ETH Price: $1,874.19 (+0.25%)

Transaction Decoder

Block:
17190880 at May-05-2023 12:30:35 AM +UTC
Transaction Fee:
0.022136773626857389 ETH $41.49
Gas Used:
269,147 Gas / 82.247892887 Gwei

Emitted Events:

127 WETH9.Deposit( dst=PMM, wad=122400000000000000 )
128 WETH9.Approval( src=PMM, guy=ERC20Proxy, wad=122400000000000000 )
129 Exchange.Fill( makerAddress=0x56178a0d5F301bAf6CF3e1Cd53d9863437345Bf9, feeRecipientAddress=[Sender] 0x454d877e1bb0547c780719a16ef9cf12f631558a, takerAddress=PMM, senderAddress=PMM, makerAssetFilledAmount=229870526, takerAssetFilledAmount=122400000000000000, makerFeePaid=0, takerFeePaid=0, orderHash=57C9D0332849DC7078946CDA817AE363E1EB4B31134BB6BF79F5BB8AA64CC26F, makerAssetData=0xF47261B0000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7, takerAssetData=0xF47261B0000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2 )
130 TetherToken.Transfer( from=0x56178a0d5F301bAf6CF3e1Cd53d9863437345Bf9, to=PMM, value=229870526 )
131 WETH9.Transfer( src=PMM, dst=0x56178a0d5F301bAf6CF3e1Cd53d9863437345Bf9, wad=122400000000000000 )
132 TetherToken.Transfer( from=PMM, to=[Sender] 0x454d877e1bb0547c780719a16ef9cf12f631558a, value=229272862 )
133 WETH9.Approval( src=PMM, guy=ERC20Proxy, wad=0 )
134 PMM.FillOrder( source=0x v2, transactionHash=E46D8B1F213D400337063B78616A3BA8548B15C077813B3098711AA2EC57D553, orderHash=57C9D0332849DC7078946CDA817AE363E1EB4B31134BB6BF79F5BB8AA64CC26F, userAddr=[Sender] 0x454d877e1bb0547c780719a16ef9cf12f631558a, takerAssetAddr=WETH9, takerAssetAmount=122400000000000000, makerAddr=0x56178a0d5F301bAf6CF3e1Cd53d9863437345Bf9, makerAssetAddr=[Receiver] TetherToken, makerAssetAmount=229870526, receiverAddr=[Sender] 0x454d877e1bb0547c780719a16ef9cf12f631558a, settleAmount=229272862, feeFactor=26 )

Account State Difference:

  Address   Before After State Difference Code
0x080bf510...022937712
(0x: Exchange v2.1)
(Lido: Execution Layer Rewards Vault)
245.389916976547012518 Eth245.390667896677012518 Eth0.00075092013
0x454d877e...2F631558A
0.983463553453324756 Eth
Nonce: 8
0.838926779826467367 Eth
Nonce: 9
0.144536773626857389
0xC02aaA39...83C756Cc2 3,614,190.448712972520146022 Eth3,614,190.571112972520146022 Eth0.1224
0xdAC17F95...13D831ec7

Execution Trace

ETH 0.1224 Tokenlon.a32fe0a1( )
  • ETH 0.1224 UserProxy.toPMM( _payload=0x645A55B6B064E3A8D0843FA5C400F849BB7FF1EABF9728BBF88D2357BA9449BC92C1F6C4000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000003C0000000000000000000000000000000000000000000000000000000000000032464A3BC15000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000001B2DA26C882000000000000000000000000000000000000000000000000000000000000000002A000000000000000000000000056178A0D5F301BAF6CF3E1CD53D9863437345BF90000000000000000000000008D90113A1E286A5AB3E496FBD1853F265E5913C6000000000000000000000000454D877E1BB0547C780719A16EF9CF12F631558A0000000000000000000000008D90113A1E286A5AB3E496FBD1853F265E5913C6000000000000000000000000000000000000000000000000000000000DB38BBE00000000000000000000000000000000000000000000000001B2DA26C8820000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000064544F44A28773D4ADC34BC977EC89EA453D56B79E7BB6E34F2C779F2802E0FCB4A2001A000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001E00000000000000000000000000000000000000000000000000000000000000024F47261B0000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000024F47261B0000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000421C31AF90F8721CAE2F5C2C100A4EF133B7B7DBACF664AE8690639AF89AA2BD364171A76AF614469B805AC497370D834551E38F55CE318FE87FF68228D1DC08E086030000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000561B5011CB1F6DBCC3797A14B85095468AC88477B5FE2160D5E798E2EDA9BBEED5F824B6A42C17A74272B425B09137FC9988AD596D0005ABB8C72A4271099541520A454D877E1BB0547C780719A16EF9CF12F631558A0400000000000000000000 )
    • ETH 0.1224 PMM.fill( userSalt=79785317304783844921026683336665681314584519657250091262520674131914992514756, data=0x64A3BC15000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000001B2DA26C882000000000000000000000000000000000000000000000000000000000000000002A000000000000000000000000056178A0D5F301BAF6CF3E1CD53D9863437345BF90000000000000000000000008D90113A1E286A5AB3E496FBD1853F265E5913C6000000000000000000000000454D877E1BB0547C780719A16EF9CF12F631558A0000000000000000000000008D90113A1E286A5AB3E496FBD1853F265E5913C6000000000000000000000000000000000000000000000000000000000DB38BBE00000000000000000000000000000000000000000000000001B2DA26C8820000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000064544F44A28773D4ADC34BC977EC89EA453D56B79E7BB6E34F2C779F2802E0FCB4A2001A000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001E00000000000000000000000000000000000000000000000000000000000000024F47261B0000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000024F47261B0000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000421C31AF90F8721CAE2F5C2C100A4EF133B7B7DBACF664AE8690639AF89AA2BD364171A76AF614469B805AC497370D834551E38F55CE318FE87FF68228D1DC08E08603000000000000000000000000000000000000000000000000000000000000, userSignature=0x1B5011CB1F6DBCC3797A14B85095468AC88477B5FE2160D5E798E2EDA9BBEED5F824B6A42C17A74272B425B09137FC9988AD596D0005ABB8C72A4271099541520A454D877E1BB0547C780719A16EF9CF12F631558A04 ) => ( 229272862 )
      • Null: 0x000...001.50dd7ea1( )
      • TransparentUpgradeableProxy.STATICCALL( )
        • PermanentStorage.DELEGATECALL( )
        • ETH 0.1224 WETH9.CALL( )
        • WETH9.allowance( 0x8D90113A1e286a5aB3e496fbD1853F265e5913c6, 0x95E6F48254609A6ee006F7D493c8e5fB97094ceF ) => ( 0 )
        • WETH9.approve( guy=0x95E6F48254609A6ee006F7D493c8e5fB97094ceF, wad=122400000000000000 ) => ( True )
        • Exchange.executeTransaction( salt=79785317304783844921026683336665681314584519657250091262520674131914992514756, signerAddress=0x8D90113A1e286a5aB3e496fbD1853F265e5913c6, data=0x64A3BC15000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000001B2DA26C882000000000000000000000000000000000000000000000000000000000000000002A000000000000000000000000056178A0D5F301BAF6CF3E1CD53D9863437345BF90000000000000000000000008D90113A1E286A5AB3E496FBD1853F265E5913C6000000000000000000000000454D877E1BB0547C780719A16EF9CF12F631558A0000000000000000000000008D90113A1E286A5AB3E496FBD1853F265E5913C6000000000000000000000000000000000000000000000000000000000DB38BBE00000000000000000000000000000000000000000000000001B2DA26C8820000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000064544F44A28773D4ADC34BC977EC89EA453D56B79E7BB6E34F2C779F2802E0FCB4A2001A000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001E00000000000000000000000000000000000000000000000000000000000000024F47261B0000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000024F47261B0000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000421C31AF90F8721CAE2F5C2C100A4EF133B7B7DBACF664AE8690639AF89AA2BD364171A76AF614469B805AC497370D834551E38F55CE318FE87FF68228D1DC08E08603000000000000000000000000000000000000000000000000000000000000, signature=0x )
          • Exchange.fillOrKillOrder( order=[{name:makerAddress, type:address, order:1, indexed:false, value:0x56178a0d5F301bAf6CF3e1Cd53d9863437345Bf9, valueString:0x56178a0d5F301bAf6CF3e1Cd53d9863437345Bf9}, {name:takerAddress, type:address, order:2, indexed:false, value:0x8D90113A1e286a5aB3e496fbD1853F265e5913c6, valueString:0x8D90113A1e286a5aB3e496fbD1853F265e5913c6}, {name:feeRecipientAddress, type:address, order:3, indexed:false, value:0x454d877e1Bb0547c780719A16EF9cF12F631558A, valueString:0x454d877e1Bb0547c780719A16EF9cF12F631558A}, {name:senderAddress, type:address, order:4, indexed:false, value:0x8D90113A1e286a5aB3e496fbD1853F265e5913c6, valueString:0x8D90113A1e286a5aB3e496fbD1853F265e5913c6}, {name:makerAssetAmount, type:uint256, order:5, indexed:false, value:229870526, valueString:229870526}, {name:takerAssetAmount, type:uint256, order:6, indexed:false, value:122400000000000000, valueString:122400000000000000}, {name:makerFee, type:uint256, order:7, indexed:false, value:0, valueString:0}, {name:takerFee, type:uint256, order:8, indexed:false, value:0, valueString:0}, {name:expirationTimeSeconds, type:uint256, order:9, indexed:false, value:1683246916, valueString:1683246916}, {name:salt, type:uint256, order:10, indexed:false, value:73514005258872177742564548329238863823814499882126684820624449208175927885850, valueString:73514005258872177742564548329238863823814499882126684820624449208175927885850}, {name:makerAssetData, type:bytes, order:11, indexed:false, value:0xF47261B0000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7, valueString:0xF47261B0000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7}, {name:takerAssetData, type:bytes, order:12, indexed:false, value:0xF47261B0000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2, valueString:0xF47261B0000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2}], takerAssetFillAmount=122400000000000000, signature=0x1C31AF90F8721CAE2F5C2C100A4EF133B7B7DBACF664AE8690639AF89AA2BD364171A76AF614469B805AC497370D834551E38F55CE318FE87FF68228D1DC08E08603 ) => ( fillResults=[{name:makerAssetFilledAmount, type:uint256, order:1, indexed:false, value:229870526, valueString:229870526}, {name:takerAssetFilledAmount, type:uint256, order:2, indexed:false, value:122400000000000000, valueString:122400000000000000}, {name:makerFeePaid, type:uint256, order:3, indexed:false, value:0, valueString:0}, {name:takerFeePaid, type:uint256, order:4, indexed:false, value:0, valueString:0}] )
            • Null: 0x000...001.0d011d3f( )
            • ERC20Proxy.a85e59e4( )
              • TetherToken.transferFrom( _from=0x56178a0d5F301bAf6CF3e1Cd53d9863437345Bf9, _to=0x8D90113A1e286a5aB3e496fbD1853F265e5913c6, _value=229870526 )
              • ERC20Proxy.a85e59e4( )
                • WETH9.transferFrom( src=0x8D90113A1e286a5aB3e496fbD1853F265e5913c6, dst=0x56178a0d5F301bAf6CF3e1Cd53d9863437345Bf9, wad=122400000000000000 ) => ( True )
                • TetherToken.transfer( _to=0x454d877e1Bb0547c780719A16EF9cF12F631558A, _value=229272862 )
                • WETH9.approve( guy=0x95E6F48254609A6ee006F7D493c8e5fB97094ceF, wad=0 ) => ( True )
                  File 1 of 9: Tokenlon
                  // SPDX-License-Identifier: MIT
                  // File: @openzeppelin/contracts/utils/Address.sol
                  pragma solidity ^0.6.2;
                  /**
                   * @dev Collection of functions related to the address type
                   */
                  library Address {
                      /**
                       * @dev Returns true if `account` is a contract.
                       *
                       * [IMPORTANT]
                       * ====
                       * It is unsafe to assume that an address for which this function returns
                       * false is an externally-owned account (EOA) and not a contract.
                       *
                       * Among others, `isContract` will return false for the following
                       * types of addresses:
                       *
                       *  - an externally-owned account
                       *  - a contract in construction
                       *  - an address where a contract will be created
                       *  - an address where a contract lived, but was destroyed
                       * ====
                       */
                      function isContract(address account) internal view returns (bool) {
                          // This method relies in extcodesize, which returns 0 for contracts in
                          // construction, since the code is only stored at the end of the
                          // constructor execution.
                          uint256 size;
                          // solhint-disable-next-line no-inline-assembly
                          assembly { size := extcodesize(account) }
                          return size > 0;
                      }
                      /**
                       * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                       * `recipient`, forwarding all available gas and reverting on errors.
                       *
                       * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                       * of certain opcodes, possibly making contracts go over the 2300 gas limit
                       * imposed by `transfer`, making them unable to receive funds via
                       * `transfer`. {sendValue} removes this limitation.
                       *
                       * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                       *
                       * IMPORTANT: because control is transferred to `recipient`, care must be
                       * taken to not create reentrancy vulnerabilities. Consider using
                       * {ReentrancyGuard} or the
                       * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                       */
                      function sendValue(address payable recipient, uint256 amount) internal {
                          require(address(this).balance >= amount, "Address: insufficient balance");
                          // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                          (bool success, ) = recipient.call{ value: amount }("");
                          require(success, "Address: unable to send value, recipient may have reverted");
                      }
                      /**
                       * @dev Performs a Solidity function call using a low level `call`. A
                       * plain`call` is an unsafe replacement for a function call: use this
                       * function instead.
                       *
                       * If `target` reverts with a revert reason, it is bubbled up by this
                       * function (like regular Solidity function calls).
                       *
                       * Returns the raw returned data. To convert to the expected return value,
                       * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                       *
                       * Requirements:
                       *
                       * - `target` must be a contract.
                       * - calling `target` with `data` must not revert.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                       * `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                          return _functionCallWithValue(target, data, 0, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but also transferring `value` wei to `target`.
                       *
                       * Requirements:
                       *
                       * - the calling contract must have an ETH balance of at least `value`.
                       * - the called Solidity function must be `payable`.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                       * with `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                          require(address(this).balance >= value, "Address: insufficient balance for call");
                          return _functionCallWithValue(target, data, value, errorMessage);
                      }
                      function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
                          require(isContract(target), "Address: call to non-contract");
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
                          if (success) {
                              return returndata;
                          } else {
                              // Look for revert reason and bubble it up if present
                              if (returndata.length > 0) {
                                  // The easiest way to bubble the revert reason is using memory via assembly
                                  // solhint-disable-next-line no-inline-assembly
                                  assembly {
                                      let returndata_size := mload(returndata)
                                      revert(add(32, returndata), returndata_size)
                                  }
                              } else {
                                  revert(errorMessage);
                              }
                          }
                      }
                  }
                  // File: contracts/upgrade_proxy/Proxy.sol
                  pragma solidity ^0.6.0;
                  /**
                   * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
                   * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
                   * be specified by overriding the virtual {_implementation} function.
                   * 
                   * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
                   * different contract through the {_delegate} function.
                   * 
                   * The success and return data of the delegated call will be returned back to the caller of the proxy.
                   */
                  abstract contract Proxy {
                      /**
                       * @dev Delegates the current call to `implementation`.
                       * 
                       * This function does not return to its internall call site, it will return directly to the external caller.
                       */
                      function _delegate(address implementation) internal {
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              // Copy msg.data. We take full control of memory in this inline assembly
                              // block because it will not return to Solidity code. We overwrite the
                              // Solidity scratch pad at memory position 0.
                              calldatacopy(0, 0, calldatasize())
                              // Call the implementation.
                              // out and outsize are 0 because we don't know the size yet.
                              let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                              // Copy the returned data.
                              returndatacopy(0, 0, returndatasize())
                              switch result
                              // delegatecall returns 0 on error.
                              case 0 { revert(0, returndatasize()) }
                              default { return(0, returndatasize()) }
                          }
                      }
                      /**
                       * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
                       * and {_fallback} should delegate.
                       */
                      function _implementation() internal virtual view returns (address);
                      /**
                       * @dev Delegates the current call to the address returned by `_implementation()`.
                       * 
                       * This function does not return to its internall call site, it will return directly to the external caller.
                       */
                      function _fallback() internal {
                          _beforeFallback();
                          _delegate(_implementation());
                      }
                      /**
                       * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
                       * function in the contract matches the call data.
                       */
                      fallback () payable external {
                          _fallback();
                      }
                      /**
                       * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
                       * is empty.
                       */
                      receive () payable external {
                          _fallback();
                      }
                      /**
                       * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
                       * call, or as part of the Solidity `fallback` or `receive` functions.
                       * 
                       * If overriden should call `super._beforeFallback()`.
                       */
                      function _beforeFallback() internal virtual {
                      }
                  }
                  // File: contracts/upgrade_proxy/UpgradeableProxy.sol
                  pragma solidity ^0.6.0;
                  /**
                   * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
                   * implementation address that can be changed. This address is stored in storage in the location specified by
                   * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
                   * implementation behind the proxy.
                   * 
                   * Upgradeability is only provided internally through {_upgradeTo}. For an externally upgradeable proxy see
                   * {TransparentUpgradeableProxy}.
                   */
                  contract UpgradeableProxy is Proxy {
                      /**
                       * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
                       * 
                       * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
                       * function call, and allows initializating the storage of the proxy like a Solidity constructor.
                       */
                      constructor(address _logic, bytes memory _data) public payable {
                          assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                          _setImplementation(_logic);
                          if(_data.length > 0) {
                              // solhint-disable-next-line avoid-low-level-calls
                              (bool success,) = _logic.delegatecall(_data);
                              require(success);
                          }
                      }
                      /**
                       * @dev Emitted when the implementation is upgraded.
                       */
                      event Upgraded(address indexed implementation);
                      /**
                       * @dev Storage slot with the address of the current implementation.
                       * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                       * validated in the constructor.
                       */
                      bytes32 private constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                      /**
                       * @dev Returns the current implementation address.
                       */
                      function _implementation() internal override view returns (address impl) {
                          bytes32 slot = _IMPLEMENTATION_SLOT;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              impl := sload(slot)
                          }
                      }
                      /**
                       * @dev Upgrades the proxy to a new implementation.
                       * 
                       * Emits an {Upgraded} event.
                       */
                      function _upgradeTo(address newImplementation) internal {
                          _setImplementation(newImplementation);
                          emit Upgraded(newImplementation);
                      }
                      /**
                       * @dev Stores a new address in the EIP1967 implementation slot.
                       */
                      function _setImplementation(address newImplementation) private {
                          require(Address.isContract(newImplementation), "UpgradeableProxy: new implementation is not a contract");
                          bytes32 slot = _IMPLEMENTATION_SLOT;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              sstore(slot, newImplementation)
                          }
                      }
                  }
                  // File: contracts/upgrade_proxy/TransparentUpgradeableProxy.sol
                  pragma solidity ^0.6.0;
                  /**
                   * @dev This contract implements a proxy that is upgradeable by an admin.
                   * 
                   * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
                   * clashing], which can potentially be used in an attack, this contract uses the
                   * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
                   * things that go hand in hand:
                   * 
                   * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
                   * that call matches one of the admin functions exposed by the proxy itself.
                   * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
                   * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
                   * "admin cannot fallback to proxy target".
                   * 
                   * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
                   * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
                   * to sudden errors when trying to call a function from the proxy implementation.
                   * 
                   * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
                   * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
                   */
                  contract TransparentUpgradeableProxy is UpgradeableProxy {
                      /**
                       * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
                       * optionally initialized with `_data` as explained in {UpgradeableProxy-constructor}.
                       */
                      constructor(address _logic, address _admin, bytes memory _data) public payable UpgradeableProxy(_logic, _data) {
                          assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                          _setAdmin(_admin);
                      }
                      /**
                       * @dev Emitted when the admin account has changed.
                       */
                      event AdminChanged(address previousAdmin, address newAdmin);
                      /**
                       * @dev Storage slot with the admin of the contract.
                       * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
                       * validated in the constructor.
                       */
                      bytes32 private constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                      /**
                       * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
                       */
                      modifier ifAdmin() {
                          if (msg.sender == _admin()) {
                              _;
                          } else {
                              _fallback();
                          }
                      }
                      /**
                       * @dev Returns the current admin.
                       * 
                       * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
                       * 
                       * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                       * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                       * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
                       */
                      function admin() external ifAdmin returns (address) {
                          return _admin();
                      }
                      /**
                       * @dev Returns the current implementation.
                       * 
                       * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
                       * 
                       * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                       * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                       * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
                       */
                      function implementation() external ifAdmin returns (address) {
                          return _implementation();
                      }
                      /**
                       * @dev Changes the admin of the proxy.
                       * 
                       * Emits an {AdminChanged} event.
                       * 
                       * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
                       */
                      function changeAdmin(address newAdmin) external ifAdmin {
                          require(newAdmin != address(0), "TransparentUpgradeableProxy: new admin is the zero address");
                          emit AdminChanged(_admin(), newAdmin);
                          _setAdmin(newAdmin);
                      }
                      /**
                       * @dev Upgrade the implementation of the proxy.
                       * 
                       * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
                       */
                      function upgradeTo(address newImplementation) external ifAdmin {
                          _upgradeTo(newImplementation);
                      }
                      /**
                       * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
                       * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
                       * proxied contract.
                       * 
                       * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
                       */
                      function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
                          _upgradeTo(newImplementation);
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success,) = newImplementation.delegatecall(data);
                          require(success);
                      }
                      /**
                       * @dev Returns the current admin.
                       */
                      function _admin() internal view returns (address adm) {
                          bytes32 slot = _ADMIN_SLOT;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              adm := sload(slot)
                          }
                      }
                      /**
                       * @dev Stores a new address in the EIP1967 admin slot.
                       */
                      function _setAdmin(address newAdmin) private {
                          bytes32 slot = _ADMIN_SLOT;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              sstore(slot, newAdmin)
                          }
                      }
                      /**
                       * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
                       */
                      function _beforeFallback() internal override virtual {
                          require(msg.sender != _admin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                          super._beforeFallback();
                      }
                  }
                  // File: contracts/Tokenlon.sol
                  pragma solidity ^0.6.0;
                  contract Tokenlon is TransparentUpgradeableProxy {
                      constructor(address _logic, address _admin, bytes memory _data) public payable TransparentUpgradeableProxy(_logic, _admin, _data) {}
                  }

                  File 2 of 9: WETH9
                  // Copyright (C) 2015, 2016, 2017 Dapphub
                  
                  // This program is free software: you can redistribute it and/or modify
                  // it under the terms of the GNU General Public License as published by
                  // the Free Software Foundation, either version 3 of the License, or
                  // (at your option) any later version.
                  
                  // This program is distributed in the hope that it will be useful,
                  // but WITHOUT ANY WARRANTY; without even the implied warranty of
                  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                  // GNU General Public License for more details.
                  
                  // You should have received a copy of the GNU General Public License
                  // along with this program.  If not, see <http://www.gnu.org/licenses/>.
                  
                  pragma solidity ^0.4.18;
                  
                  contract WETH9 {
                      string public name     = "Wrapped Ether";
                      string public symbol   = "WETH";
                      uint8  public decimals = 18;
                  
                      event  Approval(address indexed src, address indexed guy, uint wad);
                      event  Transfer(address indexed src, address indexed dst, uint wad);
                      event  Deposit(address indexed dst, uint wad);
                      event  Withdrawal(address indexed src, uint wad);
                  
                      mapping (address => uint)                       public  balanceOf;
                      mapping (address => mapping (address => uint))  public  allowance;
                  
                      function() public payable {
                          deposit();
                      }
                      function deposit() public payable {
                          balanceOf[msg.sender] += msg.value;
                          Deposit(msg.sender, msg.value);
                      }
                      function withdraw(uint wad) public {
                          require(balanceOf[msg.sender] >= wad);
                          balanceOf[msg.sender] -= wad;
                          msg.sender.transfer(wad);
                          Withdrawal(msg.sender, wad);
                      }
                  
                      function totalSupply() public view returns (uint) {
                          return this.balance;
                      }
                  
                      function approve(address guy, uint wad) public returns (bool) {
                          allowance[msg.sender][guy] = wad;
                          Approval(msg.sender, guy, wad);
                          return true;
                      }
                  
                      function transfer(address dst, uint wad) public returns (bool) {
                          return transferFrom(msg.sender, dst, wad);
                      }
                  
                      function transferFrom(address src, address dst, uint wad)
                          public
                          returns (bool)
                      {
                          require(balanceOf[src] >= wad);
                  
                          if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                              require(allowance[src][msg.sender] >= wad);
                              allowance[src][msg.sender] -= wad;
                          }
                  
                          balanceOf[src] -= wad;
                          balanceOf[dst] += wad;
                  
                          Transfer(src, dst, wad);
                  
                          return true;
                      }
                  }
                  
                  
                  /*
                                      GNU GENERAL PUBLIC LICENSE
                                         Version 3, 29 June 2007
                  
                   Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
                   Everyone is permitted to copy and distribute verbatim copies
                   of this license document, but changing it is not allowed.
                  
                                              Preamble
                  
                    The GNU General Public License is a free, copyleft license for
                  software and other kinds of works.
                  
                    The licenses for most software and other practical works are designed
                  to take away your freedom to share and change the works.  By contrast,
                  the GNU General Public License is intended to guarantee your freedom to
                  share and change all versions of a program--to make sure it remains free
                  software for all its users.  We, the Free Software Foundation, use the
                  GNU General Public License for most of our software; it applies also to
                  any other work released this way by its authors.  You can apply it to
                  your programs, too.
                  
                    When we speak of free software, we are referring to freedom, not
                  price.  Our General Public Licenses are designed to make sure that you
                  have the freedom to distribute copies of free software (and charge for
                  them if you wish), that you receive source code or can get it if you
                  want it, that you can change the software or use pieces of it in new
                  free programs, and that you know you can do these things.
                  
                    To protect your rights, we need to prevent others from denying you
                  these rights or asking you to surrender the rights.  Therefore, you have
                  certain responsibilities if you distribute copies of the software, or if
                  you modify it: responsibilities to respect the freedom of others.
                  
                    For example, if you distribute copies of such a program, whether
                  gratis or for a fee, you must pass on to the recipients the same
                  freedoms that you received.  You must make sure that they, too, receive
                  or can get the source code.  And you must show them these terms so they
                  know their rights.
                  
                    Developers that use the GNU GPL protect your rights with two steps:
                  (1) assert copyright on the software, and (2) offer you this License
                  giving you legal permission to copy, distribute and/or modify it.
                  
                    For the developers' and authors' protection, the GPL clearly explains
                  that there is no warranty for this free software.  For both users' and
                  authors' sake, the GPL requires that modified versions be marked as
                  changed, so that their problems will not be attributed erroneously to
                  authors of previous versions.
                  
                    Some devices are designed to deny users access to install or run
                  modified versions of the software inside them, although the manufacturer
                  can do so.  This is fundamentally incompatible with the aim of
                  protecting users' freedom to change the software.  The systematic
                  pattern of such abuse occurs in the area of products for individuals to
                  use, which is precisely where it is most unacceptable.  Therefore, we
                  have designed this version of the GPL to prohibit the practice for those
                  products.  If such problems arise substantially in other domains, we
                  stand ready to extend this provision to those domains in future versions
                  of the GPL, as needed to protect the freedom of users.
                  
                    Finally, every program is threatened constantly by software patents.
                  States should not allow patents to restrict development and use of
                  software on general-purpose computers, but in those that do, we wish to
                  avoid the special danger that patents applied to a free program could
                  make it effectively proprietary.  To prevent this, the GPL assures that
                  patents cannot be used to render the program non-free.
                  
                    The precise terms and conditions for copying, distribution and
                  modification follow.
                  
                                         TERMS AND CONDITIONS
                  
                    0. Definitions.
                  
                    "This License" refers to version 3 of the GNU General Public License.
                  
                    "Copyright" also means copyright-like laws that apply to other kinds of
                  works, such as semiconductor masks.
                  
                    "The Program" refers to any copyrightable work licensed under this
                  License.  Each licensee is addressed as "you".  "Licensees" and
                  "recipients" may be individuals or organizations.
                  
                    To "modify" a work means to copy from or adapt all or part of the work
                  in a fashion requiring copyright permission, other than the making of an
                  exact copy.  The resulting work is called a "modified version" of the
                  earlier work or a work "based on" the earlier work.
                  
                    A "covered work" means either the unmodified Program or a work based
                  on the Program.
                  
                    To "propagate" a work means to do anything with it that, without
                  permission, would make you directly or secondarily liable for
                  infringement under applicable copyright law, except executing it on a
                  computer or modifying a private copy.  Propagation includes copying,
                  distribution (with or without modification), making available to the
                  public, and in some countries other activities as well.
                  
                    To "convey" a work means any kind of propagation that enables other
                  parties to make or receive copies.  Mere interaction with a user through
                  a computer network, with no transfer of a copy, is not conveying.
                  
                    An interactive user interface displays "Appropriate Legal Notices"
                  to the extent that it includes a convenient and prominently visible
                  feature that (1) displays an appropriate copyright notice, and (2)
                  tells the user that there is no warranty for the work (except to the
                  extent that warranties are provided), that licensees may convey the
                  work under this License, and how to view a copy of this License.  If
                  the interface presents a list of user commands or options, such as a
                  menu, a prominent item in the list meets this criterion.
                  
                    1. Source Code.
                  
                    The "source code" for a work means the preferred form of the work
                  for making modifications to it.  "Object code" means any non-source
                  form of a work.
                  
                    A "Standard Interface" means an interface that either is an official
                  standard defined by a recognized standards body, or, in the case of
                  interfaces specified for a particular programming language, one that
                  is widely used among developers working in that language.
                  
                    The "System Libraries" of an executable work include anything, other
                  than the work as a whole, that (a) is included in the normal form of
                  packaging a Major Component, but which is not part of that Major
                  Component, and (b) serves only to enable use of the work with that
                  Major Component, or to implement a Standard Interface for which an
                  implementation is available to the public in source code form.  A
                  "Major Component", in this context, means a major essential component
                  (kernel, window system, and so on) of the specific operating system
                  (if any) on which the executable work runs, or a compiler used to
                  produce the work, or an object code interpreter used to run it.
                  
                    The "Corresponding Source" for a work in object code form means all
                  the source code needed to generate, install, and (for an executable
                  work) run the object code and to modify the work, including scripts to
                  control those activities.  However, it does not include the work's
                  System Libraries, or general-purpose tools or generally available free
                  programs which are used unmodified in performing those activities but
                  which are not part of the work.  For example, Corresponding Source
                  includes interface definition files associated with source files for
                  the work, and the source code for shared libraries and dynamically
                  linked subprograms that the work is specifically designed to require,
                  such as by intimate data communication or control flow between those
                  subprograms and other parts of the work.
                  
                    The Corresponding Source need not include anything that users
                  can regenerate automatically from other parts of the Corresponding
                  Source.
                  
                    The Corresponding Source for a work in source code form is that
                  same work.
                  
                    2. Basic Permissions.
                  
                    All rights granted under this License are granted for the term of
                  copyright on the Program, and are irrevocable provided the stated
                  conditions are met.  This License explicitly affirms your unlimited
                  permission to run the unmodified Program.  The output from running a
                  covered work is covered by this License only if the output, given its
                  content, constitutes a covered work.  This License acknowledges your
                  rights of fair use or other equivalent, as provided by copyright law.
                  
                    You may make, run and propagate covered works that you do not
                  convey, without conditions so long as your license otherwise remains
                  in force.  You may convey covered works to others for the sole purpose
                  of having them make modifications exclusively for you, or provide you
                  with facilities for running those works, provided that you comply with
                  the terms of this License in conveying all material for which you do
                  not control copyright.  Those thus making or running the covered works
                  for you must do so exclusively on your behalf, under your direction
                  and control, on terms that prohibit them from making any copies of
                  your copyrighted material outside their relationship with you.
                  
                    Conveying under any other circumstances is permitted solely under
                  the conditions stated below.  Sublicensing is not allowed; section 10
                  makes it unnecessary.
                  
                    3. Protecting Users' Legal Rights From Anti-Circumvention Law.
                  
                    No covered work shall be deemed part of an effective technological
                  measure under any applicable law fulfilling obligations under article
                  11 of the WIPO copyright treaty adopted on 20 December 1996, or
                  similar laws prohibiting or restricting circumvention of such
                  measures.
                  
                    When you convey a covered work, you waive any legal power to forbid
                  circumvention of technological measures to the extent such circumvention
                  is effected by exercising rights under this License with respect to
                  the covered work, and you disclaim any intention to limit operation or
                  modification of the work as a means of enforcing, against the work's
                  users, your or third parties' legal rights to forbid circumvention of
                  technological measures.
                  
                    4. Conveying Verbatim Copies.
                  
                    You may convey verbatim copies of the Program's source code as you
                  receive it, in any medium, provided that you conspicuously and
                  appropriately publish on each copy an appropriate copyright notice;
                  keep intact all notices stating that this License and any
                  non-permissive terms added in accord with section 7 apply to the code;
                  keep intact all notices of the absence of any warranty; and give all
                  recipients a copy of this License along with the Program.
                  
                    You may charge any price or no price for each copy that you convey,
                  and you may offer support or warranty protection for a fee.
                  
                    5. Conveying Modified Source Versions.
                  
                    You may convey a work based on the Program, or the modifications to
                  produce it from the Program, in the form of source code under the
                  terms of section 4, provided that you also meet all of these conditions:
                  
                      a) The work must carry prominent notices stating that you modified
                      it, and giving a relevant date.
                  
                      b) The work must carry prominent notices stating that it is
                      released under this License and any conditions added under section
                      7.  This requirement modifies the requirement in section 4 to
                      "keep intact all notices".
                  
                      c) You must license the entire work, as a whole, under this
                      License to anyone who comes into possession of a copy.  This
                      License will therefore apply, along with any applicable section 7
                      additional terms, to the whole of the work, and all its parts,
                      regardless of how they are packaged.  This License gives no
                      permission to license the work in any other way, but it does not
                      invalidate such permission if you have separately received it.
                  
                      d) If the work has interactive user interfaces, each must display
                      Appropriate Legal Notices; however, if the Program has interactive
                      interfaces that do not display Appropriate Legal Notices, your
                      work need not make them do so.
                  
                    A compilation of a covered work with other separate and independent
                  works, which are not by their nature extensions of the covered work,
                  and which are not combined with it such as to form a larger program,
                  in or on a volume of a storage or distribution medium, is called an
                  "aggregate" if the compilation and its resulting copyright are not
                  used to limit the access or legal rights of the compilation's users
                  beyond what the individual works permit.  Inclusion of a covered work
                  in an aggregate does not cause this License to apply to the other
                  parts of the aggregate.
                  
                    6. Conveying Non-Source Forms.
                  
                    You may convey a covered work in object code form under the terms
                  of sections 4 and 5, provided that you also convey the
                  machine-readable Corresponding Source under the terms of this License,
                  in one of these ways:
                  
                      a) Convey the object code in, or embodied in, a physical product
                      (including a physical distribution medium), accompanied by the
                      Corresponding Source fixed on a durable physical medium
                      customarily used for software interchange.
                  
                      b) Convey the object code in, or embodied in, a physical product
                      (including a physical distribution medium), accompanied by a
                      written offer, valid for at least three years and valid for as
                      long as you offer spare parts or customer support for that product
                      model, to give anyone who possesses the object code either (1) a
                      copy of the Corresponding Source for all the software in the
                      product that is covered by this License, on a durable physical
                      medium customarily used for software interchange, for a price no
                      more than your reasonable cost of physically performing this
                      conveying of source, or (2) access to copy the
                      Corresponding Source from a network server at no charge.
                  
                      c) Convey individual copies of the object code with a copy of the
                      written offer to provide the Corresponding Source.  This
                      alternative is allowed only occasionally and noncommercially, and
                      only if you received the object code with such an offer, in accord
                      with subsection 6b.
                  
                      d) Convey the object code by offering access from a designated
                      place (gratis or for a charge), and offer equivalent access to the
                      Corresponding Source in the same way through the same place at no
                      further charge.  You need not require recipients to copy the
                      Corresponding Source along with the object code.  If the place to
                      copy the object code is a network server, the Corresponding Source
                      may be on a different server (operated by you or a third party)
                      that supports equivalent copying facilities, provided you maintain
                      clear directions next to the object code saying where to find the
                      Corresponding Source.  Regardless of what server hosts the
                      Corresponding Source, you remain obligated to ensure that it is
                      available for as long as needed to satisfy these requirements.
                  
                      e) Convey the object code using peer-to-peer transmission, provided
                      you inform other peers where the object code and Corresponding
                      Source of the work are being offered to the general public at no
                      charge under subsection 6d.
                  
                    A separable portion of the object code, whose source code is excluded
                  from the Corresponding Source as a System Library, need not be
                  included in conveying the object code work.
                  
                    A "User Product" is either (1) a "consumer product", which means any
                  tangible personal property which is normally used for personal, family,
                  or household purposes, or (2) anything designed or sold for incorporation
                  into a dwelling.  In determining whether a product is a consumer product,
                  doubtful cases shall be resolved in favor of coverage.  For a particular
                  product received by a particular user, "normally used" refers to a
                  typical or common use of that class of product, regardless of the status
                  of the particular user or of the way in which the particular user
                  actually uses, or expects or is expected to use, the product.  A product
                  is a consumer product regardless of whether the product has substantial
                  commercial, industrial or non-consumer uses, unless such uses represent
                  the only significant mode of use of the product.
                  
                    "Installation Information" for a User Product means any methods,
                  procedures, authorization keys, or other information required to install
                  and execute modified versions of a covered work in that User Product from
                  a modified version of its Corresponding Source.  The information must
                  suffice to ensure that the continued functioning of the modified object
                  code is in no case prevented or interfered with solely because
                  modification has been made.
                  
