ETH Price: $2,442.20 (+8.55%)

Transaction Decoder

Block:
18023786 at Aug-30-2023 12:16:35 AM +UTC
Transaction Fee:
0.001994353543556601 ETH $4.87
Gas Used:
118,259 Gas / 16.864285539 Gwei

Emitted Events:

140 Punks2023.Transfer( from=[Receiver] Yolo, to=[Sender] 0x63c4d8cfa959f1b9a47e4dc5054a8dbfbe01262c, tokenId=392 )
141 Yolo.PrizesClaimed( roundId=2815, winner=[Sender] 0x63c4d8cfa959f1b9a47e4dc5054a8dbfbe01262c, prizeIndices=[0, 1] )
142 GnosisSafeProxy.0x3d0ce9bfc3ed7d6862dbb28b2dea94561fe714a1b4d019aa8af39730d1ad7c3d( 0x3d0ce9bfc3ed7d6862dbb28b2dea94561fe714a1b4d019aa8af39730d1ad7c3d, 0x00000000000000000000000000000000007767d79f9f4aa1ff0d71b8e2e4a231, 0000000000000000000000000000000000000000000000000008e1bc9bf04000 )

Account State Difference:

  Address   Before After State Difference Code
0x00000000...8E2E4a231 6.87 Eth6.85 Eth0.02
0x63C4d8cf...fBe01262c
3.773113902858225902 Eth
Nonce: 357
3.788619549314669301 Eth
Nonce: 358
0.015505646456443399
0x789e35a9...39B8ffeE7
0.034838608287855356 Eth0.034850434187855356 Eth0.0000118259
0xB5a9e5a3...4bF935c6f 88.025471535624348774 Eth88.027971535624348774 Eth0.0025

