ETH Price: $2,250.28 (-1.34%)

Transaction Decoder

Block:
16129009 at Dec-06-2022 11:22:23 PM +UTC
Transaction Fee:
0.00165112972924025 ETH $3.72
Gas Used:
110,950 Gas / 14.881746095 Gwei

Emitted Events:

126 AdminUpgradeabilityProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x00000000000000000000000024b22b031ae1b5a6b09f9a0fd33613a40e0d70e6, 0x000000000000000000000000fdf12c3396459c3b0afd2ece0ca219f948e246a8, 0000000000000000000000000000000000000000000000000000001c99a03e20 )
127 AdminUpgradeabilityProxy.0x4d599cfe4fed729b73c3ca45680c8f3d9f37069c2026b9d0feec5e146f566d58( 0x4d599cfe4fed729b73c3ca45680c8f3d9f37069c2026b9d0feec5e146f566d58, 0x0000000000000000000000007a2bc711e19ba6aff6ce8246c546e8c4b4944dfd, 0x000000000000000000000000fdf12c3396459c3b0afd2ece0ca219f948e246a8, 0000000000000000000000000000000000000000000000000000001c99a03e20, 144ac1b96297633b29d319fce7427a2790bbb874632ece99d70555834800645d )

Account State Difference:

  Address   Before After State Difference Code
0x24b22B03...40e0d70e6
0x7a2Bc711...4B4944DFD
(beaverbuild)
145.86385636132167448 Eth145.86413373632167448 Eth0.000277375
0xfdF12c33...948E246a8
79.392218407978983889 Eth
Nonce: 159
79.390567278249743639 Eth
Nonce: 160
0.00165112972924025

Execution Trace

AdminUpgradeabilityProxy.353a25c0( )
  • 0xaea88023ee48354502289b33d5096d4d98abb464.353a25c0( )
    • Null: 0x000...001.9ad82f50( )
    • AdminUpgradeabilityProxy.70a08231( )
      • WAXEERC20UpgradeSafe.balanceOf( account=0x24b22B031Ae1B5a6b09F9a0FD33613a40e0d70e6 ) => ( 6579027469378 )
      • AdminUpgradeabilityProxy.a9059cbb( )
        • WAXEERC20UpgradeSafe.transfer( recipient=0xfdF12c3396459C3b0AFD2EcE0ca219F948E246a8, amount=122836500000 ) => ( True )
          File 1 of 3: AdminUpgradeabilityProxy
          // File: @openzeppelin/upgrades/contracts/upgradeability/Proxy.sol
          
          pragma solidity ^0.5.0;
          
          /**
           * @title Proxy
           * @dev Implements delegation of calls to other contracts, with proper
           * forwarding of return values and bubbling of failures.
           * It defines a fallback function that delegates all calls to the address
           * returned by the abstract _implementation() internal function.
           */
          contract Proxy {
            /**
             * @dev Fallback function.
             * Implemented entirely in `_fallback`.
             */
            function () payable external {
              _fallback();
            }
          
            /**
             * @return The Address of the implementation.
             */
            function _implementation() internal view returns (address);
          
            /**
             * @dev Delegates execution to an implementation contract.
             * This is a low level function that doesn't return to its internal call site.
             * It will return to the external caller whatever the implementation returns.
             * @param implementation Address to delegate.
             */
            function _delegate(address implementation) internal {
              assembly {
                // Copy msg.data. We take full control of memory in this inline assembly
                // block because it will not return to Solidity code. We overwrite the
                // Solidity scratch pad at memory position 0.
                calldatacopy(0, 0, calldatasize)
          
                // Call the implementation.
                // out and outsize are 0 because we don't know the size yet.
                let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0)
          
                // Copy the returned data.
                returndatacopy(0, 0, returndatasize)
          
                switch result
                // delegatecall returns 0 on error.
                case 0 { revert(0, returndatasize) }
                default { return(0, returndatasize) }
              }
            }
          
            /**
             * @dev Function that is run as the first thing in the fallback function.
             * Can be redefined in derived contracts to add functionality.
             * Redefinitions must call super._willFallback().
             */
            function _willFallback() internal {
            }
          
            /**
             * @dev fallback implementation.
             * Extracted to enable manual triggering.
             */
            function _fallback() internal {
              _willFallback();
              _delegate(_implementation());
            }
          }
          
          // File: @openzeppelin/upgrades/contracts/utils/Address.sol
          
          pragma solidity ^0.5.0;
          
