ETH Price: $1,890.62 (-0.15%)

Transaction Decoder

Block:
21784786 at Feb-06-2025 03:30:23 AM +UTC
Transaction Fee:
0.000176688520833188 ETH $0.33
Gas Used:
112,697 Gas / 1.567819204 Gwei

Emitted Events:

201 ERC1967Proxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000640cb7201810bc920835a598248c4fe4898bb5e0, 0x000000000000000000000000388ff601331f00f9b7189cefa0b1db4b91084d80, 000000000000000000000000000000000000000000000001a055690d9db80000 )
202 SoSoValueS1ExpAirdrop.AirdropClaimed( claimant=[Sender] 0x388ff601331f00f9b7189cefa0b1db4b91084d80, token=ERC1967Proxy, amount=30000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x388fF601...B91084d80
0.01288555 Eth
Nonce: 0
0.012708861479166812 Eth
Nonce: 1
0.000176688520833188
(Titan Builder)
6.445367146330029848 Eth6.445423494830029848 Eth0.0000563485
0x640cB720...4898Bb5e0
0x76A0e276...E6BFCea2D

Execution Trace

SoSoValueS1ExpAirdrop.batchClaim( recipients=[0x388fF601331F00F9b7189cefa0b1Db4B91084d80], tokens=[0x76A0e27618462bDAC7a29104bdcfFf4E6BFCea2D], amounts=[30000000000000000000], proofs=[[3Tu8NMb6FkYi1HCyHtVRubYd1lkT3eGJ9LPHvZ6wlvI=, AFxOtMMdLSTc/eViJnOxMNxKGuMvlNVJ7QrSSBkEVzc=, ksdDm2Bu+Rm6KePxFyyl10xJBRuAS/zMDkH7e8p6Xq4=, FXR7C/XZ3gMasg0BYWQxYzCIlLKi+UXfnM7XYBQM/8A=, A5D95G6hF1L7iN2aPM2OhsHotwi5goHVRRLHHXwlKgU=, /eRPQoSU++V3aVYxNS1A81tqSk3pLmip6ql9cvv371w=, J0Tb/EmQTHgpl4t8Qh9jUqo5mtuEndy9rKUPUbURtog=, F+OmNYKo8KG3Wdexj0JQNUr6doTxNEjPQ3IEBUL053Y=, 3GPm8gxR3+L2Q+2tW4PHp9PHZOPM5ayokJrSydrg+34=, f2NYWSjify277YcJxIbsXBCPBGf/UXo623rINcdyRNA=, ldrfXkDWrs61u8YrkX1TTbEUJln+XBRQJaswyshRTEI=, 9F4QnHtliIk6d0RMYZkL+f1hafNnnEbs2i92g7SNFDg=, ++Zp32e6S9qQ0okEPEChwDkh0Ca6kWa3l+JOExOo9nQ=, 8VJWI4CB4BFqB38G5GtcugmwMgypXSlgwPUvhJBEXC4=, Q1PU0sYNOF7dxgZFti7YC6GRGDpHi5U98SpRd51jIjI=, 4ok8wMg4o0tmgAyiiOnGkPCowuDY6DfpaW3B0jZ8Q9Y=, M094FIUdNu5PX/ie01jXrqE86U+yt6nTrSZdbBWM0xM=, KE2X+8RyrbOXQNgTEy2G7UZgrVKPVCDmx5hr0Wz1l1w=]] )
  • ERC1967Proxy.a9059cbb( )
    • SoSoValueToken.transfer( to=0x388fF601331F00F9b7189cefa0b1Db4B91084d80, value=30000000000000000000 ) => ( True )
      File 1 of 3: SoSoValueS1ExpAirdrop
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.25;
      import "@openzeppelin/contracts/access/Ownable.sol";
      import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
      import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
      import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
      import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      import "@openzeppelin/contracts/utils/Pausable.sol";
      // import "forge-std/console.sol";
      contract SoSoValueS1ExpAirdrop is Ownable, Pausable, ReentrancyGuard {
          using SafeERC20 for IERC20;
          bytes32 public merkleRoot;
          mapping(address => mapping(address => uint256)) public hasClaimed;
          uint256 public expirationTime;
          event AirdropClaimed(
              address indexed claimant,
              address indexed token,
              uint256 amount
          );
          event MerkleRootUpdated(bytes32 indexed newMerkleRoot);
          event TokensWithdrawn(address to, address indexed token, uint256 amount);
          event ExpirationTimeUpdated(uint256 newExpirationTime);
          constructor(
              address owner,
              bytes32 _merkleRoot,
              uint256 _expirationTime
          ) Ownable(owner) {
              merkleRoot = _merkleRoot;
              expirationTime = _expirationTime;
          }
          function pause() external onlyOwner {
              _pause();
          }
          function unpause() external onlyOwner {
              _unpause();
          }
          function setExpirationTime(uint256 _newExpirationTime) external onlyOwner {
              expirationTime = _newExpirationTime;
              emit ExpirationTimeUpdated(_newExpirationTime);
          }
          function setMerkleRoot(bytes32 _merkleRoot) external onlyOwner {
              merkleRoot = _merkleRoot;
              emit MerkleRootUpdated(_merkleRoot);
          }
          function _claim(
              address recipient,
              address token,
              uint256 amount,
              bytes32[] calldata proof
          ) internal {
              require(block.timestamp <= expirationTime, "Airdrop has expired");
              uint256 claimed = hasClaimed[recipient][token];
              require(amount > claimed, "Already claimed");
              uint256 claimableAmount = amount - claimed;
              bytes32 leaf = keccak256(abi.encodePacked(recipient, token, amount));
              require(
                  MerkleProof.verify(proof, merkleRoot, leaf),
                  "Invalid Merkle Proof"
              );
              if (claimableAmount > 0) {
                  hasClaimed[recipient][token] = amount;
                  IERC20(token).safeTransfer(recipient, claimableAmount);
                  emit AirdropClaimed(recipient, token, claimableAmount);
              }
          }
          function claim(
              address token,
              uint256 amount,
              bytes32[] calldata proof
          ) external nonReentrant whenNotPaused() {
              _claim(msg.sender, token, amount, proof);
          }
          function batchClaim(
              address[] calldata recipients,
              address[] calldata tokens,
              uint256[] calldata amounts,
              bytes32[][] calldata proofs
          ) external nonReentrant whenNotPaused() {
              require(
                  recipients.length == tokens.length &&
                      recipients.length == amounts.length &&
                      recipients.length == proofs.length,
                  "Input arrays length mismatch"
              );
              for (uint256 i = 0; i < recipients.length; i++) {
                  address recipient = recipients[i];
                  address token = tokens[i];
                  uint256 amount = amounts[i];
                  bytes32[] calldata proof = proofs[i];
                  uint256 claimed = hasClaimed[recipient][token];
                  uint256 claimableAmount = amount - claimed;
                  if (claimableAmount > 0) {
                      _claim(recipient, token, amount, proof);
                  }
              }
          }
          function withdrawTokens(
              address token,
              uint256 amount
          ) external onlyOwner nonReentrant {
              uint256 balance = IERC20(token).balanceOf(address(this));
              require(amount <= balance, "Insufficient token balance");
              IERC20(token).safeTransfer(msg.sender, amount);
              emit TokensWithdrawn(msg.sender, token, amount);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
      pragma solidity ^0.8.20;
      import {Context} from "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * The initial owner is set to the address provided by the deployer. This can
       * later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          /**
           * @dev The caller account is not authorized to perform an operation.
           */
          error OwnableUnauthorizedAccount(address account);
          /**
           * @dev The owner is not a valid owner account. (eg. `address(0)`)
           */
          error OwnableInvalidOwner(address owner);
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
           */
          constructor(address initialOwner) {
              if (initialOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(initialOwner);
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              if (owner() != _msgSender()) {
                  revert OwnableUnauthorizedAccount(_msgSender());
              }
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              if (newOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
      // This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
      pragma solidity ^0.8.20;
      import {Hashes} from "./Hashes.sol";
      /**
       * @dev These functions deal with verification of Merkle Tree proofs.
       *
       * The tree and the proofs can be generated using our
       * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
       * You will find a quickstart guide in the readme.
       *
       * WARNING: You should avoid using leaf values that are 64 bytes long prior to
       * hashing, or use a hash function other than keccak256 for hashing leaves.
       * This is because the concatenation of a sorted pair of internal nodes in
       * the Merkle tree could be reinterpreted as a leaf value.
       * OpenZeppelin's JavaScript library generates Merkle trees that are safe
       * against this attack out of the box.
       *
       * IMPORTANT: Consider memory side-effects when using custom hashing functions
       * that access memory in an unsafe way.
       *
       * NOTE: This library supports proof verification for merkle trees built using
       * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
       * leaf inclusion in trees built using non-commutative hashing functions requires
       * additional logic that is not supported by this library.
       */
      library MerkleProof {
          /**
           *@dev The multiproof provided is not valid.
           */
          error MerkleProofInvalidMultiproof();
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           *
           * This version handles proofs in memory with the default hashing function.
           */
          function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
              return processProof(proof, leaf) == root;
          }
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leaves & pre-images are assumed to be sorted.
           *
           * This version handles proofs in memory with the default hashing function.
           */
          function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           *
           * This version handles proofs in memory with a custom hashing function.
           */
          function verify(
              bytes32[] memory proof,
              bytes32 root,
              bytes32 leaf,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bool) {
              return processProof(proof, leaf, hasher) == root;
          }
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leaves & pre-images are assumed to be sorted.
           *
           * This version handles proofs in memory with a custom hashing function.
           */
          function processProof(
              bytes32[] memory proof,
              bytes32 leaf,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = hasher(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           *
           * This version handles proofs in calldata with the default hashing function.
           */
          function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
              return processProofCalldata(proof, leaf) == root;
          }
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leaves & pre-images are assumed to be sorted.
           *
           * This version handles proofs in calldata with the default hashing function.
           */
          function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           *
           * This version handles proofs in calldata with a custom hashing function.
           */
          function verifyCalldata(
              bytes32[] calldata proof,
              bytes32 root,
              bytes32 leaf,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bool) {
              return processProofCalldata(proof, leaf, hasher) == root;
          }
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leaves & pre-images are assumed to be sorted.
           *
           * This version handles proofs in calldata with a custom hashing function.
           */
          function processProofCalldata(
              bytes32[] calldata proof,
              bytes32 leaf,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = hasher(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * This version handles multiproofs in memory with the default hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
           * The `leaves` must be validated independently. See {processMultiProof}.
           */
          function multiProofVerify(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32 root,
              bytes32[] memory leaves
          ) internal pure returns (bool) {
              return processMultiProof(proof, proofFlags, leaves) == root;
          }
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
           * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
           * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
           * respectively.
           *
           * This version handles multiproofs in memory with the default hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
           * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
           * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
           *
           * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
           * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
           * validating the leaves elsewhere.
           */
          function processMultiProof(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32[] memory leaves
          ) internal pure returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the Merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofFlagsLen = proofFlags.length;
              // Check proof validity.
              if (leavesLen + proof.length != proofFlagsLen + 1) {
                  revert MerkleProofInvalidMultiproof();
              }
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](proofFlagsLen);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < proofFlagsLen; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = Hashes.commutativeKeccak256(a, b);
              }
              if (proofFlagsLen > 0) {
                  if (proofPos != proof.length) {
                      revert MerkleProofInvalidMultiproof();
                  }
                  unchecked {
                      return hashes[proofFlagsLen - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
          /**
           * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * This version handles multiproofs in memory with a custom hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
           * The `leaves` must be validated independently. See {processMultiProof}.
           */
          function multiProofVerify(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32 root,
              bytes32[] memory leaves,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bool) {
              return processMultiProof(proof, proofFlags, leaves, hasher) == root;
          }
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
           * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
           * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
           * respectively.
           *
           * This version handles multiproofs in memory with a custom hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
           * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
           * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
           *
           * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
           * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
           * validating the leaves elsewhere.
           */
          function processMultiProof(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32[] memory leaves,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the Merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofFlagsLen = proofFlags.length;
              // Check proof validity.
              if (leavesLen + proof.length != proofFlagsLen + 1) {
                  revert MerkleProofInvalidMultiproof();
              }
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](proofFlagsLen);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < proofFlagsLen; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = hasher(a, b);
              }
              if (proofFlagsLen > 0) {
                  if (proofPos != proof.length) {
                      revert MerkleProofInvalidMultiproof();
                  }
                  unchecked {
                      return hashes[proofFlagsLen - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
          /**
           * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * This version handles multiproofs in calldata with the default hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
           * The `leaves` must be validated independently. See {processMultiProofCalldata}.
           */
          function multiProofVerifyCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32 root,
              bytes32[] memory leaves
          ) internal pure returns (bool) {
              return processMultiProofCalldata(proof, proofFlags, leaves) == root;
          }
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
           * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
           * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
           * respectively.
           *
           * This version handles multiproofs in calldata with the default hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
           * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
           * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
           *
           * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
           * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
           * validating the leaves elsewhere.
           */
          function processMultiProofCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32[] memory leaves
          ) internal pure returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the Merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofFlagsLen = proofFlags.length;
              // Check proof validity.
              if (leavesLen + proof.length != proofFlagsLen + 1) {
                  revert MerkleProofInvalidMultiproof();
              }
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](proofFlagsLen);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < proofFlagsLen; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = Hashes.commutativeKeccak256(a, b);
              }
              if (proofFlagsLen > 0) {
                  if (proofPos != proof.length) {
                      revert MerkleProofInvalidMultiproof();
                  }
                  unchecked {
                      return hashes[proofFlagsLen - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
          /**
           * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * This version handles multiproofs in calldata with a custom hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
           * The `leaves` must be validated independently. See {processMultiProofCalldata}.
