License, you have
                    permission to link or combine any covered work with a work licensed
                    under version 3 of the GNU Affero General Public License into a single
                    combined work, and to convey the resulting work.  The terms of this
                    License will continue to apply to the part which is the covered work,
                    but the special requirements of the GNU Affero General Public License,
                    section 13, concerning interaction through a network will apply to the
                    combination as such.
                    
                      14. Revised Versions of this License.
                    
                      The Free Software Foundation may publish revised and/or new versions of
                    the GNU General Public License from time to time.  Such new versions will
                    be similar in spirit to the present version, but may differ in detail to
                    address new problems or concerns.
                    
                      Each version is given a distinguishing version number.  If the
                    Program specifies that a certain numbered version of the GNU General
                    Public License "or any later version" applies to it, you have the
                    option of following the terms and conditions either of that numbered
                    version or of any later version published by the Free Software
                    Foundation.  If the Program does not specify a version number of the
                    GNU General Public License, you may choose any version ever published
                    by the Free Software Foundation.
                    
                      If the Program specifies that a proxy can decide which future
                    versions of the GNU General Public License can be used, that proxy's
                    public statement of acceptance of a version permanently authorizes you
                    to choose that version for the Program.
                    
                      Later license versions may give you additional or different
                    permissions.  However, no additional obligations are imposed on any
                    author or copyright holder as a result of your choosing to follow a
                    later version.
                    
                      15. Disclaimer of Warranty.
                    
                      THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
                    APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
                    HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
                    OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
                    THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                    PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
                    IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
                    ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
                    
                      16. Limitation of Liability.
                    
                      IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                    WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
                    THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
                    GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
                    USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
                    DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
                    PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
                    EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
                    SUCH DAMAGES.
                    
                      17. Interpretation of Sections 15 and 16.
                    
                      If the disclaimer of warranty and limitation of liability provided
                    above cannot be given local legal effect according to their terms,
                    reviewing courts shall apply local law that most closely approximates
                    an absolute waiver of all civil liability in connection with the
                    Program, unless a warranty or assumption of liability accompanies a
                    copy of the Program in return for a fee.
                    
                                         END OF TERMS AND CONDITIONS
                    
                                How to Apply These Terms to Your New Programs
                    
                      If you develop a new program, and you want it to be of the greatest
                    possible use to the public, the best way to achieve this is to make it
                    free software which everyone can redistribute and change under these terms.
                    
                      To do so, attach the following notices to the program.  It is safest
                    to attach them to the start of each source file to most effectively
                    state the exclusion of warranty; and each file should have at least
                    the "copyright" line and a pointer to where the full notice is found.
                    
                        <one line to give the program's name and a brief idea of what it does.>
                        Copyright (C) <year>  <name of author>
                    
                        This program is free software: you can redistribute it and/or modify
                        it under the terms of the GNU General Public License as published by
                        the Free Software Foundation, either version 3 of the License, or
                        (at your option) any later version.
                    
                        This program is distributed in the hope that it will be useful,
                        but WITHOUT ANY WARRANTY; without even the implied warranty of
                        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                        GNU General Public License for more details.
                    
                        You should have received a copy of the GNU General Public License
                        along with this program.  If not, see <http://www.gnu.org/licenses/>.
                    
                    Also add information on how to contact you by electronic and paper mail.
                    
                      If the program does terminal interaction, make it output a short
                    notice like this when it starts in an interactive mode:
                    
                        <program>  Copyright (C) <year>  <name of author>
                        This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                        This is free software, and you are welcome to redistribute it
                        under certain conditions; type `show c' for details.
                    
                    The hypothetical commands `show w' and `show c' should show the appropriate
                    parts of the General Public License.  Of course, your program's commands
                    might be different; for a GUI interface, you would use an "about box".
                    
                      You should also get your employer (if you work as a programmer) or school,
                    if any, to sign a "copyright disclaimer" for the program, if necessary.
                    For more information on this, and how to apply and follow the GNU GPL, see
                    <http://www.gnu.org/licenses/>.
                    
                      The GNU General Public License does not permit incorporating your program
                    into proprietary programs.  If your program is a subroutine library, you
                    may consider it more useful to permit linking proprietary applications with
                    the library.  If this is what you want to do, use the GNU Lesser General
                    Public License instead of this License.  But first, please read
                    <http://www.gnu.org/philosophy/why-not-lgpl.html>.
                    
