ETH Price: $2,636.91 (+3.19%)

Transaction Decoder

Block:
6341635 at Sep-16-2018 10:06:55 AM +UTC
Transaction Fee:
0.000487825 ETH $1.29
Gas Used:
37,525 Gas / 13 Gwei

Account State Difference:

  Address   Before After State Difference Code
(F2Pool Old)
3,800.168053734787538026 Eth3,800.168541559787538026 Eth0.000487825
0xDf1eEc5f...2129e1e09
1.119688217 Eth
Nonce: 7341
1.119200392 Eth
Nonce: 7342
0.000487825
0xe8780B48...ED91462F7

Execution Trace

CentrallyIssuedToken.transfer( _to=0x0291E0e5fD6086a95b6B500A113f296C1b40A5b1, _value=10847250000000000000000 ) => ( success=True )
/**
 * This smart contract code is Copyright 2017 TokenMarket Ltd. For more information see https://tokenmarket.net
 *
 * Licensed under the Apache License, version 2.0: https://github.com/TokenMarketNet/ico/blob/master/LICENSE.txt
 */


/**
 * This smart contract code is Copyright 2017 TokenMarket Ltd. For more information see https://tokenmarket.net
 *
 * Licensed under the Apache License, version 2.0: https://github.com/TokenMarketNet/ico/blob/master/LICENSE.txt
 */








/**
 * @title ERC20Basic
 * @dev Simpler version of ERC20 interface
 * @dev see https://github.com/ethereum/EIPs/issues/179
 */
contract ERC20Basic {
  uint256 public totalSupply;
  function balanceOf(address who) public constant returns (uint256);
  function transfer(address to, uint256 value) public returns (bool);
  event Transfer(address indexed from, address indexed to, uint256 value);
}



/**
 * @title SafeMath
 * @dev Math operations with safety checks that throw on error
 */
library SafeMath {
  function mul(uint256 a, uint256 b) internal constant returns (uint256) {
    uint256 c = a * b;
    assert(a == 0 || c / a == b);
    return c;
  }

  function div(uint256 a, uint256 b) internal constant returns (uint256) {
    // assert(b > 0); // Solidity automatically throws when dividing by 0
    uint256 c = a / b;
    // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    return c;
  }

  function sub(uint256 a, uint256 b) internal constant returns (uint256) {
    assert(b <= a);
    return a - b;
  }

  function add(uint256 a, uint256 b) internal constant returns (uint256) {
    uint256 c = a + b;
    assert(c >= a);
    return c;
  }
}



/**
 * @title Basic token
 * @dev Basic version of StandardToken, with no allowances.
 */
contract BasicToken is ERC20Basic {
  using SafeMath for uint256;

  mapping(address => uint256) balances;

  /**
  * @dev transfer token for a specified address
  * @param _to The address to transfer to.
  * @param _value The amount to be transferred.
  */
  function transfer(address _to, uint256 _value) public returns (bool) {
    require(_to != address(0));

    // SafeMath.sub will throw if there is not enough balance.
    balances[msg.sender] = balances[msg.sender].sub(_value);
    balances[_to] = balances[_to].add(_value);
    Transfer(msg.sender, _to, _value);
    return true;
  }

  /**
  * @dev Gets the balance of the specified address.
  * @param _owner The address to query the the balance of.
  * @return An uint256 representing the amount owned by the passed address.
  */
  function balanceOf(address _owner) public constant returns (uint256 balance) {
    return balances[_owner];
  }

}






/**
 * @title ERC20 interface
 * @dev see https://github.com/ethereum/EIPs/issues/20
 */
contract ERC20 is ERC20Basic {
  function allowance(address owner, address spender) public constant returns (uint256);
  function transferFrom(address from, address to, uint256 value) public returns (bool);
  function approve(address spender, uint256 value) public returns (bool);
  event Approval(address indexed owner, address indexed spender, uint256 value);
}



/**
 * @title Standard ERC20 token
 *
 * @dev Implementation of the basic standard token.
 * @dev https://github.com/ethereum/EIPs/issues/20
 * @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
 */
contract StandardToken is ERC20, BasicToken {

  mapping (address => mapping (address => uint256)) allowed;


  /**
   * @dev Transfer tokens from one address to another
   * @param _from address The address which you want to send tokens from
   * @param _to address The address which you want to transfer to
   * @param _value uint256 the amount of tokens to be transferred
   */
  function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
    require(_to != address(0));

    uint256 _allowance = allowed[_from][msg.sender];

    // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
    // require (_value <= _allowance);

    balances[_from] = balances[_from].sub(_value);
    balances[_to] = balances[_to].add(_value);
    allowed[_from][msg.sender] = _allowance.sub(_value);
    Transfer(_from, _to, _value);
    return true;
  }