          /**
           * Utility library of inline functions on addresses
           *
           * Source https://raw.githubusercontent.com/OpenZeppelin/openzeppelin-solidity/v2.1.3/contracts/utils/Address.sol
           * This contract is copied here and renamed from the original to avoid clashes in the compiled artifacts
           * when the user imports a zos-lib contract (that transitively causes this contract to be compiled and added to the
           * build/artifacts folder) as well as the vanilla Address implementation from an openzeppelin version.
           */
          library OpenZeppelinUpgradesAddress {
              /**
               * Returns whether the target address is a contract
               * @dev This function will return false if invoked during the constructor of a contract,
               * as the code is not actually created until after the constructor finishes.
               * @param account address of the account to check
               * @return whether the target address is a contract
               */
              function isContract(address account) internal view returns (bool) {
                  uint256 size;
                  // XXX Currently there is no better way to check if there is a contract in an address
                  // than to check the size of the code at that address.
                  // See https://ethereum.stackexchange.com/a/14016/36603
                  // for more details about how this works.
                  // TODO Check this again before the Serenity release, because all addresses will be
                  // contracts then.
                  // solhint-disable-next-line no-inline-assembly
                  assembly { size := extcodesize(account) }
                  return size > 0;
              }
          }
          
          // File: @openzeppelin/upgrades/contracts/upgradeability/BaseUpgradeabilityProxy.sol
          
          pragma solidity ^0.5.0;
          
          
          
          /**
           * @title BaseUpgradeabilityProxy
           * @dev This contract implements a proxy that allows to change the
           * implementation address to which it will delegate.
           * Such a change is called an implementation upgrade.
           */
          contract BaseUpgradeabilityProxy is Proxy {
            /**
             * @dev Emitted when the implementation is upgraded.
             * @param implementation Address of the new implementation.
             */
            event Upgraded(address indexed implementation);
          
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          
            /**
             * @dev Returns the current implementation.
             * @return Address of the current implementation
             */
            function _implementation() internal view returns (address impl) {
              bytes32 slot = IMPLEMENTATION_SLOT;
              assembly {
                impl := sload(slot)
              }
            }
          
            /**
             * @dev Upgrades the proxy to a new implementation.
             * @param newImplementation Address of the new implementation.
             */
            function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
            }
          
            /**
             * @dev Sets the implementation address of the proxy.
             * @param newImplementation Address of the new implementation.
             */
            function _setImplementation(address newImplementation) internal {
              require(OpenZeppelinUpgradesAddress.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
          
              bytes32 slot = IMPLEMENTATION_SLOT;
          
              assembly {
                sstore(slot, newImplementation)
              }
            }
          }
          
          // File: @openzeppelin/upgrades/contracts/upgradeability/UpgradeabilityProxy.sol
          
          pragma solidity ^0.5.0;
          
          
          /**
           * @title UpgradeabilityProxy
           * @dev Extends BaseUpgradeabilityProxy with a constructor for initializing
           * implementation and init data.
           */
          contract UpgradeabilityProxy is BaseUpgradeabilityProxy {
            /**
             * @dev Contract constructor.
             * @param _logic Address of the initial implementation.
             * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
             * It should include the signature and the parameters of the function to be called, as described in
             * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
             * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
             */
            constructor(address _logic, bytes memory _data) public payable {
              assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1));
              _setImplementation(_logic);
              if(_data.length > 0) {
                (bool success,) = _logic.delegatecall(_data);
                require(success);
              }
            }  
          }
          
          // File: @openzeppelin/upgrades/contracts/upgradeability/BaseAdminUpgradeabilityProxy.sol
          
          pragma solidity ^0.5.0;
          
          
          /**
           * @title BaseAdminUpgradeabilityProxy
           * @dev This contract combines an upgradeability proxy with an authorization
           * mechanism for administrative tasks.
           * All external functions in this contract must be guarded by the
           * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
           * feature proposal that would enable this to be done automatically.
           */
          contract BaseAdminUpgradeabilityProxy is BaseUpgradeabilityProxy {
            /**
             * @dev Emitted when the administration has been transferred.
             * @param previousAdmin Address of the previous admin.
             * @param newAdmin Address of the new admin.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
          
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
          
            bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          
            /**
             * @dev Modifier to check whether the `msg.sender` is the admin.
             * If it is, it will run the function. Otherwise, it will delegate the call
             * to the implementation.
             */
            modifier ifAdmin() {
              if (msg.sender == _admin()) {
                _;
              } else {
                _fallback();
              }
            }
          
            /**
             * @return The address of the proxy admin.
             */
            function admin() external ifAdmin returns (address) {
              return _admin();
            }
          
            /**
             * @return The address of the implementation.
             */
            function implementation() external ifAdmin returns (address) {
              return _implementation();
            }
          
            /**
             * @dev Changes the admin of the proxy.
             * Only the current admin can call this function.
             * @param newAdmin Address to transfer proxy administration to.
             */
            function changeAdmin(address newAdmin) external ifAdmin {
              require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
              emit AdminChanged(_admin(), newAdmin);
              _setAdmin(newAdmin);
            }
          
            /**
             * @dev Upgrade the backing implementation of the proxy.
             * Only the admin can call this function.
             * @param newImplementation Address of the new implementation.
             */
            function upgradeTo(address newImplementation) external ifAdmin {
              _upgradeTo(newImplementation);
            }
          