           */
          function multiProofVerifyCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32 root,
              bytes32[] memory leaves,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bool) {
              return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
          }
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
           * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
           * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
           * respectively.
           *
           * This version handles multiproofs in calldata with a custom hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
           * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
           * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
           *
           * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
           * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
           * validating the leaves elsewhere.
           */
          function processMultiProofCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32[] memory leaves,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the Merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofFlagsLen = proofFlags.length;
              // Check proof validity.
              if (leavesLen + proof.length != proofFlagsLen + 1) {
                  revert MerkleProofInvalidMultiproof();
              }
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](proofFlagsLen);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < proofFlagsLen; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = hasher(a, b);
              }
              if (proofFlagsLen > 0) {
                  if (proofPos != proof.length) {
                      revert MerkleProofInvalidMultiproof();
                  }
                  unchecked {
                      return hashes[proofFlagsLen - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Contract module that helps prevent reentrant calls to a function.
       *
       * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
       * available, which can be applied to functions to make sure there are no nested
       * (reentrant) calls to them.
       *
       * Note that because there is a single `nonReentrant` guard, functions marked as
       * `nonReentrant` may not call one another. This can be worked around by making
       * those functions `private`, and then adding `external` `nonReentrant` entry
       * points to them.
       *
       * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
       * consider using {ReentrancyGuardTransient} instead.
       *
       * TIP: If you would like to learn more about reentrancy and alternative ways
       * to protect against it, check out our blog post
       * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
       */
      abstract contract ReentrancyGuard {
          // Booleans are more expensive than uint256 or any type that takes up a full
          // word because each write operation emits an extra SLOAD to first read the
          // slot's contents, replace the bits taken up by the boolean, and then write
          // back. This is the compiler's defense against contract upgrades and
          // pointer aliasing, and it cannot be disabled.
          // The values being non-zero value makes deployment a bit more expensive,
          // but in exchange the refund on every call to nonReentrant will be lower in
          // amount. Since refunds are capped to a percentage of the total
          // transaction's gas, it is best to keep them low in cases like this one, to
          // increase the likelihood of the full refund coming into effect.
          uint256 private constant NOT_ENTERED = 1;
          uint256 private constant ENTERED = 2;
          uint256 private _status;
          /**
           * @dev Unauthorized reentrant call.
           */
          error ReentrancyGuardReentrantCall();
          constructor() {
              _status = NOT_ENTERED;
          }
          /**
           * @dev Prevents a contract from calling itself, directly or indirectly.
           * Calling a `nonReentrant` function from another `nonReentrant`
           * function is not supported. It is possible to prevent this from happening
           * by making the `nonReentrant` function external, and making it call a
           * `private` function that does the actual work.
           */
          modifier nonReentrant() {
              _nonReentrantBefore();
              _;
              _nonReentrantAfter();
          }
          function _nonReentrantBefore() private {
              // On the first call to nonReentrant, _status will be NOT_ENTERED
              if (_status == ENTERED) {
                  revert ReentrancyGuardReentrantCall();
              }
              // Any calls to nonReentrant after this point will fail
              _status = ENTERED;
          }
          function _nonReentrantAfter() private {
              // By storing the original value once again, a refund is triggered (see
              // https://eips.ethereum.org/EIPS/eip-2200)
              _status = NOT_ENTERED;
          }
          /**
           * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
           * `nonReentrant` function in the call stack.
           */
          function _reentrancyGuardEntered() internal view returns (bool) {
              return _status == ENTERED;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "../IERC20.sol";
      import {IERC1363} from "../../../interfaces/IERC1363.sol";
      /**
       * @title SafeERC20
       * @dev Wrappers around ERC-20 operations that throw on failure (when the token
       * contract returns false). Tokens that return no value (and instead revert or
       * throw on failure) are also supported, non-reverting calls are assumed to be
       * successful.
       * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
       * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
       */
      library SafeERC20 {
          /**
           * @dev An operation with an ERC-20 token failed.
           */
          error SafeERC20FailedOperation(address token);
          /**
           * @dev Indicates a failed `decreaseAllowance` request.
           */
          error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
          /**
           * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
           * non-reverting calls are assumed to be successful.
           */
          function safeTransfer(IERC20 token, address to, uint256 value) internal {
              _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
          }
          /**
           * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
           * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
           */
          function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
              _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
          }
          /**
           * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
           * non-reverting calls are assumed to be successful.
           *
           * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
           * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
           * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
           * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
           */
          function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
              uint256 oldAllowance = token.allowance(address(this), spender);
              forceApprove(token, spender, oldAllowance + value);
          }
          /**
           * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
           * value, non-reverting calls are assumed to be successful.
           *
           * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
           * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
           * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
           * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
           */
          function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
              unchecked {
                  uint256 currentAllowance = token.allowance(address(this), spender);
                  if (currentAllowance < requestedDecrease) {
                      revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                  }
                  forceApprove(token, spender, currentAllowance - requestedDecrease);
              }
          }
          /**
           * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
           * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
           * to be set to zero before setting it to a non-zero value, such as USDT.
           *
           * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
           * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
           * set here.
           */
          function forceApprove(IERC20 token, address spender, uint256 value) internal {
              bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
              if (!_callOptionalReturnBool(token, approvalCall)) {
                  _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                  _callOptionalReturn(token, approvalCall);
              }
          }
          /**
           * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
           * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
           * targeting contracts.
           *
           * Reverts if the returned value is other than `true`.
           */
          function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
              if (to.code.length == 0) {
                  safeTransfer(token, to, value);
              } else if (!token.transferAndCall(to, value, data)) {
                  revert SafeERC20FailedOperation(address(token));
              }
          }
          /**
           * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
           * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
           * targeting contracts.
           *
           * Reverts if the returned value is other than `true`.
           */
          function transferFromAndCallRelaxed(
              IERC1363 token,
              address from,
              address to,
              uint256 value,
              bytes memory data
          ) internal {
              if (to.code.length == 0) {
                  safeTransferFrom(token, from, to, value);
              } else if (!token.transferFromAndCall(from, to, value, data)) {
                  revert SafeERC20FailedOperation(address(token));
              }
          }
          /**
           * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
           * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
           * targeting contracts.
           *
           * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
           * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
           * once without retrying, and relies on the returned value to be true.
           *
           * Reverts if the returned value is other than `true`.
           */
          function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
              if (to.code.length == 0) {
                  forceApprove(token, to, value);
              } else if (!token.approveAndCall(to, value, data)) {
                  revert SafeERC20FailedOperation(address(token));
              }
          }
          /**
           * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
           * on the return value: the return value is optional (but if data is returned, it must not be false).
           * @param token The token targeted by the call.
           * @param data The call data (encoded using abi.encode or one of its variants).
           *
           * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
           */
          function _callOptionalReturn(IERC20 token, bytes memory data) private {
              uint256 returnSize;
              uint256 returnValue;
              assembly ("memory-safe") {
                  let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                  // bubble errors
                  if iszero(success) {
                      let ptr := mload(0x40)
                      returndatacopy(ptr, 0, returndatasize())
                      revert(ptr, returndatasize())
                  }
                  returnSize := returndatasize()
                  returnValue := mload(0)
              }
              if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
                  revert SafeERC20FailedOperation(address(token));
              }
          }
          /**
           * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
           * on the return value: the return value is optional (but if data is returned, it must not be false).
           * @param token The token targeted by the call.
           * @param data The call data (encoded using abi.encode or one of its variants).
           *
           * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
           */
          function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
              bool success;
              uint256 returnSize;
              uint256 returnValue;
              assembly ("memory-safe") {
                  success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                  returnSize := returndatasize()
                  returnValue := mload(0)
              }
              return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC-20 standard as defined in the ERC.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the value of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the value of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves a `value` amount of tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 value) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
           * caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 value) external returns (bool);
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to` using the
           * allowance mechanism. `value` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 value) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
      pragma solidity ^0.8.20;
      import {Context} from "../utils/Context.sol";
      /**
       * @dev Contract module which allows children to implement an emergency stop
       * mechanism that can be triggered by an authorized account.
       *
       * This module is used through inheritance. It will make available the
       * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
       * the functions of your contract. Note that they will not be pausable by
       * simply including this module, only once the modifiers are put in place.
       */
      abstract contract Pausable is Context {
          bool private _paused;
          /**
           * @dev Emitted when the pause is triggered by `account`.
           */
          event Paused(address account);
          /**
           * @dev Emitted when the pause is lifted by `account`.
           */
          event Unpaused(address account);
          /**
           * @dev The operation failed because the contract is paused.
           */
          error EnforcedPause();
          /**
           * @dev The operation failed because the contract is not paused.
           */
          error ExpectedPause();
          /**
           * @dev Initializes the contract in unpaused state.
           */
          constructor() {
              _paused = false;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is not paused.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          modifier whenNotPaused() {
              _requireNotPaused();
              _;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is paused.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          modifier whenPaused() {
              _requirePaused();
              _;
          }
          /**
           * @dev Returns true if the contract is paused, and false otherwise.
           */
          function paused() public view virtual returns (bool) {
              return _paused;
          }
          /**
           * @dev Throws if the contract is paused.
           */
          function _requireNotPaused() internal view virtual {
              if (paused()) {
                  revert EnforcedPause();
              }
          }
          /**
           * @dev Throws if the contract is not paused.
           */
          function _requirePaused() internal view virtual {
              if (!paused()) {
                  revert ExpectedPause();
              }
          }
          /**
           * @dev Triggers stopped state.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          function _pause() internal virtual whenNotPaused {
              _paused = true;
              emit Paused(_msgSender());
          }
          /**
           * @dev Returns to normal state.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          function _unpause() internal virtual whenPaused {
              _paused = false;
              emit Unpaused(_msgSender());
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Library of standard hash functions.
       *
       * _Available since v5.1._
       */
      library Hashes {
          /**
           * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
           *
           * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
           */
          function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
              return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
          }
          /**
           * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
           */
          function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
              assembly ("memory-safe") {
                  mstore(0x00, a)
                  mstore(0x20, b)
                  value := keccak256(0x00, 0x40)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "./IERC20.sol";
      import {IERC165} from "./IERC165.sol";
      /**
       * @title IERC1363
       * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
       *
       * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
       * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
       */
      interface IERC1363 is IERC20, IERC165 {
          /*
           * Note: the ERC-165 identifier for this interface is 0xb0202a11.
           * 0xb0202a11 ===
           *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
           *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
           *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
           *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
           *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
           *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
           */
          /**
           * @dev Moves a `value` amount of tokens from the caller's account to `to`
           * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
           * @param to The address which you want to transfer to.
           * @param value The amount of tokens to be transferred.
           * @return A boolean value indicating whether the operation succeeded unless throwing.
           */
          function transferAndCall(address to, uint256 value) external returns (bool);
          /**
           * @dev Moves a `value` amount of tokens from the caller's account to `to`
           * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
           * @param to The address which you want to transfer to.
           * @param value The amount of tokens to be transferred.
           * @param data Additional data with no specified format, sent in call to `to`.
           * @return A boolean value indicating whether the operation succeeded unless throwing.
           */
          function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
           * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
           * @param from The address which you want to send tokens from.
           * @param to The address which you want to transfer to.
           * @param value The amount of tokens to be transferred.
           * @return A boolean value indicating whether the operation succeeded unless throwing.
           */
          function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
           * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
           * @param from The address which you want to send tokens from.
           * @param to The address which you want to transfer to.
           * @param value The amount of tokens to be transferred.
           * @param data Additional data with no specified format, sent in call to `to`.
           * @return A boolean value indicating whether the operation succeeded unless throwing.
           */
          function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
          /**
           * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
           * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
           * @param spender The address which will spend the funds.
           * @param value The amount of tokens to be spent.
           * @return A boolean value indicating whether the operation succeeded unless throwing.
           */
          function approveAndCall(address spender, uint256 value) external returns (bool);
          /**
           * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
           * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
           * @param spender The address which will spend the funds.
           * @param value The amount of tokens to be spent.
           * @param data Additional data with no specified format, sent in call to `spender`.
           * @return A boolean value indicating whether the operation succeeded unless throwing.
           */
          function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "../token/ERC20/IERC20.sol";
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
      pragma solidity ^0.8.20;
      import {IERC165} from "../utils/introspection/IERC165.sol";
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC-165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[ERC].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165 {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      

      File 2 of 3: ERC1967Proxy
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (proxy/ERC1967/ERC1967Proxy.sol)
      pragma solidity ^0.8.20;
      import {Proxy} from "../Proxy.sol";
      import {ERC1967Utils} from "./ERC1967Utils.sol";
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       */
      contract ERC1967Proxy is Proxy {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
           *
           * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
           * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
           *
           * Requirements:
           *
           * - If `data` is empty, `msg.value` must be zero.
           */
          constructor(address implementation, bytes memory _data) payable {
              ERC1967Utils.upgradeToAndCall(implementation, _data);
          }
          /**
           * @dev Returns the current implementation address.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
           * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
           */
          function _implementation() internal view virtual override returns (address) {
              return ERC1967Utils.getImplementation();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       *
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       *
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 {
                      revert(0, returndatasize())
                  }
                  default {
                      return(0, returndatasize())
                  }
              }
          }
          /**
           * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
           * function and {_fallback} should delegate.
