Transaction Hash:
Block:
19299908 at Feb-24-2024 08:44:11 PM +UTC
Transaction Fee:
0.00188928 ETH
$4.65
Gas Used:
47,232 Gas / 40 Gwei
Emitted Events:
21 |
Fraxferry.OwnerNominated( newOwner=0xB1748C79...505003f27 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4600D3b1...7c1e32A35 | (Frax Finance: Deployer 4) |
3.291486862436334989 Eth
Nonce: 241
|
3.289597582436334989 Eth
Nonce: 242
| 0.00188928 | |
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 123.357950611046990758 Eth | 123.358460426494816294 Eth | 0.000509815447825536 | |
0x5c5f05cF...bAB2b0FE3 |
Execution Trace
Fraxferry.nominateNewOwner( newOwner=0xB1748C79709f4Ba2Dd82834B8c82D4a505003f27 )
nominateNewOwner[Fraxferry (ln:937)]
OwnerNominated[Fraxferry (ln:939)]
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.8.0; // Sources flattened with hardhat v2.19.4 https://hardhat.org // File @openzeppelin/contracts/token/ERC20/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // File @uniswap/v3-periphery/contracts/libraries/[email protected] // Original license: SPDX_License_Identifier: GPL-2.0-or-later library TransferHelper { /// @notice Transfers tokens from the targeted address to the given destination /// @notice Errors with 'STF' if transfer fails /// @param token The contract address of the token to be transferred /// @param from The originating address from which the tokens will be transferred /// @param to The destination address of the transfer /// @param value The amount to be transferred function safeTransferFrom( address token, address from, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF'); } /// @notice Transfers tokens from msg.sender to a recipient /// @dev Errors with ST if transfer fails /// @param token The contract address of the token which will be transferred /// @param to The recipient of the transfer /// @param value The value of the transfer function safeTransfer( address token, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST'); } /// @notice Approves the stipulated contract to spend the given allowance in the given token /// @dev Errors with 'SA' if transfer fails /// @param token The contract address of the token to be approved /// @param to The target of the approval /// @param value The amount of the given token the target will be allowed to spend function safeApprove( address token, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA'); } /// @notice Transfers ETH to the recipient address /// @dev Fails with `STE` /// @param to The destination of the transfer /// @param value The value to be transferred function safeTransferETH(address to, uint256 value) internal { (bool success, ) = to.call{value: value}(new bytes(0)); require(success, 'STE'); } } // File @openzeppelin/contracts/token/ERC20/extensions/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // File @openzeppelin/contracts/utils/math/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // File contracts/Fraxferry/Fraxferry.sol // ==================================================================== // | ______ _______ | // | / _____________ __ __ / ____(_____ ____ _____ ________ | // | / /_ / ___/ __ `| |/_/ / /_ / / __ \/ __ `/ __ \/ ___/ _ \ | // | / __/ / / / /_/ _> < / __/ / / / / / /_/ / / / / /__/ __/ | // | /_/ /_/ \__,_/_/|_| /_/ /_/_/ /_/\__,_/_/ /_/\___/\___/ | // | | // ==================================================================== // ============================ Fraxferry ============================= // ==================================================================== // Ferry that can be used to ship tokens between chains // Frax Finance: https://github.com/FraxFinance // Primary Author(s) // Dennis: https://github.com/denett /* ** Modus operandi: ** - User sends tokens to the contract. This transaction is stored in the contract. ** - Captain queries the source chain for transactions to