                    */

                    File 6 of 8: MetaAggregationRouterV2
                    // SPDX-License-Identifier: MIT
                    pragma solidity 0.8.9;
                    import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
                    import '@openzeppelin/contracts/utils/Context.sol';
                    import '@openzeppelin/contracts/access/Ownable.sol';
                    import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol';
                    import './dependency/Permitable.sol';
                    import './interfaces/IAggregationExecutor.sol';
                    import './interfaces/IAggregationExecutor1Inch.sol';
                    import './libraries/TransferHelper.sol';
                    import './libraries/RevertReasonParser.sol';
                    contract MetaAggregationRouterV2 is Permitable, Ownable {
                      using SafeERC20 for IERC20;
                      address public immutable WETH;
                      address private constant ETH_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
                      uint256 private constant _PARTIAL_FILL = 0x01;
                      uint256 private constant _REQUIRES_EXTRA_ETH = 0x02;
                      uint256 private constant _SHOULD_CLAIM = 0x04;
                      uint256 private constant _BURN_FROM_MSG_SENDER = 0x08;
                      uint256 private constant _BURN_FROM_TX_ORIGIN = 0x10;
                      uint256 private constant _SIMPLE_SWAP = 0x20;
                      uint256 private constant _FEE_ON_DST = 0x40;
                      uint256 private constant _FEE_IN_BPS = 0x80;
                      uint256 private constant _APPROVE_FUND = 0x100;
                      uint256 private constant BPS = 10000;
                      mapping(address => bool) public isWhitelist;
                      struct SwapDescriptionV2 {
                        IERC20 srcToken;
                        IERC20 dstToken;
                        address[] srcReceivers; // transfer src token to these addresses, default
                        uint256[] srcAmounts;
                        address[] feeReceivers;
                        uint256[] feeAmounts;
                        address dstReceiver;
                        uint256 amount;
                        uint256 minReturnAmount;
                        uint256 flags;
                        bytes permit;
                      }
                      /// @dev  use for swapGeneric and swap to avoid stack too deep
                      struct SwapExecutionParams {
                        address callTarget; // call this address
                        address approveTarget; // approve this address if _APPROVE_FUND set
                        bytes targetData;
                        SwapDescriptionV2 desc;
                        bytes clientData;
                      }
                      struct SimpleSwapData {
                        address[] firstPools;
                        uint256[] firstSwapAmounts;
                        bytes[] swapDatas;
                        uint256 deadline;
                        bytes destTokenFeeData;
                      }
                      event Swapped(
                        address sender,
                        IERC20 srcToken,
                        IERC20 dstToken,
                        address dstReceiver,
                        uint256 spentAmount,
                        uint256 returnAmount
                      );
                      event ClientData(bytes clientData);
                      event Exchange(address pair, uint256 amountOut, address output);
                      event Fee(address token, uint256 totalAmount, uint256 totalFee, address[] recipients, uint256[] amounts, bool isBps);
                      constructor(address _WETH) {
                        WETH = _WETH;
                      }
                      receive() external payable {}
                      function rescueFunds(address token, uint256 amount) external onlyOwner {
                        if (_isETH(IERC20(token))) {
                          TransferHelper.safeTransferETH(msg.sender, amount);
                        } else {
                          TransferHelper.safeTransfer(token, msg.sender, amount);
                        }
                      }
                      function updateWhitelist(address[] memory addr, bool[] memory value) external onlyOwner {
                        require(addr.length == value.length);
                        for (uint256 i; i < addr.length; ++i) {
                          isWhitelist[addr[i]] = value[i];
                        }
                      }
                      function swapGeneric(SwapExecutionParams calldata execution)
                        external
                        payable
                        returns (uint256 returnAmount, uint256 gasUsed)
                      {
                        uint256 gasBefore = gasleft();
                        require(isWhitelist[execution.callTarget], 'Address not whitelisted');
                        if (execution.approveTarget != execution.callTarget && execution.approveTarget != address(0)) {
                          require(isWhitelist[execution.approveTarget], 'Address not whitelisted');
                        }
                        SwapDescriptionV2 memory desc = execution.desc;
                        require(desc.minReturnAmount > 0, 'Invalid min return amount');
                        // if extra eth is needed, in case srcToken is ETH
                        _collectExtraETHIfNeeded(desc);
                        _permit(desc.srcToken, desc.amount, desc.permit);
                        bool feeInBps = _flagsChecked(desc.flags, _FEE_IN_BPS);
                        uint256 spentAmount;
                        address dstReceiver = desc.dstReceiver == address(0) ? msg.sender : desc.dstReceiver;
                        if (!_flagsChecked(desc.flags, _FEE_ON_DST)) {
                          // fee on src token
                          // take fee on srcToken
                          // take fee and deduct total amount
                          desc.amount = _takeFee(desc.srcToken, msg.sender, desc.feeReceivers, desc.feeAmounts, desc.amount, feeInBps);
                          bool collected;
                          if (!_isETH(desc.srcToken) && _flagsChecked(desc.flags, _SHOULD_CLAIM)) {
                            (collected, desc.amount) = _collectTokenIfNeeded(desc, msg.sender, address(this));
                          }
                          _transferFromOrApproveTarget(msg.sender, execution.approveTarget, desc, collected);
                          // execute swap
                          (spentAmount, returnAmount) = _executeSwap(
                            execution.callTarget,
                            execution.targetData,
                            desc,
                            _isETH(desc.srcToken) ? desc.amount : 0,
                            dstReceiver
                          );
                        } else {
                          bool collected;
                          if (!_isETH(desc.srcToken) && _flagsChecked(desc.flags, _SHOULD_CLAIM)) {
                            (collected, desc.amount) = _collectTokenIfNeeded(desc, msg.sender, address(this));
                          }
                          uint256 initialDstReceiverBalance = _getBalance(desc.dstToken, dstReceiver);
                          _transferFromOrApproveTarget(msg.sender, execution.approveTarget, desc, collected);
                          // fee on dst token
                          // router get dst token first
                          (spentAmount, returnAmount) = _executeSwap(
                            execution.callTarget,
                            execution.targetData,
                            desc,
                            _isETH(desc.srcToken) ? msg.value : 0,
                            address(this)
                          );
                          {
                            // then take fee on dst token
                            uint256 leftAmount = _takeFee(
                              desc.dstToken,
                              address(this),
                              desc.feeReceivers,
                              desc.feeAmounts,
                              returnAmount,
                              feeInBps
                            );
                            _doTransferERC20(desc.dstToken, address(this), dstReceiver, leftAmount);
                          }
                          returnAmount = _getBalance(desc.dstToken, dstReceiver) - initialDstReceiverBalance;
                        }
                        // check return amount
                        _checkReturnAmount(spentAmount, returnAmount, desc);
                        //revoke allowance
                        if (!_isETH(desc.srcToken) && execution.approveTarget != address(0)) {
                          desc.srcToken.safeApprove(execution.approveTarget, 0);
                        }
                        emit Swapped(msg.sender, desc.srcToken, desc.dstToken, dstReceiver, spentAmount, returnAmount);
                        emit Exchange(execution.callTarget, returnAmount, _isETH(desc.dstToken) ? WETH : address(desc.dstToken));
                        emit ClientData(execution.clientData);
                        unchecked {
                          gasUsed = gasBefore - gasleft();
                        }
                      }
                      function swap(SwapExecutionParams calldata execution)
                        external
                        payable
                        returns (uint256 returnAmount, uint256 gasUsed)
                      {
                        uint256 gasBefore = gasleft();
                        SwapDescriptionV2 memory desc = execution.desc;
                        require(desc.minReturnAmount > 0, 'Min return should not be 0');
                        require(execution.targetData.length > 0, 'executorData should be not zero');
                        // simple mode swap
                        if (_flagsChecked(desc.flags, _SIMPLE_SWAP)) {
                          return
                            swapSimpleMode(IAggregationExecutor(execution.callTarget), desc, execution.targetData, execution.clientData);
                        }
                        _collectExtraETHIfNeeded(desc);
                        _permit(desc.srcToken, desc.amount, desc.permit);
                        bool feeInBps = _flagsChecked(desc.flags, _FEE_IN_BPS);
                        uint256 spentAmount;
                        address dstReceiver = desc.dstReceiver == address(0) ? msg.sender : desc.dstReceiver;
                        if (!_flagsChecked(desc.flags, _FEE_ON_DST)) {
                          // fee on src token
                          {
                            // take fee on srcToken
                            // deduct total swap amount
                            desc.amount = _takeFee(
                              desc.srcToken,
                              msg.sender,
                              desc.feeReceivers,
                              desc.feeAmounts,
                              _isETH(desc.srcToken) ? msg.value : desc.amount,
                              feeInBps
                            );
                            // transfer fund from msg.sender to our executor
                            _transferFromOrApproveTarget(msg.sender, address(0), desc, false);
                            // execute swap
                            (spentAmount, returnAmount) = _executeSwap(
                              execution.callTarget,
                              abi.encodeWithSelector(IAggregationExecutor.callBytes.selector, execution.targetData),
                              desc,
                              _isETH(desc.srcToken) ? desc.amount : 0,
                              dstReceiver
                            );
                          }
                        } else {
                          // fee on dst token
                          // router get dst token first
                          uint256 initialDstReceiverBalance = _getBalance(desc.dstToken, dstReceiver);
                          // transfer fund from msg.sender to our executor
                          _transferFromOrApproveTarget(msg.sender, address(0), desc, false);
                          // swap to receive dstToken on this router
                          (spentAmount, returnAmount) = _executeSwap(
                            execution.callTarget,
                            abi.encodeWithSelector(IAggregationExecutor.callBytes.selector, execution.targetData),
                            desc,
                            _isETH(desc.srcToken) ? msg.value : 0,
                            address(this)
                          );
                          {
                            // then take fee on dst token
                            uint256 leftAmount = _takeFee(
                              desc.dstToken,
                              address(this),
                              desc.feeReceivers,
                              desc.feeAmounts,
                              returnAmount,
                              feeInBps
                            );
                            _doTransferERC20(desc.dstToken, address(this), dstReceiver, leftAmount);
                          }
                          returnAmount = _getBalance(desc.dstToken, dstReceiver) - initialDstReceiverBalance;
                        }
                        _checkReturnAmount(spentAmount, returnAmount, desc);
                        emit Swapped(msg.sender, desc.srcToken, desc.dstToken, dstReceiver, spentAmount, returnAmount);
                        emit Exchange(execution.callTarget, returnAmount, _isETH(desc.dstToken) ? WETH : address(desc.dstToken));
                        emit ClientData(execution.clientData);
                        unchecked {
                          gasUsed = gasBefore - gasleft();
                        }
                      }
                      function swapSimpleMode(
                        IAggregationExecutor caller,
                        SwapDescriptionV2 memory desc,
                        bytes calldata executorData,
                        bytes calldata clientData
                      ) public returns (uint256 returnAmount, uint256 gasUsed) {
                        uint256 gasBefore = gasleft();
                        require(!_isETH(desc.srcToken), 'src is eth, should use normal swap');
                        _permit(desc.srcToken, desc.amount, desc.permit);
                        address dstReceiver = (desc.dstReceiver == address(0)) ? msg.sender : desc.dstReceiver;
                        {
                          bool isBps = _flagsChecked(desc.flags, _FEE_IN_BPS);
                          if (!_flagsChecked(desc.flags, _FEE_ON_DST)) {
                            // take fee and deduct total swap amount
                            desc.amount = _takeFee(desc.srcToken, msg.sender, desc.feeReceivers, desc.feeAmounts, desc.amount, isBps);
                          } else {
                            dstReceiver = address(this);
                          }
                        }
                        uint256 initialDstBalance = _getBalance(desc.dstToken, dstReceiver);
                        uint256 initialSrcBalance = _getBalance(desc.srcToken, msg.sender);
                        _swapMultiSequencesWithSimpleMode(
                          caller,
                          address(desc.srcToken),
                          desc.amount,
                          address(desc.dstToken),
                          dstReceiver,
                          executorData
                        );
                        // amount returned to this router
                        returnAmount = _getBalance(desc.dstToken, dstReceiver) - initialDstBalance;
                        {
                          // take fee
                          if (_flagsChecked(desc.flags, _FEE_ON_DST)) {
                            {
                              bool isBps = _flagsChecked(desc.flags, _FEE_IN_BPS);
                              returnAmount = _takeFee(
                                desc.dstToken,
                                address(this),
                                desc.feeReceivers,
                                desc.feeAmounts,
                                returnAmount,
                                isBps
                              );
                            }
                            IERC20 dstToken = desc.dstToken;
                            dstReceiver = desc.dstReceiver == address(0) ? msg.sender : desc.dstReceiver;
                            // dst receiver initial balance
                            initialDstBalance = _getBalance(dstToken, dstReceiver);
                            // transfer remainning token to dst receiver
                            _doTransferERC20(dstToken, address(this), dstReceiver, returnAmount);
                            // amount returned to dst receiver
                            returnAmount = _getBalance(dstToken, dstReceiver) - initialDstBalance;
                          }
                        }
                        uint256 spentAmount = initialSrcBalance - _getBalance(desc.srcToken, msg.sender);
                        _checkReturnAmount(spentAmount, returnAmount, desc);
                        emit Swapped(msg.sender, desc.srcToken, desc.dstToken, dstReceiver, spentAmount, returnAmount);
                        emit Exchange(address(caller), returnAmount, _isETH(desc.dstToken) ? WETH : address(desc.dstToken));
                        emit ClientData(clientData);
                        unchecked {
                          gasUsed = gasBefore - gasleft();
                        }
                      }
                      function _doTransferERC20(
                        IERC20 token,
                        address from,
                        address to,
                        uint256 amount
                      ) internal {
                        require(from != to, 'sender != recipient');
                        if (amount > 0) {
                          if (_isETH(token)) {
                            if (from == address(this)) TransferHelper.safeTransferETH(to, amount);
                          } else {
                            if (from == address(this)) {
                              TransferHelper.safeTransfer(address(token), to, amount);
                            } else {
                              TransferHelper.safeTransferFrom(address(token), from, to, amount);
                            }
                          }
                        }
                      }
                      // Only use this mode if the first pool of each sequence can receive tokenIn directly into the pool
                      function _swapMultiSequencesWithSimpleMode(
                        IAggregationExecutor caller,
                        address tokenIn,
                        uint256 totalSwapAmount,
                        address tokenOut,
                        address dstReceiver,
                        bytes calldata data
                      ) internal {
                        SimpleSwapData memory swapData = abi.decode(data, (SimpleSwapData));
                        require(swapData.deadline >= block.timestamp, 'ROUTER: Expired');
                        require(
                          swapData.firstPools.length == swapData.firstSwapAmounts.length &&
                            swapData.firstPools.length == swapData.swapDatas.length,
                          'invalid swap data length'
                        );
                        uint256 numberSeq = swapData.firstPools.length;
                        for (uint256 i = 0; i < numberSeq; i++) {
                          // collect amount to the first pool
                          {
                            uint256 balanceBefore = _getBalance(IERC20(tokenIn), msg.sender);
                            _doTransferERC20(IERC20(tokenIn), msg.sender, swapData.firstPools[i], swapData.firstSwapAmounts[i]);
                            require(swapData.firstSwapAmounts[i] <= totalSwapAmount, 'invalid swap amount');
                            uint256 spentAmount = balanceBefore - _getBalance(IERC20(tokenIn), msg.sender);
                            totalSwapAmount -= spentAmount;
                          }
                          {
                            // solhint-disable-next-line avoid-low-level-calls
                            // may take some native tokens for commission fee
                            (bool success, bytes memory result) = address(caller).call(
                              abi.encodeWithSelector(caller.swapSingleSequence.selector, swapData.swapDatas[i])
                            );
                            if (!success) {
                              revert(RevertReasonParser.parse(result, 'swapSingleSequence failed: '));
                            }
                          }
                        }
                        {
                          // solhint-disable-next-line avoid-low-level-calls
                          // may take some native tokens for commission fee
                          (bool success, bytes memory result) = address(caller).call(
                            abi.encodeWithSelector(
                              caller.finalTransactionProcessing.selector,
                              tokenIn,
                              tokenOut,
                              dstReceiver,
                              swapData.destTokenFeeData
                            )
                          );
                          if (!success) {
                            revert(RevertReasonParser.parse(result, 'finalTransactionProcessing failed: '));
                          }
                        }
                      }
                      function _getBalance(IERC20 token, address account) internal view returns (uint256) {
                        if (_isETH(token)) {
                          return account.balance;
                        } else {
                          return token.balanceOf(account);
                        }
                      }
                      function _isETH(IERC20 token) internal pure returns (bool) {
                        return (address(token) == ETH_ADDRESS);
                      }
                      /// @dev this function calls to external contract to execute swap and also validate the returned amounts
                      function _executeSwap(
                        address callTarget,
                        bytes memory targetData,
                        SwapDescriptionV2 memory desc,
                        uint256 value,
                        address dstReceiver
                      ) internal returns (uint256 spentAmount, uint256 returnAmount) {
                        uint256 initialDstBalance = _getBalance(desc.dstToken, dstReceiver);
                        uint256 routerInitialSrcBalance = _getBalance(desc.srcToken, address(this));
                        uint256 routerInitialDstBalance = _getBalance(desc.dstToken, address(this));
                        {
                          // call to external contract
                          (bool success, ) = callTarget.call{value: value}(targetData);
                          require(success, 'Call failed');
                        }
                        // if the `callTarget` returns amount to `msg.sender`, meaning this contract
                        if (dstReceiver != address(this)) {
                          uint256 stuckAmount = _getBalance(desc.dstToken, address(this)) - routerInitialDstBalance;
                          _doTransferERC20(desc.dstToken, address(this), dstReceiver, stuckAmount);
                        }
                        // safe check here
                        returnAmount = _getBalance(desc.dstToken, dstReceiver) - initialDstBalance;
                        spentAmount = desc.amount;
                        //should refund tokens router collected when partial fill
                        if (
                          _flagsChecked(desc.flags, _PARTIAL_FILL) && (_isETH(desc.srcToken) || _flagsChecked(desc.flags, _SHOULD_CLAIM))
                        ) {
                          uint256 currBalance = _getBalance(desc.srcToken, address(this));
                          if (currBalance != routerInitialSrcBalance) {
                            spentAmount = routerInitialSrcBalance - currBalance;
                            _doTransferERC20(desc.srcToken, address(this), msg.sender, desc.amount - spentAmount);
                          }
                        }
                      }
                      function _collectExtraETHIfNeeded(SwapDescriptionV2 memory desc) internal {
                        bool srcETH = _isETH(desc.srcToken);
                        if (_flagsChecked(desc.flags, _REQUIRES_EXTRA_ETH)) {
                          require(msg.value > (srcETH ? desc.amount : 0), 'Invalid msg.value');
                        } else {
                          require(msg.value == (srcETH ? desc.amount : 0), 'Invalid msg.value');
                        }
                      }
                      function _collectTokenIfNeeded(
                        SwapDescriptionV2 memory desc,
                        address from,
                        address to
                      ) internal returns (bool collected, uint256 amount) {
                        require(!_isETH(desc.srcToken), 'Claim token is ETH');
                        uint256 initialRouterSrcBalance = _getBalance(desc.srcToken, address(this));
                        _doTransferERC20(desc.srcToken, from, to, desc.amount);
                        collected = true;
                        amount = _getBalance(desc.srcToken, address(this)) - initialRouterSrcBalance;
                      }
                      /// @dev transfer fund to `callTarget` or approve `approveTarget`
                      function _transferFromOrApproveTarget(
                        address from,
                        address approveTarget,
                        SwapDescriptionV2 memory desc,
                        bool collected
                      ) internal {
                        // if token is collected
                        require(desc.srcReceivers.length == desc.srcAmounts.length, 'invalid srcReceivers length');
                        if (collected) {
                          if (_flagsChecked(desc.flags, _APPROVE_FUND) && approveTarget != address(0)) {
                            // approve to approveTarget since some systems use an allowance proxy contract
                            desc.srcToken.safeIncreaseAllowance(approveTarget, desc.amount);
                            return;
                          }
                        }
                        uint256 total;
                        for (uint256 i; i < desc.srcReceivers.length; ++i) {
                          total += desc.srcAmounts[i];
                          _doTransferERC20(desc.srcToken, collected ? address(this) : from, desc.srcReceivers[i], desc.srcAmounts[i]);
                        }
                        require(total <= desc.amount, 'Exceeded desc.amount');
                      }
                      /// @dev token transferred from `from` to `feeData.recipients`
                      function _takeFee(
                        IERC20 token,
                        address from,
                        address[] memory recipients,
                        uint256[] memory amounts,
                        uint256 totalAmount,
                        bool inBps
                      ) internal returns (uint256 leftAmount) {
                        leftAmount = totalAmount;
                        uint256 recipientsLen = recipients.length;
                        if (recipientsLen > 0) {
                          bool isETH = _isETH(token);
                          uint256 balanceBefore = _getBalance(token, isETH ? address(this) : from);
                          require(amounts.length == recipientsLen, 'Invalid length');
                          for (uint256 i; i < recipientsLen; ++i) {
                            uint256 amount = inBps ? (totalAmount * amounts[i]) / BPS : amounts[i];
                            _doTransferERC20(token, isETH ? address(this) : from, recipients[i], amount);
                          }
                          uint256 totalFee = balanceBefore - _getBalance(token, isETH ? address(this) : from);
                          leftAmount = totalAmount - totalFee;
                          emit Fee(address(token), totalAmount, totalFee, recipients, amounts, inBps);
                        }
                      }
                      function _checkReturnAmount(
                        uint256 spentAmount,
                        uint256 returnAmount,
                        SwapDescriptionV2 memory desc
                      ) internal pure {
                        if (_flagsChecked(desc.flags, _PARTIAL_FILL)) {
                          require(returnAmount * desc.amount >= desc.minReturnAmount * spentAmount, 'Return amount is not enough');
                        } else {
                          require(returnAmount >= desc.minReturnAmount, 'Return amount is not enough');
                        }
                      }
                      function _flagsChecked(uint256 number, uint256 flag) internal pure returns (bool) {
                        return number & flag != 0;
                      }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
                    import '@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol';
                    import '../libraries/RevertReasonParser.sol';
                    /*
                    “Copyright (c) 2019-2021 1inch 
                    Permission is hereby granted, free of charge, to any person obtaining a copy of this software
                    and associated documentation files (the "Software"), to deal in the Software without restriction,
                    including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
                    and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
                    subject to the following conditions: 
                    The above copyright notice and this permission notice shall be included
                    in all copies or substantial portions of the Software. 
                    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
                    THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
                    IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
                    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE”.
                    */
                    contract Permitable {
                      event Error(string reason);
                      function _permit(
                        IERC20 token,
                        uint256 amount,
                        bytes memory permit
                      ) internal {
                        if (permit.length == 32 * 7) {
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory result) = address(token).call(
                            abi.encodePacked(IERC20Permit.permit.selector, permit)
                          );
                          if (!success) {
                            string memory reason = RevertReasonParser.parse(result, 'Permit call failed: ');
                            if (token.allowance(msg.sender, address(this)) < amount) {
                              revert(reason);
                            } else {
                              emit Error(reason);
                            }
                          }
                        }
                      }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity >=0.6.12;
                    interface IAggregationExecutor {
                      function callBytes(bytes calldata data) external payable; // 0xd9c45357
                      // callbytes per swap sequence
                      function swapSingleSequence(bytes calldata data) external;
                      function finalTransactionProcessing(
                        address tokenIn,
                        address tokenOut,
                        address to,
                        bytes calldata destTokenFeeData
                      ) external;
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity 0.8.9;
                    import '@openzeppelin/contracts/interfaces/IERC20.sol';
                    interface IAggregationExecutor1Inch {
                      function callBytes(address msgSender, bytes calldata data) external payable; // 0x2636f7f8
                    }
                    interface IAggregationRouter1InchV4 {
                      function swap(
                        IAggregationExecutor1Inch caller,
                        SwapDescription1Inch calldata desc,
                        bytes calldata data
                      ) external payable returns (uint256 returnAmount, uint256 gasLeft);
                    }
                    struct SwapDescription1Inch {
                      IERC20 srcToken;
                      IERC20 dstToken;
                      address payable srcReceiver;
                      address payable dstReceiver;
                      uint256 amount;
                      uint256 minReturnAmount;
                      uint256 flags;
                      bytes permit;
                    }
                    struct SwapDescriptionExecutor1Inch {
                      IERC20 srcToken;
                      IERC20 dstToken;
                      address payable srcReceiver1Inch;
                      address payable dstReceiver;
                      address[] srcReceivers;