           */
          function _implementation() internal view virtual returns (address);
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _fallback() internal virtual {
              _delegate(_implementation());
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback() external payable virtual {
              _fallback();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (proxy/ERC1967/ERC1967Utils.sol)
      pragma solidity ^0.8.21;
      import {IBeacon} from "../beacon/IBeacon.sol";
      import {IERC1967} from "../../interfaces/IERC1967.sol";
      import {Address} from "../../utils/Address.sol";
      import {StorageSlot} from "../../utils/StorageSlot.sol";
      /**
       * @dev This library provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
       */
      library ERC1967Utils {
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev The `implementation` of the proxy is invalid.
           */
          error ERC1967InvalidImplementation(address implementation);
          /**
           * @dev The `admin` of the proxy is invalid.
           */
          error ERC1967InvalidAdmin(address admin);
          /**
           * @dev The `beacon` of the proxy is invalid.
           */
          error ERC1967InvalidBeacon(address beacon);
          /**
           * @dev An upgrade function sees `msg.value > 0` that may be lost.
           */
          error ERC1967NonPayable();
          /**
           * @dev Returns the current implementation address.
           */
          function getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the ERC-1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              if (newImplementation.code.length == 0) {
                  revert ERC1967InvalidImplementation(newImplementation);
              }
              StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Performs implementation upgrade with additional setup call if data is nonempty.
           * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
           * to avoid stuck value in the contract.
           *
           * Emits an {IERC1967-Upgraded} event.
           */
          function upgradeToAndCall(address newImplementation, bytes memory data) internal {
              _setImplementation(newImplementation);
              emit IERC1967.Upgraded(newImplementation);
              if (data.length > 0) {
                  Address.functionDelegateCall(newImplementation, data);
              } else {
                  _checkNonPayable();
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Returns the current admin.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
           * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the ERC-1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              if (newAdmin == address(0)) {
                  revert ERC1967InvalidAdmin(address(0));
              }
              StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {IERC1967-AdminChanged} event.
           */
          function changeAdmin(address newAdmin) internal {
              emit IERC1967.AdminChanged(getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Returns the current beacon.
           */
          function getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the ERC-1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              if (newBeacon.code.length == 0) {
                  revert ERC1967InvalidBeacon(newBeacon);
              }
              StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
              address beaconImplementation = IBeacon(newBeacon).implementation();
              if (beaconImplementation.code.length == 0) {
                  revert ERC1967InvalidImplementation(beaconImplementation);
              }
          }
          /**
           * @dev Change the beacon and trigger a setup call if data is nonempty.
           * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
           * to avoid stuck value in the contract.
           *
           * Emits an {IERC1967-BeaconUpgraded} event.
           *
           * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
           * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
           * efficiency.
           */
          function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
              _setBeacon(newBeacon);
              emit IERC1967.BeaconUpgraded(newBeacon);
              if (data.length > 0) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              } else {
                  _checkNonPayable();
              }
          }
          /**
           * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
           * if an upgrade doesn't perform an initialization call.
           */
          function _checkNonPayable() private {
              if (msg.value > 0) {
                  revert ERC1967NonPayable();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {UpgradeableBeacon} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
       */
      interface IERC1967 {
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Emitted when the beacon is changed.
           */
          event BeaconUpgraded(address indexed beacon);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
      pragma solidity ^0.8.20;
      import {Errors} from "./Errors.sol";
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev There's no code at `target` (it is not a contract).
           */
          error AddressEmptyCode(address target);
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              if (address(this).balance < amount) {
                  revert Errors.InsufficientBalance(address(this).balance, amount);
              }
              (bool success, ) = recipient.call{value: amount}("");
              if (!success) {
                  revert Errors.FailedCall();
              }
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason or custom error, it is bubbled
           * up by this function (like regular Solidity function calls). However, if
           * the call reverted with no returned reason, this function reverts with a
           * {Errors.FailedCall} error.
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              if (address(this).balance < value) {
                  revert Errors.InsufficientBalance(address(this).balance, value);
              }
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
           * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
           * of an unsuccessful call.
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata
          ) internal view returns (bytes memory) {
              if (!success) {
                  _revert(returndata);
              } else {
                  // only check if target is a contract if the call was successful and the return data is empty
                  // otherwise we already know that it was a contract
                  if (returndata.length == 0 && target.code.length == 0) {
                      revert AddressEmptyCode(target);
                  }
                  return returndata;
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
           * revert reason or with a default {Errors.FailedCall} error.
           */
          function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
              if (!success) {
                  _revert(returndata);
              } else {
                  return returndata;
              }
          }
          /**
           * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
           */
          function _revert(bytes memory returndata) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  assembly ("memory-safe") {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert Errors.FailedCall();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC-1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(newImplementation.code.length > 0);
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * TIP: Consider using this library along with {SlotDerivation}.
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct Int256Slot {
              int256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `Int256Slot` with member `value` located at `slot`.
           */
          function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns a `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := store.slot
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Collection of common custom errors used in multiple contracts
       *
       * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
       * It is recommended to avoid relying on the error API for critical functionality.
       *
       * _Available since v5.1._
       */
      library Errors {
          /**
           * @dev The ETH balance of the account is not enough to perform the operation.
           */
          error InsufficientBalance(uint256 balance, uint256 needed);
          /**
           * @dev A call to an address target failed. The target may have reverted.
           */
          error FailedCall();
          /**
           * @dev The deployment failed.
           */
          error FailedDeployment();
          /**
           * @dev A necessary precompile is missing.
           */
          error MissingPrecompile(address);
      }
      

      File 3 of 3: SoSoValueToken
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20BurnableUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PermitUpgradeable.sol";
      contract SoSoValueToken is
          Initializable,
          UUPSUpgradeable,
          OwnableUpgradeable,
          ERC20BurnableUpgradeable,
          ERC20PermitUpgradeable,
          PausableUpgradeable
      {
          /// @custom:oz-upgrades-unsafe-allow constructor
          constructor() {
              _disableInitializers();
          }
          function initialize(address owner, address ecosystem, address investor, address teamPartner, address foundation)
              public
              initializer
          {
              __UUPSUpgradeable_init();
              __Ownable_init(owner);
              __ERC20_init("SoSoValue", "SOSO");
              uint256 totalSupply = 1_000_000_000 * 10 ** decimals();
              uint256 ecosystemShares = 30_00;
              uint256 investorShares = 16_50;
              uint256 teamPartnerShares = 36_50;
              uint256 foundationShares = 17_00;
              uint256 totalShares = ecosystemShares + investorShares + teamPartnerShares + foundationShares;
              _mint(ecosystem, totalSupply * ecosystemShares / totalShares);
              _mint(investor, totalSupply * investorShares / totalShares);
              _mint(teamPartner, totalSupply * teamPartnerShares / totalShares);
              _mint(foundation, totalSupply * foundationShares / totalShares);
          }
          function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
          //// pausable
          function pause() external onlyOwner {
              _pause();
          }
          function unpause() external onlyOwner {
              _unpause();
          }
          //// add modifier in _update and _approve
          function _update(address from, address to, uint256 value)
              internal
              override
              whenNotPaused
          {
              super._update(from, to, value);
          }
          function _approve(address owner, address spender, uint256 value, bool emitEvent)
              internal
              override
              whenNotPaused
          {
              super._approve(owner, spender, value, emitEvent);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```solidity
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       *
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Storage of the initializable contract.
           *
           * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
           * when using with upgradeable contracts.
           *
           * @custom:storage-location erc7201:openzeppelin.storage.Initializable
           */
          struct InitializableStorage {
              /**
               * @dev Indicates that the contract has been initialized.
               */
              uint64 _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool _initializing;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
          /**
           * @dev The contract is already initialized.
           */
          error InvalidInitialization();
          /**
           * @dev The contract is not initializing.
           */
          error NotInitializing();
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint64 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts.
           *
           * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
           * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
           * production.
           *
           * Emits an {Initialized} event.
           */
          modifier initializer() {
              // solhint-disable-next-line var-name-mixedcase
              InitializableStorage storage $ = _getInitializableStorage();
              // Cache values to avoid duplicated sloads
              bool isTopLevelCall = !$._initializing;
              uint64 initialized = $._initialized;
              // Allowed calls:
              // - initialSetup: the contract is not in the initializing state and no previous version was
              //                 initialized
              // - construction: the contract is initialized at version 1 (no reininitialization) and the
              //                 current contract is just being deployed
              bool initialSetup = initialized == 0 && isTopLevelCall;
              bool construction = initialized == 1 && address(this).code.length == 0;
              if (!initialSetup && !construction) {
                  revert InvalidInitialization();
              }
              $._initialized = 1;
              if (isTopLevelCall) {
                  $._initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  $._initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * A reinitializer may be used after the original initialization step. This is essential to configure modules that
           * are added through upgrades and that require initialization.
           *
           * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
           * cannot be nested. If one is invoked in the context of another, execution will revert.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           *
           * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
           *
           * Emits an {Initialized} event.
           */
          modifier reinitializer(uint64 version) {
              // solhint-disable-next-line var-name-mixedcase
              InitializableStorage storage $ = _getInitializableStorage();
              if ($._initializing || $._initialized >= version) {
                  revert InvalidInitialization();
              }
              $._initialized = version;
              $._initializing = true;
              _;
              $._initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              _checkInitializing();
              _;
          }
          /**
           * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
           */
          function _checkInitializing() internal view virtual {
              if (!_isInitializing()) {
                  revert NotInitializing();
              }
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           *
           * Emits an {Initialized} event the first time it is successfully executed.
           */
          function _disableInitializers() internal virtual {
              // solhint-disable-next-line var-name-mixedcase
              InitializableStorage storage $ = _getInitializableStorage();
              if ($._initializing) {
                  revert InvalidInitialization();
              }
              if ($._initialized != type(uint64).max) {
                  $._initialized = type(uint64).max;
                  emit Initialized(type(uint64).max);
              }
          }
          /**
           * @dev Returns the highest version that has been initialized. See {reinitializer}.
           */
          function _getInitializedVersion() internal view returns (uint64) {
              return _getInitializableStorage()._initialized;
          }
          /**
           * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
           */
          function _isInitializing() internal view returns (bool) {
              return _getInitializableStorage()._initializing;
          }
          /**
           * @dev Returns a pointer to the storage namespace.
           */
          // solhint-disable-next-line var-name-mixedcase
          function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
              assembly {
                  $.slot := INITIALIZABLE_STORAGE
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (proxy/utils/UUPSUpgradeable.sol)
      pragma solidity ^0.8.20;
      import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
      import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
      import {Initializable} from "./Initializable.sol";
      /**
       * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
       * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
       *
       * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
       * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
       * `UUPSUpgradeable` with a custom implementation of upgrades.
       *
       * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
       */
      abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
          /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
          address private immutable __self = address(this);
          /**
           * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
           * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
           * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
           * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
           * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
           * during an upgrade.
           */
          string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
          /**
           * @dev The call is from an unauthorized context.
           */
          error UUPSUnauthorizedCallContext();
          /**
           * @dev The storage `slot` is unsupported as a UUID.
           */
          error UUPSUnsupportedProxiableUUID(bytes32 slot);
          /**
           * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
           * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
           * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
           * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
           * fail.
           */
          modifier onlyProxy() {
              _checkProxy();
              _;
          }
          /**
           * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
           * callable on the implementing contract but not through proxies.
           */
          modifier notDelegated() {
              _checkNotDelegated();
              _;
          }
          function __UUPSUpgradeable_init() internal onlyInitializing {
          }
          function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
           * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
           */
          function proxiableUUID() external view virtual notDelegated returns (bytes32) {
              return ERC1967Utils.IMPLEMENTATION_SLOT;
          }
          /**
           * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
           * encoded in `data`.
           *
           * Calls {_authorizeUpgrade}.
           *
           * Emits an {Upgraded} event.
           *
           * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
           */
          function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallUUPS(newImplementation, data);
          }
          /**
           * @dev Reverts if the execution is not performed via delegatecall or the execution
           * context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
           * See {_onlyProxy}.
           */
          function _checkProxy() internal view virtual {
              if (
                  address(this) == __self || // Must be called through delegatecall
                  ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
              ) {
                  revert UUPSUnauthorizedCallContext();
              }
          }
          /**
           * @dev Reverts if the execution is performed via delegatecall.
           * See {notDelegated}.
           */
          function _checkNotDelegated() internal view virtual {
              if (address(this) != __self) {
                  // Must not be called through delegatecall
                  revert UUPSUnauthorizedCallContext();
              }
          }
          /**
           * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
           * {upgradeToAndCall}.
           *
           * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
           *
           * ```solidity
           * function _authorizeUpgrade(address) internal onlyOwner {}
           * ```
           */
          function _authorizeUpgrade(address newImplementation) internal virtual;
          /**
           * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
           *
           * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
           * is expected to be the implementation slot in ERC-1967.
           *
           * Emits an {IERC1967-Upgraded} event.
           */
          function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
              try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                  if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                      revert UUPSUnsupportedProxiableUUID(slot);
                  }
                  ERC1967Utils.upgradeToAndCall(newImplementation, data);
              } catch {
                  // The implementation is not UUPS
                  revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
      pragma solidity ^0.8.20;
      import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * The initial owner is set to the address provided by the deployer. This can
       * later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
          /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
          struct OwnableStorage {
              address _owner;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
          function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
              assembly {
                  $.slot := OwnableStorageLocation
              }
          }
          /**
           * @dev The caller account is not authorized to perform an operation.