Execution Trace

Yolo.claimPrizes( claimPrizesCalldata= )
  • Punks2023.transferFrom( from=0x00000000007767d79f9F4aA1Ff0d71b8E2E4a231, to=0x63C4d8cfA959F1b9A47e4dC5054A8dBfBe01262c, tokenId=392 )
  • ETH 0.0025 GnosisSafeProxy.CALL( )
    • ETH 0.0025 GnosisSafe.DELEGATECALL( )
    • ETH 0.0175 0x63c4d8cfa959f1b9a47e4dc5054a8dbfbe01262c.CALL( )
      File 1 of 4: Yolo
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.20;
      import {ITransferManager} from "@looksrare/contracts-transfer-manager/contracts/interfaces/ITransferManager.sol";
      import {TokenType as TransferManagerTokenType} from "@looksrare/contracts-transfer-manager/contracts/enums/TokenType.sol";
      import {IERC20} from "@looksrare/contracts-libs/contracts/interfaces/generic/IERC20.sol";
      import {SignatureCheckerMemory} from "@looksrare/contracts-libs/contracts/SignatureCheckerMemory.sol";
      import {ReentrancyGuard} from "@looksrare/contracts-libs/contracts/ReentrancyGuard.sol";
      import {Pausable} from "@looksrare/contracts-libs/contracts/Pausable.sol";
      import {LowLevelWETH} from "@looksrare/contracts-libs/contracts/lowLevelCallers/LowLevelWETH.sol";
      import {LowLevelERC20Transfer} from "@looksrare/contracts-libs/contracts/lowLevelCallers/LowLevelERC20Transfer.sol";
      import {LowLevelERC721Transfer} from "@looksrare/contracts-libs/contracts/lowLevelCallers/LowLevelERC721Transfer.sol";
      import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
      import {VRFCoordinatorV2Interface} from "@chainlink/contracts/src/v0.8/interfaces/VRFCoordinatorV2Interface.sol";
      import {VRFConsumerBaseV2} from "@chainlink/contracts/src/v0.8/VRFConsumerBaseV2.sol";
      import {IYolo} from "./interfaces/IYolo.sol";
      import {IPriceOracle} from "./interfaces/IPriceOracle.sol";
      import {Arrays} from "./libraries/Arrays.sol";
      /**
       * @title Yolo
       * @notice This contract permissionlessly hosts yolos on LooksRare.
       * @author LooksRare protocol team (👀,💎)
       */
      contract Yolo is
          IYolo,
          AccessControl,
          VRFConsumerBaseV2,
          LowLevelWETH,
          LowLevelERC20Transfer,
          LowLevelERC721Transfer,
          ReentrancyGuard,
          Pausable
      {
          using Arrays for uint256[];
          /**
           * @notice Operators are allowed to add/remove allowed ERC-20 and ERC-721 tokens.
           */
          bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");
          /**
           * @notice The maximum protocol fee in basis points, which is 25%.
           */
          uint16 public constant MAXIMUM_PROTOCOL_FEE_BP = 2_500;
          /**
           * @notice Reservoir oracle's message typehash.
           * @dev It is used to compute the hash of the message using the (message) id, the payload, and the timestamp.
           */
          bytes32 private constant RESERVOIR_ORACLE_MESSAGE_TYPEHASH =
              keccak256("Message(bytes32 id,bytes payload,uint256 timestamp,uint256 chainId)");
          /**
           * @notice Reservoir oracle's ID typehash.
           * @dev It is used to compute the hash of the ID using price kind, TWAP seconds, and the contract address.
           */
          bytes32 private constant RESERVOIR_ORACLE_ID_TYPEHASH =
              keccak256(
                  "ContractWideCollectionPrice(uint8 kind,uint256 twapSeconds,address contract,bool onlyNonFlaggedTokens)"
              );
          /**
           * @notice Wrapped Ether address.
           */
          address private immutable WETH;
          /**
           * @notice The key hash of the Chainlink VRF.
           */
          bytes32 private immutable KEY_HASH;
          /**
           * @notice The subscription ID of the Chainlink VRF.
           */
          uint64 public immutable SUBSCRIPTION_ID;
          /**
           * @notice The Chainlink VRF coordinator.
           */
          VRFCoordinatorV2Interface private immutable VRF_COORDINATOR;
          /**
           * @notice Transfer manager faciliates token transfers.
           */
          ITransferManager private immutable transferManager;
          /**
           * @notice The value of each entry in ETH.
           */
          uint256 public valuePerEntry;
          /**
           * @notice The duration of each round.
           */
          uint40 public roundDuration;
          /**
           * @notice The address of the protocol fee recipient.
           */
          address public protocolFeeRecipient;
          /**
           * @notice The protocol fee basis points.
           */
          uint16 public protocolFeeBp;
          /**
           * @notice Number of rounds that have been created.
           * @dev In this smart contract, roundId is an uint256 but its
           *      max value can only be 2^40 - 1. Realistically we will still
           *      not reach this number.
           */
          uint40 public roundsCount;
          /**
           * @notice The maximum number of participants per round.
           */
          uint40 public maximumNumberOfParticipantsPerRound;
          /**
           * @notice The maximum number of deposits per round.
           */
          uint40 public maximumNumberOfDepositsPerRound;
          /**
           * @notice ERC-20 oracle address.
           */
          IPriceOracle public erc20Oracle;
          /**
           * @notice Reservoir oracle address.
           */
          address public reservoirOracle;
          /**
           * @notice Reservoir oracle's signature validity period.
           */
          uint40 public signatureValidityPeriod;
          /**
           * @notice It checks whether the currency is allowed.
           * @dev 0 is not allowed, 1 is allowed.
           */
          mapping(address => uint256) public isCurrencyAllowed;
          /**
           * @dev roundId => Round
           */
          mapping(uint256 => Round) public rounds;
          /**
           * @dev roundId => depositor => depositCount
           */
          mapping(uint256 => mapping(address => uint256)) public depositCount;
          /**
           * @notice The randomness requests.
           * @dev The key is the request ID returned by Chainlink.
           */
          mapping(uint256 => RandomnessRequest) public randomnessRequests;
          /**
           * @dev Token/collection => round ID => price.
           */
          mapping(address => mapping(uint256 => uint256)) public prices;
          /**
           * @param params The constructor params.
           */
          constructor(ConstructorCalldata memory params) VRFConsumerBaseV2(params.vrfCoordinator) {
              _grantRole(DEFAULT_ADMIN_ROLE, params.owner);
              _grantRole(OPERATOR_ROLE, params.operator);
              _updateRoundDuration(params.roundDuration);
              _updateProtocolFeeRecipient(params.protocolFeeRecipient);
              _updateProtocolFeeBp(params.protocolFeeBp);
              _updateValuePerEntry(params.valuePerEntry);
              _updateERC20Oracle(params.erc20Oracle);
              _updateMaximumNumberOfDepositsPerRound(params.maximumNumberOfDepositsPerRound);
              _updateMaximumNumberOfParticipantsPerRound(params.maximumNumberOfParticipantsPerRound);
              _updateReservoirOracle(params.reservoirOracle);
              _updateSignatureValidityPeriod(params.signatureValidityPeriod);
              WETH = params.weth;
              KEY_HASH = params.keyHash;
              VRF_COORDINATOR = VRFCoordinatorV2Interface(params.vrfCoordinator);
              SUBSCRIPTION_ID = params.subscriptionId;
              transferManager = ITransferManager(params.transferManager);
              _startRound({_roundsCount: 0});
          }
          /**
           * @inheritdoc IYolo
           */
          function cancelCurrentRoundAndDepositToTheNextRound(
              DepositCalldata[] calldata deposits
          ) external payable nonReentrant whenNotPaused {
              uint256 roundId = roundsCount;
              _cancel(roundId);
              _deposit(_unsafeAdd(roundId, 1), deposits);
          }
          /**
           * @inheritdoc IYolo
           */
          function deposit(uint256 roundId, DepositCalldata[] calldata deposits) external payable nonReentrant whenNotPaused {
              _deposit(roundId, deposits);
          }
          /**
           * @inheritdoc IYolo
           */
          function getDeposits(uint256 roundId) external view returns (Deposit[] memory) {
              return rounds[roundId].deposits;
          }
          function drawWinner() external nonReentrant whenNotPaused {
              uint256 roundId = roundsCount;
              Round storage round = rounds[roundId];
              _validateRoundStatus(round, RoundStatus.Open);
              if (block.timestamp < round.cutoffTime) {
                  revert CutoffTimeNotReached();
              }
              if (round.numberOfParticipants < 2) {
                  revert InsufficientParticipants();
              }
              _drawWinner(round, roundId);
          }
          function cancel() external nonReentrant whenNotPaused {
              _cancel({roundId: roundsCount});
          }
          /**
           * @inheritdoc IYolo
           */
          function cancelAfterRandomnessRequest() external nonReentrant whenNotPaused {
              uint256 roundId = roundsCount;
              Round storage round = rounds[roundId];
              _validateRoundStatus(round, RoundStatus.Drawing);
              if (block.timestamp < round.drawnAt + 1 days) {
                  revert DrawExpirationTimeNotReached();
              }
              round.status = RoundStatus.Cancelled;
              emit RoundStatusUpdated(roundId, RoundStatus.Cancelled);
              _startRound({_roundsCount: roundId});
          }
          /**
           * @inheritdoc IYolo
           */
          function claimPrizes(
              ClaimPrizesCalldata[] calldata claimPrizesCalldata
          ) external payable nonReentrant whenNotPaused {
              TransferAccumulator memory transferAccumulator;
              uint256 ethAmount;
              uint256 protocolFeeOwed;
              for (uint256 i; i < claimPrizesCalldata.length; ) {
                  ClaimPrizesCalldata calldata perRoundClaimPrizesCalldata = claimPrizesCalldata[i];
                  Round storage round = rounds[perRoundClaimPrizesCalldata.roundId];
                  _validateRoundStatus(round, RoundStatus.Drawn);
                  if (msg.sender != round.winner) {
                      revert NotWinner();
                  }
                  uint256[] calldata prizeIndices = perRoundClaimPrizesCalldata.prizeIndices;
                  for (uint256 j; j < prizeIndices.length; ) {
                      uint256 index = prizeIndices[j];
                      if (index >= round.deposits.length) {
                          revert InvalidIndex();
                      }
                      Deposit storage prize = round.deposits[index];
                      if (prize.withdrawn) {
                          revert AlreadyWithdrawn();
                      }
                      prize.withdrawn = true;
                      TokenType tokenType = prize.tokenType;
                      if (tokenType == TokenType.ETH) {
                          ethAmount += prize.tokenAmount;
                      } else if (tokenType == TokenType.ERC721) {
                          _executeERC721TransferFrom(prize.tokenAddress, address(this), msg.sender, prize.tokenId);
                      } else if (tokenType == TokenType.ERC20) {
                          address prizeAddress = prize.tokenAddress;
                          if (prizeAddress == transferAccumulator.tokenAddress) {
                              transferAccumulator.amount += prize.tokenAmount;
                          } else {
                              if (transferAccumulator.amount != 0) {
                                  _executeERC20DirectTransfer(
                                      transferAccumulator.tokenAddress,
                                      msg.sender,
                                      transferAccumulator.amount
                                  );
                              }
                              transferAccumulator.tokenAddress = prizeAddress;
                              transferAccumulator.amount = prize.tokenAmount;
                          }
                      }
                      unchecked {
                          ++j;
                      }
                  }
                  protocolFeeOwed += round.protocolFeeOwed;
                  round.protocolFeeOwed = 0;
                  emit PrizesClaimed(perRoundClaimPrizesCalldata.roundId, msg.sender, prizeIndices);
                  unchecked {
                      ++i;
                  }
              }
              if (protocolFeeOwed != 0) {
                  _transferETHAndWrapIfFailWithGasLimit(WETH, protocolFeeRecipient, protocolFeeOwed, gasleft());
                  protocolFeeOwed -= msg.value;
                  if (protocolFeeOwed < ethAmount) {
                      unchecked {
                          ethAmount -= protocolFeeOwed;
                      }
                      protocolFeeOwed = 0;
                  } else {
                      unchecked {
                          protocolFeeOwed -= ethAmount;
                      }
                      ethAmount = 0;
                  }
                  if (protocolFeeOwed != 0) {
                      revert ProtocolFeeNotPaid();
                  }
              }
              if (transferAccumulator.amount != 0) {
                  _executeERC20DirectTransfer(transferAccumulator.tokenAddress, msg.sender, transferAccumulator.amount);
              }
              if (ethAmount != 0) {
                  _transferETHAndWrapIfFailWithGasLimit(WETH, msg.sender, ethAmount, gasleft());
              }
          }
          /**
           * @inheritdoc IYolo
           * @dev This function does not validate claimPrizesCalldata to not contain duplicate round IDs and prize indices.
           *      It is the responsibility of the caller to ensure that. Otherwise, the returned protocol fee owed will be incorrect.
           */
          function getClaimPrizesPaymentRequired(
              ClaimPrizesCalldata[] calldata claimPrizesCalldata
          ) external view returns (uint256 protocolFeeOwed) {
              uint256 ethAmount;
              for (uint256 i; i < claimPrizesCalldata.length; ) {
                  ClaimPrizesCalldata calldata perRoundClaimPrizesCalldata = claimPrizesCalldata[i];
                  Round storage round = rounds[perRoundClaimPrizesCalldata.roundId];
                  _validateRoundStatus(round, RoundStatus.Drawn);
                  uint256[] calldata prizeIndices = perRoundClaimPrizesCalldata.prizeIndices;
                  uint256 numberOfPrizes = prizeIndices.length;
                  uint256 prizesCount = round.deposits.length;
                  for (uint256 j; j < numberOfPrizes; ) {
                      uint256 index = prizeIndices[j];
                      if (index >= prizesCount) {
                          revert InvalidIndex();
                      }
                      Deposit storage prize = round.deposits[index];
                      if (prize.tokenType == TokenType.ETH) {
                          ethAmount += prize.tokenAmount;
                      }
                      unchecked {
                          ++j;
                      }
                  }
                  protocolFeeOwed += round.protocolFeeOwed;
                  unchecked {
                      ++i;
                  }
              }
              if (protocolFeeOwed < ethAmount) {
                  protocolFeeOwed = 0;
              } else {
                  unchecked {
                      protocolFeeOwed -= ethAmount;
                  }
              }
          }
          /**
           * @inheritdoc IYolo
           */
          function withdrawDeposits(uint256 roundId, uint256[] calldata depositIndices) external nonReentrant whenNotPaused {
              Round storage round = rounds[roundId];
              _validateRoundStatus(round, RoundStatus.Cancelled);
              uint256 numberOfDeposits = depositIndices.length;
              uint256 depositsCount = round.deposits.length;
              uint256 ethAmount;
              for (uint256 i; i < numberOfDeposits; ) {
                  uint256 index = depositIndices[i];
                  if (index >= depositsCount) {
                      revert InvalidIndex();
                  }
                  Deposit storage depositedToken = round.deposits[index];
                  if (depositedToken.depositor != msg.sender) {
                      revert NotDepositor();
                  }
                  if (depositedToken.withdrawn) {
                      revert AlreadyWithdrawn();
                  }
                  depositedToken.withdrawn = true;
                  TokenType tokenType = depositedToken.tokenType;
                  if (tokenType == TokenType.ETH) {
                      ethAmount += depositedToken.tokenAmount;
                  } else if (tokenType == TokenType.ERC721) {
                      _executeERC721TransferFrom(
                          depositedToken.tokenAddress,
                          address(this),
                          msg.sender,
                          depositedToken.tokenId
                      );
                  } else if (tokenType == TokenType.ERC20) {
                      _executeERC20DirectTransfer(depositedToken.tokenAddress, msg.sender, depositedToken.tokenAmount);
                  }
                  unchecked {
                      ++i;
                  }
              }
              if (ethAmount != 0) {
                  _transferETHAndWrapIfFailWithGasLimit(WETH, msg.sender, ethAmount, gasleft());
              }
              emit DepositsWithdrawn(roundId, msg.sender, depositIndices);
          }
          /**
           * @inheritdoc IYolo
           */
          function togglePaused() external {
              _validateIsOwner();
              paused() ? _unpause() : _pause();
          }
          /**
           * @inheritdoc IYolo
           */
          function updateCurrenciesStatus(address[] calldata currencies, bool isAllowed) external {
              _validateIsOperator();
              uint256 count = currencies.length;
              for (uint256 i; i < count; ) {
                  isCurrencyAllowed[currencies[i]] = (isAllowed ? 1 : 0);
                  unchecked {
                      ++i;
                  }
              }
              emit CurrenciesStatusUpdated(currencies, isAllowed);
          }
          /**
           * @inheritdoc IYolo
           */
          function updateRoundDuration(uint40 _roundDuration) external {
              _validateIsOwner();
              _updateRoundDuration(_roundDuration);
          }
          /**
           * @inheritdoc IYolo
           */
          function updateSignatureValidityPeriod(uint40 _signatureValidityPeriod) external {
              _validateIsOwner();
              _updateSignatureValidityPeriod(_signatureValidityPeriod);
          }
          /**
           * @inheritdoc IYolo
           */
          function updateValuePerEntry(uint256 _valuePerEntry) external {
              _validateIsOwner();
              _updateValuePerEntry(_valuePerEntry);
          }
          /**
           * @inheritdoc IYolo
           */
          function updateProtocolFeeRecipient(address _protocolFeeRecipient) external {
              _validateIsOwner();
              _updateProtocolFeeRecipient(_protocolFeeRecipient);
          }
          /**
           * @inheritdoc IYolo
           */
          function updateProtocolFeeBp(uint16 _protocolFeeBp) external {
              _validateIsOwner();
              _updateProtocolFeeBp(_protocolFeeBp);
          }
          /**
           * @inheritdoc IYolo
           */
          function updateMaximumNumberOfDepositsPerRound(uint40 _maximumNumberOfDepositsPerRound) external {
              _validateIsOwner();
              _updateMaximumNumberOfDepositsPerRound(_maximumNumberOfDepositsPerRound);
          }
          /**
           * @inheritdoc IYolo
           */
          function updateMaximumNumberOfParticipantsPerRound(uint40 _maximumNumberOfParticipantsPerRound) external {
              _validateIsOwner();
              _updateMaximumNumberOfParticipantsPerRound(_maximumNumberOfParticipantsPerRound);
          }
          /**
           * @inheritdoc IYolo
           */
          function updateReservoirOracle(address _reservoirOracle) external {
              _validateIsOwner();
              _updateReservoirOracle(_reservoirOracle);
          }
          /**
           * @inheritdoc IYolo
           */
          function updateERC20Oracle(address _erc20Oracle) external {
              _validateIsOwner();
              _updateERC20Oracle(_erc20Oracle);
          }
          function _validateIsOwner() private view {
              if (!hasRole(DEFAULT_ADMIN_ROLE, msg.sender)) {
                  revert NotOwner();
              }
          }
          function _validateIsOperator() private view {
              if (!hasRole(OPERATOR_ROLE, msg.sender)) {
                  revert NotOperator();
              }
          }
          /**
           * @param _roundDuration The duration of each round.
           */
          function _updateRoundDuration(uint40 _roundDuration) private {
              if (_roundDuration > 1 hours) {
                  revert InvalidRoundDuration();
              }
              roundDuration = _roundDuration;
              emit RoundDurationUpdated(_roundDuration);
          }
          /**
           * @param _signatureValidityPeriod The validity period of a Reservoir signature.
           */
          function _updateSignatureValidityPeriod(uint40 _signatureValidityPeriod) private {
              signatureValidityPeriod = _signatureValidityPeriod;
              emit SignatureValidityPeriodUpdated(_signatureValidityPeriod);
          }
          /**
           * @param _valuePerEntry The value of each entry in ETH.
           */
          function _updateValuePerEntry(uint256 _valuePerEntry) private {
              if (_valuePerEntry == 0) {
                  revert InvalidValue();
              }
              valuePerEntry = _valuePerEntry;
              emit ValuePerEntryUpdated(_valuePerEntry);
          }
          /**
           * @param _protocolFeeRecipient The new protocol fee recipient address
           */
          function _updateProtocolFeeRecipient(address _protocolFeeRecipient) private {
              if (_protocolFeeRecipient == address(0)) {
                  revert InvalidValue();
              }
              protocolFeeRecipient = _protocolFeeRecipient;
              emit ProtocolFeeRecipientUpdated(_protocolFeeRecipient);
          }
          /**
           * @param _protocolFeeBp The new protocol fee in basis points
           */
          function _updateProtocolFeeBp(uint16 _protocolFeeBp) private {
              if (_protocolFeeBp > MAXIMUM_PROTOCOL_FEE_BP) {
                  revert InvalidValue();
              }
              protocolFeeBp = _protocolFeeBp;
              emit ProtocolFeeBpUpdated(_protocolFeeBp);
          }
          /**
           * @param _maximumNumberOfDepositsPerRound The new maximum number of deposits per round
           */
          function _updateMaximumNumberOfDepositsPerRound(uint40 _maximumNumberOfDepositsPerRound) private {
              maximumNumberOfDepositsPerRound = _maximumNumberOfDepositsPerRound;
              emit MaximumNumberOfDepositsPerRoundUpdated(_maximumNumberOfDepositsPerRound);
          }
          /**
           * @param _maximumNumberOfParticipantsPerRound The new maximum number of participants per round
           */
          function _updateMaximumNumberOfParticipantsPerRound(uint40 _maximumNumberOfParticipantsPerRound) private {
              if (_maximumNumberOfParticipantsPerRound < 2) {
                  revert InvalidValue();
              }
              maximumNumberOfParticipantsPerRound = _maximumNumberOfParticipantsPerRound;
              emit MaximumNumberOfParticipantsPerRoundUpdated(_maximumNumberOfParticipantsPerRound);
          }
          /**
           * @param _reservoirOracle The new Reservoir oracle address
           */
          function _updateReservoirOracle(address _reservoirOracle) private {
              if (_reservoirOracle == address(0)) {
                  revert InvalidValue();
              }
              reservoirOracle = _reservoirOracle;
              emit ReservoirOracleUpdated(_reservoirOracle);
          }
          /**
           * @param _erc20Oracle The new ERC-20 oracle address
           */
          function _updateERC20Oracle(address _erc20Oracle) private {
              if (_erc20Oracle == address(0)) {
                  revert InvalidValue();
              }
              erc20Oracle = IPriceOracle(_erc20Oracle);
              emit ERC20OracleUpdated(_erc20Oracle);
          }
          /**
           * @param _roundsCount The current rounds count
           */
          function _startRound(uint256 _roundsCount) private returns (uint256 roundId) {
              unchecked {
                  roundId = _roundsCount + 1;
              }
              roundsCount = uint40(roundId);
              rounds[roundId].status = RoundStatus.Open;
              rounds[roundId].protocolFeeBp = protocolFeeBp;
              rounds[roundId].cutoffTime = uint40(block.timestamp) + roundDuration;
              rounds[roundId].maximumNumberOfDeposits = maximumNumberOfDepositsPerRound;
              rounds[roundId].maximumNumberOfParticipants = maximumNumberOfParticipantsPerRound;
              rounds[roundId].valuePerEntry = valuePerEntry;
              emit RoundStatusUpdated(roundId, RoundStatus.Open);
          }
          /**
           * @param round The open round.
           * @param roundId The open round ID.
           */
          function _drawWinner(Round storage round, uint256 roundId) private {
              round.status = RoundStatus.Drawing;
              round.drawnAt = uint40(block.timestamp);
              uint256 requestId = VRF_COORDINATOR.requestRandomWords({
                  keyHash: KEY_HASH,
                  subId: SUBSCRIPTION_ID,
                  minimumRequestConfirmations: uint16(3),
                  callbackGasLimit: uint32(500_000),
                  numWords: uint32(1)
              });
              if (randomnessRequests[requestId].exists) {
                  revert RandomnessRequestAlreadyExists();
              }
              randomnessRequests[requestId].exists = true;
              randomnessRequests[requestId].roundId = uint40(roundId);
              emit RandomnessRequested(roundId, requestId);
              emit RoundStatusUpdated(roundId, RoundStatus.Drawing);
          }
          /**
           * @param roundId The open round ID.
           * @param deposits The ERC-20/ERC-721 deposits to be made.
           */
          function _deposit(uint256 roundId, DepositCalldata[] calldata deposits) private {
              Round storage round = rounds[roundId];
              if (round.status != RoundStatus.Open || block.timestamp >= round.cutoffTime) {
                  revert InvalidStatus();
              }
              uint256 userDepositCount = depositCount[roundId][msg.sender];
              if (userDepositCount == 0) {
                  unchecked {
                      ++round.numberOfParticipants;
                  }
              }
              uint256 roundDepositCount = round.deposits.length;
              uint40 currentEntryIndex;
              uint256 totalEntriesCount;
              uint256 depositsCalldataLength = deposits.length;
              if (msg.value == 0) {
                  if (depositsCalldataLength == 0) {
                      revert ZeroDeposits();
                  }
              } else {
                  uint256 roundValuePerEntry = round.valuePerEntry;
                  if (msg.value % roundValuePerEntry != 0) {
                      revert InvalidValue();
                  }
                  uint256 entriesCount = msg.value / roundValuePerEntry;
                  totalEntriesCount += entriesCount;
                  currentEntryIndex = _getCurrentEntryIndexWithoutAccrual(round, roundDepositCount, entriesCount);
                  round.deposits.push(
                      Deposit({
                          tokenType: TokenType.ETH,
                          tokenAddress: address(0),
                          tokenId: 0,
                          tokenAmount: msg.value,
                          depositor: msg.sender,
                          withdrawn: false,
                          currentEntryIndex: currentEntryIndex
                      })
                  );
                  unchecked {
                      roundDepositCount += 1;
                  }
              }
              if (depositsCalldataLength != 0) {
                  ITransferManager.BatchTransferItem[] memory batchTransferItems = new ITransferManager.BatchTransferItem[](
                      depositsCalldataLength
                  );
                  for (uint256 i; i < depositsCalldataLength; ) {
                      DepositCalldata calldata singleDeposit = deposits[i];
                      if (isCurrencyAllowed[singleDeposit.tokenAddress] != 1) {
                          revert InvalidCollection();
                      }
                      uint256 price = prices[singleDeposit.tokenAddress][roundId];
                      if (singleDeposit.tokenType == TokenType.ERC721) {
                          if (price == 0) {
                              price = _getReservoirPrice(singleDeposit);
                              prices[singleDeposit.tokenAddress][roundId] = price;
                          }
                          uint256 entriesCount = price / round.valuePerEntry;
                          if (entriesCount == 0) {
                              revert InvalidValue();
                          }
                          uint256 tokenIdsLength = singleDeposit.tokenIdsOrAmounts.length;
                          uint256[] memory amounts = new uint256[](tokenIdsLength);
                          for (uint256 j; j < tokenIdsLength; ) {
                              totalEntriesCount += entriesCount;
                              if (currentEntryIndex != 0) {
                                  currentEntryIndex += uint40(entriesCount);
                              } else {
                                  currentEntryIndex = _getCurrentEntryIndexWithoutAccrual(
                                      round,
                                      roundDepositCount,
                                      entriesCount
                                  );
                              }
                              // tokenAmount is in reality 1, but we never use it and it is cheaper to set it as 0.
                              round.deposits.push(
                                  Deposit({
                                      tokenType: TokenType.ERC721,
                                      tokenAddress: singleDeposit.tokenAddress,
                                      tokenId: singleDeposit.tokenIdsOrAmounts[j],
                                      tokenAmount: 0,
                                      depositor: msg.sender,
                                      withdrawn: false,
                                      currentEntryIndex: currentEntryIndex
                                  })
                              );
                              amounts[j] = 1;
                              unchecked {
                                  ++j;
                              }
                          }
                          unchecked {
                              roundDepositCount += tokenIdsLength;
                          }
                          batchTransferItems[i].tokenAddress = singleDeposit.tokenAddress;
                          batchTransferItems[i].tokenType = TransferManagerTokenType.ERC721;
                          batchTransferItems[i].itemIds = singleDeposit.tokenIdsOrAmounts;
                          batchTransferItems[i].amounts = amounts;
                      } else if (singleDeposit.tokenType == TokenType.ERC20) {
                          if (price == 0) {
                              price = erc20Oracle.getTWAP(singleDeposit.tokenAddress, uint32(3_600));
                              prices[singleDeposit.tokenAddress][roundId] = price;
                          }
                          uint256[] memory amounts = singleDeposit.tokenIdsOrAmounts;
                          if (amounts.length != 1) {
                              revert InvalidLength();
                          }
                          uint256 amount = amounts[0];
                          uint256 entriesCount = ((price * amount) / (10 ** IERC20(singleDeposit.tokenAddress).decimals())) /
                              round.valuePerEntry;
                          if (entriesCount == 0) {
                              revert InvalidValue();
                          }
                          totalEntriesCount += entriesCount;
                          if (currentEntryIndex != 0) {
                              currentEntryIndex += uint40(entriesCount);
                          } else {
                              currentEntryIndex = _getCurrentEntryIndexWithoutAccrual(round, roundDepositCount, entriesCount);
                          }
                          round.deposits.push(
                              Deposit({
                                  tokenType: TokenType.ERC20,
                                  tokenAddress: singleDeposit.tokenAddress,
                                  tokenId: 0,
                                  tokenAmount: amount,
                                  depositor: msg.sender,
                                  withdrawn: false,
                                  currentEntryIndex: currentEntryIndex
                              })
                          );
                          unchecked {
                              roundDepositCount += 1;
                          }
                          batchTransferItems[i].tokenAddress = singleDeposit.tokenAddress;
                          batchTransferItems[i].tokenType = TransferManagerTokenType.ERC20;
                          batchTransferItems[i].amounts = singleDeposit.tokenIdsOrAmounts;
                      } else {
                          revert InvalidTokenType();
                      }
                      unchecked {
                          ++i;
                      }
                  }
                  transferManager.transferBatchItemsAcrossCollections(batchTransferItems, msg.sender, address(this));
              }
              {
                  uint256 maximumNumberOfDeposits = round.maximumNumberOfDeposits;
                  if (roundDepositCount > maximumNumberOfDeposits) {
                      revert MaximumNumberOfDepositsReached();
                  }
                  uint256 numberOfParticipants = round.numberOfParticipants;
                  if (
                      numberOfParticipants == round.maximumNumberOfParticipants ||
                      (numberOfParticipants > 1 && roundDepositCount == maximumNumberOfDeposits)
                  ) {
                      _drawWinner(round, roundId);
                  }
              }
              unchecked {
                  depositCount[roundId][msg.sender] = userDepositCount + 1;
              }
              emit Deposited(msg.sender, roundId, totalEntriesCount);
          }
          /**
           * @param roundId The ID of the round to be cancelled.
           */
          function _cancel(uint256 roundId) private {
              Round storage round = rounds[roundId];
              _validateRoundStatus(round, RoundStatus.Open);
              if (block.timestamp < round.cutoffTime) {
                  revert CutoffTimeNotReached();
              }
              if (round.numberOfParticipants > 1) {
                  revert RoundCannotBeClosed();
              }
              round.status = RoundStatus.Cancelled;
              emit RoundStatusUpdated(roundId, RoundStatus.Cancelled);
              _startRound({_roundsCount: roundId});
          }
          /**
           * @param requestId The ID of the request
           * @param randomWords The random words returned by Chainlink
           */
          function fulfillRandomWords(uint256 requestId, uint256[] memory randomWords) internal override {
              if (randomnessRequests[requestId].exists) {
                  uint256 roundId = randomnessRequests[requestId].roundId;
                  Round storage round = rounds[roundId];
                  if (round.status == RoundStatus.Drawing) {
                      round.status = RoundStatus.Drawn;
                      uint256 randomWord = randomWords[0];
                      randomnessRequests[requestId].randomWord = randomWord;
                      uint256 count = round.deposits.length;
                      uint256[] memory currentEntryIndexArray = new uint256[](count);
                      for (uint256 i; i < count; ) {
                          currentEntryIndexArray[i] = uint256(round.deposits[i].currentEntryIndex);
                          unchecked {
                              ++i;
                          }
                      }
                      uint256 currentEntryIndex = currentEntryIndexArray[_unsafeSubtract(count, 1)];
                      uint256 entriesSold = _unsafeAdd(currentEntryIndex, 1);
                      uint256 winningEntry = uint256(randomWord) % entriesSold;
                      round.winner = round.deposits[currentEntryIndexArray.findUpperBound(winningEntry)].depositor;
                      round.protocolFeeOwed = (round.valuePerEntry * entriesSold * round.protocolFeeBp) / 10_000;
                      emit RoundStatusUpdated(roundId, RoundStatus.Drawn);
                      _startRound({_roundsCount: roundId});
                  }
              }
          }
          /**
           * @param round The round to check the status of.
           * @param status The expected status of the round
           */
          function _validateRoundStatus(Round storage round, RoundStatus status) private view {
              if (round.status != status) {
                  revert InvalidStatus();
              }
          }
          /**
           * @param collection The collection address.
           * @param floorPrice The floor price response from Reservoir oracle.
           */
          function _verifyReservoirSignature(address collection, ReservoirOracleFloorPrice calldata floorPrice) private view {
              if (block.timestamp > floorPrice.timestamp + uint256(signatureValidityPeriod)) {
                  revert SignatureExpired();
              }
              bytes32 expectedMessageId = keccak256(
                  abi.encode(RESERVOIR_ORACLE_ID_TYPEHASH, uint8(1), 86_400, collection, false)
              );
              if (expectedMessageId != floorPrice.id) {
                  revert MessageIdInvalid();
              }
              bytes32 messageHash = keccak256(
                  abi.encodePacked(
                      "\\x19Ethereum Signed Message:\
      32",
                      keccak256(
                          abi.encode(
                              RESERVOIR_ORACLE_MESSAGE_TYPEHASH,
                              expectedMessageId,
                              keccak256(floorPrice.payload),
                              floorPrice.timestamp,
                              block.chainid
                          )
                      )
                  )
              );
              SignatureCheckerMemory.verify(messageHash, reservoirOracle, floorPrice.signature);
          }
          function _getReservoirPrice(DepositCalldata calldata singleDeposit) private view returns (uint256 price) {
              address currency;
              _verifyReservoirSignature(singleDeposit.tokenAddress, singleDeposit.reservoirOracleFloorPrice);
              (currency, price) = abi.decode(singleDeposit.reservoirOracleFloorPrice.payload, (address, uint256));
              if (currency != address(0)) {
                  revert InvalidCurrency();
              }
          }
          /**
           * @param round The open round.
           * @param roundDepositCount The number of deposits in the round.
           * @param entriesCount The number of entries to be added.
           */
          function _getCurrentEntryIndexWithoutAccrual(
              Round storage round,
              uint256 roundDepositCount,
              uint256 entriesCount
          ) private view returns (uint40 currentEntryIndex) {
              if (roundDepositCount == 0) {
                  currentEntryIndex = uint40(_unsafeSubtract(entriesCount, 1));
              } else {
                  currentEntryIndex = uint40(
                      round.deposits[_unsafeSubtract(roundDepositCount, 1)].currentEntryIndex + entriesCount
                  );
              }
          }
          /**
           * Unsafe math functions.
           */
          function _unsafeAdd(uint256 a, uint256 b) private pure returns (uint256) {
              unchecked {
                  return a + b;
              }
          }
          function _unsafeSubtract(uint256 a, uint256 b) private pure returns (uint256) {
              unchecked {
                  return a - b;
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.20;
      // Enums
      import {TokenType} from "../enums/TokenType.sol";
      /**
       * @title ITransferManager
       * @author LooksRare protocol team (👀,💎)
       */
      interface ITransferManager {
          /**
           * @notice This struct is only used for transferBatchItemsAcrossCollections.
           * @param tokenAddress Token address
           * @param tokenType 0 for ERC721, 1 for ERC1155
           * @param itemIds Array of item ids to transfer
           * @param amounts Array of amounts to transfer
           */
          struct BatchTransferItem {
              address tokenAddress;
              TokenType tokenType;
              uint256[] itemIds;
              uint256[] amounts;
          }
          /**
           * @notice It is emitted if operators' approvals to transfer NFTs are granted by a user.
           * @param user Address of the user
           * @param operators Array of operator addresses
           */
          event ApprovalsGranted(address user, address[] operators);
          /**
           * @notice It is emitted if operators' approvals to transfer NFTs are revoked by a user.
           * @param user Address of the user
           * @param operators Array of operator addresses
           */
          event ApprovalsRemoved(address user, address[] operators);
          /**
           * @notice It is emitted if a new operator is added to the global allowlist.
           * @param operator Operator address
           */
          event OperatorAllowed(address operator);
          /**
           * @notice It is emitted if an operator is removed from the global allowlist.
           * @param operator Operator address
           */
          event OperatorRemoved(address operator);
          /**
           * @notice It is returned if the operator to approve has already been approved by the user.
           */
          error OperatorAlreadyApprovedByUser();
          /**
           * @notice It is returned if the operator to revoke has not been previously approved by the user.
           */
          error OperatorNotApprovedByUser();
          /**
           * @notice It is returned if the transfer caller is already allowed by the owner.
           * @dev This error can only be returned for owner operations.
           */
          error OperatorAlreadyAllowed();
          /**
           * @notice It is returned if the operator to approve is not in the global allowlist defined by the owner.
           * @dev This error can be returned if the user tries to grant approval to an operator address not in the
           *      allowlist or if the owner tries to remove the operator from the global allowlist.
           */
          error OperatorNotAllowed();
          /**
           * @notice It is returned if the transfer caller is invalid.
           *         For a transfer called to be valid, the operator must be in the global allowlist and
           *         approved by the 'from' user.
           */
          error TransferCallerInvalid();
          /**
           * @notice This function transfers ERC20 tokens.
           * @param tokenAddress Token address
           * @param from Sender address
           * @param to Recipient address
           * @param amount amount
           */
          function transferERC20(
              address tokenAddress,
              address from,
              address to,
              uint256 amount
          ) external;
          /**
           * @notice This function transfers a single item for a single ERC721 collection.
           * @param tokenAddress Token address
           * @param from Sender address
           * @param to Recipient address
           * @param itemId Item ID
           */
          function transferItemERC721(
              address tokenAddress,
              address from,
              address to,
              uint256 itemId
          ) external;
          /**
           * @notice This function transfers items for a single ERC721 collection.
           * @param tokenAddress Token address
           * @param from Sender address
           * @param to Recipient address
           * @param itemIds Array of itemIds
           * @param amounts Array of amounts
           */
          function transferItemsERC721(
              address tokenAddress,
              address from,
              address to,
              uint256[] calldata itemIds,
              uint256[] calldata amounts
          ) external;
          /**
           * @notice This function transfers a single item for a single ERC1155 collection.
           * @param tokenAddress Token address
           * @param from Sender address
           * @param to Recipient address
           * @param itemId Item ID
           * @param amount Amount
           */
          function transferItemERC1155(
              address tokenAddress,
              address from,
              address to,
              uint256 itemId,
              uint256 amount
          ) external;
          /**
           * @notice This function transfers items for a single ERC1155 collection.
           * @param tokenAddress Token address
           * @param from Sender address
           * @param to Recipient address
           * @param itemIds Array of itemIds
           * @param amounts Array of amounts
           * @dev It does not allow batch transferring if from = msg.sender since native function should be used.
           */
          function transferItemsERC1155(
              address tokenAddress,
              address from,
              address to,
              uint256[] calldata itemIds,
              uint256[] calldata amounts
          ) external;
          /**
           * @notice This function transfers items across an array of tokens that can be ERC20, ERC721 and ERC1155.
           * @param items Array of BatchTransferItem
           * @param from Sender address
           * @param to Recipient address
           */
          function transferBatchItemsAcrossCollections(
              BatchTransferItem[] calldata items,
              address from,
              address to
          ) external;
          /**
           * @notice This function allows a user to grant approvals for an array of operators.
           *         Users cannot grant approvals if the operator is not allowed by this contract's owner.
           * @param operators Array of operator addresses
           * @dev Each operator address must be globally allowed to be approved.
           */
          function grantApprovals(address[] calldata operators) external;
          /**
           * @notice This function allows a user to revoke existing approvals for an array of operators.
           * @param operators Array of operator addresses
           * @dev Each operator address must be approved at the user level to be revoked.
           */
          function revokeApprovals(address[] calldata operators) external;
          /**
           * @notice This function allows an operator to be added for the shared transfer system.
           *         Once the operator is allowed, users can grant NFT approvals to this operator.
           * @param operator Operator address to allow
           * @dev Only callable by owner.
           */
          function allowOperator(address operator) external;
          /**
           * @notice This function allows the user to remove an operator for the shared transfer system.
           * @param operator Operator address to remove
           * @dev Only callable by owner.
           */
          function removeOperator(address operator) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.20;
      enum TokenType {
          ERC20,
          ERC721,
          ERC1155
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      interface IERC20 {
          event Transfer(address indexed from, address indexed to, uint256 value);
          event Approval(address indexed owner, address indexed spender, uint256 value);
          function totalSupply() external view returns (uint256);
          function balanceOf(address account) external view returns (uint256);
          function transfer(address to, uint256 amount) external returns (bool);
          function allowance(address owner, address spender) external view returns (uint256);
          function approve(address spender, uint256 amount) external returns (bool);
          function transferFrom(address from, address to, uint256 amount) external returns (bool);
          function decimals() external view returns (uint8);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      // Interfaces
      import {IERC1271} from "./interfaces/generic/IERC1271.sol";
      // Constants
      import {ERC1271_MAGIC_VALUE} from "./constants/StandardConstants.sol";
      // Errors
      import {SignatureParameterSInvalid, SignatureParameterVInvalid, SignatureERC1271Invalid, SignatureEOAInvalid, NullSignerAddress, SignatureLengthInvalid} from "./errors/SignatureCheckerErrors.sol";
      /**
       * @title SignatureCheckerMemory
       * @notice This library is used to verify signatures for EOAs (with lengths of both 65 and 64 bytes)
       *         and contracts (ERC1271).
       * @author LooksRare protocol team (👀,💎)
       */
      library SignatureCheckerMemory {
          /**
           * @notice This function verifies whether the signer is valid for a hash and raw signature.
           * @param hash Data hash
           * @param signer Signer address (to confirm message validity)
           * @param signature Signature parameters encoded (v, r, s)
           * @dev For EIP-712 signatures, the hash must be the digest (computed with signature hash and domain separator)
           */
          function verify(bytes32 hash, address signer, bytes memory signature) internal view {
              if (signer.code.length == 0) {
                  if (_recoverEOASigner(hash, signature) == signer) return;
                  revert SignatureEOAInvalid();
              } else {
                  if (IERC1271(signer).isValidSignature(hash, signature) == ERC1271_MAGIC_VALUE) return;
                  revert SignatureERC1271Invalid();