                    If you convey an object code work under this section in, or with, or
                  specifically for use in, a User Product, and the conveying occurs as
                  part of a transaction in which the right of possession and use of the
                  User Product is transferred to the recipient in perpetuity or for a
                  fixed term (regardless of how the transaction is characterized), the
                  Corresponding Source conveyed under this section must be accompanied
                  by the Installation Information.  But this requirement does not apply
                  if neither you nor any third party retains the ability to install
                  modified object code on the User Product (for example, the work has
                  been installed in ROM).
                  
                    The requirement to provide Installation Information does not include a
                  requirement to continue to provide support service, warranty, or updates
                  for a work that has been modified or installed by the recipient, or for
                  the User Product in which it has been modified or installed.  Access to a
                  network may be denied when the modification itself materially and
                  adversely affects the operation of the network or violates the rules and
                  protocols for communication across the network.
                  
                    Corresponding Source conveyed, and Installation Information provided,
                  in accord with this section must be in a format that is publicly
                  documented (and with an implementation available to the public in
                  source code form), and must require no special password or key for
                  unpacking, reading or copying.
                  
                    7. Additional Terms.
                  
                    "Additional permissions" are terms that supplement the terms of this
                  License by making exceptions from one or more of its conditions.
                  Additional permissions that are applicable to the entire Program shall
                  be treated as though they were included in this License, to the extent
                  that they are valid under applicable law.  If additional permissions
                  apply only to part of the Program, that part may be used separately
                  under those permissions, but the entire Program remains governed by
                  this License without regard to the additional permissions.
                  
                    When you convey a copy of a covered work, you may at your option
                  remove any additional permissions from that copy, or from any part of
                  it.  (Additional permissions may be written to require their own
                  removal in certain cases when you modify the work.)  You may place
                  additional permissions on material, added by you to a covered work,
                  for which you have or can give appropriate copyright permission.
                  
                    Notwithstanding any other provision of this License, for material you
                  add to a covered work, you may (if authorized by the copyright holders of
                  that material) supplement the terms of this License with terms:
                  
                      a) Disclaiming warranty or limiting liability differently from the
                      terms of sections 15 and 16 of this License; or
                  
                      b) Requiring preservation of specified reasonable legal notices or
                      author attributions in that material or in the Appropriate Legal
                      Notices displayed by works containing it; or
                  
                      c) Prohibiting misrepresentation of the origin of that material, or
                      requiring that modified versions of such material be marked in
                      reasonable ways as different from the original version; or
                  
                      d) Limiting the use for publicity purposes of names of licensors or
                      authors of the material; or
                  
                      e) Declining to grant rights under trademark law for use of some
                      trade names, trademarks, or service marks; or
                  
                      f) Requiring indemnification of licensors and authors of that
                      material by anyone who conveys the material (or modified versions of
                      it) with contractual assumptions of liability to the recipient, for
                      any liability that these contractual assumptions directly impose on
                      those licensors and authors.
                  
                    All other non-permissive additional terms are considered "further
                  restrictions" within the meaning of section 10.  If the Program as you
                  received it, or any part of it, contains a notice stating that it is
                  governed by this License along with a term that is a further
                  restriction, you may remove that term.  If a license document contains
                  a further restriction but permits relicensing or conveying under this
                  License, you may add to a covered work material governed by the terms
                  of that license document, provided that the further restriction does
                  not survive such relicensing or conveying.
                  
                    If you add terms to a covered work in accord with this section, you
                  must place, in the relevant source files, a statement of the
                  additional terms that apply to those files, or a notice indicating
                  where to find the applicable terms.
                  
                    Additional terms, permissive or non-permissive, may be stated in the
                  form of a separately written license, or stated as exceptions;
                  the above requirements apply either way.
                  
                    8. Termination.
                  
                    You may not propagate or modify a covered work except as expressly
                  provided under this License.  Any attempt otherwise to propagate or
                  modify it is void, and will automatically terminate your rights under
                  this License (including any patent licenses granted under the third
                  paragraph of section 11).
                  
                    However, if you cease all violation of this License, then your
                  license from a particular copyright holder is reinstated (a)
                  provisionally, unless and until the copyright holder explicitly and
                  finally terminates your license, and (b) permanently, if the copyright
                  holder fails to notify you of the violation by some reasonable means
                  prior to 60 days after the cessation.
                  
                    Moreover, your license from a particular copyright holder is
                  reinstated permanently if the copyright holder notifies you of the
                  violation by some reasonable means, this is the first time you have
                  received notice of violation of this License (for any work) from that
                  copyright holder, and you cure the violation prior to 30 days after
                  your receipt of the notice.
                  
                    Termination of your rights under this section does not terminate the
                  licenses of parties who have received copies or rights from you under
                  this License.  If your rights have been terminated and not permanently
                  reinstated, you do not qualify to receive new licenses for the same
                  material under section 10.
                  
                    9. Acceptance Not Required for Having Copies.
                  
                    You are not required to accept this License in order to receive or
                  run a copy of the Program.  Ancillary propagation of a covered work
                  occurring solely as a consequence of using peer-to-peer transmission
                  to receive a copy likewise does not require acceptance.  However,
                  nothing other than this License grants you permission to propagate or
                  modify any covered work.  These actions infringe copyright if you do
                  not accept this License.  Therefore, by modifying or propagating a
                  covered work, you indicate your acceptance of this License to do so.
                  
                    10. Automatic Licensing of Downstream Recipients.
                  
                    Each time you convey a covered work, the recipient automatically
                  receives a license from the original licensors, to run, modify and
                  propagate that work, subject to this License.  You are not responsible
                  for enforcing compliance by third parties with this License.
                  
                    An "entity transaction" is a transaction transferring control of an
                  organization, or substantially all assets of one, or subdividing an
                  organization, or merging organizations.  If propagation of a covered
                  work results from an entity transaction, each party to that
                  transaction who receives a copy of the work also receives whatever
                  licenses to the work the party's predecessor in interest had or could
                  give under the previous paragraph, plus a right to possession of the
                  Corresponding Source of the work from the predecessor in interest, if
                  the predecessor has it or can get it with reasonable efforts.
                  
                    You may not impose any further restrictions on the exercise of the
                  rights granted or affirmed under this License.  For example, you may
                  not impose a license fee, royalty, or other charge for exercise of
                  rights granted under this License, and you may not initiate litigation
                  (including a cross-claim or counterclaim in a lawsuit) alleging that
                  any patent claim is infringed by making, using, selling, offering for
                  sale, or importing the Program or any portion of it.
                  
                    11. Patents.
                  
                    A "contributor" is a copyright holder who authorizes use under this
                  License of the Program or a work on which the Program is based.  The
                  work thus licensed is called the contributor's "contributor version".
                  
                    A contributor's "essential patent claims" are all patent claims
                  owned or controlled by the contributor, whether already acquired or
                  hereafter acquired, that would be infringed by some manner, permitted
                  by this License, of making, using, or selling its contributor version,
                  but do not include claims that would be infringed only as a
                  consequence of further modification of the contributor version.  For
                  purposes of this definition, "control" includes the right to grant
                  patent sublicenses in a manner consistent with the requirements of
                  this License.
                  
                    Each contributor grants you a non-exclusive, worldwide, royalty-free
                  patent license under the contributor's essential patent claims, to
                  make, use, sell, offer for sale, import and otherwise run, modify and
                  propagate the contents of its contributor version.
                  
                    In the following three paragraphs, a "patent license" is any express
                  agreement or commitment, however denominated, not to enforce a patent
                  (such as an express permission to practice a patent or covenant not to
                  sue for patent infringement).  To "grant" such a patent license to a
                  party means to make such an agreement or commitment not to enforce a
                  patent against the party.
                  
                    If you convey a covered work, knowingly relying on a patent license,
                  and the Corresponding Source of the work is not available for anyone
                  to copy, free of charge and under the terms of this License, through a
                  publicly available network server or other readily accessible means,
                  then you must either (1) cause the Corresponding Source to be so
                  available, or (2) arrange to deprive yourself of the benefit of the
                  patent license for this particular work, or (3) arrange, in a manner
                  consistent with the requirements of this License, to extend the patent
                  license to downstream recipients.  "Knowingly relying" means you have
                  actual knowledge that, but for the patent license, your conveying the
                  covered work in a country, or your recipient's use of the covered work
                  in a country, would infringe one or more identifiable patents in that
                  country that you have reason to believe are valid.
                  
                    If, pursuant to or in connection with a single transaction or
                  arrangement, you convey, or propagate by procuring conveyance of, a
                  covered work, and grant a patent license to some of the parties
                  receiving the covered work authorizing them to use, propagate, modify
                  or convey a specific copy of the covered work, then the patent license
                  you grant is automatically extended to all recipients of the covered
                  work and works based on it.
                  
                    A patent license is "discriminatory" if it does not include within
                  the scope of its coverage, prohibits the exercise of, or is
                  conditioned on the non-exercise of one or more of the rights that are
                  specifically granted under this License.  You may not convey a covered
                  work if you are a party to an arrangement with a third party that is
                  in the business of distributing software, under which you make payment
                  to the third party based on the extent of your activity of conveying
                  the work, and under which the third party grants, to any of the
                  parties who would receive the covered work from you, a discriminatory
                  patent license (a) in connection with copies of the covered work
                  conveyed by you (or copies made from those copies), or (b) primarily
                  for and in connection with specific products or compilations that
                  contain the covered work, unless you entered into that arrangement,
                  or that patent license was granted, prior to 28 March 2007.
                  
                    Nothing in this License shall be construed as excluding or limiting
                  any implied license or other defenses to infringement that may
                  otherwise be available to you under applicable patent law.
                  
                    12. No Surrender of Others' Freedom.
                  
                    If conditions are imposed on you (whether by court order, agreement or
                  otherwise) that contradict the conditions of this License, they do not
                  excuse you from the conditions of this License.  If you cannot convey a
                  covered work so as to satisfy simultaneously your obligations under this
                  License and any other pertinent obligations, then as a consequence you may
                  not convey it at all.  For example, if you agree to terms that obligate you
                  to collect a royalty for further conveying from those to whom you convey
                  the Program, the only way you could satisfy both those terms and this
                  License would be to refrain entirely from conveying the Program.
                  
                    13. Use with the GNU Affero General Public License.
                  
                    Notwithstanding any other provision of this License, you have
                  permission to link or combine any covered work with a work licensed
                  under version 3 of the GNU Affero General Public License into a single
                  combined work, and to convey the resulting work.  The terms of this
                  License will continue to apply to the part which is the covered work,
                  but the special requirements of the GNU Affero General Public License,
                  section 13, concerning interaction through a network will apply to the
                  combination as such.
                  
                    14. Revised Versions of this License.
                  
                    The Free Software Foundation may publish revised and/or new versions of
                  the GNU General Public License from time to time.  Such new versions will
                  be similar in spirit to the present version, but may differ in detail to
                  address new problems or concerns.
                  
                    Each version is given a distinguishing version number.  If the
                  Program specifies that a certain numbered version of the GNU General
                  Public License "or any later version" applies to it, you have the
                  option of following the terms and conditions either of that numbered
                  version or of any later version published by the Free Software
                  Foundation.  If the Program does not specify a version number of the
                  GNU General Public License, you may choose any version ever published
                  by the Free Software Foundation.
                  
                    If the Program specifies that a proxy can decide which future
                  versions of the GNU General Public License can be used, that proxy's
                  public statement of acceptance of a version permanently authorizes you
                  to choose that version for the Program.
                  
                    Later license versions may give you additional or different
                  permissions.  However, no additional obligations are imposed on any
                  author or copyright holder as a result of your choosing to follow a
                  later version.
                  
                    15. Disclaimer of Warranty.
                  
                    THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
                  APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
                  HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
                  OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
                  THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                  PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
                  IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
                  ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
                  
                    16. Limitation of Liability.
                  
                    IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                  WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
                  THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
                  GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
                  USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
                  DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
                  PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
                  EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
                  SUCH DAMAGES.
                  
                    17. Interpretation of Sections 15 and 16.
                  
                    If the disclaimer of warranty and limitation of liability provided
                  above cannot be given local legal effect according to their terms,
                  reviewing courts shall apply local law that most closely approximates
                  an absolute waiver of all civil liability in connection with the
                  Program, unless a warranty or assumption of liability accompanies a
                  copy of the Program in return for a fee.
                  
                                       END OF TERMS AND CONDITIONS
                  
                              How to Apply These Terms to Your New Programs
                  
                    If you develop a new program, and you want it to be of the greatest
                  possible use to the public, the best way to achieve this is to make it
                  free software which everyone can redistribute and change under these terms.
                  
                    To do so, attach the following notices to the program.  It is safest
                  to attach them to the start of each source file to most effectively
                  state the exclusion of warranty; and each file should have at least
                  the "copyright" line and a pointer to where the full notice is found.
                  
                      <one line to give the program's name and a brief idea of what it does.>
                      Copyright (C) <year>  <name of author>
                  
                      This program is free software: you can redistribute it and/or modify
                      it under the terms of the GNU General Public License as published by
                      the Free Software Foundation, either version 3 of the License, or
                      (at your option) any later version.
                  
                      This program is distributed in the hope that it will be useful,
                      but WITHOUT ANY WARRANTY; without even the implied warranty of
                      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                      GNU General Public License for more details.
                  
                      You should have received a copy of the GNU General Public License
                      along with this program.  If not, see <http://www.gnu.org/licenses/>.
                  
                  Also add information on how to contact you by electronic and paper mail.
                  
                    If the program does terminal interaction, make it output a short
                  notice like this when it starts in an interactive mode:
                  
                      <program>  Copyright (C) <year>  <name of author>
                      This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                      This is free software, and you are welcome to redistribute it
                      under certain conditions; type `show c' for details.
                  
                  The hypothetical commands `show w' and `show c' should show the appropriate
                  parts of the General Public License.  Of course, your program's commands
                  might be different; for a GUI interface, you would use an "about box".
                  
                    You should also get your employer (if you work as a programmer) or school,
                  if any, to sign a "copyright disclaimer" for the program, if necessary.
                  For more information on this, and how to apply and follow the GNU GPL, see
                  <http://www.gnu.org/licenses/>.
                  
                    The GNU General Public License does not permit incorporating your program
                  into proprietary programs.  If your program is a subroutine library, you
                  may consider it more useful to permit linking proprietary applications with
                  the library.  If this is what you want to do, use the GNU Lesser General
                  Public License instead of this License.  But first, please read
                  <http://www.gnu.org/philosophy/why-not-lgpl.html>.
                  
                  */

                  File 3 of 9: Exchange
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  pragma experimental ABIEncoderV2;
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  // solhint-disable max-line-length
                  contract LibConstants {
                     
                      // Asset data for ZRX token. Used for fee transfers.
                      // @TODO: Hardcode constant when we deploy. Currently 
                      //        not constant to make testing easier.
                  
                      // The proxyId for ZRX_ASSET_DATA is bytes4(keccak256("ERC20Token(address)")) = 0xf47261b0
                      
                      // Kovan ZRX address is 0x6ff6c0ff1d68b964901f986d4c9fa3ac68346570.
                      // The ABI encoded proxyId and address is 0xf47261b00000000000000000000000006ff6c0ff1d68b964901f986d4c9fa3ac68346570
                      // bytes constant public ZRX_ASSET_DATA = "\xf4\x72\x61\xb0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6f\xf6\xc0\xff\x1d\x68\xb9\x64\x90\x1f\x98\x6d\x4c\x9f\xa3\xac\x68\x34\x65\x70";
                      
                      // Mainnet ZRX address is 0xe41d2489571d322189246dafa5ebde1f4699f498.
                      // The ABI encoded proxyId and address is 0xf47261b0000000000000000000000000e41d2489571d322189246dafa5ebde1f4699f498
                      // bytes constant public ZRX_ASSET_DATA = "\xf4\x72\x61\xb0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe4\x1d\x24\x89\x57\x1d\x32\x21\x89\x24\x6d\xaf\xa5\xeb\xde\x1f\x46\x99\xf4\x98";
                      
                      // solhint-disable-next-line var-name-mixedcase
                      bytes public ZRX_ASSET_DATA;
                  
                      // @TODO: Remove when we deploy.
                      constructor (bytes memory zrxAssetData)
                          public
                      {
                          ZRX_ASSET_DATA = zrxAssetData;
                      }
                  }
                  // solhint-enable max-line-length
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  contract ReentrancyGuard {
                  
                      // Locked state of mutex
                      bool private locked = false;
                  
                      /// @dev Functions with this modifer cannot be reentered. The mutex will be locked
                      ///      before function execution and unlocked after.
                      modifier nonReentrant() {
                          // Ensure mutex is unlocked
                          require(
                              !locked,
                              "REENTRANCY_ILLEGAL"
                          );
                  
                          // Lock mutex before function call
                          locked = true;
                  
                          // Perform function call
                          _;
                  
                          // Unlock mutex after function call
                          locked = false;
                      }
                  }
                  
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  pragma solidity 0.4.24;
                  
                  
                  contract SafeMath {
                  
                      function safeMul(uint256 a, uint256 b)
                          internal
                          pure
                          returns (uint256)
                      {
                          if (a == 0) {
                              return 0;
                          }
                          uint256 c = a * b;
                          require(
                              c / a == b,
                              "UINT256_OVERFLOW"
                          );
                          return c;
                      }
                  
                      function safeDiv(uint256 a, uint256 b)
                          internal
                          pure
                          returns (uint256)
                      {
                          uint256 c = a / b;
                          return c;
                      }
                  
                      function safeSub(uint256 a, uint256 b)
                          internal
                          pure
                          returns (uint256)
                      {
                          require(
                              b <= a,
                              "UINT256_UNDERFLOW"
                          );
                          return a - b;
                      }
                  
                      function safeAdd(uint256 a, uint256 b)
                          internal
                          pure
                          returns (uint256)
                      {
                          uint256 c = a + b;
                          require(
                              c >= a,
                              "UINT256_OVERFLOW"
                          );
                          return c;
                      }
                  
                      function max64(uint64 a, uint64 b)
                          internal
                          pure
                          returns (uint256)
                      {
                          return a >= b ? a : b;
                      }
                  
                      function min64(uint64 a, uint64 b)
                          internal
                          pure
                          returns (uint256)
                      {
                          return a < b ? a : b;
                      }
                  
                      function max256(uint256 a, uint256 b)
                          internal
                          pure
                          returns (uint256)
                      {
                          return a >= b ? a : b;
                      }
                  
                      function min256(uint256 a, uint256 b)
                          internal
                          pure
                          returns (uint256)
                      {
                          return a < b ? a : b;
                      }
                  }
                  
                  
                  
                  contract LibFillResults is
                      SafeMath
                  {
                      struct FillResults {
                          uint256 makerAssetFilledAmount;  // Total amount of makerAsset(s) filled.
                          uint256 takerAssetFilledAmount;  // Total amount of takerAsset(s) filled.
                          uint256 makerFeePaid;            // Total amount of ZRX paid by maker(s) to feeRecipient(s).
                          uint256 takerFeePaid;            // Total amount of ZRX paid by taker to feeRecipients(s).
                      }
                  
                      struct MatchedFillResults {
                          FillResults left;                    // Amounts filled and fees paid of left order.
                          FillResults right;                   // Amounts filled and fees paid of right order.
                          uint256 leftMakerAssetSpreadAmount;  // Spread between price of left and right order, denominated in the left order's makerAsset, paid to taker.
                      }
                  
                      /// @dev Adds properties of both FillResults instances.
                      ///      Modifies the first FillResults instance specified.
                      /// @param totalFillResults Fill results instance that will be added onto.
                      /// @param singleFillResults Fill results instance that will be added to totalFillResults.
                      function addFillResults(FillResults memory totalFillResults, FillResults memory singleFillResults)
                          internal
                          pure
                      {
                          totalFillResults.makerAssetFilledAmount = safeAdd(totalFillResults.makerAssetFilledAmount, singleFillResults.makerAssetFilledAmount);
                          totalFillResults.takerAssetFilledAmount = safeAdd(totalFillResults.takerAssetFilledAmount, singleFillResults.takerAssetFilledAmount);
                          totalFillResults.makerFeePaid = safeAdd(totalFillResults.makerFeePaid, singleFillResults.makerFeePaid);
                          totalFillResults.takerFeePaid = safeAdd(totalFillResults.takerFeePaid, singleFillResults.takerFeePaid);
                      }
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  contract LibEIP712 {
                  
                      // EIP191 header for EIP712 prefix
                      string constant internal EIP191_HEADER = "\x19\x01";
                  
                      // EIP712 Domain Name value
                      string constant internal EIP712_DOMAIN_NAME = "0x Protocol";
                  
                      // EIP712 Domain Version value
                      string constant internal EIP712_DOMAIN_VERSION = "2";
                  
                      // Hash of the EIP712 Domain Separator Schema
                      bytes32 constant internal EIP712_DOMAIN_SEPARATOR_SCHEMA_HASH = keccak256(abi.encodePacked(
                          "EIP712Domain(",
                          "string name,",
                          "string version,",
                          "address verifyingContract",
                          ")"
                      ));
                  
                      // Hash of the EIP712 Domain Separator data
                      // solhint-disable-next-line var-name-mixedcase
                      bytes32 public EIP712_DOMAIN_HASH;
                  
                      constructor ()
                          public
                      {
                          EIP712_DOMAIN_HASH = keccak256(abi.encodePacked(
                              EIP712_DOMAIN_SEPARATOR_SCHEMA_HASH,
                              keccak256(bytes(EIP712_DOMAIN_NAME)),
                              keccak256(bytes(EIP712_DOMAIN_VERSION)),
                              bytes32(address(this))
                          ));
                      }
                  
                      /// @dev Calculates EIP712 encoding for a hash struct in this EIP712 Domain.
                      /// @param hashStruct The EIP712 hash struct.
                      /// @return EIP712 hash applied to this EIP712 Domain.
                      function hashEIP712Message(bytes32 hashStruct)
                          internal
                          view
                          returns (bytes32 result)
                      {
                          bytes32 eip712DomainHash = EIP712_DOMAIN_HASH;
                  
                          // Assembly for more efficient computing:
                          // keccak256(abi.encodePacked(
                          //     EIP191_HEADER,
                          //     EIP712_DOMAIN_HASH,
                          //     hashStruct    
                          // ));
                  
                          assembly {
                              // Load free memory pointer
                              let memPtr := mload(64)
                  
                              mstore(memPtr, 0x1901000000000000000000000000000000000000000000000000000000000000)  // EIP191 header
                              mstore(add(memPtr, 2), eip712DomainHash)                                            // EIP712 domain hash
                              mstore(add(memPtr, 34), hashStruct)                                                 // Hash of struct
                  
                              // Compute hash
                              result := keccak256(memPtr, 66)
                          }
                          return result;
                      }
                  }
                  
                  
                  
                  contract LibOrder is
                      LibEIP712
                  {
                      // Hash for the EIP712 Order Schema
                      bytes32 constant internal EIP712_ORDER_SCHEMA_HASH = keccak256(abi.encodePacked(
                          "Order(",
                          "address makerAddress,",
                          "address takerAddress,",
                          "address feeRecipientAddress,",
                          "address senderAddress,",
                          "uint256 makerAssetAmount,",
                          "uint256 takerAssetAmount,",
                          "uint256 makerFee,",
                          "uint256 takerFee,",
                          "uint256 expirationTimeSeconds,",
                          "uint256 salt,",
                          "bytes makerAssetData,",
                          "bytes takerAssetData",
                          ")"
                      ));
                  
                      // A valid order remains fillable until it is expired, fully filled, or cancelled.
                      // An order's state is unaffected by external factors, like account balances.
                      enum OrderStatus {
                          INVALID,                     // Default value
                          INVALID_MAKER_ASSET_AMOUNT,  // Order does not have a valid maker asset amount
                          INVALID_TAKER_ASSET_AMOUNT,  // Order does not have a valid taker asset amount
                          FILLABLE,                    // Order is fillable
                          EXPIRED,                     // Order has already expired
                          FULLY_FILLED,                // Order is fully filled
                          CANCELLED                    // Order has been cancelled
                      }
                  
                      // solhint-disable max-line-length
                      struct Order {
                          address makerAddress;           // Address that created the order.      
                          address takerAddress;           // Address that is allowed to fill the order. If set to 0, any address is allowed to fill the order.          
                          address feeRecipientAddress;    // Address that will recieve fees when order is filled.      
                          address senderAddress;          // Address that is allowed to call Exchange contract methods that affect this order. If set to 0, any address is allowed to call these methods.
                          uint256 makerAssetAmount;       // Amount of makerAsset being offered by maker. Must be greater than 0.        
                          uint256 takerAssetAmount;       // Amount of takerAsset being bid on by maker. Must be greater than 0.        
                          uint256 makerFee;               // Amount of ZRX paid to feeRecipient by maker when order is filled. If set to 0, no transfer of ZRX from maker to feeRecipient will be attempted.
                          uint256 takerFee;               // Amount of ZRX paid to feeRecipient by taker when order is filled. If set to 0, no transfer of ZRX from taker to feeRecipient will be attempted.
                          uint256 expirationTimeSeconds;  // Timestamp in seconds at which order expires.          
                          uint256 salt;                   // Arbitrary number to facilitate uniqueness of the order's hash.     
                          bytes makerAssetData;           // Encoded data that can be decoded by a specified proxy contract when transferring makerAsset. The last byte references the id of this proxy.
                          bytes takerAssetData;           // Encoded data that can be decoded by a specified proxy contract when transferring takerAsset. The last byte references the id of this proxy.
                      }
                      // solhint-enable max-line-length
                  
                      struct OrderInfo {
                          uint8 orderStatus;                    // Status that describes order's validity and fillability.
                          bytes32 orderHash;                    // EIP712 hash of the order (see LibOrder.getOrderHash).
                          uint256 orderTakerAssetFilledAmount;  // Amount of order that has already been filled.
                      }
                  
                      /// @dev Calculates Keccak-256 hash of the order.
                      /// @param order The order structure.
                      /// @return Keccak-256 EIP712 hash of the order.
                      function getOrderHash(Order memory order)
                          internal
                          view
                          returns (bytes32 orderHash)
                      {
                          orderHash = hashEIP712Message(hashOrder(order));
                          return orderHash;
                      }
                  
                      /// @dev Calculates EIP712 hash of the order.
                      /// @param order The order structure.
                      /// @return EIP712 hash of the order.
                      function hashOrder(Order memory order)
                          internal
                          pure
                          returns (bytes32 result)
                      {
                          bytes32 schemaHash = EIP712_ORDER_SCHEMA_HASH;
                          bytes32 makerAssetDataHash = keccak256(order.makerAssetData);
                          bytes32 takerAssetDataHash = keccak256(order.takerAssetData);
                  
                          // Assembly for more efficiently computing:
                          // keccak256(abi.encodePacked(
                          //     EIP712_ORDER_SCHEMA_HASH,
                          //     bytes32(order.makerAddress),
                          //     bytes32(order.takerAddress),
                          //     bytes32(order.feeRecipientAddress),
                          //     bytes32(order.senderAddress),
                          //     order.makerAssetAmount,
                          //     order.takerAssetAmount,
                          //     order.makerFee,
                          //     order.takerFee,
                          //     order.expirationTimeSeconds,
                          //     order.salt,
                          //     keccak256(order.makerAssetData),
                          //     keccak256(order.takerAssetData)
                          // ));
                  
                          assembly {
                              // Calculate memory addresses that will be swapped out before hashing
                              let pos1 := sub(order, 32)
                              let pos2 := add(order, 320)
                              let pos3 := add(order, 352)
                  
                              // Backup
                              let temp1 := mload(pos1)
                              let temp2 := mload(pos2)
                              let temp3 := mload(pos3)
                              
                              // Hash in place
                              mstore(pos1, schemaHash)
                              mstore(pos2, makerAssetDataHash)
                              mstore(pos3, takerAssetDataHash)
                              result := keccak256(pos1, 416)
                              
                              // Restore
                              mstore(pos1, temp1)
                              mstore(pos2, temp2)
                              mstore(pos3, temp3)
                          }
                          return result;
                      }
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  
                  
                  contract LibMath is
                      SafeMath
                  {
                      /// @dev Calculates partial value given a numerator and denominator rounded down.
                      ///      Reverts if rounding error is >= 0.1%
                      /// @param numerator Numerator.
                      /// @param denominator Denominator.
                      /// @param target Value to calculate partial of.
                      /// @return Partial value of target rounded down.
                      function safeGetPartialAmountFloor(
                          uint256 numerator,
                          uint256 denominator,
                          uint256 target
                      )
                          internal
                          pure
                          returns (uint256 partialAmount)
                      {
                          require(
                              denominator > 0,
                              "DIVISION_BY_ZERO"
                          );
                  
                          require(
                              !isRoundingErrorFloor(
                                  numerator,
                                  denominator,
                                  target
                              ),
                              "ROUNDING_ERROR"
                          );
                          
                          partialAmount = safeDiv(
                              safeMul(numerator, target),
                              denominator
                          );
                          return partialAmount;
                      }
                  
                      /// @dev Calculates partial value given a numerator and denominator rounded down.
                      ///      Reverts if rounding error is >= 0.1%
                      /// @param numerator Numerator.
                      /// @param denominator Denominator.
                      /// @param target Value to calculate partial of.
                      /// @return Partial value of target rounded up.
                      function safeGetPartialAmountCeil(
                          uint256 numerator,
                          uint256 denominator,
                          uint256 target
                      )
                          internal
                          pure
                          returns (uint256 partialAmount)
                      {
                          require(
                              denominator > 0,
                              "DIVISION_BY_ZERO"
                          );
                  
                          require(
                              !isRoundingErrorCeil(
                                  numerator,
                                  denominator,
                                  target
                              ),
                              "ROUNDING_ERROR"
                          );
                          
                          // safeDiv computes `floor(a / b)`. We use the identity (a, b integer):
                          //       ceil(a / b) = floor((a + b - 1) / b)
                          // To implement `ceil(a / b)` using safeDiv.
                          partialAmount = safeDiv(
                              safeAdd(
                                  safeMul(numerator, target),
                                  safeSub(denominator, 1)
                              ),
                              denominator
                          );
                          return partialAmount;
                      }
                  
                      /// @dev Calculates partial value given a numerator and denominator rounded down.
                      /// @param numerator Numerator.
                      /// @param denominator Denominator.
                      /// @param target Value to calculate partial of.
                      /// @return Partial value of target rounded down.
                      function getPartialAmountFloor(
                          uint256 numerator,
                          uint256 denominator,
                          uint256 target
                      )
                          internal
                          pure
                          returns (uint256 partialAmount)
                      {
                          require(
                              denominator > 0,
                              "DIVISION_BY_ZERO"
                          );
                  
                          partialAmount = safeDiv(
                              safeMul(numerator, target),
                              denominator
                          );
                          return partialAmount;
                      }
                      
                      /// @dev Calculates partial value given a numerator and denominator rounded down.
                      /// @param numerator Numerator.
                      /// @param denominator Denominator.
                      /// @param target Value to calculate partial of.
                      /// @return Partial value of target rounded up.
                      function getPartialAmountCeil(
                          uint256 numerator,
                          uint256 denominator,
                          uint256 target
                      )
                          internal
                          pure
                          returns (uint256 partialAmount)
                      {
                          require(
                              denominator > 0,
                              "DIVISION_BY_ZERO"
                          );
                  
                          // safeDiv computes `floor(a / b)`. We use the identity (a, b integer):
                          //       ceil(a / b) = floor((a + b - 1) / b)
                          // To implement `ceil(a / b)` using safeDiv.
                          partialAmount = safeDiv(
                              safeAdd(
                                  safeMul(numerator, target),
                                  safeSub(denominator, 1)
                              ),
                              denominator
                          );
                          return partialAmount;
                      }
                      
                      /// @dev Checks if rounding error >= 0.1% when rounding down.
                      /// @param numerator Numerator.
                      /// @param denominator Denominator.
                      /// @param target Value to multiply with numerator/denominator.
                      /// @return Rounding error is present.
                      function isRoundingErrorFloor(
                          uint256 numerator,
                          uint256 denominator,
                          uint256 target
                      )
                          internal
                          pure
                          returns (bool isError)
                      {
                          require(
                              denominator > 0,
                              "DIVISION_BY_ZERO"
                          );
                          
                          // The absolute rounding error is the difference between the rounded
                          // value and the ideal value. The relative rounding error is the
                          // absolute rounding error divided by the absolute value of the
                          // ideal value. This is undefined when the ideal value is zero.
                          //
                          // The ideal value is `numerator * target / denominator`.
                          // Let's call `numerator * target % denominator` the remainder.
                          // The absolute error is `remainder / denominator`.
                          //
                          // When the ideal value is zero, we require the absolute error to
                          // be zero. Fortunately, this is always the case. The ideal value is
                          // zero iff `numerator == 0` and/or `target == 0`. In this case the
                          // remainder and absolute error are also zero. 
                          if (target == 0 || numerator == 0) {
                              return false;
                          }
                          
                          // Otherwise, we want the relative rounding error to be strictly
                          // less than 0.1%.
                          // The relative error is `remainder / (numerator * target)`.
                          // We want the relative error less than 1 / 1000:
                          //        remainder / (numerator * denominator)  <  1 / 1000
                          // or equivalently:
                          //        1000 * remainder  <  numerator * target
                          // so we have a rounding error iff:
                          //        1000 * remainder  >=  numerator * target
                          uint256 remainder = mulmod(
                              target,
                              numerator,
                              denominator
                          );
                          isError = safeMul(1000, remainder) >= safeMul(numerator, target);
                          return isError;
                      }
                      
                      /// @dev Checks if rounding error >= 0.1% when rounding up.
                      /// @param numerator Numerator.
                      /// @param denominator Denominator.
                      /// @param target Value to multiply with numerator/denominator.
                      /// @return Rounding error is present.
                      function isRoundingErrorCeil(
                          uint256 numerator,
                          uint256 denominator,
                          uint256 target
                      )
                          internal
                          pure
                          returns (bool isError)
                      {
                          require(
                              denominator > 0,
                              "DIVISION_BY_ZERO"
                          );
                          
                          // See the comments in `isRoundingError`.
                          if (target == 0 || numerator == 0) {
                              // When either is zero, the ideal value and rounded value are zero
                              // and there is no rounding error. (Although the relative error
                              // is undefined.)
                              return false;
                          }
                          // Compute remainder as before
                          uint256 remainder = mulmod(
                              target,
                              numerator,
                              denominator
                          );
                          remainder = safeSub(denominator, remainder) % denominator;
                          isError = safeMul(1000, remainder) >= safeMul(numerator, target);
                          return isError;
                      }
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  
                  
                  
                  contract IExchangeCore {
                  
                      /// @dev Cancels all orders created by makerAddress with a salt less than or equal to the targetOrderEpoch
                      ///      and senderAddress equal to msg.sender (or null address if msg.sender == makerAddress).
                      /// @param targetOrderEpoch Orders created with a salt less or equal to this value will be cancelled.
                      function cancelOrdersUpTo(uint256 targetOrderEpoch)
                          external;
                  
                      /// @dev Fills the input order.
                      /// @param order Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      /// @return Amounts filled and fees paid by maker and taker.
                      function fillOrder(
                          LibOrder.Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          public
                          returns (LibFillResults.FillResults memory fillResults);
                  
                      /// @dev After calling, the order can not be filled anymore.
                      /// @param order Order struct containing order specifications.
                      function cancelOrder(LibOrder.Order memory order)
                          public;
                  
                      /// @dev Gets information about an order: status, hash, and amount filled.
                      /// @param order Order to gather information on.
                      /// @return OrderInfo Information about the order and its state.
                      ///                   See LibOrder.OrderInfo for a complete description.
                      function getOrderInfo(LibOrder.Order memory order)
                          public
                          view
                          returns (LibOrder.OrderInfo memory orderInfo);
                  }
                  
                  
                  
                  contract MExchangeCore is
                      IExchangeCore
                  {
                      // Fill event is emitted whenever an order is filled.
                      event Fill(
                          address indexed makerAddress,         // Address that created the order.      
                          address indexed feeRecipientAddress,  // Address that received fees.
                          address takerAddress,                 // Address that filled the order.
                          address senderAddress,                // Address that called the Exchange contract (msg.sender).
                          uint256 makerAssetFilledAmount,       // Amount of makerAsset sold by maker and bought by taker. 
                          uint256 takerAssetFilledAmount,       // Amount of takerAsset sold by taker and bought by maker.
                          uint256 makerFeePaid,                 // Amount of ZRX paid to feeRecipient by maker.
                          uint256 takerFeePaid,                 // Amount of ZRX paid to feeRecipient by taker.
                          bytes32 indexed orderHash,            // EIP712 hash of order (see LibOrder.getOrderHash).
                          bytes makerAssetData,                 // Encoded data specific to makerAsset. 
                          bytes takerAssetData                  // Encoded data specific to takerAsset.
                      );
                  
                      // Cancel event is emitted whenever an individual order is cancelled.
                      event Cancel(
                          address indexed makerAddress,         // Address that created the order.      
                          address indexed feeRecipientAddress,  // Address that would have recieved fees if order was filled.   
                          address senderAddress,                // Address that called the Exchange contract (msg.sender).
                          bytes32 indexed orderHash,            // EIP712 hash of order (see LibOrder.getOrderHash).
                          bytes makerAssetData,                 // Encoded data specific to makerAsset. 
                          bytes takerAssetData                  // Encoded data specific to takerAsset.
                      );
                  
                      // CancelUpTo event is emitted whenever `cancelOrdersUpTo` is executed succesfully.
                      event CancelUpTo(
                          address indexed makerAddress,         // Orders cancelled must have been created by this address.
                          address indexed senderAddress,        // Orders cancelled must have a `senderAddress` equal to this address.
                          uint256 orderEpoch                    // Orders with specified makerAddress and senderAddress with a salt less than this value are considered cancelled.
                      );
                  
                      /// @dev Fills the input order.
                      /// @param order Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      /// @return Amounts filled and fees paid by maker and taker.
                      function fillOrderInternal(
                          LibOrder.Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          internal
                          returns (LibFillResults.FillResults memory fillResults);
                  