            /**
             * @dev Upgrade the backing implementation of the proxy and call a function
             * on the new implementation.
             * This is useful to initialize the proxied contract.
             * @param newImplementation Address of the new implementation.
             * @param data Data to send as msg.data in the low level call.
             * It should include the signature and the parameters of the function to be called, as described in
             * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
             */
            function upgradeToAndCall(address newImplementation, bytes calldata data) payable external ifAdmin {
              _upgradeTo(newImplementation);
              (bool success,) = newImplementation.delegatecall(data);
              require(success);
            }
          
            /**
             * @return The admin slot.
             */
            function _admin() internal view returns (address adm) {
              bytes32 slot = ADMIN_SLOT;
              assembly {
                adm := sload(slot)
              }
            }
          
            /**
             * @dev Sets the address of the proxy admin.
             * @param newAdmin Address of the new proxy admin.
             */
            function _setAdmin(address newAdmin) internal {
              bytes32 slot = ADMIN_SLOT;
          
              assembly {
                sstore(slot, newAdmin)
              }
            }
          
            /**
             * @dev Only fall back when the sender is not the admin.
             */
            function _willFallback() internal {
              require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
              super._willFallback();
            }
          }
          
          // File: @openzeppelin/upgrades/contracts/upgradeability/AdminUpgradeabilityProxy.sol
          
          pragma solidity ^0.5.0;
          
          
          /**
           * @title AdminUpgradeabilityProxy
           * @dev Extends from BaseAdminUpgradeabilityProxy with a constructor for 
           * initializing the implementation, admin, and init data.
           */
          contract AdminUpgradeabilityProxy is BaseAdminUpgradeabilityProxy, UpgradeabilityProxy {
            /**
             * Contract constructor.
             * @param _logic address of the initial implementation.
             * @param _admin Address of the proxy administrator.
             * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
             * It should include the signature and the parameters of the function to be called, as described in
             * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
             * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
             */
            constructor(address _logic, address _admin, bytes memory _data) UpgradeabilityProxy(_logic, _data) public payable {
              assert(ADMIN_SLOT == bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1));
              _setAdmin(_admin);
            }
          }

          File 2 of 3: AdminUpgradeabilityProxy
          // File: @openzeppelin/upgrades/contracts/upgradeability/Proxy.sol
          
          pragma solidity ^0.5.0;
          
          /**
           * @title Proxy
           * @dev Implements delegation of calls to other contracts, with proper
           * forwarding of return values and bubbling of failures.
           * It defines a fallback function that delegates all calls to the address
           * returned by the abstract _implementation() internal function.
           */
          contract Proxy {
            /**
             * @dev Fallback function.
             * Implemented entirely in `_fallback`.
             */
            function () payable external {
              _fallback();
            }
          
            /**
             * @return The Address of the implementation.
             */
            function _implementation() internal view returns (address);
          
            /**
             * @dev Delegates execution to an implementation contract.
             * This is a low level function that doesn't return to its internal call site.
             * It will return to the external caller whatever the implementation returns.
             * @param implementation Address to delegate.
             */
            function _delegate(address implementation) internal {
              assembly {
                // Copy msg.data. We take full control of memory in this inline assembly
                // block because it will not return to Solidity code. We overwrite the
                // Solidity scratch pad at memory position 0.
                calldatacopy(0, 0, calldatasize)
          
                // Call the implementation.
                // out and outsize are 0 because we don't know the size yet.
                let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0)
          
                // Copy the returned data.
                returndatacopy(0, 0, returndatasize)
          
                switch result
                // delegatecall returns 0 on error.
                case 0 { revert(0, returndatasize) }
                default { return(0, returndatasize) }
              }
            }
          
            /**
             * @dev Function that is run as the first thing in the fallback function.
             * Can be redefined in derived contracts to add functionality.
             * Redefinitions must call super._willFallback().
             */
            function _willFallback() internal {
            }
          
            /**
             * @dev fallback implementation.
             * Extracted to enable manual triggering.
             */
            function _fallback() internal {
              _willFallback();
              _delegate(_implementation());
            }
          }
          
          // File: @openzeppelin/upgrades/contracts/utils/Address.sol
          
          pragma solidity ^0.5.0;
          
          /**
           * Utility library of inline functions on addresses
           *
           * Source https://raw.githubusercontent.com/OpenZeppelin/openzeppelin-solidity/v2.1.3/contracts/utils/Address.sol
           * This contract is copied here and renamed from the original to avoid clashes in the compiled artifacts
           * when the user imports a zos-lib contract (that transitively causes this contract to be compiled and added to the
           * build/artifacts folder) as well as the vanilla Address implementation from an openzeppelin version.
           */
          library OpenZeppelinUpgradesAddress {
              /**
               * Returns whether the target address is a contract
               * @dev This function will return false if invoked during the constructor of a contract,
               * as the code is not actually created until after the constructor finishes.
               * @param account address of the account to check
               * @return whether the target address is a contract
               */
              function isContract(address account) internal view returns (bool) {
                  uint256 size;
                  // XXX Currently there is no better way to check if there is a contract in an address
                  // than to check the size of the code at that address.
                  // See https://ethereum.stackexchange.com/a/14016/36603
                  // for more details about how this works.
                  // TODO Check this again before the Serenity release, because all addresses will be
                  // contracts then.
                  // solhint-disable-next-line no-inline-assembly
                  assembly { size := extcodesize(account) }
                  return size > 0;
              }
          }
          
          // File: @openzeppelin/upgrades/contracts/upgradeability/BaseUpgradeabilityProxy.sol
          
          pragma solidity ^0.5.0;
          
          
          
          /**
           * @title BaseUpgradeabilityProxy
           * @dev This contract implements a proxy that allows to change the
           * implementation address to which it will delegate.
           * Such a change is called an implementation upgrade.
           */
          contract BaseUpgradeabilityProxy is Proxy {
            /**
             * @dev Emitted when the implementation is upgraded.
             * @param implementation Address of the new implementation.
             */
            event Upgraded(address indexed implementation);
          
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          
            /**
             * @dev Returns the current implementation.
             * @return Address of the current implementation
             */
            function _implementation() internal view returns (address impl) {
              bytes32 slot = IMPLEMENTATION_SLOT;
              assembly {
                impl := sload(slot)
              }
            }
          
            /**
             * @dev Upgrades the proxy to a new implementation.
             * @param newImplementation Address of the new implementation.
             */
            function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
            }
          
            /**
             * @dev Sets the implementation address of the proxy.
             * @param newImplementation Address of the new implementation.
             */
            function _setImplementation(address newImplementation) internal {
              require(OpenZeppelinUpgradesAddress.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
          
              bytes32 slot = IMPLEMENTATION_SLOT;
          
              assembly {
                sstore(slot, newImplementation)
              }
            }
          }
          
          // File: @openzeppelin/upgrades/contracts/upgradeability/UpgradeabilityProxy.sol
          
          pragma solidity ^0.5.0;
          
          
          /**
           * @title UpgradeabilityProxy
           * @dev Extends BaseUpgradeabilityProxy with a constructor for initializing
           * implementation and init data.
           */
          contract UpgradeabilityProxy is BaseUpgradeabilityProxy {
            /**
             * @dev Contract constructor.
             * @param _logic Address of the initial implementation.
             * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
             * It should include the signature and the parameters of the function to be called, as described in
             * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
             * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
             */
            constructor(address _logic, bytes memory _data) public payable {
              assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1));
              _setImplementation(_logic);
              if(_data.length > 0) {
                (bool success,) = _logic.delegatecall(_data);
                require(success);
              }
            }  
          }
          
          // File: @openzeppelin/upgrades/contracts/upgradeability/BaseAdminUpgradeabilityProxy.sol
          
          pragma solidity ^0.5.0;
          
          
          /**
           * @title BaseAdminUpgradeabilityProxy
           * @dev This contract combines an upgradeability proxy with an authorization
           * mechanism for administrative tasks.
           * All external functions in this contract must be guarded by the
           * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
           * feature proposal that would enable this to be done automatically.
           */
          contract BaseAdminUpgradeabilityProxy is BaseUpgradeabilityProxy {
            /**
             * @dev Emitted when the administration has been transferred.
             * @param previousAdmin Address of the previous admin.
             * @param newAdmin Address of the new admin.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
          
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
          
            bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          
            /**
             * @dev Modifier to check whether the `msg.sender` is the admin.
             * If it is, it will run the function. Otherwise, it will delegate the call
             * to the implementation.
             */
            modifier ifAdmin() {
              if (msg.sender == _admin()) {
                _;
              } else {
                _fallback();
              }
            }
          
            /**
             * @return The address of the proxy admin.
             */
            function admin() external ifAdmin returns (address) {
              return _admin();
            }
          
            /**
             * @return The address of the implementation.
             */
            function implementation() external ifAdmin returns (address) {
              return _implementation();
            }
          
            /**
             * @dev Changes the admin of the proxy.
             * Only the current admin can call this function.
             * @param newAdmin Address to transfer proxy administration to.
             */
            function changeAdmin(address newAdmin) external ifAdmin {
              require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
              emit AdminChanged(_admin(), newAdmin);
              _setAdmin(newAdmin);
            }
          
            /**
             * @dev Upgrade the backing implementation of the proxy.
             * Only the admin can call this function.
             * @param newImplementation Address of the new implementation.
             */
            function upgradeTo(address newImplementation) external ifAdmin {
              _upgradeTo(newImplementation);
            }
          
            /**
             * @dev Upgrade the backing implementation of the proxy and call a function
             * on the new implementation.
             * This is useful to initialize the proxied contract.
             * @param newImplementation Address of the new implementation.
             * @param data Data to send as msg.data in the low level call.
             * It should include the signature and the parameters of the function to be called, as described in
             * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
             */
            function upgradeToAndCall(address newImplementation, bytes calldata data) payable external ifAdmin {
              _upgradeTo(newImplementation);
              (bool success,) = newImplementation.delegatecall(data);
              require(success);
            }
          
            /**
             * @return The admin slot.
             */
            function _admin() internal view returns (address adm) {
              bytes32 slot = ADMIN_SLOT;
              assembly {
                adm := sload(slot)
              }
            }
          
            /**
             * @dev Sets the address of the proxy admin.
             * @param newAdmin Address of the new proxy admin.
             */
            function _setAdmin(address newAdmin) internal {
              bytes32 slot = ADMIN_SLOT;
          
              assembly {
                sstore(slot, newAdmin)
              }
            }
          
            /**
             * @dev Only fall back when the sender is not the admin.
             */
            function _willFallback() internal {
              require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
              super._willFallback();
            }
          }
          
          // File: @openzeppelin/upgrades/contracts/upgradeability/AdminUpgradeabilityProxy.sol
          
          pragma solidity ^0.5.0;
          
          
          /**
           * @title AdminUpgradeabilityProxy
           * @dev Extends from BaseAdminUpgradeabilityProxy with a constructor for 
           * initializing the implementation, admin, and init data.
           */
          contract AdminUpgradeabilityProxy is BaseAdminUpgradeabilityProxy, UpgradeabilityProxy {
            /**
             * Contract constructor.
             * @param _logic address of the initial implementation.
             * @param _admin Address of the proxy administrator.
             * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
             * It should include the signature and the parameters of the function to be called, as described in
             * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
             * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
             */
            constructor(address _logic, address _admin, bytes memory _data) UpgradeabilityProxy(_logic, _data) public payable {
              assert(ADMIN_SLOT == bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1));
              _setAdmin(_admin);
            }
          }

          File 3 of 3: WAXEERC20UpgradeSafe
          // File: @openzeppelin/contracts-ethereum-package/contracts/Initializable.sol
          
          pragma solidity >=0.4.24 <0.7.0;
          
          
          /**
           * @title Initializable
           *
           * @dev Helper contract to support initializer functions. To use it, replace
           * the constructor with a function that has the `initializer` modifier.
           * WARNING: Unlike constructors, initializer functions must be manually
           * invoked. This applies both to deploying an Initializable contract, as well
           * as extending an Initializable contract via inheritance.
           * WARNING: When used with inheritance, manual care must be taken to not invoke
           * a parent initializer twice, or ensure that all initializers are idempotent,
           * because this is not dealt with automatically as with constructors.
           */
          contract Initializable {
          
            /**
             * @dev Indicates that the contract has been initialized.
             */
            bool private initialized;
          
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private initializing;
          
            /**
             * @dev Modifier to use in the initializer function of a contract.
             */
            modifier initializer() {
              require(initializing || isConstructor() || !initialized, "Contract instance has already been initialized");
          
              bool isTopLevelCall = !initializing;
              if (isTopLevelCall) {
                initializing = true;
                initialized = true;
              }
          
              _;
          
              if (isTopLevelCall) {
                initializing = false;
              }
            }
          
            /// @dev Returns true if and only if the function is running in the constructor
            function isConstructor() private view returns (bool) {
              // extcodesize checks the size of the code stored in an address, and
              // address returns the current address. Since the code is still not
              // deployed when running a constructor, any checks on its code size will
              // yield zero, making it an effective way to detect if a contract is
              // under construction or not.
              address self = address(this);
              uint256 cs;
              assembly { cs := extcodesize(self) }
              return cs == 0;
            }
          
            // Reserved storage space to allow for layout changes in the future.
            uint256[50] private ______gap;
          }
          
          // File: @openzeppelin/contracts-ethereum-package/contracts/GSN/Context.sol
          
          pragma solidity ^0.6.0;
          
          
          /*
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with GSN meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          contract ContextUpgradeSafe is Initializable {
              // Empty internal constructor, to prevent people from mistakenly deploying
              // an instance of this contract, which should be used via inheritance.
          
              function __Context_init() internal initializer {
                  __Context_init_unchained();
              }
          
              function __Context_init_unchained() internal initializer {
          
          
              }
          
          
              function _msgSender() internal view virtual returns (address payable) {
                  return msg.sender;
              }
          
              function _msgData() internal view virtual returns (bytes memory) {
                  this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                  return msg.data;
              }
          
              uint256[50] private __gap;
          }
          
          // File: @openzeppelin/contracts-ethereum-package/contracts/token/ERC20/IERC20.sol
          
          pragma solidity ^0.6.0;
          
          /**
           * @dev Interface of the ERC20 standard as defined in the EIP.
           */
          interface IERC20 {
              /**
               * @dev Returns the amount of tokens in existence.
               */
              function totalSupply() external view returns (uint256);
          
              /**
               * @dev Returns the amount of tokens owned by `account`.
               */
              function balanceOf(address account) external view returns (uint256);
          
              /**
               * @dev Moves `amount` tokens from the caller's account to `recipient`.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transfer(address recipient, uint256 amount) external returns (bool);
          
              /**
               * @dev Returns the remaining number of tokens that `spender` will be
               * allowed to spend on behalf of `owner` through {transferFrom}. This is
               * zero by default.
               *
               * This value changes when {approve} or {transferFrom} are called.
               */
              function allowance(address owner, address spender) external view returns (uint256);
          
              /**
               * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * IMPORTANT: Beware that changing an allowance with this method brings the risk
               * that someone may use both the old and the new allowance by unfortunate
               * transaction ordering. One possible solution to mitigate this race
               * condition is to first reduce the spender's allowance to 0 and set the
               * desired value afterwards:
               * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
               *
               * Emits an {Approval} event.
               */
              function approve(address spender, uint256 amount) external returns (bool);
          
              /**
               * @dev Moves `amount` tokens from `sender` to `recipient` using the
               * allowance mechanism. `amount` is then deducted from the caller's
               * allowance.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
          
              /**
               * @dev Emitted when `value` tokens are moved from one account (`from`) to
               * another (`to`).
               *
               * Note that `value` may be zero.
               */
              event Transfer(address indexed from, address indexed to, uint256 value);
          
              /**
               * @dev Emitted when the allowance of a `spender` for an `owner` is set by
               * a call to {approve}. `value` is the new allowance.
               */
              event Approval(address indexed owner, address indexed spender, uint256 value);
          }
          
          // File: @openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol
          
          pragma solidity ^0.6.0;
          
          /**
           * @dev Wrappers over Solidity's arithmetic operations with added overflow
           * checks.
           *
           * Arithmetic operations in Solidity wrap on overflow. This can easily result
           * in bugs, because programmers usually assume that an overflow raises an
           * error, which is the standard behavior in high level programming languages.
           * `SafeMath` restores this intuition by reverting the transaction when an
           * operation overflows.
           *
           * Using this library instead of the unchecked operations eliminates an entire
           * class of bugs, so it's recommended to use it always.
           */
          library SafeMath {
              /**
               * @dev Returns the addition of two unsigned integers, reverting on
               * overflow.
               *
               * Counterpart to Solidity's `+` operator.
               *
               * Requirements:
               * - Addition cannot overflow.
               */
              function add(uint256 a, uint256 b) internal pure returns (uint256) {
                  uint256 c = a + b;
                  require(c >= a, "SafeMath: addition overflow");
          
                  return c;
              }
          
              /**
               * @dev Returns the subtraction of two unsigned integers, reverting on
               * overflow (when the result is negative).
               *
               * Counterpart to Solidity's `-` operator.
               *
               * Requirements:
               * - Subtraction cannot overflow.
               */
              function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                  return sub(a, b, "SafeMath: subtraction overflow");
              }
          
              /**
               * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
               * overflow (when the result is negative).
               *
               * Counterpart to Solidity's `-` operator.
               *
               * Requirements:
               * - Subtraction cannot overflow.
               */
              function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                  require(b <= a, errorMessage);
                  uint256 c = a - b;
          
                  return c;
              }
          
              /**
               * @dev Returns the multiplication of two unsigned integers, reverting on
               * overflow.
               *
               * Counterpart to Solidity's `*` operator.
               *
               * Requirements:
               * - Multiplication cannot overflow.
               */
              function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) {
                      return 0;
                  }
          
                  uint256 c = a * b;
                  require(c / a == b, "SafeMath: multiplication overflow");
          
                  return c;
              }
          
              /**
               * @dev Returns the integer division of two unsigned integers. Reverts on
               * division by zero. The result is rounded towards zero.
               *
               * Counterpart to Solidity's `/` operator. Note: this function uses a
               * `revert` opcode (which leaves remaining gas untouched) while Solidity
               * uses an invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               * - The divisor cannot be zero.
               */
              function div(uint256 a, uint256 b) internal pure returns (uint256) {
                  return div(a, b, "SafeMath: division by zero");
              }
          
              /**
               * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
               * division by zero. The result is rounded towards zero.
               *
               * Counterpart to Solidity's `/` operator. Note: this function uses a
               * `revert` opcode (which leaves remaining gas untouched) while Solidity
               * uses an invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               * - The divisor cannot be zero.
               */
              function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                  // Solidity only automatically asserts when dividing by 0
                  require(b > 0, errorMessage);
                  uint256 c = a / b;
                  // assert(a == b * c + a % b); // There is no case in which this doesn't hold
          
                  return c;
              }
          
              /**
               * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
               * Reverts when dividing by zero.
               *
               * Counterpart to Solidity's `%` operator. This function uses a `revert`
               * opcode (which leaves remaining gas untouched) while Solidity uses an
               * invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               * - The divisor cannot be zero.
               */
              function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                  return mod(a, b, "SafeMath: modulo by zero");
              }
          
              /**
               * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
               * Reverts with custom message when dividing by zero.
               *
               * Counterpart to Solidity's `%` operator. This function uses a `revert`
               * opcode (which leaves remaining gas untouched) while Solidity uses an
               * invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               * - The divisor cannot be zero.
               */
              function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                  require(b != 0, errorMessage);
                  return a % b;
              }
          }
          
          // File: @openzeppelin/contracts-ethereum-package/contracts/utils/Address.sol
          
          pragma solidity ^0.6.2;
          
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
                  // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
                  // for accounts without code, i.e. `keccak256('')`
                  bytes32 codehash;
                  bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
                  // solhint-disable-next-line no-inline-assembly
                  assembly { codehash := extcodehash(account) }
                  return (codehash != accountHash && codehash != 0x0);
              }
          
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
          
                  // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                  (bool success, ) = recipient.call{ value: amount }("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
          }
          
          // File: @openzeppelin/contracts-ethereum-package/contracts/token/ERC20/ERC20.sol
          
          pragma solidity ^0.6.0;
          
          
          
          
          
          
          /**
           * @dev Implementation of the {IERC20} interface.
           *
           * This implementation is agnostic to the way tokens are created. This means
           * that a supply mechanism has to be added in a derived contract using {_mint}.
           * For a generic mechanism see {ERC20MinterPauser}.
           *
           * TIP: For a detailed writeup see our guide
           * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
           * to implement supply mechanisms].
           *
           * We have followed general OpenZeppelin guidelines: functions revert instead
           * of returning `false` on failure. This behavior is nonetheless conventional
           * and does not conflict with the expectations of ERC20 applications.
           *
           * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
           * This allows applications to reconstruct the allowance for all accounts just
           * by listening to said events. Other implementations of the EIP may not emit
           * these events, as it isn't required by the specification.
           *
           * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
           * functions have been added to mitigate the well-known issues around setting
           * allowances. See {IERC20-approve}.
           */
          contract ERC20UpgradeSafe is Initializable, ContextUpgradeSafe, IERC20 {
              using SafeMath for uint256;
              using Address for address;
          
              mapping (address => uint256) private _balances;
          
              mapping (address => mapping (address => uint256)) private _allowances;
          
              uint256 private _totalSupply;
          
              string private _name;
              string private _symbol;
              uint8 private _decimals;
          
              /**
               * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
               * a default value of 18.
               *
               * To select a different value for {decimals}, use {_setupDecimals}.
               *
               * All three of these values are immutable: they can only be set once during
               * construction.
               */
          
              function __ERC20_init(string memory name, string memory symbol) internal initializer {
                  __Context_init_unchained();
                  __ERC20_init_unchained(name, symbol);
              }
          
              function __ERC20_init_unchained(string memory name, string memory symbol) internal initializer {
          
          
                  _name = name;
                  _symbol = symbol;
                  _decimals = 18;
          
              }
          
          
              /**
               * @dev Returns the name of the token.
               */
              function name() public view returns (string memory) {
                  return _name;
              }
          
              /**
               * @dev Returns the symbol of the token, usually a shorter version of the
               * name.
               */
              function symbol() public view returns (string memory) {
                  return _symbol;
              }
          
              /**
               * @dev Returns the number of decimals used to get its user representation.
               * For example, if `decimals` equals `2`, a balance of `505` tokens should
               * be displayed to a user as `5,05` (`505 / 10 ** 2`).
               *
               * Tokens usually opt for a value of 18, imitating the relationship between
               * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
               * called.
               *
               * NOTE: This information is only used for _display_ purposes: it in
               * no way affects any of the arithmetic of the contract, including
               * {IERC20-balanceOf} and {IERC20-transfer}.
               */
              function decimals() public view returns (uint8) {
                  return _decimals;
              }
          
              /**
               * @dev See {IERC20-totalSupply}.
               */
              function totalSupply() public view override returns (uint256) {
                  return _totalSupply;
              }
          
              /**
               * @dev See {IERC20-balanceOf}.
               */
              function balanceOf(address account) public view override returns (uint256) {
                  return _balances[account];
              }
          
              /**
               * @dev See {IERC20-transfer}.
               *
               * Requirements:
               *
               * - `recipient` cannot be the zero address.
               * - the caller must have a balance of at least `amount`.
               */
              function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
                  _transfer(_msgSender(), recipient, amount);
                  return true;
              }
          
              /**
               * @dev See {IERC20-allowance}.
               */
              function allowance(address owner, address spender) public view virtual override returns (uint256) {
                  return _allowances[owner][spender];
              }
          
              /**
               * @dev See {IERC20-approve}.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               */
              function approve(address spender, uint256 amount) public virtual override returns (bool) {
                  _approve(_msgSender(), spender, amount);
                  return true;
              }
          
              /**
               * @dev See {IERC20-transferFrom}.
               *
               * Emits an {Approval} event indicating the updated allowance. This is not
               * required by the EIP. See the note at the beginning of {ERC20};
               *
               * Requirements:
               * - `sender` and `recipient` cannot be the zero address.
               * - `sender` must have a balance of at least `amount`.
               * - the caller must have allowance for ``sender``'s tokens of at least
               * `amount`.
               */
              function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
                  _transfer(sender, recipient, amount);
                  _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
                  return true;
              }
          
              /**
               * @dev Atomically increases the allowance granted to `spender` by the caller.
               *
               * This is an alternative to {approve} that can be used as a mitigation for
               * problems described in {IERC20-approve}.
               *
               * Emits an {Approval} event indicating the updated allowance.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               */
              function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                  _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
                  return true;
              }
          
              /**
               * @dev Atomically decreases the allowance granted to `spender` by the caller.
               *
               * This is an alternative to {approve} that can be used as a mitigation for
               * problems described in {IERC20-approve}.
               *
               * Emits an {Approval} event indicating the updated allowance.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               * - `spender` must have allowance for the caller of at least
               * `subtractedValue`.
               */
              function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                  _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
                  return true;
              }
          
              /**
               * @dev Moves tokens `amount` from `sender` to `recipient`.
               *
               * This is internal function is equivalent to {transfer}, and can be used to
               * e.g. implement automatic token fees, slashing mechanisms, etc.
               *
               * Emits a {Transfer} event.
               *
               * Requirements:
               *
               * - `sender` cannot be the zero address.
               * - `recipient` cannot be the zero address.
               * - `sender` must have a balance of at least `amount`.
               */
              function _transfer(address sender, address recipient, uint256 amount) internal virtual {
                  require(sender != address(0), "ERC20: transfer from the zero address");
                  require(recipient != address(0), "ERC20: transfer to the zero address");
          
                  _beforeTokenTransfer(sender, recipient, amount);
          
                  _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
                  _balances[recipient] = _balances[recipient].add(amount);
                  emit Transfer(sender, recipient, amount);
              }
          
              /** @dev Creates `amount` tokens and assigns them to `account`, increasing
               * the total supply.
               *
               * Emits a {Transfer} event with `from` set to the zero address.
               *
               * Requirements
               *
               * - `to` cannot be the zero address.
               */
              function _mint(address account, uint256 amount) internal virtual {
                  require(account != address(0), "ERC20: mint to the zero address");
          
                  _beforeTokenTransfer(address(0), account, amount);
          
                  _totalSupply = _totalSupply.add(amount);
                  _balances[account] = _balances[account].add(amount);
                  emit Transfer(address(0), account, amount);
              }
          
              /**
               * @dev Destroys `amount` tokens from `account`, reducing the
               * total supply.
               *
               * Emits a {Transfer} event with `to` set to the zero address.
               *
               * Requirements
               *
               * - `account` cannot be the zero address.
               * - `account` must have at least `amount` tokens.
               */
              function _burn(address account, uint256 amount) internal virtual {
                  require(account != address(0), "ERC20: burn from the zero address");
          
                  _beforeTokenTransfer(account, address(0), amount);
          
                  _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
                  _totalSupply = _totalSupply.sub(amount);
                  emit Transfer(account, address(0), amount);
              }
          
              /**
               * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
               *
               * This is internal function is equivalent to `approve`, and can be used to
               * e.g. set automatic allowances for certain subsystems, etc.
               *
               * Emits an {Approval} event.
               *
               * Requirements:
               *
               * - `owner` cannot be the zero address.
               * - `spender` cannot be the zero address.
               */
              function _approve(address owner, address spender, uint256 amount) internal virtual {
                  require(owner != address(0), "ERC20: approve from the zero address");
                  require(spender != address(0), "ERC20: approve to the zero address");
          
                  _allowances[owner][spender] = amount;
                  emit Approval(owner, spender, amount);
              }
          
              /**
               * @dev Sets {decimals} to a value other than the default one of 18.
               *
               * WARNING: This function should only be called from the constructor. Most
               * applications that interact with token contracts will not expect
               * {decimals} to ever change, and may work incorrectly if it does.
               */
              function _setupDecimals(uint8 decimals_) internal {
                  _decimals = decimals_;
              }
          
              /**
               * @dev Hook that is called before any transfer of tokens. This includes
               * minting and burning.
               *
               * Calling conditions:
               *
               * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
               * will be to transferred to `to`.
               * - when `from` is zero, `amount` tokens will be minted for `to`.
               * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
               * - `from` and `to` are never both zero.
               *
               * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
               */
              function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
          
              uint256[44] private __gap;
          }
          
          // File: contracts/WAXEERC20.sol
          
          pragma solidity ^0.6.0;
          
          
          
          
          /**
           * @dev Vanilla upgradeable {ERC20} "WAXE" token, including:
           *
           *  - 3.7 million preminted tokens
           *
           */
          contract WAXEERC20UpgradeSafe is Initializable, ContextUpgradeSafe, ERC20UpgradeSafe {
              uint8 public constant DECIMALS = 8;                         // The number of decimals for display
          
              /**
               * See {ERC20-constructor}.
               */
          
              function initialize(address escrow) public initializer {
                  ERC20UpgradeSafe.__ERC20_init("WAX Economic Token", "WAXE");
                  _setupDecimals(DECIMALS);
                  uint256 INITIAL_SUPPLY = 3700000 * 10**uint256(DECIMALS);  // supply specified in base units
                  _mint(escrow, INITIAL_SUPPLY);
                  require(totalSupply() == INITIAL_SUPPLY, "WAXE: totalSupply must equal 3.7 million");
              }
          }