  /**
   * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
   *
   * Beware that changing an allowance with this method brings the risk that someone may use both the old
   * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
   * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
   * @param _spender The address which will spend the funds.
   * @param _value The amount of tokens to be spent.
   */
  function approve(address _spender, uint256 _value) public returns (bool) {
    allowed[msg.sender][_spender] = _value;
    Approval(msg.sender, _spender, _value);
    return true;
  }

  /**
   * @dev Function to check the amount of tokens that an owner allowed to a spender.
   * @param _owner address The address which owns the funds.
   * @param _spender address The address which will spend the funds.
   * @return A uint256 specifying the amount of tokens still available for the spender.
   */
  function allowance(address _owner, address _spender) public constant returns (uint256 remaining) {
    return allowed[_owner][_spender];
  }

  /**
   * approve should be called when allowed[_spender] == 0. To increment
   * allowed value is better to use this function to avoid 2 calls (and wait until
   * the first transaction is mined)
   * From MonolithDAO Token.sol
   */
  function increaseApproval (address _spender, uint _addedValue)
    returns (bool success) {
    allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
    Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
    return true;
  }

  function decreaseApproval (address _spender, uint _subtractedValue)
    returns (bool success) {
    uint oldValue = allowed[msg.sender][_spender];
    if (_subtractedValue > oldValue) {
      allowed[msg.sender][_spender] = 0;
    } else {
      allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
    }
    Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
    return true;
  }

}



/**
 * Standard EIP-20 token with an interface marker.
 *
 * @notice Interface marker is used by crowdsale contracts to validate that addresses point a good token contract.
 *
 */
contract StandardTokenExt is StandardToken {

  /* Interface declaration */
  function isToken() public constant returns (bool weAre) {
    return true;
  }
}


contract BurnableToken is StandardTokenExt {

  // @notice An address for the transfer event where the burned tokens are transferred in a faux Transfer event
  address public constant BURN_ADDRESS = 0;

  /** How many tokens we burned */
  event Burned(address burner, uint burnedAmount);

  /**
   * Burn extra tokens from a balance.
   *
   */
  function burn(uint burnAmount) {
    address burner = msg.sender;
    balances[burner] = balances[burner].sub(burnAmount);
    totalSupply = totalSupply.sub(burnAmount);
    Burned(burner, burnAmount);

    // Inform the blockchain explores that track the
    // balances only by a transfer event that the balance in this
    // address has decreased
    Transfer(burner, BURN_ADDRESS, burnAmount);
  }
}

/**
 * This smart contract code is Copyright 2017 TokenMarket Ltd. For more information see https://tokenmarket.net
 *
 * Licensed under the Apache License, version 2.0: https://github.com/TokenMarketNet/ico/blob/master/LICENSE.txt
 */




/**
 * This smart contract code is Copyright 2017 TokenMarket Ltd. For more information see https://tokenmarket.net
 *
 * Licensed under the Apache License, version 2.0: https://github.com/TokenMarketNet/ico/blob/master/LICENSE.txt
 */


/**
 * Upgrade agent interface inspired by Lunyr.
 *
 * Upgrade agent transfers tokens to a new contract.
 * Upgrade agent itself can be the token contract, or just a middle man contract doing the heavy lifting.
 */
contract UpgradeAgent {

  uint public originalSupply;

  /** Interface marker */
  function isUpgradeAgent() public constant returns (bool) {
    return true;
  }

  function upgradeFrom(address _from, uint256 _value) public;

}


/**
 * A token upgrade mechanism where users can opt-in amount of tokens to the next smart contract revision.
 *
 * First envisioned by Golem and Lunyr projects.
 */
contract UpgradeableToken is StandardTokenExt {

  /** Contract / person who can set the upgrade path. This can be the same as team multisig wallet, as what it is with its default value. */
  address public upgradeMaster;

  /** The next contract where the tokens will be migrated. */
  UpgradeAgent public upgradeAgent;

  /** How many tokens we have upgraded by now. */
  uint256 public totalUpgraded;

  /**
   * Upgrade states.
   *
   * - NotAllowed: The child contract has not reached a condition where the upgrade can bgun
   * - WaitingForAgent: Token allows upgrade, but we don't have a new agent yet
   * - ReadyToUpgrade: The agent is set, but not a single token has been upgraded yet
   * - Upgrading: Upgrade agent is set and the balance holders can upgrade their tokens
   *
   */
  enum UpgradeState {Unknown, NotAllowed, WaitingForAgent, ReadyToUpgrade, Upgrading}

  /**
   * Somebody has upgraded some of his tokens.
   */
  event Upgrade(address indexed _from, address indexed _to, uint256 _value);

  /**
   * New upgrade agent available.
   */
  event UpgradeAgentSet(address agent);

  /**
   * Do not allow construction without upgrade master set.
   */
  function UpgradeableToken(address _upgradeMaster) {
    upgradeMaster = _upgradeMaster;
  }