           */
          error OwnableUnauthorizedAccount(address account);
          /**
           * @dev The owner is not a valid owner account. (eg. `address(0)`)
           */
          error OwnableInvalidOwner(address owner);
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
           */
          function __Ownable_init(address initialOwner) internal onlyInitializing {
              __Ownable_init_unchained(initialOwner);
          }
          function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
              if (initialOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(initialOwner);
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              OwnableStorage storage $ = _getOwnableStorage();
              return $._owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              if (owner() != _msgSender()) {
                  revert OwnableUnauthorizedAccount(_msgSender());
              }
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              if (newOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              OwnableStorage storage $ = _getOwnableStorage();
              address oldOwner = $._owner;
              $._owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
      pragma solidity ^0.8.20;
      import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which allows children to implement an emergency stop
       * mechanism that can be triggered by an authorized account.
       *
       * This module is used through inheritance. It will make available the
       * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
       * the functions of your contract. Note that they will not be pausable by
       * simply including this module, only once the modifiers are put in place.
       */
      abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
          /// @custom:storage-location erc7201:openzeppelin.storage.Pausable
          struct PausableStorage {
              bool _paused;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;
          function _getPausableStorage() private pure returns (PausableStorage storage $) {
              assembly {
                  $.slot := PausableStorageLocation
              }
          }
          /**
           * @dev Emitted when the pause is triggered by `account`.
           */
          event Paused(address account);
          /**
           * @dev Emitted when the pause is lifted by `account`.
           */
          event Unpaused(address account);
          /**
           * @dev The operation failed because the contract is paused.
           */
          error EnforcedPause();
          /**
           * @dev The operation failed because the contract is not paused.
           */
          error ExpectedPause();
          /**
           * @dev Initializes the contract in unpaused state.
           */
          function __Pausable_init() internal onlyInitializing {
              __Pausable_init_unchained();
          }
          function __Pausable_init_unchained() internal onlyInitializing {
              PausableStorage storage $ = _getPausableStorage();
              $._paused = false;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is not paused.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          modifier whenNotPaused() {
              _requireNotPaused();
              _;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is paused.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          modifier whenPaused() {
              _requirePaused();
              _;
          }
          /**
           * @dev Returns true if the contract is paused, and false otherwise.
           */
          function paused() public view virtual returns (bool) {
              PausableStorage storage $ = _getPausableStorage();
              return $._paused;
          }
          /**
           * @dev Throws if the contract is paused.
           */
          function _requireNotPaused() internal view virtual {
              if (paused()) {
                  revert EnforcedPause();
              }
          }
          /**
           * @dev Throws if the contract is not paused.
           */
          function _requirePaused() internal view virtual {
              if (!paused()) {
                  revert ExpectedPause();
              }
          }
          /**
           * @dev Triggers stopped state.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          function _pause() internal virtual whenNotPaused {
              PausableStorage storage $ = _getPausableStorage();
              $._paused = true;
              emit Paused(_msgSender());
          }
          /**
           * @dev Returns to normal state.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          function _unpause() internal virtual whenPaused {
              PausableStorage storage $ = _getPausableStorage();
              $._paused = false;
              emit Unpaused(_msgSender());
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)
      pragma solidity ^0.8.20;
      import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
      import {ContextUpgradeable} from "../../../utils/ContextUpgradeable.sol";
      import {Initializable} from "../../../proxy/utils/Initializable.sol";
      /**
       * @dev Extension of {ERC20} that allows token holders to destroy both their own
       * tokens and those that they have an allowance for, in a way that can be
       * recognized off-chain (via event analysis).
       */
      abstract contract ERC20BurnableUpgradeable is Initializable, ContextUpgradeable, ERC20Upgradeable {
          function __ERC20Burnable_init() internal onlyInitializing {
          }
          function __ERC20Burnable_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev Destroys a `value` amount of tokens from the caller.
           *
           * See {ERC20-_burn}.
           */
          function burn(uint256 value) public virtual {
              _burn(_msgSender(), value);
          }
          /**
           * @dev Destroys a `value` amount of tokens from `account`, deducting from
           * the caller's allowance.
           *
           * See {ERC20-_burn} and {ERC20-allowance}.
           *
           * Requirements:
           *
           * - the caller must have allowance for ``accounts``'s tokens of at least
           * `value`.
           */
          function burnFrom(address account, uint256 value) public virtual {
              _spendAllowance(account, _msgSender(), value);
              _burn(account, value);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)
      pragma solidity ^0.8.20;
      import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
      import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
      import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
      import {EIP712Upgradeable} from "../../../utils/cryptography/EIP712Upgradeable.sol";
      import {NoncesUpgradeable} from "../../../utils/NoncesUpgradeable.sol";
      import {Initializable} from "../../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20Permit, EIP712Upgradeable, NoncesUpgradeable {
          bytes32 private constant PERMIT_TYPEHASH =
              keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
          /**
           * @dev Permit deadline has expired.
           */
          error ERC2612ExpiredSignature(uint256 deadline);
          /**
           * @dev Mismatched signature.
           */
          error ERC2612InvalidSigner(address signer, address owner);
          /**
           * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
           *
           * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
           */
          function __ERC20Permit_init(string memory name) internal onlyInitializing {
              __EIP712_init_unchained(name, "1");
          }
          function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {}
          /**
           * @inheritdoc IERC20Permit
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual {
              if (block.timestamp > deadline) {
                  revert ERC2612ExpiredSignature(deadline);
              }
              bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
              bytes32 hash = _hashTypedDataV4(structHash);
              address signer = ECDSA.recover(hash, v, r, s);
              if (signer != owner) {
                  revert ERC2612InvalidSigner(signer, owner);
              }
              _approve(owner, spender, value);
          }
          /**
           * @inheritdoc IERC20Permit
           */
          function nonces(address owner) public view virtual override(IERC20Permit, NoncesUpgradeable) returns (uint256) {
              return super.nonces(owner);
          }
          /**
           * @inheritdoc IERC20Permit
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
              return _domainSeparatorV4();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
       * proxy whose upgrades are fully controlled by the current implementation.
       */
      interface IERC1822Proxiable {
          /**
           * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
           * address.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy.
           */
          function proxiableUUID() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (proxy/ERC1967/ERC1967Utils.sol)
      pragma solidity ^0.8.21;
      import {IBeacon} from "../beacon/IBeacon.sol";
      import {IERC1967} from "../../interfaces/IERC1967.sol";
      import {Address} from "../../utils/Address.sol";
      import {StorageSlot} from "../../utils/StorageSlot.sol";
      /**
       * @dev This library provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
       */
      library ERC1967Utils {
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev The `implementation` of the proxy is invalid.
           */
          error ERC1967InvalidImplementation(address implementation);
          /**
           * @dev The `admin` of the proxy is invalid.
           */
          error ERC1967InvalidAdmin(address admin);
          /**
           * @dev The `beacon` of the proxy is invalid.
           */
          error ERC1967InvalidBeacon(address beacon);
          /**
           * @dev An upgrade function sees `msg.value > 0` that may be lost.
           */
          error ERC1967NonPayable();
          /**
           * @dev Returns the current implementation address.
           */
          function getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the ERC-1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              if (newImplementation.code.length == 0) {
                  revert ERC1967InvalidImplementation(newImplementation);
              }
              StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Performs implementation upgrade with additional setup call if data is nonempty.
           * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
           * to avoid stuck value in the contract.
           *
           * Emits an {IERC1967-Upgraded} event.
           */
          function upgradeToAndCall(address newImplementation, bytes memory data) internal {
              _setImplementation(newImplementation);
              emit IERC1967.Upgraded(newImplementation);
              if (data.length > 0) {
                  Address.functionDelegateCall(newImplementation, data);
              } else {
                  _checkNonPayable();
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Returns the current admin.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
           * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the ERC-1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              if (newAdmin == address(0)) {
                  revert ERC1967InvalidAdmin(address(0));
              }
              StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {IERC1967-AdminChanged} event.
           */
          function changeAdmin(address newAdmin) internal {
              emit IERC1967.AdminChanged(getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Returns the current beacon.
           */
          function getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the ERC-1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              if (newBeacon.code.length == 0) {
                  revert ERC1967InvalidBeacon(newBeacon);
              }
              StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
              address beaconImplementation = IBeacon(newBeacon).implementation();
              if (beaconImplementation.code.length == 0) {
                  revert ERC1967InvalidImplementation(beaconImplementation);
              }
          }
          /**
           * @dev Change the beacon and trigger a setup call if data is nonempty.
           * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
           * to avoid stuck value in the contract.
           *
           * Emits an {IERC1967-BeaconUpgraded} event.
           *
           * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
           * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
           * efficiency.
           */
          function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
              _setBeacon(newBeacon);
              emit IERC1967.BeaconUpgraded(newBeacon);
              if (data.length > 0) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              } else {
                  _checkNonPayable();
              }
          }
          /**
           * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
           * if an upgrade doesn't perform an initialization call.
           */
          function _checkNonPayable() private {
              if (msg.value > 0) {
                  revert ERC1967NonPayable();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      pragma solidity ^0.8.20;
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
      import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
      import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
      import {Initializable} from "../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * The default value of {decimals} is 18. To change this, you should override
       * this function so it returns a different value.
       *
       * We have followed general OpenZeppelin Contracts guidelines: functions revert
       * instead returning `false` on failure. This behavior is nonetheless
       * conventional and does not conflict with the expectations of ERC-20
       * applications.
       */
      abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors {
          /// @custom:storage-location erc7201:openzeppelin.storage.ERC20
          struct ERC20Storage {
              mapping(address account => uint256) _balances;
              mapping(address account => mapping(address spender => uint256)) _allowances;
              uint256 _totalSupply;
              string _name;
              string _symbol;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;
          function _getERC20Storage() private pure returns (ERC20Storage storage $) {
              assembly {
                  $.slot := ERC20StorageLocation
              }
          }
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
              __ERC20_init_unchained(name_, symbol_);
          }
          function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
              ERC20Storage storage $ = _getERC20Storage();
              $._name = name_;
              $._symbol = symbol_;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual returns (string memory) {
              ERC20Storage storage $ = _getERC20Storage();
              return $._name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual returns (string memory) {
              ERC20Storage storage $ = _getERC20Storage();
              return $._symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the default value returned by this function, unless
           * it's overridden.
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual returns (uint8) {
              return 18;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual returns (uint256) {
              ERC20Storage storage $ = _getERC20Storage();
              return $._totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual returns (uint256) {
              ERC20Storage storage $ = _getERC20Storage();
              return $._balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - the caller must have a balance of at least `value`.
           */
          function transfer(address to, uint256 value) public virtual returns (bool) {
              address owner = _msgSender();
              _transfer(owner, to, value);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual returns (uint256) {
              ERC20Storage storage $ = _getERC20Storage();
              return $._allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
           * `transferFrom`. This is semantically equivalent to an infinite approval.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 value) public virtual returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, value);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Skips emitting an {Approval} event indicating an allowance update. This is not
           * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
           *
           * NOTE: Does not update the allowance if the current allowance
           * is the maximum `uint256`.
           *
           * Requirements:
           *
           * - `from` and `to` cannot be the zero address.
           * - `from` must have a balance of at least `value`.
           * - the caller must have allowance for ``from``'s tokens of at least
           * `value`.
           */
          function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
              address spender = _msgSender();
              _spendAllowance(from, spender, value);
              _transfer(from, to, value);
              return true;
          }
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead.
           */
          function _transfer(address from, address to, uint256 value) internal {
              if (from == address(0)) {
                  revert ERC20InvalidSender(address(0));
              }
              if (to == address(0)) {
                  revert ERC20InvalidReceiver(address(0));
              }
              _update(from, to, value);
          }
          /**
           * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
           * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
           * this function.
           *
           * Emits a {Transfer} event.
           */
          function _update(address from, address to, uint256 value) internal virtual {
              ERC20Storage storage $ = _getERC20Storage();
              if (from == address(0)) {
                  // Overflow check required: The rest of the code assumes that totalSupply never overflows
                  $._totalSupply += value;
              } else {
                  uint256 fromBalance = $._balances[from];
                  if (fromBalance < value) {
                      revert ERC20InsufficientBalance(from, fromBalance, value);
                  }
                  unchecked {
                      // Overflow not possible: value <= fromBalance <= totalSupply.
                      $._balances[from] = fromBalance - value;
                  }
              }
              if (to == address(0)) {
                  unchecked {
                      // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                      $._totalSupply -= value;
                  }
              } else {
                  unchecked {
                      // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                      $._balances[to] += value;
                  }
              }
              emit Transfer(from, to, value);
          }
          /**
           * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
           * Relies on the `_update` mechanism
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead.
           */
          function _mint(address account, uint256 value) internal {
              if (account == address(0)) {
                  revert ERC20InvalidReceiver(address(0));
              }
              _update(address(0), account, value);
          }
          /**
           * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
           * Relies on the `_update` mechanism.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead
           */
          function _burn(address account, uint256 value) internal {
              if (account == address(0)) {
                  revert ERC20InvalidSender(address(0));
              }
              _update(account, address(0), value);
          }
          /**
           * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           *
           * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
           */
          function _approve(address owner, address spender, uint256 value) internal {
              _approve(owner, spender, value, true);
          }
          /**
           * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
           *
           * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
           * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
           * `Approval` event during `transferFrom` operations.
           *
           * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
           * true using the following override:
           *
           * ```solidity
           * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
           *     super._approve(owner, spender, value, true);
           * }
           * ```
           *
           * Requirements are the same as {_approve}.
           */
          function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
              ERC20Storage storage $ = _getERC20Storage();
              if (owner == address(0)) {
                  revert ERC20InvalidApprover(address(0));
              }
              if (spender == address(0)) {
                  revert ERC20InvalidSpender(address(0));
              }
              $._allowances[owner][spender] = value;
              if (emitEvent) {
                  emit Approval(owner, spender, value);
              }
          }
          /**
           * @dev Updates `owner` s allowance for `spender` based on spent `value`.