ship. ** - Captain sends batch (start, end, hash) to start the trip, ** - Crewmembers check the batch and can dispute it if it is invalid. ** - Non disputed batches can be executed by the first officer by providing the transactions as calldata. ** - Hash of the transactions must be equal to the hash in the batch. User receives their tokens on the other chain. ** - In case there was a fraudulent transaction (a hacker for example), the owner can cancel a single transaction, such that it will not be executed. ** - The owner can manually manage the tokens in the contract and must make sure it has enough funds. ** ** What must happen for a false batch to be executed: ** - Captain is tricked into proposing a batch with a false hash ** - All crewmembers bots are offline/censured/compromised and no one disputes the proposal ** ** Other risks: ** - Reorgs on the source chain. Avoided, by only returning the transactions on the source chain that are at least one hour old. ** - Rollbacks of optimistic rollups. Avoided by running a node. ** - Operators do not have enough time to pause the chain after a fake proposal. Avoided by requiring a minimal amount of time between sending the proposal and executing it. */ contract Fraxferry { IERC20 immutable public token; IERC20 immutable public targetToken; uint immutable public chainid; uint immutable public targetChain; address public owner; address public nominatedOwner; address public captain; address public firstOfficer; mapping(address => bool) public crewmembers; mapping(address => bool) public fee_exempt_addrs; bool public paused; uint public MIN_WAIT_PERIOD_ADD=3600; // Minimal 1 hour waiting uint public MIN_WAIT_PERIOD_EXECUTE=79200; // Minimal 22 hour waiting uint public FEE_RATE=10; // 0.1% fee uint public FEE_MIN=5*1e18; // 5 token min fee uint public FEE_MAX=100*1e18; // 100 token max fee uint constant MAX_FEE_RATE=100; // Max fee rate is 1% uint constant MAX_FEE_MIN=100e18; // Max minimum fee is 100 tokens uint constant MAX_FEE_MAX=1000e18; // Max fee is 1000 tokens uint constant public REDUCED_DECIMALS=1e10; Transaction[] public transactions; mapping(uint => bool) public cancelled; uint public executeIndex; Batch[] public batches; struct Transaction { address user; uint64 amount; uint32 timestamp; } struct Batch { uint64 start; uint64 end; uint64 departureTime; uint64 status; bytes32 hash; } struct BatchData { uint startTransactionNo; Transaction[] transactions; } constructor(address _token, uint _chainid, address _targetToken, uint _targetChain) { //require (block.chainid==_chainid,"Wrong chain"); chainid=_chainid; token = IERC20(_token); targetToken = IERC20(_targetToken); owner = msg.sender; targetChain = _targetChain; } // ############## Events ############## event Embark(address indexed sender, uint index, uint amount, uint amountAfterFee, uint timestamp); event Disembark(uint start, uint end, bytes32 hash); event Depart(uint batchNo,uint start,uint end,bytes32 hash); event RemoveBatch(uint batchNo); event DisputeBatch(uint batchNo, bytes32 hash); event Cancelled(uint index, bool cancel); event Pause(bool paused); event OwnerNominated(address indexed newOwner); event OwnerChanged(address indexed previousOwner,address indexed newOwner); event SetCaptain(address indexed previousCaptain, address indexed newCaptain); event SetFirstOfficer(address indexed previousFirstOfficer, address indexed newFirstOfficer); event SetCrewmember(address indexed crewmember,bool set); event SetFee(uint previousFeeRate, uint feeRate,uint previousFeeMin, uint feeMin,uint previousFeeMax, uint feeMax); event SetMinWaitPeriods(uint previousMinWaitAdd,uint previousMinWaitExecute,uint minWaitAdd,uint minWaitExecute); event FeeExemptToggled(address addr,bool is_fee_exempt); // ############## Modifiers ############## modifier isOwner() { require (msg.sender==owner,"Not owner"); _; } modifier