                      uint256[] srcAmounts;
                      uint256 amount;
                      uint256 minReturnAmount;
                      uint256 flags;
                      bytes permit;
                    }
                    // SPDX-License-Identifier: GPL-3.0-or-later
                    pragma solidity >=0.7.6;
                    /*
                    “Copyright (c) 2019-2021 1inch 
                    Permission is hereby granted, free of charge, to any person obtaining a copy of this software
                    and associated documentation files (the "Software"), to deal in the Software without restriction,
                    including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
                    and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
                    subject to the following conditions: 
                    The above copyright notice and this permission notice shall be included
                    in all copies or substantial portions of the Software. 
                    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
                    THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
                    IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
                    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE”.
                    */
                    library RevertReasonParser {
                      function parse(bytes memory data, string memory prefix) internal pure returns (string memory) {
                        // https://solidity.readthedocs.io/en/latest/control-structures.html#revert
                        // We assume that revert reason is abi-encoded as Error(string)
                        // 68 = 4-byte selector 0x08c379a0 + 32 bytes offset + 32 bytes length
                        if (data.length >= 68 && data[0] == '\\x08' && data[1] == '\\xc3' && data[2] == '\\x79' && data[3] == '\\xa0') {
                          string memory reason;
                          // solhint-disable no-inline-assembly
                          assembly {
                            // 68 = 32 bytes data length + 4-byte selector + 32 bytes offset
                            reason := add(data, 68)
                          }
                          /*
                                    revert reason is padded up to 32 bytes with ABI encoder: Error(string)
                                    also sometimes there is extra 32 bytes of zeros padded in the end:
                                    https://github.com/ethereum/solidity/issues/10170
                                    because of that we can't check for equality and instead check
                                    that string length + extra 68 bytes is less than overall data length
                                */
                          require(data.length >= 68 + bytes(reason).length, 'Invalid revert reason');
                          return string(abi.encodePacked(prefix, 'Error(', reason, ')'));
                        }
                        // 36 = 4-byte selector 0x4e487b71 + 32 bytes integer
                        else if (data.length == 36 && data[0] == '\\x4e' && data[1] == '\\x48' && data[2] == '\\x7b' && data[3] == '\\x71') {
                          uint256 code;
                          // solhint-disable no-inline-assembly
                          assembly {
                            // 36 = 32 bytes data length + 4-byte selector
                            code := mload(add(data, 36))
                          }
                          return string(abi.encodePacked(prefix, 'Panic(', _toHex(code), ')'));
                        }
                        return string(abi.encodePacked(prefix, 'Unknown(', _toHex(data), ')'));
                      }
                      function _toHex(uint256 value) private pure returns (string memory) {
                        return _toHex(abi.encodePacked(value));
                      }
                      function _toHex(bytes memory data) private pure returns (string memory) {
                        bytes16 alphabet = 0x30313233343536373839616263646566;
                        bytes memory str = new bytes(2 + data.length * 2);
                        str[0] = '0';
                        str[1] = 'x';
                        for (uint256 i = 0; i < data.length; i++) {
                          str[2 * i + 2] = alphabet[uint8(data[i] >> 4)];
                          str[2 * i + 3] = alphabet[uint8(data[i] & 0x0f)];
                        }
                        return string(str);
                      }
                    }
                    // SPDX-License-Identifier: GPL-3.0-or-later
                    pragma solidity >=0.5.16;
                    // helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false
                    library TransferHelper {
                      function safeApprove(
                        address token,
                        address to,
                        uint256 value
                      ) internal {
                        // bytes4(keccak256(bytes('approve(address,uint256)')));
                        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));
                        require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: APPROVE_FAILED');
                      }
                      function safeTransfer(
                        address token,
                        address to,
                        uint256 value
                      ) internal {
                        // bytes4(keccak256(bytes('transfer(address,uint256)')));
                        if (value == 0) return;
                        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));
                        require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FAILED');
                      }
                      function safeTransferFrom(
                        address token,
                        address from,
                        address to,
                        uint256 value
                      ) internal {
                        // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
                        if (value == 0) return;
                        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
                        require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FROM_FAILED');
                      }
                      function safeTransferETH(address to, uint256 value) internal {
                        if (value == 0) return;
                        (bool success, ) = to.call{value: value}(new bytes(0));
                        require(success, 'TransferHelper: ETH_TRANSFER_FAILED');
                      }
                    }
                    // SPDX-License-Identifier: MIT
                    // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
                    pragma solidity ^0.8.0;
                    import "../utils/Context.sol";
                    /**
                     * @dev Contract module which provides a basic access control mechanism, where
                     * there is an account (an owner) that can be granted exclusive access to
                     * specific functions.
                     *
                     * By default, the owner account will be the one that deploys the contract. This
                     * can later be changed with {transferOwnership}.
                     *
                     * This module is used through inheritance. It will make available the modifier
                     * `onlyOwner`, which can be applied to your functions to restrict their use to
                     * the owner.
                     */
                    abstract contract Ownable is Context {
                        address private _owner;
                        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                        /**
                         * @dev Initializes the contract setting the deployer as the initial owner.
                         */
                        constructor() {
                            _transferOwnership(_msgSender());
                        }
                        /**
                         * @dev Returns the address of the current owner.
                         */
                        function owner() public view virtual returns (address) {
                            return _owner;
                        }
                        /**
                         * @dev Throws if called by any account other than the owner.
                         */
                        modifier onlyOwner() {
                            require(owner() == _msgSender(), "Ownable: caller is not the owner");
                            _;
                        }
                        /**
                         * @dev Leaves the contract without owner. It will not be possible to call
                         * `onlyOwner` functions anymore. Can only be called by the current owner.
                         *
                         * NOTE: Renouncing ownership will leave the contract without an owner,
                         * thereby removing any functionality that is only available to the owner.
                         */
                        function renounceOwnership() public virtual onlyOwner {
                            _transferOwnership(address(0));
                        }
                        /**
                         * @dev Transfers ownership of the contract to a new account (`newOwner`).
                         * Can only be called by the current owner.
                         */
                        function transferOwnership(address newOwner) public virtual onlyOwner {
                            require(newOwner != address(0), "Ownable: new owner is the zero address");
                            _transferOwnership(newOwner);
                        }
                        /**
                         * @dev Transfers ownership of the contract to a new account (`newOwner`).
                         * Internal function without access restriction.
                         */
                        function _transferOwnership(address newOwner) internal virtual {
                            address oldOwner = _owner;
                            _owner = newOwner;
                            emit OwnershipTransferred(oldOwner, newOwner);
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    // OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
                    pragma solidity ^0.8.0;
                    import "../token/ERC20/IERC20.sol";
                    // SPDX-License-Identifier: MIT
                    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                    pragma solidity ^0.8.0;
                    /**
                     * @dev Interface of the ERC20 standard as defined in the EIP.
                     */
                    interface IERC20 {
                        /**
                         * @dev Emitted when `value` tokens are moved from one account (`from`) to
                         * another (`to`).
                         *
                         * Note that `value` may be zero.
                         */
                        event Transfer(address indexed from, address indexed to, uint256 value);
                        /**
                         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                         * a call to {approve}. `value` is the new allowance.
                         */
                        event Approval(address indexed owner, address indexed spender, uint256 value);
                        /**
                         * @dev Returns the amount of tokens in existence.
                         */
                        function totalSupply() external view returns (uint256);
                        /**
                         * @dev Returns the amount of tokens owned by `account`.
                         */
                        function balanceOf(address account) external view returns (uint256);
                        /**
                         * @dev Moves `amount` tokens from the caller's account to `to`.
                         *
                         * Returns a boolean value indicating whether the operation succeeded.
                         *
                         * Emits a {Transfer} event.
                         */
                        function transfer(address to, uint256 amount) external returns (bool);
                        /**
                         * @dev Returns the remaining number of tokens that `spender` will be
                         * allowed to spend on behalf of `owner` through {transferFrom}. This is
                         * zero by default.
                         *
                         * This value changes when {approve} or {transferFrom} are called.
                         */
                        function allowance(address owner, address spender) external view returns (uint256);
                        /**
                         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                         *
                         * Returns a boolean value indicating whether the operation succeeded.
                         *
                         * IMPORTANT: Beware that changing an allowance with this method brings the risk
                         * that someone may use both the old and the new allowance by unfortunate
                         * transaction ordering. One possible solution to mitigate this race
                         * condition is to first reduce the spender's allowance to 0 and set the
                         * desired value afterwards:
                         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                         *
                         * Emits an {Approval} event.
                         */
                        function approve(address spender, uint256 amount) external returns (bool);
                        /**
                         * @dev Moves `amount` tokens from `from` to `to` using the
                         * allowance mechanism. `amount` is then deducted from the caller's
                         * allowance.
                         *
                         * Returns a boolean value indicating whether the operation succeeded.
                         *
                         * Emits a {Transfer} event.
                         */
                        function transferFrom(
                            address from,
                            address to,
                            uint256 amount
                        ) external returns (bool);
                    }
                    // SPDX-License-Identifier: MIT
                    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                    pragma solidity ^0.8.0;
                    /**
                     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                     *
                     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                     * need to send a transaction, and thus is not required to hold Ether at all.
                     */
                    interface IERC20Permit {
                        /**
                         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                         * given ``owner``'s signed approval.
                         *
                         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                         * ordering also apply here.
                         *
                         * Emits an {Approval} event.
                         *
                         * Requirements:
                         *
                         * - `spender` cannot be the zero address.
                         * - `deadline` must be a timestamp in the future.
                         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                         * over the EIP712-formatted function arguments.
                         * - the signature must use ``owner``'s current nonce (see {nonces}).
                         *
                         * For more information on the signature format, see the
                         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                         * section].
                         */
                        function permit(
                            address owner,
                            address spender,
                            uint256 value,
                            uint256 deadline,
                            uint8 v,
                            bytes32 r,
                            bytes32 s
                        ) external;
                        /**
                         * @dev Returns the current nonce for `owner`. This value must be
                         * included whenever a signature is generated for {permit}.
                         *
                         * Every successful call to {permit} increases ``owner``'s nonce by one. This
                         * prevents a signature from being used multiple times.
                         */
                        function nonces(address owner) external view returns (uint256);
                        /**
                         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                         */
                        // solhint-disable-next-line func-name-mixedcase
                        function DOMAIN_SEPARATOR() external view returns (bytes32);
                    }
                    // SPDX-License-Identifier: MIT
                    // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
                    pragma solidity ^0.8.0;
                    import "../IERC20.sol";
                    import "../../../utils/Address.sol";
                    /**
                     * @title SafeERC20
                     * @dev Wrappers around ERC20 operations that throw on failure (when the token
                     * contract returns false). Tokens that return no value (and instead revert or
                     * throw on failure) are also supported, non-reverting calls are assumed to be
                     * successful.
                     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                     */
                    library SafeERC20 {
                        using Address for address;
                        function safeTransfer(
                            IERC20 token,
                            address to,
                            uint256 value
                        ) internal {
                            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                        }
                        function safeTransferFrom(
                            IERC20 token,
                            address from,
                            address to,
                            uint256 value
                        ) internal {
                            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                        }
                        /**
                         * @dev Deprecated. This function has issues similar to the ones found in
                         * {IERC20-approve}, and its usage is discouraged.
                         *
                         * Whenever possible, use {safeIncreaseAllowance} and
                         * {safeDecreaseAllowance} instead.
                         */
                        function safeApprove(
                            IERC20 token,
                            address spender,
                            uint256 value
                        ) internal {
                            // safeApprove should only be called when setting an initial allowance,
                            // or when resetting it to zero. To increase and decrease it, use
                            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                            require(
                                (value == 0) || (token.allowance(address(this), spender) == 0),
                                "SafeERC20: approve from non-zero to non-zero allowance"
                            );
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                        }
                        function safeIncreaseAllowance(
                            IERC20 token,
                            address spender,
                            uint256 value
                        ) internal {
                            uint256 newAllowance = token.allowance(address(this), spender) + value;
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                        function safeDecreaseAllowance(
                            IERC20 token,
                            address spender,
                            uint256 value
                        ) internal {
                            unchecked {
                                uint256 oldAllowance = token.allowance(address(this), spender);
                                require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                                uint256 newAllowance = oldAllowance - value;
                                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                            }
                        }
                        /**
                         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                         * on the return value: the return value is optional (but if data is returned, it must not be false).
                         * @param token The token targeted by the call.
                         * @param data The call data (encoded using abi.encode or one of its variants).
                         */
                        function _callOptionalReturn(IERC20 token, bytes memory data) private {
                            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                            // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                            // the target address contains contract code and also asserts for success in the low-level call.
                            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                            if (returndata.length > 0) {
                                // Return data is optional
                                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                            }
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
                    pragma solidity ^0.8.1;
                    /**
                     * @dev Collection of functions related to the address type
                     */
                    library Address {
                        /**
                         * @dev Returns true if `account` is a contract.
                         *
                         * [IMPORTANT]
                         * ====
                         * It is unsafe to assume that an address for which this function returns
                         * false is an externally-owned account (EOA) and not a contract.
                         *
                         * Among others, `isContract` will return false for the following
                         * types of addresses:
                         *
                         *  - an externally-owned account
                         *  - a contract in construction
                         *  - an address where a contract will be created
                         *  - an address where a contract lived, but was destroyed
                         * ====
                         *
                         * [IMPORTANT]
                         * ====
                         * You shouldn't rely on `isContract` to protect against flash loan attacks!
                         *
                         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                         * constructor.
                         * ====
                         */
                        function isContract(address account) internal view returns (bool) {
                            // This method relies on extcodesize/address.code.length, which returns 0
                            // for contracts in construction, since the code is only stored at the end
                            // of the constructor execution.
                            return account.code.length > 0;
                        }
                        /**
                         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                         * `recipient`, forwarding all available gas and reverting on errors.
                         *
                         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                         * of certain opcodes, possibly making contracts go over the 2300 gas limit
                         * imposed by `transfer`, making them unable to receive funds via
                         * `transfer`. {sendValue} removes this limitation.
                         *
                         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                         *
                         * IMPORTANT: because control is transferred to `recipient`, care must be
                         * taken to not create reentrancy vulnerabilities. Consider using
                         * {ReentrancyGuard} or the
                         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                         */
                        function sendValue(address payable recipient, uint256 amount) internal {
                            require(address(this).balance >= amount, "Address: insufficient balance");
                            (bool success, ) = recipient.call{value: amount}("");
                            require(success, "Address: unable to send value, recipient may have reverted");
                        }
                        /**
                         * @dev Performs a Solidity function call using a low level `call`. A
                         * plain `call` is an unsafe replacement for a function call: use this
                         * function instead.
                         *
                         * If `target` reverts with a revert reason, it is bubbled up by this
                         * function (like regular Solidity function calls).
                         *
                         * Returns the raw returned data. To convert to the expected return value,
                         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                         *
                         * Requirements:
                         *
                         * - `target` must be a contract.
                         * - calling `target` with `data` must not revert.
                         *
                         * _Available since v3.1._
                         */
                        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                            return functionCall(target, data, "Address: low-level call failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                         * `errorMessage` as a fallback revert reason when `target` reverts.
                         *
                         * _Available since v3.1._
                         */
                        function functionCall(
                            address target,
                            bytes memory data,
                            string memory errorMessage
                        ) internal returns (bytes memory) {
                            return functionCallWithValue(target, data, 0, errorMessage);
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but also transferring `value` wei to `target`.
                         *
                         * Requirements:
                         *
                         * - the calling contract must have an ETH balance of at least `value`.
                         * - the called Solidity function must be `payable`.
                         *
                         * _Available since v3.1._
                         */
                        function functionCallWithValue(
                            address target,
                            bytes memory data,
                            uint256 value
                        ) internal returns (bytes memory) {
                            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                         * with `errorMessage` as a fallback revert reason when `target` reverts.
                         *
                         * _Available since v3.1._
                         */
                        function functionCallWithValue(
                            address target,
                            bytes memory data,
                            uint256 value,
                            string memory errorMessage
                        ) internal returns (bytes memory) {
                            require(address(this).balance >= value, "Address: insufficient balance for call");
                            require(isContract(target), "Address: call to non-contract");
                            (bool success, bytes memory returndata) = target.call{value: value}(data);
                            return verifyCallResult(success, returndata, errorMessage);
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but performing a static call.
                         *
                         * _Available since v3.3._
                         */
                        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                            return functionStaticCall(target, data, "Address: low-level static call failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                         * but performing a static call.
                         *
                         * _Available since v3.3._
                         */
                        function functionStaticCall(
                            address target,
                            bytes memory data,
                            string memory errorMessage
                        ) internal view returns (bytes memory) {
                            require(isContract(target), "Address: static call to non-contract");
                            (bool success, bytes memory returndata) = target.staticcall(data);
                            return verifyCallResult(success, returndata, errorMessage);
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but performing a delegate call.
                         *
                         * _Available since v3.4._
                         */
                        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                         * but performing a delegate call.
                         *
                         * _Available since v3.4._
                         */
                        function functionDelegateCall(
                            address target,
                            bytes memory data,
                            string memory errorMessage
                        ) internal returns (bytes memory) {
                            require(isContract(target), "Address: delegate call to non-contract");
                            (bool success, bytes memory returndata) = target.delegatecall(data);
                            return verifyCallResult(success, returndata, errorMessage);
                        }
                        /**
                         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                         * revert reason using the provided one.
                         *
                         * _Available since v4.3._
                         */
                        function verifyCallResult(
                            bool success,
                            bytes memory returndata,
                            string memory errorMessage
                        ) internal pure returns (bytes memory) {
                            if (success) {
                                return returndata;
                            } else {
                                // Look for revert reason and bubble it up if present
                                if (returndata.length > 0) {
                                    // The easiest way to bubble the revert reason is using memory via assembly
                                    assembly {
                                        let returndata_size := mload(returndata)
                                        revert(add(32, returndata), returndata_size)
                                    }
                                } else {
                                    revert(errorMessage);
                                }
                            }
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                    pragma solidity ^0.8.0;
                    /**
                     * @dev Provides information about the current execution context, including the
                     * sender of the transaction and its data. While these are generally available
                     * via msg.sender and msg.data, they should not be accessed in such a direct
                     * manner, since when dealing with meta-transactions the account sending and
                     * paying for execution may not be the actual sender (as far as an application
                     * is concerned).
                     *
                     * This contract is only required for intermediate, library-like contracts.
                     */
                    abstract contract Context {
                        function _msgSender() internal view virtual returns (address) {
                            return msg.sender;
                        }
                        function _msgData() internal view virtual returns (bytes calldata) {
                            return msg.data;
                        }
                    }
                    

                    File 7 of 8: OETH
                    // SPDX-License-Identifier: MIT
                    // OpenZeppelin Contracts v4.4.1 (utils/math/SafeCast.sol)
                    pragma solidity ^0.8.0;
                    /**
                     * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
                     * checks.
                     *
                     * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
                     * easily result in undesired exploitation or bugs, since developers usually
                     * assume that overflows raise errors. `SafeCast` restores this intuition by
                     * reverting the transaction when such an operation overflows.
                     *
                     * Using this library instead of the unchecked operations eliminates an entire
                     * class of bugs, so it's recommended to use it always.
                     *
                     * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
                     * all math on `uint256` and `int256` and then downcasting.
                     */
                    library SafeCast {
                        /**
                         * @dev Returns the downcasted uint224 from uint256, reverting on
                         * overflow (when the input is greater than largest uint224).
                         *
                         * Counterpart to Solidity's `uint224` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 224 bits
                         */
                        function toUint224(uint256 value) internal pure returns (uint224) {
                            require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
                            return uint224(value);
                        }
                        /**
                         * @dev Returns the downcasted uint128 from uint256, reverting on
                         * overflow (when the input is greater than largest uint128).
                         *
                         * Counterpart to Solidity's `uint128` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 128 bits
                         */
                        function toUint128(uint256 value) internal pure returns (uint128) {
                            require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
                            return uint128(value);
                        }
                        /**
                         * @dev Returns the downcasted uint96 from uint256, reverting on
                         * overflow (when the input is greater than largest uint96).
                         *
                         * Counterpart to Solidity's `uint96` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 96 bits
                         */
                        function toUint96(uint256 value) internal pure returns (uint96) {
                            require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
                            return uint96(value);
                        }
                        /**
                         * @dev Returns the downcasted uint64 from uint256, reverting on
                         * overflow (when the input is greater than largest uint64).
                         *
                         * Counterpart to Solidity's `uint64` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 64 bits
                         */
                        function toUint64(uint256 value) internal pure returns (uint64) {
                            require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
                            return uint64(value);
                        }
                        /**
                         * @dev Returns the downcasted uint32 from uint256, reverting on
                         * overflow (when the input is greater than largest uint32).
                         *
                         * Counterpart to Solidity's `uint32` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 32 bits
                         */
                        function toUint32(uint256 value) internal pure returns (uint32) {
                            require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
                            return uint32(value);
                        }
                        /**
                         * @dev Returns the downcasted uint16 from uint256, reverting on
                         * overflow (when the input is greater than largest uint16).
                         *
                         * Counterpart to Solidity's `uint16` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 16 bits
                         */
                        function toUint16(uint256 value) internal pure returns (uint16) {
                            require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
                            return uint16(value);
                        }
                        /**
                         * @dev Returns the downcasted uint8 from uint256, reverting on
                         * overflow (when the input is greater than largest uint8).
                         *
                         * Counterpart to Solidity's `uint8` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 8 bits.
                         */
                        function toUint8(uint256 value) internal pure returns (uint8) {
                            require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
                            return uint8(value);
                        }
                        /**
                         * @dev Converts a signed int256 into an unsigned uint256.
                         *
                         * Requirements:
                         *
                         * - input must be greater than or equal to 0.
                         */
                        function toUint256(int256 value) internal pure returns (uint256) {
                            require(value >= 0, "SafeCast: value must be positive");
                            return uint256(value);
                        }
                        /**
                         * @dev Returns the downcasted int128 from int256, reverting on
                         * overflow (when the input is less than smallest int128 or
                         * greater than largest int128).
                         *
                         * Counterpart to Solidity's `int128` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 128 bits
                         *
                         * _Available since v3.1._
                         */
                        function toInt128(int256 value) internal pure returns (int128) {
                            require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
                            return int128(value);
                        }
                        /**
                         * @dev Returns the downcasted int64 from int256, reverting on
                         * overflow (when the input is less than smallest int64 or
                         * greater than largest int64).
                         *
                         * Counterpart to Solidity's `int64` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 64 bits
                         *
                         * _Available since v3.1._
                         */
                        function toInt64(int256 value) internal pure returns (int64) {
                            require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
                            return int64(value);
                        }
                        /**
                         * @dev Returns the downcasted int32 from int256, reverting on
                         * overflow (when the input is less than smallest int32 or
                         * greater than largest int32).
                         *
                         * Counterpart to Solidity's `int32` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 32 bits
                         *
                         * _Available since v3.1._
                         */
                        function toInt32(int256 value) internal pure returns (int32) {
                            require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
                            return int32(value);
                        }
                        /**
                         * @dev Returns the downcasted int16 from int256, reverting on
                         * overflow (when the input is less than smallest int16 or
                         * greater than largest int16).
                         *
                         * Counterpart to Solidity's `int16` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 16 bits
                         *
                         * _Available since v3.1._
                         */
                        function toInt16(int256 value) internal pure returns (int16) {
                            require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
                            return int16(value);
                        }
                        /**
                         * @dev Returns the downcasted int8 from int256, reverting on
                         * overflow (when the input is less than smallest int8 or
                         * greater than largest int8).
                         *
                         * Counterpart to Solidity's `int8` operator.
                         *
                         * Requirements:
                         *
                         * - input must fit into 8 bits.
                         *
                         * _Available since v3.1._
                         */
                        function toInt8(int256 value) internal pure returns (int8) {
                            require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
                            return int8(value);
                        }
                        /**
                         * @dev Converts an unsigned uint256 into a signed int256.
                         *
                         * Requirements:
                         *
                         * - input must be less than or equal to maxInt256.
                         */
                        function toInt256(uint256 value) internal pure returns (int256) {
                            // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
                            require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
                            return int256(value);
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    /**
                     * @title Base for contracts that are managed by the Origin Protocol's Governor.
                     * @dev Copy of the openzeppelin Ownable.sol contract with nomenclature change
                     *      from owner to governor and renounce methods removed. Does not use
                     *      Context.sol like Ownable.sol does for simplification.
                     * @author Origin Protocol Inc
                     */
                    contract Governable {
                        // Storage position of the owner and pendingOwner of the contract
                        // keccak256("OUSD.governor");
                        bytes32 private constant governorPosition =
                            0x7bea13895fa79d2831e0a9e28edede30099005a50d652d8957cf8a607ee6ca4a;
                        // keccak256("OUSD.pending.governor");
                        bytes32 private constant pendingGovernorPosition =
                            0x44c4d30b2eaad5130ad70c3ba6972730566f3e6359ab83e800d905c61b1c51db;
                        // keccak256("OUSD.reentry.status");
                        bytes32 private constant reentryStatusPosition =
                            0x53bf423e48ed90e97d02ab0ebab13b2a235a6bfbe9c321847d5c175333ac4535;
                        // See OpenZeppelin ReentrancyGuard implementation
                        uint256 constant _NOT_ENTERED = 1;
                        uint256 constant _ENTERED = 2;
                        event PendingGovernorshipTransfer(
                            address indexed previousGovernor,
                            address indexed newGovernor
                        );
                        event GovernorshipTransferred(
                            address indexed previousGovernor,
                            address indexed newGovernor
                        );
                        /**
                         * @dev Initializes the contract setting the deployer as the initial Governor.
                         */
                        constructor() {
                            _setGovernor(msg.sender);
                            emit GovernorshipTransferred(address(0), _governor());
                        }
                        /**
                         * @notice Returns the address of the current Governor.
                         */
                        function governor() public view returns (address) {
                            return _governor();
                        }
                        /**
                         * @dev Returns the address of the current Governor.
                         */
                        function _governor() internal view returns (address governorOut) {
                            bytes32 position = governorPosition;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                governorOut := sload(position)
                            }
                        }
                        /**
                         * @dev Returns the address of the pending Governor.
                         */
                        function _pendingGovernor()
                            internal
                            view
                            returns (address pendingGovernor)
                        {
                            bytes32 position = pendingGovernorPosition;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                pendingGovernor := sload(position)
                            }
                        }
                        /**
                         * @dev Throws if called by any account other than the Governor.
                         */
                        modifier onlyGovernor() {
                            require(isGovernor(), "Caller is not the Governor");
                            _;
                        }
                        /**
                         * @notice Returns true if the caller is the current Governor.
                         */
                        function isGovernor() public view returns (bool) {
                            return msg.sender == _governor();
                        }
                        function _setGovernor(address newGovernor) internal {
                            bytes32 position = governorPosition;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                sstore(position, newGovernor)
                            }
                        }
                        /**
                         * @dev Prevents a contract from calling itself, directly or indirectly.
                         * Calling a `nonReentrant` function from another `nonReentrant`
                         * function is not supported. It is possible to prevent this from happening
                         * by making the `nonReentrant` function external, and make it call a
                         * `private` function that does the actual work.
                         */
                        modifier nonReentrant() {
                            bytes32 position = reentryStatusPosition;
                            uint256 _reentry_status;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                _reentry_status := sload(position)
                            }
                            // On the first call to nonReentrant, _notEntered will be true
                            require(_reentry_status != _ENTERED, "Reentrant call");
                            // Any calls to nonReentrant after this point will fail
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                sstore(position, _ENTERED)
                            }
                            _;
                            // By storing the original value once again, a refund is triggered (see
                            // https://eips.ethereum.org/EIPS/eip-2200)
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                sstore(position, _NOT_ENTERED)
                            }
                        }
                        function _setPendingGovernor(address newGovernor) internal {
                            bytes32 position = pendingGovernorPosition;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                sstore(position, newGovernor)
                            }
                        }
                        /**
                         * @notice Transfers Governance of the contract to a new account (`newGovernor`).
                         * Can only be called by the current Governor. Must be claimed for this to complete
                         * @param _newGovernor Address of the new Governor
                         */
                        function transferGovernance(address _newGovernor) external onlyGovernor {
                            _setPendingGovernor(_newGovernor);
                            emit PendingGovernorshipTransfer(_governor(), _newGovernor);
                        }
                        /**
                         * @notice Claim Governance of the contract to a new account (`newGovernor`).
                         * Can only be called by the new Governor.
                         */
                        function claimGovernance() external {
                            require(
                                msg.sender == _pendingGovernor(),
                                "Only the pending Governor can complete the claim"
                            );
                            _changeGovernor(msg.sender);
                        }
                        /**
                         * @dev Change Governance of the contract to a new account (`newGovernor`).
                         * @param _newGovernor Address of the new Governor
                         */
                        function _changeGovernor(address _newGovernor) internal {
                            require(_newGovernor != address(0), "New Governor is address(0)");
                            emit GovernorshipTransferred(_governor(), _newGovernor);
                            _setGovernor(_newGovernor);
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    import { OUSD } from "./OUSD.sol";
                    /**
                     * @title OETH Token Contract
                     * @author Origin Protocol Inc
                     */
                    contract OETH is OUSD {
                        function symbol() external pure override returns (string memory) {
                            return "OETH";
                        }
                        function name() external pure override returns (string memory) {
                            return "Origin Ether";
                        }
                        function decimals() external pure override returns (uint8) {
                            return 18;
                        }
                    }
                    // SPDX-License-Identifier: BUSL-1.1
                    pragma solidity ^0.8.0;
                    /**
                     * @title OUSD Token Contract
                     * @dev ERC20 compatible contract for OUSD
                     * @dev Implements an elastic supply
                     * @author Origin Protocol Inc
                     */
                    import { Governable } from "../governance/Governable.sol";
                    import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
                    contract OUSD is Governable {
                        using SafeCast for int256;
                        using SafeCast for uint256;
                        /// @dev Event triggered when the supply changes
                        /// @param totalSupply Updated token total supply
                        /// @param rebasingCredits Updated token rebasing credits
                        /// @param rebasingCreditsPerToken Updated token rebasing credits per token
                        event TotalSupplyUpdatedHighres(
                            uint256 totalSupply,
                            uint256 rebasingCredits,
                            uint256 rebasingCreditsPerToken
                        );
                        /// @dev Event triggered when an account opts in for rebasing
                        /// @param account Address of the account
                        event AccountRebasingEnabled(address account);
                        /// @dev Event triggered when an account opts out of rebasing
                        /// @param account Address of the account
                        event AccountRebasingDisabled(address account);
                        /// @dev Emitted when `value` tokens are moved from one account `from` to
                        ///      another `to`.
                        /// @param from Address of the account tokens are moved from
                        /// @param to Address of the account tokens are moved to
                        /// @param value Amount of tokens transferred
                        event Transfer(address indexed from, address indexed to, uint256 value);
                        /// @dev Emitted when the allowance of a `spender` for an `owner` is set by
                        ///      a call to {approve}. `value` is the new allowance.
                        /// @param owner Address of the owner approving allowance
                        /// @param spender Address of the spender allowance is granted to
                        /// @param value Amount of tokens spender can transfer
                        event Approval(
                            address indexed owner,
                            address indexed spender,
                            uint256 value
                        );
                        /// @dev Yield resulting from {changeSupply} that a `source` account would
                        ///      receive is directed to `target` account.
                        /// @param source Address of the source forwarding the yield
                        /// @param target Address of the target receiving the yield
                        event YieldDelegated(address source, address target);
                        /// @dev Yield delegation from `source` account to the `target` account is
                        ///      suspended.
                        /// @param source Address of the source suspending yield forwarding
                        /// @param target Address of the target no longer receiving yield from `source`
                        ///        account
                        event YieldUndelegated(address source, address target);
                        enum RebaseOptions {
                            NotSet,
                            StdNonRebasing,
                            StdRebasing,
                            YieldDelegationSource,
                            YieldDelegationTarget
                        }
                        uint256[154] private _gap; // Slots to align with deployed contract
                        uint256 private constant MAX_SUPPLY = type(uint128).max;
                        /// @dev The amount of tokens in existence
                        uint256 public totalSupply;
                        mapping(address => mapping(address => uint256)) private allowances;
                        /// @dev The vault with privileges to execute {mint}, {burn}
                        ///     and {changeSupply}
                        address public vaultAddress;
                        mapping(address => uint256) internal creditBalances;
                        // the 2 storage variables below need trailing underscores to not name collide with public functions
                        uint256 private rebasingCredits_; // Sum of all rebasing credits (creditBalances for rebasing accounts)
                        uint256 private rebasingCreditsPerToken_;
                        /// @dev The amount of tokens that are not rebasing - receiving yield
                        uint256 public nonRebasingSupply;
                        mapping(address => uint256) internal alternativeCreditsPerToken;
                        /// @dev A map of all addresses and their respective RebaseOptions
                        mapping(address => RebaseOptions) public rebaseState;
                        mapping(address => uint256) private __deprecated_isUpgraded;
                        /// @dev A map of addresses that have yields forwarded to. This is an
                        ///      inverse mapping of {yieldFrom}
                        /// Key Account forwarding yield
                        /// Value Account receiving yield
                        mapping(address => address) public yieldTo;
                        /// @dev A map of addresses that are receiving the yield. This is an
                        ///      inverse mapping of {yieldTo}
                        /// Key Account receiving yield
                        /// Value Account forwarding yield
                        mapping(address => address) public yieldFrom;
                        uint256 private constant RESOLUTION_INCREASE = 1e9;
                        uint256[34] private __gap; // including below gap totals up to 200
                        /// @dev Initializes the contract and sets necessary variables.
                        /// @param _vaultAddress Address of the vault contract
                        /// @param _initialCreditsPerToken The starting rebasing credits per token.
                        function initialize(address _vaultAddress, uint256 _initialCreditsPerToken)
                            external
                            onlyGovernor
                        {
                            require(_vaultAddress != address(0), "Zero vault address");
                            require(vaultAddress == address(0), "Already initialized");
                            rebasingCreditsPerToken_ = _initialCreditsPerToken;
                            vaultAddress = _vaultAddress;
                        }
                        /// @dev Returns the symbol of the token, a shorter version
                        ///      of the name.
                        function symbol() external pure virtual returns (string memory) {
                            return "OUSD";
                        }
                        /// @dev Returns the name of the token.
                        function name() external pure virtual returns (string memory) {
                            return "Origin Dollar";
                        }
                        /// @dev Returns the number of decimals used to get its user representation.
                        function decimals() external pure virtual returns (uint8) {
                            return 18;
                        }
                        /**
                         * @dev Verifies that the caller is the Vault contract
                         */
                        modifier onlyVault() {
                            require(vaultAddress == msg.sender, "Caller is not the Vault");
                            _;
                        }
                        /**
                         * @return High resolution rebasingCreditsPerToken
                         */
                        function rebasingCreditsPerTokenHighres() external view returns (uint256) {
                            return rebasingCreditsPerToken_;
                        }
                        /**
                         * @return Low resolution rebasingCreditsPerToken
                         */
                        function rebasingCreditsPerToken() external view returns (uint256) {
                            return rebasingCreditsPerToken_ / RESOLUTION_INCREASE;
                        }
                        /**
                         * @return High resolution total number of rebasing credits
                         */
                        function rebasingCreditsHighres() external view returns (uint256) {
                            return rebasingCredits_;
                        }
                        /**
                         * @return Low resolution total number of rebasing credits
                         */
                        function rebasingCredits() external view returns (uint256) {