           *
           * Does not update the allowance value in case of infinite allowance.
           * Revert if not enough allowance is available.
           *
           * Does not emit an {Approval} event.
           */
          function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance != type(uint256).max) {
                  if (currentAllowance < value) {
                      revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                  }
                  unchecked {
                      _approve(owner, spender, currentAllowance - value, false);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       *
       * ==== Security Considerations
       *
       * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
       * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
       * considered as an intention to spend the allowance in any specific way. The second is that because permits have
       * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
       * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
       * generally recommended is:
       *
       * ```solidity
       * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
       *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
       *     doThing(..., value);
       * }
       *
       * function doThing(..., uint256 value) public {
       *     token.safeTransferFrom(msg.sender, address(this), value);
       *     ...
       * }
       * ```
       *
       * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
       * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
       * {SafeERC20-safeTransferFrom}).
       *
       * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
       * contracts should have entry points that don't rely on permit.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           *
           * CAUTION: See Security Considerations above.
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
       *
       * These functions can be used to verify that a message was signed by the holder
       * of the private keys of a given address.
       */
      library ECDSA {
          enum RecoverError {
              NoError,
              InvalidSignature,
              InvalidSignatureLength,
              InvalidSignatureS
          }
          /**
           * @dev The signature derives the `address(0)`.
           */
          error ECDSAInvalidSignature();
          /**
           * @dev The signature has an invalid length.
           */
          error ECDSAInvalidSignatureLength(uint256 length);
          /**
           * @dev The signature has an S value that is in the upper half order.
           */
          error ECDSAInvalidSignatureS(bytes32 s);
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
           * return address(0) without also returning an error description. Errors are documented using an enum (error type)
           * and a bytes32 providing additional information about the error.
           *
           * If no error is returned, then the address can be used for verification purposes.
           *
           * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
           *
           * Documentation for signature generation:
           * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
           * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
           */
          function tryRecover(
              bytes32 hash,
              bytes memory signature
          ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
              if (signature.length == 65) {
                  bytes32 r;
                  bytes32 s;
                  uint8 v;
                  // ecrecover takes the signature parameters, and the only way to get them
                  // currently is to use assembly.
                  assembly ("memory-safe") {
                      r := mload(add(signature, 0x20))
                      s := mload(add(signature, 0x40))
                      v := byte(0, mload(add(signature, 0x60)))
                  }
                  return tryRecover(hash, v, r, s);
              } else {
                  return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
              }
          }
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature`. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
           */
          function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
           *
           * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
           */
          function tryRecover(
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
              unchecked {
                  bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                  // We do not check for an overflow here since the shift operation results in 0 or 1.
                  uint8 v = uint8((uint256(vs) >> 255) + 27);
                  return tryRecover(hash, v, r, s);
              }
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
           */
          function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function tryRecover(
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
              // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
              // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
              // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
              // signatures from current libraries generate a unique signature with an s-value in the lower half order.
              //
              // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
              // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
              // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
              // these malleable signatures as well.
              if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                  return (address(0), RecoverError.InvalidSignatureS, s);
              }
              // If the signature is valid (and not malleable), return the signer address
              address signer = ecrecover(hash, v, r, s);
              if (signer == address(0)) {
                  return (address(0), RecoverError.InvalidSignature, bytes32(0));
              }
              return (signer, RecoverError.NoError, bytes32(0));
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
           */
          function _throwError(RecoverError error, bytes32 errorArg) private pure {
              if (error == RecoverError.NoError) {
                  return; // no error: do nothing
              } else if (error == RecoverError.InvalidSignature) {
                  revert ECDSAInvalidSignature();
              } else if (error == RecoverError.InvalidSignatureLength) {
                  revert ECDSAInvalidSignatureLength(uint256(errorArg));
              } else if (error == RecoverError.InvalidSignatureS) {
                  revert ECDSAInvalidSignatureS(errorArg);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)
      pragma solidity ^0.8.20;
      import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
      import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol";
      import {Initializable} from "../../proxy/utils/Initializable.sol";
      /**
       * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
       *
       * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
       * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
       * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
       * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
       *
       * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
       * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
       * ({_hashTypedDataV4}).
       *
       * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
       * the chain id to protect against replay attacks on an eventual fork of the chain.
       *
       * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
       * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
       *
       * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
       * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
       * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
       */
      abstract contract EIP712Upgradeable is Initializable, IERC5267 {
          bytes32 private constant TYPE_HASH =
              keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
          /// @custom:storage-location erc7201:openzeppelin.storage.EIP712
          struct EIP712Storage {
              /// @custom:oz-renamed-from _HASHED_NAME
              bytes32 _hashedName;
              /// @custom:oz-renamed-from _HASHED_VERSION
              bytes32 _hashedVersion;
              string _name;
              string _version;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100;
          function _getEIP712Storage() private pure returns (EIP712Storage storage $) {
              assembly {
                  $.slot := EIP712StorageLocation
              }
          }
          /**
           * @dev Initializes the domain separator and parameter caches.
           *
           * The meaning of `name` and `version` is specified in
           * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
           *
           * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
           * - `version`: the current major version of the signing domain.
           *
           * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
           * contract upgrade].
           */
          function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
              __EIP712_init_unchained(name, version);
          }
          function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
              EIP712Storage storage $ = _getEIP712Storage();
              $._name = name;
              $._version = version;
              // Reset prior values in storage if upgrading
              $._hashedName = 0;
              $._hashedVersion = 0;
          }
          /**
           * @dev Returns the domain separator for the current chain.
           */
          function _domainSeparatorV4() internal view returns (bytes32) {
              return _buildDomainSeparator();
          }
          function _buildDomainSeparator() private view returns (bytes32) {
              return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
          }
          /**
           * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
           * function returns the hash of the fully encoded EIP712 message for this domain.
           *
           * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
           *
           * ```solidity
           * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
           *     keccak256("Mail(address to,string contents)"),
           *     mailTo,
           *     keccak256(bytes(mailContents))
           * )));
           * address signer = ECDSA.recover(digest, signature);
           * ```
           */
          function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
              return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
          }
          /**
           * @dev See {IERC-5267}.
           */
          function eip712Domain()
              public
              view
              virtual
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              )
          {
              EIP712Storage storage $ = _getEIP712Storage();
              // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
              // and the EIP712 domain is not reliable, as it will be missing name and version.
              require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized");
              return (
                  hex"0f", // 01111
                  _EIP712Name(),
                  _EIP712Version(),
                  block.chainid,
                  address(this),
                  bytes32(0),
                  new uint256[](0)
              );
          }
          /**
           * @dev The name parameter for the EIP712 domain.
           *
           * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
           * are a concern.
           */
          function _EIP712Name() internal view virtual returns (string memory) {
              EIP712Storage storage $ = _getEIP712Storage();
              return $._name;
          }
          /**
           * @dev The version parameter for the EIP712 domain.
           *
           * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
           * are a concern.
           */
          function _EIP712Version() internal view virtual returns (string memory) {
              EIP712Storage storage $ = _getEIP712Storage();
              return $._version;
          }
          /**
           * @dev The hash of the name parameter for the EIP712 domain.
           *
           * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
           */
          function _EIP712NameHash() internal view returns (bytes32) {
              EIP712Storage storage $ = _getEIP712Storage();
              string memory name = _EIP712Name();
              if (bytes(name).length > 0) {
                  return keccak256(bytes(name));
              } else {
                  // If the name is empty, the contract may have been upgraded without initializing the new storage.
                  // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
                  bytes32 hashedName = $._hashedName;
                  if (hashedName != 0) {
                      return hashedName;
                  } else {
                      return keccak256("");
                  }
              }
          }
          /**
           * @dev The hash of the version parameter for the EIP712 domain.
           *
           * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
           */
          function _EIP712VersionHash() internal view returns (bytes32) {
              EIP712Storage storage $ = _getEIP712Storage();
              string memory version = _EIP712Version();
              if (bytes(version).length > 0) {
                  return keccak256(bytes(version));
              } else {
                  // If the version is empty, the contract may have been upgraded without initializing the new storage.
                  // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
                  bytes32 hashedVersion = $._hashedVersion;
                  if (hashedVersion != 0) {
                      return hashedVersion;
                  } else {
                      return keccak256("");
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
      pragma solidity ^0.8.20;
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides tracking nonces for addresses. Nonces will only increment.
       */
      abstract contract NoncesUpgradeable is Initializable {
          /**
           * @dev The nonce used for an `account` is not the expected current nonce.
           */
          error InvalidAccountNonce(address account, uint256 currentNonce);
          /// @custom:storage-location erc7201:openzeppelin.storage.Nonces
          struct NoncesStorage {
              mapping(address account => uint256) _nonces;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Nonces")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant NoncesStorageLocation = 0x5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00;
          function _getNoncesStorage() private pure returns (NoncesStorage storage $) {
              assembly {
                  $.slot := NoncesStorageLocation
              }
          }
          function __Nonces_init() internal onlyInitializing {
          }
          function __Nonces_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev Returns the next unused nonce for an address.
           */
          function nonces(address owner) public view virtual returns (uint256) {
              NoncesStorage storage $ = _getNoncesStorage();
              return $._nonces[owner];
          }
          /**
           * @dev Consumes a nonce.
           *
           * Returns the current value and increments nonce.
           */
          function _useNonce(address owner) internal virtual returns (uint256) {
              NoncesStorage storage $ = _getNoncesStorage();
              // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
              // decremented or reset. This guarantees that the nonce never overflows.
              unchecked {
                  // It is important to do x++ and not ++x here.
                  return $._nonces[owner]++;
              }
          }
          /**
           * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
           */
          function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
              uint256 current = _useNonce(owner);
              if (nonce != current) {
                  revert InvalidAccountNonce(owner, current);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {UpgradeableBeacon} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
       */
      interface IERC1967 {
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Emitted when the beacon is changed.
           */
          event BeaconUpgraded(address indexed beacon);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
      pragma solidity ^0.8.20;
      import {Errors} from "./Errors.sol";
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev There's no code at `target` (it is not a contract).
           */
          error AddressEmptyCode(address target);
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              if (address(this).balance < amount) {
                  revert Errors.InsufficientBalance(address(this).balance, amount);
              }
              (bool success, ) = recipient.call{value: amount}("");
              if (!success) {
                  revert Errors.FailedCall();
              }
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason or custom error, it is bubbled
           * up by this function (like regular Solidity function calls). However, if
           * the call reverted with no returned reason, this function reverts with a
           * {Errors.FailedCall} error.
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              if (address(this).balance < value) {
                  revert Errors.InsufficientBalance(address(this).balance, value);
              }
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
           * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
           * of an unsuccessful call.
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata
          ) internal view returns (bytes memory) {
              if (!success) {
                  _revert(returndata);
              } else {
                  // only check if target is a contract if the call was successful and the return data is empty
                  // otherwise we already know that it was a contract
                  if (returndata.length == 0 && target.code.length == 0) {
                      revert AddressEmptyCode(target);
                  }
                  return returndata;
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
           * revert reason or with a default {Errors.FailedCall} error.
           */
          function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
              if (!success) {
                  _revert(returndata);
              } else {
                  return returndata;
              }
          }
          /**
           * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
           */
          function _revert(bytes memory returndata) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  assembly ("memory-safe") {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert Errors.FailedCall();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC-1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(newImplementation.code.length > 0);
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * TIP: Consider using this library along with {SlotDerivation}.
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct Int256Slot {
              int256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `Int256Slot` with member `value` located at `slot`.
           */
          function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns a `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := store.slot
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC-20 standard as defined in the ERC.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the value of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the value of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves a `value` amount of tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 value) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
           * caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 value) external returns (bool);
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to` using the
           * allowance mechanism. `value` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 value) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "../IERC20.sol";
      /**
       * @dev Interface for the optional metadata functions from the ERC-20 standard.
       */
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard ERC-20 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
       */
      interface IERC20Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC20InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC20InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           * @param allowance Amount of tokens a `spender` is allowed to operate with.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC20InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC20InvalidSpender(address spender);
      }
      /**
       * @dev Standard ERC-721 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
       */
      interface IERC721Errors {
          /**
           * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
           * Used in balance queries.
           * @param owner Address of the current owner of a token.
           */
          error ERC721InvalidOwner(address owner);
          /**
           * @dev Indicates a `tokenId` whose `owner` is the zero address.
           * @param tokenId Identifier number of a token.
           */
          error ERC721NonexistentToken(uint256 tokenId);
          /**
           * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param tokenId Identifier number of a token.
           * @param owner Address of the current owner of a token.
           */
          error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC721InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC721InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param tokenId Identifier number of a token.
           */
          error ERC721InsufficientApproval(address operator, uint256 tokenId);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC721InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC721InvalidOperator(address operator);
      }
      /**
       * @dev Standard ERC-1155 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
       */
      interface IERC1155Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           * @param tokenId Identifier number of a token.
           */
          error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC1155InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC1155InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param owner Address of the current owner of a token.
           */
          error ERC1155MissingApprovalForAll(address operator, address owner);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC1155InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC1155InvalidOperator(address operator);
          /**
           * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
           * Used in batch transfers.
           * @param idsLength Length of the array of token identifiers
           * @param valuesLength Length of the array of token amounts
           */
          error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
      pragma solidity ^0.8.20;
      import {Strings} from "../Strings.sol";
      /**
       * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
       *
       * The library provides methods for generating a hash of a message that conforms to the
       * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
       * specifications.
       */
      library MessageHashUtils {
          /**
           * @dev Returns the keccak256 digest of an ERC-191 signed data with version
           * `0x45` (`personal_sign` messages).
