Transaction Hash:
Block:
15793361 at Oct-21-2022 02:01:35 AM +UTC
Transaction Fee:
0.00636769158534828 ETH
$12.05
Gas Used:
279,576 Gas / 22.776245405 Gwei
Emitted Events:
130 |
StargateToken.Transfer( from=[Sender] 0xd518b8802220eb05e05f01e2199fc028764e7e3e, to=[Receiver] VotingEscrow, value=3000000000000000000 )
|
131 |
StargateToken.Approval( owner=[Sender] 0xd518b8802220eb05e05f01e2199fc028764e7e3e, spender=[Receiver] VotingEscrow, value=115792089237316195423570985008687907853269984665640564039454584007913129639935 )
|
132 |
VotingEscrow.Deposit( provider=[Sender] 0xd518b8802220eb05e05f01e2199fc028764e7e3e, value=3000000000000000000, locktime=1669248000, deposit_type=1, ts=1666317695 )
|
133 |
VotingEscrow.Supply( prevSupply=10283619086780132132805025, supply=10283622086780132132805025 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x0e42acBD...e79fBD58E | |||||
0xAf5191B0...A73bA2Cd6 | |||||
0xd518B880...8764E7E3e |
0.043763852088653884 Eth
Nonce: 24
|
0.037396160503305604 Eth
Nonce: 25
| 0.00636769158534828 | ||
0xDAFEA492...692c98Bc5
Miner
| (Flashbots: Builder) | 1.189942768930599529 Eth | 1.190362132930599529 Eth | 0.000419364 |
Execution Trace
VotingEscrow.create_lock( _value=3000000000000000000, _unlock_time=1669248000 )

-
StargateToken.transferFrom( sender=0xd518B8802220eB05E05F01E2199FC028764E7E3e, recipient=0x0e42acBD23FAee03249DAFF896b78d7e79fBD58E, amount=3000000000000000000 ) => ( True )
create_lock[VotingEscrow (ln:316)]
_create_lock[VotingEscrow (ln:317)]
_deposit_for[VotingEscrow (ln:311)]
_checkpoint[VotingEscrow (ln:278)]
safeTransferFrom[VotingEscrow (ln:280)]
Deposit[VotingEscrow (ln:282)]
Supply[VotingEscrow (ln:283)]
File 1 of 2: VotingEscrow
File 2 of 2: StargateToken
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** @title Voting Escrow @author Curve Finance @license MIT @notice Votes have a weight depending on time, so that users are committed to the future of (whatever they are voting for) @dev Vote weight decays linearly over time. Lock time cannot be more than `MAXTIME` (3 years). # Voting escrow to have time-weighted votes # Votes have a weight depending on time, so that users are committed # to the future of (whatever they are voting for). # The weight in this implementation is linear, and lock cannot be more than maxtime: # w ^ # 1 + / # | / # | / # | / # |/ # 0 +--------+------> time # maxtime (3 years?) */ import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "@openzeppelin/contracts/interfaces/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; struct Point { int128 bias; int128 slope; // # -dweight / dt uint ts; uint blk; // block } /* We cannot really do block numbers per se b/c slope is per time, not per block * and per block could be fairly bad b/c Ethereum changes blocktimes. * What we can do is to extrapolate ***At functions */ struct LockedBalance { int128 amount; uint end; } contract VotingEscrow is Ownable, ReentrancyGuard { using SafeERC20 for IERC20; enum DepositType { DEPOSIT_FOR_TYPE, CREATE_LOCK_TYPE, INCREASE_LOCK_AMOUNT, INCREASE_UNLOCK_TIME } event Deposit(address indexed provider, uint value, uint indexed locktime, DepositType deposit_type, uint ts); event Withdraw(address indexed provider, uint value, uint ts); event Supply(uint prevSupply, uint supply); uint internal constant WEEK = 1 weeks; uint public constant MAXTIME = 3 * 365 * 86400; int128 internal constant iMAXTIME = 3 * 365 * 86400; uint internal constant MULTIPLIER = 1 ether; uint public immutable MINTIME; address public immutable token; uint public supply; bool public unlocked; mapping(address => LockedBalance) public locked; uint public epoch; mapping(uint => Point) public point_history; // epoch -> unsigned point mapping(address => Point[1000000000]) public user_point_history; // user -> Point[user_epoch] mapping(address => uint) public user_point_epoch; mapping(uint => int128) public slope_changes; // time -> signed slope change // Aragon's view methods for compatibility address public controller; bool public transfersEnabled; string public constant name = "veSTG"; string public constant symbol = "veSTG"; string public constant version = "1.0.0"; uint8 public constant decimals = 18; // Whitelisted (smart contract) wallets which are allowed to deposit // The goal is to prevent tokenizing the escrow mapping(address => bool) public contracts_whitelist; /// @notice