              }
          }
          /**
           * @notice This function is internal and splits a signature into r, s, v outputs.
           * @param signature A 64 or 65 bytes signature
           * @return r The r output of the signature
           * @return s The s output of the signature
           * @return v The recovery identifier, must be 27 or 28
           */
          function splitSignature(bytes memory signature) internal pure returns (bytes32 r, bytes32 s, uint8 v) {
              uint256 length = signature.length;
              if (length == 65) {
                  assembly {
                      r := mload(add(signature, 0x20))
                      s := mload(add(signature, 0x40))
                      v := byte(0, mload(add(signature, 0x60)))
                  }
              } else if (length == 64) {
                  assembly {
                      r := mload(add(signature, 0x20))
                      let vs := mload(add(signature, 0x40))
                      s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                      v := add(shr(255, vs), 27)
                  }
              } else {
                  revert SignatureLengthInvalid(length);
              }
              if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                  revert SignatureParameterSInvalid();
              }
              if (v != 27 && v != 28) {
                  revert SignatureParameterVInvalid(v);
              }
          }
          /**
           * @notice This function is private and recovers the signer of a signature (for EOA only).
           * @param hash Hash of the signed message
           * @param signature Bytes containing the signature (64 or 65 bytes)
           * @return signer The address that signed the signature
           */
          function _recoverEOASigner(bytes32 hash, bytes memory signature) private pure returns (address signer) {
              (bytes32 r, bytes32 s, uint8 v) = splitSignature(signature);
              // If the signature is valid (and not malleable), return the signer's address
              signer = ecrecover(hash, v, r, s);
              if (signer == address(0)) {
                  revert NullSignerAddress();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      // Interfaces
      import {IReentrancyGuard} from "./interfaces/IReentrancyGuard.sol";
      /**
       * @title ReentrancyGuard
       * @notice This contract protects against reentrancy attacks.
       *         It is adjusted from OpenZeppelin.
       * @author LooksRare protocol team (👀,💎)
       */
      abstract contract ReentrancyGuard is IReentrancyGuard {
          uint256 private _status;
          /**
           * @notice Modifier to wrap functions to prevent reentrancy calls.
           */
          modifier nonReentrant() {
              if (_status == 2) {
                  revert ReentrancyFail();
              }
              _status = 2;
              _;
              _status = 1;
          }
          constructor() {
              _status = 1;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      /**
       * @title Pausable
       * @notice This contract makes it possible to pause the contract.
       *         It is adjusted from OpenZeppelin.
       * @author LooksRare protocol team (👀,💎)
       */
      abstract contract Pausable {
          /**
           * @dev Emitted when the pause is triggered by `account`.
           */
          event Paused(address account);
          /**
           * @dev Emitted when the pause is lifted by `account`.
           */
          event Unpaused(address account);
          error IsPaused();
          error NotPaused();
          bool private _paused;
          /**
           * @dev Modifier to make a function callable only when the contract is not paused.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          modifier whenNotPaused() {
              _requireNotPaused();
              _;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is paused.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          modifier whenPaused() {
              _requirePaused();
              _;
          }
          /**
           * @dev Returns true if the contract is paused, and false otherwise.
           */
          function paused() public view virtual returns (bool) {
              return _paused;
          }
          /**
           * @dev Throws if the contract is paused.
           */
          function _requireNotPaused() internal view virtual {
              if (paused()) {
                  revert IsPaused();
              }
          }
          /**
           * @dev Throws if the contract is not paused.
           */
          function _requirePaused() internal view virtual {
              if (!paused()) {
                  revert NotPaused();
              }
          }
          /**
           * @dev Triggers stopped state.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          function _pause() internal virtual whenNotPaused {
              _paused = true;
              emit Paused(msg.sender);
          }
          /**
           * @dev Returns to normal state.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          function _unpause() internal virtual whenPaused {
              _paused = false;
              emit Unpaused(msg.sender);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      // Interfaces
      import {IWETH} from "../interfaces/generic/IWETH.sol";
      /**
       * @title LowLevelWETH
       * @notice This contract contains a function to transfer ETH with an option to wrap to WETH.
       *         If the ETH transfer fails within a gas limit, the amount in ETH is wrapped to WETH and then transferred.
       * @author LooksRare protocol team (👀,💎)
       */
      contract LowLevelWETH {
          /**
           * @notice It transfers ETH to a recipient with a specified gas limit.
           *         If the original transfers fails, it wraps to WETH and transfers the WETH to recipient.
           * @param _WETH WETH address
           * @param _to Recipient address
           * @param _amount Amount to transfer
           * @param _gasLimit Gas limit to perform the ETH transfer
           */
          function _transferETHAndWrapIfFailWithGasLimit(
              address _WETH,
              address _to,
              uint256 _amount,
              uint256 _gasLimit
          ) internal {
              bool status;
              assembly {
                  status := call(_gasLimit, _to, _amount, 0, 0, 0, 0)
              }
              if (!status) {
                  IWETH(_WETH).deposit{value: _amount}();
                  IWETH(_WETH).transfer(_to, _amount);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      // Interfaces
      import {IERC20} from "../interfaces/generic/IERC20.sol";
      // Errors
      import {ERC20TransferFail, ERC20TransferFromFail} from "../errors/LowLevelErrors.sol";
      import {NotAContract} from "../errors/GenericErrors.sol";
      /**
       * @title LowLevelERC20Transfer
       * @notice This contract contains low-level calls to transfer ERC20 tokens.
       * @author LooksRare protocol team (👀,💎)
       */
      contract LowLevelERC20Transfer {
          /**
           * @notice Execute ERC20 transferFrom
           * @param currency Currency address
           * @param from Sender address
           * @param to Recipient address
           * @param amount Amount to transfer
           */
          function _executeERC20TransferFrom(address currency, address from, address to, uint256 amount) internal {
              if (currency.code.length == 0) {
                  revert NotAContract();
              }
              (bool status, bytes memory data) = currency.call(abi.encodeCall(IERC20.transferFrom, (from, to, amount)));
              if (!status) {
                  revert ERC20TransferFromFail();
              }
              if (data.length > 0) {
                  if (!abi.decode(data, (bool))) {
                      revert ERC20TransferFromFail();
                  }
              }
          }
          /**
           * @notice Execute ERC20 (direct) transfer
           * @param currency Currency address
           * @param to Recipient address
           * @param amount Amount to transfer
           */
          function _executeERC20DirectTransfer(address currency, address to, uint256 amount) internal {
              if (currency.code.length == 0) {
                  revert NotAContract();
              }
              (bool status, bytes memory data) = currency.call(abi.encodeCall(IERC20.transfer, (to, amount)));
              if (!status) {
                  revert ERC20TransferFail();
              }
              if (data.length > 0) {
                  if (!abi.decode(data, (bool))) {
                      revert ERC20TransferFail();
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      // Interfaces
      import {IERC721} from "../interfaces/generic/IERC721.sol";
      // Errors
      import {ERC721TransferFromFail} from "../errors/LowLevelErrors.sol";
      import {NotAContract} from "../errors/GenericErrors.sol";
      /**
       * @title LowLevelERC721Transfer
       * @notice This contract contains low-level calls to transfer ERC721 tokens.
       * @author LooksRare protocol team (👀,💎)
       */
      contract LowLevelERC721Transfer {
          /**
           * @notice Execute ERC721 transferFrom
           * @param collection Address of the collection
           * @param from Address of the sender
           * @param to Address of the recipient
           * @param tokenId tokenId to transfer
           */
          function _executeERC721TransferFrom(address collection, address from, address to, uint256 tokenId) internal {
              if (collection.code.length == 0) {
                  revert NotAContract();
              }
              (bool status, ) = collection.call(abi.encodeCall(IERC721.transferFrom, (from, to, tokenId)));
              if (!status) {
                  revert ERC721TransferFromFail();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
      pragma solidity ^0.8.0;
      import "./IAccessControl.sol";
      import "../utils/Context.sol";
      import "../utils/Strings.sol";
      import "../utils/introspection/ERC165.sol";
      /**
       * @dev Contract module that allows children to implement role-based access
       * control mechanisms. This is a lightweight version that doesn't allow enumerating role
       * members except through off-chain means by accessing the contract event logs. Some
       * applications may benefit from on-chain enumerability, for those cases see
       * {AccessControlEnumerable}.
       *
       * Roles are referred to by their `bytes32` identifier. These should be exposed
       * in the external API and be unique. The best way to achieve this is by
       * using `public constant` hash digests:
       *
       * ```solidity
       * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
       * ```
       *
       * Roles can be used to represent a set of permissions. To restrict access to a
       * function call, use {hasRole}:
       *
       * ```solidity
       * function foo() public {
       *     require(hasRole(MY_ROLE, msg.sender));
       *     ...
       * }
       * ```
       *
       * Roles can be granted and revoked dynamically via the {grantRole} and
       * {revokeRole} functions. Each role has an associated admin role, and only
       * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
       *
       * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
       * that only accounts with this role will be able to grant or revoke other
       * roles. More complex role relationships can be created by using
       * {_setRoleAdmin}.
       *
       * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
       * grant and revoke this role. Extra precautions should be taken to secure
       * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
       * to enforce additional security measures for this role.
       */
      abstract contract AccessControl is Context, IAccessControl, ERC165 {
          struct RoleData {
              mapping(address => bool) members;
              bytes32 adminRole;
          }
          mapping(bytes32 => RoleData) private _roles;
          bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
          /**
           * @dev Modifier that checks that an account has a specific role. Reverts
           * with a standardized message including the required role.
           *
           * The format of the revert reason is given by the following regular expression:
           *
           *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
           *
           * _Available since v4.1._
           */
          modifier onlyRole(bytes32 role) {
              _checkRole(role);
              _;
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
          }
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
              return _roles[role].members[account];
          }
          /**
           * @dev Revert with a standard message if `_msgSender()` is missing `role`.
           * Overriding this function changes the behavior of the {onlyRole} modifier.
           *
           * Format of the revert message is described in {_checkRole}.
           *
           * _Available since v4.6._
           */
          function _checkRole(bytes32 role) internal view virtual {
              _checkRole(role, _msgSender());
          }
          /**
           * @dev Revert with a standard message if `account` is missing `role`.
           *
           * The format of the revert reason is given by the following regular expression:
           *
           *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
           */
          function _checkRole(bytes32 role, address account) internal view virtual {
              if (!hasRole(role, account)) {
                  revert(
                      string(
                          abi.encodePacked(
                              "AccessControl: account ",
                              Strings.toHexString(account),
                              " is missing role ",
                              Strings.toHexString(uint256(role), 32)
                          )
                      )
                  );
              }
          }
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
              return _roles[role].adminRole;
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           *
           * May emit a {RoleGranted} event.
           */
          function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
              _grantRole(role, account);
          }
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           *
           * May emit a {RoleRevoked} event.
           */
          function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
              _revokeRole(role, account);
          }
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been revoked `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `account`.
           *
           * May emit a {RoleRevoked} event.
           */
          function renounceRole(bytes32 role, address account) public virtual override {
              require(account == _msgSender(), "AccessControl: can only renounce roles for self");
              _revokeRole(role, account);
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event. Note that unlike {grantRole}, this function doesn't perform any
           * checks on the calling account.
           *
           * May emit a {RoleGranted} event.
           *
           * [WARNING]
           * ====
           * This function should only be called from the constructor when setting
           * up the initial roles for the system.
           *
           * Using this function in any other way is effectively circumventing the admin
           * system imposed by {AccessControl}.
           * ====
           *
           * NOTE: This function is deprecated in favor of {_grantRole}.
           */
          function _setupRole(bytes32 role, address account) internal virtual {
              _grantRole(role, account);
          }
          /**
           * @dev Sets `adminRole` as ``role``'s admin role.
           *
           * Emits a {RoleAdminChanged} event.
           */
          function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
              bytes32 previousAdminRole = getRoleAdmin(role);
              _roles[role].adminRole = adminRole;
              emit RoleAdminChanged(role, previousAdminRole, adminRole);
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * Internal function without access restriction.
           *
           * May emit a {RoleGranted} event.
           */
          function _grantRole(bytes32 role, address account) internal virtual {
              if (!hasRole(role, account)) {
                  _roles[role].members[account] = true;
                  emit RoleGranted(role, account, _msgSender());
              }
          }
          /**
           * @dev Revokes `role` from `account`.
           *
           * Internal function without access restriction.
           *
           * May emit a {RoleRevoked} event.
           */
          function _revokeRole(bytes32 role, address account) internal virtual {
              if (hasRole(role, account)) {
                  _roles[role].members[account] = false;
                  emit RoleRevoked(role, account, _msgSender());
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      interface VRFCoordinatorV2Interface {
        /**
         * @notice Get configuration relevant for making requests
         * @return minimumRequestConfirmations global min for request confirmations
         * @return maxGasLimit global max for request gas limit
         * @return s_provingKeyHashes list of registered key hashes
         */
        function getRequestConfig()
          external
          view
          returns (
            uint16,
            uint32,
            bytes32[] memory
          );
        /**
         * @notice Request a set of random words.
         * @param keyHash - Corresponds to a particular oracle job which uses
         * that key for generating the VRF proof. Different keyHash's have different gas price
         * ceilings, so you can select a specific one to bound your maximum per request cost.
         * @param subId  - The ID of the VRF subscription. Must be funded
         * with the minimum subscription balance required for the selected keyHash.
         * @param minimumRequestConfirmations - How many blocks you'd like the
         * oracle to wait before responding to the request. See SECURITY CONSIDERATIONS
         * for why you may want to request more. The acceptable range is
         * [minimumRequestBlockConfirmations, 200].
         * @param callbackGasLimit - How much gas you'd like to receive in your
         * fulfillRandomWords callback. Note that gasleft() inside fulfillRandomWords
         * may be slightly less than this amount because of gas used calling the function
         * (argument decoding etc.), so you may need to request slightly more than you expect
         * to have inside fulfillRandomWords. The acceptable range is
         * [0, maxGasLimit]
         * @param numWords - The number of uint256 random values you'd like to receive
         * in your fulfillRandomWords callback. Note these numbers are expanded in a
         * secure way by the VRFCoordinator from a single random value supplied by the oracle.
         * @return requestId - A unique identifier of the request. Can be used to match
         * a request to a response in fulfillRandomWords.
         */
        function requestRandomWords(
          bytes32 keyHash,
          uint64 subId,
          uint16 minimumRequestConfirmations,
          uint32 callbackGasLimit,
          uint32 numWords
        ) external returns (uint256 requestId);
        /**
         * @notice Create a VRF subscription.
         * @return subId - A unique subscription id.
         * @dev You can manage the consumer set dynamically with addConsumer/removeConsumer.
         * @dev Note to fund the subscription, use transferAndCall. For example
         * @dev  LINKTOKEN.transferAndCall(
         * @dev    address(COORDINATOR),
         * @dev    amount,
         * @dev    abi.encode(subId));
         */
        function createSubscription() external returns (uint64 subId);
        /**
         * @notice Get a VRF subscription.
         * @param subId - ID of the subscription
         * @return balance - LINK balance of the subscription in juels.
         * @return reqCount - number of requests for this subscription, determines fee tier.
         * @return owner - owner of the subscription.
         * @return consumers - list of consumer address which are able to use this subscription.
         */
        function getSubscription(uint64 subId)
          external
          view
          returns (
            uint96 balance,
            uint64 reqCount,
            address owner,
            address[] memory consumers
          );
        /**
         * @notice Request subscription owner transfer.
         * @param subId - ID of the subscription
         * @param newOwner - proposed new owner of the subscription
         */
        function requestSubscriptionOwnerTransfer(uint64 subId, address newOwner) external;
        /**
         * @notice Request subscription owner transfer.
         * @param subId - ID of the subscription
         * @dev will revert if original owner of subId has
         * not requested that msg.sender become the new owner.
         */
        function acceptSubscriptionOwnerTransfer(uint64 subId) external;
        /**
         * @notice Add a consumer to a VRF subscription.
         * @param subId - ID of the subscription
         * @param consumer - New consumer which can use the subscription
         */
        function addConsumer(uint64 subId, address consumer) external;
        /**
         * @notice Remove a consumer from a VRF subscription.
         * @param subId - ID of the subscription
         * @param consumer - Consumer to remove from the subscription
         */
        function removeConsumer(uint64 subId, address consumer) external;
        /**
         * @notice Cancel a subscription
         * @param subId - ID of the subscription
         * @param to - Where to send the remaining LINK to
         */
        function cancelSubscription(uint64 subId, address to) external;
        /*
         * @notice Check to see if there exists a request commitment consumers
         * for all consumers and keyhashes for a given sub.
         * @param subId - ID of the subscription
         * @return true if there exists at least one unfulfilled request for the subscription, false
         * otherwise.
         */
        function pendingRequestExists(uint64 subId) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.4;
      /** ****************************************************************************
       * @notice Interface for contracts using VRF randomness
       * *****************************************************************************
       * @dev PURPOSE
       *
       * @dev Reggie the Random Oracle (not his real job) wants to provide randomness
       * @dev to Vera the verifier in such a way that Vera can be sure he's not
       * @dev making his output up to suit himself. Reggie provides Vera a public key
       * @dev to which he knows the secret key. Each time Vera provides a seed to
       * @dev Reggie, he gives back a value which is computed completely
       * @dev deterministically from the seed and the secret key.
       *
       * @dev Reggie provides a proof by which Vera can verify that the output was
       * @dev correctly computed once Reggie tells it to her, but without that proof,
       * @dev the output is indistinguishable to her from a uniform random sample
       * @dev from the output space.
       *
       * @dev The purpose of this contract is to make it easy for unrelated contracts
       * @dev to talk to Vera the verifier about the work Reggie is doing, to provide
       * @dev simple access to a verifiable source of randomness. It ensures 2 things:
       * @dev 1. The fulfillment came from the VRFCoordinator
       * @dev 2. The consumer contract implements fulfillRandomWords.
       * *****************************************************************************
       * @dev USAGE
       *
       * @dev Calling contracts must inherit from VRFConsumerBase, and can
       * @dev initialize VRFConsumerBase's attributes in their constructor as
       * @dev shown:
       *
       * @dev   contract VRFConsumer {
       * @dev     constructor(<other arguments>, address _vrfCoordinator, address _link)
       * @dev       VRFConsumerBase(_vrfCoordinator) public {
       * @dev         <initialization with other arguments goes here>
       * @dev       }
       * @dev   }
       *
       * @dev The oracle will have given you an ID for the VRF keypair they have
       * @dev committed to (let's call it keyHash). Create subscription, fund it
       * @dev and your consumer contract as a consumer of it (see VRFCoordinatorInterface
       * @dev subscription management functions).
       * @dev Call requestRandomWords(keyHash, subId, minimumRequestConfirmations,
       * @dev callbackGasLimit, numWords),
       * @dev see (VRFCoordinatorInterface for a description of the arguments).
       *
       * @dev Once the VRFCoordinator has received and validated the oracle's response
       * @dev to your request, it will call your contract's fulfillRandomWords method.
       *
       * @dev The randomness argument to fulfillRandomWords is a set of random words
       * @dev generated from your requestId and the blockHash of the request.
       *
       * @dev If your contract could have concurrent requests open, you can use the
       * @dev requestId returned from requestRandomWords to track which response is associated
       * @dev with which randomness request.
       * @dev See "SECURITY CONSIDERATIONS" for principles to keep in mind,
       * @dev if your contract could have multiple requests in flight simultaneously.
       *
       * @dev Colliding `requestId`s are cryptographically impossible as long as seeds
       * @dev differ.
       *
       * *****************************************************************************
       * @dev SECURITY CONSIDERATIONS
       *
       * @dev A method with the ability to call your fulfillRandomness method directly
       * @dev could spoof a VRF response with any random value, so it's critical that
       * @dev it cannot be directly called by anything other than this base contract
       * @dev (specifically, by the VRFConsumerBase.rawFulfillRandomness method).
       *
       * @dev For your users to trust that your contract's random behavior is free
       * @dev from malicious interference, it's best if you can write it so that all
       * @dev behaviors implied by a VRF response are executed *during* your
       * @dev fulfillRandomness method. If your contract must store the response (or
       * @dev anything derived from it) and use it later, you must ensure that any
       * @dev user-significant behavior which depends on that stored value cannot be
       * @dev manipulated by a subsequent VRF request.
       *
       * @dev Similarly, both miners and the VRF oracle itself have some influence
       * @dev over the order in which VRF responses appear on the blockchain, so if
       * @dev your contract could have multiple VRF requests in flight simultaneously,
       * @dev you must ensure that the order in which the VRF responses arrive cannot
       * @dev be used to manipulate your contract's user-significant behavior.
       *
       * @dev Since the block hash of the block which contains the requestRandomness
       * @dev call is mixed into the input to the VRF *last*, a sufficiently powerful
       * @dev miner could, in principle, fork the blockchain to evict the block
       * @dev containing the request, forcing the request to be included in a
       * @dev different block with a different hash, and therefore a different input
       * @dev to the VRF. However, such an attack would incur a substantial economic
       * @dev cost. This cost scales with the number of blocks the VRF oracle waits
       * @dev until it calls responds to a request. It is for this reason that
       * @dev that you can signal to an oracle you'd like them to wait longer before
       * @dev responding to the request (however this is not enforced in the contract
       * @dev and so remains effective only in the case of unmodified oracle software).
       */
      abstract contract VRFConsumerBaseV2 {
        error OnlyCoordinatorCanFulfill(address have, address want);
        address private immutable vrfCoordinator;
        /**
         * @param _vrfCoordinator address of VRFCoordinator contract
         */
        constructor(address _vrfCoordinator) {
          vrfCoordinator = _vrfCoordinator;
        }
        /**
         * @notice fulfillRandomness handles the VRF response. Your contract must
         * @notice implement it. See "SECURITY CONSIDERATIONS" above for important
         * @notice principles to keep in mind when implementing your fulfillRandomness
         * @notice method.
         *
         * @dev VRFConsumerBaseV2 expects its subcontracts to have a method with this
         * @dev signature, and will call it once it has verified the proof
         * @dev associated with the randomness. (It is triggered via a call to
         * @dev rawFulfillRandomness, below.)
         *
         * @param requestId The Id initially returned by requestRandomness
         * @param randomWords the VRF output expanded to the requested number of words
         */
        function fulfillRandomWords(uint256 requestId, uint256[] memory randomWords) internal virtual;
        // rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF
        // proof. rawFulfillRandomness then calls fulfillRandomness, after validating
        // the origin of the call
        function rawFulfillRandomWords(uint256 requestId, uint256[] memory randomWords) external {
          if (msg.sender != vrfCoordinator) {
            revert OnlyCoordinatorCanFulfill(msg.sender, vrfCoordinator);
          }
          fulfillRandomWords(requestId, randomWords);
        }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.20;
      interface IYolo {
          enum RoundStatus {
              None,
              Open,
              Drawing,
              Drawn,
              Cancelled
          }
          enum TokenType {
              ETH,
              ERC20,
              ERC721
          }
          event CurrenciesStatusUpdated(address[] currencies, bool isAllowed);
          event Deposited(address depositor, uint256 roundId, uint256 entriesCount);
          event ERC20OracleUpdated(address erc20Oracle);
          event MaximumNumberOfDepositsPerRoundUpdated(uint40 maximumNumberOfDepositsPerRound);
          event MaximumNumberOfParticipantsPerRoundUpdated(uint40 maximumNumberOfParticipantsPerRound);
          event PrizesClaimed(uint256 roundId, address winner, uint256[] prizeIndices);
          event DepositsWithdrawn(uint256 roundId, address depositor, uint256[] depositIndices);
          event ProtocolFeeBpUpdated(uint16 protocolFeeBp);
          event ProtocolFeeRecipientUpdated(address protocolFeeRecipient);
          event RandomnessRequested(uint256 roundId, uint256 requestId);
          event ReservoirOracleUpdated(address reservoirOracle);
          event RoundDurationUpdated(uint40 roundDuration);
          event RoundStatusUpdated(uint256 roundId, RoundStatus status);
          event SignatureValidityPeriodUpdated(uint40 signatureValidityPeriod);
          event ValuePerEntryUpdated(uint256 valuePerEntry);
          error AlreadyWithdrawn();
          error CutoffTimeNotReached();
          error DrawExpirationTimeNotReached();
          error InsufficientParticipants();
          error InvalidCollection();
          error InvalidCurrency();
          error InvalidIndex();
          error InvalidLength();
          error InvalidRoundDuration();
          error InvalidStatus();
          error InvalidTokenType();
          error InvalidValue();
          error MaximumNumberOfDepositsReached();
          error MessageIdInvalid();
          error NotOperator();
          error NotOwner();
          error NotWinner();
          error NotDepositor();
          error ProtocolFeeNotPaid();
          error RandomnessRequestAlreadyExists();
          error RoundCannotBeClosed();
          error SignatureExpired();
          error ZeroDeposits();
          /**
           * @param owner The owner of the contract.
           * @param operator The operator of the contract.
           * @param roundDuration The duration of each round.
           * @param valuePerEntry The value of each entry in ETH.
           * @param protocolFeeRecipient The protocol fee recipient.
           * @param protocolFeeBp The protocol fee basis points.
           * @param keyHash Chainlink VRF key hash
           * @param subscriptionId Chainlink VRF subscription ID
           * @param vrfCoordinator Chainlink VRF coordinator address
           * @param reservoirOracle Reservoir off-chain oracle address
           * @param erc20Oracle ERC20 on-chain oracle address
           * @param transferManager Transfer manager
           * @param signatureValidityPeriod The validity period of a Reservoir signature.
           */
          struct ConstructorCalldata {
              address owner;
              address operator;
              uint40 maximumNumberOfDepositsPerRound;
              uint40 maximumNumberOfParticipantsPerRound;
              uint40 roundDuration;
              uint256 valuePerEntry;
              address protocolFeeRecipient;
              uint16 protocolFeeBp;
              bytes32 keyHash;
              uint64 subscriptionId;
              address vrfCoordinator;
              address reservoirOracle;
              address transferManager;
              address erc20Oracle;
              address weth;
              uint40 signatureValidityPeriod;
          }
          /**
           * @param id The id of the response.
           * @param payload The payload of the response.
           * @param timestamp The timestamp of the response.
           * @param signature The signature of the response.
           */
          struct ReservoirOracleFloorPrice {
              bytes32 id;
              bytes payload;
              uint256 timestamp;
              bytes signature;
          }
          struct DepositCalldata {
              TokenType tokenType;
              address tokenAddress;
              uint256[] tokenIdsOrAmounts;
              ReservoirOracleFloorPrice reservoirOracleFloorPrice;
          }
          struct Round {
              RoundStatus status;
              address winner;
              uint40 cutoffTime;
              uint40 drawnAt;
              uint40 numberOfParticipants;
              uint40 maximumNumberOfDeposits;
              uint40 maximumNumberOfParticipants;
              uint16 protocolFeeBp;
              uint256 protocolFeeOwed;
              uint256 valuePerEntry;
              Deposit[] deposits;
          }
          struct Deposit {
              TokenType tokenType;
              address tokenAddress;
              uint256 tokenId;
              uint256 tokenAmount;
              address depositor;
              bool withdrawn;
              uint40 currentEntryIndex;
          }
          /**
           * @param exists Whether the request exists.
           * @param roundId The id of the round.
           * @param randomWord The random words returned by Chainlink VRF.
           *                   If randomWord == 0, then the request is still pending.
           */
          struct RandomnessRequest {
              bool exists;
              uint40 roundId;
              uint256 randomWord;
          }
          /**
           * @param roundId The id of the round.
           * @param prizeIndices The indices of the prizes to be claimed.
           */
          struct ClaimPrizesCalldata {
              uint256 roundId;
              uint256[] prizeIndices;
          }
          /**
           * @notice This is used to accumulate the amount of tokens to be transferred.
           * @param tokenAddress The address of the token.
           * @param amount The amount of tokens accumulated.
           */
          struct TransferAccumulator {
              address tokenAddress;
              uint256 amount;
          }
          function cancel() external;
          /**
           * @notice Cancels a round after randomness request if the randomness request
           *         does not arrive after a certain amount of time.
           *         Only callable by contract owner.
           */
          function cancelAfterRandomnessRequest() external;
          /**
           * @param claimPrizesCalldata The rounds and the indices for the rounds for the prizes to claim.
           */
          function claimPrizes(ClaimPrizesCalldata[] calldata claimPrizesCalldata) external payable;
          /**
           * @notice This function calculates the ETH payment required to claim the prizes for multiple rounds.
           * @param claimPrizesCalldata The rounds and the indices for the rounds for the prizes to claim.
           */
          function getClaimPrizesPaymentRequired(
              ClaimPrizesCalldata[] calldata claimPrizesCalldata
          ) external view returns (uint256 protocolFeeOwed);
          /**
           * @notice This function allows withdrawal of deposits from a round if the round is cancelled
           * @param roundId The drawn round ID.
           * @param depositIndices The indices of the deposits to withdraw.
           */
          function withdrawDeposits(uint256 roundId, uint256[] calldata depositIndices) external;
          /**
           * @param roundId The open round ID.
           * @param deposits The ERC-20/ERC-721 deposits to be made.
           */
          function deposit(uint256 roundId, DepositCalldata[] calldata deposits) external payable;
          /**
           * @param deposits The ERC-20/ERC-721 deposits to be made.
           */
          function cancelCurrentRoundAndDepositToTheNextRound(DepositCalldata[] calldata deposits) external payable;
          function drawWinner() external;
          /**
           * @param roundId The round ID.
           */
          function getDeposits(uint256 roundId) external view returns (Deposit[] memory);
          /**
           * @notice This function allows the owner to pause/unpause the contract.
           */
          function togglePaused() external;
          /**
           * @notice This function allows the owner to update currency statuses (ETH, ERC-20 and NFTs).
           * @param currencies Currency addresses (address(0) for ETH)
           * @param isAllowed Whether the currencies should be allowed in the yolos
           * @dev Only callable by owner.
           */
          function updateCurrenciesStatus(address[] calldata currencies, bool isAllowed) external;
          /**
           * @notice This function allows the owner to update the duration of each round.
           * @param _roundDuration The duration of each round.
           */
          function updateRoundDuration(uint40 _roundDuration) external;
          /**
           * @notice This function allows the owner to update the signature validity period.
           * @param _signatureValidityPeriod The signature validity period.
           */
          function updateSignatureValidityPeriod(uint40 _signatureValidityPeriod) external;
          /**
           * @notice This function allows the owner to update the value of each entry in ETH.
           * @param _valuePerEntry The value of each entry in ETH.
           */
          function updateValuePerEntry(uint256 _valuePerEntry) external;
          /**
           * @notice This function allows the owner to update the protocol fee in basis points.
           * @param protocolFeeBp The protocol fee in basis points.
           */
          function updateProtocolFeeBp(uint16 protocolFeeBp) external;
          /**
           * @notice This function allows the owner to update the protocol fee recipient.
           * @param protocolFeeRecipient The protocol fee recipient.
           */
          function updateProtocolFeeRecipient(address protocolFeeRecipient) external;
          /**
           * @notice This function allows the owner to update Reservoir oracle's address.
           * @param reservoirOracle Reservoir oracle address.
           */
          function updateReservoirOracle(address reservoirOracle) external;
          /**
           * @notice This function allows the owner to update the maximum number of participants per round.
           * @param _maximumNumberOfParticipantsPerRound The maximum number of participants per round.
           */
          function updateMaximumNumberOfParticipantsPerRound(uint40 _maximumNumberOfParticipantsPerRound) external;
          /**
           * @notice This function allows the owner to update the maximum number of deposits per round.
           * @param _maximumNumberOfDepositsPerRound The maximum number of deposits per round.
           */
          function updateMaximumNumberOfDepositsPerRound(uint40 _maximumNumberOfDepositsPerRound) external;
          /**
           * @notice This function allows the owner to update ERC20 oracle's address.
           * @param erc20Oracle ERC20 oracle address.
           */
          function updateERC20Oracle(address erc20Oracle) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.20;
      interface IPriceOracle {
          error PoolNotAllowed();
          error PriceIsZero();
          event PoolAdded(address token, address pool);
          event PoolRemoved(address token);
          function getTWAP(address token, uint32 secondsAgo) external view returns (uint256);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.20;
      import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
      /**
       * @dev Collection of functions related to array types.
       *      Modified from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Arrays.sol
       */
      library Arrays {
          /**
           * @dev Searches a sorted `array` and returns the first index that contains
           * a value greater or equal to `element`. If no such index exists (i.e. all
           * values in the array are strictly less than `element`), the array length is
           * returned. Time complexity O(log n).
           *
           * `array` is expected to be sorted in ascending order, and to contain no
           * repeated elements.
           */
          function findUpperBound(uint256[] memory array, uint256 element) internal pure returns (uint256) {
              if (array.length == 0) {
                  return 0;
              }
              uint256 low = 0;
              uint256 high = array.length;
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
                  // because Math.average rounds down (it does integer division with truncation).
                  if (array[mid] > element) {
                      high = mid;
                  } else {
                      unchecked {
                          low = mid + 1;
                      }
                  }
              }
              // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
              if (low > 0 && array[low - 1] == element) {
                  unchecked {
                      return low - 1;
                  }
              } else {
                  return low;
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      interface IERC1271 {
          function isValidSignature(bytes32 hash, bytes calldata signature) external view returns (bytes4 magicValue);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      /**
       * @dev ERC1271's magic value (bytes4(keccak256("isValidSignature(bytes32,bytes)"))
       */
      bytes4 constant ERC1271_MAGIC_VALUE = 0x1626ba7e;
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      /**
       * @notice It is emitted if the signer is null.
       */
      error NullSignerAddress();
      /**
       * @notice It is emitted if the signature is invalid for an EOA (the address recovered is not the expected one).
       */
      error SignatureEOAInvalid();
      /**
       * @notice It is emitted if the signature is invalid for a ERC1271 contract signer.
       */
      error SignatureERC1271Invalid();
      /**
       * @notice It is emitted if the signature's length is neither 64 nor 65 bytes.
       */
      error SignatureLengthInvalid(uint256 length);
      /**
       * @notice It is emitted if the signature is invalid due to S parameter.
       */
      error SignatureParameterSInvalid();
      /**
       * @notice It is emitted if the signature is invalid due to V parameter.
       */
      error SignatureParameterVInvalid(uint8 v);
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      /**
       * @title IReentrancyGuard
       * @author LooksRare protocol team (👀,💎)
       */
      interface IReentrancyGuard {
          /**
           * @notice This is returned when there is a reentrant call.
           */
          error ReentrancyFail();
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.5.0;
      interface IWETH {
          function deposit() external payable;
          function transfer(address dst, uint256 wad) external returns (bool);
          function withdraw(uint256 wad) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      /**
       * @notice It is emitted if the ETH transfer fails.
       */
      error ETHTransferFail();
      /**
       * @notice It is emitted if the ERC20 approval fails.
       */
      error ERC20ApprovalFail();
      /**
       * @notice It is emitted if the ERC20 transfer fails.
       */
      error ERC20TransferFail();
      /**
       * @notice It is emitted if the ERC20 transferFrom fails.
       */
      error ERC20TransferFromFail();
      /**
       * @notice It is emitted if the ERC721 transferFrom fails.
       */
      error ERC721TransferFromFail();
      /**
       * @notice It is emitted if the ERC1155 safeTransferFrom fails.
       */
      error ERC1155SafeTransferFromFail();
      /**
       * @notice It is emitted if the ERC1155 safeBatchTransferFrom fails.
       */
      error ERC1155SafeBatchTransferFromFail();
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      /**
       * @notice It is emitted if the call recipient is not a contract.
       */
      error NotAContract();
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      interface IERC721 {
          event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
          event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
          event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
          function balanceOf(address owner) external view returns (uint256 balance);
          function ownerOf(uint256 tokenId) external view returns (address owner);
          function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
          function safeTransferFrom(address from, address to, uint256 tokenId) external;
          function transferFrom(address from, address to, uint256 tokenId) external;
          function approve(address to, uint256 tokenId) external;
          function setApprovalForAll(address operator, bool _approved) external;
          function getApproved(uint256 tokenId) external view returns (address operator);
          function isApprovedForAll(address owner, address operator) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev External interface of AccessControl declared to support ERC165 detection.
       */
      interface IAccessControl {
          /**
           * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
           *
           * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
           * {RoleAdminChanged} not being emitted signaling this.
           *
           * _Available since v3.1._
           */
          event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
          /**
           * @dev Emitted when `account` is granted `role`.
           *
           * `sender` is the account that originated the contract call, an admin role
           * bearer except when using {AccessControl-_setupRole}.
           */
          event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Emitted when `account` is revoked `role`.
           *
           * `sender` is the account that originated the contract call:
           *   - if using `revokeRole`, it is the admin role bearer
           *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
           */
          event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) external view returns (bool);
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {AccessControl-_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) external view returns (bytes32);
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function grantRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function revokeRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been granted `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `account`.
           */
          function renounceRole(bytes32 role, address account) external;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
      pragma solidity ^0.8.0;
      import "./math/Math.sol";
      import "./math/SignedMath.sol";
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant _SYMBOLS = "0123456789abcdef";
          uint8 private constant _ADDRESS_LENGTH = 20;
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = Math.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  /// @solidity memory-safe-assembly
                  assembly {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `int256` to its ASCII `string` decimal representation.
           */
          function toString(int256 value) internal pure returns (string memory) {
              return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, Math.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
          }
          /**
           * @dev Returns true if the two strings are equal.
           */
          function equal(string memory a, string memory b) internal pure returns (bool) {
              return keccak256(bytes(a)) == keccak256(bytes(b));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
      pragma solidity ^0.8.0;
      import "./IERC165.sol";
      /**
       * @dev Implementation of the {IERC165} interface.
       *
       * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
       * for the additional interface id that will be supported. For example:
       *
       * ```solidity
       * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
       *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
       * }
       * ```
       *
       * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
       */
      abstract contract ERC165 is IERC165 {
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IERC165).interfaceId;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                      // The surrounding unchecked block does not change this fact.
                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1, "Math: mulDiv overflow");
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256, rounded down, of a positive value.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[EIP].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165 {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      