  /**
   * Allow the token holder to upgrade some of their tokens to a new contract.
   */
  function upgrade(uint256 value) public {

      UpgradeState state = getUpgradeState();
      if(!(state == UpgradeState.ReadyToUpgrade || state == UpgradeState.Upgrading)) {
        // Called in a bad state
        throw;
      }

      // Validate input value.
      if (value == 0) throw;

      balances[msg.sender] = balances[msg.sender].sub(value);

      // Take tokens out from circulation
      totalSupply = totalSupply.sub(value);
      totalUpgraded = totalUpgraded.add(value);

      // Upgrade agent reissues the tokens
      upgradeAgent.upgradeFrom(msg.sender, value);
      Upgrade(msg.sender, upgradeAgent, value);
  }

  /**
   * Set an upgrade agent that handles
   */
  function setUpgradeAgent(address agent) external {

      if(!canUpgrade()) {
        // The token is not yet in a state that we could think upgrading
        throw;
      }

      if (agent == 0x0) throw;
      // Only a master can designate the next agent
      if (msg.sender != upgradeMaster) throw;
      // Upgrade has already begun for an agent
      if (getUpgradeState() == UpgradeState.Upgrading) throw;

      upgradeAgent = UpgradeAgent(agent);

      // Bad interface
      if(!upgradeAgent.isUpgradeAgent()) throw;
      // Make sure that token supplies match in source and target
      if (upgradeAgent.originalSupply() != totalSupply) throw;

      UpgradeAgentSet(upgradeAgent);
  }

  /**
   * Get the state of the token upgrade.
   */
  function getUpgradeState() public constant returns(UpgradeState) {
    if(!canUpgrade()) return UpgradeState.NotAllowed;
    else if(address(upgradeAgent) == 0x00) return UpgradeState.WaitingForAgent;
    else if(totalUpgraded == 0) return UpgradeState.ReadyToUpgrade;
    else return UpgradeState.Upgrading;
  }

  /**
   * Change the upgrade master.
   *
   * This allows us to set a new owner for the upgrade mechanism.
   */
  function setUpgradeMaster(address master) public {
      if (master == 0x0) throw;
      if (msg.sender != upgradeMaster) throw;
      upgradeMaster = master;
  }

  /**
   * Child contract can enable to provide the condition when the upgrade can begun.
   */
  function canUpgrade() public constant returns(bool) {
     return true;
  }

}



/**
 * Centrally issued Ethereum token.
 *
 * We mix in burnable and upgradeable traits.
 *
 * Token supply is created in the token contract creation and allocated to owner.
 * The owner can then transfer from its supply to crowdsale participants.
 * The owner, or anybody, can burn any excessive tokens they are holding.
 *
 */
contract CentrallyIssuedToken is BurnableToken, UpgradeableToken {

  // Token meta information
  string public name;
  string public symbol;
  uint public decimals;

  // Token release switch
  bool public released = false;

  // The date before the release must be finalized or upgrade path will be forced
  uint public releaseFinalizationDate;

  /** Name and symbol were updated. */
  event UpdatedTokenInformation(string newName, string newSymbol);

  function CentrallyIssuedToken(address _owner, string _name, string _symbol, uint _totalSupply, uint _decimals, uint _releaseFinalizationDate)  UpgradeableToken(_owner) {
    name = _name;
    symbol = _symbol;
    totalSupply = _totalSupply;
    decimals = _decimals;

    // Allocate initial balance to the owner
    balances[_owner] = _totalSupply;

    releaseFinalizationDate = _releaseFinalizationDate;
  }

  /**
   * Owner can update token information here.
   *
   * It is often useful to conceal the actual token association, until
   * the token operations, like central issuance or reissuance have been completed.
   * In this case the initial token can be supplied with empty name and symbol information.
   *
   * This function allows the token owner to rename the token after the operations
   * have been completed and then point the audience to use the token contract.
   */
  function setTokenInformation(string _name, string _symbol) {

    if(msg.sender != upgradeMaster) {
      throw;
    }

    if(bytes(name).length > 0 || bytes(symbol).length > 0) {
      // Information already set
      // Allow owner to set this information only once
      throw;
    }

    name = _name;
    symbol = _symbol;
    UpdatedTokenInformation(name, symbol);
  }


  /**
   * Kill switch for the token in the case of distribution issue.
   *
   */
  function transfer(address _to, uint _value) returns (bool success) {

    if(now > releaseFinalizationDate) {
      if(!released) {
        throw;
      }
    }

    return super.transfer(_to, _value);
  }

  /**
   * One way function to perform the final token release.
   */
  function releaseTokenTransfer() {
    if(msg.sender != upgradeMaster) {
      throw;
    }

    released = true;
  }
}