           *
           * The digest is calculated by prefixing a bytes32 `messageHash` with
           * `"\\x19Ethereum Signed Message:\
      32"` and hashing the result. It corresponds with the
           * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
           *
           * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
           * keccak256, although any bytes32 value can be safely used because the final digest will
           * be re-hashed.
           *
           * See {ECDSA-recover}.
           */
          function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
              assembly ("memory-safe") {
                  mstore(0x00, "\\x19Ethereum Signed Message:\
      32") // 32 is the bytes-length of messageHash
                  mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                  digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
              }
          }
          /**
           * @dev Returns the keccak256 digest of an ERC-191 signed data with version
           * `0x45` (`personal_sign` messages).
           *
           * The digest is calculated by prefixing an arbitrary `message` with
           * `"\\x19Ethereum Signed Message:\
      " + len(message)` and hashing the result. It corresponds with the
           * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
           *
           * See {ECDSA-recover}.
           */
          function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
              return
                  keccak256(bytes.concat("\\x19Ethereum Signed Message:\
      ", bytes(Strings.toString(message.length)), message));
          }
          /**
           * @dev Returns the keccak256 digest of an ERC-191 signed data with version
           * `0x00` (data with intended validator).
           *
           * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
           * `validator` address. Then hashing the result.
           *
           * See {ECDSA-recover}.
           */
          function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked(hex"19_00", validator, data));
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
           *
           * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
           * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
           * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
           *
           * See {ECDSA-recover}.
           */
          function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
              assembly ("memory-safe") {
                  let ptr := mload(0x40)
                  mstore(ptr, hex"19_01")
                  mstore(add(ptr, 0x02), domainSeparator)
                  mstore(add(ptr, 0x22), structHash)
                  digest := keccak256(ptr, 0x42)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
      pragma solidity ^0.8.20;
      interface IERC5267 {
          /**
           * @dev MAY be emitted to signal that the domain could have changed.
           */
          event EIP712DomainChanged();
          /**
           * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
           * signature.
           */
          function eip712Domain()
              external
              view
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              );
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Collection of common custom errors used in multiple contracts
       *
       * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
       * It is recommended to avoid relying on the error API for critical functionality.
       *
       * _Available since v5.1._
       */
      library Errors {
          /**
           * @dev The ETH balance of the account is not enough to perform the operation.
           */
          error InsufficientBalance(uint256 balance, uint256 needed);
          /**
           * @dev A call to an address target failed. The target may have reverted.
           */
          error FailedCall();
          /**
           * @dev The deployment failed.
           */
          error FailedDeployment();
          /**
           * @dev A necessary precompile is missing.
           */
          error MissingPrecompile(address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
      pragma solidity ^0.8.20;
      import {Math} from "./math/Math.sol";
      import {SignedMath} from "./math/SignedMath.sol";
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant HEX_DIGITS = "0123456789abcdef";
          uint8 private constant ADDRESS_LENGTH = 20;
          /**
           * @dev The `value` string doesn't fit in the specified `length`.
           */
          error StringsInsufficientHexLength(uint256 value, uint256 length);
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = Math.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  assembly ("memory-safe") {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      assembly ("memory-safe") {
                          mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `int256` to its ASCII `string` decimal representation.
           */
          function toStringSigned(int256 value) internal pure returns (string memory) {
              return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, Math.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              uint256 localValue = value;
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = HEX_DIGITS[localValue & 0xf];
                  localValue >>= 4;
              }
              if (localValue != 0) {
                  revert StringsInsufficientHexLength(value, length);
              }
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
           * representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
           * representation, according to EIP-55.
           */
          function toChecksumHexString(address addr) internal pure returns (string memory) {
              bytes memory buffer = bytes(toHexString(addr));
              // hash the hex part of buffer (skip length + 2 bytes, length 40)
              uint256 hashValue;
              assembly ("memory-safe") {
                  hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
              }
              for (uint256 i = 41; i > 1; --i) {
                  // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
                  if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                      // case shift by xoring with 0x20
                      buffer[i] ^= 0x20;
                  }
                  hashValue >>= 4;
              }
              return string(buffer);
          }
          /**
           * @dev Returns true if the two strings are equal.
           */
          function equal(string memory a, string memory b) internal pure returns (bool) {
              return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
      pragma solidity ^0.8.20;
      import {Panic} from "../Panic.sol";
      import {SafeCast} from "./SafeCast.sol";
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Floor, // Toward negative infinity
              Ceil, // Toward positive infinity
              Trunc, // Toward zero
              Expand // Away from zero
          }
          /**
           * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
           */
          function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  uint256 c = a + b;
                  if (c < a) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
           */
          function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b > a) return (false, 0);
                  return (true, a - b);
              }
          }
          /**
           * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
           */
          function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) return (true, 0);
                  uint256 c = a * b;
                  if (c / a != b) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
           */
          function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a / b);
              }
          }
          /**
           * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
           */
          function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a % b);
              }
          }
          /**
           * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
           *
           * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
           * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
           * one branch when needed, making this function more expensive.
           */
          function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
              unchecked {
                  // branchless ternary works because:
                  // b ^ (a ^ b) == a
                  // b ^ 0 == b
                  return b ^ ((a ^ b) * SafeCast.toUint(condition));
              }
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return ternary(a > b, a, b);
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return ternary(a < b, a, b);
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds towards infinity instead
           * of rounding towards zero.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              if (b == 0) {
                  // Guarantee the same behavior as in a regular Solidity division.
                  Panic.panic(Panic.DIVISION_BY_ZERO);
              }
              // The following calculation ensures accurate ceiling division without overflow.
              // Since a is non-zero, (a - 1) / b will not overflow.
              // The largest possible result occurs when (a - 1) / b is type(uint256).max,
              // but the largest value we can obtain is type(uint256).max - 1, which happens
              // when a = type(uint256).max and b = 1.
              unchecked {
                  return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
              }
          }
          /**
           * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
           * denominator == 0.
           *
           * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
           * Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
                  // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2²⁵⁶ + prod0.
                  uint256 prod0 = x * y; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                      // The surrounding unchecked block does not change this fact.
                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
                  if (denominator <= prod1) {
                      Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
                  }
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                  // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                  uint256 twos = denominator & (0 - denominator);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
                  // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                  // works in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2⁸
                  inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
                  inverse *= 2 - denominator * inverse; // inverse mod 2³²
                  inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
                  inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
                  inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
                  // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
          }
          /**
           * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
           *
           * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
           * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
           *
           * If the input value is not inversible, 0 is returned.
           *
           * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
           * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
           */
          function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
              unchecked {
                  if (n == 0) return 0;
                  // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
                  // Used to compute integers x and y such that: ax + ny = gcd(a, n).
                  // When the gcd is 1, then the inverse of a modulo n exists and it's x.
                  // ax + ny = 1
                  // ax = 1 + (-y)n
                  // ax ≡ 1 (mod n) # x is the inverse of a modulo n
                  // If the remainder is 0 the gcd is n right away.
                  uint256 remainder = a % n;
                  uint256 gcd = n;
                  // Therefore the initial coefficients are:
                  // ax + ny = gcd(a, n) = n
                  // 0a + 1n = n
                  int256 x = 0;
                  int256 y = 1;
                  while (remainder != 0) {
                      uint256 quotient = gcd / remainder;
                      (gcd, remainder) = (
                          // The old remainder is the next gcd to try.
                          remainder,
                          // Compute the next remainder.
                          // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                          // where gcd is at most n (capped to type(uint256).max)
                          gcd - remainder * quotient
                      );
                      (x, y) = (
                          // Increment the coefficient of a.
                          y,
                          // Decrement the coefficient of n.
                          // Can overflow, but the result is casted to uint256 so that the
                          // next value of y is "wrapped around" to a value between 0 and n - 1.
                          x - y * int256(quotient)
                      );
                  }
                  if (gcd != 1) return 0; // No inverse exists.
                  return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
              }
          }
          /**
           * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
           *
           * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
           * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
           * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
           *
           * NOTE: this function does NOT check that `p` is a prime greater than `2`.
           */
          function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
              unchecked {
                  return Math.modExp(a, p - 2, p);
              }
          }
          /**
           * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
           *
           * Requirements:
           * - modulus can't be zero
           * - underlying staticcall to precompile must succeed
           *
           * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
           * sure the chain you're using it on supports the precompiled contract for modular exponentiation
           * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
           * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
           * interpreted as 0.
           */
          function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
              (bool success, uint256 result) = tryModExp(b, e, m);
              if (!success) {
                  Panic.panic(Panic.DIVISION_BY_ZERO);
              }
              return result;
          }
          /**
           * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
           * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
           * to operate modulo 0 or if the underlying precompile reverted.
           *
           * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
           * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
           * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
           * of a revert, but the result may be incorrectly interpreted as 0.
           */
          function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
              if (m == 0) return (false, 0);
              assembly ("memory-safe") {
                  let ptr := mload(0x40)
                  // | Offset    | Content    | Content (Hex)                                                      |
                  // |-----------|------------|--------------------------------------------------------------------|
                  // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                  // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                  // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                  // | 0x60:0x7f | value of b | 0x<.............................................................b> |
                  // | 0x80:0x9f | value of e | 0x<.............................................................e> |
                  // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
                  mstore(ptr, 0x20)
                  mstore(add(ptr, 0x20), 0x20)
                  mstore(add(ptr, 0x40), 0x20)
                  mstore(add(ptr, 0x60), b)
                  mstore(add(ptr, 0x80), e)
                  mstore(add(ptr, 0xa0), m)
                  // Given the result < m, it's guaranteed to fit in 32 bytes,
                  // so we can use the memory scratch space located at offset 0.
                  success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
                  result := mload(0x00)
              }
          }
          /**
           * @dev Variant of {modExp} that supports inputs of arbitrary length.
           */
          function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
              (bool success, bytes memory result) = tryModExp(b, e, m);
              if (!success) {
                  Panic.panic(Panic.DIVISION_BY_ZERO);
              }
              return result;
          }
          /**
           * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
           */
          function tryModExp(
              bytes memory b,
              bytes memory e,
              bytes memory m
          ) internal view returns (bool success, bytes memory result) {
              if (_zeroBytes(m)) return (false, new bytes(0));
              uint256 mLen = m.length;
              // Encode call args in result and move the free memory pointer
              result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
              assembly ("memory-safe") {
                  let dataPtr := add(result, 0x20)
                  // Write result on top of args to avoid allocating extra memory.
                  success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
                  // Overwrite the length.
                  // result.length > returndatasize() is guaranteed because returndatasize() == m.length
                  mstore(result, mLen)
                  // Set the memory pointer after the returned data.
                  mstore(0x40, add(dataPtr, mLen))
              }
          }
          /**
           * @dev Returns whether the provided byte array is zero.
           */
          function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
              for (uint256 i = 0; i < byteArray.length; ++i) {
                  if (byteArray[i] != 0) {
                      return false;
                  }
              }
              return true;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
           * towards zero.
           *
           * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
           * using integer operations.
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              unchecked {
                  // Take care of easy edge cases when a == 0 or a == 1
                  if (a <= 1) {
                      return a;
                  }
                  // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
                  // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
                  // the current value as `ε_n = | x_n - sqrt(a) |`.
                  //
                  // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
                  // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
                  // bigger than any uint256.
                  //
                  // By noticing that
                  // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
                  // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
                  // to the msb function.
                  uint256 aa = a;
                  uint256 xn = 1;
                  if (aa >= (1 << 128)) {
                      aa >>= 128;
                      xn <<= 64;
                  }
                  if (aa >= (1 << 64)) {
                      aa >>= 64;
                      xn <<= 32;
                  }
                  if (aa >= (1 << 32)) {
                      aa >>= 32;
                      xn <<= 16;
                  }
                  if (aa >= (1 << 16)) {
                      aa >>= 16;
                      xn <<= 8;
                  }
                  if (aa >= (1 << 8)) {
                      aa >>= 8;
                      xn <<= 4;
                  }
                  if (aa >= (1 << 4)) {
                      aa >>= 4;
                      xn <<= 2;
                  }
                  if (aa >= (1 << 2)) {
                      xn <<= 1;
                  }
                  // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
                  //
                  // We can refine our estimation by noticing that the middle of that interval minimizes the error.
                  // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
                  // This is going to be our x_0 (and ε_0)
                  xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
                  // From here, Newton's method give us:
                  // x_{n+1} = (x_n + a / x_n) / 2
                  //
                  // One should note that:
                  // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
                  //              = ((x_n² + a) / (2 * x_n))² - a
                  //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
                  //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
                  //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
                  //              = (x_n² - a)² / (2 * x_n)²
                  //              = ((x_n² - a) / (2 * x_n))²
                  //              ≥ 0
                  // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
                  //
                  // This gives us the proof of quadratic convergence of the sequence:
                  // ε_{n+1} = | x_{n+1} - sqrt(a) |
                  //         = | (x_n + a / x_n) / 2 - sqrt(a) |
                  //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
                  //         = | (x_n - sqrt(a))² / (2 * x_n) |
                  //         = | ε_n² / (2 * x_n) |
                  //         = ε_n² / | (2 * x_n) |
                  //
                  // For the first iteration, we have a special case where x_0 is known:
                  // ε_1 = ε_0² / | (2 * x_0) |
                  //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
                  //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
                  //     ≤ 2**(e-3) / 3
                  //     ≤ 2**(e-3-log2(3))
                  //     ≤ 2**(e-4.5)
                  //
                  // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
                  // ε_{n+1} = ε_n² / | (2 * x_n) |
                  //         ≤ (2**(e-k))² / (2 * 2**(e-1))
                  //         ≤ 2**(2*e-2*k) / 2**e
                  //         ≤ 2**(e-2*k)
                  xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
                  xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
                  xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
                  xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
                  xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
                  xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72
                  // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
                  // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
                  // sqrt(a) or sqrt(a) + 1.
                  return xn - SafeCast.toUint(xn > a / xn);
              }
          }
          /**
           * @dev Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
              }
          }
          /**
           * @dev Return the log in base 2 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              uint256 exp;
              unchecked {
                  exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
                  value >>= exp;
                  result += exp;
                  result += SafeCast.toUint(value > 1);
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
              }
          }
          /**
           * @dev Return the log in base 10 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
              }
          }
          /**
           * @dev Return the log in base 256 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              uint256 isGt;
              unchecked {
                  isGt = SafeCast.toUint(value > (1 << 128) - 1);
                  value >>= isGt * 128;
                  result += isGt * 16;
                  isGt = SafeCast.toUint(value > (1 << 64) - 1);
                  value >>= isGt * 64;
                  result += isGt * 8;
                  isGt = SafeCast.toUint(value > (1 << 32) - 1);
                  value >>= isGt * 32;
                  result += isGt * 4;
                  isGt = SafeCast.toUint(value > (1 << 16) - 1);
                  value >>= isGt * 16;
                  result += isGt * 2;
                  result += SafeCast.toUint(value > (1 << 8) - 1);
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
              }
          }
          /**
           * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
           */
          function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
              return uint8(rounding) % 2 == 1;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.20;
      import {SafeCast} from "./SafeCast.sol";
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
           *
           * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
           * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
           * one branch when needed, making this function more expensive.
           */
          function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
              unchecked {
                  // branchless ternary works because:
                  // b ^ (a ^ b) == a
                  // b ^ 0 == b
                  return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
              }
          }
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return ternary(a > b, a, b);
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return ternary(a < b, a, b);
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
                  // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
                  // taking advantage of the most significant (or "sign" bit) in two's complement representation.
                  // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
                  // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
                  int256 mask = n >> 255;
                  // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
                  return uint256((n + mask) ^ mask);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Helper library for emitting standardized panic codes.
       *
       * ```solidity
       * contract Example {
       *      using Panic for uint256;
       *
       *      // Use any of the declared internal constants
       *      function foo() { Panic.GENERIC.panic(); }
       *
       *      // Alternatively
       *      function foo() { Panic.panic(Panic.GENERIC); }
       * }
       * ```
       *
       * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
       *
       * _Available since v5.1._
       */
      // slither-disable-next-line unused-state
      library Panic {
          /// @dev generic / unspecified error
          uint256 internal constant GENERIC = 0x00;
          /// @dev used by the assert() builtin
          uint256 internal constant ASSERT = 0x01;
          /// @dev arithmetic underflow or overflow
          uint256 internal constant UNDER_OVERFLOW = 0x11;
          /// @dev division or modulo by zero
          uint256 internal constant DIVISION_BY_ZERO = 0x12;
          /// @dev enum conversion error
          uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
          /// @dev invalid encoding in storage
          uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
          /// @dev empty array pop
          uint256 internal constant EMPTY_ARRAY_POP = 0x31;
          /// @dev array out of bounds access
          uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
          /// @dev resource error (too large allocation or too large array)
          uint256 internal constant RESOURCE_ERROR = 0x41;
          /// @dev calling invalid internal function
          uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
          /// @dev Reverts with a panic code. Recommended to use with
          /// the internal constants with predefined codes.
          function panic(uint256 code) internal pure {
              assembly ("memory-safe") {
                  mstore(0x00, 0x4e487b71)
                  mstore(0x20, code)
                  revert(0x1c, 0x24)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
      // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
       * checks.
       *
       * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
       * easily result in undesired exploitation or bugs, since developers usually
       * assume that overflows raise errors. `SafeCast` restores this intuition by
       * reverting the transaction when such an operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       */
      library SafeCast {
          /**
           * @dev Value doesn't fit in an uint of `bits` size.
           */
          error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
          /**
           * @dev An int value doesn't fit in an uint of `bits` size.
           */
          error SafeCastOverflowedIntToUint(int256 value);
          /**
           * @dev Value doesn't fit in an int of `bits` size.
           */
          error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
          /**
           * @dev An uint value doesn't fit in an int of `bits` size.
           */
          error SafeCastOverflowedUintToInt(uint256 value);
          /**
           * @dev Returns the downcasted uint248 from uint256, reverting on
           * overflow (when the input is greater than largest uint248).
           *
           * Counterpart to Solidity's `uint248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           */
          function toUint248(uint256 value) internal pure returns (uint248) {
              if (value > type(uint248).max) {
                  revert SafeCastOverflowedUintDowncast(248, value);
              }
              return uint248(value);
          }
          /**
           * @dev Returns the downcasted uint240 from uint256, reverting on
           * overflow (when the input is greater than largest uint240).
           *
           * Counterpart to Solidity's `uint240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           */
          function toUint240(uint256 value) internal pure returns (uint240) {
              if (value > type(uint240).max) {
                  revert SafeCastOverflowedUintDowncast(240, value);
              }
              return uint240(value);
          }
          /**
           * @dev Returns the downcasted uint232 from uint256, reverting on
           * overflow (when the input is greater than largest uint232).
           *
           * Counterpart to Solidity's `uint232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           */
          function toUint232(uint256 value) internal pure returns (uint232) {
              if (value > type(uint232).max) {
                  revert SafeCastOverflowedUintDowncast(232, value);
              }
              return uint232(value);
          }
          /**
           * @dev Returns the downcasted uint224 from uint256, reverting on
           * overflow (when the input is greater than largest uint224).
           *
           * Counterpart to Solidity's `uint224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           */
          function toUint224(uint256 value) internal pure returns (uint224) {
              if (value > type(uint224).max) {
                  revert SafeCastOverflowedUintDowncast(224, value);
              }
              return uint224(value);
          }
          /**
           * @dev Returns the downcasted uint216 from uint256, reverting on
           * overflow (when the input is greater than largest uint216).
           *
           * Counterpart to Solidity's `uint216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           */
          function toUint216(uint256 value) internal pure returns (uint216) {
              if (value > type(uint216).max) {
                  revert SafeCastOverflowedUintDowncast(216, value);
              }
              return uint216(value);
          }
          /**
           * @dev Returns the downcasted uint208 from uint256, reverting on
           * overflow (when the input is greater than largest uint208).
           *
           * Counterpart to Solidity's `uint208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           */
          function toUint208(uint256 value) internal pure returns (uint208) {
              if (value > type(uint208).max) {
                  revert SafeCastOverflowedUintDowncast(208, value);
              }
              return uint208(value);
          }
          /**
           * @dev Returns the downcasted uint200 from uint256, reverting on
           * overflow (when the input is greater than largest uint200).
           *
           * Counterpart to Solidity's `uint200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           */
          function toUint200(uint256 value) internal pure returns (uint200) {
              if (value > type(uint200).max) {
                  revert SafeCastOverflowedUintDowncast(200, value);
              }
              return uint200(value);
          }
          /**
           * @dev Returns the downcasted uint192 from uint256, reverting on
           * overflow (when the input is greater than largest uint192).
           *
           * Counterpart to Solidity's `uint192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           */
          function toUint192(uint256 value) internal pure returns (uint192) {
              if (value > type(uint192).max) {
                  revert SafeCastOverflowedUintDowncast(192, value);
              }
              return uint192(value);
          }
          /**
           * @dev Returns the downcasted uint184 from uint256, reverting on
           * overflow (when the input is greater than largest uint184).
           *
           * Counterpart to Solidity's `uint184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           */
          function toUint184(uint256 value) internal pure returns (uint184) {
              if (value > type(uint184).max) {
                  revert SafeCastOverflowedUintDowncast(184, value);
              }
              return uint184(value);
          }
          /**
           * @dev Returns the downcasted uint176 from uint256, reverting on
           * overflow (when the input is greater than largest uint176).
           *
           * Counterpart to Solidity's `uint176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           */
          function toUint176(uint256 value) internal pure returns (uint176) {
              if (value > type(uint176).max) {
                  revert SafeCastOverflowedUintDowncast(176, value);
              }
              return uint176(value);
          }
          /**
           * @dev Returns the downcasted uint168 from uint256, reverting on
           * overflow (when the input is greater than largest uint168).
           *
           * Counterpart to Solidity's `uint168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           */
          function toUint168(uint256 value) internal pure returns (uint168) {
              if (value > type(uint168).max) {
                  revert SafeCastOverflowedUintDowncast(168, value);
              }
              return uint168(value);
          }
          /**
           * @dev Returns the downcasted uint160 from uint256, reverting on
           * overflow (when the input is greater than largest uint160).
           *
           * Counterpart to Solidity's `uint160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           */
          function toUint160(uint256 value) internal pure returns (uint160) {
              if (value > type(uint160).max) {
                  revert SafeCastOverflowedUintDowncast(160, value);
              }
              return uint160(value);
          }
          /**
           * @dev Returns the downcasted uint152 from uint256, reverting on
           * overflow (when the input is greater than largest uint152).
           *
           * Counterpart to Solidity's `uint152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           */
          function toUint152(uint256 value) internal pure returns (uint152) {
              if (value > type(uint152).max) {
                  revert SafeCastOverflowedUintDowncast(152, value);
              }
              return uint152(value);
          }
          /**
           * @dev Returns the downcasted uint144 from uint256, reverting on
           * overflow (when the input is greater than largest uint144).
           *
           * Counterpart to Solidity's `uint144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           */
          function toUint144(uint256 value) internal pure returns (uint144) {
              if (value > type(uint144).max) {
                  revert SafeCastOverflowedUintDowncast(144, value);
              }
              return uint144(value);
          }
          /**
           * @dev Returns the downcasted uint136 from uint256, reverting on
           * overflow (when the input is greater than largest uint136).
           *
           * Counterpart to Solidity's `uint136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           */
          function toUint136(uint256 value) internal pure returns (uint136) {
              if (value > type(uint136).max) {
                  revert SafeCastOverflowedUintDowncast(136, value);
              }
              return uint136(value);
          }
          /**
           * @dev Returns the downcasted uint128 from uint256, reverting on
           * overflow (when the input is greater than largest uint128).
           *
           * Counterpart to Solidity's `uint128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           */
          function toUint128(uint256 value) internal pure returns (uint128) {
              if (value > type(uint128).max) {
                  revert SafeCastOverflowedUintDowncast(128, value);
              }
              return uint128(value);
          }
          /**
           * @dev Returns the downcasted uint120 from uint256, reverting on
           * overflow (when the input is greater than largest uint120).
           *
           * Counterpart to Solidity's `uint120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           */
          function toUint120(uint256 value) internal pure returns (uint120) {
              if (value > type(uint120).max) {
                  revert SafeCastOverflowedUintDowncast(120, value);
              }
              return uint120(value);
          }
          /**
           * @dev Returns the downcasted uint112 from uint256, reverting on
           * overflow (when the input is greater than largest uint112).
           *
           * Counterpart to Solidity's `uint112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           */
          function toUint112(uint256 value) internal pure returns (uint112) {
              if (value > type(uint112).max) {
                  revert SafeCastOverflowedUintDowncast(112, value);
              }
              return uint112(value);
          }
          /**
           * @dev Returns the downcasted uint104 from uint256, reverting on
           * overflow (when the input is greater than largest uint104).
           *
           * Counterpart to Solidity's `uint104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           */
          function toUint104(uint256 value) internal pure returns (uint104) {
              if (value > type(uint104).max) {
                  revert SafeCastOverflowedUintDowncast(104, value);
              }
              return uint104(value);
          }
          /**
           * @dev Returns the downcasted uint96 from uint256, reverting on
           * overflow (when the input is greater than largest uint96).
           *
           * Counterpart to Solidity's `uint96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           */
          function toUint96(uint256 value) internal pure returns (uint96) {
              if (value > type(uint96).max) {
                  revert SafeCastOverflowedUintDowncast(96, value);
              }
              return uint96(value);
          }
          /**
           * @dev Returns the downcasted uint88 from uint256, reverting on
           * overflow (when the input is greater than largest uint88).
           *
           * Counterpart to Solidity's `uint88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           */
          function toUint88(uint256 value) internal pure returns (uint88) {
              if (value > type(uint88).max) {
                  revert SafeCastOverflowedUintDowncast(88, value);
              }
              return uint88(value);
          }
          /**
           * @dev Returns the downcasted uint80 from uint256, reverting on
           * overflow (when the input is greater than largest uint80).
           *
           * Counterpart to Solidity's `uint80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           */
          function toUint80(uint256 value) internal pure returns (uint80) {
              if (value > type(uint80).max) {
                  revert SafeCastOverflowedUintDowncast(80, value);
              }
              return uint80(value);
          }
          /**
           * @dev Returns the downcasted uint72 from uint256, reverting on
           * overflow (when the input is greater than largest uint72).
           *
           * Counterpart to Solidity's `uint72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           */
          function toUint72(uint256 value) internal pure returns (uint72) {
              if (value > type(uint72).max) {
                  revert SafeCastOverflowedUintDowncast(72, value);
              }
              return uint72(value);
          }
          /**
           * @dev Returns the downcasted uint64 from uint256, reverting on
           * overflow (when the input is greater than largest uint64).
           *
           * Counterpart to Solidity's `uint64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           */
          function toUint64(uint256 value) internal pure returns (uint64) {
              if (value > type(uint64).max) {
                  revert SafeCastOverflowedUintDowncast(64, value);
              }
              return uint64(value);
          }
          /**
           * @dev Returns the downcasted uint56 from uint256, reverting on
           * overflow (when the input is greater than largest uint56).
           *
           * Counterpart to Solidity's `uint56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           */
          function toUint56(uint256 value) internal pure returns (uint56) {
              if (value > type(uint56).max) {
                  revert SafeCastOverflowedUintDowncast(56, value);
              }
              return uint56(value);
          }
          /**
           * @dev Returns the downcasted uint48 from uint256, reverting on
           * overflow (when the input is greater than largest uint48).
           *
           * Counterpart to Solidity's `uint48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           */
          function toUint48(uint256 value) internal pure returns (uint48) {
              if (value > type(uint48).max) {
                  revert SafeCastOverflowedUintDowncast(48, value);
              }
              return uint48(value);
          }
          /**
           * @dev Returns the downcasted uint40 from uint256, reverting on
           * overflow (when the input is greater than largest uint40).
           *
           * Counterpart to Solidity's `uint40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           */
          function toUint40(uint256 value) internal pure returns (uint40) {
              if (value > type(uint40).max) {
                  revert SafeCastOverflowedUintDowncast(40, value);
              }
              return uint40(value);
          }
          /**
           * @dev Returns the downcasted uint32 from uint256, reverting on
           * overflow (when the input is greater than largest uint32).
           *
           * Counterpart to Solidity's `uint32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           */
          function toUint32(uint256 value) internal pure returns (uint32) {
              if (value > type(uint32).max) {
                  revert SafeCastOverflowedUintDowncast(32, value);
              }
              return uint32(value);
          }
          /**
           * @dev Returns the downcasted uint24 from uint256, reverting on
           * overflow (when the input is greater than largest uint24).
           *
           * Counterpart to Solidity's `uint24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           */
          function toUint24(uint256 value) internal pure returns (uint24) {
              if (value > type(uint24).max) {
                  revert SafeCastOverflowedUintDowncast(24, value);
              }
              return uint24(value);
          }
          /**
           * @dev Returns the downcasted uint16 from uint256, reverting on
           * overflow (when the input is greater than largest uint16).
           *
           * Counterpart to Solidity's `uint16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           */
          function toUint16(uint256 value) internal pure returns (uint16) {
              if (value > type(uint16).max) {
                  revert SafeCastOverflowedUintDowncast(16, value);
              }
              return uint16(value);
          }
          /**
           * @dev Returns the downcasted uint8 from uint256, reverting on
           * overflow (when the input is greater than largest uint8).
           *
           * Counterpart to Solidity's `uint8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           */
          function toUint8(uint256 value) internal pure returns (uint8) {
              if (value > type(uint8).max) {
                  revert SafeCastOverflowedUintDowncast(8, value);
              }
              return uint8(value);
          }
          /**
           * @dev Converts a signed int256 into an unsigned uint256.
           *
           * Requirements:
           *
           * - input must be greater than or equal to 0.
           */
          function toUint256(int256 value) internal pure returns (uint256) {
              if (value < 0) {
                  revert SafeCastOverflowedIntToUint(value);
              }
              return uint256(value);
          }
          /**
           * @dev Returns the downcasted int248 from int256, reverting on
           * overflow (when the input is less than smallest int248 or
           * greater than largest int248).
           *
           * Counterpart to Solidity's `int248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           */
          function toInt248(int256 value) internal pure returns (int248 downcasted) {
              downcasted = int248(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(248, value);
              }
          }
          /**
           * @dev Returns the downcasted int240 from int256, reverting on
           * overflow (when the input is less than smallest int240 or
           * greater than largest int240).
           *
           * Counterpart to Solidity's `int240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           */
          function toInt240(int256 value) internal pure returns (int240 downcasted) {
              downcasted = int240(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(240, value);
              }
          }
          /**
           * @dev Returns the downcasted int232 from int256, reverting on
           * overflow (when the input is less than smallest int232 or
           * greater than largest int232).
           *
           * Counterpart to Solidity's `int232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           */
          function toInt232(int256 value) internal pure returns (int232 downcasted) {
              downcasted = int232(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(232, value);
              }
          }
          /**
           * @dev Returns the downcasted int224 from int256, reverting on
           * overflow (when the input is less than smallest int224 or
           * greater than largest int224).
           *
           * Counterpart to Solidity's `int224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           */
          function toInt224(int256 value) internal pure returns (int224 downcasted) {
              downcasted = int224(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(224, value);
              }
          }
          /**
           * @dev Returns the downcasted int216 from int256, reverting on
           * overflow (when the input is less than smallest int216 or
           * greater than largest int216).
           *
           * Counterpart to Solidity's `int216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           */
          function toInt216(int256 value) internal pure returns (int216 downcasted) {
              downcasted = int216(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(216, value);
              }
          }
          /**
           * @dev Returns the downcasted int208 from int256, reverting on
           * overflow (when the input is less than smallest int208 or
           * greater than largest int208).
           *
           * Counterpart to Solidity's `int208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           */
          function toInt208(int256 value) internal pure returns (int208 downcasted) {
              downcasted = int208(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(208, value);
              }
          }
          /**
           * @dev Returns the downcasted int200 from int256, reverting on
           * overflow (when the input is less than smallest int200 or
           * greater than largest int200).
           *
           * Counterpart to Solidity's `int200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           */
          function toInt200(int256 value) internal pure returns (int200 downcasted) {
              downcasted = int200(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(200, value);
              }
          }
          /**
           * @dev Returns the downcasted int192 from int256, reverting on
           * overflow (when the input is less than smallest int192 or
           * greater than largest int192).
           *
           * Counterpart to Solidity's `int192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           */
          function toInt192(int256 value) internal pure returns (int192 downcasted) {
              downcasted = int192(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(192, value);
              }
          }
          /**
           * @dev Returns the downcasted int184 from int256, reverting on
           * overflow (when the input is less than smallest int184 or
           * greater than largest int184).
           *
           * Counterpart to Solidity's `int184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           */
          function toInt184(int256 value) internal pure returns (int184 downcasted) {
              downcasted = int184(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(184, value);
              }
          }
          /**
           * @dev Returns the downcasted int176 from int256, reverting on
           * overflow (when the input is less than smallest int176 or
           * greater than largest int176).
           *
           * Counterpart to Solidity's `int176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           */
          function toInt176(int256 value) internal pure returns (int176 downcasted) {
              downcasted = int176(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(176, value);
              }
          }
          /**
           * @dev Returns the downcasted int168 from int256, reverting on
           * overflow (when the input is less than smallest int168 or
           * greater than largest int168).
           *
           * Counterpart to Solidity's `int168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           */
          function toInt168(int256 value) internal pure returns (int168 downcasted) {
              downcasted = int168(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(168, value);
              }
          }
          /**
           * @dev Returns the downcasted int160 from int256, reverting on
           * overflow (when the input is less than smallest int160 or
           * greater than largest int160).
           *
           * Counterpart to Solidity's `int160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           */
          function toInt160(int256 value) internal pure returns (int160 downcasted) {
              downcasted = int160(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(160, value);
              }
          }
          /**
           * @dev Returns the downcasted int152 from int256, reverting on
           * overflow (when the input is less than smallest int152 or
           * greater than largest int152).
           *
           * Counterpart to Solidity's `int152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           */
          function toInt152(int256 value) internal pure returns (int152 downcasted) {
              downcasted = int152(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(152, value);
              }
          }
          /**
           * @dev Returns the downcasted int144 from int256, reverting on
           * overflow (when the input is less than smallest int144 or
           * greater than largest int144).
           *
           * Counterpart to Solidity's `int144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           */
          function toInt144(int256 value) internal pure returns (int144 downcasted) {
              downcasted = int144(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(144, value);
              }
          }
          /**
           * @dev Returns the downcasted int136 from int256, reverting on
           * overflow (when the input is less than smallest int136 or
           * greater than largest int136).
           *
           * Counterpart to Solidity's `int136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           */
          function toInt136(int256 value) internal pure returns (int136 downcasted) {
              downcasted = int136(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(136, value);
              }
          }
          /**
           * @dev Returns the downcasted int128 from int256, reverting on
           * overflow (when the input is less than smallest int128 or
           * greater than largest int128).
           *
           * Counterpart to Solidity's `int128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           */
          function toInt128(int256 value) internal pure returns (int128 downcasted) {
              downcasted = int128(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(128, value);
              }
          }
          /**
           * @dev Returns the downcasted int120 from int256, reverting on
           * overflow (when the input is less than smallest int120 or
           * greater than largest int120).
           *
           * Counterpart to Solidity's `int120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           */
          function toInt120(int256 value) internal pure returns (int120 downcasted) {
              downcasted = int120(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(120, value);
              }
          }
          /**
           * @dev Returns the downcasted int112 from int256, reverting on
           * overflow (when the input is less than smallest int112 or
           * greater than largest int112).
           *
           * Counterpart to Solidity's `int112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           */
          function toInt112(int256 value) internal pure returns (int112 downcasted) {
              downcasted = int112(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(112, value);
              }
          }
          /**
           * @dev Returns the downcasted int104 from int256, reverting on
           * overflow (when the input is less than smallest int104 or
           * greater than largest int104).
           *
           * Counterpart to Solidity's `int104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           */
          function toInt104(int256 value) internal pure returns (int104 downcasted) {
              downcasted = int104(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(104, value);
              }
          }
          /**
           * @dev Returns the downcasted int96 from int256, reverting on
           * overflow (when the input is less than smallest int96 or
           * greater than largest int96).
           *
           * Counterpart to Solidity's `int96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           */
          function toInt96(int256 value) internal pure returns (int96 downcasted) {
              downcasted = int96(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(96, value);
              }
          }
          /**
           * @dev Returns the downcasted int88 from int256, reverting on
           * overflow (when the input is less than smallest int88 or
           * greater than largest int88).
           *
           * Counterpart to Solidity's `int88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           */
          function toInt88(int256 value) internal pure returns (int88 downcasted) {
              downcasted = int88(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(88, value);
              }
          }
          /**
           * @dev Returns the downcasted int80 from int256, reverting on
           * overflow (when the input is less than smallest int80 or
           * greater than largest int80).
           *
           * Counterpart to Solidity's `int80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           */
          function toInt80(int256 value) internal pure returns (int80 downcasted) {
              downcasted = int80(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(80, value);
              }
          }
          /**
           * @dev Returns the downcasted int72 from int256, reverting on
           * overflow (when the input is less than smallest int72 or
           * greater than largest int72).
           *
           * Counterpart to Solidity's `int72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           */
          function toInt72(int256 value) internal pure returns (int72 downcasted) {
              downcasted = int72(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(72, value);
              }
          }
          /**
           * @dev Returns the downcasted int64 from int256, reverting on
           * overflow (when the input is less than smallest int64 or
           * greater than largest int64).
           *
           * Counterpart to Solidity's `int64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           */
          function toInt64(int256 value) internal pure returns (int64 downcasted) {
              downcasted = int64(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(64, value);
              }
          }
          /**
           * @dev Returns the downcasted int56 from int256, reverting on
           * overflow (when the input is less than smallest int56 or
           * greater than largest int56).
           *
           * Counterpart to Solidity's `int56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           */
          function toInt56(int256 value) internal pure returns (int56 downcasted) {
              downcasted = int56(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(56, value);
              }
          }
          /**
           * @dev Returns the downcasted int48 from int256, reverting on
           * overflow (when the input is less than smallest int48 or
           * greater than largest int48).
           *
           * Counterpart to Solidity's `int48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           */
          function toInt48(int256 value) internal pure returns (int48 downcasted) {
              downcasted = int48(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(48, value);
              }
          }
          /**
           * @dev Returns the downcasted int40 from int256, reverting on
           * overflow (when the input is less than smallest int40 or
           * greater than largest int40).
           *
           * Counterpart to Solidity's `int40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           */
          function toInt40(int256 value) internal pure returns (int40 downcasted) {
              downcasted = int40(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(40, value);
              }
          }
          /**
           * @dev Returns the downcasted int32 from int256, reverting on
           * overflow (when the input is less than smallest int32 or
           * greater than largest int32).
           *
           * Counterpart to Solidity's `int32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           */
          function toInt32(int256 value) internal pure returns (int32 downcasted) {
              downcasted = int32(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(32, value);
              }
          }
          /**
           * @dev Returns the downcasted int24 from int256, reverting on
           * overflow (when the input is less than smallest int24 or
           * greater than largest int24).
           *
           * Counterpart to Solidity's `int24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           */
          function toInt24(int256 value) internal pure returns (int24 downcasted) {
              downcasted = int24(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(24, value);
              }
          }
          /**
           * @dev Returns the downcasted int16 from int256, reverting on
           * overflow (when the input is less than smallest int16 or
           * greater than largest int16).
           *
           * Counterpart to Solidity's `int16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           */
          function toInt16(int256 value) internal pure returns (int16 downcasted) {
              downcasted = int16(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(16, value);
              }
          }
          /**
           * @dev Returns the downcasted int8 from int256, reverting on
           * overflow (when the input is less than smallest int8 or
           * greater than largest int8).
           *
           * Counterpart to Solidity's `int8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           */
          function toInt8(int256 value) internal pure returns (int8 downcasted) {
              downcasted = int8(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(8, value);
              }
          }
          /**
           * @dev Converts an unsigned uint256 into a signed int256.
           *
           * Requirements:
           *
           * - input must be less than or equal to maxInt256.
           */
          function toInt256(uint256 value) internal pure returns (int256) {
              // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
              if (value > uint256(type(int256).max)) {
                  revert SafeCastOverflowedUintToInt(value);
              }
              return int256(value);
          }
          /**
           * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
           */
          function toUint(bool b) internal pure returns (uint256 u) {
              assembly ("memory-safe") {
                  u := iszero(iszero(b))
              }
          }
      }