                            return rebasingCredits_ / RESOLUTION_INCREASE;
                        }
                        /**
                         * @notice Gets the balance of the specified address.
                         * @param _account Address to query the balance of.
                         * @return A uint256 representing the amount of base units owned by the
                         *         specified address.
                         */
                        function balanceOf(address _account) public view returns (uint256) {
                            RebaseOptions state = rebaseState[_account];
                            if (state == RebaseOptions.YieldDelegationSource) {
                                // Saves a slot read when transferring to or from a yield delegating source
                                // since we know creditBalances equals the balance.
                                return creditBalances[_account];
                            }
                            uint256 baseBalance = (creditBalances[_account] * 1e18) /
                                _creditsPerToken(_account);
                            if (state == RebaseOptions.YieldDelegationTarget) {
                                // creditBalances of yieldFrom accounts equals token balances
                                return baseBalance - creditBalances[yieldFrom[_account]];
                            }
                            return baseBalance;
                        }
                        /**
                         * @notice Gets the credits balance of the specified address.
                         * @dev Backwards compatible with old low res credits per token.
                         * @param _account The address to query the balance of.
                         * @return (uint256, uint256) Credit balance and credits per token of the
                         *         address
                         */
                        function creditsBalanceOf(address _account)
                            external
                            view
                            returns (uint256, uint256)
                        {
                            uint256 cpt = _creditsPerToken(_account);
                            if (cpt == 1e27) {
                                // For a period before the resolution upgrade, we created all new
                                // contract accounts at high resolution. Since they are not changing
                                // as a result of this upgrade, we will return their true values
                                return (creditBalances[_account], cpt);
                            } else {
                                return (
                                    creditBalances[_account] / RESOLUTION_INCREASE,
                                    cpt / RESOLUTION_INCREASE
                                );
                            }
                        }
                        /**
                         * @notice Gets the credits balance of the specified address.
                         * @param _account The address to query the balance of.
                         * @return (uint256, uint256, bool) Credit balance, credits per token of the
                         *         address, and isUpgraded
                         */
                        function creditsBalanceOfHighres(address _account)
                            external
                            view
                            returns (
                                uint256,
                                uint256,
                                bool
                            )
                        {
                            return (
                                creditBalances[_account],
                                _creditsPerToken(_account),
                                true // all accounts have their resolution "upgraded"
                            );
                        }
                        // Backwards compatible view
                        function nonRebasingCreditsPerToken(address _account)
                            external
                            view
                            returns (uint256)
                        {
                            return alternativeCreditsPerToken[_account];
                        }
                        /**
                         * @notice Transfer tokens to a specified address.
                         * @param _to the address to transfer to.
                         * @param _value the amount to be transferred.
                         * @return true on success.
                         */
                        function transfer(address _to, uint256 _value) external returns (bool) {
                            require(_to != address(0), "Transfer to zero address");
                            _executeTransfer(msg.sender, _to, _value);
                            emit Transfer(msg.sender, _to, _value);
                            return true;
                        }
                        /**
                         * @notice Transfer tokens from one address to another.
                         * @param _from The address you want to send tokens from.
                         * @param _to The address you want to transfer to.
                         * @param _value The amount of tokens to be transferred.
                         * @return true on success.
                         */
                        function transferFrom(
                            address _from,
                            address _to,
                            uint256 _value
                        ) external returns (bool) {
                            require(_to != address(0), "Transfer to zero address");
                            uint256 userAllowance = allowances[_from][msg.sender];
                            require(_value <= userAllowance, "Allowance exceeded");
                            unchecked {
                                allowances[_from][msg.sender] = userAllowance - _value;
                            }
                            _executeTransfer(_from, _to, _value);
                            emit Transfer(_from, _to, _value);
                            return true;
                        }
                        function _executeTransfer(
                            address _from,
                            address _to,
                            uint256 _value
                        ) internal {
                            (
                                int256 fromRebasingCreditsDiff,
                                int256 fromNonRebasingSupplyDiff
                            ) = _adjustAccount(_from, -_value.toInt256());
                            (
                                int256 toRebasingCreditsDiff,
                                int256 toNonRebasingSupplyDiff
                            ) = _adjustAccount(_to, _value.toInt256());
                            _adjustGlobals(
                                fromRebasingCreditsDiff + toRebasingCreditsDiff,
                                fromNonRebasingSupplyDiff + toNonRebasingSupplyDiff
                            );
                        }
                        function _adjustAccount(address _account, int256 _balanceChange)
                            internal
                            returns (int256 rebasingCreditsDiff, int256 nonRebasingSupplyDiff)
                        {
                            RebaseOptions state = rebaseState[_account];
                            int256 currentBalance = balanceOf(_account).toInt256();
                            if (currentBalance + _balanceChange < 0) {
                                revert("Transfer amount exceeds balance");
                            }
                            uint256 newBalance = (currentBalance + _balanceChange).toUint256();
                            if (state == RebaseOptions.YieldDelegationSource) {
                                address target = yieldTo[_account];
                                uint256 targetOldBalance = balanceOf(target);
                                uint256 targetNewCredits = _balanceToRebasingCredits(
                                    targetOldBalance + newBalance
                                );
                                rebasingCreditsDiff =
                                    targetNewCredits.toInt256() -
                                    creditBalances[target].toInt256();
                                creditBalances[_account] = newBalance;
                                creditBalances[target] = targetNewCredits;
                            } else if (state == RebaseOptions.YieldDelegationTarget) {
                                uint256 newCredits = _balanceToRebasingCredits(
                                    newBalance + creditBalances[yieldFrom[_account]]
                                );
                                rebasingCreditsDiff =
                                    newCredits.toInt256() -
                                    creditBalances[_account].toInt256();
                                creditBalances[_account] = newCredits;
                            } else {
                                _autoMigrate(_account);
                                uint256 alternativeCreditsPerTokenMem = alternativeCreditsPerToken[
                                    _account
                                ];
                                if (alternativeCreditsPerTokenMem > 0) {
                                    nonRebasingSupplyDiff = _balanceChange;
                                    if (alternativeCreditsPerTokenMem != 1e18) {
                                        alternativeCreditsPerToken[_account] = 1e18;
                                    }
                                    creditBalances[_account] = newBalance;
                                } else {
                                    uint256 newCredits = _balanceToRebasingCredits(newBalance);
                                    rebasingCreditsDiff =
                                        newCredits.toInt256() -
                                        creditBalances[_account].toInt256();
                                    creditBalances[_account] = newCredits;
                                }
                            }
                        }
                        function _adjustGlobals(
                            int256 _rebasingCreditsDiff,
                            int256 _nonRebasingSupplyDiff
                        ) internal {
                            if (_rebasingCreditsDiff != 0) {
                                rebasingCredits_ = (rebasingCredits_.toInt256() +
                                    _rebasingCreditsDiff).toUint256();
                            }
                            if (_nonRebasingSupplyDiff != 0) {
                                nonRebasingSupply = (nonRebasingSupply.toInt256() +
                                    _nonRebasingSupplyDiff).toUint256();
                            }
                        }
                        /**
                         * @notice Function to check the amount of tokens that _owner has allowed
                         *      to `_spender`.
                         * @param _owner The address which owns the funds.
                         * @param _spender The address which will spend the funds.
                         * @return The number of tokens still available for the _spender.
                         */
                        function allowance(address _owner, address _spender)
                            external
                            view
                            returns (uint256)
                        {
                            return allowances[_owner][_spender];
                        }
                        /**
                         * @notice Approve the passed address to spend the specified amount of
                         *      tokens on behalf of msg.sender.
                         * @param _spender The address which will spend the funds.
                         * @param _value The amount of tokens to be spent.
                         * @return true on success.
                         */
                        function approve(address _spender, uint256 _value) external returns (bool) {
                            allowances[msg.sender][_spender] = _value;
                            emit Approval(msg.sender, _spender, _value);
                            return true;
                        }
                        /**
                         * @notice Creates `_amount` tokens and assigns them to `_account`,
                         *     increasing the total supply.
                         */
                        function mint(address _account, uint256 _amount) external onlyVault {
                            require(_account != address(0), "Mint to the zero address");
                            // Account
                            (
                                int256 toRebasingCreditsDiff,
                                int256 toNonRebasingSupplyDiff
                            ) = _adjustAccount(_account, _amount.toInt256());
                            // Globals
                            _adjustGlobals(toRebasingCreditsDiff, toNonRebasingSupplyDiff);
                            totalSupply = totalSupply + _amount;
                            require(totalSupply < MAX_SUPPLY, "Max supply");
                            emit Transfer(address(0), _account, _amount);
                        }
                        /**
                         * @notice Destroys `_amount` tokens from `_account`,
                         *     reducing the total supply.
                         */
                        function burn(address _account, uint256 _amount) external onlyVault {
                            require(_account != address(0), "Burn from the zero address");
                            if (_amount == 0) {
                                return;
                            }
                            // Account
                            (
                                int256 toRebasingCreditsDiff,
                                int256 toNonRebasingSupplyDiff
                            ) = _adjustAccount(_account, -_amount.toInt256());
                            // Globals
                            _adjustGlobals(toRebasingCreditsDiff, toNonRebasingSupplyDiff);
                            totalSupply = totalSupply - _amount;
                            emit Transfer(_account, address(0), _amount);
                        }
                        /**
                         * @dev Get the credits per token for an account. Returns a fixed amount
                         *      if the account is non-rebasing.
                         * @param _account Address of the account.
                         */
                        function _creditsPerToken(address _account)
                            internal
                            view
                            returns (uint256)
                        {
                            uint256 alternativeCreditsPerTokenMem = alternativeCreditsPerToken[
                                _account
                            ];
                            if (alternativeCreditsPerTokenMem != 0) {
                                return alternativeCreditsPerTokenMem;
                            } else {
                                return rebasingCreditsPerToken_;
                            }
                        }
                        /**
                         * @dev Auto migrate contracts to be non rebasing,
                         *     unless they have opted into yield.
                         * @param _account Address of the account.
                         */
                        function _autoMigrate(address _account) internal {
                            bool isContract = _account.code.length > 0;
                            // In previous code versions, contracts would not have had their
                            // rebaseState[_account] set to RebaseOptions.NonRebasing when migrated
                            // therefore we check the actual accounting used on the account instead.
                            if (
                                isContract &&
                                rebaseState[_account] == RebaseOptions.NotSet &&
                                alternativeCreditsPerToken[_account] == 0
                            ) {
                                _rebaseOptOut(_account);
                            }
                        }
                        /**
                         * @dev Calculates credits from contract's global rebasingCreditsPerToken_, and
                         *      also balance that corresponds to those credits. The latter is important
                         *      when adjusting the contract's global nonRebasingSupply to circumvent any
                         *      possible rounding errors.
                         *
                         * @param _balance Balance of the account.
                         */
                        function _balanceToRebasingCredits(uint256 _balance)
                            internal
                            view
                            returns (uint256 rebasingCredits)
                        {
                            // Rounds up, because we need to ensure that accounts always have
                            // at least the balance that they should have.
                            // Note this should always be used on an absolute account value,
                            // not on a possibly negative diff, because then the rounding would be wrong.
                            return ((_balance) * rebasingCreditsPerToken_ + 1e18 - 1) / 1e18;
                        }
                        /**
                         * @notice The calling account will start receiving yield after a successful call.
                         * @param _account Address of the account.
                         */
                        function governanceRebaseOptIn(address _account) external onlyGovernor {
                            require(_account != address(0), "Zero address not allowed");
                            _rebaseOptIn(_account);
                        }
                        /**
                         * @notice The calling account will start receiving yield after a successful call.
                         */
                        function rebaseOptIn() external {
                            _rebaseOptIn(msg.sender);
                        }
                        function _rebaseOptIn(address _account) internal {
                            uint256 balance = balanceOf(_account);
                            // prettier-ignore
                            require(
                                alternativeCreditsPerToken[_account] > 0 ||
                                    // Accounts may explicitly `rebaseOptIn` regardless of
                                    // accounting if they have a 0 balance.
                                    creditBalances[_account] == 0
                                ,
                                "Account must be non-rebasing"
                            );
                            RebaseOptions state = rebaseState[_account];
                            // prettier-ignore
                            require(
                                state == RebaseOptions.StdNonRebasing ||
                                    state == RebaseOptions.NotSet,
                                "Only standard non-rebasing accounts can opt in"
                            );
                            uint256 newCredits = _balanceToRebasingCredits(balance);
                            // Account
                            rebaseState[_account] = RebaseOptions.StdRebasing;
                            alternativeCreditsPerToken[_account] = 0;
                            creditBalances[_account] = newCredits;
                            // Globals
                            _adjustGlobals(newCredits.toInt256(), -balance.toInt256());
                            emit AccountRebasingEnabled(_account);
                        }
                        /**
                         * @notice The calling account will no longer receive yield
                         */
                        function rebaseOptOut() external {
                            _rebaseOptOut(msg.sender);
                        }
                        function _rebaseOptOut(address _account) internal {
                            require(
                                alternativeCreditsPerToken[_account] == 0,
                                "Account must be rebasing"
                            );
                            RebaseOptions state = rebaseState[_account];
                            require(
                                state == RebaseOptions.StdRebasing || state == RebaseOptions.NotSet,
                                "Only standard rebasing accounts can opt out"
                            );
                            uint256 oldCredits = creditBalances[_account];
                            uint256 balance = balanceOf(_account);
                            // Account
                            rebaseState[_account] = RebaseOptions.StdNonRebasing;
                            alternativeCreditsPerToken[_account] = 1e18;
                            creditBalances[_account] = balance;
                            // Globals
                            _adjustGlobals(-oldCredits.toInt256(), balance.toInt256());
                            emit AccountRebasingDisabled(_account);
                        }
                        /**
                         * @notice Distribute yield to users. This changes the exchange rate
                         *  between "credits" and OUSD tokens to change rebasing user's balances.
                         * @param _newTotalSupply New total supply of OUSD.
                         */
                        function changeSupply(uint256 _newTotalSupply) external onlyVault {
                            require(totalSupply > 0, "Cannot increase 0 supply");
                            if (totalSupply == _newTotalSupply) {
                                emit TotalSupplyUpdatedHighres(
                                    totalSupply,
                                    rebasingCredits_,
                                    rebasingCreditsPerToken_
                                );
                                return;
                            }
                            totalSupply = _newTotalSupply > MAX_SUPPLY
                                ? MAX_SUPPLY
                                : _newTotalSupply;
                            uint256 rebasingSupply = totalSupply - nonRebasingSupply;
                            // round up in the favour of the protocol
                            rebasingCreditsPerToken_ =
                                (rebasingCredits_ * 1e18 + rebasingSupply - 1) /
                                rebasingSupply;
                            require(rebasingCreditsPerToken_ > 0, "Invalid change in supply");
                            emit TotalSupplyUpdatedHighres(
                                totalSupply,
                                rebasingCredits_,
                                rebasingCreditsPerToken_
                            );
                        }
                        /*
                         * @notice Send the yield from one account to another account.
                         *         Each account keeps its own balances.
                         */
                        function delegateYield(address _from, address _to) external onlyGovernor {
                            require(_from != address(0), "Zero from address not allowed");
                            require(_to != address(0), "Zero to address not allowed");
                            require(_from != _to, "Cannot delegate to self");
                            require(
                                yieldFrom[_to] == address(0) &&
                                    yieldTo[_to] == address(0) &&
                                    yieldFrom[_from] == address(0) &&
                                    yieldTo[_from] == address(0),
                                "Blocked by existing yield delegation"
                            );
                            RebaseOptions stateFrom = rebaseState[_from];
                            RebaseOptions stateTo = rebaseState[_to];
                            require(
                                stateFrom == RebaseOptions.NotSet ||
                                    stateFrom == RebaseOptions.StdNonRebasing ||
                                    stateFrom == RebaseOptions.StdRebasing,
                                "Invalid rebaseState from"
                            );
                            require(
                                stateTo == RebaseOptions.NotSet ||
                                    stateTo == RebaseOptions.StdNonRebasing ||
                                    stateTo == RebaseOptions.StdRebasing,
                                "Invalid rebaseState to"
                            );
                            if (alternativeCreditsPerToken[_from] == 0) {
                                _rebaseOptOut(_from);
                            }
                            if (alternativeCreditsPerToken[_to] > 0) {
                                _rebaseOptIn(_to);
                            }
                            uint256 fromBalance = balanceOf(_from);
                            uint256 toBalance = balanceOf(_to);
                            uint256 oldToCredits = creditBalances[_to];
                            uint256 newToCredits = _balanceToRebasingCredits(
                                fromBalance + toBalance
                            );
                            // Set up the bidirectional links
                            yieldTo[_from] = _to;
                            yieldFrom[_to] = _from;
                            // Local
                            rebaseState[_from] = RebaseOptions.YieldDelegationSource;
                            alternativeCreditsPerToken[_from] = 1e18;
                            creditBalances[_from] = fromBalance;
                            rebaseState[_to] = RebaseOptions.YieldDelegationTarget;
                            creditBalances[_to] = newToCredits;
                            // Global
                            int256 creditsChange = newToCredits.toInt256() -
                                oldToCredits.toInt256();
                            _adjustGlobals(creditsChange, -(fromBalance).toInt256());
                            emit YieldDelegated(_from, _to);
                        }
                        /*
                         * @notice Stop sending the yield from one account to another account.
                         */
                        function undelegateYield(address _from) external onlyGovernor {
                            // Require a delegation, which will also ensure a valid delegation
                            require(yieldTo[_from] != address(0), "Zero address not allowed");
                            address to = yieldTo[_from];
                            uint256 fromBalance = balanceOf(_from);
                            uint256 toBalance = balanceOf(to);
                            uint256 oldToCredits = creditBalances[to];
                            uint256 newToCredits = _balanceToRebasingCredits(toBalance);
                            // Remove the bidirectional links
                            yieldFrom[to] = address(0);
                            yieldTo[_from] = address(0);
                            // Local
                            rebaseState[_from] = RebaseOptions.StdNonRebasing;
                            // alternativeCreditsPerToken[from] already 1e18 from `delegateYield()`
                            creditBalances[_from] = fromBalance;
                            rebaseState[to] = RebaseOptions.StdRebasing;
                            // alternativeCreditsPerToken[to] already 0 from `delegateYield()`
                            creditBalances[to] = newToCredits;
                            // Global
                            int256 creditsChange = newToCredits.toInt256() -
                                oldToCredits.toInt256();
                            _adjustGlobals(creditsChange, fromBalance.toInt256());
                            emit YieldUndelegated(_from, to);
                        }
                    }
                    

                    File 8 of 8: Vyper_contract
                    # @version 0.3.7
                    """
                    @title StableSwap
                    @author Curve.Fi
                    @license Copyright (c) Curve.Fi, 2020-2021 - all rights reserved
                    @notice 2 coin pool implementation with no lending
                    @dev ERC20 support for return True/revert, return True/False, return None
                         Uses native Ether as coins[0]
                    """
                    
                    from vyper.interfaces import ERC20
                    
                    interface Factory:
                        def convert_fees() -> bool: nonpayable
                        def get_fee_receiver(_pool: address) -> address: view
                        def admin() -> address: view
                    
                    interface ERC1271:
                        def isValidSignature(_hash: bytes32, _signature: Bytes[65]) -> bytes32: view
                    
                    
                    event Transfer:
                        sender: indexed(address)
                        receiver: indexed(address)
                        value: uint256
                    
                    event Approval:
                        owner: indexed(address)
                        spender: indexed(address)
                        value: uint256
                    
                    event TokenExchange:
                        buyer: indexed(address)
                        sold_id: int128
                        tokens_sold: uint256
                        bought_id: int128
                        tokens_bought: uint256
                    
                    event AddLiquidity:
                        provider: indexed(address)
                        token_amounts: uint256[N_COINS]
                        fees: uint256[N_COINS]
                        invariant: uint256
                        token_supply: uint256
                    
                    event RemoveLiquidity:
                        provider: indexed(address)
                        token_amounts: uint256[N_COINS]
                        fees: uint256[N_COINS]
                        token_supply: uint256
                    
                    event RemoveLiquidityOne:
                        provider: indexed(address)
                        token_amount: uint256
                        coin_amount: uint256
                        token_supply: uint256
                    
                    event RemoveLiquidityImbalance:
                        provider: indexed(address)
                        token_amounts: uint256[N_COINS]
                        fees: uint256[N_COINS]
                        invariant: uint256
                        token_supply: uint256
                    
                    event RampA:
                        old_A: uint256
                        new_A: uint256
                        initial_time: uint256
                        future_time: uint256
                    
                    event StopRampA:
                        A: uint256
                        t: uint256
                    
                    event CommitNewFee:
                        new_fee: uint256
                    
                    event ApplyNewFee:
                        fee: uint256
                    
                    
                    N_COINS_128: constant(int128) = 2
                    N_COINS: constant(uint256) = 2
                    PRECISION: constant(uint256) = 10 ** 18
                    ADMIN_ACTIONS_DEADLINE_DT: constant(uint256) = 86400 * 3
                    
                    FEE_DENOMINATOR: constant(uint256) = 10 ** 10
                    ADMIN_FEE: constant(uint256) = 5000000000
                    
                    A_PRECISION: constant(uint256) = 100
                    MAX_FEE: constant(uint256) = 5 * 10 ** 9
                    MAX_A: constant(uint256) = 10 ** 6
                    MAX_A_CHANGE: constant(uint256) = 10
                    MIN_RAMP_TIME: constant(uint256) = 86400
                    
                    EIP712_TYPEHASH: constant(bytes32) = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
                    PERMIT_TYPEHASH: constant(bytes32) = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")
                    
                    # keccak256("isValidSignature(bytes32,bytes)")[:4] << 224
                    ERC1271_MAGIC_VAL: constant(bytes32) = 0x1626ba7e00000000000000000000000000000000000000000000000000000000
                    VERSION: constant(String[8]) = "v6.0.0"
                    
                    
                    factory: address
                    
                    coins: public(address[N_COINS])
                    balances: public(uint256[N_COINS])
                    fee: public(uint256)  # fee * 1e10
                    future_fee: public(uint256)
                    admin_action_deadline: public(uint256)
                    
                    initial_A: public(uint256)
                    future_A: public(uint256)
                    initial_A_time: public(uint256)
                    future_A_time: public(uint256)
                    
                    rate_multipliers: uint256[N_COINS]
                    
                    name: public(String[64])
                    symbol: public(String[32])
                    
                    balanceOf: public(HashMap[address, uint256])
                    allowance: public(HashMap[address, HashMap[address, uint256]])
                    totalSupply: public(uint256)
                    
                    DOMAIN_SEPARATOR: public(bytes32)
                    nonces: public(HashMap[address, uint256])
                    
                    last_prices_packed: uint256  #  [last_price, ma_price]
                    ma_exp_time: public(uint256)
                    ma_last_time: public(uint256)
                    
                    
                    @external
                    def __init__():
                        # we do this to prevent the implementation contract from being used as a pool
                        self.factory = 0x0000000000000000000000000000000000000001
                        assert N_COINS == 2
                    
                    
                    @external
                    def initialize(
                        _name: String[32],
                        _symbol: String[10],
                        _coins: address[4],
                        _rate_multipliers: uint256[4],
                        _A: uint256,
                        _fee: uint256,
                    ):
                        """
                        @notice Contract constructor
                        @param _name Name of the new pool
                        @param _symbol Token symbol
                        @param _coins List of all ERC20 conract addresses of coins
                        @param _rate_multipliers List of number of decimals in coins
                        @param _A Amplification coefficient multiplied by n ** (n - 1)
                        @param _fee Fee to charge for exchanges
                        """
                        # check if factory was already set to prevent initializing contract twice
                        assert self.factory == empty(address)
                    
                        # additional sanity checks for ETH configuration
                        assert _coins[0] == 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE
                        assert _rate_multipliers[0] == 10**18
                    
                        for i in range(N_COINS):
                            coin: address = _coins[i]
                            if coin == empty(address):
                                break
                            self.coins[i] = coin
                            self.rate_multipliers[i] = _rate_multipliers[i]
                    
                        A: uint256 = _A * A_PRECISION
                        self.initial_A = A
                        self.future_A = A
                        self.fee = _fee
                        self.factory = msg.sender
                    
                        self.ma_exp_time = 866  # = 600 / ln(2)
                        self.last_prices_packed = self.pack_prices(10**18, 10**18)
                        self.ma_last_time = block.timestamp
                    
                        name: String[64] = concat("Curve.fi Factory Pool: ", _name)
                        self.name = name
                        self.symbol = concat(_symbol, "-f")
                    
                        self.DOMAIN_SEPARATOR = keccak256(
                            _abi_encode(EIP712_TYPEHASH, keccak256(name), keccak256(VERSION), chain.id, self)
                        )
                    
                        # fire a transfer event so block explorers identify the contract as an ERC20
                        log Transfer(empty(address), self, 0)
                    
                    
                    ### ERC20 Functionality ###
                    
                    @view
                    @external
                    def decimals() -> uint256:
                        """
                        @notice Get the number of decimals for this token
                        @dev Implemented as a view method to reduce gas costs
                        @return uint256 decimal places
                        """
                        return 18
                    
                    
                    @internal
                    def _transfer(_from: address, _to: address, _value: uint256):
                        # # NOTE: vyper does not allow underflows
                        # #       so the following subtraction would revert on insufficient balance
                        self.balanceOf[_from] -= _value
                        self.balanceOf[_to] += _value
                    
                        log Transfer(_from, _to, _value)
                    
                    
                    @external
                    def transfer(_to : address, _value : uint256) -> bool:
                        """
                        @dev Transfer token for a specified address
                        @param _to The address to transfer to.
                        @param _value The amount to be transferred.
                        """
                        self._transfer(msg.sender, _to, _value)
                        return True
                    
                    
                    @external
                    def transferFrom(_from : address, _to : address, _value : uint256) -> bool:
                        """
                         @dev Transfer tokens from one address to another.
                         @param _from address The address which you want to send tokens from
                         @param _to address The address which you want to transfer to
                         @param _value uint256 the amount of tokens to be transferred
                        """
                        self._transfer(_from, _to, _value)
                    
                        _allowance: uint256 = self.allowance[_from][msg.sender]
                        if _allowance != max_value(uint256):
                            self.allowance[_from][msg.sender] = _allowance - _value
                    
                        return True
                    
                    
                    @external
                    def approve(_spender : address, _value : uint256) -> bool:
                        """
                        @notice Approve the passed address to transfer the specified amount of
                                tokens on behalf of msg.sender
                        @dev Beware that changing an allowance via this method brings the risk that
                             someone may use both the old and new allowance by unfortunate transaction
                             ordering: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                        @param _spender The address which will transfer the funds
                        @param _value The amount of tokens that may be transferred
                        @return bool success
                        """
                        self.allowance[msg.sender][_spender] = _value
                    
                        log Approval(msg.sender, _spender, _value)
                        return True
                    
                    
                    @external
                    def permit(
                        _owner: address,
                        _spender: address,
                        _value: uint256,
                        _deadline: uint256,
                        _v: uint8,
                        _r: bytes32,
                        _s: bytes32
                    ) -> bool:
                        """
                        @notice Approves spender by owner's signature to expend owner's tokens.
                            See https://eips.ethereum.org/EIPS/eip-2612.
                        @dev Inspired by https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy#L753-L793
                        @dev Supports smart contract wallets which implement ERC1271
                            https://eips.ethereum.org/EIPS/eip-1271
                        @param _owner The address which is a source of funds and has signed the Permit.
                        @param _spender The address which is allowed to spend the funds.
                        @param _value The amount of tokens to be spent.
                        @param _deadline The timestamp after which the Permit is no longer valid.
                        @param _v The bytes[64] of the valid secp256k1 signature of permit by owner
                        @param _r The bytes[0:32] of the valid secp256k1 signature of permit by owner
                        @param _s The bytes[32:64] of the valid secp256k1 signature of permit by owner
                        @return True, if transaction completes successfully
                        """
                        assert _owner != empty(address)
                        assert block.timestamp <= _deadline
                    
                        nonce: uint256 = self.nonces[_owner]
                        digest: bytes32 = keccak256(
                            concat(
                                b"\x19\x01",
                                self.DOMAIN_SEPARATOR,
                                keccak256(_abi_encode(PERMIT_TYPEHASH, _owner, _spender, _value, nonce, _deadline))
                            )
                        )
                    