Contract constructor /// @param token_addr `ERC20CRV` token address constructor(address token_addr, uint min_time) { token = token_addr; point_history[0].blk = block.number; point_history[0].ts = block.timestamp; controller = msg.sender; transfersEnabled = true; MINTIME = min_time; } modifier onlyUserOrWhitelist() { if (msg.sender != tx.origin) { require(contracts_whitelist[msg.sender], "Smart contract not allowed"); } _; } modifier notUnlocked() { require(!unlocked, "unlocked globally"); _; } /// @notice Add address to whitelist smart contract depositors `addr` /// @param addr Address to be whitelisted function add_to_whitelist(address addr) external onlyOwner { contracts_whitelist[addr] = true; } /// @notice Remove a smart contract address from whitelist /// @param addr Address to be removed from whitelist function remove_from_whitelist(address addr) external onlyOwner { contracts_whitelist[addr] = false; } /// @notice Unlock all locked balances function unlock() external onlyOwner { unlocked = true; } /// @notice Get the most recently recorded rate of voting power decrease for `_addr` /// @param addr Address of the user wallet /// @return Value of the slope function get_last_user_slope(address addr) external view returns (int128) { uint uepoch = user_point_epoch[addr]; return user_point_history[addr][uepoch].slope; } /// @notice Get the timestamp for checkpoint `_idx` for `_addr` /// @param _addr User wallet address /// @param _idx User epoch number /// @return Epoch time of the checkpoint function user_point_history__ts(address _addr, uint _idx) external view returns (uint) { return user_point_history[_addr][_idx].ts; } /// @notice Get timestamp when `_addr`'s lock finishes /// @param _addr User wallet address /// @return Epoch time of the lock end function locked__end(address _addr) external view returns (uint) { return locked[_addr].end; } /// @notice Record global and per-user data to checkpoint /// @param _addr User's wallet address. No user checkpoint if 0x0 /// @param old_locked Pevious locked amount / end lock time for the user /// @param new_locked New locked amount / end lock time for the user function _checkpoint(address _addr, LockedBalance memory old_locked, LockedBalance memory new_locked) internal { Point memory u_old; Point memory u_new; int128 old_dslope = 0; int128 new_dslope = 0; uint _epoch = epoch; if (_addr != address(0x0)) { // Calculate slopes and biases // Kept at zero when they have to if (old_locked.end > block.timestamp && old_locked.amount > 0) { u_old.slope = old_locked.amount / iMAXTIME; u_old.bias = u_old.slope * int128(int(old_locked.end - block.timestamp)); } if (new_locked.end > block.timestamp && new_locked.amount > 0) { u_new.slope = new_locked.amount / iMAXTIME; u_new.bias = u_new.slope * int128(int(new_locked.end - block.timestamp)); } // Read values of scheduled changes in the slope // old_locked.end can be in the past and in the future // new_locked.end can ONLY by in the FUTURE unless everything expired: than zeros old_dslope = slope_changes[old_locked.end]; if (new_locked.end != 0) { if (new_locked.end == old_locked.end) { new_dslope = old_dslope; } else { new_dslope = slope_changes[new_locked.end]; } } } Point memory last_point = Point({bias: 0, slope: 0, ts: block.timestamp, blk: block.number}); if (_epoch > 0) { last_point = point_history[_epoch]; } uint last_checkpoint = last_point.ts; // initial_last_point is used for extrapolation to calculate block number // (approximately, for *At methods) and save them // as we cannot figure that out exactly from inside the contract uint initial_last_point_ts = last_point.ts; uint initial_last_point_blk = last_point.blk; uint block_slope = 0; // dblock/dt if (block.timestamp > last_point.ts) { block_slope = (MULTIPLIER * (block.number - last_point.blk)) / (block.timestamp - last_point.ts); } // If last point is already recorded in this block, slope=0 // But that's ok b/c we know the block in such case // Go over weeks to fill history and calculate what the current point is uint t_i = (last_checkpoint / WEEK) * WEEK; for (uint i = 0; i < 255; ++i) { // Hopefully it won't happen that this won't get used in 5 years! // If it does, users will be able to withdraw but vote weight will be broken t_i += WEEK; int128 d_slope = 0; if (t_i > block.timestamp) { t_i = block.timestamp; } else { d_slope = slope_changes[t_i]; } last_point.bias -= last_point.slope * int128(int(t_i - last_checkpoint)); last_point.slope += d_slope; if (last_point.bias < 0) { // This can happen last_point.bias = 0; } if (last_point.slope < 0) { // This cannot happen - just in case last_point.slope = 0; } last_checkpoint = t_i; last_point.ts = t_i; last_point.blk = initial_last_point_blk + (block_slope * (t_i - initial_last_point_ts)) / MULTIPLIER; _epoch += 1; if (t_i == block.timestamp) { last_point.blk = block.number; break; } else { point_history[_epoch] = last_point; } } epoch = _epoch; // Now point_history is filled until t=now if (_addr != address(0x0)) { // If last point was in this block, the slope change has been applied already // But in such case we have 0 slope(s) last_point.slope += (u_new.slope - u_old.slope); last_point.bias += (u_new.bias - u_old.bias); if (last_point.slope < 0) { last_point.slope = 0; } if (last_point.bias < 0) { last_point.bias = 0; } } // Record the changed point into history point_history[_epoch] = last_point; if (_addr != address(0x0)) { // Schedule the slope changes (slope is going down) // We subtract new_user_slope from [new_locked.end] // and add old_user_slope to [old_locked.end] if (old_locked.end > block.timestamp) { // old_dslope was <something> - u_old.slope, so we cancel that old_dslope += u_old.slope; if (new_locked.end == old_locked.end) { old_dslope -= u_new.slope; // It was a new deposit, not extension } slope_changes[old_locked.end] = old_dslope; } if (new_locked.end > block.timestamp) { if (new_locked.end > old_locked.end) { new_dslope -= u_new.slope; // old slope disappeared at this point slope_changes[new_locked.end] = new_dslope; } // else: we recorded it already in old_dslope } // Now handle user history address addr = _addr; uint user_epoch = user_point_epoch[addr] + 1; user_point_epoch[addr] = user_epoch; u_new.ts = block.timestamp; u_new.blk = block.number; user_point_history[addr][user_epoch] = u_new; } } /// @notice Deposit and lock tokens for a user /// @param _addr User's wallet address /// @param _value Amount to deposit /// @param unlock_time New time when to unlock the tokens, or 0 if unchanged /// @param locked_balance Previous locked amount / timestamp /// @param deposit_type The type of deposit function _deposit_for(address _addr, uint _value, uint unlock_time, LockedBalance memory locked_balance, DepositType deposit_type) internal { LockedBalance memory _locked = locked_balance; uint supply_before = supply; supply = supply_before + _value; LockedBalance memory old_locked; (old_locked.amount, old_locked.end) = (_locked.amount, _locked.end); // Adding to existing lock, or if a lock is expired - creating a new one _locked.amount += int128(int(_value)); if (unlock_time != 0) { _locked.end = unlock_time; } locked[_addr] = _locked; // Possibilities: // Both old_locked.end could be current or expired (>/< block.timestamp) // value == 0 (extend lock) or value > 0 (add to lock or extend lock) // _locked.end > block.timestamp (always) _checkpoint(_addr, old_locked, _locked); if (_value != 0) { IERC20(token).safeTransferFrom(_addr, address(this), _value); } emit Deposit(_addr, _value, _locked.end, deposit_type, block.timestamp); emit Supply(supply_before, supply_before + _value); } /// @notice Record global data to checkpoint function checkpoint() external notUnlocked { _checkpoint(address(0x0), LockedBalance(0, 0), LockedBalance(0, 0)); } /// @notice Deposit `_value` tokens for `_addr` and add to the lock /// @dev Anyone (even a smart contract) can deposit for someone else, but /// cannot extend their locktime and deposit for a brand new user /// @param _addr User's wallet address /// @param _value Amount to add to user's lock function deposit_for(address _addr, uint _value) external nonReentrant notUnlocked { LockedBalance memory _locked = locked[_addr]; require(_value > 0); // dev: need non-zero value require(_locked.amount > 0, "No existing lock found"); require(_locked.end > block.timestamp, "Cannot add to expired lock. Withdraw"); _deposit_for(_addr, _value, 0, _locked, DepositType.DEPOSIT_FOR_TYPE); } /// @notice Deposit `_value` tokens for `msg.sender` and lock until `_unlock_time` /// @param _value Amount to deposit /// @param _unlock_time Epoch time when tokens unlock, rounded down to whole weeks function _create_lock(uint _value, uint _unlock_time) internal { require(_value > 0); // dev: need non-zero value LockedBalance memory _locked = locked[msg.sender]; require(_locked.amount == 0, "Withdraw old tokens first"); uint unlock_time = (_unlock_time / WEEK) * WEEK; // Locktime is rounded down to weeks require(unlock_time >= block.timestamp + MINTIME, "Voting lock must be at least MINTIME"); require(unlock_time <= block.timestamp + MAXTIME, "Voting lock can be 3 years max"); _deposit_for(msg.sender, _value, unlock_time, _locked, DepositType.CREATE_LOCK_TYPE); } /// @notice External function for _create_lock /// @param _value Amount to deposit /// @param _unlock_time Epoch time when tokens unlock, rounded down to whole weeks function create_lock(uint _value, uint _unlock_time) external nonReentrant onlyUserOrWhitelist notUnlocked { _create_lock(_value, _unlock_time); } /// @notice Deposit `_value` additional tokens for `msg.sender` without modifying the unlock time /// @param _value Amount of tokens to deposit and add to the lock function increase_amount(uint _value) external nonReentrant onlyUserOrWhitelist notUnlocked { _increase_amount(_value); } function _increase_amount(uint _value) internal { LockedBalance memory _locked = locked[msg.sender]; require(_value > 0); // dev: need non-zero value require(_locked.amount > 0, "No existing lock found"); require(_locked.end > block.timestamp, "Cannot add to expired lock. Withdraw"); _deposit_for(msg.sender, _value, 0, _locked, DepositType.INCREASE_LOCK_AMOUNT); } /// @notice Extend the unlock time for `msg.sender` to `_unlock_time` /// @param _unlock_time New epoch time for unlocking function increase_unlock_time(uint _unlock_time) external nonReentrant onlyUserOrWhitelist notUnlocked { _increase_unlock_time(_unlock_time); } function _increase_unlock_time(uint _unlock_time) internal { LockedBalance memory _locked = locked[msg.sender]; uint unlock_time = (_unlock_time / WEEK) * WEEK; // Locktime is rounded down to weeks require(_locked.end > block.timestamp, "Lock expired"); require(_locked.amount > 0, "Nothing is locked"); require(unlock_time > _locked.end, "Can only increase lock duration"); require(unlock_time <= block.timestamp + MAXTIME, "Voting lock can be 3 years max"); _deposit_for(msg.sender, 0, unlock_time, _locked, DepositType.INCREASE_UNLOCK_TIME); } /// @notice Extend the unlock time and/or for `msg.sender` to `_unlock_time` /// @param _unlock_time New epoch time for unlocking function increase_amount_and_time(uint _value, uint _unlock_time) external nonReentrant onlyUserOrWhitelist notUnlocked { require(_value > 0 || _unlock_time > 0, "Value and Unlock cannot both be 0"); if (_value > 0 && _unlock_time > 0) { _increase_amount(_value); _increase_unlock_time(_unlock_time); } else if (_value > 0 && _unlock_time == 0) { _increase_amount(_value); } else { _increase_unlock_time(_unlock_time); } } /// @notice Withdraw all tokens for `msg.sender` /// @dev Only possible if the lock has expired function _withdraw() internal { LockedBalance memory _locked = locked[msg.sender]; uint value = uint(int(_locked.amount)); if (!unlocked) { require(block.timestamp >= _locked.end, "The lock didn't expire"); } locked[msg.sender] = LockedBalance(0, 0); uint supply_before = supply; supply = supply_before - value; // old_locked can have either expired <= timestamp or zero end // _locked has only 0 end // Both can have >= 0 amount _checkpoint(msg.sender, _locked, LockedBalance(0, 0)); IERC20(token).safeTransfer(msg.sender, value); emit Withdraw(msg.sender, value, block.timestamp); emit Supply(supply_before, supply_before - value); } function withdraw() external nonReentrant { _withdraw(); } /// @notice Deposit `_value` tokens for `msg.sender` and lock until `_unlock_time` /// @param _value Amount to deposit /// @param _unlock_time Epoch time when tokens unlock, rounded down to whole weeks function withdraw_and_create_lock(uint _value, uint _unlock_time) external nonReentrant onlyUserOrWhitelist notUnlocked { _withdraw(); _create_lock(_value, _unlock_time); } // The following ERC20/minime-compatible methods are not real balanceOf and supply! // They measure the weights for the purpose of voting, so they don't represent // real coins. /// @notice Binary search to estimate timestamp for block number /// @param _block Block to find /// @param max_epoch Don't go beyond this epoch /// @return Approximate timestamp for block