isCaptain() { require (msg.sender==captain,"Not captain"); _; } modifier isFirstOfficer() { require (msg.sender==firstOfficer,"Not first officer"); _; } modifier isCrewmember() { require (crewmembers[msg.sender] || msg.sender==owner || msg.sender==captain || msg.sender==firstOfficer,"Not crewmember"); _; } modifier notPaused() { require (!paused,"Paused"); _; } // ############## Ferry actions ############## function embarkWithRecipient(uint amount, address recipient) public notPaused { amount = (amount/REDUCED_DECIMALS)*REDUCED_DECIMALS; // Round amount to fit in data structure uint fee; if(fee_exempt_addrs[msg.sender]) fee = 0; else { fee = Math.min(Math.max(FEE_MIN,amount*FEE_RATE/10000),FEE_MAX); } require (amount>fee,"Amount too low"); require (amount/REDUCED_DECIMALS<=type(uint64).max,"Amount too high"); TransferHelper.safeTransferFrom(address(token),msg.sender,address(this),amount); uint64 amountAfterFee = uint64((amount-fee)/REDUCED_DECIMALS); emit Embark(recipient,transactions.length,amount,amountAfterFee*REDUCED_DECIMALS,block.timestamp); transactions.push(Transaction(recipient,amountAfterFee,uint32(block.timestamp))); } function embark(uint amount) public { embarkWithRecipient(amount, msg.sender) ; } function embarkWithSignature( uint256 _amount, address recipient, uint256 deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) public { uint amount = approveMax ? type(uint256).max : _amount; IERC20Permit(address(token)).permit(msg.sender, address(this), amount, deadline, v, r, s); embarkWithRecipient(amount,recipient); } function depart(uint start, uint end, bytes32 hash) external notPaused isCaptain { require ((batches.length==0 && start==0) || (batches.length>0 && start==batches[batches.length-1].end+1),"Wrong start"); require (end>=start && end<type(uint64).max,"Wrong end"); batches.push(Batch(uint64(start),uint64(end),uint64(block.timestamp),0,hash)); emit Depart(batches.length-1,start,end,hash); } function disembark(BatchData calldata batchData) external notPaused isFirstOfficer { Batch memory batch = batches[executeIndex++]; require (batch.status==0,"Batch disputed"); require (batch.start==batchData.startTransactionNo,"Wrong start"); require (batch.start+batchData.transactions.length-1==batch.end,"Wrong size"); require (block.timestamp-batch.departureTime>=MIN_WAIT_PERIOD_EXECUTE,"Too soon"); bytes32 hash = keccak256(abi.encodePacked(targetChain, targetToken, chainid, token, batch.start)); for (uint i=0;i<batchData.transactions.length;++i) { if (!cancelled[batch.start+i]) { TransferHelper.safeTransfer(address(token),batchData.transactions[i].user,batchData.transactions[i].amount*REDUCED_DECIMALS); } hash = keccak256(abi.encodePacked(hash, batchData.transactions[i].user,batchData.transactions[i].amount)); } require (batch.hash==hash,"Wrong hash"); emit Disembark(batch.start,batch.end,hash); } function removeBatches(uint batchNo) external isOwner { require (executeIndex<=batchNo,"Batch already executed"); while (batches.length>batchNo) batches.pop(); emit RemoveBatch(batchNo); } function disputeBatch(uint batchNo, bytes32 hash) external isCrewmember { require (batches[batchNo].hash==hash,"Wrong hash"); require (executeIndex<=batchNo,"Batch already executed"); require (batches[batchNo].status==0,"Batch already disputed"); batches[batchNo].status=1; // Set status on disputed _pause(true); emit DisputeBatch(batchNo,hash); } function pause() external isCrewmember { _pause(true); } function unPause() external isOwner { _pause(false); } function _pause(bool _paused) internal { paused=_paused; emit Pause(_paused); } function _jettison(uint index, bool cancel) internal { require (executeIndex==0 || index>batches[executeIndex-1].end,"Transaction already executed"); cancelled[index]=cancel; emit Cancelled(index,cancel); } function jettison(uint index, bool cancel) external isOwner { _jettison(index,cancel); } function jettisonGroup(uint[] calldata indexes, bool cancel) external isOwner { for (uint i=0;i<indexes.length;++i) { _jettison(indexes[i],cancel); } } // ############## Parameters management ############## function setFee(uint _FEE_RATE, uint _FEE_MIN, uint _FEE_MAX) external isOwner { require(_FEE_RATE<MAX_FEE_RATE); require(_FEE_MIN<MAX_FEE_MIN); require(_FEE_MAX<MAX_FEE_MAX); emit SetFee(FEE_RATE,_FEE_RATE,FEE_MIN,_FEE_MIN,FEE_MAX,_FEE_MAX); FEE_RATE=_FEE_RATE; FEE_MIN=_FEE_MIN; FEE_MAX=_FEE_MAX; } function setMinWaitPeriods(uint _MIN_WAIT_PERIOD_ADD, uint _MIN_WAIT_PERIOD_EXECUTE) external isOwner { require(_MIN_WAIT_PERIOD_ADD>=3600 && _MIN_WAIT_PERIOD_EXECUTE>=3600,"Period too short"); emit SetMinWaitPeriods(MIN_WAIT_PERIOD_ADD, MIN_WAIT_PERIOD_EXECUTE,_MIN_WAIT_PERIOD_ADD, _MIN_WAIT_PERIOD_EXECUTE); MIN_WAIT_PERIOD_ADD=_MIN_WAIT_PERIOD_ADD; MIN_WAIT_PERIOD_EXECUTE=_MIN_WAIT_PERIOD_EXECUTE; } // ############## Roles management ############## function nominateNewOwner(address newOwner) external isOwner { nominatedOwner = newOwner; emit OwnerNominated(newOwner); } function acceptOwnership() external { require(msg.sender == nominatedOwner, "You must be nominated before you can accept ownership"); emit OwnerChanged(owner, nominatedOwner); owner = nominatedOwner; nominatedOwner = address(0); } function setCaptain(address newCaptain) external isOwner { emit SetCaptain(captain,newCaptain); captain=newCaptain; } function setFirstOfficer(address newFirstOfficer) external isOwner { emit SetFirstOfficer(firstOfficer,newFirstOfficer); firstOfficer=newFirstOfficer; } function setCrewmember(address crewmember, bool set) external isOwner { crewmembers[crewmember]=set; emit SetCrewmember(crewmember,set); } function toggleFeeExemptAddr(address addr) external isOwner { fee_exempt_addrs[addr] = !fee_exempt_addrs[addr]; emit FeeExemptToggled(addr,fee_exempt_addrs[addr]); } // ############## Token management ############## function sendTokens(address receiver, uint amount) external isOwner { require (receiver!=address(0),"Zero address not allowed"); TransferHelper.safeTransfer(address(token),receiver,amount); } // Generic proxy function execute(address _to, uint256 _value, bytes calldata _data) external isOwner returns (bool, bytes memory) { require(_data.length==0 || _to.code.length>0,"Can not call a function on a EOA"); (bool success, bytes memory result) = _to.call{value:_value}(_data); return (success, result); } // ############## Views ############## function getNextBatch(uint _start, uint max) public view returns (uint start, uint end, bytes32 hash) { uint cutoffTime = block.timestamp-MIN_WAIT_PERIOD_ADD; if (_start<transactions.length && transactions[_start].timestamp<cutoffTime) { start=_start; end=start+max-1; if (end>=transactions.length) end=transactions.length-1; while(transactions[end].timestamp>=cutoffTime) end--; hash = getTransactionsHash(start,end); } } function getBatchData(uint start, uint end) public view returns (BatchData memory data) { data.startTransactionNo = start; data.transactions = new Transaction[](end-start+1); for (uint i=start;i<=end;++i) { data.transactions[i-start]=transactions[i]; } } function getBatchAmount(uint start, uint end) public view returns (uint totalAmount) { for (uint i=start;i<=end;++i) { totalAmount+=transactions[i].amount; } totalAmount*=REDUCED_DECIMALS; } function getTransactionsHash(uint start, uint end) public view returns (bytes32) { bytes32 result = keccak256(abi.encodePacked(chainid, token, targetChain, targetToken, uint64(start))); for (uint i=start;i<=end;++i) { result = keccak256(abi.encodePacked(result, transactions[i].user,transactions[i].amount)); } return result; } function noTransactions() public view returns (uint) { return transactions.length; } function noBatches() public view returns (uint) { return batches.length; } }