                        if _owner.is_contract:
                            sig: Bytes[65] = concat(_abi_encode(_r, _s), slice(convert(_v, bytes32), 31, 1))
                            # reentrancy not a concern since this is a staticcall
                            assert ERC1271(_owner).isValidSignature(digest, sig) == ERC1271_MAGIC_VAL
                        else:
                            assert ecrecover(digest, convert(_v, uint256), convert(_r, uint256), convert(_s, uint256)) == _owner
                    
                        self.allowance[_owner][_spender] = _value
                        self.nonces[_owner] = nonce + 1
                    
                        log Approval(_owner, _spender, _value)
                        return True
                    
                    
                    ### StableSwap Functionality ###
                    
                    
                    @pure
                    @internal
                    def pack_prices(p1: uint256, p2: uint256) -> uint256:
                        assert p1 < 2**128
                        assert p2 < 2**128
                        return p1 | shift(p2, 128)
                    
                    
                    @view
                    @external
                    def last_price() -> uint256:
                        return self.last_prices_packed & (2**128 - 1)
                    
                    
                    @view
                    @external
                    def ema_price() -> uint256:
                        return shift(self.last_prices_packed, -128)
                    
                    
                    @view
                    @external
                    def get_balances() -> uint256[N_COINS]:
                        return self.balances
                    
                    
                    @view
                    @internal
                    def _A() -> uint256:
                        """
                        Handle ramping A up or down
                        """
                        t1: uint256 = self.future_A_time
                        A1: uint256 = self.future_A
                    
                        if block.timestamp < t1:
                            A0: uint256 = self.initial_A
                            t0: uint256 = self.initial_A_time
                            # Expressions in uint256 cannot have negative numbers, thus "if"
                            if A1 > A0:
                                return A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0)
                            else:
                                return A0 - (A0 - A1) * (block.timestamp - t0) / (t1 - t0)
                    
                        else:  # when t1 == 0 or block.timestamp >= t1
                            return A1
                    
                    
                    @view
                    @external
                    def admin_fee() -> uint256:
                        return ADMIN_FEE
                    
                    
                    @view
                    @external
                    def A() -> uint256:
                        return self._A() / A_PRECISION
                    
                    
                    @view
                    @external
                    def A_precise() -> uint256:
                        return self._A()
                    
                    
                    @pure
                    @internal
                    def _xp_mem(_rates: uint256[N_COINS], _balances: uint256[N_COINS]) -> uint256[N_COINS]:
                        result: uint256[N_COINS] = empty(uint256[N_COINS])
                        for i in range(N_COINS):
                            result[i] = _rates[i] * _balances[i] / PRECISION
                        return result
                    
                    
                    @pure
                    @internal
                    def get_D(_xp: uint256[N_COINS], _amp: uint256) -> uint256:
                        """
                        D invariant calculation in non-overflowing integer operations
                        iteratively
                    
                        A * sum(x_i) * n**n + D = A * D * n**n + D**(n+1) / (n**n * prod(x_i))
                    
                        Converging solution:
                        D[j+1] = (A * n**n * sum(x_i) - D[j]**(n+1) / (n**n prod(x_i))) / (A * n**n - 1)
                        """
                        S: uint256 = 0
                        for x in _xp:
                            S += x
                        if S == 0:
                            return 0
                    
                        D: uint256 = S
                        Ann: uint256 = _amp * N_COINS
                        for i in range(255):
                            D_P: uint256 = D * D / _xp[0] * D / _xp[1] / (N_COINS)**2
                            Dprev: uint256 = D
                            D = (Ann * S / A_PRECISION + D_P * N_COINS) * D / ((Ann - A_PRECISION) * D / A_PRECISION + (N_COINS + 1) * D_P)
                            # Equality with the precision of 1
                            if D > Dprev:
                                if D - Dprev <= 1:
                                    return D
                            else:
                                if Dprev - D <= 1:
                                    return D
                        # convergence typically occurs in 4 rounds or less, this should be unreachable!
                        # if it does happen the pool is borked and LPs can withdraw via `remove_liquidity`
                        raise
                    
                    
                    @view
                    @internal
                    def get_D_mem(_rates: uint256[N_COINS], _balances: uint256[N_COINS], _amp: uint256) -> uint256:
                        xp: uint256[N_COINS] = self._xp_mem(_rates, _balances)
                        return self.get_D(xp, _amp)
                    
                    
                    @internal
                    @view
                    def _get_p(xp: uint256[N_COINS], amp: uint256, D: uint256) -> uint256:
                        # dx_0 / dx_1 only, however can have any number of coins in pool
                        ANN: uint256 = amp * N_COINS
                        Dr: uint256 = D / (N_COINS**N_COINS)
                        for i in range(N_COINS):
                            Dr = Dr * D / xp[i]
                        return 10**18 * (ANN * xp[0] / A_PRECISION + Dr * xp[0] / xp[1]) / (ANN * xp[0] / A_PRECISION + Dr)
                    
                    
                    @external
                    @view
                    def get_p() -> uint256:
                        amp: uint256 = self._A()
                        xp: uint256[N_COINS] = self._xp_mem(self.rate_multipliers, self.balances)
                        D: uint256 = self.get_D(xp, amp)
                        return self._get_p(xp, amp, D)
                    
                    
                    @internal
                    @view
                    def exp(power: int256) -> uint256:
                        if power <= -42139678854452767551:
                            return 0
                    
                        if power >= 135305999368893231589:
                            raise "exp overflow"
                    
                        x: int256 = unsafe_div(unsafe_mul(power, 2**96), 10**18)
                    
                        k: int256 = unsafe_div(
                            unsafe_add(
                                unsafe_div(unsafe_mul(x, 2**96), 54916777467707473351141471128),
                                2**95),
                            2**96)
                        x = unsafe_sub(x, unsafe_mul(k, 54916777467707473351141471128))
                    
                        y: int256 = unsafe_add(x, 1346386616545796478920950773328)
                        y = unsafe_add(unsafe_div(unsafe_mul(y, x), 2**96), 57155421227552351082224309758442)
                        p: int256 = unsafe_sub(unsafe_add(y, x), 94201549194550492254356042504812)
                        p = unsafe_add(unsafe_div(unsafe_mul(p, y), 2**96), 28719021644029726153956944680412240)
                        p = unsafe_add(unsafe_mul(p, x), (4385272521454847904659076985693276 * 2**96))
                    
                        q: int256 = x - 2855989394907223263936484059900
                        q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 50020603652535783019961831881945)
                        q = unsafe_sub(unsafe_div(unsafe_mul(q, x), 2**96), 533845033583426703283633433725380)
                        q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 3604857256930695427073651918091429)
                        q = unsafe_sub(unsafe_div(unsafe_mul(q, x), 2**96), 14423608567350463180887372962807573)
                        q = unsafe_add(unsafe_div(unsafe_mul(q, x), 2**96), 26449188498355588339934803723976023)
                    
                        return shift(
                            unsafe_mul(convert(unsafe_div(p, q), uint256), 3822833074963236453042738258902158003155416615667),
                            unsafe_sub(k, 195))
                    
                    
                    @internal
                    @view
                    def _ma_price() -> uint256:
                        ma_last_time: uint256 = self.ma_last_time
                    
                        pp: uint256 = self.last_prices_packed
                        last_price: uint256 = pp & (2**128 - 1)
                        last_ema_price: uint256 = shift(pp, -128)
                    
                        if ma_last_time < block.timestamp:
                            alpha: uint256 = self.exp(- convert((block.timestamp - ma_last_time) * 10**18 / self.ma_exp_time, int256))
                            return (last_price * (10**18 - alpha) + last_ema_price * alpha) / 10**18
                    
                        else:
                            return last_ema_price
                    
                    
                    @external
                    @view
                    @nonreentrant('lock')
                    def price_oracle() -> uint256:
                        return self._ma_price()
                    
                    
                    @internal
                    def save_p_from_price(last_price: uint256):
                        """
                        Saves current price and its EMA
                        """
                        if last_price != 0:
                            self.last_prices_packed = self.pack_prices(last_price, self._ma_price())
                            if self.ma_last_time < block.timestamp:
                                self.ma_last_time = block.timestamp
                    
                    
                    @internal
                    def save_p(xp: uint256[N_COINS], amp: uint256, D: uint256):
                        """
                        Saves current price and its EMA
                        """
                        self.save_p_from_price(self._get_p(xp, amp, D))
                    
                    
                    @view
                    @external
                    @nonreentrant('lock')
                    def get_virtual_price() -> uint256:
                        """
                        @notice The current virtual price of the pool LP token
                        @dev Useful for calculating profits
                        @return LP token virtual price normalized to 1e18
                        """
                        amp: uint256 = self._A()
                        xp: uint256[N_COINS] = self._xp_mem(self.rate_multipliers, self.balances)
                        D: uint256 = self.get_D(xp, amp)
                        # D is in the units similar to DAI (e.g. converted to precision 1e18)
                        # When balanced, D = n * x_u - total virtual value of the portfolio
                        return D * PRECISION / self.totalSupply
                    
                    
                    @view
                    @external
                    def calc_token_amount(_amounts: uint256[N_COINS], _is_deposit: bool) -> uint256:
                        """
                        @notice Calculate addition or reduction in token supply from a deposit or withdrawal
                        @dev This calculation accounts for slippage, but not fees.
                             Needed to prevent front-running, not for precise calculations!
                        @param _amounts Amount of each coin being deposited
                        @param _is_deposit set True for deposits, False for withdrawals
                        @return Expected amount of LP tokens received
                        """
                        amp: uint256 = self._A()
                        balances: uint256[N_COINS] = self.balances
                    
                        D0: uint256 = self.get_D_mem(self.rate_multipliers, balances, amp)
                        for i in range(N_COINS):
                            amount: uint256 = _amounts[i]
                            if _is_deposit:
                                balances[i] += amount
                            else:
                                balances[i] -= amount
                        D1: uint256 = self.get_D_mem(self.rate_multipliers, balances, amp)
                        diff: uint256 = 0
                        if _is_deposit:
                            diff = D1 - D0
                        else:
                            diff = D0 - D1
                        return diff * self.totalSupply / D0
                    
                    
                    @payable
                    @external
                    @nonreentrant('lock')
                    def add_liquidity(
                        _amounts: uint256[N_COINS],
                        _min_mint_amount: uint256,
                        _receiver: address = msg.sender
                    ) -> uint256:
                        """
                        @notice Deposit coins into the pool
                        @param _amounts List of amounts of coins to deposit
                        @param _min_mint_amount Minimum amount of LP tokens to mint from the deposit
                        @param _receiver Address that owns the minted LP tokens
                        @return Amount of LP tokens received by depositing
                        """
                        amp: uint256 = self._A()
                        old_balances: uint256[N_COINS] = self.balances
                        rates: uint256[N_COINS] = self.rate_multipliers
                    
                        # Initial invariant
                        D0: uint256 = self.get_D_mem(rates, old_balances, amp)
                    
                        total_supply: uint256 = self.totalSupply
                        new_balances: uint256[N_COINS] = old_balances
                        for i in range(N_COINS):
                            amount: uint256 = _amounts[i]
                            if total_supply == 0:
                                assert amount > 0  # dev: initial deposit requires all coins
                            new_balances[i] += amount
                    
                        # Invariant after change
                        D1: uint256 = self.get_D_mem(rates, new_balances, amp)
                        assert D1 > D0
                    
                        # We need to recalculate the invariant accounting for fees
                        # to calculate fair user's share
                        fees: uint256[N_COINS] = empty(uint256[N_COINS])
                        mint_amount: uint256 = 0
                        if total_supply > 0:
                            # Only account for fees if we are not the first to deposit
                            base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
                            for i in range(N_COINS):
                                ideal_balance: uint256 = D1 * old_balances[i] / D0
                                difference: uint256 = 0
                                new_balance: uint256 = new_balances[i]
                                if ideal_balance > new_balance:
                                    difference = ideal_balance - new_balance
                                else:
                                    difference = new_balance - ideal_balance
                                fees[i] = base_fee * difference / FEE_DENOMINATOR
                                self.balances[i] = new_balance - (fees[i] * ADMIN_FEE / FEE_DENOMINATOR)
                                new_balances[i] -= fees[i]
                            xp: uint256[N_COINS] = self._xp_mem(rates, new_balances)
                            D2: uint256 = self.get_D(xp, amp)
                            mint_amount = total_supply * (D2 - D0) / D0
                            self.save_p(xp, amp, D2)
                        else:
                            self.balances = new_balances
                            mint_amount = D1  # Take the dust if there was any
                    
                        assert mint_amount >= _min_mint_amount, "Slippage screwed you"
                    
                        # Take coins from the sender
                        assert msg.value == _amounts[0]
                        if _amounts[1] > 0:
                            assert ERC20(self.coins[1]).transferFrom(msg.sender, self, _amounts[1], default_return_value=True)  # dev: failed transfer
                    
                        # Mint pool tokens
                        total_supply += mint_amount
                        self.balanceOf[_receiver] += mint_amount
                        self.totalSupply = total_supply
                        log Transfer(empty(address), _receiver, mint_amount)
                    
                        log AddLiquidity(msg.sender, _amounts, fees, D1, total_supply)
                    
                        return mint_amount
                    
                    
                    @view
                    @internal
                    def get_y(i: int128, j: int128, x: uint256, xp: uint256[N_COINS], _amp: uint256, _D: uint256) -> uint256:
                        """
                        Calculate x[j] if one makes x[i] = x
                    
                        Done by solving quadratic equation iteratively.
                        x_1**2 + x_1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
                        x_1**2 + b*x_1 = c
                    
                        x_1 = (x_1**2 + c) / (2*x_1 + b)
                        """
                        # x in the input is converted to the same price/precision
                    
                        assert i != j       # dev: same coin
                        assert j >= 0       # dev: j below zero
                        assert j < N_COINS_128  # dev: j above N_COINS
                    
                        # should be unreachable, but good for safety
                        assert i >= 0
                        assert i < N_COINS_128
                    
                        amp: uint256 = _amp
                        D: uint256 = _D
                        if _D == 0:
                            amp = self._A()
                            D = self.get_D(xp, amp)
                        S_: uint256 = 0
                        _x: uint256 = 0
                        y_prev: uint256 = 0
                        c: uint256 = D
                        Ann: uint256 = amp * N_COINS
                    
                        for _i in range(N_COINS_128):
                            if _i == i:
                                _x = x
                            elif _i != j:
                                _x = xp[_i]
                            else:
                                continue
                            S_ += _x
                            c = c * D / (_x * N_COINS)
                    
                        c = c * D * A_PRECISION / (Ann * N_COINS)
                        b: uint256 = S_ + D * A_PRECISION / Ann  # - D
                        y: uint256 = D
                    
                        for _i in range(255):
                            y_prev = y
                            y = (y*y + c) / (2 * y + b - D)
                            # Equality with the precision of 1
                            if y > y_prev:
                                if y - y_prev <= 1:
                                    return y
                            else:
                                if y_prev - y <= 1:
                                    return y
                        raise
                    
                    
                    @view
                    @external
                    def get_dy(i: int128, j: int128, dx: uint256) -> uint256:
                        """
                        @notice Calculate the current output dy given input dx
                        @dev Index values can be found via the `coins` public getter method
                        @param i Index value for the coin to send
                        @param j Index valie of the coin to recieve
                        @param dx Amount of `i` being exchanged
                        @return Amount of `j` predicted
                        """
                        rates: uint256[N_COINS] = self.rate_multipliers
                        xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)
                    
                        x: uint256 = xp[i] + (dx * rates[i] / PRECISION)
                        y: uint256 = self.get_y(i, j, x, xp, 0, 0)
                        dy: uint256 = xp[j] - y - 1
                        fee: uint256 = self.fee * dy / FEE_DENOMINATOR
                        return (dy - fee) * PRECISION / rates[j]
                    
                    
                    @payable
                    @external
                    @nonreentrant('lock')
                    def exchange(
                        i: int128,
                        j: int128,
                        _dx: uint256,
                        _min_dy: uint256,
                        _receiver: address = msg.sender,
                    ) -> uint256:
                        """
                        @notice Perform an exchange between two coins
                        @dev Index values can be found via the `coins` public getter method
                        @param i Index value for the coin to send
                        @param j Index valie of the coin to recieve
                        @param _dx Amount of `i` being exchanged
                        @param _min_dy Minimum amount of `j` to receive
                        @return Actual amount of `j` received
                        """
                        rates: uint256[N_COINS] = self.rate_multipliers
                        old_balances: uint256[N_COINS] = self.balances
                        xp: uint256[N_COINS] = self._xp_mem(rates, old_balances)
                    
                        x: uint256 = xp[i] + _dx * rates[i] / PRECISION
                    
                        amp: uint256 = self._A()
                        D: uint256 = self.get_D(xp, amp)
                        y: uint256 = self.get_y(i, j, x, xp, amp, D)
                    
                        dy: uint256 = xp[j] - y - 1  # -1 just in case there were some rounding errors
                        dy_fee: uint256 = dy * self.fee / FEE_DENOMINATOR
                    
                        # Convert all to real units
                        dy = (dy - dy_fee) * PRECISION / rates[j]
                        assert dy >= _min_dy, "Exchange resulted in fewer coins than expected"
                    
                        # xp is not used anymore, so we reuse it for price calc
                        xp[i] = x
                        xp[j] = y
                        # D is not changed because we did not apply a fee
                        self.save_p(xp, amp, D)
                    
                        dy_admin_fee: uint256 = dy_fee * ADMIN_FEE / FEE_DENOMINATOR
                        dy_admin_fee = dy_admin_fee * PRECISION / rates[j]
                    
                        # Change balances exactly in same way as we change actual ERC20 coin amounts
                        self.balances[i] = old_balances[i] + _dx
                        # When rounding errors happen, we undercharge admin fee in favor of LP
                        self.balances[j] = old_balances[j] - dy - dy_admin_fee
                    
                        coin: address = self.coins[1]
                        if i == 0:
                            assert msg.value == _dx
                            assert ERC20(coin).transfer(_receiver, dy, default_return_value=True)
                        else:
                            assert msg.value == 0
                            assert ERC20(coin).transferFrom(msg.sender, self, _dx, default_return_value=True)
                            raw_call(_receiver, b"", value=dy)
                    
                        log TokenExchange(msg.sender, i, _dx, j, dy)
                    
                        return dy
                    
                    
                    @external
                    @nonreentrant('lock')
                    def remove_liquidity(
                        _burn_amount: uint256,
                        _min_amounts: uint256[N_COINS],
                        _receiver: address = msg.sender
                    ) -> uint256[N_COINS]:
                        """
                        @notice Withdraw coins from the pool
                        @dev Withdrawal amounts are based on current deposit ratios
                        @param _burn_amount Quantity of LP tokens to burn in the withdrawal
                        @param _min_amounts Minimum amounts of underlying coins to receive
                        @param _receiver Address that receives the withdrawn coins
                        @return List of amounts of coins that were withdrawn
                        """
                        total_supply: uint256 = self.totalSupply
                        amounts: uint256[N_COINS] = empty(uint256[N_COINS])
                    
                        for i in range(N_COINS):
                            old_balance: uint256 = self.balances[i]
                            value: uint256 = old_balance * _burn_amount / total_supply
                            assert value >= _min_amounts[i], "Withdrawal resulted in fewer coins than expected"
                            self.balances[i] = old_balance - value
                            amounts[i] = value
                    
                            if i == 0:
                                raw_call(_receiver, b"", value=value)
                            else:
                                assert ERC20(self.coins[1]).transfer(_receiver, value, default_return_value=True)
                    
                        total_supply -= _burn_amount
                        self.balanceOf[msg.sender] -= _burn_amount
                        self.totalSupply = total_supply
                        log Transfer(msg.sender, empty(address), _burn_amount)
                    
                        log RemoveLiquidity(msg.sender, amounts, empty(uint256[N_COINS]), total_supply)
                    
                        return amounts
                    
                    
                    @external
                    @nonreentrant('lock')
                    def remove_liquidity_imbalance(
                        _amounts: uint256[N_COINS],
                        _max_burn_amount: uint256,
                        _receiver: address = msg.sender
                    ) -> uint256:
                        """
                        @notice Withdraw coins from the pool in an imbalanced amount
                        @param _amounts List of amounts of underlying coins to withdraw
                        @param _max_burn_amount Maximum amount of LP token to burn in the withdrawal
                        @param _receiver Address that receives the withdrawn coins
                        @return Actual amount of the LP token burned in the withdrawal
                        """
                        amp: uint256 = self._A()
                        rates: uint256[N_COINS] = self.rate_multipliers
                        old_balances: uint256[N_COINS] = self.balances
                        D0: uint256 = self.get_D_mem(rates, old_balances, amp)
                    
                        new_balances: uint256[N_COINS] = old_balances
                        for i in range(N_COINS):
                            new_balances[i] -= _amounts[i]
                        D1: uint256 = self.get_D_mem(rates, new_balances, amp)
                    
                        fees: uint256[N_COINS] = empty(uint256[N_COINS])
                        base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
                        for i in range(N_COINS):
                            ideal_balance: uint256 = D1 * old_balances[i] / D0
                            difference: uint256 = 0
                            new_balance: uint256 = new_balances[i]
                            if ideal_balance > new_balance:
                                difference = ideal_balance - new_balance
                            else:
                                difference = new_balance - ideal_balance
                            fees[i] = base_fee * difference / FEE_DENOMINATOR
                            self.balances[i] = new_balance - (fees[i] * ADMIN_FEE / FEE_DENOMINATOR)
                            new_balances[i] -= fees[i]
                        new_balances = self._xp_mem(rates, new_balances)
                        D2: uint256 = self.get_D(new_balances, amp)
                    
                        self.save_p(new_balances, amp, D2)
                    
                        total_supply: uint256 = self.totalSupply
                        burn_amount: uint256 = ((D0 - D2) * total_supply / D0) + 1
                        assert burn_amount > 1  # dev: zero tokens burned
                        assert burn_amount <= _max_burn_amount, "Slippage screwed you"
                    
                        total_supply -= burn_amount
                        self.totalSupply = total_supply
                        self.balanceOf[msg.sender] -= burn_amount
                        log Transfer(msg.sender, empty(address), burn_amount)
                    
                        if _amounts[0] != 0:
                            raw_call(_receiver, b"", value=_amounts[0])
                        if _amounts[1] != 0:
                            assert ERC20(self.coins[1]).transfer(_receiver, _amounts[1], default_return_value=True)
                    
                        log RemoveLiquidityImbalance(msg.sender, _amounts, fees, D1, total_supply)
                    
                        return burn_amount
                    
                    
                    @pure
                    @internal
                    def get_y_D(A: uint256, i: int128, xp: uint256[N_COINS], D: uint256) -> uint256:
                        """
                        Calculate x[i] if one reduces D from being calculated for xp to D
                    
                        Done by solving quadratic equation iteratively.
                        x_1**2 + x_1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
                        x_1**2 + b*x_1 = c
                    
                        x_1 = (x_1**2 + c) / (2*x_1 + b)
                        """
                        # x in the input is converted to the same price/precision
                    
                        assert i >= 0  # dev: i below zero
                        assert i < N_COINS_128  # dev: i above N_COINS
                    
                        S_: uint256 = 0
                        _x: uint256 = 0
                        y_prev: uint256 = 0
                        c: uint256 = D
                        Ann: uint256 = A * N_COINS
                    
                        for _i in range(N_COINS_128):
                            if _i != i:
                                _x = xp[_i]
                            else:
                                continue
                            S_ += _x
                            c = c * D / (_x * N_COINS)
                    
                        c = c * D * A_PRECISION / (Ann * N_COINS)
                        b: uint256 = S_ + D * A_PRECISION / Ann
                        y: uint256 = D
                    
                        for _i in range(255):
                            y_prev = y
                            y = (y*y + c) / (2 * y + b - D)
                            # Equality with the precision of 1
                            if y > y_prev:
                                if y - y_prev <= 1:
                                    return y
                            else:
                                if y_prev - y <= 1:
                                    return y
                        raise
                    
                    
                    @view
                    @internal
                    def _calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256[3]:
                        # First, need to calculate
                        # * Get current D
                        # * Solve Eqn against y_i for D - _token_amount
                        amp: uint256 = self._A()
                        rates: uint256[N_COINS] = self.rate_multipliers
                        xp: uint256[N_COINS] = self._xp_mem(rates, self.balances)
                        D0: uint256 = self.get_D(xp, amp)
                    
                        total_supply: uint256 = self.totalSupply
                        D1: uint256 = D0 - _burn_amount * D0 / total_supply
                        new_y: uint256 = self.get_y_D(amp, i, xp, D1)
                    
                        base_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
                        xp_reduced: uint256[N_COINS] = empty(uint256[N_COINS])
                    
                        for j in range(N_COINS_128):
                            dx_expected: uint256 = 0
                            xp_j: uint256 = xp[j]
                            if j == i:
                                dx_expected = xp_j * D1 / D0 - new_y
                            else:
                                dx_expected = xp_j - xp_j * D1 / D0
                            xp_reduced[j] = xp_j - base_fee * dx_expected / FEE_DENOMINATOR
                    
                        dy: uint256 = xp_reduced[i] - self.get_y_D(amp, i, xp_reduced, D1)
                        dy_0: uint256 = (xp[i] - new_y) * PRECISION / rates[i]  # w/o fees
                        dy = (dy - 1) * PRECISION / rates[i]  # Withdraw less to account for rounding errors
                    
                        xp[i] = new_y
                        last_p: uint256 = 0
                        if new_y > 0:
                            last_p = self._get_p(xp, amp, D1)
                    
                        return [dy, dy_0 - dy, last_p]
                    
                    
                    @view
                    @external
                    def calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256:
                        """
                        @notice Calculate the amount received when withdrawing a single coin
                        @param _burn_amount Amount of LP tokens to burn in the withdrawal
                        @param i Index value of the coin to withdraw
                        @return Amount of coin received
                        """
                        return self._calc_withdraw_one_coin(_burn_amount, i)[0]
                    
                    
                    @external
                    @nonreentrant('lock')
                    def remove_liquidity_one_coin(
                        _burn_amount: uint256,
                        i: int128,
                        _min_received: uint256,
                        _receiver: address = msg.sender,
                    ) -> uint256:
                        """
                        @notice Withdraw a single coin from the pool
                        @param _burn_amount Amount of LP tokens to burn in the withdrawal
                        @param i Index value of the coin to withdraw
                        @param _min_received Minimum amount of coin to receive
                        @param _receiver Address that receives the withdrawn coins
                        @return Amount of coin received
                        """
                        dy: uint256[3] = self._calc_withdraw_one_coin(_burn_amount, i)
                        assert dy[0] >= _min_received, "Not enough coins removed"
                    
                        self.balances[i] -= (dy[0] + dy[1] * ADMIN_FEE / FEE_DENOMINATOR)
                        total_supply: uint256 = self.totalSupply - _burn_amount
                        self.totalSupply = total_supply
                        self.balanceOf[msg.sender] -= _burn_amount
                        log Transfer(msg.sender, empty(address), _burn_amount)
                    
                        if i == 0:
                            raw_call(_receiver, b"", value=dy[0])
                        else:
                            assert ERC20(self.coins[1]).transfer(_receiver, dy[0], default_return_value=True)
                    
                        log RemoveLiquidityOne(msg.sender, _burn_amount, dy[0], total_supply)
                    
                        self.save_p_from_price(dy[2])
                    
                        return dy[0]
                    
                    
                    @external
                    def ramp_A(_future_A: uint256, _future_time: uint256):
                        assert msg.sender == Factory(self.factory).admin()  # dev: only owner
                        assert block.timestamp >= self.initial_A_time + MIN_RAMP_TIME
                        assert _future_time >= block.timestamp + MIN_RAMP_TIME  # dev: insufficient time
                    
                        _initial_A: uint256 = self._A()
                        _future_A_p: uint256 = _future_A * A_PRECISION
                    
                        assert _future_A > 0 and _future_A < MAX_A
                        if _future_A_p < _initial_A:
                            assert _future_A_p * MAX_A_CHANGE >= _initial_A
                        else:
                            assert _future_A_p <= _initial_A * MAX_A_CHANGE
                    
                        self.initial_A = _initial_A
                        self.future_A = _future_A_p
                        self.initial_A_time = block.timestamp
                        self.future_A_time = _future_time
                    
                        log RampA(_initial_A, _future_A_p, block.timestamp, _future_time)
                    
                    
                    @external
                    def stop_ramp_A():
                        assert msg.sender == Factory(self.factory).admin()  # dev: only owner
                    
                        current_A: uint256 = self._A()
                        self.initial_A = current_A
                        self.future_A = current_A
                        self.initial_A_time = block.timestamp
                        self.future_A_time = block.timestamp
                        # now (block.timestamp < t1) is always False, so we return saved A
                    
                        log StopRampA(current_A, block.timestamp)
                    
                    
                    @view
                    @external
                    def admin_balances(i: uint256) -> uint256:
                        if i == 0:
                            return self.balance - self.balances[0]
                        else:
                            return ERC20(self.coins[i]).balanceOf(self) - self.balances[i]
                    
                    
                    @external
                    def withdraw_admin_fees():
                        receiver: address = Factory(self.factory).get_fee_receiver(self)
                    
                        fees: uint256 = self.balance - self.balances[0]
                        raw_call(receiver, b"", value=fees)
                    
                        coin: address = self.coins[1]
                        fees = ERC20(coin).balanceOf(self) - self.balances[1]
                        assert ERC20(coin).transfer(receiver, fees, default_return_value=True)
                    
                    
                    @external
                    def commit_new_fee(_new_fee: uint256):
                        assert msg.sender == Factory(self.factory).admin()
                        assert _new_fee <= MAX_FEE
                        assert self.admin_action_deadline == 0
                    
                        self.future_fee = _new_fee
                        self.admin_action_deadline = block.timestamp + ADMIN_ACTIONS_DEADLINE_DT
                        log CommitNewFee(_new_fee)
                    
                    
                    @external
                    def apply_new_fee():
                        assert msg.sender == Factory(self.factory).admin()
                        deadline: uint256 = self.admin_action_deadline
                        assert deadline != 0 and block.timestamp >= deadline
                        
                        fee: uint256 = self.future_fee
                        self.fee = fee
                        self.admin_action_deadline = 0
                        log ApplyNewFee(fee)
                    
                    
                    @external
                    def set_ma_exp_time(_ma_exp_time: uint256):
                        assert msg.sender == Factory(self.factory).admin()  # dev: only owner
                        assert _ma_exp_time != 0
                    
                        self.ma_exp_time = _ma_exp_time
                    
                    
                    @view
                    @external
                    def version() -> String[8]:
                        """
                        @notice Get the version of this token contract
                        """
                        return VERSION