function _find_block_epoch(uint _block, uint max_epoch) internal view returns (uint) { // Binary search uint _min = 0; uint _max = max_epoch; for (uint i = 0; i < 128; ++i) { // Will be always enough for 128-bit numbers if (_min >= _max) { break; } uint _mid = (_min + _max + 1) / 2; if (point_history[_mid].blk <= _block) { _min = _mid; } else { _max = _mid - 1; } } return _min; } /// @notice Get the current voting power for `msg.sender` /// @dev Adheres to the ERC20 `balanceOf` interface for Aragon compatibility /// @param addr User wallet address /// @param _t Epoch time to return voting power at /// @return User voting power function _balanceOf(address addr, uint _t) internal view returns (uint) { uint _epoch = user_point_epoch[addr]; if (_epoch == 0) { return 0; } else { Point memory last_point = user_point_history[addr][_epoch]; last_point.bias -= last_point.slope * int128(int(_t) - int(last_point.ts)); if (last_point.bias < 0) { last_point.bias = 0; } return uint(int(last_point.bias)); } } function balanceOfAtT(address addr, uint _t) external view returns (uint) { return _balanceOf(addr, _t); } function balanceOf(address addr) external view returns (uint) { return _balanceOf(addr, block.timestamp); } /// @notice Measure voting power of `addr` at block height `_block` /// @dev Adheres to MiniMe `balanceOfAt` interface: https://github.com/Giveth/minime /// @param addr User's wallet address /// @param _block Block to calculate the voting power at /// @return Voting power function balanceOfAt(address addr, uint _block) external view returns (uint) { // Copying and pasting totalSupply code because Vyper cannot pass by // reference yet require(_block <= block.number); // Binary search uint _min = 0; uint _max = user_point_epoch[addr]; for (uint i = 0; i < 128; ++i) { // Will be always enough for 128-bit numbers if (_min >= _max) { break; } uint _mid = (_min + _max + 1) / 2; if (user_point_history[addr][_mid].blk <= _block) { _min = _mid; } else { _max = _mid - 1; } } Point memory upoint = user_point_history[addr][_min]; uint max_epoch = epoch; uint _epoch = _find_block_epoch(_block, max_epoch); Point memory point_0 = point_history[_epoch]; uint d_block = 0; uint d_t = 0; if (_epoch < max_epoch) { Point memory point_1 = point_history[_epoch + 1]; d_block = point_1.blk - point_0.blk; d_t = point_1.ts - point_0.ts; } else { d_block = block.number - point_0.blk; d_t = block.timestamp - point_0.ts; } uint block_time = point_0.ts; if (d_block != 0) { block_time += (d_t * (_block - point_0.blk)) / d_block; } upoint.bias -= upoint.slope * int128(int(block_time - upoint.ts)); if (upoint.bias >= 0) { return uint(uint128(upoint.bias)); } else { return 0; } } /// @notice Calculate total voting power at some point in the past /// @param point The point (bias/slope) to start search from /// @param t Time to calculate the total voting power at /// @return Total voting power at that time function _supply_at(Point memory point, uint t) internal view returns (uint) { Point memory last_point = point; uint t_i = (last_point.ts / WEEK) * WEEK; for (uint i = 0; i < 255; ++i) { t_i += WEEK; int128 d_slope = 0; if (t_i > t) { t_i = t; } else { d_slope = slope_changes[t_i]; } last_point.bias -= last_point.slope * int128(int(t_i - last_point.ts)); if (t_i == t) { break; } last_point.slope += d_slope; last_point.ts = t_i; } if (last_point.bias < 0) { last_point.bias = 0; } return uint(uint128(last_point.bias)); } /// @notice Calculate total voting power /// @dev Adheres to the ERC20 `totalSupply` interface for Aragon compatibility /// @return Total voting power function _totalSupply(uint t) internal view returns (uint) { uint _epoch = epoch; Point memory last_point = point_history[_epoch]; return _supply_at(last_point, t); } function totalSupplyAtT(uint t) external view returns (uint) { return _totalSupply(t); } function totalSupply() external view returns (uint) { return _totalSupply(block.timestamp); } /// @notice Calculate total voting power at some point in the past /// @param _block Block to calculate the total voting power at /// @return Total voting power at `_block` function totalSupplyAt(uint _block) external view returns (uint) { require(_block <= block.number); uint _epoch = epoch; uint target_epoch = _find_block_epoch(_block, _epoch); Point memory point = point_history[target_epoch]; uint dt = 0; if (target_epoch < _epoch) { Point memory point_next = point_history[target_epoch + 1]; if (point.blk != point_next.blk) { dt = ((_block - point.blk) * (point_next.ts - point.ts)) / (point_next.blk - point.blk); } } else { if (point.blk != block.number) { dt = ((_block - point.blk) * (block.timestamp - point.ts)) / (block.number - point.blk); } } // Now dt contains info on how far are we beyond point return _supply_at(point, point.ts + dt); } // Dummy methods for compatibility with Aragon function changeController(address _newController) external { require(msg.sender == controller); controller = _newController; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol) pragma solidity ^0.8.0; import "../token/ERC20/IERC20.sol"; // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
File 2 of 2: StargateToken
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.7.6; import "./OmnichainFungibleToken.sol"; contract StargateToken is OmnichainFungibleToken { constructor( string memory _name, string memory _symbol, address _endpoint, uint16 _mainEndpointId, uint256 _initialSupplyOnMainEndpoint ) OmnichainFungibleToken(_name, _symbol, _endpoint, _mainEndpointId, _initialSupplyOnMainEndpoint) {} } // SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.7.6; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@layerzerolabs/contracts/contracts/interfaces/ILayerZeroEndpoint.sol"; import "@layerzerolabs/contracts/contracts/interfaces/ILayerZeroReceiver.sol"; import "@layerzerolabs/contracts/contracts/interfaces/ILayerZeroUserApplicationConfig.sol"; contract OmnichainFungibleToken is ERC20, Ownable, ILayerZeroReceiver, ILayerZeroUserApplicationConfig { // the only endpointId these tokens will ever be minted on // required: the LayerZero endpoint which is passed in the constructor ILayerZeroEndpoint immutable public endpoint; // a map of our connected contracts mapping(uint16 => bytes) public dstContractLookup; // pause the sendTokens() bool public paused; bool public isMain; event Paused(bool isPaused); event SendToChain(uint16 dstChainId, bytes to, uint256 qty); event ReceiveFromChain(uint16 srcChainId, uint64 nonce, uint256 qty); constructor( string memory _name, string memory _symbol, address _endpoint, uint16 _mainChainId, uint256 initialSupplyOnMainEndpoint ) ERC20(_name, _symbol) { if (ILayerZeroEndpoint(_endpoint).getChainId() == _mainChainId) { _mint(msg.sender, initialSupplyOnMainEndpoint); isMain = true; } // set the LayerZero endpoint endpoint = ILayerZeroEndpoint(_endpoint); } function pauseSendTokens(bool _pause) external onlyOwner { paused = _pause; emit Paused(_pause); } function setDestination(uint16 _dstChainId, bytes calldata _destinationContractAddress) public onlyOwner { dstContractLookup[_dstChainId] = _destinationContractAddress; } function chainId() external view returns (uint16){ return endpoint.getChainId(); } function sendTokens( uint16 _dstChainId, // send tokens to this chainId bytes calldata _to, // where to deliver the tokens on the destination chain uint256 _qty, // how many tokens to send address zroPaymentAddress, // ZRO payment address bytes calldata adapterParam // txParameters ) public payable { require(!paused, "OFT: sendTokens() is currently paused"); // lock if leaving the safe chain, otherwise burn if (isMain) { // ... transferFrom the tokens to this contract for locking purposes _transfer(msg.sender, address(this), _qty); } else { _burn(msg.sender, _qty); } // abi.encode() the payload with the values to send bytes memory payload = abi.encode(_to, _qty); // send LayerZero message endpoint.send{value: msg.value}( _dstChainId, // destination chainId dstContractLookup[_dstChainId], // destination UA address payload, // abi.encode()'ed bytes msg.sender, // refund address (LayerZero will refund any extra gas back to caller of send() zroPaymentAddress, // 'zroPaymentAddress' unused for this mock/example adapterParam // 'adapterParameters' unused for this mock/example ); emit SendToChain(_dstChainId, _to, _qty); } function lzReceive( uint16 _srcChainId, bytes memory _fromAddress, uint64 nonce, bytes memory _payload ) external override { require(msg.sender == address(endpoint)); // boilerplate! lzReceive must be called by the endpoint for security require( _fromAddress.length == dstContractLookup[_srcChainId].length && keccak256(_fromAddress) == keccak256(dstContractLookup[_srcChainId]), "OFT: invalid source sending contract" ); // decode (bytes memory _to, uint256 _qty) = abi.decode(_payload, (bytes, uint256)); address toAddress; // load the toAddress from the bytes assembly { toAddress := mload(add(_to, 20)) } // mint the tokens back into existence, to the receiving address if (isMain) { _transfer(address(this), toAddress, _qty); } else { _mint(toAddress, _qty); } emit ReceiveFromChain(_srcChainId, nonce, _qty); } function estimateSendTokensFee(uint16 _dstChainId, bool _useZro, bytes calldata txParameters) external view returns (uint256 nativeFee, uint256 zroFee) { return endpoint.estimateFees(_dstChainId, address(this), bytes(""), _useZro, txParameters); } //---------------------------DAO CALL---------------------------------------- // generic config for user Application function setConfig( uint16 _version, uint16 _chainId, uint256 _configType, bytes calldata _config ) external override onlyOwner { endpoint.setConfig(_version, _chainId, _configType, _config); } function setSendVersion(uint16 version) external override onlyOwner { endpoint.setSendVersion(version); } function setReceiveVersion(uint16 version) external override onlyOwner { endpoint.setReceiveVersion(version); } function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external override onlyOwner { endpoint.forceResumeReceive(_srcChainId, _srcAddress); } function renounceOwnership() public override onlyOwner {} } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../../utils/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal virtual { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "./ILayerZeroUserApplicationConfig.sol"; interface ILayerZeroEndpoint is ILayerZeroUserApplicationConfig { // @notice send a LayerZero message to the specified address at a LayerZero endpoint. // @param _dstChainId - the destination chain identifier // @param _destination - the address on destination chain (in bytes). address length/format may vary by chains // @param _payload - a custom bytes payload to send to the destination contract // @param _refundAddress - if the source transaction is cheaper than the amount of value passed, refund the additional amount to this address // @param _zroPaymentAddress - the address of the ZRO token holder who would pay for the transaction // @param _adapterParams - parameters for custom functionality. ie: pay for a specified destination gasAmount, or receive airdropped native gas from the relayer on destination function send(uint16 _dstChainId, bytes calldata _destination, bytes calldata _payload, address payable _refundAddress, address _zroPaymentAddress, bytes calldata _adapterParams) external payable; // @notice used by the messaging library to publish verified payload // @param _srcChainId - the source chain identifier // @param _srcAddress - the source contract (as bytes) at the source chain // @param _dstAddress - the address on destination chain // @param _nonce - the unbound message ordering nonce // @param _gasLimit - the gas limit for external contract execution // @param _payload - verified payload to send to the destination contract function receivePayload(uint16 _srcChainId, bytes calldata _srcAddress, address _dstAddress, uint64 _nonce, uint _gasLimit, bytes calldata _payload) external; // @notice get the inboundNonce of a receiver from a source chain which could be EVM or non-EVM chain // @param _srcChainId - the source chain identifier // @param _srcAddress - the source chain contract address function getInboundNonce(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (uint64); // @notice get the outboundNonce from this source chain which, consequently, is always an EVM // @param _srcAddress - the source chain contract address function getOutboundNonce(uint16 _dstChainId, address _srcAddress) external view returns (uint64); // @notice gets a quote in source native gas, for the amount that send() requires to pay for message delivery // @param _dstChainId - the destination chain identifier // @param _userApplication - the user app address on this EVM chain // @param _payload - the custom message to send over LayerZero // @param _payInZRO - if false, user app pays the protocol fee in native token // @param _adapterParam - parameters for the adapter service, e.g. send some dust native token to dstChain function estimateFees(uint16 _dstChainId, address _userApplication, bytes