      File 2 of 4: Punks2023
      // OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
      
      /**
       * @dev These functions deal with verification of Merkle Tree proofs.
       *
       * The tree and the proofs can be generated using our
       * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
       * You will find a quickstart guide in the readme.
       *
       * WARNING: You should avoid using leaf values that are 64 bytes long prior to
       * hashing, or use a hash function other than keccak256 for hashing leaves.
       * This is because the concatenation of a sorted pair of internal nodes in
       * the merkle tree could be reinterpreted as a leaf value.
       * OpenZeppelin's JavaScript library generates merkle trees that are safe
       * against this attack out of the box.
       */
      library MerkleProof {
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           */
          function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
              return processProof(proof, leaf) == root;
          }
      
          /**
           * @dev Calldata version of {verify}
           *
           * _Available since v4.7._
           */
          function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
              return processProofCalldata(proof, leaf) == root;
          }
      
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leafs & pre-images are assumed to be sorted.
           *
           * _Available since v4.4._
           */
          function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = _hashPair(computedHash, proof[i]);
              }
              return computedHash;
          }
      
          /**
           * @dev Calldata version of {processProof}
           *
           * _Available since v4.7._
           */
          function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = _hashPair(computedHash, proof[i]);
              }
              return computedHash;
          }
      
          /**
           * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * _Available since v4.7._
           */
          function multiProofVerify(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32 root,
              bytes32[] memory leaves
          ) internal pure returns (bool) {
              return processMultiProof(proof, proofFlags, leaves) == root;
          }
      
          /**
           * @dev Calldata version of {multiProofVerify}
           *
           * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * _Available since v4.7._
           */
          function multiProofVerifyCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32 root,
              bytes32[] memory leaves
          ) internal pure returns (bool) {
              return processMultiProofCalldata(proof, proofFlags, leaves) == root;
          }
      
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
           * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
           * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
           * respectively.
           *
           * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
           * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
           * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
           *
           * _Available since v4.7._
           */
          function processMultiProof(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32[] memory leaves
          ) internal pure returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofLen = proof.length;
              uint256 totalHashes = proofFlags.length;
      
              // Check proof validity.
              require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
      
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](totalHashes);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < totalHashes; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = _hashPair(a, b);
              }
      
              if (totalHashes > 0) {
                  require(proofPos == proofLen, "MerkleProof: invalid multiproof");
                  unchecked {
                      return hashes[totalHashes - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
      
          /**
           * @dev Calldata version of {processMultiProof}.
           *
           * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * _Available since v4.7._
           */
          function processMultiProofCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32[] memory leaves
          ) internal pure returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofLen = proof.length;
              uint256 totalHashes = proofFlags.length;
      
              // Check proof validity.
              require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
      
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](totalHashes);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < totalHashes; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = _hashPair(a, b);
              }
      
              if (totalHashes > 0) {
                  require(proofPos == proofLen, "MerkleProof: invalid multiproof");
                  unchecked {
                      return hashes[totalHashes - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
      
          function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
              return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
          }
      
          function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
              /// @solidity memory-safe-assembly
              assembly {
                  mstore(0x00, a)
                  mstore(0x20, b)
                  value := keccak256(0x00, 0x40)
              }
          }
      }
      
      // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
      
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
      
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
      
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
      
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor() {
              _transferOwnership(_msgSender());
          }
      
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
      
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
      
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
      
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
      
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
      
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      
      // OpenZeppelin Contracts (last updated v4.9.0) (token/common/ERC2981.sol)
      
      // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC2981.sol)
      
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
      
      /**
       * @dev Interface of the ERC165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[EIP].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165 {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      
      /**
       * @dev Interface for the NFT Royalty Standard.
       *
       * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
       * support for royalty payments across all NFT marketplaces and ecosystem participants.
       *
       * _Available since v4.5._
       */
      interface IERC2981 is IERC165 {
          /**
           * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
           * exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
           */
          function royaltyInfo(
              uint256 tokenId,
              uint256 salePrice
          ) external view returns (address receiver, uint256 royaltyAmount);
      }
      
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
      
      /**
       * @dev Implementation of the {IERC165} interface.
       *
       * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
       * for the additional interface id that will be supported. For example:
       *
       * ```solidity
       * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
       *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
       * }
       * ```
       *
       * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
       */
      abstract contract ERC165 is IERC165 {
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IERC165).interfaceId;
          }
      }
      
      /**
       * @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
       *
       * Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
       * specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
       *
       * Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
       * fee is specified in basis points by default.
       *
       * IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
       * https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
       * voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
       *
       * _Available since v4.5._
       */
      abstract contract ERC2981 is IERC2981, ERC165 {
          struct RoyaltyInfo {
              address receiver;
              uint96 royaltyFraction;
          }
      
          RoyaltyInfo private _defaultRoyaltyInfo;
          mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo;
      
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
              return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
          }
      
          /**
           * @inheritdoc IERC2981
           */
          function royaltyInfo(uint256 tokenId, uint256 salePrice) public view virtual override returns (address, uint256) {
              RoyaltyInfo memory royalty = _tokenRoyaltyInfo[tokenId];
      
              if (royalty.receiver == address(0)) {
                  royalty = _defaultRoyaltyInfo;
              }
      
              uint256 royaltyAmount = (salePrice * royalty.royaltyFraction) / _feeDenominator();
      
              return (royalty.receiver, royaltyAmount);
          }
      
          /**
           * @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
           * fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
           * override.
           */
          function _feeDenominator() internal pure virtual returns (uint96) {
              return 10000;
          }
      
          /**
           * @dev Sets the royalty information that all ids in this contract will default to.
           *
           * Requirements:
           *
           * - `receiver` cannot be the zero address.
           * - `feeNumerator` cannot be greater than the fee denominator.
           */
          function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
              require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
              require(receiver != address(0), "ERC2981: invalid receiver");
      
              _defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
          }
      
          /**
           * @dev Removes default royalty information.
           */
          function _deleteDefaultRoyalty() internal virtual {
              delete _defaultRoyaltyInfo;
          }
      
          /**
           * @dev Sets the royalty information for a specific token id, overriding the global default.
           *
           * Requirements:
           *
           * - `receiver` cannot be the zero address.
           * - `feeNumerator` cannot be greater than the fee denominator.
           */
          function _setTokenRoyalty(uint256 tokenId, address receiver, uint96 feeNumerator) internal virtual {
              require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
              require(receiver != address(0), "ERC2981: Invalid parameters");
      
              _tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
          }
      
          /**
           * @dev Resets royalty information for the token id back to the global default.
           */
          function _resetTokenRoyalty(uint256 tokenId) internal virtual {
              delete _tokenRoyaltyInfo[tokenId];
          }
      }
      
      // ERC721A Contracts v4.2.3
      // Creator: Chiru Labs
      
      // ERC721A Contracts v4.2.3
      // Creator: Chiru Labs
      
      // ERC721A Contracts v4.2.3
      // Creator: Chiru Labs
      
      /**
       * @dev Interface of ERC721A.
       */
      interface IERC721A {
          /**
           * The caller must own the token or be an approved operator.
           */
          error ApprovalCallerNotOwnerNorApproved();
      
          /**
           * The token does not exist.
           */
          error ApprovalQueryForNonexistentToken();
      
          /**
           * Cannot query the balance for the zero address.
           */
          error BalanceQueryForZeroAddress();
      
          /**
           * Cannot mint to the zero address.
           */
          error MintToZeroAddress();
      
          /**
           * The quantity of tokens minted must be more than zero.
           */
          error MintZeroQuantity();
      
          /**
           * The token does not exist.
           */
          error OwnerQueryForNonexistentToken();
      
          /**
           * The caller must own the token or be an approved operator.
           */
          error TransferCallerNotOwnerNorApproved();
      
          /**
           * The token must be owned by `from`.
           */
          error TransferFromIncorrectOwner();
      
          /**
           * Cannot safely transfer to a contract that does not implement the
           * ERC721Receiver interface.
           */
          error TransferToNonERC721ReceiverImplementer();
      
          /**
           * Cannot transfer to the zero address.
           */
          error TransferToZeroAddress();
      
          /**
           * The token does not exist.
           */
          error URIQueryForNonexistentToken();
      
          /**
           * The `quantity` minted with ERC2309 exceeds the safety limit.
           */
          error MintERC2309QuantityExceedsLimit();
      
          /**
           * The `extraData` cannot be set on an unintialized ownership slot.
           */
          error OwnershipNotInitializedForExtraData();
      
          // =============================================================
          //                            STRUCTS
          // =============================================================
      
          struct TokenOwnership {
              // The address of the owner.
              address addr;
              // Stores the start time of ownership with minimal overhead for tokenomics.
              uint64 startTimestamp;
              // Whether the token has been burned.
              bool burned;
              // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
              uint24 extraData;
          }
      
          // =============================================================
          //                         TOKEN COUNTERS
          // =============================================================
      
          /**
           * @dev Returns the total number of tokens in existence.
           * Burned tokens will reduce the count.
           * To get the total number of tokens minted, please see {_totalMinted}.
           */
          function totalSupply() external view returns (uint256);
      
          // =============================================================
          //                            IERC165
          // =============================================================
      
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      
          // =============================================================
          //                            IERC721
          // =============================================================
      
          /**
           * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
           */
          event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
      
          /**
           * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
           */
          event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
      
          /**
           * @dev Emitted when `owner` enables or disables
           * (`approved`) `operator` to manage all of its assets.
           */
          event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
      
          /**
           * @dev Returns the number of tokens in `owner`'s account.
           */
          function balanceOf(address owner) external view returns (uint256 balance);
      
          /**
           * @dev Returns the owner of the `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function ownerOf(uint256 tokenId) external view returns (address owner);
      
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`,
           * checking first that contract recipients are aware of the ERC721 protocol
           * to prevent tokens from being forever locked.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be have been allowed to move
           * this token by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement
           * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId,
              bytes calldata data
          ) external payable;
      
          /**
           * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId
          ) external payable;
      
          /**
           * @dev Transfers `tokenId` from `from` to `to`.
           *
           * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
           * whenever possible.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token
           * by either {approve} or {setApprovalForAll}.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 tokenId
          ) external payable;
      
          /**
           * @dev Gives permission to `to` to transfer `tokenId` token to another account.
           * The approval is cleared when the token is transferred.
           *
           * Only a single account can be approved at a time, so approving the
           * zero address clears previous approvals.
           *
           * Requirements:
           *
           * - The caller must own the token or be an approved operator.
           * - `tokenId` must exist.
           *
           * Emits an {Approval} event.
           */
          function approve(address to, uint256 tokenId) external payable;
      
          /**
           * @dev Approve or remove `operator` as an operator for the caller.
           * Operators can call {transferFrom} or {safeTransferFrom}
           * for any token owned by the caller.
           *
           * Requirements:
           *
           * - The `operator` cannot be the caller.
           *
           * Emits an {ApprovalForAll} event.
           */
          function setApprovalForAll(address operator, bool _approved) external;
      
          /**
           * @dev Returns the account approved for `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function getApproved(uint256 tokenId) external view returns (address operator);
      
          /**
           * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
           *
           * See {setApprovalForAll}.
           */
          function isApprovedForAll(address owner, address operator) external view returns (bool);
      
          // =============================================================
          //                        IERC721Metadata
          // =============================================================
      
          /**
           * @dev Returns the token collection name.
           */
          function name() external view returns (string memory);
      
          /**
           * @dev Returns the token collection symbol.
           */
          function symbol() external view returns (string memory);
      
          /**
           * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
           */
          function tokenURI(uint256 tokenId) external view returns (string memory);
      
          // =============================================================
          //                           IERC2309
          // =============================================================
      
          /**
           * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
           * (inclusive) is transferred from `from` to `to`, as defined in the
           * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
           *
           * See {_mintERC2309} for more details.
           */
          event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
      }
      
      /**
       * @dev Interface of ERC721AQueryable.
       */
      interface IERC721AQueryable is IERC721A {
          /**
           * Invalid query range (`start` >= `stop`).
           */
          error InvalidQueryRange();
      
          /**
           * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
           *
           * If the `tokenId` is out of bounds:
           *
           * - `addr = address(0)`
           * - `startTimestamp = 0`
           * - `burned = false`
           * - `extraData = 0`
           *
           * If the `tokenId` is burned:
           *
           * - `addr = <Address of owner before token was burned>`
           * - `startTimestamp = <Timestamp when token was burned>`
           * - `burned = true`
           * - `extraData = <Extra data when token was burned>`
           *
           * Otherwise:
           *
           * - `addr = <Address of owner>`
           * - `startTimestamp = <Timestamp of start of ownership>`
           * - `burned = false`
           * - `extraData = <Extra data at start of ownership>`
           */
          function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory);
      
          /**
           * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
           * See {ERC721AQueryable-explicitOwnershipOf}
           */
          function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory);
      
          /**
           * @dev Returns an array of token IDs owned by `owner`,
           * in the range [`start`, `stop`)
           * (i.e. `start <= tokenId < stop`).
           *
           * This function allows for tokens to be queried if the collection
           * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
           *
           * Requirements:
           *
           * - `start < stop`
           */
          function tokensOfOwnerIn(
              address owner,
              uint256 start,
              uint256 stop
          ) external view returns (uint256[] memory);
      
          /**
           * @dev Returns an array of token IDs owned by `owner`.
           *
           * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
           * It is meant to be called off-chain.
           *
           * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
           * multiple smaller scans if the collection is large enough to cause
           * an out-of-gas error (10K collections should be fine).
           */
          function tokensOfOwner(address owner) external view returns (uint256[] memory);
      }
      
      // ERC721A Contracts v4.2.3
      // Creator: Chiru Labs
      
      /**
       * @dev Interface of ERC721 token receiver.
       */
      interface ERC721A__IERC721Receiver {
          function onERC721Received(
              address operator,
              address from,
              uint256 tokenId,
              bytes calldata data
          ) external returns (bytes4);
      }
      
      /**
       * @title ERC721A
       *
       * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
       * Non-Fungible Token Standard, including the Metadata extension.
       * Optimized for lower gas during batch mints.
       *
       * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
       * starting from `_startTokenId()`.
       *
       * Assumptions:
       *
       * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
       * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
       */
      contract ERC721A is IERC721A {
          // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
          struct TokenApprovalRef {
              address value;
          }
      
          // =============================================================
          //                           CONSTANTS
          // =============================================================
      
          // Mask of an entry in packed address data.
          uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
      
          // The bit position of `numberMinted` in packed address data.
          uint256 private constant _BITPOS_NUMBER_MINTED = 64;
      
          // The bit position of `numberBurned` in packed address data.
          uint256 private constant _BITPOS_NUMBER_BURNED = 128;
      
          // The bit position of `aux` in packed address data.
          uint256 private constant _BITPOS_AUX = 192;
      
          // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
          uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
      
          // The bit position of `startTimestamp` in packed ownership.
          uint256 private constant _BITPOS_START_TIMESTAMP = 160;
      
          // The bit mask of the `burned` bit in packed ownership.
          uint256 private constant _BITMASK_BURNED = 1 << 224;
      
          // The bit position of the `nextInitialized` bit in packed ownership.
          uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
      
          // The bit mask of the `nextInitialized` bit in packed ownership.
          uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
      
          // The bit position of `extraData` in packed ownership.
          uint256 private constant _BITPOS_EXTRA_DATA = 232;
      
          // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
          uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
      
          // The mask of the lower 160 bits for addresses.
          uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
      
          // The maximum `quantity` that can be minted with {_mintERC2309}.
          // This limit is to prevent overflows on the address data entries.
          // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
          // is required to cause an overflow, which is unrealistic.
          uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
      
          // The `Transfer` event signature is given by:
          // `keccak256(bytes("Transfer(address,address,uint256)"))`.
          bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
              0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
      
          // =============================================================
          //                            STORAGE
          // =============================================================
      
          // The next token ID to be minted.
          uint256 private _currentIndex;
      
          // The number of tokens burned.
          uint256 private _burnCounter;
      
          // Token name
          string private _name;
      
          // Token symbol
          string private _symbol;
      
          // Mapping from token ID to ownership details
          // An empty struct value does not necessarily mean the token is unowned.
          // See {_packedOwnershipOf} implementation for details.
          //
          // Bits Layout:
          // - [0..159]   `addr`
          // - [160..223] `startTimestamp`
          // - [224]      `burned`
          // - [225]      `nextInitialized`
          // - [232..255] `extraData`
          mapping(uint256 => uint256) private _packedOwnerships;
      
          // Mapping owner address to address data.
          //
          // Bits Layout:
          // - [0..63]    `balance`
          // - [64..127]  `numberMinted`
          // - [128..191] `numberBurned`
          // - [192..255] `aux`
          mapping(address => uint256) private _packedAddressData;
      
          // Mapping from token ID to approved address.
          mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
      
          // Mapping from owner to operator approvals
          mapping(address => mapping(address => bool)) private _operatorApprovals;
      
          // =============================================================
          //                          CONSTRUCTOR
          // =============================================================
      
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
              _currentIndex = _startTokenId();
          }
      
          // =============================================================
          //                   TOKEN COUNTING OPERATIONS
          // =============================================================
      
          /**
           * @dev Returns the starting token ID.
           * To change the starting token ID, please override this function.
           */
          function _startTokenId() internal view virtual returns (uint256) {
              return 0;
          }
      
          /**
           * @dev Returns the next token ID to be minted.
           */
          function _nextTokenId() internal view virtual returns (uint256) {
              return _currentIndex;
          }
      
          /**
           * @dev Returns the total number of tokens in existence.
           * Burned tokens will reduce the count.
           * To get the total number of tokens minted, please see {_totalMinted}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              // Counter underflow is impossible as _burnCounter cannot be incremented
              // more than `_currentIndex - _startTokenId()` times.
              unchecked {
                  return _currentIndex - _burnCounter - _startTokenId();
              }
          }
      
          /**
           * @dev Returns the total amount of tokens minted in the contract.
           */
          function _totalMinted() internal view virtual returns (uint256) {
              // Counter underflow is impossible as `_currentIndex` does not decrement,
              // and it is initialized to `_startTokenId()`.
              unchecked {
                  return _currentIndex - _startTokenId();
              }
          }
      
          /**
           * @dev Returns the total number of tokens burned.
           */
          function _totalBurned() internal view virtual returns (uint256) {
              return _burnCounter;
          }
      
          // =============================================================
          //                    ADDRESS DATA OPERATIONS
          // =============================================================
      
          /**
           * @dev Returns the number of tokens in `owner`'s account.
           */
          function balanceOf(address owner) public view virtual override returns (uint256) {
              if (owner == address(0)) revert BalanceQueryForZeroAddress();
              return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
          }
      
          /**
           * Returns the number of tokens minted by `owner`.
           */
          function _numberMinted(address owner) internal view returns (uint256) {
              return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
          }
      
          /**
           * Returns the number of tokens burned by or on behalf of `owner`.
           */
          function _numberBurned(address owner) internal view returns (uint256) {
              return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
          }
      
          /**
           * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
           */
          function _getAux(address owner) internal view returns (uint64) {
              return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
          }
      
          /**
           * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
           * If there are multiple variables, please pack them into a uint64.
           */
          function _setAux(address owner, uint64 aux) internal virtual {
              uint256 packed = _packedAddressData[owner];
              uint256 auxCasted;
              // Cast `aux` with assembly to avoid redundant masking.
              assembly {
                  auxCasted := aux
              }
              packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
              _packedAddressData[owner] = packed;
          }
      
          // =============================================================
          //                            IERC165
          // =============================================================
      
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30000 gas.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              // The interface IDs are constants representing the first 4 bytes
              // of the XOR of all function selectors in the interface.
              // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
              // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
              return
                  interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
                  interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
                  interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
          }
      
          // =============================================================
          //                        IERC721Metadata
          // =============================================================
      
          /**
           * @dev Returns the token collection name.
           */
          function name() public view virtual override returns (string memory) {
              return _name;
          }
      
          /**
           * @dev Returns the token collection symbol.
           */
          function symbol() public view virtual override returns (string memory) {
              return _symbol;
          }
      
          /**
           * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
           */
          function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
              if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
      
              string memory baseURI = _baseURI();
              return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
          }
      
          /**
           * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
           * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
           * by default, it can be overridden in child contracts.
           */
          function _baseURI() internal view virtual returns (string memory) {
              return '';
          }
      
          // =============================================================
          //                     OWNERSHIPS OPERATIONS
          // =============================================================
      
          /**
           * @dev Returns the owner of the `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function ownerOf(uint256 tokenId) public view virtual override returns (address) {
              return address(uint160(_packedOwnershipOf(tokenId)));
          }
      
          /**
           * @dev Gas spent here starts off proportional to the maximum mint batch size.
           * It gradually moves to O(1) as tokens get transferred around over time.
           */
          function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
              return _unpackedOwnership(_packedOwnershipOf(tokenId));
          }
      
          /**
           * @dev Returns the unpacked `TokenOwnership` struct at `index`.
           */
          function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
              return _unpackedOwnership(_packedOwnerships[index]);
          }
      
          /**
           * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
           */
          function _initializeOwnershipAt(uint256 index) internal virtual {
              if (_packedOwnerships[index] == 0) {
                  _packedOwnerships[index] = _packedOwnershipOf(index);
              }
          }
      
          /**
           * Returns the packed ownership data of `tokenId`.
           */
          function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
              uint256 curr = tokenId;
      
              unchecked {
                  if (_startTokenId() <= curr)
                      if (curr < _currentIndex) {
                          uint256 packed = _packedOwnerships[curr];
                          // If not burned.
                          if (packed & _BITMASK_BURNED == 0) {
                              // Invariant:
                              // There will always be an initialized ownership slot
                              // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                              // before an unintialized ownership slot
                              // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                              // Hence, `curr` will not underflow.
                              //
                              // We can directly compare the packed value.
                              // If the address is zero, packed will be zero.
                              while (packed == 0) {
                                  packed = _packedOwnerships[--curr];
                              }
                              return packed;
                          }
                      }
              }
              revert OwnerQueryForNonexistentToken();
          }
      
          /**
           * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
           */
          function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
              ownership.addr = address(uint160(packed));
              ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
              ownership.burned = packed & _BITMASK_BURNED != 0;
              ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
          }
      
          /**
           * @dev Packs ownership data into a single uint256.
           */
          function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
              assembly {
                  // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                  owner := and(owner, _BITMASK_ADDRESS)
                  // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
                  result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
              }
          }
      
          /**
           * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
           */
          function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
              // For branchless setting of the `nextInitialized` flag.
              assembly {
                  // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
                  result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
              }
          }
      
          // =============================================================
          //                      APPROVAL OPERATIONS
          // =============================================================
      
          /**
           * @dev Gives permission to `to` to transfer `tokenId` token to another account.
           * The approval is cleared when the token is transferred.
           *
           * Only a single account can be approved at a time, so approving the
           * zero address clears previous approvals.
           *
           * Requirements:
           *
           * - The caller must own the token or be an approved operator.
           * - `tokenId` must exist.
           *
           * Emits an {Approval} event.
           */
          function approve(address to, uint256 tokenId) public payable virtual override {
              address owner = ownerOf(tokenId);
      
              if (_msgSenderERC721A() != owner)
                  if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                      revert ApprovalCallerNotOwnerNorApproved();
                  }
      
              _tokenApprovals[tokenId].value = to;
              emit Approval(owner, to, tokenId);
          }
      
          /**
           * @dev Returns the account approved for `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function getApproved(uint256 tokenId) public view virtual override returns (address) {
              if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
      
              return _tokenApprovals[tokenId].value;
          }
      
          /**
           * @dev Approve or remove `operator` as an operator for the caller.
           * Operators can call {transferFrom} or {safeTransferFrom}
           * for any token owned by the caller.
           *
           * Requirements:
           *
           * - The `operator` cannot be the caller.
           *
           * Emits an {ApprovalForAll} event.
           */
          function setApprovalForAll(address operator, bool approved) public virtual override {
              _operatorApprovals[_msgSenderERC721A()][operator] = approved;
              emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
          }
      
          /**
           * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
           *
           * See {setApprovalForAll}.
           */
          function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
              return _operatorApprovals[owner][operator];
          }
      
          /**
           * @dev Returns whether `tokenId` exists.
           *
           * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
           *
           * Tokens start existing when they are minted. See {_mint}.
           */
          function _exists(uint256 tokenId) internal view virtual returns (bool) {
              return
                  _startTokenId() <= tokenId &&
                  tokenId < _currentIndex && // If within bounds,
                  _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
          }
      
          /**
           * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
           */
          function _isSenderApprovedOrOwner(
              address approvedAddress,
              address owner,
              address msgSender
          ) private pure returns (bool result) {
              assembly {
                  // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                  owner := and(owner, _BITMASK_ADDRESS)
                  // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
                  msgSender := and(msgSender, _BITMASK_ADDRESS)
                  // `msgSender == owner || msgSender == approvedAddress`.
                  result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
              }
          }
      
          /**
           * @dev Returns the storage slot and value for the approved address of `tokenId`.
           */
          function _getApprovedSlotAndAddress(uint256 tokenId)
              private
              view
              returns (uint256 approvedAddressSlot, address approvedAddress)
          {
              TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
              // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
              assembly {
                  approvedAddressSlot := tokenApproval.slot
                  approvedAddress := sload(approvedAddressSlot)
              }
          }
      
          // =============================================================
          //                      TRANSFER OPERATIONS
          // =============================================================
      
          /**
           * @dev Transfers `tokenId` from `from` to `to`.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token
           * by either {approve} or {setApprovalForAll}.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 tokenId
          ) public payable virtual override {
              uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
      
              if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();
      
              (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
      
              // The nested ifs save around 20+ gas over a compound boolean condition.
              if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                  if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
      
              if (to == address(0)) revert TransferToZeroAddress();
      
              _beforeTokenTransfers(from, to, tokenId, 1);
      
              // Clear approvals from the previous owner.
              assembly {
                  if approvedAddress {
                      // This is equivalent to `delete _tokenApprovals[tokenId]`.
                      sstore(approvedAddressSlot, 0)
                  }
              }
      
              // Underflow of the sender's balance is impossible because we check for
              // ownership above and the recipient's balance can't realistically overflow.
              // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
              unchecked {
                  // We can directly increment and decrement the balances.
                  --_packedAddressData[from]; // Updates: `balance -= 1`.
                  ++_packedAddressData[to]; // Updates: `balance += 1`.
      
                  // Updates:
                  // - `address` to the next owner.
                  // - `startTimestamp` to the timestamp of transfering.
                  // - `burned` to `false`.
                  // - `nextInitialized` to `true`.
                  _packedOwnerships[tokenId] = _packOwnershipData(
                      to,
                      _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
                  );
      
                  // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                  if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                      uint256 nextTokenId = tokenId + 1;
                      // If the next slot's address is zero and not burned (i.e. packed value is zero).
                      if (_packedOwnerships[nextTokenId] == 0) {
                          // If the next slot is within bounds.
                          if (nextTokenId != _currentIndex) {
                              // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                              _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                          }
                      }
                  }
              }
      
              emit Transfer(from, to, tokenId);
              _afterTokenTransfers(from, to, tokenId, 1);
          }
      
          /**
           * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId
          ) public payable virtual override {
              safeTransferFrom(from, to, tokenId, '');
          }
      
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token
           * by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement
           * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId,
              bytes memory _data
          ) public payable virtual override {
              transferFrom(from, to, tokenId);
              if (to.code.length != 0)
                  if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                      revert TransferToNonERC721ReceiverImplementer();
                  }
          }
      
          /**
           * @dev Hook that is called before a set of serially-ordered token IDs
           * are about to be transferred. This includes minting.
           * And also called before burning one token.
           *
           * `startTokenId` - the first token ID to be transferred.
           * `quantity` - the amount to be transferred.
           *
           * Calling conditions:
           *
           * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
           * transferred to `to`.
           * - When `from` is zero, `tokenId` will be minted for `to`.
           * - When `to` is zero, `tokenId` will be burned by `from`.
           * - `from` and `to` are never both zero.
           */
          function _beforeTokenTransfers(
              address from,
              address to,
              uint256 startTokenId,
              uint256 quantity
          ) internal virtual {}
      
          /**
           * @dev Hook that is called after a set of serially-ordered token IDs
           * have been transferred. This includes minting.
           * And also called after one token has been burned.
           *
           * `startTokenId` - the first token ID to be transferred.
           * `quantity` - the amount to be transferred.
           *
           * Calling conditions:
           *
           * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
           * transferred to `to`.
           * - When `from` is zero, `tokenId` has been minted for `to`.
           * - When `to` is zero, `tokenId` has been burned by `from`.
           * - `from` and `to` are never both zero.
           */
          function _afterTokenTransfers(
              address from,
              address to,
              uint256 startTokenId,
              uint256 quantity
          ) internal virtual {}
      
          /**
           * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
           *
           * `from` - Previous owner of the given token ID.
           * `to` - Target address that will receive the token.
           * `tokenId` - Token ID to be transferred.
           * `_data` - Optional data to send along with the call.
           *
           * Returns whether the call correctly returned the expected magic value.
           */
          function _checkContractOnERC721Received(
              address from,
              address to,
              uint256 tokenId,
              bytes memory _data
          ) private returns (bool) {
              try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
                  bytes4 retval
              ) {
                  return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
              } catch (bytes memory reason) {
                  if (reason.length == 0) {
                      revert TransferToNonERC721ReceiverImplementer();
                  } else {
                      assembly {
                          revert(add(32, reason), mload(reason))
                      }
                  }
              }
          }
      
          // =============================================================
          //                        MINT OPERATIONS
          // =============================================================
      
          /**
           * @dev Mints `quantity` tokens and transfers them to `to`.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - `quantity` must be greater than 0.
           *
           * Emits a {Transfer} event for each mint.
           */
          function _mint(address to, uint256 quantity) internal virtual {
              uint256 startTokenId = _currentIndex;
              if (quantity == 0) revert MintZeroQuantity();
      
              _beforeTokenTransfers(address(0), to, startTokenId, quantity);
      
              // Overflows are incredibly unrealistic.
              // `balance` and `numberMinted` have a maximum limit of 2**64.
              // `tokenId` has a maximum limit of 2**256.
              unchecked {
                  // Updates:
                  // - `balance += quantity`.
                  // - `numberMinted += quantity`.
                  //
                  // We can directly add to the `balance` and `numberMinted`.
                  _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
      
                  // Updates:
                  // - `address` to the owner.
                  // - `startTimestamp` to the timestamp of minting.
                  // - `burned` to `false`.
                  // - `nextInitialized` to `quantity == 1`.
                  _packedOwnerships[startTokenId] = _packOwnershipData(
                      to,
                      _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                  );
      
                  uint256 toMasked;
                  uint256 end = startTokenId + quantity;
      
                  // Use assembly to loop and emit the `Transfer` event for gas savings.
                  // The duplicated `log4` removes an extra check and reduces stack juggling.
                  // The assembly, together with the surrounding Solidity code, have been
                  // delicately arranged to nudge the compiler into producing optimized opcodes.
                  assembly {
                      // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                      toMasked := and(to, _BITMASK_ADDRESS)
                      // Emit the `Transfer` event.
                      log4(
                          0, // Start of data (0, since no data).
                          0, // End of data (0, since no data).
                          _TRANSFER_EVENT_SIGNATURE, // Signature.
                          0, // `address(0)`.
                          toMasked, // `to`.
                          startTokenId // `tokenId`.
                      )
      
                      // The `iszero(eq(,))` check ensures that large values of `quantity`
                      // that overflows uint256 will make the loop run out of gas.
                      // The compiler will optimize the `iszero` away for performance.
                      for {
                          let tokenId := add(startTokenId, 1)
                      } iszero(eq(tokenId, end)) {
                          tokenId := add(tokenId, 1)
                      } {
                          // Emit the `Transfer` event. Similar to above.
                          log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
                      }
                  }
                  if (toMasked == 0) revert MintToZeroAddress();
      
                  _currentIndex = end;
              }
              _afterTokenTransfers(address(0), to, startTokenId, quantity);
          }
      
          /**
           * @dev Mints `quantity` tokens and transfers them to `to`.
           *
           * This function is intended for efficient minting only during contract creation.
           *
           * It emits only one {ConsecutiveTransfer} as defined in
           * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
           * instead of a sequence of {Transfer} event(s).
           *
           * Calling this function outside of contract creation WILL make your contract
           * non-compliant with the ERC721 standard.
           * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
           * {ConsecutiveTransfer} event is only permissible during contract creation.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - `quantity` must be greater than 0.
           *
           * Emits a {ConsecutiveTransfer} event.
           */
          function _mintERC2309(address to, uint256 quantity) internal virtual {
              uint256 startTokenId = _currentIndex;
              if (to == address(0)) revert MintToZeroAddress();
              if (quantity == 0) revert MintZeroQuantity();
              if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();
      
              _beforeTokenTransfers(address(0), to, startTokenId, quantity);
      
              // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
              unchecked {
                  // Updates:
                  // - `balance += quantity`.
                  // - `numberMinted += quantity`.
                  //
                  // We can directly add to the `balance` and `numberMinted`.
                  _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
      
                  // Updates:
                  // - `address` to the owner.
                  // - `startTimestamp` to the timestamp of minting.
                  // - `burned` to `false`.
                  // - `nextInitialized` to `quantity == 1`.
                  _packedOwnerships[startTokenId] = _packOwnershipData(
                      to,
                      _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                  );
      
                  emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
      
                  _currentIndex = startTokenId + quantity;
              }
              _afterTokenTransfers(address(0), to, startTokenId, quantity);
          }
      
          /**
           * @dev Safely mints `quantity` tokens and transfers them to `to`.
           *
           * Requirements:
           *
           * - If `to` refers to a smart contract, it must implement
           * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
           * - `quantity` must be greater than 0.
           *
           * See {_mint}.
           *
           * Emits a {Transfer} event for each mint.
           */
          function _safeMint(
              address to,
              uint256 quantity,
              bytes memory _data
          ) internal virtual {
              _mint(to, quantity);
      
              unchecked {
                  if (to.code.length != 0) {
                      uint256 end = _currentIndex;
                      uint256 index = end - quantity;
                      do {
                          if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                              revert TransferToNonERC721ReceiverImplementer();
                          }
                      } while (index < end);
                      // Reentrancy protection.
                      if (_currentIndex != end) revert();
                  }
              }
          }
      
          /**
           * @dev Equivalent to `_safeMint(to, quantity, '')`.
           */
          function _safeMint(address to, uint256 quantity) internal virtual {
              _safeMint(to, quantity, '');
          }
      
          // =============================================================
          //                        BURN OPERATIONS
          // =============================================================
      
          /**
           * @dev Equivalent to `_burn(tokenId, false)`.
           */
          function _burn(uint256 tokenId) internal virtual {
              _burn(tokenId, false);
          }
      
          /**
           * @dev Destroys `tokenId`.
           * The approval is cleared when the token is burned.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           *
           * Emits a {Transfer} event.
           */
          function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
              uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
      
              address from = address(uint160(prevOwnershipPacked));
      
              (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
      
              if (approvalCheck) {
                  // The nested ifs save around 20+ gas over a compound boolean condition.
                  if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                      if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
              }
      
              _beforeTokenTransfers(from, address(0), tokenId, 1);
      
              // Clear approvals from the previous owner.
              assembly {
                  if approvedAddress {
                      // This is equivalent to `delete _tokenApprovals[tokenId]`.
                      sstore(approvedAddressSlot, 0)
                  }
              }
      
              // Underflow of the sender's balance is impossible because we check for
              // ownership above and the recipient's balance can't realistically overflow.
              // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
              unchecked {
                  // Updates:
                  // - `balance -= 1`.
                  // - `numberBurned += 1`.
                  //
                  // We can directly decrement the balance, and increment the number burned.
                  // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
                  _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
      
                  // Updates:
                  // - `address` to the last owner.
                  // - `startTimestamp` to the timestamp of burning.
                  // - `burned` to `true`.
                  // - `nextInitialized` to `true`.
                  _packedOwnerships[tokenId] = _packOwnershipData(
                      from,
                      (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
                  );
      
                  // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                  if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                      uint256 nextTokenId = tokenId + 1;
                      // If the next slot's address is zero and not burned (i.e. packed value is zero).
                      if (_packedOwnerships[nextTokenId] == 0) {
                          // If the next slot is within bounds.
                          if (nextTokenId != _currentIndex) {
                              // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                              _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                          }
                      }
                  }
              }
      
              emit Transfer(from, address(0), tokenId);
              _afterTokenTransfers(from, address(0), tokenId, 1);
      
              // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
              unchecked {
                  _burnCounter++;
              }
          }
      
          // =============================================================
          //                     EXTRA DATA OPERATIONS
          // =============================================================
      
          /**
           * @dev Directly sets the extra data for the ownership data `index`.
           */
          function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
              uint256 packed = _packedOwnerships[index];
              if (packed == 0) revert OwnershipNotInitializedForExtraData();
              uint256 extraDataCasted;
              // Cast `extraData` with assembly to avoid redundant masking.
              assembly {
                  extraDataCasted := extraData
              }
              packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
              _packedOwnerships[index] = packed;
          }
      
          /**
           * @dev Called during each token transfer to set the 24bit `extraData` field.
           * Intended to be overridden by the cosumer contract.
           *
           * `previousExtraData` - the value of `extraData` before transfer.
           *
           * Calling conditions:
           *
           * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
           * transferred to `to`.
           * - When `from` is zero, `tokenId` will be minted for `to`.
           * - When `to` is zero, `tokenId` will be burned by `from`.
           * - `from` and `to` are never both zero.
           */
          function _extraData(
              address from,
              address to,
              uint24 previousExtraData
          ) internal view virtual returns (uint24) {}
      
          /**
           * @dev Returns the next extra data for the packed ownership data.
           * The returned result is shifted into position.
           */
          function _nextExtraData(
              address from,
              address to,
              uint256 prevOwnershipPacked
          ) private view returns (uint256) {
              uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
              return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
          }
      
          // =============================================================
          //                       OTHER OPERATIONS
          // =============================================================
      
          /**
           * @dev Returns the message sender (defaults to `msg.sender`).
           *
           * If you are writing GSN compatible contracts, you need to override this function.
           */
          function _msgSenderERC721A() internal view virtual returns (address) {
              return msg.sender;
          }
      
          /**
           * @dev Converts a uint256 to its ASCII string decimal representation.
           */
          function _toString(uint256 value) internal pure virtual returns (string memory str) {
              assembly {
                  // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                  // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                  // We will need 1 word for the trailing zeros padding, 1 word for the length,
                  // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
                  let m := add(mload(0x40), 0xa0)
                  // Update the free memory pointer to allocate.
                  mstore(0x40, m)
                  // Assign the `str` to the end.
                  str := sub(m, 0x20)
                  // Zeroize the slot after the string.
                  mstore(str, 0)
      
                  // Cache the end of the memory to calculate the length later.
                  let end := str
      
                  // We write the string from rightmost digit to leftmost digit.
                  // The following is essentially a do-while loop that also handles the zero case.
                  // prettier-ignore
                  for { let temp := value } 1 {} {
                      str := sub(str, 1)
                      // Write the character to the pointer.
                      // The ASCII index of the '0' character is 48.
                      mstore8(str, add(48, mod(temp, 10)))
                      // Keep dividing `temp` until zero.
                      temp := div(temp, 10)
                      // prettier-ignore
                      if iszero(temp) { break }
                  }
      
                  let length := sub(end, str)
                  // Move the pointer 32 bytes leftwards to make room for the length.
                  str := sub(str, 0x20)
                  // Store the length.
                  mstore(str, length)
              }
          }
      }
      
      /**
       * @title ERC721AQueryable.
       *
       * @dev ERC721A subclass with convenience query functions.
       */
      abstract contract ERC721AQueryable is ERC721A, IERC721AQueryable {
          /**
           * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
           *
           * If the `tokenId` is out of bounds:
           *
           * - `addr = address(0)`
           * - `startTimestamp = 0`
           * - `burned = false`
           * - `extraData = 0`
           *
           * If the `tokenId` is burned:
           *
           * - `addr = <Address of owner before token was burned>`
           * - `startTimestamp = <Timestamp when token was burned>`
           * - `burned = true`
           * - `extraData = <Extra data when token was burned>`
           *
           * Otherwise:
           *
           * - `addr = <Address of owner>`
           * - `startTimestamp = <Timestamp of start of ownership>`
           * - `burned = false`
           * - `extraData = <Extra data at start of ownership>`
           */
          function explicitOwnershipOf(uint256 tokenId) public view virtual override returns (TokenOwnership memory) {
              TokenOwnership memory ownership;
              if (tokenId < _startTokenId() || tokenId >= _nextTokenId()) {
                  return ownership;
              }
              ownership = _ownershipAt(tokenId);
              if (ownership.burned) {
                  return ownership;
              }
              return _ownershipOf(tokenId);
          }
      
          /**
           * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
           * See {ERC721AQueryable-explicitOwnershipOf}
           */
          function explicitOwnershipsOf(uint256[] calldata tokenIds)
              external
              view
              virtual
              override
              returns (TokenOwnership[] memory)
          {
              unchecked {
                  uint256 tokenIdsLength = tokenIds.length;
                  TokenOwnership[] memory ownerships = new TokenOwnership[](tokenIdsLength);
                  for (uint256 i; i != tokenIdsLength; ++i) {
                      ownerships[i] = explicitOwnershipOf(tokenIds[i]);
                  }
                  return ownerships;
              }
          }
      
          /**
           * @dev Returns an array of token IDs owned by `owner`,
           * in the range [`start`, `stop`)
           * (i.e. `start <= tokenId < stop`).
           *
           * This function allows for tokens to be queried if the collection
           * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
           *
           * Requirements:
           *
           * - `start < stop`
           */
          function tokensOfOwnerIn(
              address owner,
              uint256 start,
              uint256 stop
          ) external view virtual override returns (uint256[] memory) {
              unchecked {
                  if (start >= stop) revert InvalidQueryRange();
                  uint256 tokenIdsIdx;
                  uint256 stopLimit = _nextTokenId();
                  // Set `start = max(start, _startTokenId())`.
                  if (start < _startTokenId()) {
                      start = _startTokenId();
                  }
                  // Set `stop = min(stop, stopLimit)`.
                  if (stop > stopLimit) {
                      stop = stopLimit;
                  }
                  uint256 tokenIdsMaxLength = balanceOf(owner);
                  // Set `tokenIdsMaxLength = min(balanceOf(owner), stop - start)`,
                  // to cater for cases where `balanceOf(owner)` is too big.
                  if (start < stop) {
                      uint256 rangeLength = stop - start;
                      if (rangeLength < tokenIdsMaxLength) {
                          tokenIdsMaxLength = rangeLength;
                      }
                  } else {
                      tokenIdsMaxLength = 0;
                  }
                  uint256[] memory tokenIds = new uint256[](tokenIdsMaxLength);
                  if (tokenIdsMaxLength == 0) {
                      return tokenIds;
                  }
                  // We need to call `explicitOwnershipOf(start)`,
                  // because the slot at `start` may not be initialized.
                  TokenOwnership memory ownership = explicitOwnershipOf(start);
                  address currOwnershipAddr;
                  // If the starting slot exists (i.e. not burned), initialize `currOwnershipAddr`.
                  // `ownership.address` will not be zero, as `start` is clamped to the valid token ID range.
                  if (!ownership.burned) {
                      currOwnershipAddr = ownership.addr;
                  }
                  for (uint256 i = start; i != stop && tokenIdsIdx != tokenIdsMaxLength; ++i) {
                      ownership = _ownershipAt(i);
                      if (ownership.burned) {
                          continue;
                      }
                      if (ownership.addr != address(0)) {
                          currOwnershipAddr = ownership.addr;
                      }
                      if (currOwnershipAddr == owner) {
                          tokenIds[tokenIdsIdx++] = i;
                      }
                  }
                  // Downsize the array to fit.
                  assembly {
                      mstore(tokenIds, tokenIdsIdx)
                  }
                  return tokenIds;
              }
          }
      
          /**
           * @dev Returns an array of token IDs owned by `owner`.
           *
           * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
           * It is meant to be called off-chain.
           *
           * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
           * multiple smaller scans if the collection is large enough to cause
           * an out-of-gas error (10K collections should be fine).
           */
          function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) {
              unchecked {
                  uint256 tokenIdsIdx;
                  address currOwnershipAddr;
                  uint256 tokenIdsLength = balanceOf(owner);
                  uint256[] memory tokenIds = new uint256[](tokenIdsLength);
                  TokenOwnership memory ownership;
                  for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) {
                      ownership = _ownershipAt(i);
                      if (ownership.burned) {
                          continue;
                      }
                      if (ownership.addr != address(0)) {
                          currOwnershipAddr = ownership.addr;
                      }
                      if (currOwnershipAddr == owner) {
                          tokenIds[tokenIdsIdx++] = i;
                      }
                  }
                  return tokenIds;
              }
          }
      }
      
      interface IOperatorFilterRegistry {
          /**
           * @notice Returns true if operator is not filtered for a given token, either by address or codeHash. Also returns
           *         true if supplied registrant address is not registered.
           */
          function isOperatorAllowed(address registrant, address operator) external view returns (bool);
      
          /**
           * @notice Registers an address with the registry. May be called by address itself or by EIP-173 owner.
           */
          function register(address registrant) external;
      
          /**
           * @notice Registers an address with the registry and "subscribes" to another address's filtered operators and codeHashes.
           */
          function registerAndSubscribe(address registrant, address subscription) external;
      
          /**
           * @notice Registers an address with the registry and copies the filtered operators and codeHashes from another
           *         address without subscribing.
           */
          function registerAndCopyEntries(address registrant, address registrantToCopy) external;
      
          /**
           * @notice Unregisters an address with the registry and removes its subscription. May be called by address itself or by EIP-173 owner.
           *         Note that this does not remove any filtered addresses or codeHashes.
           *         Also note that any subscriptions to this registrant will still be active and follow the existing filtered addresses and codehashes.
           */
          function unregister(address addr) external;
      
          /**
           * @notice Update an operator address for a registered address - when filtered is true, the operator is filtered.
           */
          function updateOperator(address registrant, address operator, bool filtered) external;
      
          /**
           * @notice Update multiple operators for a registered address - when filtered is true, the operators will be filtered. Reverts on duplicates.
           */
          function updateOperators(address registrant, address[] calldata operators, bool filtered) external;
      
          /**
           * @notice Update a codeHash for a registered address - when filtered is true, the codeHash is filtered.
           */
          function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external;
      
          /**
           * @notice Update multiple codeHashes for a registered address - when filtered is true, the codeHashes will be filtered. Reverts on duplicates.
           */
          function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external;
      
          /**
           * @notice Subscribe an address to another registrant's filtered operators and codeHashes. Will remove previous
           *         subscription if present.
           *         Note that accounts with subscriptions may go on to subscribe to other accounts - in this case,
           *         subscriptions will not be forwarded. Instead the former subscription's existing entries will still be
           *         used.
           */
          function subscribe(address registrant, address registrantToSubscribe) external;
      
          /**
           * @notice Unsubscribe an address from its current subscribed registrant, and optionally copy its filtered operators and codeHashes.
           */
          function unsubscribe(address registrant, bool copyExistingEntries) external;
      
          /**
           * @notice Get the subscription address of a given registrant, if any.
           */
          function subscriptionOf(address addr) external returns (address registrant);
      
          /**
           * @notice Get the set of addresses subscribed to a given registrant.
           *         Note that order is not guaranteed as updates are made.
           */
          function subscribers(address registrant) external returns (address[] memory);
      
          /**
           * @notice Get the subscriber at a given index in the set of addresses subscribed to a given registrant.
           *         Note that order is not guaranteed as updates are made.
           */
          function subscriberAt(address registrant, uint256 index) external returns (address);
      
          /**
           * @notice Copy filtered operators and codeHashes from a different registrantToCopy to addr.
           */
          function copyEntriesOf(address registrant, address registrantToCopy) external;
      
          /**
           * @notice Returns true if operator is filtered by a given address or its subscription.
           */
          function isOperatorFiltered(address registrant, address operator) external returns (bool);
      
          /**
           * @notice Returns true if the hash of an address's code is filtered by a given address or its subscription.
           */
          function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool);
      
          /**
           * @notice Returns true if a codeHash is filtered by a given address or its subscription.
           */
          function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool);
      
          /**
           * @notice Returns a list of filtered operators for a given address or its subscription.
           */
          function filteredOperators(address addr) external returns (address[] memory);
      
          /**
           * @notice Returns the set of filtered codeHashes for a given address or its subscription.
           *         Note that order is not guaranteed as updates are made.
           */
          function filteredCodeHashes(address addr) external returns (bytes32[] memory);
      
          /**
           * @notice Returns the filtered operator at the given index of the set of filtered operators for a given address or
           *         its subscription.
           *         Note that order is not guaranteed as updates are made.
           */
          function filteredOperatorAt(address registrant, uint256 index) external returns (address);
      
          /**
           * @notice Returns the filtered codeHash at the given index of the list of filtered codeHashes for a given address or
           *         its subscription.
           *         Note that order is not guaranteed as updates are made.
           */
          function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32);
      
          /**
           * @notice Returns true if an address has registered
           */
          function isRegistered(address addr) external returns (bool);
      
          /**
           * @dev Convenience method to compute the code hash of an arbitrary contract
           */
          function codeHashOf(address addr) external returns (bytes32);
      }
      
      address constant CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS = 0x000000000000AAeB6D7670E522A718067333cd4E;
      address constant CANONICAL_CORI_SUBSCRIPTION = 0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6;
      
      /**
       * @title  OperatorFilterer
       * @notice Abstract contract whose constructor automatically registers and optionally subscribes to or copies another
       *         registrant's entries in the OperatorFilterRegistry.
       * @dev    This smart contract is meant to be inherited by token contracts so they can use the following:
       *         - `onlyAllowedOperator` modifier for `transferFrom` and `safeTransferFrom` methods.
       *         - `onlyAllowedOperatorApproval` modifier for `approve` and `setApprovalForAll` methods.
       *         Please note that if your token contract does not provide an owner with EIP-173, it must provide
       *         administration methods on the contract itself to interact with the registry otherwise the subscription
       *         will be locked to the options set during construction.
       */
      
      abstract contract OperatorFilterer {
          /// @dev Emitted when an operator is not allowed.
          error OperatorNotAllowed(address operator);
      
          IOperatorFilterRegistry public constant OPERATOR_FILTER_REGISTRY =
              IOperatorFilterRegistry(CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS);
      
          /// @dev The constructor that is called when the contract is being deployed.
          constructor(address subscriptionOrRegistrantToCopy, bool subscribe) {
              // If an inheriting token contract is deployed to a network without the registry deployed, the modifier
              // will not revert, but the contract will need to be registered with the registry once it is deployed in
              // order for the modifier to filter addresses.
              if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
                  if (subscribe) {
                      OPERATOR_FILTER_REGISTRY.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy);
                  } else {
                      if (subscriptionOrRegistrantToCopy != address(0)) {
                          OPERATOR_FILTER_REGISTRY.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy);
                      } else {
                          OPERATOR_FILTER_REGISTRY.register(address(this));
                      }
                  }
              }
          }
      
          /**
           * @dev A helper function to check if an operator is allowed.
           */
          modifier onlyAllowedOperator(address from) virtual {
              // Allow spending tokens from addresses with balance
              // Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred
              // from an EOA.
              if (from != msg.sender) {
                  _checkFilterOperator(msg.sender);
              }
              _;
          }
      
          /**
           * @dev A helper function to check if an operator approval is allowed.
           */
          modifier onlyAllowedOperatorApproval(address operator) virtual {
              _checkFilterOperator(operator);
              _;
          }
      
          /**
           * @dev A helper function to check if an operator is allowed.
           */
          function _checkFilterOperator(address operator) internal view virtual {
              // Check registry code length to facilitate testing in environments without a deployed registry.
              if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
                  // under normal circumstances, this function will revert rather than return false, but inheriting contracts
                  // may specify their own OperatorFilterRegistry implementations, which may behave differently
                  if (!OPERATOR_FILTER_REGISTRY.isOperatorAllowed(address(this), operator)) {
                      revert OperatorNotAllowed(operator);
                  }
              }
          }
      }
      
      /**
       * @title  DefaultOperatorFilterer
       * @notice Inherits from OperatorFilterer and automatically subscribes to the default OpenSea subscription.
       * @dev    Please note that if your token contract does not provide an owner with EIP-173, it must provide
       *         administration methods on the contract itself to interact with the registry otherwise the subscription
       *         will be locked to the options set during construction.
       */
      
      abstract contract DefaultOperatorFilterer is OperatorFilterer {
          /// @dev The constructor that is called when the contract is being deployed.
          constructor() OperatorFilterer(CANONICAL_CORI_SUBSCRIPTION, true) {}
      }
      
      pragma solidity ^0.8.19;
      
      error ZeroBalance();
      error SaleNotActive();
      error AddressNotWhitelisted();
      error SoldOut();
      error MaxPerTransactionExceeded();
      error AlreadyMintedDuringPresale();
      
      contract Punks2023 is DefaultOperatorFilterer, ERC2981, ERC721AQueryable, Ownable {
        using MerkleProof for bytes32[];
        bytes32 public whitelistMerkleRoot;
        bool public presaleActive;
        bool public publicsaleActive;
        uint256 public punkPerTransaction = 1;
        uint256 public constant SUPPLY = 10000;
        string public baseURI;
        mapping (address => uint256) public presaleClaimAmount;
      
        constructor() ERC721A("Punks2023", "PUNK2023") { }
      
        /* ADMIN FUNCTIONS */
        function togglePublicSale() external onlyOwner {
          publicsaleActive = !publicsaleActive;
        }
      
        function togglePresale() external onlyOwner {
          presaleActive = !presaleActive;
        }
      
        function setPunkPerTransaction(uint256 count) external onlyOwner {
          punkPerTransaction = count;
        }
      
        function withdraw() external onlyOwner {
          uint256 balance = address(this).balance;
          if (balance == 0) revert ZeroBalance();
          address owner = payable(msg.sender);
      
          (bool ownerSuccess, ) = owner.call{value: address(this).balance}("");
          require(ownerSuccess, "Failed to send to Owner.");
        }
      
        function setBaseUri(string memory _uri) external onlyOwner {
          baseURI = _uri;
        }
      
        function setMerkleRoot(bytes32 root) external onlyOwner {
          whitelistMerkleRoot = root;
        }
      
        function adminMint(address wallet, uint256 count) external onlyOwner {
          if (SUPPLY < (totalSupply() + count)) revert SoldOut();
      
          _mint(wallet, count);
        }
        /* END ADMIN FUNCTIONS */
      
        function presaleMint(uint256 count, bytes32[] memory proof) payable public {
          if (!presaleActive) revert SaleNotActive();
          if (SUPPLY < (totalSupply() + count)) revert SoldOut();
          if (count > punkPerTransaction) revert MaxPerTransactionExceeded();
          if (!_verify(_leaf(msg.sender), whitelistMerkleRoot, proof)) revert AddressNotWhitelisted();
          if (presaleClaimAmount[msg.sender] + count > punkPerTransaction) revert AlreadyMintedDuringPresale();
      
          presaleClaimAmount[msg.sender] += count;
          _mint(msg.sender, count);
        }
      
        function mint(uint256 count) payable public {
          if (!publicsaleActive) revert SaleNotActive();
          if (SUPPLY < (totalSupply() + count)) revert SoldOut();
          if (count > punkPerTransaction) revert MaxPerTransactionExceeded();
      
          _mint(msg.sender, count);
        }
      
        function _leaf(address account) internal pure returns (bytes32) {
          return keccak256(abi.encodePacked(account));
        }
      
        function _verify(bytes32 leaf, bytes32 root, bytes32[] memory proof) internal pure returns (bool) {
          return MerkleProof.verify(proof, root, leaf);
        }
      
        function _baseURI() internal view virtual override returns (string memory) {
          return baseURI;
        }
      
        function setApprovalForAll(address operator, bool approved)
          public
          override(ERC721A, IERC721A)
          onlyAllowedOperatorApproval(operator)
        {
          super.setApprovalForAll(operator, approved);
        }
      
        function approve(address operator, uint256 tokenId) public override(ERC721A, IERC721A) payable onlyAllowedOperatorApproval(operator) {
          super.approve(operator, tokenId);
        }
      
        function transferFrom(address from, address to, uint256 tokenId) public override(ERC721A, IERC721A) payable onlyAllowedOperator(from) {
          super.transferFrom(from, to, tokenId);
        }
      
        function safeTransferFrom(address from, address to, uint256 tokenId) public override(ERC721A, IERC721A) payable onlyAllowedOperator(from) {
          super.safeTransferFrom(from, to, tokenId);
        }
      
        function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data)
          public
          override(ERC721A, IERC721A)
          payable
          onlyAllowedOperator(from)
        {
          super.safeTransferFrom(from, to, tokenId, data);
        }
      
        function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721A, IERC721A, ERC2981) returns (bool) {
          return ERC721A.supportsInterface(interfaceId) || ERC2981.supportsInterface(interfaceId);
        }
      }

      File 3 of 4: GnosisSafeProxy
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      
      /// @title IProxy - Helper interface to access masterCopy of the Proxy on-chain
      /// @author Richard Meissner - <[email protected]>
      interface IProxy {
          function masterCopy() external view returns (address);
      }
      
      /// @title GnosisSafeProxy - Generic proxy contract allows to execute all transactions applying the code of a master contract.
      /// @author Stefan George - <[email protected]>
      /// @author Richard Meissner - <[email protected]>
      contract GnosisSafeProxy {
          // singleton always needs to be first declared variable, to ensure that it is at the same location in the contracts to which calls are delegated.
          // To reduce deployment costs this variable is internal and needs to be retrieved via `getStorageAt`
          address internal singleton;
      
          /// @dev Constructor function sets address of singleton contract.
          /// @param _singleton Singleton address.
          constructor(address _singleton) {
              require(_singleton != address(0), "Invalid singleton address provided");
              singleton = _singleton;
          }
      
          /// @dev Fallback function forwards all transactions and returns all received return data.
          fallback() external payable {
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  let _singleton := and(sload(0), 0xffffffffffffffffffffffffffffffffffffffff)
                  // 0xa619486e == keccak("masterCopy()"). The value is right padded to 32-bytes with 0s
                  if eq(calldataload(0), 0xa619486e00000000000000000000000000000000000000000000000000000000) {
                      mstore(0, _singleton)
                      return(0, 0x20)
                  }
                  calldatacopy(0, 0, calldatasize())
                  let success := delegatecall(gas(), _singleton, 0, calldatasize(), 0, 0)
                  returndatacopy(0, 0, returndatasize())
                  if eq(success, 0) {
                      revert(0, returndatasize())
                  }
                  return(0, returndatasize())
              }
          }
      }
      
      /// @title Proxy Factory - Allows to create new proxy contact and execute a message call to the new proxy within one transaction.
      /// @author Stefan George - <[email protected]>
      contract GnosisSafeProxyFactory {
          event ProxyCreation(GnosisSafeProxy proxy, address singleton);
      
          /// @dev Allows to create new proxy contact and execute a message call to the new proxy within one transaction.
          /// @param singleton Address of singleton contract.
          /// @param data Payload for message call sent to new proxy contract.
          function createProxy(address singleton, bytes memory data) public returns (GnosisSafeProxy proxy) {
              proxy = new GnosisSafeProxy(singleton);
              if (data.length > 0)
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      if eq(call(gas(), proxy, 0, add(data, 0x20), mload(data), 0, 0), 0) {
                          revert(0, 0)
                      }
                  }
              emit ProxyCreation(proxy, singleton);
          }
      
          /// @dev Allows to retrieve the runtime code of a deployed Proxy. This can be used to check that the expected Proxy was deployed.
          function proxyRuntimeCode() public pure returns (bytes memory) {
              return type(GnosisSafeProxy).runtimeCode;
          }
      
          /// @dev Allows to retrieve the creation code used for the Proxy deployment. With this it is easily possible to calculate predicted address.
          function proxyCreationCode() public pure returns (bytes memory) {
              return type(GnosisSafeProxy).creationCode;
          }
      
          /// @dev Allows to create new proxy contact using CREATE2 but it doesn't run the initializer.
          ///      This method is only meant as an utility to be called from other methods
          /// @param _singleton Address of singleton contract.
          /// @param initializer Payload for message call sent to new proxy contract.
          /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
          function deployProxyWithNonce(
              address _singleton,
              bytes memory initializer,
              uint256 saltNonce
          ) internal returns (GnosisSafeProxy proxy) {
              // If the initializer changes the proxy address should change too. Hashing the initializer data is cheaper than just concatinating it
              bytes32 salt = keccak256(abi.encodePacked(keccak256(initializer), saltNonce));
              bytes memory deploymentData = abi.encodePacked(type(GnosisSafeProxy).creationCode, uint256(uint160(_singleton)));
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  proxy := create2(0x0, add(0x20, deploymentData), mload(deploymentData), salt)
              }
              require(address(proxy) != address(0), "Create2 call failed");
          }
      
          /// @dev Allows to create new proxy contact and execute a message call to the new proxy within one transaction.
          /// @param _singleton Address of singleton contract.
          /// @param initializer Payload for message call sent to new proxy contract.
          /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
          function createProxyWithNonce(
              address _singleton,
              bytes memory initializer,
              uint256 saltNonce
          ) public returns (GnosisSafeProxy proxy) {
              proxy = deployProxyWithNonce(_singleton, initializer, saltNonce);
              if (initializer.length > 0)
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      if eq(call(gas(), proxy, 0, add(initializer, 0x20), mload(initializer), 0, 0), 0) {
                          revert(0, 0)
                      }
                  }
              emit ProxyCreation(proxy, _singleton);
          }
      
          /// @dev Allows to create new proxy contact, execute a message call to the new proxy and call a specified callback within one transaction
          /// @param _singleton Address of singleton contract.
          /// @param initializer Payload for message call sent to new proxy contract.
          /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
          /// @param callback Callback that will be invoced after the new proxy contract has been successfully deployed and initialized.
          function createProxyWithCallback(
              address _singleton,
              bytes memory initializer,
              uint256 saltNonce,
              IProxyCreationCallback callback
          ) public returns (GnosisSafeProxy proxy) {
              uint256 saltNonceWithCallback = uint256(keccak256(abi.encodePacked(saltNonce, callback)));
              proxy = createProxyWithNonce(_singleton, initializer, saltNonceWithCallback);
              if (address(callback) != address(0)) callback.proxyCreated(proxy, _singleton, initializer, saltNonce);
          }
      
          /// @dev Allows to get the address for a new proxy contact created via `createProxyWithNonce`
          ///      This method is only meant for address calculation purpose when you use an initializer that would revert,
          ///      therefore the response is returned with a revert. When calling this method set `from` to the address of the proxy factory.
          /// @param _singleton Address of singleton contract.
          /// @param initializer Payload for message call sent to new proxy contract.
          /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
          function calculateCreateProxyWithNonceAddress(
              address _singleton,
              bytes calldata initializer,
              uint256 saltNonce
          ) external returns (GnosisSafeProxy proxy) {
              proxy = deployProxyWithNonce(_singleton, initializer, saltNonce);
              revert(string(abi.encodePacked(proxy)));
          }
      }
      
      interface IProxyCreationCallback {
          function proxyCreated(
              GnosisSafeProxy proxy,
              address _singleton,
              bytes calldata initializer,
              uint256 saltNonce
          ) external;
      }

      File 4 of 4: GnosisSafe
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "./base/ModuleManager.sol";
      import "./base/OwnerManager.sol";
      import "./base/FallbackManager.sol";
      import "./base/GuardManager.sol";
      import "./common/EtherPaymentFallback.sol";
      import "./common/Singleton.sol";
      import "./common/SignatureDecoder.sol";
      import "./common/SecuredTokenTransfer.sol";
      import "./common/StorageAccessible.sol";
      import "./interfaces/ISignatureValidator.sol";
      import "./external/GnosisSafeMath.sol";
      /// @title Gnosis Safe - A multisignature wallet with support for confirmations using signed messages based on ERC191.
      /// @author Stefan George - <[email protected]>
      /// @author Richard Meissner - <[email protected]>
      contract GnosisSafe is
          EtherPaymentFallback,
          Singleton,
          ModuleManager,
          OwnerManager,
          SignatureDecoder,
          SecuredTokenTransfer,
          ISignatureValidatorConstants,
          FallbackManager,
          StorageAccessible,
          GuardManager
      {
          using GnosisSafeMath for uint256;
          string public constant VERSION = "1.3.0";
          // keccak256(
          //     "EIP712Domain(uint256 chainId,address verifyingContract)"
          // );
          bytes32 private constant DOMAIN_SEPARATOR_TYPEHASH = 0x47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a79469218;
          // keccak256(
          //     "SafeTx(address to,uint256 value,bytes data,uint8 operation,uint256 safeTxGas,uint256 baseGas,uint256 gasPrice,address gasToken,address refundReceiver,uint256 nonce)"
          // );
          bytes32 private constant SAFE_TX_TYPEHASH = 0xbb8310d486368db6bd6f849402fdd73ad53d316b5a4b2644ad6efe0f941286d8;
          event SafeSetup(address indexed initiator, address[] owners, uint256 threshold, address initializer, address fallbackHandler);
          event ApproveHash(bytes32 indexed approvedHash, address indexed owner);
          event SignMsg(bytes32 indexed msgHash);
          event ExecutionFailure(bytes32 txHash, uint256 payment);
          event ExecutionSuccess(bytes32 txHash, uint256 payment);
          uint256 public nonce;
          bytes32 private _deprecatedDomainSeparator;
          // Mapping to keep track of all message hashes that have been approve by ALL REQUIRED owners
          mapping(bytes32 => uint256) public signedMessages;
          // Mapping to keep track of all hashes (message or transaction) that have been approve by ANY owners
          mapping(address => mapping(bytes32 => uint256)) public approvedHashes;
          // This constructor ensures that this contract can only be used as a master copy for Proxy contracts
          constructor() {
              // By setting the threshold it is not possible to call setup anymore,
              // so we create a Safe with 0 owners and threshold 1.
              // This is an unusable Safe, perfect for the singleton
              threshold = 1;
          }
          /// @dev Setup function sets initial storage of contract.
          /// @param _owners List of Safe owners.
          /// @param _threshold Number of required confirmations for a Safe transaction.
          /// @param to Contract address for optional delegate call.
          /// @param data Data payload for optional delegate call.
          /// @param fallbackHandler Handler for fallback calls to this contract
          /// @param paymentToken Token that should be used for the payment (0 is ETH)
          /// @param payment Value that should be paid
          /// @param paymentReceiver Adddress that should receive the payment (or 0 if tx.origin)
          function setup(
              address[] calldata _owners,
              uint256 _threshold,
              address to,
              bytes calldata data,
              address fallbackHandler,
              address paymentToken,
              uint256 payment,
              address payable paymentReceiver
          ) external {
              // setupOwners checks if the Threshold is already set, therefore preventing that this method is called twice
              setupOwners(_owners, _threshold);
              if (fallbackHandler != address(0)) internalSetFallbackHandler(fallbackHandler);
              // As setupOwners can only be called if the contract has not been initialized we don't need a check for setupModules
              setupModules(to, data);
              if (payment > 0) {
                  // To avoid running into issues with EIP-170 we reuse the handlePayment function (to avoid adjusting code of that has been verified we do not adjust the method itself)
                  // baseGas = 0, gasPrice = 1 and gas = payment => amount = (payment + 0) * 1 = payment
                  handlePayment(payment, 0, 1, paymentToken, paymentReceiver);
              }
              emit SafeSetup(msg.sender, _owners, _threshold, to, fallbackHandler);
          }
          /// @dev Allows to execute a Safe transaction confirmed by required number of owners and then pays the account that submitted the transaction.
          ///      Note: The fees are always transferred, even if the user transaction fails.
          /// @param to Destination address of Safe transaction.
          /// @param value Ether value of Safe transaction.
          /// @param data Data payload of Safe transaction.
          /// @param operation Operation type of Safe transaction.
          /// @param safeTxGas Gas that should be used for the Safe transaction.
          /// @param baseGas Gas costs that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
          /// @param gasPrice Gas price that should be used for the payment calculation.
          /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
          /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
          /// @param signatures Packed signature data ({bytes32 r}{bytes32 s}{uint8 v})
          function execTransaction(
              address to,
              uint256 value,
              bytes calldata data,
              Enum.Operation operation,
              uint256 safeTxGas,
              uint256 baseGas,
              uint256 gasPrice,
              address gasToken,
              address payable refundReceiver,
              bytes memory signatures
          ) public payable virtual returns (bool success) {
              bytes32 txHash;
              // Use scope here to limit variable lifetime and prevent `stack too deep` errors
              {
                  bytes memory txHashData =
                      encodeTransactionData(
                          // Transaction info
                          to,
                          value,
                          data,
                          operation,
                          safeTxGas,
                          // Payment info
                          baseGas,
                          gasPrice,
                          gasToken,
                          refundReceiver,
                          // Signature info
                          nonce
                      );
                  // Increase nonce and execute transaction.
                  nonce++;
                  txHash = keccak256(txHashData);
                  checkSignatures(txHash, txHashData, signatures);
              }
              address guard = getGuard();
              {
                  if (guard != address(0)) {
                      Guard(guard).checkTransaction(
                          // Transaction info
                          to,
                          value,
                          data,
                          operation,
                          safeTxGas,
                          // Payment info
                          baseGas,
                          gasPrice,
                          gasToken,
                          refundReceiver,
                          // Signature info
                          signatures,
                          msg.sender
                      );
                  }
              }
              // We require some gas to emit the events (at least 2500) after the execution and some to perform code until the execution (500)
              // We also include the 1/64 in the check that is not send along with a call to counteract potential shortings because of EIP-150
              require(gasleft() >= ((safeTxGas * 64) / 63).max(safeTxGas + 2500) + 500, "GS010");
              // Use scope here to limit variable lifetime and prevent `stack too deep` errors
              {
                  uint256 gasUsed = gasleft();
                  // If the gasPrice is 0 we assume that nearly all available gas can be used (it is always more than safeTxGas)
                  // We only substract 2500 (compared to the 3000 before) to ensure that the amount passed is still higher than safeTxGas
                  success = execute(to, value, data, operation, gasPrice == 0 ? (gasleft() - 2500) : safeTxGas);
                  gasUsed = gasUsed.sub(gasleft());
                  // If no safeTxGas and no gasPrice was set (e.g. both are 0), then the internal tx is required to be successful
                  // This makes it possible to use `estimateGas` without issues, as it searches for the minimum gas where the tx doesn't revert
                  require(success || safeTxGas != 0 || gasPrice != 0, "GS013");
                  // We transfer the calculated tx costs to the tx.origin to avoid sending it to intermediate contracts that have made calls
                  uint256 payment = 0;
                  if (gasPrice > 0) {
                      payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken, refundReceiver);
                  }
                  if (success) emit ExecutionSuccess(txHash, payment);
                  else emit ExecutionFailure(txHash, payment);
              }
              {
                  if (guard != address(0)) {
                      Guard(guard).checkAfterExecution(txHash, success);
                  }
              }
          }
          function handlePayment(
              uint256 gasUsed,
              uint256 baseGas,
              uint256 gasPrice,
              address gasToken,
              address payable refundReceiver
          ) private returns (uint256 payment) {
              // solhint-disable-next-line avoid-tx-origin
              address payable receiver = refundReceiver == address(0) ? payable(tx.origin) : refundReceiver;
              if (gasToken == address(0)) {
                  // For ETH we will only adjust the gas price to not be higher than the actual used gas price
                  payment = gasUsed.add(baseGas).mul(gasPrice < tx.gasprice ? gasPrice : tx.gasprice);
                  require(receiver.send(payment), "GS011");
              } else {
                  payment = gasUsed.add(baseGas).mul(gasPrice);
                  require(transferToken(gasToken, receiver, payment), "GS012");
              }
          }
          /**
           * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise.
           * @param dataHash Hash of the data (could be either a message hash or transaction hash)
           * @param data That should be signed (this is passed to an external validator contract)
           * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash.
           */
          function checkSignatures(
              bytes32 dataHash,
              bytes memory data,
              bytes memory signatures
          ) public view {
              // Load threshold to avoid multiple storage loads
              uint256 _threshold = threshold;
              // Check that a threshold is set
              require(_threshold > 0, "GS001");
              checkNSignatures(dataHash, data, signatures, _threshold);
          }
          /**
           * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise.
           * @param dataHash Hash of the data (could be either a message hash or transaction hash)
           * @param data That should be signed (this is passed to an external validator contract)
           * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash.
           * @param requiredSignatures Amount of required valid signatures.
           */
          function checkNSignatures(
              bytes32 dataHash,
              bytes memory data,
              bytes memory signatures,
              uint256 requiredSignatures
          ) public view {
              // Check that the provided signature data is not too short
              require(signatures.length >= requiredSignatures.mul(65), "GS020");
              // There cannot be an owner with address 0.
              address lastOwner = address(0);
              address currentOwner;
              uint8 v;
              bytes32 r;
              bytes32 s;
              uint256 i;
              for (i = 0; i < requiredSignatures; i++) {
                  (v, r, s) = signatureSplit(signatures, i);
                  if (v == 0) {
                      // If v is 0 then it is a contract signature
                      // When handling contract signatures the address of the contract is encoded into r
                      currentOwner = address(uint160(uint256(r)));
                      // Check that signature data pointer (s) is not pointing inside the static part of the signatures bytes
                      // This check is not completely accurate, since it is possible that more signatures than the threshold are send.
                      // Here we only check that the pointer is not pointing inside the part that is being processed
                      require(uint256(s) >= requiredSignatures.mul(65), "GS021");
                      // Check that signature data pointer (s) is in bounds (points to the length of data -> 32 bytes)
                      require(uint256(s).add(32) <= signatures.length, "GS022");
                      // Check if the contract signature is in bounds: start of data is s + 32 and end is start + signature length
                      uint256 contractSignatureLen;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          contractSignatureLen := mload(add(add(signatures, s), 0x20))
                      }
                      require(uint256(s).add(32).add(contractSignatureLen) <= signatures.length, "GS023");
                      // Check signature
                      bytes memory contractSignature;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          // The signature data for contract signatures is appended to the concatenated signatures and the offset is stored in s
                          contractSignature := add(add(signatures, s), 0x20)
                      }
                      require(ISignatureValidator(currentOwner).isValidSignature(data, contractSignature) == EIP1271_MAGIC_VALUE, "GS024");
                  } else if (v == 1) {
                      // If v is 1 then it is an approved hash
                      // When handling approved hashes the address of the approver is encoded into r
                      currentOwner = address(uint160(uint256(r)));
                      // Hashes are automatically approved by the sender of the message or when they have been pre-approved via a separate transaction
                      require(msg.sender == currentOwner || approvedHashes[currentOwner][dataHash] != 0, "GS025");
                  } else if (v > 30) {
                      // If v > 30 then default va (27,28) has been adjusted for eth_sign flow
                      // To support eth_sign and similar we adjust v and hash the messageHash with the Ethereum message prefix before applying ecrecover
                      currentOwner = ecrecover(keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
      32", dataHash)), v - 4, r, s);
                  } else {
                      // Default is the ecrecover flow with the provided data hash
                      // Use ecrecover with the messageHash for EOA signatures
                      currentOwner = ecrecover(dataHash, v, r, s);
                  }
                  require(currentOwner > lastOwner && owners[currentOwner] != address(0) && currentOwner != SENTINEL_OWNERS, "GS026");
                  lastOwner = currentOwner;
              }
          }
          /// @dev Allows to estimate a Safe transaction.
          ///      This method is only meant for estimation purpose, therefore the call will always revert and encode the result in the revert data.
          ///      Since the `estimateGas` function includes refunds, call this method to get an estimated of the costs that are deducted from the safe with `execTransaction`
          /// @param to Destination address of Safe transaction.
          /// @param value Ether value of Safe transaction.
          /// @param data Data payload of Safe transaction.
          /// @param operation Operation type of Safe transaction.
          /// @return Estimate without refunds and overhead fees (base transaction and payload data gas costs).
          /// @notice Deprecated in favor of common/StorageAccessible.sol and will be removed in next version.
          function requiredTxGas(
              address to,
              uint256 value,
              bytes calldata data,
              Enum.Operation operation
          ) external returns (uint256) {
              uint256 startGas = gasleft();
              // We don't provide an error message here, as we use it to return the estimate
              require(execute(to, value, data, operation, gasleft()));
              uint256 requiredGas = startGas - gasleft();
              // Convert response to string and return via error message
              revert(string(abi.encodePacked(requiredGas)));
          }
          /**
           * @dev Marks a hash as approved. This can be used to validate a hash that is used by a signature.
           * @param hashToApprove The hash that should be marked as approved for signatures that are verified by this contract.
           */
          function approveHash(bytes32 hashToApprove) external {
              require(owners[msg.sender] != address(0), "GS030");
              approvedHashes[msg.sender][hashToApprove] = 1;
              emit ApproveHash(hashToApprove, msg.sender);
          }
          /// @dev Returns the chain id used by this contract.
          function getChainId() public view returns (uint256) {
              uint256 id;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  id := chainid()
              }
              return id;
          }
          function domainSeparator() public view returns (bytes32) {
              return keccak256(abi.encode(DOMAIN_SEPARATOR_TYPEHASH, getChainId(), this));
          }
          /// @dev Returns the bytes that are hashed to be signed by owners.
          /// @param to Destination address.
          /// @param value Ether value.
          /// @param data Data payload.
          /// @param operation Operation type.
          /// @param safeTxGas Gas that should be used for the safe transaction.
          /// @param baseGas Gas costs for that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
          /// @param gasPrice Maximum gas price that should be used for this transaction.
          /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
          /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
          /// @param _nonce Transaction nonce.
          /// @return Transaction hash bytes.
          function encodeTransactionData(
              address to,
              uint256 value,
              bytes calldata data,
              Enum.Operation operation,
              uint256 safeTxGas,
              uint256 baseGas,
              uint256 gasPrice,
              address gasToken,
              address refundReceiver,
              uint256 _nonce
          ) public view returns (bytes memory) {
              bytes32 safeTxHash =
                  keccak256(
                      abi.encode(
                          SAFE_TX_TYPEHASH,
                          to,
                          value,
                          keccak256(data),
                          operation,
                          safeTxGas,
                          baseGas,
                          gasPrice,
                          gasToken,
                          refundReceiver,
                          _nonce
                      )
                  );
              return abi.encodePacked(bytes1(0x19), bytes1(0x01), domainSeparator(), safeTxHash);
          }
          /// @dev Returns hash to be signed by owners.
          /// @param to Destination address.
          /// @param value Ether value.
          /// @param data Data payload.
          /// @param operation Operation type.
          /// @param safeTxGas Fas that should be used for the safe transaction.
          /// @param baseGas Gas costs for data used to trigger the safe transaction.
          /// @param gasPrice Maximum gas price that should be used for this transaction.
          /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
          /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
          /// @param _nonce Transaction nonce.
          /// @return Transaction hash.
          function getTransactionHash(
              address to,
              uint256 value,
              bytes calldata data,
              Enum.Operation operation,
              uint256 safeTxGas,
              uint256 baseGas,
              uint256 gasPrice,
              address gasToken,
              address refundReceiver,
              uint256 _nonce
          ) public view returns (bytes32) {
              return keccak256(encodeTransactionData(to, value, data, operation, safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, _nonce));
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "../common/Enum.sol";
      /// @title Executor - A contract that can execute transactions
      /// @author Richard Meissner - <[email protected]>
      contract Executor {
          function execute(
              address to,
              uint256 value,
              bytes memory data,
              Enum.Operation operation,
              uint256 txGas
          ) internal returns (bool success) {
              if (operation == Enum.Operation.DelegateCall) {
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0)
                  }
              } else {
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0)
                  }
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "../common/SelfAuthorized.sol";
      /// @title Fallback Manager - A contract that manages fallback calls made to this contract
      /// @author Richard Meissner - <[email protected]>
      contract FallbackManager is SelfAuthorized {
          event ChangedFallbackHandler(address handler);
          // keccak256("fallback_manager.handler.address")
          bytes32 internal constant FALLBACK_HANDLER_STORAGE_SLOT = 0x6c9a6c4a39284e37ed1cf53d337577d14212a4870fb976a4366c693b939918d5;
          function internalSetFallbackHandler(address handler) internal {
              bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  sstore(slot, handler)
              }
          }
          /// @dev Allows to add a contract to handle fallback calls.
          ///      Only fallback calls without value and with data will be forwarded.
          ///      This can only be done via a Safe transaction.
          /// @param handler contract to handle fallbacks calls.
          function setFallbackHandler(address handler) public authorized {
              internalSetFallbackHandler(handler);
              emit ChangedFallbackHandler(handler);
          }
          // solhint-disable-next-line payable-fallback,no-complex-fallback
          fallback() external {
              bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  let handler := sload(slot)
                  if iszero(handler) {
                      return(0, 0)
                  }
                  calldatacopy(0, 0, calldatasize())
                  // The msg.sender address is shifted to the left by 12 bytes to remove the padding
                  // Then the address without padding is stored right after the calldata
                  mstore(calldatasize(), shl(96, caller()))
                  // Add 20 bytes for the address appended add the end
                  let success := call(gas(), handler, 0, 0, add(calldatasize(), 20), 0, 0)
                  returndatacopy(0, 0, returndatasize())
                  if iszero(success) {
                      revert(0, returndatasize())
                  }
                  return(0, returndatasize())
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "../common/Enum.sol";
      import "../common/SelfAuthorized.sol";
      interface Guard {
          function checkTransaction(
              address to,
              uint256 value,
              bytes memory data,
              Enum.Operation operation,
              uint256 safeTxGas,
              uint256 baseGas,
              uint256 gasPrice,
              address gasToken,
              address payable refundReceiver,
              bytes memory signatures,
              address msgSender
          ) external;
          function checkAfterExecution(bytes32 txHash, bool success) external;
      }
      /// @title Fallback Manager - A contract that manages fallback calls made to this contract
      /// @author Richard Meissner - <[email protected]>
      contract GuardManager is SelfAuthorized {
          event ChangedGuard(address guard);
          // keccak256("guard_manager.guard.address")
          bytes32 internal constant GUARD_STORAGE_SLOT = 0x4a204f620c8c5ccdca3fd54d003badd85ba500436a431f0cbda4f558c93c34c8;
          /// @dev Set a guard that checks transactions before execution
          /// @param guard The address of the guard to be used or the 0 address to disable the guard
          function setGuard(address guard) external authorized {
              bytes32 slot = GUARD_STORAGE_SLOT;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  sstore(slot, guard)
              }
              emit ChangedGuard(guard);
          }
          function getGuard() internal view returns (address guard) {
              bytes32 slot = GUARD_STORAGE_SLOT;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  guard := sload(slot)
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "../common/Enum.sol";
      import "../common/SelfAuthorized.sol";
      import "./Executor.sol";
      /// @title Module Manager - A contract that manages modules that can execute transactions via this contract
      /// @author Stefan George - <[email protected]>
      /// @author Richard Meissner - <[email protected]>
      contract ModuleManager is SelfAuthorized, Executor {
          event EnabledModule(address module);
          event DisabledModule(address module);
          event ExecutionFromModuleSuccess(address indexed module);
          event ExecutionFromModuleFailure(address indexed module);
          address internal constant SENTINEL_MODULES = address(0x1);
          mapping(address => address) internal modules;
          function setupModules(address to, bytes memory data) internal {
              require(modules[SENTINEL_MODULES] == address(0), "GS100");
              modules[SENTINEL_MODULES] = SENTINEL_MODULES;
              if (to != address(0))
                  // Setup has to complete successfully or transaction fails.
                  require(execute(to, 0, data, Enum.Operation.DelegateCall, gasleft()), "GS000");
          }
          /// @dev Allows to add a module to the whitelist.
          ///      This can only be done via a Safe transaction.
          /// @notice Enables the module `module` for the Safe.
          /// @param module Module to be whitelisted.
          function enableModule(address module) public authorized {
              // Module address cannot be null or sentinel.
              require(module != address(0) && module != SENTINEL_MODULES, "GS101");
              // Module cannot be added twice.
              require(modules[module] == address(0), "GS102");
              modules[module] = modules[SENTINEL_MODULES];
              modules[SENTINEL_MODULES] = module;
              emit EnabledModule(module);
          }
          /// @dev Allows to remove a module from the whitelist.
          ///      This can only be done via a Safe transaction.
          /// @notice Disables the module `module` for the Safe.
          /// @param prevModule Module that pointed to the module to be removed in the linked list
          /// @param module Module to be removed.
          function disableModule(address prevModule, address module) public authorized {
              // Validate module address and check that it corresponds to module index.
              require(module != address(0) && module != SENTINEL_MODULES, "GS101");
              require(modules[prevModule] == module, "GS103");
              modules[prevModule] = modules[module];
              modules[module] = address(0);
              emit DisabledModule(module);
          }
          /// @dev Allows a Module to execute a Safe transaction without any further confirmations.
          /// @param to Destination address of module transaction.
          /// @param value Ether value of module transaction.
          /// @param data Data payload of module transaction.
          /// @param operation Operation type of module transaction.
          function execTransactionFromModule(
              address to,
              uint256 value,
              bytes memory data,
              Enum.Operation operation
          ) public virtual returns (bool success) {
              // Only whitelisted modules are allowed.
              require(msg.sender != SENTINEL_MODULES && modules[msg.sender] != address(0), "GS104");
              // Execute transaction without further confirmations.
              success = execute(to, value, data, operation, gasleft());
              if (success) emit ExecutionFromModuleSuccess(msg.sender);
              else emit ExecutionFromModuleFailure(msg.sender);
          }
          /// @dev Allows a Module to execute a Safe transaction without any further confirmations and return data
          /// @param to Destination address of module transaction.
          /// @param value Ether value of module transaction.
          /// @param data Data payload of module transaction.
          /// @param operation Operation type of module transaction.
          function execTransactionFromModuleReturnData(
              address to,
              uint256 value,
              bytes memory data,
              Enum.Operation operation
          ) public returns (bool success, bytes memory returnData) {
              success = execTransactionFromModule(to, value, data, operation);
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  // Load free memory location
                  let ptr := mload(0x40)
                  // We allocate memory for the return data by setting the free memory location to
                  // current free memory location + data size + 32 bytes for data size value
                  mstore(0x40, add(ptr, add(returndatasize(), 0x20)))
                  // Store the size
                  mstore(ptr, returndatasize())
                  // Store the data
                  returndatacopy(add(ptr, 0x20), 0, returndatasize())
                  // Point the return data to the correct memory location
                  returnData := ptr
              }
          }
          /// @dev Returns if an module is enabled
          /// @return True if the module is enabled
          function isModuleEnabled(address module) public view returns (bool) {
              return SENTINEL_MODULES != module && modules[module] != address(0);
          }
          /// @dev Returns array of modules.
          /// @param start Start of the page.
          /// @param pageSize Maximum number of modules that should be returned.
          /// @return array Array of modules.
          /// @return next Start of the next page.
          function getModulesPaginated(address start, uint256 pageSize) external view returns (address[] memory array, address next) {
              // Init array with max page size
              array = new address[](pageSize);
              // Populate return array
              uint256 moduleCount = 0;
              address currentModule = modules[start];
              while (currentModule != address(0x0) && currentModule != SENTINEL_MODULES && moduleCount < pageSize) {
                  array[moduleCount] = currentModule;
                  currentModule = modules[currentModule];
                  moduleCount++;
              }
              next = currentModule;
              // Set correct size of returned array
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  mstore(array, moduleCount)
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "../common/SelfAuthorized.sol";
      /// @title OwnerManager - Manages a set of owners and a threshold to perform actions.
      /// @author Stefan George - <[email protected]>
      /// @author Richard Meissner - <[email protected]>
      contract OwnerManager is SelfAuthorized {
          event AddedOwner(address owner);
          event RemovedOwner(address owner);
          event ChangedThreshold(uint256 threshold);
          address internal constant SENTINEL_OWNERS = address(0x1);
          mapping(address => address) internal owners;
          uint256 internal ownerCount;
          uint256 internal threshold;
          /// @dev Setup function sets initial storage of contract.
          /// @param _owners List of Safe owners.
          /// @param _threshold Number of required confirmations for a Safe transaction.
          function setupOwners(address[] memory _owners, uint256 _threshold) internal {
              // Threshold can only be 0 at initialization.
              // Check ensures that setup function can only be called once.
              require(threshold == 0, "GS200");
              // Validate that threshold is smaller than number of added owners.
              require(_threshold <= _owners.length, "GS201");
              // There has to be at least one Safe owner.
              require(_threshold >= 1, "GS202");
              // Initializing Safe owners.
              address currentOwner = SENTINEL_OWNERS;
              for (uint256 i = 0; i < _owners.length; i++) {
                  // Owner address cannot be null.
                  address owner = _owners[i];
                  require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this) && currentOwner != owner, "GS203");
                  // No duplicate owners allowed.
                  require(owners[owner] == address(0), "GS204");
                  owners[currentOwner] = owner;
                  currentOwner = owner;
              }
              owners[currentOwner] = SENTINEL_OWNERS;
              ownerCount = _owners.length;
              threshold = _threshold;
          }
          /// @dev Allows to add a new owner to the Safe and update the threshold at the same time.
          ///      This can only be done via a Safe transaction.
          /// @notice Adds the owner `owner` to the Safe and updates the threshold to `_threshold`.
          /// @param owner New owner address.
          /// @param _threshold New threshold.
          function addOwnerWithThreshold(address owner, uint256 _threshold) public authorized {
              // Owner address cannot be null, the sentinel or the Safe itself.
              require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this), "GS203");
              // No duplicate owners allowed.
              require(owners[owner] == address(0), "GS204");
              owners[owner] = owners[SENTINEL_OWNERS];
              owners[SENTINEL_OWNERS] = owner;
              ownerCount++;
              emit AddedOwner(owner);
              // Change threshold if threshold was changed.
              if (threshold != _threshold) changeThreshold(_threshold);
          }
          /// @dev Allows to remove an owner from the Safe and update the threshold at the same time.
          ///      This can only be done via a Safe transaction.
          /// @notice Removes the owner `owner` from the Safe and updates the threshold to `_threshold`.
          /// @param prevOwner Owner that pointed to the owner to be removed in the linked list
          /// @param owner Owner address to be removed.
          /// @param _threshold New threshold.
          function removeOwner(
              address prevOwner,
              address owner,
              uint256 _threshold
          ) public authorized {
              // Only allow to remove an owner, if threshold can still be reached.
              require(ownerCount - 1 >= _threshold, "GS201");
              // Validate owner address and check that it corresponds to owner index.
              require(owner != address(0) && owner != SENTINEL_OWNERS, "GS203");
              require(owners[prevOwner] == owner, "GS205");
              owners[prevOwner] = owners[owner];
              owners[owner] = address(0);
              ownerCount--;
              emit RemovedOwner(owner);
              // Change threshold if threshold was changed.
              if (threshold != _threshold) changeThreshold(_threshold);
          }
          /// @dev Allows to swap/replace an owner from the Safe with another address.
          ///      This can only be done via a Safe transaction.
          /// @notice Replaces the owner `oldOwner` in the Safe with `newOwner`.
          /// @param prevOwner Owner that pointed to the owner to be replaced in the linked list
          /// @param oldOwner Owner address to be replaced.
          /// @param newOwner New owner address.
          function swapOwner(
              address prevOwner,
              address oldOwner,
              address newOwner
          ) public authorized {
              // Owner address cannot be null, the sentinel or the Safe itself.
              require(newOwner != address(0) && newOwner != SENTINEL_OWNERS && newOwner != address(this), "GS203");
              // No duplicate owners allowed.
              require(owners[newOwner] == address(0), "GS204");
              // Validate oldOwner address and check that it corresponds to owner index.
              require(oldOwner != address(0) && oldOwner != SENTINEL_OWNERS, "GS203");
              require(owners[prevOwner] == oldOwner, "GS205");
              owners[newOwner] = owners[oldOwner];
              owners[prevOwner] = newOwner;
              owners[oldOwner] = address(0);
              emit RemovedOwner(oldOwner);
              emit AddedOwner(newOwner);
          }
          /// @dev Allows to update the number of required confirmations by Safe owners.
          ///      This can only be done via a Safe transaction.
          /// @notice Changes the threshold of the Safe to `_threshold`.
          /// @param _threshold New threshold.
          function changeThreshold(uint256 _threshold) public authorized {
              // Validate that threshold is smaller than number of owners.
              require(_threshold <= ownerCount, "GS201");
              // There has to be at least one Safe owner.
              require(_threshold >= 1, "GS202");
              threshold = _threshold;
              emit ChangedThreshold(threshold);
          }
          function getThreshold() public view returns (uint256) {
              return threshold;
          }
          function isOwner(address owner) public view returns (bool) {
              return owner != SENTINEL_OWNERS && owners[owner] != address(0);
          }
          /// @dev Returns array of owners.
          /// @return Array of Safe owners.
          function getOwners() public view returns (address[] memory) {
              address[] memory array = new address[](ownerCount);
              // populate return array
              uint256 index = 0;
              address currentOwner = owners[SENTINEL_OWNERS];
              while (currentOwner != SENTINEL_OWNERS) {
                  array[index] = currentOwner;
                  currentOwner = owners[currentOwner];
                  index++;
              }
              return array;
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /// @title Enum - Collection of enums
      /// @author Richard Meissner - <[email protected]>
      contract Enum {
          enum Operation {Call, DelegateCall}
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /// @title EtherPaymentFallback - A contract that has a fallback to accept ether payments
      /// @author Richard Meissner - <[email protected]>
      contract EtherPaymentFallback {
          event SafeReceived(address indexed sender, uint256 value);
          /// @dev Fallback function accepts Ether transactions.
          receive() external payable {
              emit SafeReceived(msg.sender, msg.value);
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /// @title SecuredTokenTransfer - Secure token transfer
      /// @author Richard Meissner - <[email protected]>
      contract SecuredTokenTransfer {
          /// @dev Transfers a token and returns if it was a success
          /// @param token Token that should be transferred
          /// @param receiver Receiver to whom the token should be transferred
          /// @param amount The amount of tokens that should be transferred
          function transferToken(
              address token,
              address receiver,
              uint256 amount
          ) internal returns (bool transferred) {
              // 0xa9059cbb - keccack("transfer(address,uint256)")
              bytes memory data = abi.encodeWithSelector(0xa9059cbb, receiver, amount);
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  // We write the return value to scratch space.
                  // See https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory
                  let success := call(sub(gas(), 10000), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                  switch returndatasize()
                      case 0 {
                          transferred := success
                      }
                      case 0x20 {
                          transferred := iszero(or(iszero(success), iszero(mload(0))))
                      }
                      default {
                          transferred := 0
                      }
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /// @title SelfAuthorized - authorizes current contract to perform actions
      /// @author Richard Meissner - <[email protected]>
      contract SelfAuthorized {
          function requireSelfCall() private view {
              require(msg.sender == address(this), "GS031");
          }
          modifier authorized() {
              // This is a function call as it minimized the bytecode size
              requireSelfCall();
              _;
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /// @title SignatureDecoder - Decodes signatures that a encoded as bytes
      /// @author Richard Meissner - <[email protected]>
      contract SignatureDecoder {
          /// @dev divides bytes signature into `uint8 v, bytes32 r, bytes32 s`.
          /// @notice Make sure to peform a bounds check for @param pos, to avoid out of bounds access on @param signatures
          /// @param pos which signature to read. A prior bounds check of this parameter should be performed, to avoid out of bounds access
          /// @param signatures concatenated rsv signatures
          function signatureSplit(bytes memory signatures, uint256 pos)
              internal
              pure
              returns (
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              )
          {
              // The signature format is a compact form of:
              //   {bytes32 r}{bytes32 s}{uint8 v}
              // Compact means, uint8 is not padded to 32 bytes.
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  let signaturePos := mul(0x41, pos)
                  r := mload(add(signatures, add(signaturePos, 0x20)))
                  s := mload(add(signatures, add(signaturePos, 0x40)))
                  // Here we are loading the last 32 bytes, including 31 bytes
                  // of 's'. There is no 'mload8' to do this.
                  //
                  // 'byte' is not working due to the Solidity parser, so lets
                  // use the second best option, 'and'
                  v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff)
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /// @title Singleton - Base for singleton contracts (should always be first super contract)
      ///         This contract is tightly coupled to our proxy contract (see `proxies/GnosisSafeProxy.sol`)
      /// @author Richard Meissner - <[email protected]>
      contract Singleton {
          // singleton always needs to be first declared variable, to ensure that it is at the same location as in the Proxy contract.
          // It should also always be ensured that the address is stored alone (uses a full word)
          address private singleton;
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /// @title StorageAccessible - generic base contract that allows callers to access all internal storage.
      /// @notice See https://github.com/gnosis/util-contracts/blob/bb5fe5fb5df6d8400998094fb1b32a178a47c3a1/contracts/StorageAccessible.sol
      contract StorageAccessible {
          /**
           * @dev Reads `length` bytes of storage in the currents contract
           * @param offset - the offset in the current contract's storage in words to start reading from
           * @param length - the number of words (32 bytes) of data to read
           * @return the bytes that were read.
           */
          function getStorageAt(uint256 offset, uint256 length) public view returns (bytes memory) {
              bytes memory result = new bytes(length * 32);
              for (uint256 index = 0; index < length; index++) {
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      let word := sload(add(offset, index))
                      mstore(add(add(result, 0x20), mul(index, 0x20)), word)
                  }
              }
              return result;
          }
          /**
           * @dev Performs a delegetecall on a targetContract in the context of self.
           * Internally reverts execution to avoid side effects (making it static).
           *
           * This method reverts with data equal to `abi.encode(bool(success), bytes(response))`.
           * Specifically, the `returndata` after a call to this method will be:
           * `success:bool || response.length:uint256 || response:bytes`.
           *
           * @param targetContract Address of the contract containing the code to execute.
           * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
           */
          function simulateAndRevert(address targetContract, bytes memory calldataPayload) external {
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  let success := delegatecall(gas(), targetContract, add(calldataPayload, 0x20), mload(calldataPayload), 0, 0)
                  mstore(0x00, success)
                  mstore(0x20, returndatasize())
                  returndatacopy(0x40, 0, returndatasize())
                  revert(0, add(returndatasize(), 0x40))
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /**
       * @title GnosisSafeMath
       * @dev Math operations with safety checks that revert on error
       * Renamed from SafeMath to GnosisSafeMath to avoid conflicts
       * TODO: remove once open zeppelin update to solc 0.5.0
       */
      library GnosisSafeMath {
          /**
           * @dev Multiplies two numbers, reverts on overflow.
           */
          function mul(uint256 a, uint256 b) internal pure returns (uint256) {
              // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
              // benefit is lost if 'b' is also tested.
              // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
              if (a == 0) {
                  return 0;
              }
              uint256 c = a * b;
              require(c / a == b);
              return c;
          }
          /**
           * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend).
           */
          function sub(uint256 a, uint256 b) internal pure returns (uint256) {
              require(b <= a);
              uint256 c = a - b;
              return c;
          }
          /**
           * @dev Adds two numbers, reverts on overflow.
           */
          function add(uint256 a, uint256 b) internal pure returns (uint256) {
              uint256 c = a + b;
              require(c >= a);
              return c;
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a >= b ? a : b;
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      contract ISignatureValidatorConstants {
          // bytes4(keccak256("isValidSignature(bytes,bytes)")
          bytes4 internal constant EIP1271_MAGIC_VALUE = 0x20c13b0b;
      }
      abstract contract ISignatureValidator is ISignatureValidatorConstants {
          /**
           * @dev Should return whether the signature provided is valid for the provided data
           * @param _data Arbitrary length data signed on the behalf of address(this)
           * @param _signature Signature byte array associated with _data
           *
           * MUST return the bytes4 magic value 0x20c13b0b when function passes.
           * MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5)
           * MUST allow external calls
           */
          function isValidSignature(bytes memory _data, bytes memory _signature) public view virtual returns (bytes4);
      }