                      /// @dev After calling, the order can not be filled anymore.
                      /// @param order Order struct containing order specifications.
                      function cancelOrderInternal(LibOrder.Order memory order)
                          internal;
                  
                      /// @dev Updates state with results of a fill order.
                      /// @param order that was filled.
                      /// @param takerAddress Address of taker who filled the order.
                      /// @param orderTakerAssetFilledAmount Amount of order already filled.
                      /// @return fillResults Amounts filled and fees paid by maker and taker.
                      function updateFilledState(
                          LibOrder.Order memory order,
                          address takerAddress,
                          bytes32 orderHash,
                          uint256 orderTakerAssetFilledAmount,
                          LibFillResults.FillResults memory fillResults
                      )
                          internal;
                  
                      /// @dev Updates state with results of cancelling an order.
                      ///      State is only updated if the order is currently fillable.
                      ///      Otherwise, updating state would have no effect.
                      /// @param order that was cancelled.
                      /// @param orderHash Hash of order that was cancelled.
                      function updateCancelledState(
                          LibOrder.Order memory order,
                          bytes32 orderHash
                      )
                          internal;
                      
                      /// @dev Validates context for fillOrder. Succeeds or throws.
                      /// @param order to be filled.
                      /// @param orderInfo OrderStatus, orderHash, and amount already filled of order.
                      /// @param takerAddress Address of order taker.
                      /// @param signature Proof that the orders was created by its maker.
                      function assertFillableOrder(
                          LibOrder.Order memory order,
                          LibOrder.OrderInfo memory orderInfo,
                          address takerAddress,
                          bytes memory signature
                      )
                          internal
                          view;
                      
                      /// @dev Validates context for fillOrder. Succeeds or throws.
                      /// @param order to be filled.
                      /// @param orderInfo Status, orderHash, and amount already filled of order.
                      /// @param takerAssetFillAmount Desired amount of order to fill by taker.
                      /// @param takerAssetFilledAmount Amount of takerAsset that will be filled.
                      /// @param makerAssetFilledAmount Amount of makerAsset that will be transfered.
                      function assertValidFill(
                          LibOrder.Order memory order,
                          LibOrder.OrderInfo memory orderInfo,
                          uint256 takerAssetFillAmount,
                          uint256 takerAssetFilledAmount,
                          uint256 makerAssetFilledAmount
                      )
                          internal
                          view;
                  
                      /// @dev Validates context for cancelOrder. Succeeds or throws.
                      /// @param order to be cancelled.
                      /// @param orderInfo OrderStatus, orderHash, and amount already filled of order.
                      function assertValidCancel(
                          LibOrder.Order memory order,
                          LibOrder.OrderInfo memory orderInfo
                      )
                          internal
                          view;
                  
                      /// @dev Calculates amounts filled and fees paid by maker and taker.
                      /// @param order to be filled.
                      /// @param takerAssetFilledAmount Amount of takerAsset that will be filled.
                      /// @return fillResults Amounts filled and fees paid by maker and taker.
                      function calculateFillResults(
                          LibOrder.Order memory order,
                          uint256 takerAssetFilledAmount
                      )
                          internal
                          pure
                          returns (LibFillResults.FillResults memory fillResults);
                  
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  contract ISignatureValidator {
                  
                      /// @dev Approves a hash on-chain using any valid signature type.
                      ///      After presigning a hash, the preSign signature type will become valid for that hash and signer.
                      /// @param signerAddress Address that should have signed the given hash.
                      /// @param signature Proof that the hash has been signed by signer.
                      function preSign(
                          bytes32 hash,
                          address signerAddress,
                          bytes signature
                      )
                          external;
                      
                      /// @dev Approves/unnapproves a Validator contract to verify signatures on signer's behalf.
                      /// @param validatorAddress Address of Validator contract.
                      /// @param approval Approval or disapproval of  Validator contract.
                      function setSignatureValidatorApproval(
                          address validatorAddress,
                          bool approval
                      )
                          external;
                  
                      /// @dev Verifies that a signature is valid.
                      /// @param hash Message hash that is signed.
                      /// @param signerAddress Address of signer.
                      /// @param signature Proof of signing.
                      /// @return Validity of order signature.
                      function isValidSignature(
                          bytes32 hash,
                          address signerAddress,
                          bytes memory signature
                      )
                          public
                          view
                          returns (bool isValid);
                  }
                  
                  
                  
                  contract MSignatureValidator is
                      ISignatureValidator
                  {
                      event SignatureValidatorApproval(
                          address indexed signerAddress,     // Address that approves or disapproves a contract to verify signatures.
                          address indexed validatorAddress,  // Address of signature validator contract.
                          bool approved                      // Approval or disapproval of validator contract.
                      );
                  
                      // Allowed signature types.
                      enum SignatureType {
                          Illegal,         // 0x00, default value
                          Invalid,         // 0x01
                          EIP712,          // 0x02
                          EthSign,         // 0x03
                          Wallet,          // 0x04
                          Validator,       // 0x05
                          PreSigned,       // 0x06
                          NSignatureTypes  // 0x07, number of signature types. Always leave at end.
                      }
                  
                      /// @dev Verifies signature using logic defined by Wallet contract.
                      /// @param hash Any 32 byte hash.
                      /// @param walletAddress Address that should have signed the given hash
                      ///                      and defines its own signature verification method.
                      /// @param signature Proof that the hash has been signed by signer.
                      /// @return True if the address recovered from the provided signature matches the input signer address.
                      function isValidWalletSignature(
                          bytes32 hash,
                          address walletAddress,
                          bytes signature
                      )
                          internal
                          view
                          returns (bool isValid);
                  
                      /// @dev Verifies signature using logic defined by Validator contract.
                      /// @param validatorAddress Address of validator contract.
                      /// @param hash Any 32 byte hash.
                      /// @param signerAddress Address that should have signed the given hash.
                      /// @param signature Proof that the hash has been signed by signer.
                      /// @return True if the address recovered from the provided signature matches the input signer address.
                      function isValidValidatorSignature(
                          address validatorAddress,
                          bytes32 hash,
                          address signerAddress,
                          bytes signature
                      )
                          internal
                          view
                          returns (bool isValid);
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  pragma solidity 0.4.24;
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  pragma solidity 0.4.24;
                  
                  
                  contract ITransactions {
                  
                      /// @dev Executes an exchange method call in the context of signer.
                      /// @param salt Arbitrary number to ensure uniqueness of transaction hash.
                      /// @param signerAddress Address of transaction signer.
                      /// @param data AbiV2 encoded calldata.
                      /// @param signature Proof of signer transaction by signer.
                      function executeTransaction(
                          uint256 salt,
                          address signerAddress,
                          bytes data,
                          bytes signature
                      )
                          external;
                  }
                  
                  
                  
                  contract MTransactions is
                      ITransactions
                  {
                      // Hash for the EIP712 ZeroEx Transaction Schema
                      bytes32 constant internal EIP712_ZEROEX_TRANSACTION_SCHEMA_HASH = keccak256(abi.encodePacked(
                          "ZeroExTransaction(",
                          "uint256 salt,",
                          "address signerAddress,",
                          "bytes data",
                          ")"
                      ));
                  
                      /// @dev Calculates EIP712 hash of the Transaction.
                      /// @param salt Arbitrary number to ensure uniqueness of transaction hash.
                      /// @param signerAddress Address of transaction signer.
                      /// @param data AbiV2 encoded calldata.
                      /// @return EIP712 hash of the Transaction.
                      function hashZeroExTransaction(
                          uint256 salt,
                          address signerAddress,
                          bytes memory data
                      )
                          internal
                          pure
                          returns (bytes32 result);
                  
                      /// @dev The current function will be called in the context of this address (either 0x transaction signer or `msg.sender`).
                      ///      If calling a fill function, this address will represent the taker.
                      ///      If calling a cancel function, this address will represent the maker.
                      /// @return Signer of 0x transaction if entry point is `executeTransaction`.
                      ///         `msg.sender` if entry point is any other function.
                      function getCurrentContextAddress()
                          internal
                          view
                          returns (address);
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  contract IAssetProxyDispatcher {
                  
                      /// @dev Registers an asset proxy to its asset proxy id.
                      ///      Once an asset proxy is registered, it cannot be unregistered.
                      /// @param assetProxy Address of new asset proxy to register.
                      function registerAssetProxy(address assetProxy)
                          external;
                  
                      /// @dev Gets an asset proxy.
                      /// @param assetProxyId Id of the asset proxy.
                      /// @return The asset proxy registered to assetProxyId. Returns 0x0 if no proxy is registered.
                      function getAssetProxy(bytes4 assetProxyId)
                          external
                          view
                          returns (address);
                  }
                  
                  
                  
                  contract MAssetProxyDispatcher is
                      IAssetProxyDispatcher
                  {
                      // Logs registration of new asset proxy
                      event AssetProxyRegistered(
                          bytes4 id,              // Id of new registered AssetProxy.
                          address assetProxy      // Address of new registered AssetProxy.
                      );
                  
                      /// @dev Forwards arguments to assetProxy and calls `transferFrom`. Either succeeds or throws.
                      /// @param assetData Byte array encoded for the asset.
                      /// @param from Address to transfer token from.
                      /// @param to Address to transfer token to.
                      /// @param amount Amount of token to transfer.
                      function dispatchTransferFrom(
                          bytes memory assetData,
                          address from,
                          address to,
                          uint256 amount
                      )
                          internal;
                  }
                  
                  
                  
                  contract MixinExchangeCore is
                      ReentrancyGuard,
                      LibConstants,
                      LibMath,
                      LibOrder,
                      LibFillResults,
                      MAssetProxyDispatcher,
                      MExchangeCore,
                      MSignatureValidator,
                      MTransactions
                  {
                      // Mapping of orderHash => amount of takerAsset already bought by maker
                      mapping (bytes32 => uint256) public filled;
                  
                      // Mapping of orderHash => cancelled
                      mapping (bytes32 => bool) public cancelled;
                  
                      // Mapping of makerAddress => senderAddress => lowest salt an order can have in order to be fillable
                      // Orders with specified senderAddress and with a salt less than their epoch are considered cancelled
                      mapping (address => mapping (address => uint256)) public orderEpoch;
                  
                      /// @dev Cancels all orders created by makerAddress with a salt less than or equal to the targetOrderEpoch
                      ///      and senderAddress equal to msg.sender (or null address if msg.sender == makerAddress).
                      /// @param targetOrderEpoch Orders created with a salt less or equal to this value will be cancelled.
                      function cancelOrdersUpTo(uint256 targetOrderEpoch)
                          external
                          nonReentrant
                      {
                          address makerAddress = getCurrentContextAddress();
                          // If this function is called via `executeTransaction`, we only update the orderEpoch for the makerAddress/msg.sender combination.
                          // This allows external filter contracts to add rules to how orders are cancelled via this function.
                          address senderAddress = makerAddress == msg.sender ? address(0) : msg.sender;
                  
                          // orderEpoch is initialized to 0, so to cancelUpTo we need salt + 1
                          uint256 newOrderEpoch = targetOrderEpoch + 1;
                          uint256 oldOrderEpoch = orderEpoch[makerAddress][senderAddress];
                  
                          // Ensure orderEpoch is monotonically increasing
                          require(
                              newOrderEpoch > oldOrderEpoch,
                              "INVALID_NEW_ORDER_EPOCH"
                          );
                  
                          // Update orderEpoch
                          orderEpoch[makerAddress][senderAddress] = newOrderEpoch;
                          emit CancelUpTo(
                              makerAddress,
                              senderAddress,
                              newOrderEpoch
                          );
                      }
                  
                      /// @dev Fills the input order.
                      /// @param order Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      /// @return Amounts filled and fees paid by maker and taker.
                      function fillOrder(
                          Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          public
                          nonReentrant
                          returns (FillResults memory fillResults)
                      {
                          fillResults = fillOrderInternal(
                              order,
                              takerAssetFillAmount,
                              signature
                          );
                          return fillResults;
                      }
                  
                      /// @dev After calling, the order can not be filled anymore.
                      ///      Throws if order is invalid or sender does not have permission to cancel.
                      /// @param order Order to cancel. Order must be OrderStatus.FILLABLE.
                      function cancelOrder(Order memory order)
                          public
                          nonReentrant
                      {
                          cancelOrderInternal(order);
                      }
                  
                      /// @dev Gets information about an order: status, hash, and amount filled.
                      /// @param order Order to gather information on.
                      /// @return OrderInfo Information about the order and its state.
                      ///         See LibOrder.OrderInfo for a complete description.
                      function getOrderInfo(Order memory order)
                          public
                          view
                          returns (OrderInfo memory orderInfo)
                      {
                          // Compute the order hash
                          orderInfo.orderHash = getOrderHash(order);
                  
                          // Fetch filled amount
                          orderInfo.orderTakerAssetFilledAmount = filled[orderInfo.orderHash];
                  
                          // If order.makerAssetAmount is zero, we also reject the order.
                          // While the Exchange contract handles them correctly, they create
                          // edge cases in the supporting infrastructure because they have
                          // an 'infinite' price when computed by a simple division.
                          if (order.makerAssetAmount == 0) {
                              orderInfo.orderStatus = uint8(OrderStatus.INVALID_MAKER_ASSET_AMOUNT);
                              return orderInfo;
                          }
                  
                          // If order.takerAssetAmount is zero, then the order will always
                          // be considered filled because 0 == takerAssetAmount == orderTakerAssetFilledAmount
                          // Instead of distinguishing between unfilled and filled zero taker
                          // amount orders, we choose not to support them.
                          if (order.takerAssetAmount == 0) {
                              orderInfo.orderStatus = uint8(OrderStatus.INVALID_TAKER_ASSET_AMOUNT);
                              return orderInfo;
                          }
                  
                          // Validate order availability
                          if (orderInfo.orderTakerAssetFilledAmount >= order.takerAssetAmount) {
                              orderInfo.orderStatus = uint8(OrderStatus.FULLY_FILLED);
                              return orderInfo;
                          }
                  
                          // Validate order expiration
                          // solhint-disable-next-line not-rely-on-time
                          if (block.timestamp >= order.expirationTimeSeconds) {
                              orderInfo.orderStatus = uint8(OrderStatus.EXPIRED);
                              return orderInfo;
                          }
                  
                          // Check if order has been cancelled
                          if (cancelled[orderInfo.orderHash]) {
                              orderInfo.orderStatus = uint8(OrderStatus.CANCELLED);
                              return orderInfo;
                          }
                          if (orderEpoch[order.makerAddress][order.senderAddress] > order.salt) {
                              orderInfo.orderStatus = uint8(OrderStatus.CANCELLED);
                              return orderInfo;
                          }
                  
                          // All other statuses are ruled out: order is Fillable
                          orderInfo.orderStatus = uint8(OrderStatus.FILLABLE);
                          return orderInfo;
                      }
                  
                      /// @dev Fills the input order.
                      /// @param order Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      /// @return Amounts filled and fees paid by maker and taker.
                      function fillOrderInternal(
                          Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          internal
                          returns (FillResults memory fillResults)
                      {
                          // Fetch order info
                          OrderInfo memory orderInfo = getOrderInfo(order);
                  
                          // Fetch taker address
                          address takerAddress = getCurrentContextAddress();
                  
                          // Assert that the order is fillable by taker
                          assertFillableOrder(
                              order,
                              orderInfo,
                              takerAddress,
                              signature
                          );
                  
                          // Get amount of takerAsset to fill
                          uint256 remainingTakerAssetAmount = safeSub(order.takerAssetAmount, orderInfo.orderTakerAssetFilledAmount);
                          uint256 takerAssetFilledAmount = min256(takerAssetFillAmount, remainingTakerAssetAmount);
                  
                          // Validate context
                          assertValidFill(
                              order,
                              orderInfo,
                              takerAssetFillAmount,
                              takerAssetFilledAmount,
                              fillResults.makerAssetFilledAmount
                          );
                  
                          // Compute proportional fill amounts
                          fillResults = calculateFillResults(order, takerAssetFilledAmount);
                  
                          // Update exchange internal state
                          updateFilledState(
                              order,
                              takerAddress,
                              orderInfo.orderHash,
                              orderInfo.orderTakerAssetFilledAmount,
                              fillResults
                          );
                  
                          // Settle order
                          settleOrder(
                              order,
                              takerAddress,
                              fillResults
                          );
                  
                          return fillResults;
                      }
                  
                      /// @dev After calling, the order can not be filled anymore.
                      ///      Throws if order is invalid or sender does not have permission to cancel.
                      /// @param order Order to cancel. Order must be OrderStatus.FILLABLE.
                      function cancelOrderInternal(Order memory order)
                          internal
                      {
                          // Fetch current order status
                          OrderInfo memory orderInfo = getOrderInfo(order);
                  
                          // Validate context
                          assertValidCancel(order, orderInfo);
                  
                          // Perform cancel
                          updateCancelledState(order, orderInfo.orderHash);
                      }
                  
                      /// @dev Updates state with results of a fill order.
                      /// @param order that was filled.
                      /// @param takerAddress Address of taker who filled the order.
                      /// @param orderTakerAssetFilledAmount Amount of order already filled.
                      function updateFilledState(
                          Order memory order,
                          address takerAddress,
                          bytes32 orderHash,
                          uint256 orderTakerAssetFilledAmount,
                          FillResults memory fillResults
                      )
                          internal
                      {
                          // Update state
                          filled[orderHash] = safeAdd(orderTakerAssetFilledAmount, fillResults.takerAssetFilledAmount);
                  
                          // Log order
                          emit Fill(
                              order.makerAddress,
                              order.feeRecipientAddress,
                              takerAddress,
                              msg.sender,
                              fillResults.makerAssetFilledAmount,
                              fillResults.takerAssetFilledAmount,
                              fillResults.makerFeePaid,
                              fillResults.takerFeePaid,
                              orderHash,
                              order.makerAssetData,
                              order.takerAssetData
                          );
                      }
                  
                      /// @dev Updates state with results of cancelling an order.
                      ///      State is only updated if the order is currently fillable.
                      ///      Otherwise, updating state would have no effect.
                      /// @param order that was cancelled.
                      /// @param orderHash Hash of order that was cancelled.
                      function updateCancelledState(
                          Order memory order,
                          bytes32 orderHash
                      )
                          internal
                      {
                          // Perform cancel
                          cancelled[orderHash] = true;
                  
                          // Log cancel
                          emit Cancel(
                              order.makerAddress,
                              order.feeRecipientAddress,
                              msg.sender,
                              orderHash,
                              order.makerAssetData,
                              order.takerAssetData
                          );
                      }
                  
                      /// @dev Validates context for fillOrder. Succeeds or throws.
                      /// @param order to be filled.
                      /// @param orderInfo OrderStatus, orderHash, and amount already filled of order.
                      /// @param takerAddress Address of order taker.
                      /// @param signature Proof that the orders was created by its maker.
                      function assertFillableOrder(
                          Order memory order,
                          OrderInfo memory orderInfo,
                          address takerAddress,
                          bytes memory signature
                      )
                          internal
                          view
                      {
                          // An order can only be filled if its status is FILLABLE.
                          require(
                              orderInfo.orderStatus == uint8(OrderStatus.FILLABLE),
                              "ORDER_UNFILLABLE"
                          );
                  
                          // Validate sender is allowed to fill this order
                          if (order.senderAddress != address(0)) {
                              require(
                                  order.senderAddress == msg.sender,
                                  "INVALID_SENDER"
                              );
                          }
                  
                          // Validate taker is allowed to fill this order
                          if (order.takerAddress != address(0)) {
                              require(
                                  order.takerAddress == takerAddress,
                                  "INVALID_TAKER"
                              );
                          }
                  
                          // Validate Maker signature (check only if first time seen)
                          if (orderInfo.orderTakerAssetFilledAmount == 0) {
                              require(
                                  isValidSignature(
                                      orderInfo.orderHash,
                                      order.makerAddress,
                                      signature
                                  ),
                                  "INVALID_ORDER_SIGNATURE"
                              );
                          }
                      }
                  
                      /// @dev Validates context for fillOrder. Succeeds or throws.
                      /// @param order to be filled.
                      /// @param orderInfo OrderStatus, orderHash, and amount already filled of order.
                      /// @param takerAssetFillAmount Desired amount of order to fill by taker.
                      /// @param takerAssetFilledAmount Amount of takerAsset that will be filled.
                      /// @param makerAssetFilledAmount Amount of makerAsset that will be transfered.
                      function assertValidFill(
                          Order memory order,
                          OrderInfo memory orderInfo,
                          uint256 takerAssetFillAmount,  // TODO: use FillResults
                          uint256 takerAssetFilledAmount,
                          uint256 makerAssetFilledAmount
                      )
                          internal
                          view
                      {
                          // Revert if fill amount is invalid
                          // TODO: reconsider necessity for v2.1
                          require(
                              takerAssetFillAmount != 0,
                              "INVALID_TAKER_AMOUNT"
                          );
                  
                          // Make sure taker does not pay more than desired amount
                          // NOTE: This assertion should never fail, it is here
                          //       as an extra defence against potential bugs.
                          require(
                              takerAssetFilledAmount <= takerAssetFillAmount,
                              "TAKER_OVERPAY"
                          );
                  
                          // Make sure order is not overfilled
                          // NOTE: This assertion should never fail, it is here
                          //       as an extra defence against potential bugs.
                          require(
                              safeAdd(orderInfo.orderTakerAssetFilledAmount, takerAssetFilledAmount) <= order.takerAssetAmount,
                              "ORDER_OVERFILL"
                          );
                  
                          // Make sure order is filled at acceptable price.
                          // The order has an implied price from the makers perspective:
                          //    order price = order.makerAssetAmount / order.takerAssetAmount
                          // i.e. the number of makerAsset maker is paying per takerAsset. The
                          // maker is guaranteed to get this price or a better (lower) one. The
                          // actual price maker is getting in this fill is:
                          //    fill price = makerAssetFilledAmount / takerAssetFilledAmount
                          // We need `fill price <= order price` for the fill to be fair to maker.
                          // This amounts to:
                          //     makerAssetFilledAmount        order.makerAssetAmount
                          //    ------------------------  <=  -----------------------
                          //     takerAssetFilledAmount        order.takerAssetAmount
                          // or, equivalently:
                          //     makerAssetFilledAmount * order.takerAssetAmount <=
                          //     order.makerAssetAmount * takerAssetFilledAmount
                          // NOTE: This assertion should never fail, it is here
                          //       as an extra defence against potential bugs.
                          require(
                              safeMul(makerAssetFilledAmount, order.takerAssetAmount)
                              <=
                              safeMul(order.makerAssetAmount, takerAssetFilledAmount),
                              "INVALID_FILL_PRICE"
                          );
                      }
                  
                      /// @dev Validates context for cancelOrder. Succeeds or throws.
                      /// @param order to be cancelled.
                      /// @param orderInfo OrderStatus, orderHash, and amount already filled of order.
                      function assertValidCancel(
                          Order memory order,
                          OrderInfo memory orderInfo
                      )
                          internal
                          view
                      {
                          // Ensure order is valid
                          // An order can only be cancelled if its status is FILLABLE.
                          require(
                              orderInfo.orderStatus == uint8(OrderStatus.FILLABLE),
                              "ORDER_UNFILLABLE"
                          );
                  
                          // Validate sender is allowed to cancel this order
                          if (order.senderAddress != address(0)) {
                              require(
                                  order.senderAddress == msg.sender,
                                  "INVALID_SENDER"
                              );
                          }
                  
                          // Validate transaction signed by maker
                          address makerAddress = getCurrentContextAddress();
                          require(
                              order.makerAddress == makerAddress,
                              "INVALID_MAKER"
                          );
                      }
                  
                      /// @dev Calculates amounts filled and fees paid by maker and taker.
                      /// @param order to be filled.
                      /// @param takerAssetFilledAmount Amount of takerAsset that will be filled.
                      /// @return fillResults Amounts filled and fees paid by maker and taker.
                      function calculateFillResults(
                          Order memory order,
                          uint256 takerAssetFilledAmount
                      )
                          internal
                          pure
                          returns (FillResults memory fillResults)
                      {
                          // Compute proportional transfer amounts
                          fillResults.takerAssetFilledAmount = takerAssetFilledAmount;
                          fillResults.makerAssetFilledAmount = safeGetPartialAmountFloor(
                              takerAssetFilledAmount,
                              order.takerAssetAmount,
                              order.makerAssetAmount
                          );
                          fillResults.makerFeePaid = safeGetPartialAmountFloor(
                              fillResults.makerAssetFilledAmount,
                              order.makerAssetAmount,
                              order.makerFee
                          );
                          fillResults.takerFeePaid = safeGetPartialAmountFloor(
                              takerAssetFilledAmount,
                              order.takerAssetAmount,
                              order.takerFee
                          );
                  
                          return fillResults;
                      }
                  
                      /// @dev Settles an order by transferring assets between counterparties.
                      /// @param order Order struct containing order specifications.
                      /// @param takerAddress Address selling takerAsset and buying makerAsset.
                      /// @param fillResults Amounts to be filled and fees paid by maker and taker.
                      function settleOrder(
                          LibOrder.Order memory order,
                          address takerAddress,
                          LibFillResults.FillResults memory fillResults
                      )
                          private
                      {
                          bytes memory zrxAssetData = ZRX_ASSET_DATA;
                          dispatchTransferFrom(
                              order.makerAssetData,
                              order.makerAddress,
                              takerAddress,
                              fillResults.makerAssetFilledAmount
                          );
                          dispatchTransferFrom(
                              order.takerAssetData,
                              takerAddress,
                              order.makerAddress,
                              fillResults.takerAssetFilledAmount
                          );
                          dispatchTransferFrom(
                              zrxAssetData,
                              order.makerAddress,
                              order.feeRecipientAddress,
                              fillResults.makerFeePaid
                          );
                          dispatchTransferFrom(
                              zrxAssetData,
                              takerAddress,
                              order.feeRecipientAddress,
                              fillResults.takerFeePaid
                          );
                      }
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  library LibBytes {
                  
                      using LibBytes for bytes;
                  
                      /// @dev Gets the memory address for a byte array.
                      /// @param input Byte array to lookup.
                      /// @return memoryAddress Memory address of byte array. This
                      ///         points to the header of the byte array which contains
                      ///         the length.
                      function rawAddress(bytes memory input)
                          internal
                          pure
                          returns (uint256 memoryAddress)
                      {
                          assembly {
                              memoryAddress := input
                          }
                          return memoryAddress;
                      }
                      
                      /// @dev Gets the memory address for the contents of a byte array.
                      /// @param input Byte array to lookup.
                      /// @return memoryAddress Memory address of the contents of the byte array.
                      function contentAddress(bytes memory input)
                          internal
                          pure
                          returns (uint256 memoryAddress)
                      {
                          assembly {
                              memoryAddress := add(input, 32)
                          }
                          return memoryAddress;
                      }
                  
                      /// @dev Copies `length` bytes from memory location `source` to `dest`.
                      /// @param dest memory address to copy bytes to.
                      /// @param source memory address to copy bytes from.
                      /// @param length number of bytes to copy.
                      function memCopy(
                          uint256 dest,
                          uint256 source,
                          uint256 length
                      )
                          internal
                          pure
                      {
                          if (length < 32) {
                              // Handle a partial word by reading destination and masking
                              // off the bits we are interested in.
                              // This correctly handles overlap, zero lengths and source == dest
                              assembly {
                                  let mask := sub(exp(256, sub(32, length)), 1)
                                  let s := and(mload(source), not(mask))
                                  let d := and(mload(dest), mask)
                                  mstore(dest, or(s, d))
                              }
                          } else {
                              // Skip the O(length) loop when source == dest.
                              if (source == dest) {
                                  return;
                              }
                  
                              // For large copies we copy whole words at a time. The final
                              // word is aligned to the end of the range (instead of after the
                              // previous) to handle partial words. So a copy will look like this:
                              //
                              //  ####
                              //      ####
                              //          ####
                              //            ####
                              //
                              // We handle overlap in the source and destination range by
                              // changing the copying direction. This prevents us from
                              // overwriting parts of source that we still need to copy.
                              //
                              // This correctly handles source == dest
                              //
                              if (source > dest) {
                                  assembly {
                                      // We subtract 32 from `sEnd` and `dEnd` because it
                                      // is easier to compare with in the loop, and these
                                      // are also the addresses we need for copying the
                                      // last bytes.
                                      length := sub(length, 32)
                                      let sEnd := add(source, length)
                                      let dEnd := add(dest, length)
                  
                                      // Remember the last 32 bytes of source
                                      // This needs to be done here and not after the loop
                                      // because we may have overwritten the last bytes in
                                      // source already due to overlap.
                                      let last := mload(sEnd)
                  
                                      // Copy whole words front to back
                                      // Note: the first check is always true,
                                      // this could have been a do-while loop.
                                      // solhint-disable-next-line no-empty-blocks
                                      for {} lt(source, sEnd) {} {
                                          mstore(dest, mload(source))
                                          source := add(source, 32)
                                          dest := add(dest, 32)
                                      }
                                      
                                      // Write the last 32 bytes
                                      mstore(dEnd, last)
                                  }
                              } else {
                                  assembly {
                                      // We subtract 32 from `sEnd` and `dEnd` because those
                                      // are the starting points when copying a word at the end.
                                      length := sub(length, 32)
                                      let sEnd := add(source, length)
                                      let dEnd := add(dest, length)
                  
                                      // Remember the first 32 bytes of source
                                      // This needs to be done here and not after the loop
                                      // because we may have overwritten the first bytes in
                                      // source already due to overlap.
                                      let first := mload(source)
                  
                                      // Copy whole words back to front
                                      // We use a signed comparisson here to allow dEnd to become
                                      // negative (happens when source and dest < 32). Valid
                                      // addresses in local memory will never be larger than
                                      // 2**255, so they can be safely re-interpreted as signed.
                                      // Note: the first check is always true,
                                      // this could have been a do-while loop.
                                      // solhint-disable-next-line no-empty-blocks
                                      for {} slt(dest, dEnd) {} {
                                          mstore(dEnd, mload(sEnd))
                                          sEnd := sub(sEnd, 32)
                                          dEnd := sub(dEnd, 32)
                                      }
                                      
                                      // Write the first 32 bytes
                                      mstore(dest, first)
                                  }
                              }
                          }
                      }
                  
                      /// @dev Returns a slices from a byte array.
                      /// @param b The byte array to take a slice from.
                      /// @param from The starting index for the slice (inclusive).
                      /// @param to The final index for the slice (exclusive).
                      /// @return result The slice containing bytes at indices [from, to)
                      function slice(
                          bytes memory b,
                          uint256 from,
                          uint256 to
                      )
                          internal
                          pure
                          returns (bytes memory result)
                      {
                          require(
                              from <= to,
                              "FROM_LESS_THAN_TO_REQUIRED"
                          );
                          require(
                              to < b.length,
                              "TO_LESS_THAN_LENGTH_REQUIRED"
                          );
                          
                          // Create a new bytes structure and copy contents
                          result = new bytes(to - from);
                          memCopy(
                              result.contentAddress(),
                              b.contentAddress() + from,
                              result.length
                          );
                          return result;
                      }
                      
                      /// @dev Returns a slice from a byte array without preserving the input.
                      /// @param b The byte array to take a slice from. Will be destroyed in the process.
                      /// @param from The starting index for the slice (inclusive).
                      /// @param to The final index for the slice (exclusive).
                      /// @return result The slice containing bytes at indices [from, to)
                      /// @dev When `from == 0`, the original array will match the slice. In other cases its state will be corrupted.
                      function sliceDestructive(
                          bytes memory b,
                          uint256 from,
                          uint256 to
                      )
                          internal
                          pure
                          returns (bytes memory result)
                      {
                          require(
                              from <= to,
                              "FROM_LESS_THAN_TO_REQUIRED"
                          );
                          require(
                              to < b.length,
                              "TO_LESS_THAN_LENGTH_REQUIRED"
                          );
                          
                          // Create a new bytes structure around [from, to) in-place.
                          assembly {
                              result := add(b, from)
                              mstore(result, sub(to, from))
                          }
                          return result;
                      }
                  
                      /// @dev Pops the last byte off of a byte array by modifying its length.
                      /// @param b Byte array that will be modified.
                      /// @return The byte that was popped off.
                      function popLastByte(bytes memory b)
                          internal
                          pure
                          returns (bytes1 result)
                      {
                          require(
                              b.length > 0,
                              "GREATER_THAN_ZERO_LENGTH_REQUIRED"
                          );
                  
                          // Store last byte.
                          result = b[b.length - 1];
                  
                          assembly {
                              // Decrement length of byte array.
                              let newLen := sub(mload(b), 1)
                              mstore(b, newLen)
                          }
                          return result;
                      }
                  
                      /// @dev Pops the last 20 bytes off of a byte array by modifying its length.
                      /// @param b Byte array that will be modified.
                      /// @return The 20 byte address that was popped off.
                      function popLast20Bytes(bytes memory b)
                          internal
                          pure
                          returns (address result)
                      {
                          require(
                              b.length >= 20,
                              "GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED"
                          );
                  
                          // Store last 20 bytes.
                          result = readAddress(b, b.length - 20);
                  
                          assembly {
                              // Subtract 20 from byte array length.
                              let newLen := sub(mload(b), 20)
                              mstore(b, newLen)
                          }
                          return result;
                      }
                  
                      /// @dev Tests equality of two byte arrays.
                      /// @param lhs First byte array to compare.
                      /// @param rhs Second byte array to compare.
                      /// @return True if arrays are the same. False otherwise.
                      function equals(
                          bytes memory lhs,
                          bytes memory rhs
                      )
                          internal
                          pure
                          returns (bool equal)
                      {
                          // Keccak gas cost is 30 + numWords * 6. This is a cheap way to compare.
                          // We early exit on unequal lengths, but keccak would also correctly
                          // handle this.
                          return lhs.length == rhs.length && keccak256(lhs) == keccak256(rhs);
                      }
                  
                      /// @dev Reads an address from a position in a byte array.
                      /// @param b Byte array containing an address.
                      /// @param index Index in byte array of address.
                      /// @return address from byte array.
                      function readAddress(
                          bytes memory b,
                          uint256 index
                      )
                          internal
                          pure
                          returns (address result)
                      {
                          require(
                              b.length >= index + 20,  // 20 is length of address
                              "GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED"
                          );
                  
                          // Add offset to index:
                          // 1. Arrays are prefixed by 32-byte length parameter (add 32 to index)
                          // 2. Account for size difference between address length and 32-byte storage word (subtract 12 from index)
                          index += 20;
                  
                          // Read address from array memory
                          assembly {
                              // 1. Add index to address of bytes array
                              // 2. Load 32-byte word from memory
                              // 3. Apply 20-byte mask to obtain address
                              result := and(mload(add(b, index)), 0xffffffffffffffffffffffffffffffffffffffff)
                          }
                          return result;
                      }
                  
                      /// @dev Writes an address into a specific position in a byte array.
                      /// @param b Byte array to insert address into.
                      /// @param index Index in byte array of address.
                      /// @param input Address to put into byte array.
                      function writeAddress(
                          bytes memory b,
                          uint256 index,
                          address input
                      )
                          internal
                          pure
                      {
                          require(
                              b.length >= index + 20,  // 20 is length of address
                              "GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED"
                          );
                  
                          // Add offset to index:
                          // 1. Arrays are prefixed by 32-byte length parameter (add 32 to index)
                          // 2. Account for size difference between address length and 32-byte storage word (subtract 12 from index)
                          index += 20;
                  
                          // Store address into array memory
                          assembly {
                              // The address occupies 20 bytes and mstore stores 32 bytes.
                              // First fetch the 32-byte word where we'll be storing the address, then
                              // apply a mask so we have only the bytes in the word that the address will not occupy.
                              // Then combine these bytes with the address and store the 32 bytes back to memory with mstore.
                  
                              // 1. Add index to address of bytes array
                              // 2. Load 32-byte word from memory
                              // 3. Apply 12-byte mask to obtain extra bytes occupying word of memory where we'll store the address
                              let neighbors := and(
                                  mload(add(b, index)),
                                  0xffffffffffffffffffffffff0000000000000000000000000000000000000000
                              )
                              
                              // Make sure input address is clean.
                              // (Solidity does not guarantee this)
                              input := and(input, 0xffffffffffffffffffffffffffffffffffffffff)
                  
                              // Store the neighbors and address into memory
                              mstore(add(b, index), xor(input, neighbors))
                          }
                      }
                  
                      /// @dev Reads a bytes32 value from a position in a byte array.
                      /// @param b Byte array containing a bytes32 value.
                      /// @param index Index in byte array of bytes32 value.
                      /// @return bytes32 value from byte array.
                      function readBytes32(
                          bytes memory b,
                          uint256 index
                      )
                          internal
                          pure
                          returns (bytes32 result)
                      {
                          require(
                              b.length >= index + 32,
                              "GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED"
                          );
                  
                          // Arrays are prefixed by a 256 bit length parameter
                          index += 32;
                  
                          // Read the bytes32 from array memory
                          assembly {
                              result := mload(add(b, index))
                          }
                          return result;
                      }
                  
                      /// @dev Writes a bytes32 into a specific position in a byte array.
                      /// @param b Byte array to insert <input> into.
                      /// @param index Index in byte array of <input>.
                      /// @param input bytes32 to put into byte array.
                      function writeBytes32(
                          bytes memory b,
                          uint256 index,
                          bytes32 input
                      )
                          internal
                          pure
                      {
                          require(
                              b.length >= index + 32,
                              "GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED"
                          );
                  
                          // Arrays are prefixed by a 256 bit length parameter
                          index += 32;
                  
                          // Read the bytes32 from array memory
                          assembly {
                              mstore(add(b, index), input)
                          }
                      }
                  
                      /// @dev Reads a uint256 value from a position in a byte array.
                      /// @param b Byte array containing a uint256 value.
                      /// @param index Index in byte array of uint256 value.
                      /// @return uint256 value from byte array.
                      function readUint256(
                          bytes memory b,
                          uint256 index
                      )
                          internal
                          pure
                          returns (uint256 result)
                      {
                          result = uint256(readBytes32(b, index));
                          return result;
                      }
                  
                      /// @dev Writes a uint256 into a specific position in a byte array.
                      /// @param b Byte array to insert <input> into.
                      /// @param index Index in byte array of <input>.
                      /// @param input uint256 to put into byte array.
                      function writeUint256(
                          bytes memory b,
                          uint256 index,
                          uint256 input
                      )
                          internal
                          pure
                      {
                          writeBytes32(b, index, bytes32(input));
                      }
                  
                      /// @dev Reads an unpadded bytes4 value from a position in a byte array.
                      /// @param b Byte array containing a bytes4 value.
                      /// @param index Index in byte array of bytes4 value.
                      /// @return bytes4 value from byte array.
                      function readBytes4(
                          bytes memory b,
                          uint256 index
                      )
                          internal
                          pure
                          returns (bytes4 result)
                      {
                          require(
                              b.length >= index + 4,
                              "GREATER_OR_EQUAL_TO_4_LENGTH_REQUIRED"
                          );
                  
                          // Arrays are prefixed by a 32 byte length field
                          index += 32;
                  
                          // Read the bytes4 from array memory
                          assembly {
                              result := mload(add(b, index))
                              // Solidity does not require us to clean the trailing bytes.
                              // We do it anyway
                              result := and(result, 0xFFFFFFFF00000000000000000000000000000000000000000000000000000000)
                          }
                          return result;
                      }
                  
                      /// @dev Reads nested bytes from a specific position.
                      /// @dev NOTE: the returned value overlaps with the input value.
                      ///            Both should be treated as immutable.
                      /// @param b Byte array containing nested bytes.
                      /// @param index Index of nested bytes.
                      /// @return result Nested bytes.
                      function readBytesWithLength(
                          bytes memory b,
                          uint256 index
                      )
                          internal
                          pure
                          returns (bytes memory result)
                      {
                          // Read length of nested bytes
                          uint256 nestedBytesLength = readUint256(b, index);
                          index += 32;
                  
                          // Assert length of <b> is valid, given
                          // length of nested bytes
                          require(
                              b.length >= index + nestedBytesLength,
                              "GREATER_OR_EQUAL_TO_NESTED_BYTES_LENGTH_REQUIRED"
                          );
                          
                          // Return a pointer to the byte array as it exists inside `b`
                          assembly {
                              result := add(b, index)
                          }
                          return result;
                      }
                  
                      /// @dev Inserts bytes at a specific position in a byte array.
                      /// @param b Byte array to insert <input> into.
                      /// @param index Index in byte array of <input>.
                      /// @param input bytes to insert.
                      function writeBytesWithLength(
                          bytes memory b,
                          uint256 index,
                          bytes memory input
                      )
                          internal
                          pure
                      {
                          // Assert length of <b> is valid, given
                          // length of input
                          require(
                              b.length >= index + 32 + input.length,  // 32 bytes to store length
                              "GREATER_OR_EQUAL_TO_NESTED_BYTES_LENGTH_REQUIRED"
                          );
                  
                          // Copy <input> into <b>
                          memCopy(
                              b.contentAddress() + index,
                              input.rawAddress(), // includes length of <input>
                              input.length + 32   // +32 bytes to store <input> length
                          );
                      }
                  
                      /// @dev Performs a deep copy of a byte array onto another byte array of greater than or equal length.
                      /// @param dest Byte array that will be overwritten with source bytes.
                      /// @param source Byte array to copy onto dest bytes.
                      function deepCopyBytes(
                          bytes memory dest,
                          bytes memory source
                      )
                          internal
                          pure
                      {
                          uint256 sourceLen = source.length;
                          // Dest length must be >= source length, or some bytes would not be copied.
                          require(
                              dest.length >= sourceLen,
                              "GREATER_OR_EQUAL_TO_SOURCE_BYTES_LENGTH_REQUIRED"
                          );
                          memCopy(
                              dest.contentAddress(),
                              source.contentAddress(),
                              sourceLen
                          );
                      }
                  }
                  
                  
                  
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  contract IWallet {
                  
                      /// @dev Verifies that a signature is valid.
                      /// @param hash Message hash that is signed.
                      /// @param signature Proof of signing.
                      /// @return Validity of order signature.
                      function isValidSignature(
                          bytes32 hash,
                          bytes signature
                      )
                          external
                          view
                          returns (bool isValid);
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  contract IValidator {
                  
                      /// @dev Verifies that a signature is valid.
                      /// @param hash Message hash that is signed.
                      /// @param signerAddress Address that should have signed the given hash.
                      /// @param signature Proof of signing.
                      /// @return Validity of order signature.
                      function isValidSignature(
                          bytes32 hash,
                          address signerAddress,
                          bytes signature
                      )
                          external
                          view
                          returns (bool isValid);
                  }
                  
                  
                  
                  contract MixinSignatureValidator is
                      ReentrancyGuard,
                      MSignatureValidator,
                      MTransactions
                  {
                      using LibBytes for bytes;
                  
                      // Mapping of hash => signer => signed
                      mapping (bytes32 => mapping (address => bool)) public preSigned;
                  
                      // Mapping of signer => validator => approved
                      mapping (address => mapping (address => bool)) public allowedValidators;
                  
                      /// @dev Approves a hash on-chain using any valid signature type.
                      ///      After presigning a hash, the preSign signature type will become valid for that hash and signer.
                      /// @param signerAddress Address that should have signed the given hash.
                      /// @param signature Proof that the hash has been signed by signer.
                      function preSign(
                          bytes32 hash,
                          address signerAddress,
                          bytes signature
                      )
                          external
                      {
                          if (signerAddress != msg.sender) {
                              require(
                                  isValidSignature(
                                      hash,
                                      signerAddress,
                                      signature
                                  ),
                                  "INVALID_SIGNATURE"
                              );
                          }
                          preSigned[hash][signerAddress] = true;
                      }
                  
                      /// @dev Approves/unnapproves a Validator contract to verify signatures on signer's behalf.
                      /// @param validatorAddress Address of Validator contract.
                      /// @param approval Approval or disapproval of  Validator contract.
                      function setSignatureValidatorApproval(
                          address validatorAddress,
                          bool approval
                      )
                          external
                          nonReentrant
                      {
                          address signerAddress = getCurrentContextAddress();
                          allowedValidators[signerAddress][validatorAddress] = approval;
                          emit SignatureValidatorApproval(
                              signerAddress,
                              validatorAddress,
                              approval
                          );
                      }
                  
                      /// @dev Verifies that a hash has been signed by the given signer.
                      /// @param hash Any 32 byte hash.
                      /// @param signerAddress Address that should have signed the given hash.
                      /// @param signature Proof that the hash has been signed by signer.
                      /// @return True if the address recovered from the provided signature matches the input signer address.
                      function isValidSignature(
                          bytes32 hash,
                          address signerAddress,
                          bytes memory signature
                      )
                          public
                          view
                          returns (bool isValid)
                      {
                          require(
                              signature.length > 0,
                              "LENGTH_GREATER_THAN_0_REQUIRED"
                          );
                  
                          // Pop last byte off of signature byte array.
                          uint8 signatureTypeRaw = uint8(signature.popLastByte());
                  
                          // Ensure signature is supported
                          require(
                              signatureTypeRaw < uint8(SignatureType.NSignatureTypes),
                              "SIGNATURE_UNSUPPORTED"
                          );
                  
                          SignatureType signatureType = SignatureType(signatureTypeRaw);
                  
                          // Variables are not scoped in Solidity.
                          uint8 v;
                          bytes32 r;
                          bytes32 s;
                          address recovered;
                  
                          // Always illegal signature.
                          // This is always an implicit option since a signer can create a
                          // signature array with invalid type or length. We may as well make
                          // it an explicit option. This aids testing and analysis. It is
                          // also the initialization value for the enum type.
                          if (signatureType == SignatureType.Illegal) {
                              revert("SIGNATURE_ILLEGAL");
                  
                          // Always invalid signature.
                          // Like Illegal, this is always implicitly available and therefore
                          // offered explicitly. It can be implicitly created by providing
                          // a correctly formatted but incorrect signature.
                          } else if (signatureType == SignatureType.Invalid) {
                              require(
                                  signature.length == 0,
                                  "LENGTH_0_REQUIRED"
                              );
                              isValid = false;
                              return isValid;
                  
                          // Signature using EIP712
                          } else if (signatureType == SignatureType.EIP712) {
                              require(
                                  signature.length == 65,
                                  "LENGTH_65_REQUIRED"
                              );
                              v = uint8(signature[0]);
                              r = signature.readBytes32(1);
                              s = signature.readBytes32(33);
                              recovered = ecrecover(
                                  hash,
                                  v,
                                  r,
                                  s
                              );
                              isValid = signerAddress == recovered;
                              return isValid;
                  
                          // Signed using web3.eth_sign
                          } else if (signatureType == SignatureType.EthSign) {
                              require(
                                  signature.length == 65,
                                  "LENGTH_65_REQUIRED"
                              );
                              v = uint8(signature[0]);
                              r = signature.readBytes32(1);
                              s = signature.readBytes32(33);
                              recovered = ecrecover(
                                  keccak256(abi.encodePacked(
                                      "\x19Ethereum Signed Message:\n32",
                                      hash
                                  )),
                                  v,
                                  r,
                                  s
                              );
                              isValid = signerAddress == recovered;
                              return isValid;
                  
                          // Signature verified by wallet contract.
                          // If used with an order, the maker of the order is the wallet contract.
                          } else if (signatureType == SignatureType.Wallet) {
                              isValid = isValidWalletSignature(
                                  hash,
                                  signerAddress,
                                  signature
                              );
                              return isValid;
                  
                          // Signature verified by validator contract.
                          // If used with an order, the maker of the order can still be an EOA.
                          // A signature using this type should be encoded as:
                          // | Offset   | Length | Contents                        |
                          // | 0x00     | x      | Signature to validate           |
                          // | 0x00 + x | 20     | Address of validator contract   |
                          // | 0x14 + x | 1      | Signature type is always "\x06" |
                          } else if (signatureType == SignatureType.Validator) {
                              // Pop last 20 bytes off of signature byte array.
                              address validatorAddress = signature.popLast20Bytes();
                  
                              // Ensure signer has approved validator.
                              if (!allowedValidators[signerAddress][validatorAddress]) {
                                  return false;
                              }
                              isValid = isValidValidatorSignature(
                                  validatorAddress,
                                  hash,
                                  signerAddress,
                                  signature
                              );
                              return isValid;
                  
                          // Signer signed hash previously using the preSign function.
                          } else if (signatureType == SignatureType.PreSigned) {
                              isValid = preSigned[hash][signerAddress];
                              return isValid;
                          }
                  
                          // Anything else is illegal (We do not return false because
                          // the signature may actually be valid, just not in a format
                          // that we currently support. In this case returning false
                          // may lead the caller to incorrectly believe that the
                          // signature was invalid.)
                          revert("SIGNATURE_UNSUPPORTED");
                      }
                  
                      /// @dev Verifies signature using logic defined by Wallet contract.
                      /// @param hash Any 32 byte hash.
                      /// @param walletAddress Address that should have signed the given hash
                      ///                      and defines its own signature verification method.
                      /// @param signature Proof that the hash has been signed by signer.
                      /// @return True if signature is valid for given wallet..
                      function isValidWalletSignature(
                          bytes32 hash,
                          address walletAddress,
                          bytes signature
                      )
                          internal
                          view
                          returns (bool isValid)
                      {
                          bytes memory calldata = abi.encodeWithSelector(
                              IWallet(walletAddress).isValidSignature.selector,
                              hash,
                              signature
                          );
                          bytes32 magic_salt = bytes32(bytes4(keccak256("isValidWalletSignature(bytes32,address,bytes)")));
                          assembly {
                              if iszero(extcodesize(walletAddress)) {
                                  // Revert with `Error("WALLET_ERROR")`
                                  mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                                  mstore(32, 0x0000002000000000000000000000000000000000000000000000000000000000)
                                  mstore(64, 0x0000000c57414c4c45545f4552524f5200000000000000000000000000000000)
                                  mstore(96, 0)
                                  revert(0, 100)
                              }
                  
                              let cdStart := add(calldata, 32)
                              let success := staticcall(
                                  gas,              // forward all gas
                                  walletAddress,    // address of Wallet contract
                                  cdStart,          // pointer to start of input
                                  mload(calldata),  // length of input
                                  cdStart,          // write output over input
                                  32                // output size is 32 bytes
                              )
                  
                              if iszero(eq(returndatasize(), 32)) {
                                  // Revert with `Error("WALLET_ERROR")`
                                  mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                                  mstore(32, 0x0000002000000000000000000000000000000000000000000000000000000000)
                                  mstore(64, 0x0000000c57414c4c45545f4552524f5200000000000000000000000000000000)
                                  mstore(96, 0)
                                  revert(0, 100)
                              }
                  
                              switch success
                              case 0 {
                                  // Revert with `Error("WALLET_ERROR")`
                                  mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                                  mstore(32, 0x0000002000000000000000000000000000000000000000000000000000000000)
                                  mstore(64, 0x0000000c57414c4c45545f4552524f5200000000000000000000000000000000)
                                  mstore(96, 0)
                                  revert(0, 100)
                              }
                              case 1 {
                                  // Signature is valid if call did not revert and returned true
                                  isValid := eq(
                                      and(mload(cdStart), 0xffffffff00000000000000000000000000000000000000000000000000000000),
                                      and(magic_salt, 0xffffffff00000000000000000000000000000000000000000000000000000000)
                                  )
                              }
                          }
                          return isValid;
                      }
                  
                      /// @dev Verifies signature using logic defined by Validator contract.
                      /// @param validatorAddress Address of validator contract.
                      /// @param hash Any 32 byte hash.
                      /// @param signerAddress Address that should have signed the given hash.
                      /// @param signature Proof that the hash has been signed by signer.
                      /// @return True if the address recovered from the provided signature matches the input signer address.
                      function isValidValidatorSignature(
                          address validatorAddress,
                          bytes32 hash,
                          address signerAddress,
                          bytes signature
                      )
                          internal
                          view
                          returns (bool isValid)
                      {
                          bytes memory calldata = abi.encodeWithSelector(
                              IValidator(signerAddress).isValidSignature.selector,
                              hash,
                              signerAddress,
                              signature
                          );
                          bytes32 magic_salt = bytes32(bytes4(keccak256("isValidValidatorSignature(address,bytes32,address,bytes)")));
                          assembly {
                              if iszero(extcodesize(validatorAddress)) {
                                  // Revert with `Error("VALIDATOR_ERROR")`
                                  mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                                  mstore(32, 0x0000002000000000000000000000000000000000000000000000000000000000)
                                  mstore(64, 0x0000000f56414c494441544f525f4552524f5200000000000000000000000000)
                                  mstore(96, 0)
                                  revert(0, 100)
                              }
                  
                              let cdStart := add(calldata, 32)
                              let success := staticcall(
                                  gas,               // forward all gas
                                  validatorAddress,  // address of Validator contract
                                  cdStart,           // pointer to start of input
                                  mload(calldata),   // length of input
                                  cdStart,           // write output over input
                                  32                 // output size is 32 bytes
                              )
                  
                              if iszero(eq(returndatasize(), 32)) {
                                  // Revert with `Error("VALIDATOR_ERROR")`
                                  mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                                  mstore(32, 0x0000002000000000000000000000000000000000000000000000000000000000)
                                  mstore(64, 0x0000000f56414c494441544f525f4552524f5200000000000000000000000000)
                                  mstore(96, 0)
                                  revert(0, 100)
                              }
                  
                              switch success
                              case 0 {
                                  // Revert with `Error("VALIDATOR_ERROR")`
                                  mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                                  mstore(32, 0x0000002000000000000000000000000000000000000000000000000000000000)
                                  mstore(64, 0x0000000f56414c494441544f525f4552524f5200000000000000000000000000)
                                  mstore(96, 0)
                                  revert(0, 100)
                              }
                              case 1 {
                                  // Signature is valid if call did not revert and returned true
                                  isValid := eq(
                                      and(mload(cdStart), 0xffffffff00000000000000000000000000000000000000000000000000000000),
                                      and(magic_salt, 0xffffffff00000000000000000000000000000000000000000000000000000000)
                                  )
                              }
                          }
                          return isValid;
                      }
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  
                  
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  
                  
                  contract LibAbiEncoder {
                  
                      /// @dev ABI encodes calldata for `fillOrder`.
                      /// @param order Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      /// @return ABI encoded calldata for `fillOrder`.
                      function abiEncodeFillOrder(
                          LibOrder.Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          internal
                          pure
                          returns (bytes memory fillOrderCalldata)
                      {
                          // We need to call MExchangeCore.fillOrder using a delegatecall in
                          // assembly so that we can intercept a call that throws. For this, we
                          // need the input encoded in memory in the Ethereum ABIv2 format [1].
                  
                          // | Area     | Offset | Length  | Contents                                    |
                          // | -------- |--------|---------|-------------------------------------------- |
                          // | Header   | 0x00   | 4       | function selector                           |
                          // | Params   |        | 3 * 32  | function parameters:                        |
                          // |          | 0x00   |         |   1. offset to order (*)                    |
                          // |          | 0x20   |         |   2. takerAssetFillAmount                   |
                          // |          | 0x40   |         |   3. offset to signature (*)                |
                          // | Data     |        | 12 * 32 | order:                                      |
                          // |          | 0x000  |         |   1.  senderAddress                         |
                          // |          | 0x020  |         |   2.  makerAddress                          |
                          // |          | 0x040  |         |   3.  takerAddress                          |
                          // |          | 0x060  |         |   4.  feeRecipientAddress                   |
                          // |          | 0x080  |         |   5.  makerAssetAmount                      |
                          // |          | 0x0A0  |         |   6.  takerAssetAmount                      |
                          // |          | 0x0C0  |         |   7.  makerFeeAmount                        |
                          // |          | 0x0E0  |         |   8.  takerFeeAmount                        |
                          // |          | 0x100  |         |   9.  expirationTimeSeconds                 |
                          // |          | 0x120  |         |   10. salt                                  |
                          // |          | 0x140  |         |   11. Offset to makerAssetData (*)          |
                          // |          | 0x160  |         |   12. Offset to takerAssetData (*)          |
                          // |          | 0x180  | 32      | makerAssetData Length                       |
                          // |          | 0x1A0  | **      | makerAssetData Contents                     |
                          // |          | 0x1C0  | 32      | takerAssetData Length                       |
                          // |          | 0x1E0  | **      | takerAssetData Contents                     |
                          // |          | 0x200  | 32      | signature Length                            |
                          // |          | 0x220  | **      | signature Contents                          |
                  
                          // * Offsets are calculated from the beginning of the current area: Header, Params, Data:
                          //     An offset stored in the Params area is calculated from the beginning of the Params section.
                          //     An offset stored in the Data area is calculated from the beginning of the Data section.
                  
                          // ** The length of dynamic array contents are stored in the field immediately preceeding the contents.
                  
                          // [1]: https://solidity.readthedocs.io/en/develop/abi-spec.html
                  
                          assembly {
                  
                              // Areas below may use the following variables:
                              //   1. <area>Start   -- Start of this area in memory
                              //   2. <area>End     -- End of this area in memory. This value may
                              //                       be precomputed (before writing contents),
                              //                       or it may be computed as contents are written.
                              //   3. <area>Offset  -- Current offset into area. If an area's End
                              //                       is precomputed, this variable tracks the
                              //                       offsets of contents as they are written.
                  
                              /////// Setup Header Area ///////
                              // Load free memory pointer
                              fillOrderCalldata := mload(0x40)
                              // bytes4(keccak256("fillOrder((address,address,address,address,uint256,uint256,uint256,uint256,uint256,uint256,bytes,bytes),uint256,bytes)"))
                              // = 0xb4be83d5
                              // Leave 0x20 bytes to store the length
                              mstore(add(fillOrderCalldata, 0x20), 0xb4be83d500000000000000000000000000000000000000000000000000000000)
                              let headerAreaEnd := add(fillOrderCalldata, 0x24)
                  
                              /////// Setup Params Area ///////
                              // This area is preallocated and written to later.
                              // This is because we need to fill in offsets that have not yet been calculated.
                              let paramsAreaStart := headerAreaEnd
                              let paramsAreaEnd := add(paramsAreaStart, 0x60)
                              let paramsAreaOffset := paramsAreaStart
                  
                              /////// Setup Data Area ///////
                              let dataAreaStart := paramsAreaEnd
                              let dataAreaEnd := dataAreaStart
                  
                              // Offset from the source data we're reading from
                              let sourceOffset := order
                              // arrayLenBytes and arrayLenWords track the length of a dynamically-allocated bytes array.
                              let arrayLenBytes := 0
                              let arrayLenWords := 0
                  
                              /////// Write order Struct ///////
                              // Write memory location of Order, relative to the start of the
                              // parameter list, then increment the paramsAreaOffset respectively.
                              mstore(paramsAreaOffset, sub(dataAreaEnd, paramsAreaStart))
                              paramsAreaOffset := add(paramsAreaOffset, 0x20)
                  
                              // Write values for each field in the order
                              // It would be nice to use a loop, but we save on gas by writing
                              // the stores sequentially.
                              mstore(dataAreaEnd, mload(sourceOffset))                            // makerAddress
                              mstore(add(dataAreaEnd, 0x20), mload(add(sourceOffset, 0x20)))      // takerAddress
                              mstore(add(dataAreaEnd, 0x40), mload(add(sourceOffset, 0x40)))      // feeRecipientAddress
                              mstore(add(dataAreaEnd, 0x60), mload(add(sourceOffset, 0x60)))      // senderAddress
                              mstore(add(dataAreaEnd, 0x80), mload(add(sourceOffset, 0x80)))      // makerAssetAmount
                              mstore(add(dataAreaEnd, 0xA0), mload(add(sourceOffset, 0xA0)))      // takerAssetAmount
                              mstore(add(dataAreaEnd, 0xC0), mload(add(sourceOffset, 0xC0)))      // makerFeeAmount
                              mstore(add(dataAreaEnd, 0xE0), mload(add(sourceOffset, 0xE0)))      // takerFeeAmount
                              mstore(add(dataAreaEnd, 0x100), mload(add(sourceOffset, 0x100)))    // expirationTimeSeconds
                              mstore(add(dataAreaEnd, 0x120), mload(add(sourceOffset, 0x120)))    // salt
                              mstore(add(dataAreaEnd, 0x140), mload(add(sourceOffset, 0x140)))    // Offset to makerAssetData
                              mstore(add(dataAreaEnd, 0x160), mload(add(sourceOffset, 0x160)))    // Offset to takerAssetData
                              dataAreaEnd := add(dataAreaEnd, 0x180)
                              sourceOffset := add(sourceOffset, 0x180)
                  
                              // Write offset to <order.makerAssetData>
                              mstore(add(dataAreaStart, mul(10, 0x20)), sub(dataAreaEnd, dataAreaStart))
                  
                              // Calculate length of <order.makerAssetData>
                              sourceOffset := mload(add(order, 0x140)) // makerAssetData
                              arrayLenBytes := mload(sourceOffset)
                              sourceOffset := add(sourceOffset, 0x20)
                              arrayLenWords := div(add(arrayLenBytes, 0x1F), 0x20)
                  
                              // Write length of <order.makerAssetData>
                              mstore(dataAreaEnd, arrayLenBytes)
                              dataAreaEnd := add(dataAreaEnd, 0x20)
                  
                              // Write contents of <order.makerAssetData>
                              for {let i := 0} lt(i, arrayLenWords) {i := add(i, 1)} {
                                  mstore(dataAreaEnd, mload(sourceOffset))
                                  dataAreaEnd := add(dataAreaEnd, 0x20)
                                  sourceOffset := add(sourceOffset, 0x20)
                              }
                  
                              // Write offset to <order.takerAssetData>
                              mstore(add(dataAreaStart, mul(11, 0x20)), sub(dataAreaEnd, dataAreaStart))
                  
                              // Calculate length of <order.takerAssetData>
                              sourceOffset := mload(add(order, 0x160)) // takerAssetData
                              arrayLenBytes := mload(sourceOffset)
                              sourceOffset := add(sourceOffset, 0x20)
                              arrayLenWords := div(add(arrayLenBytes, 0x1F), 0x20)
                  
                              // Write length of <order.takerAssetData>
                              mstore(dataAreaEnd, arrayLenBytes)
                              dataAreaEnd := add(dataAreaEnd, 0x20)
                  
                              // Write contents of  <order.takerAssetData>
                              for {let i := 0} lt(i, arrayLenWords) {i := add(i, 1)} {
                                  mstore(dataAreaEnd, mload(sourceOffset))
                                  dataAreaEnd := add(dataAreaEnd, 0x20)
                                  sourceOffset := add(sourceOffset, 0x20)
                              }
                  
                              /////// Write takerAssetFillAmount ///////
                              mstore(paramsAreaOffset, takerAssetFillAmount)
                              paramsAreaOffset := add(paramsAreaOffset, 0x20)
                  
                              /////// Write signature ///////
                              // Write offset to paramsArea
                              mstore(paramsAreaOffset, sub(dataAreaEnd, paramsAreaStart))
                  
                              // Calculate length of signature
                              sourceOffset := signature
                              arrayLenBytes := mload(sourceOffset)
                              sourceOffset := add(sourceOffset, 0x20)
                              arrayLenWords := div(add(arrayLenBytes, 0x1F), 0x20)
                  
                              // Write length of signature
                              mstore(dataAreaEnd, arrayLenBytes)
                              dataAreaEnd := add(dataAreaEnd, 0x20)
                  
                              // Write contents of signature
                              for {let i := 0} lt(i, arrayLenWords) {i := add(i, 1)} {
                                  mstore(dataAreaEnd, mload(sourceOffset))
                                  dataAreaEnd := add(dataAreaEnd, 0x20)
                                  sourceOffset := add(sourceOffset, 0x20)
                              }
                  
                              // Set length of calldata
                              mstore(fillOrderCalldata, sub(dataAreaEnd, add(fillOrderCalldata, 0x20)))
                  
                              // Increment free memory pointer
                              mstore(0x40, dataAreaEnd)
                          }
                  
                          return fillOrderCalldata;
                      }
                  }
                  
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  
                  
                  
                  contract IWrapperFunctions {
                  
                      /// @dev Fills the input order. Reverts if exact takerAssetFillAmount not filled.
                      /// @param order LibOrder.Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      function fillOrKillOrder(
                          LibOrder.Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          public
                          returns (LibFillResults.FillResults memory fillResults);
                  
                      /// @dev Fills an order with specified parameters and ECDSA signature.
                      ///      Returns false if the transaction would otherwise revert.
                      /// @param order LibOrder.Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      /// @return Amounts filled and fees paid by maker and taker.
                      function fillOrderNoThrow(
                          LibOrder.Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          public
                          returns (LibFillResults.FillResults memory fillResults);
                  
                      /// @dev Synchronously executes multiple calls of fillOrder.
                      /// @param orders Array of order specifications.
                      /// @param takerAssetFillAmounts Array of desired amounts of takerAsset to sell in orders.
                      /// @param signatures Proofs that orders have been created by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function batchFillOrders(
                          LibOrder.Order[] memory orders,
                          uint256[] memory takerAssetFillAmounts,
                          bytes[] memory signatures
                      )
                          public
                          returns (LibFillResults.FillResults memory totalFillResults);
                  
                      /// @dev Synchronously executes multiple calls of fillOrKill.
                      /// @param orders Array of order specifications.
                      /// @param takerAssetFillAmounts Array of desired amounts of takerAsset to sell in orders.
                      /// @param signatures Proofs that orders have been created by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function batchFillOrKillOrders(
                          LibOrder.Order[] memory orders,
                          uint256[] memory takerAssetFillAmounts,
                          bytes[] memory signatures
                      )
                          public
                          returns (LibFillResults.FillResults memory totalFillResults);
                  
                      /// @dev Fills an order with specified parameters and ECDSA signature.
                      ///      Returns false if the transaction would otherwise revert.
                      /// @param orders Array of order specifications.
                      /// @param takerAssetFillAmounts Array of desired amounts of takerAsset to sell in orders.
                      /// @param signatures Proofs that orders have been created by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function batchFillOrdersNoThrow(
                          LibOrder.Order[] memory orders,
                          uint256[] memory takerAssetFillAmounts,
                          bytes[] memory signatures
                      )
                          public
                          returns (LibFillResults.FillResults memory totalFillResults);
                  
                      /// @dev Synchronously executes multiple calls of fillOrder until total amount of takerAsset is sold by taker.
                      /// @param orders Array of order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signatures Proofs that orders have been created by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function marketSellOrders(
                          LibOrder.Order[] memory orders,
                          uint256 takerAssetFillAmount,
                          bytes[] memory signatures
                      )
                          public
                          returns (LibFillResults.FillResults memory totalFillResults);
                  
                      /// @dev Synchronously executes multiple calls of fillOrder until total amount of takerAsset is sold by taker.
                      ///      Returns false if the transaction would otherwise revert.
                      /// @param orders Array of order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signatures Proofs that orders have been signed by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function marketSellOrdersNoThrow(
                          LibOrder.Order[] memory orders,
                          uint256 takerAssetFillAmount,
                          bytes[] memory signatures
                      )
                          public
                          returns (LibFillResults.FillResults memory totalFillResults);
                  
                      /// @dev Synchronously executes multiple calls of fillOrder until total amount of makerAsset is bought by taker.
                      /// @param orders Array of order specifications.
                      /// @param makerAssetFillAmount Desired amount of makerAsset to buy.
                      /// @param signatures Proofs that orders have been signed by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function marketBuyOrders(
                          LibOrder.Order[] memory orders,
                          uint256 makerAssetFillAmount,
                          bytes[] memory signatures
                      )
                          public
                          returns (LibFillResults.FillResults memory totalFillResults);
                  
                      /// @dev Synchronously executes multiple fill orders in a single transaction until total amount is bought by taker.
                      ///      Returns false if the transaction would otherwise revert.
                      /// @param orders Array of order specifications.
                      /// @param makerAssetFillAmount Desired amount of makerAsset to buy.
                      /// @param signatures Proofs that orders have been signed by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function marketBuyOrdersNoThrow(
                          LibOrder.Order[] memory orders,
                          uint256 makerAssetFillAmount,
                          bytes[] memory signatures
                      )
                          public
                          returns (LibFillResults.FillResults memory totalFillResults);
                  
                      /// @dev Synchronously cancels multiple orders in a single transaction.
                      /// @param orders Array of order specifications.
                      function batchCancelOrders(LibOrder.Order[] memory orders)
                          public;
                  
                      /// @dev Fetches information for all passed in orders
                      /// @param orders Array of order specifications.
                      /// @return Array of OrderInfo instances that correspond to each order.
                      function getOrdersInfo(LibOrder.Order[] memory orders)
                          public
                          view
                          returns (LibOrder.OrderInfo[] memory);
                  }
                  
                  
                  
                  contract MWrapperFunctions is 
                      IWrapperFunctions
                  {
                      /// @dev Fills the input order. Reverts if exact takerAssetFillAmount not filled.
                      /// @param order LibOrder.Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      function fillOrKillOrderInternal(
                          LibOrder.Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          internal
                          returns (LibFillResults.FillResults memory fillResults);
                  }
                  
                  
                  
                  contract MixinWrapperFunctions is
                      ReentrancyGuard,
                      LibMath,
                      LibFillResults,
                      LibAbiEncoder,
                      MExchangeCore,
                      MWrapperFunctions
                  {
                      /// @dev Fills the input order. Reverts if exact takerAssetFillAmount not filled.
                      /// @param order Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      function fillOrKillOrder(
                          LibOrder.Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          public
                          nonReentrant
                          returns (FillResults memory fillResults)
                      {
                          fillResults = fillOrKillOrderInternal(
                              order,
                              takerAssetFillAmount,
                              signature
                          );
                          return fillResults;
                      }
                  
                      /// @dev Fills the input order.
                      ///      Returns false if the transaction would otherwise revert.
                      /// @param order Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      /// @return Amounts filled and fees paid by maker and taker.
                      function fillOrderNoThrow(
                          LibOrder.Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          public
                          returns (FillResults memory fillResults)
                      {
                          // ABI encode calldata for `fillOrder`
                          bytes memory fillOrderCalldata = abiEncodeFillOrder(
                              order,
                              takerAssetFillAmount,
                              signature
                          );
                  
                          // Delegate to `fillOrder` and handle any exceptions gracefully
                          assembly {
                              let success := delegatecall(
                                  gas,                                // forward all gas
                                  address,                            // call address of this contract
                                  add(fillOrderCalldata, 32),         // pointer to start of input (skip array length in first 32 bytes)
                                  mload(fillOrderCalldata),           // length of input
                                  fillOrderCalldata,                  // write output over input
                                  128                                 // output size is 128 bytes
                              )
                              if success {
                                  mstore(fillResults, mload(fillOrderCalldata))
                                  mstore(add(fillResults, 32), mload(add(fillOrderCalldata, 32)))
                                  mstore(add(fillResults, 64), mload(add(fillOrderCalldata, 64)))
                                  mstore(add(fillResults, 96), mload(add(fillOrderCalldata, 96)))
                              }
                          }
                          // fillResults values will be 0 by default if call was unsuccessful
                          return fillResults;
                      }
                  
                      /// @dev Synchronously executes multiple calls of fillOrder.
                      /// @param orders Array of order specifications.
                      /// @param takerAssetFillAmounts Array of desired amounts of takerAsset to sell in orders.
                      /// @param signatures Proofs that orders have been created by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      ///         NOTE: makerAssetFilledAmount and takerAssetFilledAmount may include amounts filled of different assets.
                      function batchFillOrders(
                          LibOrder.Order[] memory orders,
                          uint256[] memory takerAssetFillAmounts,
                          bytes[] memory signatures
                      )
                          public
                          nonReentrant
                          returns (FillResults memory totalFillResults)
                      {
                          uint256 ordersLength = orders.length;
                          for (uint256 i = 0; i != ordersLength; i++) {
                              FillResults memory singleFillResults = fillOrderInternal(
                                  orders[i],
                                  takerAssetFillAmounts[i],
                                  signatures[i]
                              );
                              addFillResults(totalFillResults, singleFillResults);
                          }
                          return totalFillResults;
                      }
                  
                      /// @dev Synchronously executes multiple calls of fillOrKill.
                      /// @param orders Array of order specifications.
                      /// @param takerAssetFillAmounts Array of desired amounts of takerAsset to sell in orders.
                      /// @param signatures Proofs that orders have been created by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      ///         NOTE: makerAssetFilledAmount and takerAssetFilledAmount may include amounts filled of different assets.
                      function batchFillOrKillOrders(
                          LibOrder.Order[] memory orders,
                          uint256[] memory takerAssetFillAmounts,
                          bytes[] memory signatures
                      )
                          public
                          nonReentrant
                          returns (FillResults memory totalFillResults)
                      {
                          uint256 ordersLength = orders.length;
                          for (uint256 i = 0; i != ordersLength; i++) {
                              FillResults memory singleFillResults = fillOrKillOrderInternal(
                                  orders[i],
                                  takerAssetFillAmounts[i],
                                  signatures[i]
                              );
                              addFillResults(totalFillResults, singleFillResults);
                          }
                          return totalFillResults;
                      }
                  
                      /// @dev Fills an order with specified parameters and ECDSA signature.
                      ///      Returns false if the transaction would otherwise revert.
                      /// @param orders Array of order specifications.
                      /// @param takerAssetFillAmounts Array of desired amounts of takerAsset to sell in orders.
                      /// @param signatures Proofs that orders have been created by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      ///         NOTE: makerAssetFilledAmount and takerAssetFilledAmount may include amounts filled of different assets.
                      function batchFillOrdersNoThrow(
                          LibOrder.Order[] memory orders,
                          uint256[] memory takerAssetFillAmounts,
                          bytes[] memory signatures
                      )
                          public
                          returns (FillResults memory totalFillResults)
                      {
                          uint256 ordersLength = orders.length;
                          for (uint256 i = 0; i != ordersLength; i++) {
                              FillResults memory singleFillResults = fillOrderNoThrow(
                                  orders[i],
                                  takerAssetFillAmounts[i],
                                  signatures[i]
                              );
                              addFillResults(totalFillResults, singleFillResults);
                          }
                          return totalFillResults;
                      }
                  
                      /// @dev Synchronously executes multiple calls of fillOrder until total amount of takerAsset is sold by taker.
                      /// @param orders Array of order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signatures Proofs that orders have been created by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function marketSellOrders(
                          LibOrder.Order[] memory orders,
                          uint256 takerAssetFillAmount,
                          bytes[] memory signatures
                      )
                          public
                          nonReentrant
                          returns (FillResults memory totalFillResults)
                      {
                          bytes memory takerAssetData = orders[0].takerAssetData;
                      
                          uint256 ordersLength = orders.length;
                          for (uint256 i = 0; i != ordersLength; i++) {
                  
                              // We assume that asset being sold by taker is the same for each order.
                              // Rather than passing this in as calldata, we use the takerAssetData from the first order in all later orders.
                              orders[i].takerAssetData = takerAssetData;
                  
                              // Calculate the remaining amount of takerAsset to sell
                              uint256 remainingTakerAssetFillAmount = safeSub(takerAssetFillAmount, totalFillResults.takerAssetFilledAmount);
                  
                              // Attempt to sell the remaining amount of takerAsset
                              FillResults memory singleFillResults = fillOrderInternal(
                                  orders[i],
                                  remainingTakerAssetFillAmount,
                                  signatures[i]
                              );
                  
                              // Update amounts filled and fees paid by maker and taker
                              addFillResults(totalFillResults, singleFillResults);
                  
                              // Stop execution if the entire amount of takerAsset has been sold
                              if (totalFillResults.takerAssetFilledAmount >= takerAssetFillAmount) {
                                  break;
                              }
                          }
                          return totalFillResults;
                      }
                  
                      /// @dev Synchronously executes multiple calls of fillOrder until total amount of takerAsset is sold by taker.
                      ///      Returns false if the transaction would otherwise revert.
                      /// @param orders Array of order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signatures Proofs that orders have been signed by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function marketSellOrdersNoThrow(
                          LibOrder.Order[] memory orders,
                          uint256 takerAssetFillAmount,
                          bytes[] memory signatures
                      )
                          public
                          returns (FillResults memory totalFillResults)
                      {
                          bytes memory takerAssetData = orders[0].takerAssetData;
                  
                          uint256 ordersLength = orders.length;
                          for (uint256 i = 0; i != ordersLength; i++) {
                  
                              // We assume that asset being sold by taker is the same for each order.
                              // Rather than passing this in as calldata, we use the takerAssetData from the first order in all later orders.
                              orders[i].takerAssetData = takerAssetData;
                  
                              // Calculate the remaining amount of takerAsset to sell
                              uint256 remainingTakerAssetFillAmount = safeSub(takerAssetFillAmount, totalFillResults.takerAssetFilledAmount);
                  
                              // Attempt to sell the remaining amount of takerAsset
                              FillResults memory singleFillResults = fillOrderNoThrow(
                                  orders[i],
                                  remainingTakerAssetFillAmount,
                                  signatures[i]
                              );
                  
                              // Update amounts filled and fees paid by maker and taker
                              addFillResults(totalFillResults, singleFillResults);
                  
                              // Stop execution if the entire amount of takerAsset has been sold
                              if (totalFillResults.takerAssetFilledAmount >= takerAssetFillAmount) {
                                  break;
                              }
                          }
                          return totalFillResults;
                      }
                  
                      /// @dev Synchronously executes multiple calls of fillOrder until total amount of makerAsset is bought by taker.
                      /// @param orders Array of order specifications.
                      /// @param makerAssetFillAmount Desired amount of makerAsset to buy.
                      /// @param signatures Proofs that orders have been signed by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function marketBuyOrders(
                          LibOrder.Order[] memory orders,
                          uint256 makerAssetFillAmount,
                          bytes[] memory signatures
                      )
                          public
                          nonReentrant
                          returns (FillResults memory totalFillResults)
                      {
                          bytes memory makerAssetData = orders[0].makerAssetData;
                  
                          uint256 ordersLength = orders.length;
                          for (uint256 i = 0; i != ordersLength; i++) {
                  
                              // We assume that asset being bought by taker is the same for each order.
                              // Rather than passing this in as calldata, we copy the makerAssetData from the first order onto all later orders.
                              orders[i].makerAssetData = makerAssetData;
                  
                              // Calculate the remaining amount of makerAsset to buy
                              uint256 remainingMakerAssetFillAmount = safeSub(makerAssetFillAmount, totalFillResults.makerAssetFilledAmount);
                  
                              // Convert the remaining amount of makerAsset to buy into remaining amount
                              // of takerAsset to sell, assuming entire amount can be sold in the current order
                              uint256 remainingTakerAssetFillAmount = getPartialAmountFloor(
                                  orders[i].takerAssetAmount,
                                  orders[i].makerAssetAmount,
                                  remainingMakerAssetFillAmount
                              );
                  
                              // Attempt to sell the remaining amount of takerAsset
                              FillResults memory singleFillResults = fillOrderInternal(
                                  orders[i],
                                  remainingTakerAssetFillAmount,
                                  signatures[i]
                              );
                  
                              // Update amounts filled and fees paid by maker and taker
                              addFillResults(totalFillResults, singleFillResults);
                  
                              // Stop execution if the entire amount of makerAsset has been bought
                              if (totalFillResults.makerAssetFilledAmount >= makerAssetFillAmount) {
                                  break;
                              }
                          }
                          return totalFillResults;
                      }
                  
                      /// @dev Synchronously executes multiple fill orders in a single transaction until total amount is bought by taker.
                      ///      Returns false if the transaction would otherwise revert.
                      /// @param orders Array of order specifications.
                      /// @param makerAssetFillAmount Desired amount of makerAsset to buy.
                      /// @param signatures Proofs that orders have been signed by makers.
                      /// @return Amounts filled and fees paid by makers and taker.
                      function marketBuyOrdersNoThrow(
                          LibOrder.Order[] memory orders,
                          uint256 makerAssetFillAmount,
                          bytes[] memory signatures
                      )
                          public
                          returns (FillResults memory totalFillResults)
                      {
                          bytes memory makerAssetData = orders[0].makerAssetData;
                  
                          uint256 ordersLength = orders.length;
                          for (uint256 i = 0; i != ordersLength; i++) {
                  
                              // We assume that asset being bought by taker is the same for each order.
                              // Rather than passing this in as calldata, we copy the makerAssetData from the first order onto all later orders.
                              orders[i].makerAssetData = makerAssetData;
                  
                              // Calculate the remaining amount of makerAsset to buy
                              uint256 remainingMakerAssetFillAmount = safeSub(makerAssetFillAmount, totalFillResults.makerAssetFilledAmount);
                  
                              // Convert the remaining amount of makerAsset to buy into remaining amount
                              // of takerAsset to sell, assuming entire amount can be sold in the current order
                              uint256 remainingTakerAssetFillAmount = getPartialAmountFloor(
                                  orders[i].takerAssetAmount,
                                  orders[i].makerAssetAmount,
                                  remainingMakerAssetFillAmount
                              );
                  
                              // Attempt to sell the remaining amount of takerAsset
                              FillResults memory singleFillResults = fillOrderNoThrow(
                                  orders[i],
                                  remainingTakerAssetFillAmount,
                                  signatures[i]
                              );
                  
                              // Update amounts filled and fees paid by maker and taker
                              addFillResults(totalFillResults, singleFillResults);
                  
                              // Stop execution if the entire amount of makerAsset has been bought
                              if (totalFillResults.makerAssetFilledAmount >= makerAssetFillAmount) {
                                  break;
                              }
                          }
                          return totalFillResults;
                      }
                  
                      /// @dev Synchronously cancels multiple orders in a single transaction.
                      /// @param orders Array of order specifications.
                      function batchCancelOrders(LibOrder.Order[] memory orders)
                          public
                          nonReentrant
                      {
                          uint256 ordersLength = orders.length;
                          for (uint256 i = 0; i != ordersLength; i++) {
                              cancelOrderInternal(orders[i]);
                          }
                      }
                  
                      /// @dev Fetches information for all passed in orders.
                      /// @param orders Array of order specifications.
                      /// @return Array of OrderInfo instances that correspond to each order.
                      function getOrdersInfo(LibOrder.Order[] memory orders)
                          public
                          view
                          returns (LibOrder.OrderInfo[] memory)
                      {
                          uint256 ordersLength = orders.length;
                          LibOrder.OrderInfo[] memory ordersInfo = new LibOrder.OrderInfo[](ordersLength);
                          for (uint256 i = 0; i != ordersLength; i++) {
                              ordersInfo[i] = getOrderInfo(orders[i]);
                          }
                          return ordersInfo;
                      }
                  
                      /// @dev Fills the input order. Reverts if exact takerAssetFillAmount not filled.
                      /// @param order Order struct containing order specifications.
                      /// @param takerAssetFillAmount Desired amount of takerAsset to sell.
                      /// @param signature Proof that order has been created by maker.
                      function fillOrKillOrderInternal(
                          LibOrder.Order memory order,
                          uint256 takerAssetFillAmount,
                          bytes memory signature
                      )
                          internal
                          returns (FillResults memory fillResults)
                      {
                          fillResults = fillOrderInternal(
                              order,
                              takerAssetFillAmount,
                              signature
                          );
                          require(
                              fillResults.takerAssetFilledAmount == takerAssetFillAmount,
                              "COMPLETE_FILL_FAILED"
                          );
                          return fillResults;
                      }
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  pragma solidity 0.4.24;
                  
                  pragma solidity 0.4.24;
                  
                  
                  contract IOwnable {
                  
                      function transferOwnership(address newOwner)
                          public;
                  }
                  
                  
                  
                  contract Ownable is
                      IOwnable
                  {
                      address public owner;
                  
                      constructor ()
                          public
                      {
                          owner = msg.sender;
                      }
                  
                      modifier onlyOwner() {
                          require(
                              msg.sender == owner,
                              "ONLY_CONTRACT_OWNER"
                          );
                          _;
                      }
                  
                      function transferOwnership(address newOwner)
                          public
                          onlyOwner
                      {
                          if (newOwner != address(0)) {
                              owner = newOwner;
                          }
                      }
                  }
                  
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  
                  
                  contract IAuthorizable is
                      IOwnable
                  {
                      /// @dev Authorizes an address.
                      /// @param target Address to authorize.
                      function addAuthorizedAddress(address target)
                          external;
                  
                      /// @dev Removes authorizion of an address.
                      /// @param target Address to remove authorization from.
                      function removeAuthorizedAddress(address target)
                          external;
                  
                      /// @dev Removes authorizion of an address.
                      /// @param target Address to remove authorization from.
                      /// @param index Index of target in authorities array.
                      function removeAuthorizedAddressAtIndex(
                          address target,
                          uint256 index
                      )
                          external;
                      
                      /// @dev Gets all authorized addresses.
                      /// @return Array of authorized addresses.
                      function getAuthorizedAddresses()
                          external
                          view
                          returns (address[] memory);
                  }
                  
                  
                  
                  contract IAssetProxy is
                      IAuthorizable
                  {
                      /// @dev Transfers assets. Either succeeds or throws.
                      /// @param assetData Byte array encoded for the respective asset proxy.
                      /// @param from Address to transfer asset from.
                      /// @param to Address to transfer asset to.
                      /// @param amount Amount of asset to transfer.
                      function transferFrom(
                          bytes assetData,
                          address from,
                          address to,
                          uint256 amount
                      )
                          external;
                      
                      /// @dev Gets the proxy id associated with the proxy address.
                      /// @return Proxy id.
                      function getProxyId()
                          external
                          pure
                          returns (bytes4);
                  }
                  
                  
                  
                  contract MixinAssetProxyDispatcher is
                      Ownable,
                      MAssetProxyDispatcher
                  {
                      // Mapping from Asset Proxy Id's to their respective Asset Proxy
                      mapping (bytes4 => IAssetProxy) public assetProxies;
                  
                      /// @dev Registers an asset proxy to its asset proxy id.
                      ///      Once an asset proxy is registered, it cannot be unregistered.
                      /// @param assetProxy Address of new asset proxy to register.
                      function registerAssetProxy(address assetProxy)
                          external
                          onlyOwner
                      {
                          IAssetProxy assetProxyContract = IAssetProxy(assetProxy);
                  
                          // Ensure that no asset proxy exists with current id.
                          bytes4 assetProxyId = assetProxyContract.getProxyId();
                          address currentAssetProxy = assetProxies[assetProxyId];
                          require(
                              currentAssetProxy == address(0),
                              "ASSET_PROXY_ALREADY_EXISTS"
                          );
                  
                          // Add asset proxy and log registration.
                          assetProxies[assetProxyId] = assetProxyContract;
                          emit AssetProxyRegistered(
                              assetProxyId,
                              assetProxy
                          );
                      }
                  
                      /// @dev Gets an asset proxy.
                      /// @param assetProxyId Id of the asset proxy.
                      /// @return The asset proxy registered to assetProxyId. Returns 0x0 if no proxy is registered.
                      function getAssetProxy(bytes4 assetProxyId)
                          external
                          view
                          returns (address)
                      {
                          return assetProxies[assetProxyId];
                      }
                  
                      /// @dev Forwards arguments to assetProxy and calls `transferFrom`. Either succeeds or throws.
                      /// @param assetData Byte array encoded for the asset.
                      /// @param from Address to transfer token from.
                      /// @param to Address to transfer token to.
                      /// @param amount Amount of token to transfer.
                      function dispatchTransferFrom(
                          bytes memory assetData,
                          address from,
                          address to,
                          uint256 amount
                      )
                          internal
                      {
                          // Do nothing if no amount should be transferred.
                          if (amount > 0 && from != to) {
                              // Ensure assetData length is valid
                              require(
                                  assetData.length > 3,
                                  "LENGTH_GREATER_THAN_3_REQUIRED"
                              );
                              
                              // Lookup assetProxy. We do not use `LibBytes.readBytes4` for gas efficiency reasons.
                              bytes4 assetProxyId;
                              assembly {
                                  assetProxyId := and(mload(
                                      add(assetData, 32)),
                                      0xFFFFFFFF00000000000000000000000000000000000000000000000000000000
                                  )
                              }
                              address assetProxy = assetProxies[assetProxyId];
                  
                              // Ensure that assetProxy exists
                              require(
                                  assetProxy != address(0),
                                  "ASSET_PROXY_DOES_NOT_EXIST"
                              );
                              
                              // We construct calldata for the `assetProxy.transferFrom` ABI.
                              // The layout of this calldata is in the table below.
                              // 
                              // | Area     | Offset | Length  | Contents                                    |
                              // | -------- |--------|---------|-------------------------------------------- |
                              // | Header   | 0      | 4       | function selector                           |
                              // | Params   |        | 4 * 32  | function parameters:                        |
                              // |          | 4      |         |   1. offset to assetData (*)                |
                              // |          | 36     |         |   2. from                                   |
                              // |          | 68     |         |   3. to                                     |
                              // |          | 100    |         |   4. amount                                 |
                              // | Data     |        |         | assetData:                                  |
                              // |          | 132    | 32      | assetData Length                            |
                              // |          | 164    | **      | assetData Contents                          |
                  
                              assembly {
                                  /////// Setup State ///////
                                  // `cdStart` is the start of the calldata for `assetProxy.transferFrom` (equal to free memory ptr).
                                  let cdStart := mload(64)
                                  // `dataAreaLength` is the total number of words needed to store `assetData`
                                  //  As-per the ABI spec, this value is padded up to the nearest multiple of 32,
                                  //  and includes 32-bytes for length.
                                  let dataAreaLength := and(add(mload(assetData), 63), 0xFFFFFFFFFFFE0)
                                  // `cdEnd` is the end of the calldata for `assetProxy.transferFrom`.
                                  let cdEnd := add(cdStart, add(132, dataAreaLength))
                  
                                  
                                  /////// Setup Header Area ///////
                                  // This area holds the 4-byte `transferFromSelector`.
                                  // bytes4(keccak256("transferFrom(bytes,address,address,uint256)")) = 0xa85e59e4
                                  mstore(cdStart, 0xa85e59e400000000000000000000000000000000000000000000000000000000)
                                  
                                  /////// Setup Params Area ///////
                                  // Each parameter is padded to 32-bytes. The entire Params Area is 128 bytes.
                                  // Notes:
                                  //   1. The offset to `assetData` is the length of the Params Area (128 bytes).
                                  //   2. A 20-byte mask is applied to addresses to zero-out the unused bytes.
                                  mstore(add(cdStart, 4), 128)
                                  mstore(add(cdStart, 36), and(from, 0xffffffffffffffffffffffffffffffffffffffff))
                                  mstore(add(cdStart, 68), and(to, 0xffffffffffffffffffffffffffffffffffffffff))
                                  mstore(add(cdStart, 100), amount)
                                  
                                  /////// Setup Data Area ///////
                                  // This area holds `assetData`.
                                  let dataArea := add(cdStart, 132)
                                  // solhint-disable-next-line no-empty-blocks
                                  for {} lt(dataArea, cdEnd) {} {
                                      mstore(dataArea, mload(assetData))
                                      dataArea := add(dataArea, 32)
                                      assetData := add(assetData, 32)
                                  }
                  
                                  /////// Call `assetProxy.transferFrom` using the constructed calldata ///////
                                  let success := call(
                                      gas,                    // forward all gas
                                      assetProxy,             // call address of asset proxy
                                      0,                      // don't send any ETH
                                      cdStart,                // pointer to start of input
                                      sub(cdEnd, cdStart),    // length of input  
                                      cdStart,                // write output over input
                                      512                     // reserve 512 bytes for output
                                  )
                                  if iszero(success) {
                                      revert(cdStart, returndatasize())
                                  }
                              }
                          }
                      }
                  }
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  pragma solidity 0.4.24;
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  // solhint-disable
                  pragma solidity 0.4.24;
                  
                  
                  /// @dev This contract documents the revert reasons used in the Exchange contract.
                  /// This contract is intended to serve as a reference, but is not actually used for efficiency reasons.
                  contract LibExchangeErrors {
                  
                      /// Order validation errors ///
                      string constant ORDER_UNFILLABLE = "ORDER_UNFILLABLE";                              // Order cannot be filled.
                      string constant INVALID_MAKER = "INVALID_MAKER";                                    // Invalid makerAddress.
                      string constant INVALID_TAKER = "INVALID_TAKER";                                    // Invalid takerAddress.
                      string constant INVALID_SENDER = "INVALID_SENDER";                                  // Invalid `msg.sender`.
                      string constant INVALID_ORDER_SIGNATURE = "INVALID_ORDER_SIGNATURE";                // Signature validation failed. 
                      
                      /// fillOrder validation errors ///
                      string constant INVALID_TAKER_AMOUNT = "INVALID_TAKER_AMOUNT";                      // takerAssetFillAmount cannot equal 0.
                      string constant ROUNDING_ERROR = "ROUNDING_ERROR";                                  // Rounding error greater than 0.1% of takerAssetFillAmount. 
                      
                      /// Signature validation errors ///
                      string constant INVALID_SIGNATURE = "INVALID_SIGNATURE";                            // Signature validation failed. 
                      string constant SIGNATURE_ILLEGAL = "SIGNATURE_ILLEGAL";                            // Signature type is illegal.
                      string constant SIGNATURE_UNSUPPORTED = "SIGNATURE_UNSUPPORTED";                    // Signature type unsupported.
                      
                      /// cancelOrdersUptTo errors ///
                      string constant INVALID_NEW_ORDER_EPOCH = "INVALID_NEW_ORDER_EPOCH";                // Specified salt must be greater than or equal to existing orderEpoch.
                  
                      /// fillOrKillOrder errors ///
                      string constant COMPLETE_FILL_FAILED = "COMPLETE_FILL_FAILED";                      // Desired takerAssetFillAmount could not be completely filled. 
                  
                      /// matchOrders errors ///
                      string constant NEGATIVE_SPREAD_REQUIRED = "NEGATIVE_SPREAD_REQUIRED";              // Matched orders must have a negative spread.
                  
                      /// Transaction errors ///
                      string constant REENTRANCY_ILLEGAL = "REENTRANCY_ILLEGAL";                          // Recursive reentrancy is not allowed. 
                      string constant INVALID_TX_HASH = "INVALID_TX_HASH";                                // Transaction has already been executed. 
                      string constant INVALID_TX_SIGNATURE = "INVALID_TX_SIGNATURE";                      // Signature validation failed. 
                      string constant FAILED_EXECUTION = "FAILED_EXECUTION";                              // Transaction execution failed. 
                      
                      /// registerAssetProxy errors ///
                      string constant ASSET_PROXY_ALREADY_EXISTS = "ASSET_PROXY_ALREADY_EXISTS";          // AssetProxy with same id already exists.
                  
                      /// dispatchTransferFrom errors ///
                      string constant ASSET_PROXY_DOES_NOT_EXIST = "ASSET_PROXY_DOES_NOT_EXIST";          // No assetProxy registered at given id.
                      string constant TRANSFER_FAILED = "TRANSFER_FAILED";                                // Asset transfer unsuccesful.
                  
                      /// Length validation errors ///
                      string constant LENGTH_GREATER_THAN_0_REQUIRED = "LENGTH_GREATER_THAN_0_REQUIRED";  // Byte array must have a length greater than 0.
                      string constant LENGTH_GREATER_THAN_3_REQUIRED = "LENGTH_GREATER_THAN_3_REQUIRED";  // Byte array must have a length greater than 3.
                      string constant LENGTH_0_REQUIRED = "LENGTH_0_REQUIRED";                            // Byte array must have a length of 0.
                      string constant LENGTH_65_REQUIRED = "LENGTH_65_REQUIRED";                          // Byte array must have a length of 65.
                  }
                  
                  
                  
                  
                  
                  
                  contract MixinTransactions is
                      LibEIP712,
                      MSignatureValidator,
                      MTransactions
                  {
                      // Mapping of transaction hash => executed
                      // This prevents transactions from being executed more than once.
                      mapping (bytes32 => bool) public transactions;
                  
                      // Address of current transaction signer
                      address public currentContextAddress;
                  
                      /// @dev Executes an exchange method call in the context of signer.
                      /// @param salt Arbitrary number to ensure uniqueness of transaction hash.
                      /// @param signerAddress Address of transaction signer.
                      /// @param data AbiV2 encoded calldata.
                      /// @param signature Proof of signer transaction by signer.
                      function executeTransaction(
                          uint256 salt,
                          address signerAddress,
                          bytes data,
                          bytes signature
                      )
                          external
                      {
                          // Prevent reentrancy
                          require(
                              currentContextAddress == address(0),
                              "REENTRANCY_ILLEGAL"
                          );
                  
                          bytes32 transactionHash = hashEIP712Message(hashZeroExTransaction(
                              salt,
                              signerAddress,
                              data
                          ));
                  
                          // Validate transaction has not been executed
                          require(
                              !transactions[transactionHash],
                              "INVALID_TX_HASH"
                          );
                  
                          // Transaction always valid if signer is sender of transaction
                          if (signerAddress != msg.sender) {
                              // Validate signature
                              require(
                                  isValidSignature(
                                      transactionHash,
                                      signerAddress,
                                      signature
                                  ),
                                  "INVALID_TX_SIGNATURE"
                              );
                  
                              // Set the current transaction signer
                              currentContextAddress = signerAddress;
                          }
                  
                          // Execute transaction
                          transactions[transactionHash] = true;
                          require(
                              address(this).delegatecall(data),
                              "FAILED_EXECUTION"
                          );
                  
                          // Reset current transaction signer if it was previously updated
                          if (signerAddress != msg.sender) {
                              currentContextAddress = address(0);
                          }
                      }
                  
                      /// @dev Calculates EIP712 hash of the Transaction.
                      /// @param salt Arbitrary number to ensure uniqueness of transaction hash.
                      /// @param signerAddress Address of transaction signer.
                      /// @param data AbiV2 encoded calldata.
                      /// @return EIP712 hash of the Transaction.
                      function hashZeroExTransaction(
                          uint256 salt,
                          address signerAddress,
                          bytes memory data
                      )
                          internal
                          pure
                          returns (bytes32 result)
                      {
                          bytes32 schemaHash = EIP712_ZEROEX_TRANSACTION_SCHEMA_HASH;
                          bytes32 dataHash = keccak256(data);
                  
                          // Assembly for more efficiently computing:
                          // keccak256(abi.encodePacked(
                          //     EIP712_ZEROEX_TRANSACTION_SCHEMA_HASH,
                          //     salt,
                          //     bytes32(signerAddress),
                          //     keccak256(data)
                          // ));
                  
                          assembly {
                              // Load free memory pointer
                              let memPtr := mload(64)
                  
                              mstore(memPtr, schemaHash)                                                               // hash of schema
                              mstore(add(memPtr, 32), salt)                                                            // salt
                              mstore(add(memPtr, 64), and(signerAddress, 0xffffffffffffffffffffffffffffffffffffffff))  // signerAddress
                              mstore(add(memPtr, 96), dataHash)                                                        // hash of data
                  
                              // Compute hash
                              result := keccak256(memPtr, 128)
                          }
                          return result;
                      }
                  
                      /// @dev The current function will be called in the context of this address (either 0x transaction signer or `msg.sender`).
                      ///      If calling a fill function, this address will represent the taker.
                      ///      If calling a cancel function, this address will represent the maker.
                      /// @return Signer of 0x transaction if entry point is `executeTransaction`.
                      ///         `msg.sender` if entry point is any other function.
                      function getCurrentContextAddress()
                          internal
                          view
                          returns (address)
                      {
                          address currentContextAddress_ = currentContextAddress;
                          address contextAddress = currentContextAddress_ == address(0) ? msg.sender : currentContextAddress_;
                          return contextAddress;
                      }
                  }
                  
                  /*
                    Copyright 2018 ZeroEx Intl.
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                      http://www.apache.org/licenses/LICENSE-2.0
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  */
                  
                  pragma solidity 0.4.24;
                  
                  
                  
                  
                  
                  
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  pragma solidity 0.4.24;
                  
                  
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  pragma solidity 0.4.24;
                  
                  
                  
                  
                  
                  contract IMatchOrders {
                  
                      /// @dev Match two complementary orders that have a profitable spread.
                      ///      Each order is filled at their respective price point. However, the calculations are
                      ///      carried out as though the orders are both being filled at the right order's price point.
                      ///      The profit made by the left order goes to the taker (who matched the two orders).
                      /// @param leftOrder First order to match.
                      /// @param rightOrder Second order to match.
                      /// @param leftSignature Proof that order was created by the left maker.
                      /// @param rightSignature Proof that order was created by the right maker.
                      /// @return matchedFillResults Amounts filled and fees paid by maker and taker of matched orders.
                      function matchOrders(
                          LibOrder.Order memory leftOrder,
                          LibOrder.Order memory rightOrder,
                          bytes memory leftSignature,
                          bytes memory rightSignature
                      )
                          public
                          returns (LibFillResults.MatchedFillResults memory matchedFillResults);
                  }
                  
                  
                  
                  contract MMatchOrders is
                      IMatchOrders
                  {
                      /// @dev Validates context for matchOrders. Succeeds or throws.
                      /// @param leftOrder First order to match.
                      /// @param rightOrder Second order to match.
                      function assertValidMatch(
                          LibOrder.Order memory leftOrder,
                          LibOrder.Order memory rightOrder
                      )
                          internal
                          pure;
                  
                      /// @dev Calculates fill amounts for the matched orders.
                      ///      Each order is filled at their respective price point. However, the calculations are
                      ///      carried out as though the orders are both being filled at the right order's price point.
                      ///      The profit made by the leftOrder order goes to the taker (who matched the two orders).
                      /// @param leftOrder First order to match.
                      /// @param rightOrder Second order to match.
                      /// @param leftOrderTakerAssetFilledAmount Amount of left order already filled.
                      /// @param rightOrderTakerAssetFilledAmount Amount of right order already filled.
                      /// @param matchedFillResults Amounts to fill and fees to pay by maker and taker of matched orders.
                      function calculateMatchedFillResults(
                          LibOrder.Order memory leftOrder,
                          LibOrder.Order memory rightOrder,
                          uint256 leftOrderTakerAssetFilledAmount,
                          uint256 rightOrderTakerAssetFilledAmount
                      )
                          internal
                          pure
                          returns (LibFillResults.MatchedFillResults memory matchedFillResults);
                  
                  }
                  
                  
                  
                  
                  
                  contract MixinMatchOrders is
                      ReentrancyGuard,
                      LibConstants,
                      LibMath,
                      MAssetProxyDispatcher,
                      MExchangeCore,
                      MMatchOrders,
                      MTransactions
                  {
                      /// @dev Match two complementary orders that have a profitable spread.
                      ///      Each order is filled at their respective price point. However, the calculations are
                      ///      carried out as though the orders are both being filled at the right order's price point.
                      ///      The profit made by the left order goes to the taker (who matched the two orders).
                      /// @param leftOrder First order to match.
                      /// @param rightOrder Second order to match.
                      /// @param leftSignature Proof that order was created by the left maker.
                      /// @param rightSignature Proof that order was created by the right maker.
                      /// @return matchedFillResults Amounts filled and fees paid by maker and taker of matched orders.
                      function matchOrders(
                          LibOrder.Order memory leftOrder,
                          LibOrder.Order memory rightOrder,
                          bytes memory leftSignature,
                          bytes memory rightSignature
                      )
                          public
                          nonReentrant
                          returns (LibFillResults.MatchedFillResults memory matchedFillResults)
                      {
                          // We assume that rightOrder.takerAssetData == leftOrder.makerAssetData and rightOrder.makerAssetData == leftOrder.takerAssetData.
                          // If this assumption isn't true, the match will fail at signature validation.
                          rightOrder.makerAssetData = leftOrder.takerAssetData;
                          rightOrder.takerAssetData = leftOrder.makerAssetData;
                  
                          // Get left & right order info
                          LibOrder.OrderInfo memory leftOrderInfo = getOrderInfo(leftOrder);
                          LibOrder.OrderInfo memory rightOrderInfo = getOrderInfo(rightOrder);
                  
                          // Fetch taker address
                          address takerAddress = getCurrentContextAddress();
                          
                          // Either our context is valid or we revert
                          assertFillableOrder(
                              leftOrder,
                              leftOrderInfo,
                              takerAddress,
                              leftSignature
                          );
                          assertFillableOrder(
                              rightOrder,
                              rightOrderInfo,
                              takerAddress,
                              rightSignature
                          );
                          assertValidMatch(leftOrder, rightOrder);
                  
                          // Compute proportional fill amounts
                          matchedFillResults = calculateMatchedFillResults(
                              leftOrder,
                              rightOrder,
                              leftOrderInfo.orderTakerAssetFilledAmount,
                              rightOrderInfo.orderTakerAssetFilledAmount
                          );
                  
                          // Validate fill contexts
                          assertValidFill(
                              leftOrder,
                              leftOrderInfo,
                              matchedFillResults.left.takerAssetFilledAmount,
                              matchedFillResults.left.takerAssetFilledAmount,
                              matchedFillResults.left.makerAssetFilledAmount
                          );
                          assertValidFill(
                              rightOrder,
                              rightOrderInfo,
                              matchedFillResults.right.takerAssetFilledAmount,
                              matchedFillResults.right.takerAssetFilledAmount,
                              matchedFillResults.right.makerAssetFilledAmount
                          );
                          
                          // Update exchange state
                          updateFilledState(
                              leftOrder,
                              takerAddress,
                              leftOrderInfo.orderHash,
                              leftOrderInfo.orderTakerAssetFilledAmount,
                              matchedFillResults.left
                          );
                          updateFilledState(
                              rightOrder,
                              takerAddress,
                              rightOrderInfo.orderHash,
                              rightOrderInfo.orderTakerAssetFilledAmount,
                              matchedFillResults.right
                          );
                  
                          // Settle matched orders. Succeeds or throws.
                          settleMatchedOrders(
                              leftOrder,
                              rightOrder,
                              takerAddress,
                              matchedFillResults
                          );
                  
                          return matchedFillResults;
                      }
                  
                      /// @dev Validates context for matchOrders. Succeeds or throws.
                      /// @param leftOrder First order to match.
                      /// @param rightOrder Second order to match.
                      function assertValidMatch(
                          LibOrder.Order memory leftOrder,
                          LibOrder.Order memory rightOrder
                      )
                          internal
                          pure
                      {
                          // Make sure there is a profitable spread.
                          // There is a profitable spread iff the cost per unit bought (OrderA.MakerAmount/OrderA.TakerAmount) for each order is greater
                          // than the profit per unit sold of the matched order (OrderB.TakerAmount/OrderB.MakerAmount).
                          // This is satisfied by the equations below:
                          // <leftOrder.makerAssetAmount> / <leftOrder.takerAssetAmount> >= <rightOrder.takerAssetAmount> / <rightOrder.makerAssetAmount>
                          // AND
                          // <rightOrder.makerAssetAmount> / <rightOrder.takerAssetAmount> >= <leftOrder.takerAssetAmount> / <leftOrder.makerAssetAmount>
                          // These equations can be combined to get the following:
                          require(
                              safeMul(leftOrder.makerAssetAmount, rightOrder.makerAssetAmount) >=
                              safeMul(leftOrder.takerAssetAmount, rightOrder.takerAssetAmount),
                              "NEGATIVE_SPREAD_REQUIRED"
                          );
                      }
                  
                      /// @dev Calculates fill amounts for the matched orders.
                      ///      Each order is filled at their respective price point. However, the calculations are
                      ///      carried out as though the orders are both being filled at the right order's price point.
                      ///      The profit made by the leftOrder order goes to the taker (who matched the two orders).
                      /// @param leftOrder First order to match.
                      /// @param rightOrder Second order to match.
                      /// @param leftOrderTakerAssetFilledAmount Amount of left order already filled.
                      /// @param rightOrderTakerAssetFilledAmount Amount of right order already filled.
                      /// @param matchedFillResults Amounts to fill and fees to pay by maker and taker of matched orders.
                      function calculateMatchedFillResults(
                          LibOrder.Order memory leftOrder,
                          LibOrder.Order memory rightOrder,
                          uint256 leftOrderTakerAssetFilledAmount,
                          uint256 rightOrderTakerAssetFilledAmount
                      )
                          internal
                          pure
                          returns (LibFillResults.MatchedFillResults memory matchedFillResults)
                      {
                          // Derive maker asset amounts for left & right orders, given store taker assert amounts
                          uint256 leftTakerAssetAmountRemaining = safeSub(leftOrder.takerAssetAmount, leftOrderTakerAssetFilledAmount);
                          uint256 leftMakerAssetAmountRemaining = safeGetPartialAmountFloor(
                              leftOrder.makerAssetAmount,
                              leftOrder.takerAssetAmount,
                              leftTakerAssetAmountRemaining
                          );
                          uint256 rightTakerAssetAmountRemaining = safeSub(rightOrder.takerAssetAmount, rightOrderTakerAssetFilledAmount);
                          uint256 rightMakerAssetAmountRemaining = safeGetPartialAmountFloor(
                              rightOrder.makerAssetAmount,
                              rightOrder.takerAssetAmount,
                              rightTakerAssetAmountRemaining
                          );
                  
                          // Calculate fill results for maker and taker assets: at least one order will be fully filled.
                          // The maximum amount the left maker can buy is `leftTakerAssetAmountRemaining`
                          // The maximum amount the right maker can sell is `rightMakerAssetAmountRemaining`
                          // We have two distinct cases for calculating the fill results:
                          // Case 1.
                          //   If the left maker can buy more than the right maker can sell, then only the right order is fully filled.
                          //   If the left maker can buy exactly what the right maker can sell, then both orders are fully filled.
                          // Case 2.
                          //   If the left maker cannot buy more than the right maker can sell, then only the left order is fully filled.
                          if (leftTakerAssetAmountRemaining >= rightMakerAssetAmountRemaining) {
                              // Case 1: Right order is fully filled
                              matchedFillResults.right.makerAssetFilledAmount = rightMakerAssetAmountRemaining;
                              matchedFillResults.right.takerAssetFilledAmount = rightTakerAssetAmountRemaining;
                              matchedFillResults.left.takerAssetFilledAmount = matchedFillResults.right.makerAssetFilledAmount;
                              // Round down to ensure the maker's exchange rate does not exceed the price specified by the order. 
                              // We favor the maker when the exchange rate must be rounded.
                              matchedFillResults.left.makerAssetFilledAmount = safeGetPartialAmountFloor(
                                  leftOrder.makerAssetAmount,
                                  leftOrder.takerAssetAmount,
                                  matchedFillResults.left.takerAssetFilledAmount
                              );
                          } else {
                              // Case 2: Left order is fully filled
                              matchedFillResults.left.makerAssetFilledAmount = leftMakerAssetAmountRemaining;
                              matchedFillResults.left.takerAssetFilledAmount = leftTakerAssetAmountRemaining;
                              matchedFillResults.right.makerAssetFilledAmount = matchedFillResults.left.takerAssetFilledAmount;
                              // Round up to ensure the maker's exchange rate does not exceed the price specified by the order.
                              // We favor the maker when the exchange rate must be rounded.
                              matchedFillResults.right.takerAssetFilledAmount = safeGetPartialAmountCeil(
                                  rightOrder.takerAssetAmount,
                                  rightOrder.makerAssetAmount,
                                  matchedFillResults.right.makerAssetFilledAmount
                              );
                          }
                  
                          // Calculate amount given to taker
                          matchedFillResults.leftMakerAssetSpreadAmount = safeSub(
                              matchedFillResults.left.makerAssetFilledAmount,
                              matchedFillResults.right.takerAssetFilledAmount
                          );
                  
                          // Compute fees for left order
                          matchedFillResults.left.makerFeePaid = safeGetPartialAmountFloor(
                              matchedFillResults.left.makerAssetFilledAmount,
                              leftOrder.makerAssetAmount,
                              leftOrder.makerFee
                          );
                          matchedFillResults.left.takerFeePaid = safeGetPartialAmountFloor(
                              matchedFillResults.left.takerAssetFilledAmount,
                              leftOrder.takerAssetAmount,
                              leftOrder.takerFee
                          );
                  
                          // Compute fees for right order
                          matchedFillResults.right.makerFeePaid = safeGetPartialAmountFloor(
                              matchedFillResults.right.makerAssetFilledAmount,
                              rightOrder.makerAssetAmount,
                              rightOrder.makerFee
                          );
                          matchedFillResults.right.takerFeePaid = safeGetPartialAmountFloor(
                              matchedFillResults.right.takerAssetFilledAmount,
                              rightOrder.takerAssetAmount,
                              rightOrder.takerFee
                          );
                  
                          // Return fill results
                          return matchedFillResults;
                      }
                  
                      /// @dev Settles matched order by transferring appropriate funds between order makers, taker, and fee recipient.
                      /// @param leftOrder First matched order.
                      /// @param rightOrder Second matched order.
                      /// @param takerAddress Address that matched the orders. The taker receives the spread between orders as profit.
                      /// @param matchedFillResults Struct holding amounts to transfer between makers, taker, and fee recipients.
                      function settleMatchedOrders(
                          LibOrder.Order memory leftOrder,
                          LibOrder.Order memory rightOrder,
                          address takerAddress,
                          LibFillResults.MatchedFillResults memory matchedFillResults
                      )
                          private
                      {
                          bytes memory zrxAssetData = ZRX_ASSET_DATA;
                          // Order makers and taker
                          dispatchTransferFrom(
                              leftOrder.makerAssetData,
                              leftOrder.makerAddress,
                              rightOrder.makerAddress,
                              matchedFillResults.right.takerAssetFilledAmount
                          );
                          dispatchTransferFrom(
                              rightOrder.makerAssetData,
                              rightOrder.makerAddress,
                              leftOrder.makerAddress,
                              matchedFillResults.left.takerAssetFilledAmount
                          );
                          dispatchTransferFrom(
                              leftOrder.makerAssetData,
                              leftOrder.makerAddress,
                              takerAddress,
                              matchedFillResults.leftMakerAssetSpreadAmount
                          );
                  
                          // Maker fees
                          dispatchTransferFrom(
                              zrxAssetData,
                              leftOrder.makerAddress,
                              leftOrder.feeRecipientAddress,
                              matchedFillResults.left.makerFeePaid
                          );
                          dispatchTransferFrom(
                              zrxAssetData,
                              rightOrder.makerAddress,
                              rightOrder.feeRecipientAddress,
                              matchedFillResults.right.makerFeePaid
                          );
                  
                          // Taker fees
                          if (leftOrder.feeRecipientAddress == rightOrder.feeRecipientAddress) {
                              dispatchTransferFrom(
                                  zrxAssetData,
                                  takerAddress,
                                  leftOrder.feeRecipientAddress,
                                  safeAdd(
                                      matchedFillResults.left.takerFeePaid,
                                      matchedFillResults.right.takerFeePaid
                                  )
                              );
                          } else {
                              dispatchTransferFrom(
                                  zrxAssetData,
                                  takerAddress,
                                  leftOrder.feeRecipientAddress,
                                  matchedFillResults.left.takerFeePaid
                              );
                              dispatchTransferFrom(
                                  zrxAssetData,
                                  takerAddress,
                                  rightOrder.feeRecipientAddress,
                                  matchedFillResults.right.takerFeePaid
                              );
                          }
                      }
                  }
                  
                  
                  
                  // solhint-disable no-empty-blocks
                  contract Exchange is
                      MixinExchangeCore,
                      MixinMatchOrders,
                      MixinSignatureValidator,
                      MixinTransactions,
                      MixinAssetProxyDispatcher,
                      MixinWrapperFunctions
                  {
                      string constant public VERSION = "2.0.1-alpha";
                  
                      // Mixins are instantiated in the order they are inherited
                      constructor (bytes memory _zrxAssetData)
                          public
                          LibConstants(_zrxAssetData) // @TODO: Remove when we deploy.
                          MixinExchangeCore()
                          MixinMatchOrders()
                          MixinSignatureValidator()
                          MixinTransactions()
                          MixinAssetProxyDispatcher()
                          MixinWrapperFunctions()
                      {}
                  }

                  File 4 of 9: PMM
                  // SPDX-License-Identifier: MIT
                  // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
                  
                  
                  pragma solidity ^0.6.0;
                  
                  /**
                   * @dev Interface of the ERC20 standard as defined in the EIP.
                   */
                  interface IERC20 {
                      /**
                       * @dev Returns the amount of tokens in existence.
                       */
                      function totalSupply() external view returns (uint256);
                  
                      /**
                       * @dev Returns the amount of tokens owned by `account`.
                       */
                      function balanceOf(address account) external view returns (uint256);
                  
                      /**
                       * @dev Moves `amount` tokens from the caller's account to `recipient`.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transfer(address recipient, uint256 amount) external returns (bool);
                  
                      /**
                       * @dev Returns the remaining number of tokens that `spender` will be
                       * allowed to spend on behalf of `owner` through {transferFrom}. This is
                       * zero by default.
                       *
                       * This value changes when {approve} or {transferFrom} are called.
                       */
                      function allowance(address owner, address spender) external view returns (uint256);
                  
                      /**
                       * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * IMPORTANT: Beware that changing an allowance with this method brings the risk
                       * that someone may use both the old and the new allowance by unfortunate
                       * transaction ordering. One possible solution to mitigate this race
                       * condition is to first reduce the spender's allowance to 0 and set the
                       * desired value afterwards:
                       * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                       *
                       * Emits an {Approval} event.
                       */
                      function approve(address spender, uint256 amount) external returns (bool);
                  
                      /**
                       * @dev Moves `amount` tokens from `sender` to `recipient` using the
                       * allowance mechanism. `amount` is then deducted from the caller's
                       * allowance.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
                  
                      /**
                       * @dev Emitted when `value` tokens are moved from one account (`from`) to
                       * another (`to`).
                       *
                       * Note that `value` may be zero.
                       */
                      event Transfer(address indexed from, address indexed to, uint256 value);
                  
                      /**
                       * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                       * a call to {approve}. `value` is the new allowance.
                       */
                      event Approval(address indexed owner, address indexed spender, uint256 value);
                  }
                  
                  // File: @openzeppelin/contracts/math/SafeMath.sol
                  
                  
                  pragma solidity ^0.6.0;
                  
                  /**
                   * @dev Wrappers over Solidity's arithmetic operations with added overflow
                   * checks.
                   *
                   * Arithmetic operations in Solidity wrap on overflow. This can easily result
                   * in bugs, because programmers usually assume that an overflow raises an
                   * error, which is the standard behavior in high level programming languages.
                   * `SafeMath` restores this intuition by reverting the transaction when an
                   * operation overflows.
                   *
                   * Using this library instead of the unchecked operations eliminates an entire
                   * class of bugs, so it's recommended to use it always.
                   */
                  library SafeMath {
                      /**
                       * @dev Returns the addition of two unsigned integers, reverting on
                       * overflow.
                       *
                       * Counterpart to Solidity's `+` operator.
                       *
                       * Requirements:
                       *
                       * - Addition cannot overflow.
                       */
                      function add(uint256 a, uint256 b) internal pure returns (uint256) {
                          uint256 c = a + b;
                          require(c >= a, "SafeMath: addition overflow");
                  
                          return c;
                      }
                  
                      /**
                       * @dev Returns the subtraction of two unsigned integers, reverting on
                       * overflow (when the result is negative).
                       *
                       * Counterpart to Solidity's `-` operator.
                       *
                       * Requirements:
                       *
                       * - Subtraction cannot overflow.
                       */
                      function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                          return sub(a, b, "SafeMath: subtraction overflow");
                      }
                  
                      /**
                       * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                       * overflow (when the result is negative).
                       *
                       * Counterpart to Solidity's `-` operator.
                       *
                       * Requirements:
                       *
                       * - Subtraction cannot overflow.
                       */
                      function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                          require(b <= a, errorMessage);
                          uint256 c = a - b;
                  
                          return c;
                      }
                  
                      /**
                       * @dev Returns the multiplication of two unsigned integers, reverting on
                       * overflow.
                       *
                       * Counterpart to Solidity's `*` operator.
                       *
                       * Requirements:
                       *
                       * - Multiplication cannot overflow.
                       */
                      function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                          // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                          // benefit is lost if 'b' is also tested.
                          // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                          if (a == 0) {
                              return 0;
                          }
                  
                          uint256 c = a * b;
                          require(c / a == b, "SafeMath: multiplication overflow");
                  
                          return c;
                      }
                  
                      /**
                       * @dev Returns the integer division of two unsigned integers. Reverts on
                       * division by zero. The result is rounded towards zero.
                       *
                       * Counterpart to Solidity's `/` operator. Note: this function uses a
                       * `revert` opcode (which leaves remaining gas untouched) while Solidity
                       * uses an invalid opcode to revert (consuming all remaining gas).
                       *
                       * Requirements:
                       *
                       * - The divisor cannot be zero.
                       */
                      function div(uint256 a, uint256 b) internal pure returns (uint256) {
                          return div(a, b, "SafeMath: division by zero");
                      }
                  
                      /**
                       * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
                       * division by zero. The result is rounded towards zero.
                       *
                       * Counterpart to Solidity's `/` operator. Note: this function uses a
                       * `revert` opcode (which leaves remaining gas untouched) while Solidity
                       * uses an invalid opcode to revert (consuming all remaining gas).
                       *
                       * Requirements:
                       *
                       * - The divisor cannot be zero.
                       */
                      function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                          require(b > 0, errorMessage);
                          uint256 c = a / b;
                          // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                  
                          return c;
                      }
                  
                      /**
                       * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                       * Reverts when dividing by zero.
                       *
                       * Counterpart to Solidity's `%` operator. This function uses a `revert`
                       * opcode (which leaves remaining gas untouched) while Solidity uses an
                       * invalid opcode to revert (consuming all remaining gas).
                       *
                       * Requirements:
                       *
                       * - The divisor cannot be zero.
                       */
                      function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                          return mod(a, b, "SafeMath: modulo by zero");
                      }
                  
                      /**
                       * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                       * Reverts with custom message when dividing by zero.
                       *
                       * Counterpart to Solidity's `%` operator. This function uses a `revert`
                       * opcode (which leaves remaining gas untouched) while Solidity uses an
                       * invalid opcode to revert (consuming all remaining gas).
                       *
                       * Requirements:
                       *
                       * - The divisor cannot be zero.
                       */
                      function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                          require(b != 0, errorMessage);
                          return a % b;
                      }
                  }
                  
                  // File: @openzeppelin/contracts/utils/Address.sol
                  
                  
                  pragma solidity ^0.6.2;
                  
                  /**
                   * @dev Collection of functions related to the address type
                   */
                  library Address {
                      /**
                       * @dev Returns true if `account` is a contract.
                       *
                       * [IMPORTANT]
                       * ====
                       * It is unsafe to assume that an address for which this function returns
                       * false is an externally-owned account (EOA) and not a contract.
                       *
                       * Among others, `isContract` will return false for the following
                       * types of addresses:
                       *
                       *  - an externally-owned account
                       *  - a contract in construction
                       *  - an address where a contract will be created
                       *  - an address where a contract lived, but was destroyed
                       * ====
                       */
                      function isContract(address account) internal view returns (bool) {
                          // This method relies in extcodesize, which returns 0 for contracts in
                          // construction, since the code is only stored at the end of the
                          // constructor execution.
                  
                          uint256 size;
                          // solhint-disable-next-line no-inline-assembly
                          assembly { size := extcodesize(account) }
                          return size > 0;
                      }
                  
                      /**
                       * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                       * `recipient`, forwarding all available gas and reverting on errors.
                       *
                       * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                       * of certain opcodes, possibly making contracts go over the 2300 gas limit
                       * imposed by `transfer`, making them unable to receive funds via
                       * `transfer`. {sendValue} removes this limitation.
                       *
                       * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                       *
                       * IMPORTANT: because control is transferred to `recipient`, care must be
                       * taken to not create reentrancy vulnerabilities. Consider using
                       * {ReentrancyGuard} or the
                       * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                       */
                      function sendValue(address payable recipient, uint256 amount) internal {
                          require(address(this).balance >= amount, "Address: insufficient balance");
                  
                          // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                          (bool success, ) = recipient.call{ value: amount }("");
                          require(success, "Address: unable to send value, recipient may have reverted");
                      }
                  
                      /**
                       * @dev Performs a Solidity function call using a low level `call`. A
                       * plain`call` is an unsafe replacement for a function call: use this
                       * function instead.
                       *
                       * If `target` reverts with a revert reason, it is bubbled up by this
                       * function (like regular Solidity function calls).
                       *
                       * Returns the raw returned data. To convert to the expected return value,
                       * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                       *
                       * Requirements:
                       *
                       * - `target` must be a contract.
                       * - calling `target` with `data` must not revert.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                      }
                  
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                       * `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                          return _functionCallWithValue(target, data, 0, errorMessage);
                      }
                  
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but also transferring `value` wei to `target`.
                       *
                       * Requirements:
                       *
                       * - the calling contract must have an ETH balance of at least `value`.
                       * - the called Solidity function must be `payable`.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                      }
                  
                      /**
                       * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                       * with `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                          require(address(this).balance >= value, "Address: insufficient balance for call");
                          return _functionCallWithValue(target, data, value, errorMessage);
                      }
                  
                      function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
                          require(isContract(target), "Address: call to non-contract");
                  
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
                          if (success) {
                              return returndata;
                          } else {
                              // Look for revert reason and bubble it up if present
                              if (returndata.length > 0) {
                                  // The easiest way to bubble the revert reason is using memory via assembly
                  
                                  // solhint-disable-next-line no-inline-assembly
                                  assembly {
                                      let returndata_size := mload(returndata)
                                      revert(add(32, returndata), returndata_size)
                                  }
                              } else {
                                  revert(errorMessage);
                              }
                          }
                      }
                  }
                  
                  // File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
                  
                  
                  pragma solidity ^0.6.0;
                  
                  
                  
                  
                  /**
                   * @title SafeERC20
                   * @dev Wrappers around ERC20 operations that throw on failure (when the token
                   * contract returns false). Tokens that return no value (and instead revert or
                   * throw on failure) are also supported, non-reverting calls are assumed to be
                   * successful.
                   * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                   * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                   */
                  library SafeERC20 {
                      using SafeMath for uint256;
                      using Address for address;
                  
                      function safeTransfer(IERC20 token, address to, uint256 value) internal {
                          _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                      }
                  
                      function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                          _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                      }
                  
                      /**
                       * @dev Deprecated. This function has issues similar to the ones found in
                       * {IERC20-approve}, and its usage is discouraged.
                       *
                       * Whenever possible, use {safeIncreaseAllowance} and
                       * {safeDecreaseAllowance} instead.
                       */
                      function safeApprove(IERC20 token, address spender, uint256 value) internal {
                          // safeApprove should only be called when setting an initial allowance,
                          // or when resetting it to zero. To increase and decrease it, use
                          // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                          // solhint-disable-next-line max-line-length
                          require((value == 0) || (token.allowance(address(this), spender) == 0),
                              "SafeERC20: approve from non-zero to non-zero allowance"
                          );
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                      }
                  
                      function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                          uint256 newAllowance = token.allowance(address(this), spender).add(value);
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                  
                      function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                          uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                  
                      /**
                       * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                       * on the return value: the return value is optional (but if data is returned, it must not be false).
                       * @param token The token targeted by the call.
                       * @param data The call data (encoded using abi.encode or one of its variants).
                       */
                      function _callOptionalReturn(IERC20 token, bytes memory data) private {
                          // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                          // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                          // the target address contains contract code and also asserts for success in the low-level call.
                  
                          bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                          if (returndata.length > 0) { // Return data is optional
                              // solhint-disable-next-line max-line-length
                              require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                          }
                      }
                  }
                  
                  // File: @openzeppelin/contracts/utils/ReentrancyGuard.sol
                  
                  
                  pragma solidity ^0.6.0;
                  
                  /**
                   * @dev Contract module that helps prevent reentrant calls to a function.
                   *
                   * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
                   * available, which can be applied to functions to make sure there are no nested
                   * (reentrant) calls to them.
                   *
                   * Note that because there is a single `nonReentrant` guard, functions marked as
                   * `nonReentrant` may not call one another. This can be worked around by making
                   * those functions `private`, and then adding `external` `nonReentrant` entry
                   * points to them.
                   *
                   * TIP: If you would like to learn more about reentrancy and alternative ways
                   * to protect against it, check out our blog post
                   * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
                   */
                  contract ReentrancyGuard {
                      // Booleans are more expensive than uint256 or any type that takes up a full
                      // word because each write operation emits an extra SLOAD to first read the
                      // slot's contents, replace the bits taken up by the boolean, and then write
                      // back. This is the compiler's defense against contract upgrades and
                      // pointer aliasing, and it cannot be disabled.
                  
                      // The values being non-zero value makes deployment a bit more expensive,
                      // but in exchange the refund on every call to nonReentrant will be lower in
                      // amount. Since refunds are capped to a percentage of the total
                      // transaction's gas, it is best to keep them low in cases like this one, to
                      // increase the likelihood of the full refund coming into effect.
                      uint256 private constant _NOT_ENTERED = 1;
                      uint256 private constant _ENTERED = 2;
                  
                      uint256 private _status;
                  
                      constructor () internal {
                          _status = _NOT_ENTERED;
                      }
                  
                      /**
                       * @dev Prevents a contract from calling itself, directly or indirectly.
                       * Calling a `nonReentrant` function from another `nonReentrant`
                       * function is not supported. It is possible to prevent this from happening
                       * by making the `nonReentrant` function external, and make it call a
                       * `private` function that does the actual work.
                       */
                      modifier nonReentrant() {
                          // On the first call to nonReentrant, _notEntered will be true
                          require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                  
                          // Any calls to nonReentrant after this point will fail
                          _status = _ENTERED;
                  
                          _;
                  
                          // By storing the original value once again, a refund is triggered (see
                          // https://eips.ethereum.org/EIPS/eip-2200)
                          _status = _NOT_ENTERED;
                      }
                  }
                  
                  // File: contracts/pmm/0xLibs/LibEIP712.sol
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity ^0.6.0;
                  
                  
                  contract LibEIP712 {
                  
                      // EIP191 header for EIP712 prefix
                      string constant internal EIP191_HEADER = "\x19\x01";
                  
                      // EIP712 Domain Name value
                      string constant internal EIP712_DOMAIN_NAME = "0x Protocol";
                  
                      // EIP712 Domain Version value
                      string constant internal EIP712_DOMAIN_VERSION = "2";
                  
                      // Hash of the EIP712 Domain Separator Schema
                      bytes32 constant internal EIP712_DOMAIN_SEPARATOR_SCHEMA_HASH = keccak256(abi.encodePacked(
                          "EIP712Domain(",
                          "string name,",
                          "string version,",
                          "address verifyingContract",
                          ")"
                      ));
                  
                      // Hash of the EIP712 Domain Separator data
                      // solhint-disable-next-line var-name-mixedcase
                      bytes32 public EIP712_DOMAIN_HASH;
                  
                      constructor ()
                          public
                      {
                          EIP712_DOMAIN_HASH = keccak256(abi.encodePacked(
                              EIP712_DOMAIN_SEPARATOR_SCHEMA_HASH,
                              keccak256(bytes(EIP712_DOMAIN_NAME)),
                              keccak256(bytes(EIP712_DOMAIN_VERSION)),
                              bytes12(0),
                              address(this)
                          ));
                      }
                  
                      /// @dev Calculates EIP712 encoding for a hash struct in this EIP712 Domain.
                      /// @param hashStruct The EIP712 hash struct.
                      /// @return result EIP712 hash applied to this EIP712 Domain.
                      function hashEIP712Message(bytes32 hashStruct)
                          internal
                          view
                          returns (bytes32 result)
                      {
                          bytes32 eip712DomainHash = EIP712_DOMAIN_HASH;
                  
                          // Assembly for more efficient computing:
                          // keccak256(abi.encodePacked(
                          //     EIP191_HEADER,
                          //     EIP712_DOMAIN_HASH,
                          //     hashStruct    
                          // ));
                  
                          assembly {
                              // Load free memory pointer
                              let memPtr := mload(64)
                  
                              mstore(memPtr, 0x1901000000000000000000000000000000000000000000000000000000000000)  // EIP191 header
                              mstore(add(memPtr, 2), eip712DomainHash)                                            // EIP712 domain hash
                              mstore(add(memPtr, 34), hashStruct)                                                 // Hash of struct
                  
                              // Compute hash
                              result := keccak256(memPtr, 66)
                          }
                          return result;
                      }
                  }
                  
                  // File: contracts/pmm/0xLibs/LibOrder.sol
                  
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity ^0.6.0;
                  
                  
                  
                  contract LibOrder is
                      LibEIP712
                  {
                      // Hash for the EIP712 Order Schema
                      bytes32 constant internal EIP712_ORDER_SCHEMA_HASH = keccak256(abi.encodePacked(
                          "Order(",
                          "address makerAddress,",
                          "address takerAddress,",
                          "address feeRecipientAddress,",
                          "address senderAddress,",
                          "uint256 makerAssetAmount,",
                          "uint256 takerAssetAmount,",
                          "uint256 makerFee,",
                          "uint256 takerFee,",
                          "uint256 expirationTimeSeconds,",
                          "uint256 salt,",
                          "bytes makerAssetData,",
                          "bytes takerAssetData",
                          ")"
                      ));
                  
                      // A valid order remains fillable until it is expired, fully filled, or cancelled.
                      // An order's state is unaffected by external factors, like account balances.
                      enum OrderStatus {
                          INVALID,                     // Default value
                          INVALID_MAKER_ASSET_AMOUNT,  // Order does not have a valid maker asset amount
                          INVALID_TAKER_ASSET_AMOUNT,  // Order does not have a valid taker asset amount
                          FILLABLE,                    // Order is fillable
                          EXPIRED,                     // Order has already expired
                          FULLY_FILLED,                // Order is fully filled
                          CANCELLED                    // Order has been cancelled
                      }
                  
                      // solhint-disable max-line-length
                      struct Order {
                          address makerAddress;           // Address that created the order.      
                          address takerAddress;           // Address that is allowed to fill the order. If set to 0, any address is allowed to fill the order.          
                          address feeRecipientAddress;    // Address that will recieve fees when order is filled.      
                          address senderAddress;          // Address that is allowed to call Exchange contract methods that affect this order. If set to 0, any address is allowed to call these methods.
                          uint256 makerAssetAmount;       // Amount of makerAsset being offered by maker. Must be greater than 0.        
                          uint256 takerAssetAmount;       // Amount of takerAsset being bid on by maker. Must be greater than 0.        
                          uint256 makerFee;               // Amount of ZRX paid to feeRecipient by maker when order is filled. If set to 0, no transfer of ZRX from maker to feeRecipient will be attempted.
                          uint256 takerFee;               // Amount of ZRX paid to feeRecipient by taker when order is filled. If set to 0, no transfer of ZRX from taker to feeRecipient will be attempted.
                          uint256 expirationTimeSeconds;  // Timestamp in seconds at which order expires.          
                          uint256 salt;                   // Arbitrary number to facilitate uniqueness of the order's hash.     
                          bytes makerAssetData;           // Encoded data that can be decoded by a specified proxy contract when transferring makerAsset. The last byte references the id of this proxy.
                          bytes takerAssetData;           // Encoded data that can be decoded by a specified proxy contract when transferring takerAsset. The last byte references the id of this proxy.
                      }
                      // solhint-enable max-line-length
                  
                      struct OrderInfo {
                          uint8 orderStatus;                    // Status that describes order's validity and fillability.
                          bytes32 orderHash;                    // EIP712 hash of the order (see LibOrder.getOrderHash).
                          uint256 orderTakerAssetFilledAmount;  // Amount of order that has already been filled.
                      }
                  
                      /// @dev Calculates Keccak-256 hash of the order.
                      /// @param order The order structure.
                      /// @return orderHash Keccak-256 EIP712 hash of the order.
                      function getOrderHash(Order memory order)
                          internal
                          view
                          returns (bytes32 orderHash)
                      {
                          orderHash = hashEIP712Message(hashOrder(order));
                          return orderHash;
                      }
                  
                      /// @dev Calculates EIP712 hash of the order.
                      /// @param order The order structure.
                      /// @return result EIP712 hash of the order.
                      function hashOrder(Order memory order)
                          internal
                          pure
                          returns (bytes32 result)
                      {
                          bytes32 schemaHash = EIP712_ORDER_SCHEMA_HASH;
                          bytes32 makerAssetDataHash = keccak256(order.makerAssetData);
                          bytes32 takerAssetDataHash = keccak256(order.takerAssetData);
                  
                          // Assembly for more efficiently computing:
                          // keccak256(abi.encodePacked(
                          //     EIP712_ORDER_SCHEMA_HASH,
                          //     bytes32(order.makerAddress),
                          //     bytes32(order.takerAddress),
                          //     bytes32(order.feeRecipientAddress),
                          //     bytes32(order.senderAddress),
                          //     order.makerAssetAmount,
                          //     order.takerAssetAmount,
                          //     order.makerFee,
                          //     order.takerFee,
                          //     order.expirationTimeSeconds,
                          //     order.salt,
                          //     keccak256(order.makerAssetData),
                          //     keccak256(order.takerAssetData)
                          // ));
                  
                          assembly {
                              // Calculate memory addresses that will be swapped out before hashing
                              let pos1 := sub(order, 32)
                              let pos2 := add(order, 320)
                              let pos3 := add(order, 352)
                  
                              // Backup
                              let temp1 := mload(pos1)
                              let temp2 := mload(pos2)
                              let temp3 := mload(pos3)
                              
                              // Hash in place
                              mstore(pos1, schemaHash)
                              mstore(pos2, makerAssetDataHash)
                              mstore(pos3, takerAssetDataHash)
                              result := keccak256(pos1, 416)
                              
                              // Restore
                              mstore(pos1, temp1)
                              mstore(pos2, temp2)
                              mstore(pos3, temp3)
                          }
                          return result;
                      }
                  }
                  
                  // File: contracts/utils/LibBytes.sol
                  
                  /*
                    Copyright 2018 ZeroEx Intl.
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                    http://www.apache.org/licenses/LICENSE-2.0
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                    This is a truncated version of the original LibBytes.sol library from ZeroEx.
                  */
                  
                  pragma solidity ^0.6.0;
                  
                  
                  library LibBytes {
                    using LibBytes for bytes;
                  
                    /***********************************|
                    |        Pop Bytes Functions        |
                    |__________________________________*/
                  
                    /**
                     * @dev Pops the last byte off of a byte array by modifying its length.
                     * @param b Byte array that will be modified.
                     * @return result The byte that was popped off.
                     */
                    function popLastByte(bytes memory b)
                      internal
                      pure
                      returns (bytes1 result)
                    {
                      require(
                        b.length > 0,
                        "LibBytes#popLastByte: greater than zero length required"
                      );
                  
                      // Store last byte.
                      result = b[b.length - 1];
                  
                      assembly {
                        // Decrement length of byte array.
                        let newLen := sub(mload(b), 1)
                        mstore(b, newLen)
                      }
                      return result;
                    }
                  
                    /// @dev Reads an address from a position in a byte array.
                    /// @param b Byte array containing an address.
                    /// @param index Index in byte array of address.
                    /// @return result address from byte array.
                    function readAddress(
                      bytes memory b,
                      uint256 index
                    )
                      internal
                      pure
                      returns (address result)
                    {
                      require(
                        b.length >= index + 20,  // 20 is length of address
                        "LibBytes#readAddress greater or equal to 20 length required"
                      );
                  
                      // Add offset to index:
                      // 1. Arrays are prefixed by 32-byte length parameter (add 32 to index)
                      // 2. Account for size difference between address length and 32-byte storage word (subtract 12 from index)
                      index += 20;
                  
                      // Read address from array memory
                      assembly {
                        // 1. Add index to address of bytes array
                        // 2. Load 32-byte word from memory
                        // 3. Apply 20-byte mask to obtain address
                        result := and(mload(add(b, index)), 0xffffffffffffffffffffffffffffffffffffffff)
                      }
                      return result;
                    }
                  
                    /***********************************|
                    |        Read Bytes Functions       |
                    |__________________________________*/
                  
                    /**
                     * @dev Reads a bytes32 value from a position in a byte array.
                     * @param b Byte array containing a bytes32 value.
                     * @param index Index in byte array of bytes32 value.
                     * @return result bytes32 value from byte array.
                     */
                    function readBytes32(
                      bytes memory b,
                      uint256 index
                    )
                      internal
                      pure
                      returns (bytes32 result)
                    {
                      require(
                        b.length >= index + 32,
                        "LibBytes#readBytes32 greater or equal to 32 length required"
                      );
                  
                      // Arrays are prefixed by a 256 bit length parameter
                      index += 32;
                  
                      // Read the bytes32 from array memory
                      assembly {
                        result := mload(add(b, index))
                      }
                      return result;
                    }
                  
                    /// @dev Reads an unpadded bytes4 value from a position in a byte array.
                    /// @param b Byte array containing a bytes4 value.
                    /// @param index Index in byte array of bytes4 value.
                    /// @return result bytes4 value from byte array.
                    function readBytes4(
                      bytes memory b,
                      uint256 index
                    )
                      internal
                      pure
                      returns (bytes4 result)
                    {
                      require(
                        b.length >= index + 4,
                        "LibBytes#readBytes4 greater or equal to 4 length required"
                      );
                  
                      // Arrays are prefixed by a 32 byte length field
                      index += 32;
                  
                      // Read the bytes4 from array memory
                      assembly {
                        result := mload(add(b, index))
                        // Solidity does not require us to clean the trailing bytes.
                        // We do it anyway
                        result := and(result, 0xFFFFFFFF00000000000000000000000000000000000000000000000000000000)
                      }
                      return result;
                    }
                  
                    function readBytes2(
                      bytes memory b,
                      uint256 index
                    )
                      internal
                      pure
                      returns (bytes2 result)
                    {
                      require(
                        b.length >= index + 2,
                        "LibBytes#readBytes2 greater or equal to 2 length required"
                      );
                  
                      // Arrays are prefixed by a 32 byte length field
                      index += 32;
                  
                      // Read the bytes4 from array memory
                      assembly {
                        result := mload(add(b, index))
                        // Solidity does not require us to clean the trailing bytes.
                        // We do it anyway
                        result := and(result, 0xFFFF000000000000000000000000000000000000000000000000000000000000)
                      }
                      return result;
                    }
                  }
                  
                  // File: contracts/pmm/0xLibs/LibDecoder.sol
                  
                  pragma solidity ^0.6.0;
                  pragma experimental ABIEncoderV2;
                  
                  
                  
                  contract LibDecoder {
                      using LibBytes for bytes;
                  
                      function decodeFillOrder(bytes memory data) internal pure returns(LibOrder.Order memory order, uint256 takerFillAmount, bytes memory mmSignature) {
                          require(
                              data.length > 800,
                              "LibDecoder: LENGTH_LESS_800"
                          );
                  
                          // compare method_id
                          // 0x64a3bc15 is fillOrKillOrder's method id.
                          require(
                              data.readBytes4(0) == 0x64a3bc15,
                              "LibDecoder: WRONG_METHOD_ID"
                          );
                          
                          bytes memory dataSlice;
                          assembly {
                              dataSlice := add(data, 4)
                          }
                          return abi.decode(dataSlice, (LibOrder.Order, uint256, bytes));
                  
                      }
                  
                      function decodeMmSignature(bytes memory signature) internal pure returns(uint8 v, bytes32 r, bytes32 s) {
                          v = uint8(signature[0]);
                          r = signature.readBytes32(1);
                          s = signature.readBytes32(33);
                  
                          return (v, r, s);
                      }
                  
                      function decodeUserSignatureWithoutSign(bytes memory signature) internal pure returns(address receiver) {
                          require(
                              signature.length == 85 || signature.length == 86,
                              "LibDecoder: LENGTH_85_REQUIRED"
                          );
                          receiver = signature.readAddress(65);
                  
                          return receiver;
                      }
                  
                      function decodeUserSignature(bytes memory signature) internal pure returns(uint8 v, bytes32 r, bytes32 s, address receiver) {
                          receiver = decodeUserSignatureWithoutSign(signature);
                  
                          v = uint8(signature[0]);
                          r = signature.readBytes32(1);
                          s = signature.readBytes32(33);
                  
                          return (v, r, s, receiver);
                      }
                  
                      function decodeERC20Asset(bytes memory assetData) internal pure returns(address) {
                          require(
                              assetData.length == 36,
                              "LibDecoder: LENGTH_36_REQUIRED"
                          );
                  
                          return assetData.readAddress(16);
                      }
                  }
                  
                  // File: contracts/pmm/0xLibs/LibEncoder.sol
                  
                  pragma solidity ^0.6.0;
                  
                  
                  contract LibEncoder is
                      LibEIP712
                  {
                      // Hash for the EIP712 ZeroEx Transaction Schema
                      bytes32 constant internal EIP712_ZEROEX_TRANSACTION_SCHEMA_HASH = keccak256(
                          abi.encodePacked(
                          "ZeroExTransaction(",
                          "uint256 salt,",
                          "address signerAddress,",
                          "bytes data",
                          ")"
                      ));
                  
                      function encodeTransactionHash(
                          uint256 salt,
                          address signerAddress,
                          bytes memory data
                      )
                          internal
                          view 
                          returns (bytes32 result)
                      {
                          bytes32 schemaHash = EIP712_ZEROEX_TRANSACTION_SCHEMA_HASH;
                          bytes32 dataHash = keccak256(data);
                  
                          // Assembly for more efficiently computing:
                          // keccak256(abi.encodePacked(
                          //     EIP712_ZEROEX_TRANSACTION_SCHEMA_HASH,
                          //     salt,
                          //     bytes32(signerAddress),
                          //     keccak256(data)
                          // ));
                  
                          assembly {
                              // Load free memory pointer
                              let memPtr := mload(64)
                  
                              mstore(memPtr, schemaHash)                                                               // hash of schema
                              mstore(add(memPtr, 32), salt)                                                            // salt
                              mstore(add(memPtr, 64), and(signerAddress, 0xffffffffffffffffffffffffffffffffffffffff))  // signerAddress
                              mstore(add(memPtr, 96), dataHash)                                                        // hash of data
                  
                              // Compute hash
                              result := keccak256(memPtr, 128)
                          }
                          result = hashEIP712Message(result);
                          return result;
                      }
                  }
                  
                  // File: contracts/interface/ISpender.sol
                  
                  pragma solidity ^0.6.0;
                  
                  interface ISpender {
                      function spendFromUser(address _user, address _tokenAddr, uint256 _amount) external;
                  }
                  
                  // File: contracts/interface/IZeroExchange.sol
                  
                  /*
                    Copyright 2018 ZeroEx Intl.
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                      http://www.apache.org/licenses/LICENSE-2.0
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  */
                  
                  pragma solidity ^0.6.0;
                  
                  interface IZeroExchange {
                      function executeTransaction(
                          uint256 salt,
                          address signerAddress,
                          bytes calldata data,
                          bytes calldata signature
                      ) external;
                  }
                  
                  // File: contracts/interface/IWeth.sol
                  
                  pragma solidity ^0.6.0;
                  
                  interface IWETH {
                      function deposit() external payable;
                      function withdraw(uint256 amount) external;
                      function transferFrom(address src, address dst, uint wad) external returns (bool);
                  }
                  
                  // File: contracts/interface/ISetAllowance.sol
                  
                  pragma solidity ^0.6.0;
                  
                  interface ISetAllowance {
                      function setAllowance(address[] memory tokenList, address spender) external;
                      function closeAllowance(address[] memory tokenList, address spender) external;
                  }
                  
                  // File: contracts/interface/IPMM.sol
                  
                  pragma solidity ^0.6.0;
                  
                  
                  
                  interface IPMM is ISetAllowance {
                      function fill(
                          uint256 userSalt,
                          bytes memory data,
                          bytes memory userSignature
                      ) external payable returns (uint256);
                  }
                  
                  // File: contracts/interface/IPermanentStorage.sol
                  
                  pragma solidity ^0.6.0;
                  
                  interface IPermanentStorage {
                      function wethAddr() external view returns (address);
                      function getCurveTokenIndex(address _makerAddr, address _assetAddr) external view returns (int128);
                      function setCurveTokenIndex(address _makerAddr, address[] calldata _assetAddrs) external;
                      function isTransactionSeen(bytes32 _transactionHash) external view returns (bool);
                      function isRelayerValid(address _relayer) external view returns (bool);
                      function setTransactionSeen(bytes32 _transactionHash) external;
                      function setRelayersValid(address[] memory _relayers, bool[] memory _isValids) external;
                  }
                  
                  // File: contracts/interface/IERC1271Wallet.sol
                  
                  pragma solidity ^0.6.0;
                  
                  
                  interface  IERC1271Wallet {
                  
                    /**
                     * @notice Verifies whether the provided signature is valid with respect to the provided data
                     * @dev MUST return the correct magic value if the signature provided is valid for the provided data
                     *   > The bytes4 magic value to return when signature is valid is 0x20c13b0b : bytes4(keccak256("isValidSignature(bytes,bytes)")
                     *   > This function MAY modify Ethereum's state
                     * @param _data       Arbitrary length data signed on the behalf of address(this)
                     * @param _signature  Signature byte array associated with _data
                     * @return magicValue Magic value 0x20c13b0b if the signature is valid and 0x0 otherwise
                     *
                     */
                    function isValidSignature(
                      bytes calldata _data,
                      bytes calldata _signature)
                      external
                      view
                      returns (bytes4 magicValue);
                  
                    /**
                     * @notice Verifies whether the provided signature is valid with respect to the provided hash
                     * @dev MUST return the correct magic value if the signature provided is valid for the provided hash
                     *   > The bytes4 magic value to return when signature is valid is 0x20c13b0b : bytes4(keccak256("isValidSignature(bytes,bytes)")
                     *   > This function MAY modify Ethereum's state
                     * @param _hash       keccak256 hash that was signed
                     * @param _signature  Signature byte array associated with _data
                     * @return magicValue Magic value 0x20c13b0b if the signature is valid and 0x0 otherwise
                     */
                    function isValidSignature(
                      bytes32 _hash,
                      bytes calldata _signature)
                      external
                      view
                      returns (bytes4 magicValue);
                  }
                  
                  // File: contracts/PMM.sol
                  
                  pragma solidity ^0.6.0;
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  contract PMM is
                      ReentrancyGuard,
                      IPMM,
                      LibOrder,
                      LibDecoder,
                      LibEncoder
                  {
                      using SafeMath for uint256;
                      using SafeERC20 for IERC20;
                      using Address for address;
                  
                      // Constants do not have storage slot.
                      string public constant version = "5.0.0";
                      uint256 private constant MAX_UINT = 2**256 - 1;
                      string public constant SOURCE = "0x v2";
                      uint256 private constant BPS_MAX = 10000;
                      bytes4 constant internal ERC1271_MAGICVALUE_BYTES32 = 0x1626ba7e;  // bytes4(keccak256("isValidSignature(bytes32,bytes)"))
                      address public immutable userProxy;
                      ISpender public immutable spender;
                      IPermanentStorage public immutable permStorage;
                      IZeroExchange public immutable zeroExchange;
                      address public immutable zxERC20Proxy;
                  
                      // Below are the variables which consume storage slots.
                      address public operator;
                  
                      struct TradeInfo {
                          address user;
                          address receiver;
                          uint16 feeFactor;
                          address makerAssetAddr;
                          address takerAssetAddr;
                          bytes32 transactionHash;
                          bytes32 orderHash;
                      }
                  
                      // events
                      event FillOrder(
                          string source,
                          bytes32 indexed transactionHash,
                          bytes32 indexed orderHash,
                          address indexed userAddr,
                          address takerAssetAddr,
                          uint256 takerAssetAmount,
                          address makerAddr,
                          address makerAssetAddr,
                          uint256 makerAssetAmount,
                          address receiverAddr,
                          uint256 settleAmount,
                          uint16 feeFactor
                      );
                  
                  
                      receive() external payable {}
                  
                  
                      /************************************************************
                      *          Access control and ownership management          *
                      *************************************************************/
                      modifier onlyOperator {
                          require(operator == msg.sender, "PMM: not operator");
                          _;
                      }
                  
                      modifier onlyUserProxy() {
                          require(address(userProxy) == msg.sender, "PMM: not the UserProxy contract");
                          _;
                      }
                  
                      function transferOwnership(address _newOperator) external onlyOperator {
                          require(_newOperator != address(0), "AMMWrapper: operator can not be zero address");
                          operator = _newOperator;
                      }
                  
                  
                      /************************************************************
                      *              Constructor and init functions               *
                      *************************************************************/
                      constructor (address _operator, address _userProxy, ISpender _spender, IPermanentStorage _permStorage, IZeroExchange _zeroExchange, address _zxERC20Proxy) public {
                          operator = _operator;
                          userProxy = _userProxy;
                          spender = _spender;
                          permStorage = _permStorage;
                          zeroExchange = _zeroExchange;
                          zxERC20Proxy = _zxERC20Proxy;
                          // This constant follows ZX_EXCHANGE address
                          EIP712_DOMAIN_HASH = keccak256(
                              abi.encodePacked(
                                  EIP712_DOMAIN_SEPARATOR_SCHEMA_HASH,
                                  keccak256(bytes(EIP712_DOMAIN_NAME)),
                                  keccak256(bytes(EIP712_DOMAIN_VERSION)),
                                  bytes12(0),
                                  address(_zeroExchange)
                              )
                          );
                      }
                  
                  
                      /************************************************************
                      *           Management functions for Operator               *
                      *************************************************************/
                      /**
                       * @dev approve spender to transfer tokens from this contract. This is used to collect fee.
                       */
                      function setAllowance(address[] calldata _tokenList, address _spender) override external onlyOperator {
                          for (uint256 i = 0 ; i < _tokenList.length; i++) {
                              IERC20(_tokenList[i]).safeApprove(_spender, MAX_UINT);
                          }
                      }
                  
                      function closeAllowance(address[] calldata _tokenList, address _spender) override external onlyOperator {
                          for (uint256 i = 0 ; i < _tokenList.length; i++) {
                              IERC20(_tokenList[i]).safeApprove(_spender, 0);
                          }
                      }
                  
                  
                      /************************************************************
                      *                   External functions                      *
                      *************************************************************/
                      function fill(
                          uint256 userSalt,
                          bytes memory data,
                          bytes memory userSignature
                      )
                          override
                          public
                          payable
                          onlyUserProxy
                          nonReentrant
                          returns (uint256)
                      {
                          // decode & assert
                          (LibOrder.Order memory order,
                          TradeInfo memory tradeInfo) = _assertTransaction(userSalt, data, userSignature);
                  
                          // Deposit to WETH if taker asset is ETH, else transfer from user
                          IWETH weth = IWETH(permStorage.wethAddr());
                          if (address(weth) == tradeInfo.takerAssetAddr) {
                              require(
                                  msg.value == order.takerAssetAmount,
                                  "PMM: insufficient ETH"
                              );
                              weth.deposit{value: msg.value}();
                          } else {
                              spender.spendFromUser(tradeInfo.user, tradeInfo.takerAssetAddr, order.takerAssetAmount);
                          }
                  
                          IERC20(tradeInfo.takerAssetAddr).safeIncreaseAllowance(zxERC20Proxy, order.takerAssetAmount);
                  
                          // send tx to 0x
                          zeroExchange.executeTransaction(
                              userSalt,
                              address(this),
                              data,
                              ""
                          );
                  
                          // settle token/ETH to user
                          uint256 settleAmount = _settle(weth, tradeInfo.receiver, tradeInfo.makerAssetAddr, order.makerAssetAmount, tradeInfo.feeFactor);
                          IERC20(tradeInfo.takerAssetAddr).safeApprove(zxERC20Proxy, 0);
                  
                          emit FillOrder(
                              SOURCE,
                              tradeInfo.transactionHash,
                              tradeInfo.orderHash,
                              tradeInfo.user,
                              tradeInfo.takerAssetAddr,
                              order.takerAssetAmount,
                              order.makerAddress,
                              tradeInfo.makerAssetAddr,
                              order.makerAssetAmount,
                              tradeInfo.receiver,
                              settleAmount,
                              tradeInfo.feeFactor
                          );
                          return settleAmount;
                      }
                  
                      /**
                       * @dev internal function of `fill`.
                       * It decodes and validates transaction data.
                       */
                      function _assertTransaction(
                          uint256 userSalt,
                          bytes memory data,
                          bytes memory userSignature
                      )
                          internal
                          view
                          returns(
                              LibOrder.Order memory order,
                              TradeInfo memory tradeInfo
                          )
                      {
                          // decode fillOrder data
                          uint256 takerFillAmount;
                          bytes memory mmSignature;
                          (order, takerFillAmount, mmSignature) = decodeFillOrder(data);
                  
                          require(
                              order.takerAddress == address(this),
                              "PMM: incorrect taker"
                          );
                          require(
                              order.takerAssetAmount == takerFillAmount,
                              "PMM: incorrect fill amount"
                          );
                  
                          // generate transactionHash
                          tradeInfo.transactionHash = encodeTransactionHash(
                              userSalt,
                              address(this),
                              data
                          );
                  
                          tradeInfo.orderHash = getOrderHash(order);
                          tradeInfo.feeFactor = uint16(order.salt);
                          tradeInfo.receiver = decodeUserSignatureWithoutSign(userSignature);
                          tradeInfo.user = _ecrecoverAddress(tradeInfo.transactionHash, userSignature);
                  
                          if (tradeInfo.user != order.feeRecipientAddress) {
                              require(
                                  order.feeRecipientAddress.isContract(),
                                  "PMM: invalid contract address"
                              );
                              // isValidSignature() should return magic value: bytes4(keccak256("isValidSignature(bytes32,bytes)"))
                              require(
                                  ERC1271_MAGICVALUE_BYTES32 == IERC1271Wallet(order.feeRecipientAddress)
                                      .isValidSignature(
                                          tradeInfo.transactionHash,
                                          userSignature
                                      ),
                                  "PMM: invalid ERC1271 signer"
                              );
                              tradeInfo.user = order.feeRecipientAddress;
                          }
                  
                          require(
                              tradeInfo.feeFactor < 10000,
                              "PMM: invalid fee factor"
                          );
                  
                          require(
                              tradeInfo.receiver != address(0),
                              "PMM: invalid receiver"
                          );
                  
                          // decode asset
                          // just support ERC20
                          tradeInfo.makerAssetAddr = decodeERC20Asset(order.makerAssetData);
                          tradeInfo.takerAssetAddr = decodeERC20Asset(order.takerAssetData);
                          return (
                              order,
                              tradeInfo
                          );        
                      }
                  
                      // settle
                      function _settle(IWETH weth, address receiver, address makerAssetAddr, uint256 makerAssetAmount, uint16 feeFactor) internal returns(uint256) {
                          uint256 settleAmount = makerAssetAmount;
                          if (feeFactor > 0) {
                              // settleAmount = settleAmount * (10000 - feeFactor) / 10000
                              settleAmount = settleAmount.mul((BPS_MAX).sub(feeFactor)).div(BPS_MAX);
                          }
                  
                          if (makerAssetAddr == address(weth)){
                              weth.withdraw(settleAmount);
                              payable(receiver).transfer(settleAmount);
                          } else {
                              IERC20(makerAssetAddr).safeTransfer(receiver, settleAmount);
                          }
                  
                          return settleAmount;
                      }
                  
                      function _ecrecoverAddress(bytes32 transactionHash, bytes memory signature) internal pure returns (address){
                          (uint8 v, bytes32 r, bytes32 s, address receiver) = decodeUserSignature(signature);
                          return ecrecover(
                              keccak256(
                                  abi.encodePacked(
                                      transactionHash,
                                      receiver
                                  )),
                              v, r, s
                          );
                      }
                  }

                  File 5 of 9: TetherToken
                  pragma solidity ^0.4.17;
                  
                  /**
                   * @title SafeMath
                   * @dev Math operations with safety checks that throw on error
                   */
                  library SafeMath {
                      function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                          if (a == 0) {
                              return 0;
                          }
                          uint256 c = a * b;
                          assert(c / a == b);
                          return c;
                      }
                  
                      function div(uint256 a, uint256 b) internal pure returns (uint256) {
                          // assert(b > 0); // Solidity automatically throws when dividing by 0
                          uint256 c = a / b;
                          // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                          return c;
                      }
                  
                      function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                          assert(b <= a);
                          return a - b;
                      }
                  
                      function add(uint256 a, uint256 b) internal pure returns (uint256) {
                          uint256 c = a + b;
                          assert(c >= a);
                          return c;
                      }
                  }
                  
                  /**
                   * @title Ownable
                   * @dev The Ownable contract has an owner address, and provides basic authorization control
                   * functions, this simplifies the implementation of "user permissions".
                   */
                  contract Ownable {
                      address public owner;
                  
                      /**
                        * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                        * account.
                        */
                      function Ownable() public {
                          owner = msg.sender;
                      }
                  
                      /**
                        * @dev Throws if called by any account other than the owner.
                        */
                      modifier onlyOwner() {
                          require(msg.sender == owner);
                          _;
                      }
                  
                      /**
                      * @dev Allows the current owner to transfer control of the contract to a newOwner.
                      * @param newOwner The address to transfer ownership to.
                      */
                      function transferOwnership(address newOwner) public onlyOwner {
                          if (newOwner != address(0)) {
                              owner = newOwner;
                          }
                      }
                  
                  }
                  
                  /**
                   * @title ERC20Basic
                   * @dev Simpler version of ERC20 interface
                   * @dev see https://github.com/ethereum/EIPs/issues/20
                   */
                  contract ERC20Basic {
                      uint public _totalSupply;
                      function totalSupply() public constant returns (uint);
                      function balanceOf(address who) public constant returns (uint);
                      function transfer(address to, uint value) public;
                      event Transfer(address indexed from, address indexed to, uint value);
                  }
                  
                  /**
                   * @title ERC20 interface
                   * @dev see https://github.com/ethereum/EIPs/issues/20
                   */
                  contract ERC20 is ERC20Basic {
                      function allowance(address owner, address spender) public constant returns (uint);
                      function transferFrom(address from, address to, uint value) public;
                      function approve(address spender, uint value) public;
                      event Approval(address indexed owner, address indexed spender, uint value);
                  }
                  
                  /**
                   * @title Basic token
                   * @dev Basic version of StandardToken, with no allowances.
                   */
                  contract BasicToken is Ownable, ERC20Basic {
                      using SafeMath for uint;
                  
                      mapping(address => uint) public balances;
                  
                      // additional variables for use if transaction fees ever became necessary
                      uint public basisPointsRate = 0;
                      uint public maximumFee = 0;
                  
                      /**
                      * @dev Fix for the ERC20 short address attack.
                      */
                      modifier onlyPayloadSize(uint size) {
                          require(!(msg.data.length < size + 4));
                          _;
                      }
                  
                      /**
                      * @dev transfer token for a specified address
                      * @param _to The address to transfer to.
                      * @param _value The amount to be transferred.
                      */
                      function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
                          uint fee = (_value.mul(basisPointsRate)).div(10000);
                          if (fee > maximumFee) {
                              fee = maximumFee;
                          }
                          uint sendAmount = _value.sub(fee);
                          balances[msg.sender] = balances[msg.sender].sub(_value);
                          balances[_to] = balances[_to].add(sendAmount);
                          if (fee > 0) {
                              balances[owner] = balances[owner].add(fee);
                              Transfer(msg.sender, owner, fee);
                          }
                          Transfer(msg.sender, _to, sendAmount);
                      }
                  
                      /**
                      * @dev Gets the balance of the specified address.
                      * @param _owner The address to query the the balance of.
                      * @return An uint representing the amount owned by the passed address.
                      */
                      function balanceOf(address _owner) public constant returns (uint balance) {
                          return balances[_owner];
                      }
                  
                  }
                  
                  /**
                   * @title Standard ERC20 token
                   *
                   * @dev Implementation of the basic standard token.
                   * @dev https://github.com/ethereum/EIPs/issues/20
                   * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
                   */
                  contract StandardToken is BasicToken, ERC20 {
                  
                      mapping (address => mapping (address => uint)) public allowed;
                  
                      uint public constant MAX_UINT = 2**256 - 1;
                  
                      /**
                      * @dev Transfer tokens from one address to another
                      * @param _from address The address which you want to send tokens from
                      * @param _to address The address which you want to transfer to
                      * @param _value uint the amount of tokens to be transferred
                      */
                      function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
                          var _allowance = allowed[_from][msg.sender];
                  
                          // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
                          // if (_value > _allowance) throw;
                  
                          uint fee = (_value.mul(basisPointsRate)).div(10000);
                          if (fee > maximumFee) {
                              fee = maximumFee;
                          }
                          if (_allowance < MAX_UINT) {
                              allowed[_from][msg.sender] = _allowance.sub(_value);
                          }
                          uint sendAmount = _value.sub(fee);
                          balances[_from] = balances[_from].sub(_value);
                          balances[_to] = balances[_to].add(sendAmount);
                          if (fee > 0) {
                              balances[owner] = balances[owner].add(fee);
                              Transfer(_from, owner, fee);
                          }
                          Transfer(_from, _to, sendAmount);
                      }
                  
                      /**
                      * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
                      * @param _spender The address which will spend the funds.
                      * @param _value The amount of tokens to be spent.
                      */
                      function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                  
                          // To change the approve amount you first have to reduce the addresses`
                          //  allowance to zero by calling `approve(_spender, 0)` if it is not
                          //  already 0 to mitigate the race condition described here:
                          //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                          require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
                  
                          allowed[msg.sender][_spender] = _value;
                          Approval(msg.sender, _spender, _value);
                      }
                  
                      /**
                      * @dev Function to check the amount of tokens than an owner allowed to a spender.
                      * @param _owner address The address which owns the funds.
                      * @param _spender address The address which will spend the funds.
                      * @return A uint specifying the amount of tokens still available for the spender.
                      */
                      function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                          return allowed[_owner][_spender];
                      }
                  
                  }
                  
                  
                  /**
                   * @title Pausable
                   * @dev Base contract which allows children to implement an emergency stop mechanism.
                   */
                  contract Pausable is Ownable {
                    event Pause();
                    event Unpause();
                  
                    bool public paused = false;
                  
                  
                    /**
                     * @dev Modifier to make a function callable only when the contract is not paused.
                     */
                    modifier whenNotPaused() {
                      require(!paused);
                      _;
                    }
                  
                    /**
                     * @dev Modifier to make a function callable only when the contract is paused.
                     */
                    modifier whenPaused() {
                      require(paused);
                      _;
                    }
                  
                    /**
                     * @dev called by the owner to pause, triggers stopped state
                     */
                    function pause() onlyOwner whenNotPaused public {
                      paused = true;
                      Pause();
                    }
                  
                    /**
                     * @dev called by the owner to unpause, returns to normal state
                     */
                    function unpause() onlyOwner whenPaused public {
                      paused = false;
                      Unpause();
                    }
                  }
                  
                  contract BlackList is Ownable, BasicToken {
                  
                      /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
                      function getBlackListStatus(address _maker) external constant returns (bool) {
                          return isBlackListed[_maker];
                      }
                  
                      function getOwner() external constant returns (address) {
                          return owner;
                      }
                  
                      mapping (address => bool) public isBlackListed;
                      
                      function addBlackList (address _evilUser) public onlyOwner {
                          isBlackListed[_evilUser] = true;
                          AddedBlackList(_evilUser);
                      }
                  
                      function removeBlackList (address _clearedUser) public onlyOwner {
                          isBlackListed[_clearedUser] = false;
                          RemovedBlackList(_clearedUser);
                      }
                  
                      function destroyBlackFunds (address _blackListedUser) public onlyOwner {
                          require(isBlackListed[_blackListedUser]);
                          uint dirtyFunds = balanceOf(_blackListedUser);
                          balances[_blackListedUser] = 0;
                          _totalSupply -= dirtyFunds;
                          DestroyedBlackFunds(_blackListedUser, dirtyFunds);
                      }
                  
                      event DestroyedBlackFunds(address _blackListedUser, uint _balance);
                  
                      event AddedBlackList(address _user);
                  
                      event RemovedBlackList(address _user);
                  
                  }
                  
                  contract UpgradedStandardToken is StandardToken{
                      // those methods are called by the legacy contract
                      // and they must ensure msg.sender to be the contract address
                      function transferByLegacy(address from, address to, uint value) public;
                      function transferFromByLegacy(address sender, address from, address spender, uint value) public;
                      function approveByLegacy(address from, address spender, uint value) public;
                  }
                  
                  contract TetherToken is Pausable, StandardToken, BlackList {
                  
                      string public name;
                      string public symbol;
                      uint public decimals;
                      address public upgradedAddress;
                      bool public deprecated;
                  
                      //  The contract can be initialized with a number of tokens
                      //  All the tokens are deposited to the owner address
                      //
                      // @param _balance Initial supply of the contract
                      // @param _name Token Name
                      // @param _symbol Token symbol
                      // @param _decimals Token decimals
                      function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
                          _totalSupply = _initialSupply;
                          name = _name;
                          symbol = _symbol;
                          decimals = _decimals;
                          balances[owner] = _initialSupply;
                          deprecated = false;
                      }
                  
                      // Forward ERC20 methods to upgraded contract if this one is deprecated
                      function transfer(address _to, uint _value) public whenNotPaused {
                          require(!isBlackListed[msg.sender]);
                          if (deprecated) {
                              return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
                          } else {
                              return super.transfer(_to, _value);
                          }
                      }
                  
                      // Forward ERC20 methods to upgraded contract if this one is deprecated
                      function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
                          require(!isBlackListed[_from]);
                          if (deprecated) {
                              return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
                          } else {
                              return super.transferFrom(_from, _to, _value);
                          }
                      }
                  
                      // Forward ERC20 methods to upgraded contract if this one is deprecated
                      function balanceOf(address who) public constant returns (uint) {
                          if (deprecated) {
                              return UpgradedStandardToken(upgradedAddress).balanceOf(who);
                          } else {
                              return super.balanceOf(who);
                          }
                      }
                  
                      // Forward ERC20 methods to upgraded contract if this one is deprecated
                      function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                          if (deprecated) {
                              return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
                          } else {
                              return super.approve(_spender, _value);
                          }
                      }
                  
                      // Forward ERC20 methods to upgraded contract if this one is deprecated
                      function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                          if (deprecated) {
                              return StandardToken(upgradedAddress).allowance(_owner, _spender);
                          } else {
                              return super.allowance(_owner, _spender);
                          }
                      }
                  
                      // deprecate current contract in favour of a new one
                      function deprecate(address _upgradedAddress) public onlyOwner {
                          deprecated = true;
                          upgradedAddress = _upgradedAddress;
                          Deprecate(_upgradedAddress);
                      }
                  
                      // deprecate current contract if favour of a new one
                      function totalSupply() public constant returns (uint) {
                          if (deprecated) {
                              return StandardToken(upgradedAddress).totalSupply();
                          } else {
                              return _totalSupply;
                          }
                      }
                  
                      // Issue a new amount of tokens
                      // these tokens are deposited into the owner address
                      //
                      // @param _amount Number of tokens to be issued
                      function issue(uint amount) public onlyOwner {
                          require(_totalSupply + amount > _totalSupply);
                          require(balances[owner] + amount > balances[owner]);
                  
                          balances[owner] += amount;
                          _totalSupply += amount;
                          Issue(amount);
                      }
                  
                      // Redeem tokens.
                      // These tokens are withdrawn from the owner address
                      // if the balance must be enough to cover the redeem
                      // or the call will fail.
                      // @param _amount Number of tokens to be issued
                      function redeem(uint amount) public onlyOwner {
                          require(_totalSupply >= amount);
                          require(balances[owner] >= amount);
                  
                          _totalSupply -= amount;
                          balances[owner] -= amount;
                          Redeem(amount);
                      }
                  
                      function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
                          // Ensure transparency by hardcoding limit beyond which fees can never be added
                          require(newBasisPoints < 20);
                          require(newMaxFee < 50);
                  
                          basisPointsRate = newBasisPoints;
                          maximumFee = newMaxFee.mul(10**decimals);
                  
                          Params(basisPointsRate, maximumFee);
                      }
                  
                      // Called when new token are issued
                      event Issue(uint amount);
                  
                      // Called when tokens are redeemed
                      event Redeem(uint amount);
                  
                      // Called when contract is deprecated
                      event Deprecate(address newAddress);
                  
                      // Called if contract ever adds fees
                      event Params(uint feeBasisPoints, uint maxFee);
                  }

                  File 6 of 9: UserProxy
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.7.6;
                  pragma abicoder v2;
                  import "./utils/UserProxyStorage.sol";
                  import "./utils/Multicall.sol";
                  /**
                   * @dev UserProxy contract
                   */
                  contract UserProxy is Multicall {
                      // Below are the variables which consume storage slots.
                      address public operator;
                      string public version; // Current version of the contract
                      address private nominatedOperator;
                      // Operator events
                      event OperatorNominated(address indexed newOperator);
                      event OperatorChanged(address indexed oldOperator, address indexed newOperator);
                      event SetAMMStatus(bool enable);
                      event UpgradeAMMWrapper(address newAMMWrapper);
                      event SetPMMStatus(bool enable);
                      event UpgradePMM(address newPMM);
                      event SetRFQStatus(bool enable);
                      event UpgradeRFQ(address newRFQ);
                      event SetLimitOrderStatus(bool enable);
                      event UpgradeLimitOrder(address newLimitOrder);
                      receive() external payable {}
                      /************************************************************
                       *          Access control and ownership management          *
                       *************************************************************/
                      modifier onlyOperator() {
                          require(operator == msg.sender, "UserProxy: not the operator");
                          _;
                      }
                      function nominateNewOperator(address _newOperator) external onlyOperator {
                          require(_newOperator != address(0), "UserProxy: operator can not be zero address");
                          nominatedOperator = _newOperator;
                          emit OperatorNominated(_newOperator);
                      }
                      function acceptOwnership() external {
                          require(msg.sender == nominatedOperator, "UserProxy: not nominated");
                          emit OperatorChanged(operator, nominatedOperator);
                          operator = nominatedOperator;
                          nominatedOperator = address(0);
                      }
                      /************************************************************
                       *              Constructor and init functions               *
                       *************************************************************/
                      /// @dev Replacing constructor and initialize the contract. This function should only be called once.
                      function initialize(address _operator) external {
                          require(keccak256(abi.encodePacked(version)) == keccak256(abi.encodePacked("")), "UserProxy: not upgrading from empty");
                          require(_operator != address(0), "UserProxy: operator can not be zero address");
                          operator = _operator;
                          // Upgrade version
                          version = "5.3.0";
                      }
                      /************************************************************
                       *                     Getter functions                      *
                       *************************************************************/
                      function ammWrapperAddr() public view returns (address) {
                          return AMMWrapperStorage.getStorage().ammWrapperAddr;
                      }
                      function isAMMEnabled() public view returns (bool) {
                          return AMMWrapperStorage.getStorage().isEnabled;
                      }
                      function pmmAddr() public view returns (address) {
                          return PMMStorage.getStorage().pmmAddr;
                      }
                      function isPMMEnabled() public view returns (bool) {
                          return PMMStorage.getStorage().isEnabled;
                      }
                      function rfqAddr() public view returns (address) {
                          return RFQStorage.getStorage().rfqAddr;
                      }
                      function isRFQEnabled() public view returns (bool) {
                          return RFQStorage.getStorage().isEnabled;
                      }
                      function limitOrderAddr() public view returns (address) {
                          return LimitOrderStorage.getStorage().limitOrderAddr;
                      }
                      function isLimitOrderEnabled() public view returns (bool) {
                          return LimitOrderStorage.getStorage().isEnabled;
                      }
                      /************************************************************
                       *           Management functions for Operator               *
                       *************************************************************/
                      function setAMMStatus(bool _enable) public onlyOperator {
                          AMMWrapperStorage.getStorage().isEnabled = _enable;
                          emit SetAMMStatus(_enable);
                      }
                      /**
                       * @dev Update AMMWrapper contract address. Used only when ABI of AMMWrapeer remain unchanged.
                       * Otherwise, UserProxy contract should be upgraded altogether.
                       */
                      function upgradeAMMWrapper(address _newAMMWrapperAddr, bool _enable) external onlyOperator {
                          AMMWrapperStorage.getStorage().ammWrapperAddr = _newAMMWrapperAddr;
                          AMMWrapperStorage.getStorage().isEnabled = _enable;
                          emit UpgradeAMMWrapper(_newAMMWrapperAddr);
                          emit SetAMMStatus(_enable);
                      }
                      function setPMMStatus(bool _enable) public onlyOperator {
                          PMMStorage.getStorage().isEnabled = _enable;
                          emit SetPMMStatus(_enable);
                      }
                      /**
                       * @dev Update PMM contract address. Used only when ABI of PMM remain unchanged.
                       * Otherwise, UserProxy contract should be upgraded altogether.
                       */
                      function upgradePMM(address _newPMMAddr, bool _enable) external onlyOperator {
                          PMMStorage.getStorage().pmmAddr = _newPMMAddr;
                          PMMStorage.getStorage().isEnabled = _enable;
                          emit UpgradePMM(_newPMMAddr);
                          emit SetPMMStatus(_enable);
                      }
                      function setRFQStatus(bool _enable) public onlyOperator {
                          RFQStorage.getStorage().isEnabled = _enable;
                          emit SetRFQStatus(_enable);
                      }
                      /**
                       * @dev Update RFQ contract address. Used only when ABI of RFQ remain unchanged.
                       * Otherwise, UserProxy contract should be upgraded altogether.
                       */
                      function upgradeRFQ(address _newRFQAddr, bool _enable) external onlyOperator {
                          RFQStorage.getStorage().rfqAddr = _newRFQAddr;
                          RFQStorage.getStorage().isEnabled = _enable;
                          emit UpgradeRFQ(_newRFQAddr);
                          emit SetRFQStatus(_enable);
                      }
                      function setLimitOrderStatus(bool _enable) public onlyOperator {
                          LimitOrderStorage.getStorage().isEnabled = _enable;
                          emit SetLimitOrderStatus(_enable);
                      }
                      /**
                       * @dev Update Limit Order contract address. Used only when ABI of Limit Order remain unchanged.
                       * Otherwise, UserProxy contract should be upgraded altogether.
                       */
                      function upgradeLimitOrder(address _newLimitOrderAddr, bool _enable) external onlyOperator {
                          LimitOrderStorage.getStorage().limitOrderAddr = _newLimitOrderAddr;
                          LimitOrderStorage.getStorage().isEnabled = _enable;
                          emit UpgradeLimitOrder(_newLimitOrderAddr);
                          emit SetLimitOrderStatus(_enable);
                      }
                      /************************************************************
                       *                   External functions                      *
                       *************************************************************/
                      /**
                       * @dev proxy the call to AMM
                       */
                      function toAMM(bytes calldata _payload) external payable {
                          require(isAMMEnabled(), "UserProxy: AMM is disabled");
                          (bool callSucceed, ) = ammWrapperAddr().call{ value: msg.value }(_payload);
                          if (!callSucceed) {
                              // Get the error message returned
                              assembly {
                                  let ptr := mload(0x40)
                                  let size := returndatasize()
                                  returndatacopy(ptr, 0, size)
                                  revert(ptr, size)
                              }
                          }
                      }
                      /**
                       * @dev proxy the call to PMM
                       */
                      function toPMM(bytes calldata _payload) external payable {
                          require(isPMMEnabled(), "UserProxy: PMM is disabled");
                          require(msg.sender == tx.origin, "UserProxy: only EOA");
                          (bool callSucceed, ) = pmmAddr().call{ value: msg.value }(_payload);
                          if (!callSucceed) {
                              // Get the error message returned
                              assembly {
                                  let ptr := mload(0x40)
                                  let size := returndatasize()
                                  returndatacopy(ptr, 0, size)
                                  revert(ptr, size)
                              }
                          }
                      }
                      /**
                       * @dev proxy the call to RFQ
                       */
                      function toRFQ(bytes calldata _payload) external payable {
                          require(isRFQEnabled(), "UserProxy: RFQ is disabled");
                          require(msg.sender == tx.origin, "UserProxy: only EOA");
                          (bool callSucceed, ) = rfqAddr().call{ value: msg.value }(_payload);
                          if (!callSucceed) {
                              // Get the error message returned
                              assembly {
                                  let ptr := mload(0x40)
                                  let size := returndatasize()
                                  returndatacopy(ptr, 0, size)
                                  revert(ptr, size)
                              }
                          }
                      }
                      function toLimitOrder(bytes calldata _payload) external {
                          require(isLimitOrderEnabled(), "UserProxy: Limit Order is disabled");
                          require(msg.sender == tx.origin, "UserProxy: only EOA");
                          (bool callSucceed, ) = limitOrderAddr().call(_payload);
                          if (!callSucceed) {
                              // Get the error message returned
                              assembly {
                                  let ptr := mload(0x40)
                                  let size := returndatasize()
                                  returndatacopy(ptr, 0, size)
                                  revert(ptr, size)
                              }
                          }
                      }
                  }
                  pragma solidity >=0.7.0;
                  pragma abicoder v2;
                  interface IMulticall {
                      event MulticallFailure(uint256 index, string reason);
                      function multicall(bytes[] calldata data, bool revertOnFail) external returns (bool[] memory successes, bytes[] memory results);
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.7.6;
                  pragma abicoder v2;
                  import "../interfaces/IMulticall.sol";
                  // Modified from https://github.com/Uniswap/uniswap-v3-periphery/blob/v1.1.1/contracts/base/Multicall.sol
                  abstract contract Multicall is IMulticall {
                      function multicall(bytes[] calldata data, bool revertOnFail) external override returns (bool[] memory successes, bytes[] memory results) {
                          successes = new bool[](data.length);
                          results = new bytes[](data.length);
                          for (uint256 i = 0; i < data.length; ++i) {
                              (bool success, bytes memory result) = address(this).delegatecall(data[i]);
                              successes[i] = success;
                              results[i] = result;
                              if (!success) {
                                  // Get failed reason
                                  string memory revertReason;
                                  if (result.length < 68) {
                                      revertReason = "Delegatecall failed";
                                  } else {
                                      assembly {
                                          result := add(result, 0x04)
                                      }
                                      revertReason = abi.decode(result, (string));
                                  }
                                  if (revertOnFail) {
                                      revert(revertReason);
                                  }
                                  emit MulticallFailure(i, revertReason);
                              }
                          }
                      }
                  }
                  pragma solidity ^0.7.6;
                  library AMMWrapperStorage {
                      bytes32 private constant STORAGE_SLOT = 0xbf49677e3150252dfa801a673d2d5ec21eaa360a4674864e55e79041e3f65a6b;
                      /// @dev Storage bucket for proxy contract.
                      struct Storage {
                          // The address of the AMMWrapper contract.
                          address ammWrapperAddr;
                          // Is AMM enabled
                          bool isEnabled;
                      }
                      /// @dev Get the storage bucket for this contract.
                      function getStorage() internal pure returns (Storage storage stor) {
                          assert(STORAGE_SLOT == bytes32(uint256(keccak256("userproxy.ammwrapper.storage")) - 1));
                          bytes32 slot = STORAGE_SLOT;
                          // Dip into assembly to change the slot pointed to by the local
                          // variable `stor`.
                          // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries
                          assembly {
                              stor.slot := slot
                          }
                      }
                  }
                  library PMMStorage {
                      bytes32 private constant STORAGE_SLOT = 0x8f135983375ba6442123d61647e7325c1753eabc2e038e44d3b888a970def89a;
                      /// @dev Storage bucket for proxy contract.
                      struct Storage {
                          // The address of the PMM contract.
                          address pmmAddr;
                          // Is PMM enabled
                          bool isEnabled;
                      }
                      /// @dev Get the storage bucket for this contract.
                      function getStorage() internal pure returns (Storage storage stor) {
                          assert(STORAGE_SLOT == bytes32(uint256(keccak256("userproxy.pmm.storage")) - 1));
                          bytes32 slot = STORAGE_SLOT;
                          // Dip into assembly to change the slot pointed to by the local
                          // variable `stor`.
                          // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries
                          assembly {
                              stor.slot := slot
                          }
                      }
                  }
                  library RFQStorage {
                      bytes32 private constant STORAGE_SLOT = 0x857df08bd185dc66e3cc5e11acb4e1dd65290f3fee6426f52f84e8faccf229cf;
                      /// @dev Storage bucket for proxy contract.
                      struct Storage {
                          // The address of the RFQ contract.
                          address rfqAddr;
                          // Is RFQ enabled
                          bool isEnabled;
                      }
                      /// @dev Get the storage bucket for this contract.
                      function getStorage() internal pure returns (Storage storage stor) {
                          assert(STORAGE_SLOT == bytes32(uint256(keccak256("userproxy.rfq.storage")) - 1));
                          bytes32 slot = STORAGE_SLOT;
                          // Dip into assembly to change the slot pointed to by the local
                          // variable `stor`.
                          // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries
                          assembly {
                              stor.slot := slot
                          }
                      }
                  }
                  library LimitOrderStorage {
                      bytes32 private constant STORAGE_SLOT = 0xf1a59a985b4002cdf0db464f05bed7182ee06372a999d820ea1883b8bf067ce5;
                      /// @dev Storage bucket for proxy contract.
                      struct Storage {
                          // The address of the Limit Order contract.
                          address limitOrderAddr;
                          // Is Limit Order enabled
                          bool isEnabled;
                      }
                      /// @dev Get the storage bucket for this contract.
                      function getStorage() internal pure returns (Storage storage stor) {
                          assert(STORAGE_SLOT == bytes32(uint256(keccak256("userproxy.limitorder.storage")) - 1));
                          bytes32 slot = STORAGE_SLOT;
                          // Dip into assembly to change the slot pointed to by the local
                          // variable `stor`.
                          // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries
                          assembly {
                              stor.slot := slot
                          }
                      }
                  }
                  

                  File 7 of 9: TransparentUpgradeableProxy
                  // SPDX-License-Identifier: MIT
                  // File: @openzeppelin/contracts/utils/Address.sol
                  pragma solidity ^0.6.2;
                  /**
                   * @dev Collection of functions related to the address type
                   */
                  library Address {
                      /**
                       * @dev Returns true if `account` is a contract.
                       *
                       * [IMPORTANT]
                       * ====
                       * It is unsafe to assume that an address for which this function returns
                       * false is an externally-owned account (EOA) and not a contract.
                       *
                       * Among others, `isContract` will return false for the following
                       * types of addresses:
                       *
                       *  - an externally-owned account
                       *  - a contract in construction
                       *  - an address where a contract will be created
                       *  - an address where a contract lived, but was destroyed
                       * ====
                       */
                      function isContract(address account) internal view returns (bool) {
                          // This method relies in extcodesize, which returns 0 for contracts in
                          // construction, since the code is only stored at the end of the
                          // constructor execution.
                          uint256 size;
                          // solhint-disable-next-line no-inline-assembly
                          assembly { size := extcodesize(account) }
                          return size > 0;
                      }
                      /**
                       * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                       * `recipient`, forwarding all available gas and reverting on errors.
                       *
                       * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                       * of certain opcodes, possibly making contracts go over the 2300 gas limit
                       * imposed by `transfer`, making them unable to receive funds via
                       * `transfer`. {sendValue} removes this limitation.
                       *
                       * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                       *
                       * IMPORTANT: because control is transferred to `recipient`, care must be
                       * taken to not create reentrancy vulnerabilities. Consider using
                       * {ReentrancyGuard} or the
                       * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                       */
                      function sendValue(address payable recipient, uint256 amount) internal {
                          require(address(this).balance >= amount, "Address: insufficient balance");
                          // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                          (bool success, ) = recipient.call{ value: amount }("");
                          require(success, "Address: unable to send value, recipient may have reverted");
                      }
                      /**
                       * @dev Performs a Solidity function call using a low level `call`. A
                       * plain`call` is an unsafe replacement for a function call: use this
                       * function instead.
                       *
                       * If `target` reverts with a revert reason, it is bubbled up by this
                       * function (like regular Solidity function calls).
                       *
                       * Returns the raw returned data. To convert to the expected return value,
                       * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                       *
                       * Requirements:
                       *
                       * - `target` must be a contract.
                       * - calling `target` with `data` must not revert.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                       * `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                          return _functionCallWithValue(target, data, 0, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but also transferring `value` wei to `target`.
                       *
                       * Requirements:
                       *
                       * - the calling contract must have an ETH balance of at least `value`.
                       * - the called Solidity function must be `payable`.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                       * with `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                          require(address(this).balance >= value, "Address: insufficient balance for call");
                          return _functionCallWithValue(target, data, value, errorMessage);
                      }
                      function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
                          require(isContract(target), "Address: call to non-contract");
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
                          if (success) {
                              return returndata;
                          } else {
                              // Look for revert reason and bubble it up if present
                              if (returndata.length > 0) {
                                  // The easiest way to bubble the revert reason is using memory via assembly
                                  // solhint-disable-next-line no-inline-assembly
                                  assembly {
                                      let returndata_size := mload(returndata)
                                      revert(add(32, returndata), returndata_size)
                                  }
                              } else {
                                  revert(errorMessage);
                              }
                          }
                      }
                  }
                  // File: contracts/upgrade_proxy/Proxy.sol
                  pragma solidity ^0.6.0;
                  /**
                   * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
                   * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
                   * be specified by overriding the virtual {_implementation} function.
                   * 
                   * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
                   * different contract through the {_delegate} function.
                   * 
                   * The success and return data of the delegated call will be returned back to the caller of the proxy.
                   */
                  abstract contract Proxy {
                      /**
                       * @dev Delegates the current call to `implementation`.
                       * 
                       * This function does not return to its internall call site, it will return directly to the external caller.
                       */
                      function _delegate(address implementation) internal {
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              // Copy msg.data. We take full control of memory in this inline assembly
                              // block because it will not return to Solidity code. We overwrite the
                              // Solidity scratch pad at memory position 0.
                              calldatacopy(0, 0, calldatasize())
                              // Call the implementation.
                              // out and outsize are 0 because we don't know the size yet.
                              let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                              // Copy the returned data.
                              returndatacopy(0, 0, returndatasize())
                              switch result
                              // delegatecall returns 0 on error.
                              case 0 { revert(0, returndatasize()) }
                              default { return(0, returndatasize()) }
                          }
                      }
                      /**
                       * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
                       * and {_fallback} should delegate.
                       */
                      function _implementation() internal virtual view returns (address);
                      /**
                       * @dev Delegates the current call to the address returned by `_implementation()`.
                       * 
                       * This function does not return to its internall call site, it will return directly to the external caller.
                       */
                      function _fallback() internal {
                          _beforeFallback();
                          _delegate(_implementation());
                      }
                      /**
                       * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
                       * function in the contract matches the call data.
                       */
                      fallback () payable external {
                          _fallback();
                      }
                      /**
                       * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
                       * is empty.
                       */
                      receive () payable external {
                          _fallback();
                      }
                      /**
                       * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
                       * call, or as part of the Solidity `fallback` or `receive` functions.
                       * 
                       * If overriden should call `super._beforeFallback()`.
                       */
                      function _beforeFallback() internal virtual {
                      }
                  }
                  // File: contracts/upgrade_proxy/UpgradeableProxy.sol
                  pragma solidity ^0.6.0;
                  /**
                   * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
                   * implementation address that can be changed. This address is stored in storage in the location specified by
                   * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
                   * implementation behind the proxy.
                   * 
                   * Upgradeability is only provided internally through {_upgradeTo}. For an externally upgradeable proxy see
                   * {TransparentUpgradeableProxy}.
                   */
                  contract UpgradeableProxy is Proxy {
                      /**
                       * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
                       * 
                       * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
                       * function call, and allows initializating the storage of the proxy like a Solidity constructor.
                       */
                      constructor(address _logic, bytes memory _data) public payable {
                          assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                          _setImplementation(_logic);
                          if(_data.length > 0) {
                              // solhint-disable-next-line avoid-low-level-calls
                              (bool success,) = _logic.delegatecall(_data);
                              require(success);
                          }
                      }
                      /**
                       * @dev Emitted when the implementation is upgraded.
                       */
                      event Upgraded(address indexed implementation);
                      /**
                       * @dev Storage slot with the address of the current implementation.
                       * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                       * validated in the constructor.
                       */
                      bytes32 private constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                      /**
                       * @dev Returns the current implementation address.
                       */
                      function _implementation() internal override view returns (address impl) {
                          bytes32 slot = _IMPLEMENTATION_SLOT;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              impl := sload(slot)
                          }
                      }
                      /**
                       * @dev Upgrades the proxy to a new implementation.
                       * 
                       * Emits an {Upgraded} event.
                       */
                      function _upgradeTo(address newImplementation) internal {
                          _setImplementation(newImplementation);
                          emit Upgraded(newImplementation);
                      }
                      /**
                       * @dev Stores a new address in the EIP1967 implementation slot.
                       */
                      function _setImplementation(address newImplementation) private {
                          require(Address.isContract(newImplementation), "UpgradeableProxy: new implementation is not a contract");
                          bytes32 slot = _IMPLEMENTATION_SLOT;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              sstore(slot, newImplementation)
                          }
                      }
                  }
                  // File: contracts/upgrade_proxy/TransparentUpgradeableProxy.sol
                  pragma solidity ^0.6.0;
                  /**
                   * @dev This contract implements a proxy that is upgradeable by an admin.
                   * 
                   * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
                   * clashing], which can potentially be used in an attack, this contract uses the
                   * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
                   * things that go hand in hand:
                   * 
                   * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
                   * that call matches one of the admin functions exposed by the proxy itself.
                   * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
                   * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
                   * "admin cannot fallback to proxy target".
                   * 
                   * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
                   * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
                   * to sudden errors when trying to call a function from the proxy implementation.
                   * 
                   * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
                   * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
                   */
                  contract TransparentUpgradeableProxy is UpgradeableProxy {
                      /**
                       * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
                       * optionally initialized with `_data` as explained in {UpgradeableProxy-constructor}.
                       */
                      constructor(address _logic, address _admin, bytes memory _data) public payable UpgradeableProxy(_logic, _data) {
                          assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                          _setAdmin(_admin);
                      }
                      /**
                       * @dev Emitted when the admin account has changed.
                       */
                      event AdminChanged(address previousAdmin, address newAdmin);
                      /**
                       * @dev Storage slot with the admin of the contract.
                       * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
                       * validated in the constructor.
                       */
                      bytes32 private constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                      /**
                       * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
                       */
                      modifier ifAdmin() {
                          if (msg.sender == _admin()) {
                              _;
                          } else {
                              _fallback();
                          }
                      }
                      /**
                       * @dev Returns the current admin.
                       * 
                       * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
                       * 
                       * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                       * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                       * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
                       */
                      function admin() external ifAdmin returns (address) {
                          return _admin();
                      }
                      /**
                       * @dev Returns the current implementation.
                       * 
                       * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
                       * 
                       * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                       * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                       * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
                       */
                      function implementation() external ifAdmin returns (address) {
                          return _implementation();
                      }
                      /**
                       * @dev Changes the admin of the proxy.
                       * 
                       * Emits an {AdminChanged} event.
                       * 
                       * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
                       */
                      function changeAdmin(address newAdmin) external ifAdmin {
                          require(newAdmin != address(0), "TransparentUpgradeableProxy: new admin is the zero address");
                          emit AdminChanged(_admin(), newAdmin);
                          _setAdmin(newAdmin);
                      }
                      /**
                       * @dev Upgrade the implementation of the proxy.
                       * 
                       * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
                       */
                      function upgradeTo(address newImplementation) external ifAdmin {
                          _upgradeTo(newImplementation);
                      }
                      /**
                       * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
                       * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
                       * proxied contract.
                       * 
                       * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
                       */
                      function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
                          _upgradeTo(newImplementation);
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success,) = newImplementation.delegatecall(data);
                          require(success);
                      }
                      /**
                       * @dev Returns the current admin.
                       */
                      function _admin() internal view returns (address adm) {
                          bytes32 slot = _ADMIN_SLOT;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              adm := sload(slot)
                          }
                      }
                      /**
                       * @dev Stores a new address in the EIP1967 admin slot.
                       */
                      function _setAdmin(address newAdmin) private {
                          bytes32 slot = _ADMIN_SLOT;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              sstore(slot, newAdmin)
                          }
                      }
                      /**
                       * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
                       */
                      function _beforeFallback() internal override virtual {
                          require(msg.sender != _admin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                          super._beforeFallback();
                      }
                  }

                  File 8 of 9: PermanentStorage
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.7.6;
                  import "./interfaces/IPermanentStorage.sol";
                  import "./utils/PSStorage.sol";
                  contract PermanentStorage is IPermanentStorage {
                      // Constants do not have storage slot.
                      bytes32 public constant curveTokenIndexStorageId = 0xf4c750cdce673f6c35898d215e519b86e3846b1f0532fb48b84fe9d80f6de2fc; // keccak256("curveTokenIndex")
                      bytes32 public constant transactionSeenStorageId = 0x695d523b8578c6379a2121164fd8de334b9c5b6b36dff5408bd4051a6b1704d0; // keccak256("transactionSeen")
                      bytes32 public constant relayerValidStorageId = 0x2c97779b4deaf24e9d46e02ec2699240a957d92782b51165b93878b09dd66f61; // keccak256("relayerValid")
                      bytes32 public constant allowFillSeenStorageId = 0x808188d002c47900fbb4e871d29754afff429009f6684806712612d807395dd8; // keccak256("allowFillSeen")
                      // New supported Curve pools
                      address public constant CURVE_renBTC_POOL = 0x93054188d876f558f4a66B2EF1d97d16eDf0895B;
                      address public constant CURVE_sBTC_POOL = 0x7fC77b5c7614E1533320Ea6DDc2Eb61fa00A9714;
                      address public constant CURVE_hBTC_POOL = 0x4CA9b3063Ec5866A4B82E437059D2C43d1be596F;
                      address public constant CURVE_sETH_POOL = 0xc5424B857f758E906013F3555Dad202e4bdB4567;
                      // Curve coins
                      address private constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                      address private constant renBTC = 0xEB4C2781e4ebA804CE9a9803C67d0893436bB27D;
                      address private constant wBTC = 0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599;
                      address private constant sBTC = 0xfE18be6b3Bd88A2D2A7f928d00292E7a9963CfC6;
                      address private constant hBTC = 0x0316EB71485b0Ab14103307bf65a021042c6d380;
                      address private constant sETH = 0x5e74C9036fb86BD7eCdcb084a0673EFc32eA31cb;
                      // Below are the variables which consume storage slots.
                      address public operator;
                      string public version; // Current version of the contract
                      mapping(bytes32 => mapping(address => bool)) private permission;
                      address private nominatedOperator;
                      // Operator events
                      event OperatorNominated(address indexed newOperator);
                      event OperatorChanged(address indexed oldOperator, address indexed newOperator);
                      event SetPermission(bytes32 storageId, address role, bool enabled);
                      event UpgradeAMMWrapper(address newAMMWrapper);
                      event UpgradePMM(address newPMM);
                      event UpgradeRFQ(address newRFQ);
                      event UpgradeLimitOrder(address newLimitOrder);
                      event UpgradeWETH(address newWETH);
                      event SetCurvePoolInfo(address makerAddr, address[] underlyingCoins, address[] coins, bool supportGetD);
                      event SetRelayerValid(address relayer, bool valid);
                      /************************************************************
                       *          Access control and ownership management          *
                       *************************************************************/
                      modifier onlyOperator() {
                          require(operator == msg.sender, "PermanentStorage: not the operator");
                          _;
                      }
                      modifier validRole(bool _enabled, address _role) {
                          if (_enabled) {
                              require(
                                  (_role == operator) || (_role == ammWrapperAddr()) || (_role == pmmAddr()) || (_role == rfqAddr()) || (_role == limitOrderAddr()),
                                  "PermanentStorage: not a valid role"
                              );
                          }
                          _;
                      }
                      modifier isPermitted(bytes32 _storageId, address _role) {
                          require(permission[_storageId][_role], "PermanentStorage: has no permission");
                          _;
                      }
                      function nominateNewOperator(address _newOperator) external onlyOperator {
                          require(_newOperator != address(0), "PermanentStorage: operator can not be zero address");
                          nominatedOperator = _newOperator;
                          emit OperatorNominated(_newOperator);
                      }
                      function acceptOwnership() external {
                          require(msg.sender == nominatedOperator, "PermanentStorage: not nominated");
                          emit OperatorChanged(operator, nominatedOperator);
                          operator = nominatedOperator;
                          nominatedOperator = address(0);
                      }
                      /// @dev Set permission for entity to write certain storage.
                      function setPermission(
                          bytes32 _storageId,
                          address _role,
                          bool _enabled
                      ) external onlyOperator validRole(_enabled, _role) {
                          permission[_storageId][_role] = _enabled;
                          emit SetPermission(_storageId, _role, _enabled);
                      }
                      /************************************************************
                       *              Constructor and init functions               *
                       *************************************************************/
                      /// @dev Replacing constructor and initialize the contract. This function should only be called once.
                      function initialize(address _operator) external {
                          require(keccak256(abi.encodePacked(version)) == keccak256(abi.encodePacked("")), "PermanentStorage: not upgrading from empty");
                          require(_operator != address(0), "PermanentStorage: operator can not be zero address");
                          operator = _operator;
                          // Upgrade version
                          version = "5.3.0";
                      }
                      /************************************************************
                       *                     Getter functions                      *
                       *************************************************************/
                      function hasPermission(bytes32 _storageId, address _role) external view returns (bool) {
                          return permission[_storageId][_role];
                      }
                      function ammWrapperAddr() public view returns (address) {
                          return PSStorage.getStorage().ammWrapperAddr;
                      }
                      function pmmAddr() public view returns (address) {
                          return PSStorage.getStorage().pmmAddr;
                      }
                      function rfqAddr() public view returns (address) {
                          return PSStorage.getStorage().rfqAddr;
                      }
                      function limitOrderAddr() public view returns (address) {
                          return PSStorage.getStorage().limitOrderAddr;
                      }
                      function wethAddr() external view override returns (address) {
                          return PSStorage.getStorage().wethAddr;
                      }
                      function getCurvePoolInfo(
                          address _makerAddr,
                          address _takerAssetAddr,
                          address _makerAssetAddr
                      )
                          external
                          view
                          override
                          returns (
                              int128 takerAssetIndex,
                              int128 makerAssetIndex,
                              uint16 swapMethod,
                              bool supportGetDx
                          )
                      {
                          // underlying_coins
                          int128 i = AMMWrapperStorage.getStorage().curveTokenIndexes[_makerAddr][_takerAssetAddr];
                          int128 j = AMMWrapperStorage.getStorage().curveTokenIndexes[_makerAddr][_makerAssetAddr];
                          supportGetDx = AMMWrapperStorage.getStorage().curveSupportGetDx[_makerAddr];
                          swapMethod = 0;
                          if (i != 0 && j != 0) {
                              // in underlying_coins list
                              takerAssetIndex = i;
                              makerAssetIndex = j;
                              // exchange_underlying
                              swapMethod = 2;
                          } else {
                              // in coins list
                              int128 iWrapped = AMMWrapperStorage.getStorage().curveWrappedTokenIndexes[_makerAddr][_takerAssetAddr];
                              int128 jWrapped = AMMWrapperStorage.getStorage().curveWrappedTokenIndexes[_makerAddr][_makerAssetAddr];
                              if (iWrapped != 0 && jWrapped != 0) {
                                  takerAssetIndex = iWrapped;
                                  makerAssetIndex = jWrapped;
                                  // exchange
                                  swapMethod = 1;
                              } else {
                                  revert("PermanentStorage: invalid pair");
                              }
                          }
                          return (takerAssetIndex, makerAssetIndex, swapMethod, supportGetDx);
                      }
                      /* 
                      NOTE: `isTransactionSeen` is replaced by `isAMMTransactionSeen`. It is kept for backward compatability.
                      It should be removed from AMM 5.2.1 upward.
                      */
                      function isTransactionSeen(bytes32 _transactionHash) external view override returns (bool) {
                          return AMMWrapperStorage.getStorage().transactionSeen[_transactionHash];
                      }
                      function isAMMTransactionSeen(bytes32 _transactionHash) external view override returns (bool) {
                          return AMMWrapperStorage.getStorage().transactionSeen[_transactionHash];
                      }
                      function isRFQTransactionSeen(bytes32 _transactionHash) external view override returns (bool) {
                          return RFQStorage.getStorage().transactionSeen[_transactionHash];
                      }
                      function isLimitOrderTransactionSeen(bytes32 _transactionHash) external view override returns (bool) {
                          return LimitOrderStorage.getStorage().transactionSeen[_transactionHash];
                      }
                      function isLimitOrderAllowFillSeen(bytes32 _allowFillHash) external view override returns (bool) {
                          return LimitOrderStorage.getStorage().allowFillSeen[_allowFillHash];
                      }
                      function isRelayerValid(address _relayer) external view override returns (bool) {
                          return AMMWrapperStorage.getStorage().relayerValid[_relayer];
                      }
                      /************************************************************
                       *           Management functions for Operator               *
                       *************************************************************/
                      /// @dev Update AMMWrapper contract address.
                      function upgradeAMMWrapper(address _newAMMWrapper) external onlyOperator {
                          PSStorage.getStorage().ammWrapperAddr = _newAMMWrapper;
                          emit UpgradeAMMWrapper(_newAMMWrapper);
                      }
                      /// @dev Update PMM contract address.
                      function upgradePMM(address _newPMM) external onlyOperator {
                          PSStorage.getStorage().pmmAddr = _newPMM;
                          emit UpgradePMM(_newPMM);
                      }
                      /// @dev Update RFQ contract address.
                      function upgradeRFQ(address _newRFQ) external onlyOperator {
                          PSStorage.getStorage().rfqAddr = _newRFQ;
                          emit UpgradeRFQ(_newRFQ);
                      }
                      /// @dev Update Limit Order contract address.
                      function upgradeLimitOrder(address _newLimitOrder) external onlyOperator {
                          PSStorage.getStorage().limitOrderAddr = _newLimitOrder;
                          emit UpgradeLimitOrder(_newLimitOrder);
                      }
                      /// @dev Update WETH contract address.
                      function upgradeWETH(address _newWETH) external onlyOperator {
                          PSStorage.getStorage().wethAddr = _newWETH;
                          emit UpgradeWETH(_newWETH);
                      }
                      /************************************************************
                       *                   External functions                      *
                       *************************************************************/
                      function setCurvePoolInfo(
                          address _makerAddr,
                          address[] calldata _underlyingCoins,
                          address[] calldata _coins,
                          bool _supportGetDx
                      ) external override isPermitted(curveTokenIndexStorageId, msg.sender) {
                          int128 underlyingCoinsLength = int128(_underlyingCoins.length);
                          for (int128 i = 0; i < underlyingCoinsLength; ++i) {
                              address assetAddr = _underlyingCoins[uint256(i)];
                              // underlying coins for original DAI, USDC, TUSD
                              AMMWrapperStorage.getStorage().curveTokenIndexes[_makerAddr][assetAddr] = i + 1; // Start the index from 1
                          }
                          int128 coinsLength = int128(_coins.length);
                          for (int128 i = 0; i < coinsLength; ++i) {
                              address assetAddr = _coins[uint256(i)];
                              // wrapped coins for cDAI, cUSDC, yDAI, yUSDC, yTUSD, yBUSD
                              AMMWrapperStorage.getStorage().curveWrappedTokenIndexes[_makerAddr][assetAddr] = i + 1; // Start the index from 1
                          }
                          AMMWrapperStorage.getStorage().curveSupportGetDx[_makerAddr] = _supportGetDx;
                          emit SetCurvePoolInfo(_makerAddr, _underlyingCoins, _coins, _supportGetDx);
                      }
                      /* 
                      NOTE: `setTransactionSeen` is replaced by `setAMMTransactionSeen`. It is kept for backward compatability.
                      It should be removed from AMM 5.2.1 upward.
                      */
                      function setTransactionSeen(bytes32 _transactionHash) external override isPermitted(transactionSeenStorageId, msg.sender) {
                          require(!AMMWrapperStorage.getStorage().transactionSeen[_transactionHash], "PermanentStorage: transaction seen before");
                          AMMWrapperStorage.getStorage().transactionSeen[_transactionHash] = true;
                      }
                      function setAMMTransactionSeen(bytes32 _transactionHash) external override isPermitted(transactionSeenStorageId, msg.sender) {
                          require(!AMMWrapperStorage.getStorage().transactionSeen[_transactionHash], "PermanentStorage: transaction seen before");
                          AMMWrapperStorage.getStorage().transactionSeen[_transactionHash] = true;
                      }
                      function setRFQTransactionSeen(bytes32 _transactionHash) external override isPermitted(transactionSeenStorageId, msg.sender) {
                          require(!RFQStorage.getStorage().transactionSeen[_transactionHash], "PermanentStorage: transaction seen before");
                          RFQStorage.getStorage().transactionSeen[_transactionHash] = true;
                      }
                      function setLimitOrderTransactionSeen(bytes32 _transactionHash) external override isPermitted(transactionSeenStorageId, msg.sender) {
                          require(!LimitOrderStorage.getStorage().transactionSeen[_transactionHash], "PermanentStorage: transaction seen before");
                          LimitOrderStorage.getStorage().transactionSeen[_transactionHash] = true;
                      }
                      function setLimitOrderAllowFillSeen(bytes32 _allowFillHash) external override isPermitted(allowFillSeenStorageId, msg.sender) {
                          require(!LimitOrderStorage.getStorage().allowFillSeen[_allowFillHash], "PermanentStorage: allow fill seen before");
                          LimitOrderStorage.getStorage().allowFillSeen[_allowFillHash] = true;
                      }
                      function setRelayersValid(address[] calldata _relayers, bool[] calldata _isValids) external override isPermitted(relayerValidStorageId, msg.sender) {
                          require(_relayers.length == _isValids.length, "PermanentStorage: inputs length mismatch");
                          for (uint256 i = 0; i < _relayers.length; ++i) {
                              AMMWrapperStorage.getStorage().relayerValid[_relayers[i]] = _isValids[i];
                              emit SetRelayerValid(_relayers[i], _isValids[i]);
                          }
                      }
                  }
                  pragma solidity >=0.7.0;
                  interface IPermanentStorage {
                      function wethAddr() external view returns (address);
                      function getCurvePoolInfo(
                          address _makerAddr,
                          address _takerAssetAddr,
                          address _makerAssetAddr
                      )
                          external
                          view
                          returns (
                              int128 takerAssetIndex,
                              int128 makerAssetIndex,
                              uint16 swapMethod,
                              bool supportGetDx
                          );
                      function setCurvePoolInfo(
                          address _makerAddr,
                          address[] calldata _underlyingCoins,
                          address[] calldata _coins,
                          bool _supportGetDx
                      ) external;
                      function isTransactionSeen(bytes32 _transactionHash) external view returns (bool); // Kept for backward compatability. Should be removed from AMM 5.2.1 upward
                      function isAMMTransactionSeen(bytes32 _transactionHash) external view returns (bool);
                      function isRFQTransactionSeen(bytes32 _transactionHash) external view returns (bool);
                      function isLimitOrderTransactionSeen(bytes32 _transactionHash) external view returns (bool);
                      function isLimitOrderAllowFillSeen(bytes32 _allowFillHash) external view returns (bool);
                      function isRelayerValid(address _relayer) external view returns (bool);
                      function setTransactionSeen(bytes32 _transactionHash) external; // Kept for backward compatability. Should be removed from AMM 5.2.1 upward
                      function setAMMTransactionSeen(bytes32 _transactionHash) external;
                      function setRFQTransactionSeen(bytes32 _transactionHash) external;
                      function setLimitOrderTransactionSeen(bytes32 _transactionHash) external;
                      function setLimitOrderAllowFillSeen(bytes32 _allowFillHash) external;
                      function setRelayersValid(address[] memory _relayers, bool[] memory _isValids) external;
                  }
                  pragma solidity ^0.7.6;
                  library PSStorage {
                      bytes32 private constant STORAGE_SLOT = 0x92dd52b981a2dd69af37d8a3febca29ed6a974aede38ae66e4ef773173aba471;
                      struct Storage {
                          address ammWrapperAddr;
                          address pmmAddr;
                          address wethAddr;
                          address rfqAddr;
                          address limitOrderAddr;
                          address l2DepositAddr;
                      }
                      /// @dev Get the storage bucket for this contract.
                      function getStorage() internal pure returns (Storage storage stor) {
                          assert(STORAGE_SLOT == bytes32(uint256(keccak256("permanent.storage.storage")) - 1));
                          bytes32 slot = STORAGE_SLOT;
                          // Dip into assembly to change the slot pointed to by the local
                          // variable `stor`.
                          // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries
                          assembly {
                              stor.slot := slot
                          }
                      }
                  }
                  library AMMWrapperStorage {
                      bytes32 private constant STORAGE_SLOT = 0xd38d862c9fa97c2fa857a46e08022d272a3579c114ca4f335f1e5fcb692c045e;
                      struct Storage {
                          mapping(bytes32 => bool) transactionSeen;
                          // curve pool => underlying token address => underlying token index
                          mapping(address => mapping(address => int128)) curveTokenIndexes;
                          mapping(address => bool) relayerValid;
                          // 5.1.0 appended storage
                          // curve pool => wrapped token address => wrapped token index
                          mapping(address => mapping(address => int128)) curveWrappedTokenIndexes;
                          mapping(address => bool) curveSupportGetDx;
                      }
                      /// @dev Get the storage bucket for this contract.
                      function getStorage() internal pure returns (Storage storage stor) {
                          assert(STORAGE_SLOT == bytes32(uint256(keccak256("permanent.ammwrapper.storage")) - 1));
                          bytes32 slot = STORAGE_SLOT;
                          // Dip into assembly to change the slot pointed to by the local
                          // variable `stor`.
                          // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries
                          assembly {
                              stor.slot := slot
                          }
                      }
                  }
                  library RFQStorage {
                      bytes32 private constant STORAGE_SLOT = 0x9174e76494cfb023ddc1eb0effb6c12e107165382bbd0ecfddbc38ea108bbe52;
                      struct Storage {
                          mapping(bytes32 => bool) transactionSeen;
                      }
                      /// @dev Get the storage bucket for this contract.
                      function getStorage() internal pure returns (Storage storage stor) {
                          assert(STORAGE_SLOT == bytes32(uint256(keccak256("permanent.rfq.storage")) - 1));
                          bytes32 slot = STORAGE_SLOT;
                          // Dip into assembly to change the slot pointed to by the local
                          // variable `stor`.
                          // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries
                          assembly {
                              stor.slot := slot
                          }
                      }
                  }
                  library LimitOrderStorage {
                      bytes32 private constant STORAGE_SLOT = 0xb1b5d1092eed9d9f9f6bdd5bf9fe04f7537770f37e1d84ac8960cc3acb80615c;
                      struct Storage {
                          mapping(bytes32 => bool) transactionSeen;
                          mapping(bytes32 => bool) allowFillSeen;
                      }
                      /// @dev Get the storage bucket for this contract.
                      function getStorage() internal pure returns (Storage storage stor) {
                          assert(STORAGE_SLOT == bytes32(uint256(keccak256("permanent.limitorder.storage")) - 1));
                          bytes32 slot = STORAGE_SLOT;
                          // Dip into assembly to change the slot pointed to by the local
                          // variable `stor`.
                          // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries
                          assembly {
                              stor.slot := slot
                          }
                      }
                  }
                  

                  File 9 of 9: ERC20Proxy
                  /*
                  
                    Copyright 2018 ZeroEx Intl.
                  
                    Licensed under the Apache License, Version 2.0 (the "License");
                    you may not use this file except in compliance with the License.
                    You may obtain a copy of the License at
                  
                      http://www.apache.org/licenses/LICENSE-2.0
                  
                    Unless required by applicable law or agreed to in writing, software
                    distributed under the License is distributed on an "AS IS" BASIS,
                    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                    See the License for the specific language governing permissions and
                    limitations under the License.
                  
                  */
                  
                  pragma solidity 0.4.24;
                  
                  contract IOwnable {
                  
                      function transferOwnership(address newOwner)
                          public;
                  }
                  
                  contract Ownable is
                      IOwnable
                  {
                      address public owner;
                  
                      constructor ()
                          public
                      {
                          owner = msg.sender;
                      }
                  
                      modifier onlyOwner() {
                          require(
                              msg.sender == owner,
                              "ONLY_CONTRACT_OWNER"
                          );
                          _;
                      }
                  
                      function transferOwnership(address newOwner)
                          public
                          onlyOwner
                      {
                          if (newOwner != address(0)) {
                              owner = newOwner;
                          }
                      }
                  }
                  
                  contract IAuthorizable is
                      IOwnable
                  {
                      /// @dev Authorizes an address.
                      /// @param target Address to authorize.
                      function addAuthorizedAddress(address target)
                          external;
                  
                      /// @dev Removes authorizion of an address.
                      /// @param target Address to remove authorization from.
                      function removeAuthorizedAddress(address target)
                          external;
                  
                      /// @dev Removes authorizion of an address.
                      /// @param target Address to remove authorization from.
                      /// @param index Index of target in authorities array.
                      function removeAuthorizedAddressAtIndex(
                          address target,
                          uint256 index
                      )
                          external;
                      
                      /// @dev Gets all authorized addresses.
                      /// @return Array of authorized addresses.
                      function getAuthorizedAddresses()
                          external
                          view
                          returns (address[] memory);
                  }
                  
                  contract MAuthorizable is
                      IAuthorizable
                  {
                      // Event logged when a new address is authorized.
                      event AuthorizedAddressAdded(
                          address indexed target,
                          address indexed caller
                      );
                  
                      // Event logged when a currently authorized address is unauthorized.
                      event AuthorizedAddressRemoved(
                          address indexed target,
                          address indexed caller
                      );
                  
                      /// @dev Only authorized addresses can invoke functions with this modifier.
                      modifier onlyAuthorized { revert(); _; }
                  }
                  
                  contract MixinAuthorizable is
                      Ownable,
                      MAuthorizable
                  {
                      /// @dev Only authorized addresses can invoke functions with this modifier.
                      modifier onlyAuthorized {
                          require(
                              authorized[msg.sender],
                              "SENDER_NOT_AUTHORIZED"
                          );
                          _;
                      }
                  
                      mapping (address => bool) public authorized;
                      address[] public authorities;
                  
                      /// @dev Authorizes an address.
                      /// @param target Address to authorize.
                      function addAuthorizedAddress(address target)
                          external
                          onlyOwner
                      {
                          require(
                              !authorized[target],
                              "TARGET_ALREADY_AUTHORIZED"
                          );
                  
                          authorized[target] = true;
                          authorities.push(target);
                          emit AuthorizedAddressAdded(target, msg.sender);
                      }
                  
                      /// @dev Removes authorizion of an address.
                      /// @param target Address to remove authorization from.
                      function removeAuthorizedAddress(address target)
                          external
                          onlyOwner
                      {
                          require(
                              authorized[target],
                              "TARGET_NOT_AUTHORIZED"
                          );
                  
                          delete authorized[target];
                          for (uint256 i = 0; i < authorities.length; i++) {
                              if (authorities[i] == target) {
                                  authorities[i] = authorities[authorities.length - 1];
                                  authorities.length -= 1;
                                  break;
                              }
                          }
                          emit AuthorizedAddressRemoved(target, msg.sender);
                      }
                  
                      /// @dev Removes authorizion of an address.
                      /// @param target Address to remove authorization from.
                      /// @param index Index of target in authorities array.
                      function removeAuthorizedAddressAtIndex(
                          address target,
                          uint256 index
                      )
                          external
                          onlyOwner
                      {
                          require(
                              authorized[target],
                              "TARGET_NOT_AUTHORIZED"
                          );
                          require(
                              index < authorities.length,
                              "INDEX_OUT_OF_BOUNDS"
                          );
                          require(
                              authorities[index] == target,
                              "AUTHORIZED_ADDRESS_MISMATCH"
                          );
                  
                          delete authorized[target];
                          authorities[index] = authorities[authorities.length - 1];
                          authorities.length -= 1;
                          emit AuthorizedAddressRemoved(target, msg.sender);
                      }
                  
                      /// @dev Gets all authorized addresses.
                      /// @return Array of authorized addresses.
                      function getAuthorizedAddresses()
                          external
                          view
                          returns (address[] memory)
                      {
                          return authorities;
                      }
                  }
                  
                  contract ERC20Proxy is
                      MixinAuthorizable
                  {
                      // Id of this proxy.
                      bytes4 constant internal PROXY_ID = bytes4(keccak256("ERC20Token(address)"));
                      
                      // solhint-disable-next-line payable-fallback
                      function () 
                          external
                      {
                          assembly {
                              // The first 4 bytes of calldata holds the function selector
                              let selector := and(calldataload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)
                  
                              // `transferFrom` will be called with the following parameters:
                              // assetData Encoded byte array.
                              // from Address to transfer asset from.
                              // to Address to transfer asset to.
                              // amount Amount of asset to transfer.
                              // bytes4(keccak256("transferFrom(bytes,address,address,uint256)")) = 0xa85e59e4
                              if eq(selector, 0xa85e59e400000000000000000000000000000000000000000000000000000000) {
                  
                                  // To lookup a value in a mapping, we load from the storage location keccak256(k, p),
                                  // where k is the key left padded to 32 bytes and p is the storage slot
                                  let start := mload(64)
                                  mstore(start, and(caller, 0xffffffffffffffffffffffffffffffffffffffff))
                                  mstore(add(start, 32), authorized_slot)
                  
                                  // Revert if authorized[msg.sender] == false
                                  if iszero(sload(keccak256(start, 64))) {
                                      // Revert with `Error("SENDER_NOT_AUTHORIZED")`
                                      mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                                      mstore(32, 0x0000002000000000000000000000000000000000000000000000000000000000)
                                      mstore(64, 0x0000001553454e4445525f4e4f545f415554484f52495a454400000000000000)
                                      mstore(96, 0)
                                      revert(0, 100)
                                  }
                  
                                  // `transferFrom`.
                                  // The function is marked `external`, so no abi decodeding is done for
                                  // us. Instead, we expect the `calldata` memory to contain the
                                  // following:
                                  //
                                  // | Area     | Offset | Length  | Contents                            |
                                  // |----------|--------|---------|-------------------------------------|
                                  // | Header   | 0      | 4       | function selector                   |
                                  // | Params   |        | 4 * 32  | function parameters:                |
                                  // |          | 4      |         |   1. offset to assetData (*)        |
                                  // |          | 36     |         |   2. from                           |
                                  // |          | 68     |         |   3. to                             |
                                  // |          | 100    |         |   4. amount                         |
                                  // | Data     |        |         | assetData:                          |
                                  // |          | 132    | 32      | assetData Length                    |
                                  // |          | 164    | **      | assetData Contents                  |
                                  //
                                  // (*): offset is computed from start of function parameters, so offset
                                  //      by an additional 4 bytes in the calldata.
                                  //
                                  // (**): see table below to compute length of assetData Contents
                                  //
                                  // WARNING: The ABIv2 specification allows additional padding between
                                  //          the Params and Data section. This will result in a larger
                                  //          offset to assetData.
                  
                                  // Asset data itself is encoded as follows:
                                  //
                                  // | Area     | Offset | Length  | Contents                            |
                                  // |----------|--------|---------|-------------------------------------|
                                  // | Header   | 0      | 4       | function selector                   |
                                  // | Params   |        | 1 * 32  | function parameters:                |
                                  // |          | 4      | 12 + 20 |   1. token address                  |
                  
                                  // We construct calldata for the `token.transferFrom` ABI.
                                  // The layout of this calldata is in the table below.
                                  //
                                  // | Area     | Offset | Length  | Contents                            |
                                  // |----------|--------|---------|-------------------------------------|
                                  // | Header   | 0      | 4       | function selector                   |
                                  // | Params   |        | 3 * 32  | function parameters:                |
                                  // |          | 4      |         |   1. from                           |
                                  // |          | 36     |         |   2. to                             |
                                  // |          | 68     |         |   3. amount                         |
                  
                                  /////// Read token address from calldata ///////
                                  // * The token address is stored in `assetData`.
                                  //
                                  // * The "offset to assetData" is stored at offset 4 in the calldata (table 1).
                                  //   [assetDataOffsetFromParams = calldataload(4)]
                                  //
                                  // * Notes that the "offset to assetData" is relative to the "Params" area of calldata;
                                  //   add 4 bytes to account for the length of the "Header" area (table 1).
                                  //   [assetDataOffsetFromHeader = assetDataOffsetFromParams + 4]
                                  //
                                  // * The "token address" is offset 32+4=36 bytes into "assetData" (tables 1 & 2).
                                  //   [tokenOffset = assetDataOffsetFromHeader + 36 = calldataload(4) + 4 + 36]
                                  let token := calldataload(add(calldataload(4), 40))
                                  
                                  /////// Setup Header Area ///////
                                  // This area holds the 4-byte `transferFrom` selector.
                                  // Any trailing data in transferFromSelector will be
                                  // overwritten in the next `mstore` call.
                                  mstore(0, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                                  
                                  /////// Setup Params Area ///////
                                  // We copy the fields `from`, `to` and `amount` in bulk
                                  // from our own calldata to the new calldata.
                                  calldatacopy(4, 36, 96)
                  
                                  /////// Call `token.transferFrom` using the calldata ///////
                                  let success := call(
                                      gas,            // forward all gas
                                      token,          // call address of token contract
                                      0,              // don't send any ETH
                                      0,              // pointer to start of input
                                      100,            // length of input
                                      0,              // write output over input
                                      32              // output size should be 32 bytes
                                  )
                  
                                  /////// Check return data. ///////
                                  // If there is no return data, we assume the token incorrectly
                                  // does not return a bool. In this case we expect it to revert
                                  // on failure, which was handled above.
                                  // If the token does return data, we require that it is a single
                                  // nonzero 32 bytes value.
                                  // So the transfer succeeded if the call succeeded and either
                                  // returned nothing, or returned a non-zero 32 byte value. 
                                  success := and(success, or(
                                      iszero(returndatasize),
                                      and(
                                          eq(returndatasize, 32),
                                          gt(mload(0), 0)
                                      )
                                  ))
                                  if success {
                                      return(0, 0)
                                  }
                                  
                                  // Revert with `Error("TRANSFER_FAILED")`
                                  mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                                  mstore(32, 0x0000002000000000000000000000000000000000000000000000000000000000)
                                  mstore(64, 0x0000000f5452414e534645525f4641494c454400000000000000000000000000)
                                  mstore(96, 0)
                                  revert(0, 100)
                              }
                  
                              // Revert if undefined function is called
                              revert(0, 0)
                          }
                      }
                  
                      /// @dev Gets the proxy id associated with the proxy address.
                      /// @return Proxy id.
                      function getProxyId()
                          external
                          pure
                          returns (bytes4)
                      {
                          return PROXY_ID;
                      }
                  }