calldata _payload, bool _payInZRO, bytes calldata _adapterParam) external view returns (uint nativeFee, uint zroFee); // @notice get this Endpoint's immutable source identifier function getChainId() external view returns (uint16); // @notice the interface to retry failed message on this Endpoint destination // @param _srcChainId - the source chain identifier // @param _srcAddress - the source chain contract address // @param _payload - the payload to be retried function retryPayload(uint16 _srcChainId, bytes calldata _srcAddress, bytes calldata _payload) external; // @notice query if any STORED payload (message blocking) at the endpoint. // @param _srcChainId - the source chain identifier // @param _srcAddress - the source chain contract address function hasStoredPayload(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool); // @notice query if the _libraryAddress is valid for sending msgs. // @param _userApplication - the user app address on this EVM chain function getSendLibraryAddress(address _userApplication) external view returns (address); // @notice query if the _libraryAddress is valid for receiving msgs. // @param _userApplication - the user app address on this EVM chain function getReceiveLibraryAddress(address _userApplication) external view returns (address); // @notice query if the non-reentrancy guard for send() is on // @return true if the guard is on. false otherwise function isSendingPayload() external view returns (bool); // @notice query if the non-reentrancy guard for receive() is on // @return true if the guard is on. false otherwise function isReceivingPayload() external view returns (bool); // @notice get the configuration of the LayerZero messaging library of the specified version // @param _version - messaging library version // @param _chainId - the chainId for the pending config change // @param _userApplication - the contract address of the user application // @param _configType - type of configuration. every messaging library has its own convention. function getConfig(uint16 _version, uint16 _chainId, address _userApplication, uint _configType) external view returns (bytes memory); // @notice get the send() LayerZero messaging library version // @param _userApplication - the contract address of the user application function getSendVersion(address _userApplication) external view returns (uint16); // @notice get the lzReceive() LayerZero messaging library version // @param _userApplication - the contract address of the user application function getReceiveVersion(address _userApplication) external view returns (uint16); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; interface ILayerZeroReceiver { // @notice LayerZero endpoint will invoke this function to deliver the message on the destination // @param _srcChainId - the source endpoint identifier // @param _srcAddress - the source sending contract address from the source chain // @param _nonce - the ordered message nonce // @param _payload - the signed payload is the UA bytes has encoded to be sent function lzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) external; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; interface ILayerZeroUserApplicationConfig { // @notice set the configuration of the LayerZero messaging library of the specified version // @param _version - messaging library version // @param _chainId - the chainId for the pending config change // @param _configType - type of configuration. every messaging library has its own convention. // @param _config - configuration in the bytes. can encode arbitrary content. function setConfig(uint16 _version, uint16 _chainId, uint _configType, bytes calldata _config) external; // @notice set the send() LayerZero messaging library version to _version // @param _version - new messaging library version function setSendVersion(uint16 _version) external; // @notice set the lzReceive() LayerZero messaging library version to _version // @param _version - new messaging library version function setReceiveVersion(uint16 _version) external; // @notice Only when the UA needs to resume the message flow in blocking mode and clear the stored payload // @param _srcChainId - the chainId of the source chain // @param _srcAddress - the contract address of the source contract at the source chain function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } }