Transaction Hash:
Block:
21759746 at Feb-02-2025 03:33:11 PM +UTC
Transaction Fee:
0.000899020687178558 ETH
$2.17
Gas Used:
176,393 Gas / 5.096691406 Gwei
Emitted Events:
202 |
ERC1967Proxy.0xd0f9818d35b9c7d941f89e81a08a7f4761384ae32aeaf4a913b94319a321e7ff( 0xd0f9818d35b9c7d941f89e81a08a7f4761384ae32aeaf4a913b94319a321e7ff, 00000000000000000000000000000000000000000000000000000000000000db )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x3D8E699D...e180A6594 | |||||
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 11.325562991031296669 Eth | 11.325734092241296669 Eth | 0.00017110121 | |
0xC47E65FF...890922D52 |
0.004335236246930412 Eth
Nonce: 8
|
0.003436215559751854 Eth
Nonce: 9
| 0.000899020687178558 |
Execution Trace
ERC1967Proxy.e117a861( )
-
SP.register( schema=[{name:registrant, type:address, order:1, indexed:false, value:0xC47E65FFE8eb87120570b5845Bc3cC9890922D52, valueString:0xC47E65FFE8eb87120570b5845Bc3cC9890922D52}, {name:revocable, type:bool, order:2, indexed:false, value:false, valueString:False}, {name:dataLocation, type:uint8, order:3, indexed:false, value:0, valueString:0}, {name:maxValidFor, type:uint64, order:4, indexed:false, value:0, valueString:0}, {name:hook, type:address, order:5, indexed:false, value:0xC47E65FFE8eb87120570b5845Bc3cC9890922D52, valueString:0xC47E65FFE8eb87120570b5845Bc3cC9890922D52}, {name:timestamp, type:uint64, order:6, indexed:false, value:0, valueString:0}, {name:data, type:string, order:7, indexed:false, value:{u0022nameu0022:u0022VTVu0022, u0022descriptionu0022:u0022VVSS1u0022, u0022datau0022:[{u0022nameu0022:u0022VVu0022, u0022typeu0022:u0022address[]u0022}]}, valueString:{u0022nameu0022:u0022VTVu0022, u0022descriptionu0022:u0022VVSS1u0022, u0022datau0022:[{u0022nameu0022:u0022VVu0022, u0022typeu0022:u0022address[]u0022}]}}], delegateSignature=0x ) => ( schemaId=219 )
File 1 of 2: ERC1967Proxy
File 2 of 2: SP
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol) pragma solidity ^0.8.20; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. */ interface IERC1967 { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/BeaconProxy.sol) pragma solidity ^0.8.20; import {IBeacon} from "./IBeacon.sol"; import {Proxy} from "../Proxy.sol"; import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol"; /** * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}. * * The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an * immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] so that it can be accessed externally. * * CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust * the beacon to not upgrade the implementation maliciously. * * IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in * an inconsistent state where the beacon storage slot does not match the beacon address. */ contract BeaconProxy is Proxy { // An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call. address private immutable _beacon; /** * @dev Initializes the proxy with `beacon`. * * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity * constructor. * * Requirements: * * - `beacon` must be a contract with the interface {IBeacon}. * - If `data` is empty, `msg.value` must be zero. */ constructor(address beacon, bytes memory data) payable { ERC1967Utils.upgradeBeaconToAndCall(beacon, data); _beacon = beacon; } /** * @dev Returns the current implementation address of the associated beacon. */ function _implementation() internal view virtual override returns (address) { return IBeacon(_getBeacon()).implementation(); } /** * @dev Returns the beacon. */ function _getBeacon() internal view virtual returns (address) { return _beacon; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.20; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/UpgradeableBeacon.sol) pragma solidity ^0.8.20; import {IBeacon} from "./IBeacon.sol"; import {Ownable} from "../../access/Ownable.sol"; /** * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their * implementation contract, which is where they will delegate all function calls. * * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon. */ contract UpgradeableBeacon is IBeacon, Ownable { address private _implementation; /** * @dev The `implementation` of the beacon is invalid. */ error BeaconInvalidImplementation(address implementation); /** * @dev Emitted when the implementation returned by the beacon is changed. */ event Upgraded(address indexed implementation); /** * @dev Sets the address of the initial implementation, and the initial owner who can upgrade the beacon. */ constructor(address implementation_, address initialOwner) Ownable(initialOwner) { _setImplementation(implementation_); } /** * @dev Returns the current implementation address. */ function implementation() public view virtual returns (address) { return _implementation; } /** * @dev Upgrades the beacon to a new implementation. * * Emits an {Upgraded} event. * * Requirements: * * - msg.sender must be the owner of the contract. * - `newImplementation` must be a contract. */ function upgradeTo(address newImplementation) public virtual onlyOwner { _setImplementation(newImplementation); } /** * @dev Sets the implementation contract address for this beacon * * Requirements: * * - `newImplementation` must be a contract. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert BeaconInvalidImplementation(newImplementation); } _implementation = newImplementation; emit Upgraded(newImplementation); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity ^0.8.20; import {Proxy} from "../Proxy.sol"; import {ERC1967Utils} from "./ERC1967Utils.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`. * * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor. * * Requirements: * * - If `data` is empty, `msg.value` must be zero. */ constructor(address implementation, bytes memory _data) payable { ERC1967Utils.upgradeToAndCall(implementation, _data); } /** * @dev Returns the current implementation address. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function _implementation() internal view virtual override returns (address) { return ERC1967Utils.getImplementation(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol) pragma solidity ^0.8.20; import {IBeacon} from "../beacon/IBeacon.sol"; import {Address} from "../../utils/Address.sol"; import {StorageSlot} from "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. */ library ERC1967Utils { // We re-declare ERC-1967 events here because they can't be used directly from IERC1967. // This will be fixed in Solidity 0.8.21. At that point we should remove these events. /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol) pragma solidity ^0.8.20; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback * function and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/ProxyAdmin.sol) pragma solidity ^0.8.20; import {ITransparentUpgradeableProxy} from "./TransparentUpgradeableProxy.sol"; import {Ownable} from "../../access/Ownable.sol"; /** * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}. */ contract ProxyAdmin is Ownable { /** * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgrade(address)` * and `upgradeAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called, * while `upgradeAndCall` will invoke the `receive` function if the second argument is the empty byte string. * If the getter returns `"5.0.0"`, only `upgradeAndCall(address,bytes)` is present, and the second argument must * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function * during an upgrade. */ string public constant UPGRADE_INTERFACE_VERSION = "5.0.0"; /** * @dev Sets the initial owner who can perform upgrades. */ constructor(address initialOwner) Ownable(initialOwner) {} /** * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. * See {TransparentUpgradeableProxy-_dispatchUpgradeToAndCall}. * * Requirements: * * - This contract must be the admin of `proxy`. * - If `data` is empty, `msg.value` must be zero. */ function upgradeAndCall( ITransparentUpgradeableProxy proxy, address implementation, bytes memory data ) public payable virtual onlyOwner { proxy.upgradeToAndCall{value: msg.value}(implementation, data); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/TransparentUpgradeableProxy.sol) pragma solidity ^0.8.20; import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol"; import {ERC1967Proxy} from "../ERC1967/ERC1967Proxy.sol"; import {IERC1967} from "../../interfaces/IERC1967.sol"; import {ProxyAdmin} from "./ProxyAdmin.sol"; /** * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy} * does not implement this interface directly, and its upgradeability mechanism is implemented by an internal dispatch * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not * include them in the ABI so this interface must be used to interact with it. */ interface ITransparentUpgradeableProxy is IERC1967 { function upgradeToAndCall(address, bytes calldata) external payable; } /** * @dev This contract implements a proxy that is upgradeable through an associated {ProxyAdmin} instance. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches the {ITransparentUpgradeableProxy-upgradeToAndCall} function exposed by the proxy itself. * 2. If the admin calls the proxy, it can call the `upgradeToAndCall` function but any other call won't be forwarded to * the implementation. If the admin tries to call a function on the implementation it will fail with an error indicating * the proxy admin cannot fallback to the target implementation. * * These properties mean that the admin account can only be used for upgrading the proxy, so it's best if it's a * dedicated account that is not used for anything else. This will avoid headaches due to sudden errors when trying to * call a function from the proxy implementation. For this reason, the proxy deploys an instance of {ProxyAdmin} and * allows upgrades only if they come through it. You should think of the `ProxyAdmin` instance as the administrative * interface of the proxy, including the ability to change who can trigger upgrades by transferring ownership. * * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not * inherit from that interface, and instead `upgradeToAndCall` is implicitly implemented using a custom dispatch * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the * implementation. * * NOTE: This proxy does not inherit from {Context} deliberately. The {ProxyAdmin} of this contract won't send a * meta-transaction in any way, and any other meta-transaction setup should be made in the implementation contract. * * IMPORTANT: This contract avoids unnecessary storage reads by setting the admin only during construction as an * immutable variable, preventing any changes thereafter. However, the admin slot defined in ERC-1967 can still be * overwritten by the implementation logic pointed to by this proxy. In such cases, the contract may end up in an * undesirable state where the admin slot is different from the actual admin. * * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the * compiler will not check that there are no selector conflicts, due to the note above. A selector clash between any new * function and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This * could render the `upgradeToAndCall` function inaccessible, preventing upgradeability and compromising transparency. */ contract TransparentUpgradeableProxy is ERC1967Proxy { // An immutable address for the admin to avoid unnecessary SLOADs before each call // at the expense of removing the ability to change the admin once it's set. // This is acceptable if the admin is always a ProxyAdmin instance or similar contract // with its own ability to transfer the permissions to another account. address private immutable _admin; /** * @dev The proxy caller is the current admin, and can't fallback to the proxy target. */ error ProxyDeniedAdminAccess(); /** * @dev Initializes an upgradeable proxy managed by an instance of a {ProxyAdmin} with an `initialOwner`, * backed by the implementation at `_logic`, and optionally initialized with `_data` as explained in * {ERC1967Proxy-constructor}. */ constructor(address _logic, address initialOwner, bytes memory _data) payable ERC1967Proxy(_logic, _data) { _admin = address(new ProxyAdmin(initialOwner)); // Set the storage value and emit an event for ERC-1967 compatibility ERC1967Utils.changeAdmin(_proxyAdmin()); } /** * @dev Returns the admin of this proxy. */ function _proxyAdmin() internal virtual returns (address) { return _admin; } /** * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior. */ function _fallback() internal virtual override { if (msg.sender == _proxyAdmin()) { if (msg.sig != ITransparentUpgradeableProxy.upgradeToAndCall.selector) { revert ProxyDeniedAdminAccess(); } else { _dispatchUpgradeToAndCall(); } } else { super._fallback(); } } /** * @dev Upgrade the implementation of the proxy. See {ERC1967Utils-upgradeToAndCall}. * * Requirements: * * - If `data` is empty, `msg.value` must be zero. */ function _dispatchUpgradeToAndCall() private { (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes)); ERC1967Utils.upgradeToAndCall(newImplementation, data); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
File 2 of 2: SP
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Ownable struct OwnableStorage { address _owner; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300; function _getOwnableStorage() private pure returns (OwnableStorage storage $) { assembly { $.slot := OwnableStorageLocation } } /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ function __Ownable_init(address initialOwner) internal onlyInitializing { __Ownable_init_unchained(initialOwner); } function __Ownable_init_unchained(address initialOwner) internal onlyInitializing { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { OwnableStorage storage $ = _getOwnableStorage(); return $._owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { OwnableStorage storage $ = _getOwnableStorage(); address oldOwner = $._owner; $._owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.20; import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol"; import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol"; import {Initializable} from "./Initializable.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. */ abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable { /// @custom:oz-upgrades-unsafe-allow state-variable-immutable address private immutable __self = address(this); /** * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)` * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called, * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string. * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function * during an upgrade. */ string public constant UPGRADE_INTERFACE_VERSION = "5.0.0"; /** * @dev The call is from an unauthorized context. */ error UUPSUnauthorizedCallContext(); /** * @dev The storage `slot` is unsupported as a UUID. */ error UUPSUnsupportedProxiableUUID(bytes32 slot); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { _checkProxy(); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { _checkNotDelegated(); _; } function __UUPSUpgradeable_init() internal onlyInitializing { } function __UUPSUpgradeable_init_unchained() internal onlyInitializing { } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual notDelegated returns (bytes32) { return ERC1967Utils.IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. * * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data); } /** * @dev Reverts if the execution is not performed via delegatecall or the execution * context is not of a proxy with an ERC1967-compliant implementation pointing to self. * See {_onlyProxy}. */ function _checkProxy() internal view virtual { if ( address(this) == __self || // Must be called through delegatecall ERC1967Utils.getImplementation() != __self // Must be called through an active proxy ) { revert UUPSUnauthorizedCallContext(); } } /** * @dev Reverts if the execution is performed via delegatecall. * See {notDelegated}. */ function _checkNotDelegated() internal view virtual { if (address(this) != __self) { // Must not be called through delegatecall revert UUPSUnauthorizedCallContext(); } } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call. * * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value * is expected to be the implementation slot in ERC1967. * * Emits an {IERC1967-Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) { revert UUPSUnsupportedProxiableUUID(slot); } ERC1967Utils.upgradeToAndCall(newImplementation, data); } catch { // The implementation is not UUPS revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.20; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.20; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol) pragma solidity ^0.8.20; import {IBeacon} from "../beacon/IBeacon.sol"; import {Address} from "../../utils/Address.sol"; import {StorageSlot} from "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. */ library ERC1967Utils { // We re-declare ERC-1967 events here because they can't be used directly from IERC1967. // This will be fixed in Solidity 0.8.21. At that point we should remove these events. /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\\x19Ethereum Signed Message:\ 32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\\x19Ethereum Signed Message:\ " + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\\x19Ethereum Signed Message:\ ", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol) pragma solidity ^0.8.20; import {ECDSA} from "./ECDSA.sol"; import {IERC1271} from "../../interfaces/IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like * Argent and Safe Wallet (previously Gnosis Safe). */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) { (address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature); return (error == ECDSA.RecoverError.NoError && recovered == signer) || isValidERC1271SignatureNow(signer, hash, signature); } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC1271. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 hash, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeCall(IERC1271.isValidSignature, (hash, signature)) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: GNU AGPLv3 pragma solidity ^0.8.20; import { ISP } from "../interfaces/ISP.sol"; import { ISPHook } from "../interfaces/ISPHook.sol"; import { ISPGlobalHook } from "../interfaces/ISPGlobalHook.sol"; import { Schema } from "../models/Schema.sol"; import { Attestation, OffchainAttestation } from "../models/Attestation.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { SignatureChecker } from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol"; import { MessageHashUtils } from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import { UUPSUpgradeable } from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; // solhint-disable var-name-mixedcase contract SP is ISP, UUPSUpgradeable, OwnableUpgradeable { /// @custom:storage-location erc7201:ethsign.SP struct SPStorage { bool paused; mapping(uint64 => Schema) schemaRegistry; mapping(uint64 => Attestation) attestationRegistry; mapping(string => OffchainAttestation) offchainAttestationRegistry; uint64 schemaCounter; uint64 attestationCounter; uint64 initialSchemaCounter; uint64 initialAttestationCounter; ISPGlobalHook globalHook; } // keccak256(abi.encode(uint256(keccak256("ethsign.SP")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant SPStorageLocation = 0x9f5ee6fb062129ebe4f4f93ab4866ee289599fbb940712219d796d503e3bd400; bytes32 private constant REGISTER_ACTION_NAME = "REGISTER"; bytes32 private constant REGISTER_BATCH_ACTION_NAME = "REGISTER_BATCH"; bytes32 private constant ATTEST_ACTION_NAME = "ATTEST"; bytes32 private constant ATTEST_BATCH_ACTION_NAME = "ATTEST_BATCH"; bytes32 private constant ATTEST_OFFCHAIN_ACTION_NAME = "ATTEST_OFFCHAIN"; bytes32 private constant ATTEST_OFFCHAIN_BATCH_ACTION_NAME = "ATTEST_OFFCHAIN_BATCH"; bytes32 private constant REVOKE_ACTION_NAME = "REVOKE"; bytes32 private constant REVOKE_BATCH_ACTION_NAME = "REVOKE_BATCH"; bytes32 private constant REVOKE_OFFCHAIN_ACTION_NAME = "REVOKE_OFFCHAIN"; bytes32 private constant REVOKE_OFFCHAIN_BATCH_ACTION_NAME = "REVOKE_OFFCHAIN_BATCH"; function _getSPStorage() internal pure returns (SPStorage storage $) { assembly { $.slot := SPStorageLocation } } /// @custom:oz-upgrades-unsafe-allow constructor constructor() { if (block.chainid != 31_337) { _disableInitializers(); } } function initialize(uint64 schemaCounter_, uint64 attestationCounter_) public initializer { SPStorage storage $ = _getSPStorage(); __Ownable_init(_msgSender()); $.schemaCounter = schemaCounter_; $.attestationCounter = attestationCounter_; $.initialSchemaCounter = schemaCounter_; $.initialAttestationCounter = attestationCounter_; } function setGlobalHook(address hook) external onlyOwner { _getSPStorage().globalHook = ISPGlobalHook(hook); } function setPause(bool paused) external onlyOwner { _getSPStorage().paused = paused; } function register( Schema memory schema, bytes calldata delegateSignature ) external override returns (uint64 schemaId) { bool delegateMode = delegateSignature.length != 0; if (delegateMode) { __checkDelegationSignature(schema.registrant, getDelegatedRegisterHash(schema), delegateSignature); } else { if (schema.registrant != _msgSender()) revert SchemaWrongRegistrant(); } schemaId = _register(schema); _callGlobalHook(); } function registerBatch( Schema[] calldata schemas, bytes calldata delegateSignature ) external override returns (uint64[] memory schemaIds) { bool delegateMode = delegateSignature.length != 0; address registrant = schemas[0].registrant; if (delegateMode) { // solhint-disable-next-line max-line-length __checkDelegationSignature(schemas[0].registrant, getDelegatedRegisterBatchHash(schemas), delegateSignature); } else { if (schemas[0].registrant != _msgSender()) { revert SchemaWrongRegistrant(); } } schemaIds = new uint64[](schemas.length); for (uint256 i = 0; i < schemas.length; i++) { if (delegateMode && schemas[i].registrant != registrant) { revert SchemaWrongRegistrant(); } schemaIds[i] = _register(schemas[i]); } _callGlobalHook(); } function attest( Attestation calldata attestation, string calldata indexingKey, bytes calldata delegateSignature, bytes calldata extraData ) external override returns (uint64) { bool delegateMode = delegateSignature.length != 0; if (delegateMode) { __checkDelegationSignature(attestation.attester, getDelegatedAttestHash(attestation), delegateSignature); } (uint64 schemaId, uint64 attestationId) = _attest(attestation, indexingKey, delegateMode); ISPHook hook = __getResolverFromAttestationId(attestationId); if (address(hook) != address(0)) { hook.didReceiveAttestation(attestation.attester, schemaId, attestationId, extraData); } _callGlobalHook(); return attestationId; } function attestBatch( Attestation[] memory attestations, string[] memory indexingKeys, bytes memory delegateSignature, bytes memory extraData ) external override returns (uint64[] memory attestationIds) { bool delegateMode = delegateSignature.length != 0; address attester = attestations[0].attester; if (delegateMode) { __checkDelegationSignature(attester, getDelegatedAttestBatchHash(attestations), delegateSignature); } attestationIds = new uint64[](attestations.length); for (uint256 i = 0; i < attestations.length; i++) { if (delegateMode && attestations[i].attester != attester) { revert AttestationWrongAttester(); } (uint64 schemaId, uint64 attestationId) = _attest(attestations[i], indexingKeys[i], delegateMode); attestationIds[i] = attestationId; ISPHook hook = __getResolverFromAttestationId(attestationId); if (address(hook) != address(0)) { hook.didReceiveAttestation(attestations[i].attester, schemaId, attestationId, extraData); } } _callGlobalHook(); } function attest( Attestation calldata attestation, uint256 resolverFeesETH, string calldata indexingKey, bytes calldata delegateSignature, bytes calldata extraData ) external payable returns (uint64) { bool delegateMode = delegateSignature.length != 0; if (delegateMode) { __checkDelegationSignature(attestation.attester, getDelegatedAttestHash(attestation), delegateSignature); } (uint64 schemaId, uint64 attestationId) = _attest(attestation, indexingKey, delegateMode); ISPHook hook = __getResolverFromAttestationId(attestationId); if (address(hook) != address(0)) { hook.didReceiveAttestation{ value: resolverFeesETH }( attestation.attester, schemaId, attestationId, extraData ); } _callGlobalHook(); return attestationId; } function attestBatch( Attestation[] memory attestations, uint256[] memory resolverFeesETH, string[] memory indexingKeys, bytes memory delegateSignature, bytes memory extraData ) external payable override returns (uint64[] memory attestationIds) { bool delegateMode = delegateSignature.length != 0; address attester = attestations[0].attester; if (delegateMode) { __checkDelegationSignature(attester, getDelegatedAttestBatchHash(attestations), delegateSignature); } attestationIds = new uint64[](attestations.length); for (uint256 i = 0; i < attestations.length; i++) { if (delegateMode && attestations[i].attester != attester) { revert AttestationWrongAttester(); } (uint64 schemaId, uint64 attestationId) = _attest(attestations[i], indexingKeys[i], delegateMode); attestationIds[i] = attestationId; ISPHook hook = __getResolverFromAttestationId(attestationId); if (address(hook) != address(0)) { hook.didReceiveAttestation{ value: resolverFeesETH[i] }( attestations[i].attester, schemaId, attestationId, extraData ); } } _callGlobalHook(); } function attest( Attestation memory attestation, IERC20 resolverFeesERC20Token, uint256 resolverFeesERC20Amount, string memory indexingKey, bytes memory delegateSignature, bytes memory extraData ) external override returns (uint64) { bool delegateMode = delegateSignature.length != 0; if (delegateMode) { __checkDelegationSignature(attestation.attester, getDelegatedAttestHash(attestation), delegateSignature); } (uint64 schemaId, uint64 attestationId) = _attest(attestation, indexingKey, delegateMode); ISPHook hook = __getResolverFromAttestationId(attestationId); if (address(hook) != address(0)) { hook.didReceiveAttestation( attestation.attester, schemaId, attestationId, resolverFeesERC20Token, resolverFeesERC20Amount, extraData ); } _callGlobalHook(); return attestationId; } function attestBatch( Attestation[] memory attestations, IERC20[] memory resolverFeesERC20Tokens, uint256[] memory resolverFeesERC20Amount, string[] memory indexingKeys, bytes memory delegateSignature, bytes memory extraData ) external override returns (uint64[] memory attestationIds) { bool delegateMode = delegateSignature.length != 0; // address attester = attestations[0].attester; if (delegateMode) { __checkDelegationSignature( attestations[0].attester, getDelegatedAttestBatchHash(attestations), delegateSignature ); } attestationIds = new uint64[](attestations.length); for (uint256 i = 0; i < attestations.length; i++) { if (delegateMode && attestations[i].attester != attestations[0].attester) { revert AttestationWrongAttester(); } (uint64 schemaId, uint64 attestationId) = _attest(attestations[i], indexingKeys[i], delegateMode); attestationIds[i] = attestationId; ISPHook hook = __getResolverFromAttestationId(attestationId); if (address(hook) != address(0)) { hook.didReceiveAttestation( attestations[i].attester, schemaId, attestationId, resolverFeesERC20Tokens[i], resolverFeesERC20Amount[i], extraData ); } } _callGlobalHook(); } function attestOffchain( string calldata offchainAttestationId, address delegateAttester, bytes calldata delegateSignature ) external override { address attester = _msgSender(); if (delegateSignature.length != 0) { __checkDelegationSignature( delegateAttester, getDelegatedOffchainAttestHash(offchainAttestationId), delegateSignature ); attester = delegateAttester; } _attestOffchain(offchainAttestationId, attester); _callGlobalHook(); } function attestOffchainBatch( string[] calldata attestationIds, address delegateAttester, bytes calldata delegateSignature ) external override { address attester = _msgSender(); if (delegateSignature.length != 0) { __checkDelegationSignature( delegateAttester, getDelegatedOffchainAttestBatchHash(attestationIds), delegateSignature ); attester = delegateAttester; } for (uint256 i = 0; i < attestationIds.length; i++) { _attestOffchain(attestationIds[i], attester); } _callGlobalHook(); } function revoke( uint64 attestationId, string calldata reason, bytes calldata delegateSignature, bytes calldata extraData ) external override { address storageAttester = _getSPStorage().attestationRegistry[attestationId].attester; bool delegateMode = delegateSignature.length != 0; if (delegateMode) { __checkDelegationSignature( storageAttester, getDelegatedRevokeHash(attestationId, reason), delegateSignature ); } uint64 schemaId = _revoke(attestationId, reason, delegateMode); ISPHook hook = __getResolverFromAttestationId(attestationId); if (address(hook) != address(0)) { hook.didReceiveRevocation(storageAttester, schemaId, attestationId, extraData); } _callGlobalHook(); } function revokeBatch( uint64[] memory attestationIds, string[] memory reasons, bytes memory delegateSignature, bytes memory extraData ) external override { address currentAttester = _msgSender(); bool delegateMode = delegateSignature.length != 0; if (delegateMode) { address storageAttester = _getSPStorage().attestationRegistry[attestationIds[0]].attester; __checkDelegationSignature( storageAttester, getDelegatedRevokeBatchHash(attestationIds, reasons), delegateSignature ); currentAttester = storageAttester; } for (uint256 i = 0; i < attestationIds.length; i++) { address storageAttester = _getSPStorage().attestationRegistry[attestationIds[i]].attester; if (delegateMode && storageAttester != currentAttester) { revert AttestationWrongAttester(); } uint64 schemaId = _revoke(attestationIds[i], reasons[i], delegateMode); ISPHook hook = __getResolverFromAttestationId(attestationIds[i]); if (address(hook) != address(0)) { hook.didReceiveRevocation(storageAttester, schemaId, attestationIds[i], extraData); } } _callGlobalHook(); } function revoke( uint64 attestationId, string memory reason, uint256 resolverFeesETH, bytes memory delegateSignature, bytes memory extraData ) external payable override { address storageAttester = _getSPStorage().attestationRegistry[attestationId].attester; bool delegateMode = delegateSignature.length != 0; if (delegateMode) { __checkDelegationSignature( storageAttester, getDelegatedRevokeHash(attestationId, reason), delegateSignature ); } uint64 schemaId = _revoke(attestationId, reason, delegateMode); ISPHook hook = __getResolverFromAttestationId(attestationId); if (address(hook) != address(0)) { hook.didReceiveRevocation{ value: resolverFeesETH }(storageAttester, schemaId, attestationId, extraData); } _callGlobalHook(); } function revokeBatch( uint64[] memory attestationIds, string[] memory reasons, uint256[] memory resolverFeesETH, bytes memory delegateSignature, bytes memory extraData ) external payable override { address currentAttester = _msgSender(); bool delegateMode = delegateSignature.length != 0; if (delegateMode) { address storageAttester = _getSPStorage().attestationRegistry[attestationIds[0]].attester; __checkDelegationSignature( storageAttester, getDelegatedRevokeBatchHash(attestationIds, reasons), delegateSignature ); currentAttester = storageAttester; } for (uint256 i = 0; i < attestationIds.length; i++) { address storageAttester = _getSPStorage().attestationRegistry[attestationIds[i]].attester; if (delegateMode && storageAttester != currentAttester) { revert AttestationWrongAttester(); } uint64 schemaId = _revoke(attestationIds[i], reasons[i], delegateMode); ISPHook hook = __getResolverFromAttestationId(attestationIds[i]); if (address(hook) != address(0)) { hook.didReceiveRevocation{ value: resolverFeesETH[i] }( storageAttester, schemaId, attestationIds[i], extraData ); } } _callGlobalHook(); } function revoke( uint64 attestationId, string memory reason, IERC20 resolverFeesERC20Token, uint256 resolverFeesERC20Amount, bytes memory delegateSignature, bytes memory extraData ) external override { address storageAttester = _getSPStorage().attestationRegistry[attestationId].attester; bool delegateMode = delegateSignature.length != 0; if (delegateMode) { __checkDelegationSignature( storageAttester, getDelegatedRevokeHash(attestationId, reason), delegateSignature ); } uint64 schemaId = _revoke(attestationId, reason, delegateMode); ISPHook hook = __getResolverFromAttestationId(attestationId); if (address(hook) != address(0)) { hook.didReceiveRevocation( storageAttester, schemaId, attestationId, resolverFeesERC20Token, resolverFeesERC20Amount, extraData ); } _callGlobalHook(); } function revokeBatch( uint64[] memory attestationIds, string[] memory reasons, IERC20[] memory resolverFeesERC20Tokens, uint256[] memory resolverFeesERC20Amount, bytes memory delegateSignature, bytes memory extraData ) external override { address currentAttester = _msgSender(); bool delegateMode = delegateSignature.length != 0; if (delegateMode) { address storageAttester = _getSPStorage().attestationRegistry[attestationIds[0]].attester; __checkDelegationSignature( storageAttester, getDelegatedRevokeBatchHash(attestationIds, reasons), delegateSignature ); currentAttester = storageAttester; } for (uint256 i = 0; i < attestationIds.length; i++) { address storageAttester = _getSPStorage().attestationRegistry[attestationIds[i]].attester; if (delegateMode && storageAttester != currentAttester) { revert AttestationWrongAttester(); } uint64 schemaId = _revoke(attestationIds[i], reasons[i], delegateMode); ISPHook hook = __getResolverFromAttestationId(attestationIds[i]); if (address(hook) != address(0)) { hook.didReceiveRevocation( storageAttester, schemaId, attestationIds[i], resolverFeesERC20Tokens[i], resolverFeesERC20Amount[i], extraData ); } } _callGlobalHook(); } function revokeOffchain( string calldata offchainAttestationId, string calldata reason, bytes calldata delegateSignature ) external override { bool delegateMode = delegateSignature.length != 0; if (delegateMode) { address storageAttester = _getSPStorage().offchainAttestationRegistry[offchainAttestationId].attester; __checkDelegationSignature( storageAttester, getDelegatedOffchainRevokeHash(offchainAttestationId, reason), delegateSignature ); } _revokeOffchain(offchainAttestationId, reason, delegateMode); _callGlobalHook(); } function revokeOffchainBatch( string[] calldata offchainAttestationIds, string[] calldata reasons, bytes calldata delegateSignature ) external override { address currentAttester = _msgSender(); bool delegateMode = delegateSignature.length != 0; if (delegateMode) { address storageAttester = _getSPStorage().offchainAttestationRegistry[offchainAttestationIds[0]].attester; __checkDelegationSignature( storageAttester, getDelegatedOffchainRevokeBatchHash(offchainAttestationIds, reasons), delegateSignature ); currentAttester = storageAttester; } for (uint256 i = 0; i < offchainAttestationIds.length; i++) { address storageAttester = _getSPStorage().offchainAttestationRegistry[offchainAttestationIds[i]].attester; if (delegateMode && storageAttester != currentAttester) { revert AttestationWrongAttester(); } _revokeOffchain(offchainAttestationIds[i], reasons[i], delegateMode); } _callGlobalHook(); } function getSchema(uint64 schemaId) external view override returns (Schema memory) { SPStorage storage $ = _getSPStorage(); if (schemaId < $.initialSchemaCounter) revert LegacySPRequired(); return $.schemaRegistry[schemaId]; } function getAttestation(uint64 attestationId) external view override returns (Attestation memory) { SPStorage storage $ = _getSPStorage(); if (attestationId < $.initialAttestationCounter) revert LegacySPRequired(); return $.attestationRegistry[attestationId]; } function getOffchainAttestation(string calldata offchainAttestationId) external view returns (OffchainAttestation memory) { return _getSPStorage().offchainAttestationRegistry[offchainAttestationId]; } function schemaCounter() external view override returns (uint64) { return _getSPStorage().schemaCounter; } function attestationCounter() external view override returns (uint64) { return _getSPStorage().attestationCounter; } function version() external pure override returns (string memory) { return "1.1.1"; } function getDelegatedRegisterHash(Schema memory schema) public pure override returns (bytes32) { return keccak256(abi.encode(REGISTER_ACTION_NAME, schema)); } function getDelegatedRegisterBatchHash(Schema[] memory schemas) public pure override returns (bytes32) { return keccak256(abi.encode(REGISTER_ACTION_NAME, schemas)); } function getDelegatedAttestHash(Attestation memory attestation) public pure override returns (bytes32) { return keccak256(abi.encode(ATTEST_ACTION_NAME, attestation)); } function getDelegatedAttestBatchHash(Attestation[] memory attestations) public pure returns (bytes32) { return keccak256(abi.encode(ATTEST_BATCH_ACTION_NAME, attestations)); } function getDelegatedOffchainAttestHash(string memory offchainAttestationId) public pure override returns (bytes32) { return keccak256(abi.encode(ATTEST_OFFCHAIN_ACTION_NAME, offchainAttestationId)); } function getDelegatedOffchainAttestBatchHash(string[] memory offchainAttestationIds) public pure returns (bytes32) { return keccak256(abi.encode(ATTEST_OFFCHAIN_BATCH_ACTION_NAME, offchainAttestationIds)); } function getDelegatedRevokeHash( uint64 attestationId, string memory reason ) public pure override returns (bytes32) { return keccak256(abi.encode(REVOKE_ACTION_NAME, attestationId, reason)); } function getDelegatedRevokeBatchHash( uint64[] memory attestationIds, string[] memory reasons ) public pure returns (bytes32) { return keccak256(abi.encode(REVOKE_BATCH_ACTION_NAME, attestationIds, reasons)); } function getDelegatedOffchainRevokeHash( string memory offchainAttestationId, string memory reason ) public pure override returns (bytes32) { return keccak256(abi.encode(REVOKE_OFFCHAIN_ACTION_NAME, offchainAttestationId, reason)); } function getDelegatedOffchainRevokeBatchHash( string[] memory offchainAttestationIds, string[] memory reasons ) public pure returns (bytes32) { return keccak256(abi.encode(REVOKE_OFFCHAIN_BATCH_ACTION_NAME, offchainAttestationIds, reasons)); } function _callGlobalHook() internal { SPStorage storage $ = _getSPStorage(); if (address($.globalHook) != address(0)) $.globalHook.callHook(_msgData(), _msgSender()); } function _register(Schema memory schema) internal returns (uint64 schemaId) { SPStorage storage $ = _getSPStorage(); if ($.paused) revert Paused(); schemaId = $.schemaCounter++; schema.timestamp = uint64(block.timestamp); $.schemaRegistry[schemaId] = schema; emit SchemaRegistered(schemaId); } function _attest( Attestation memory attestation, string memory indexingKey, bool delegateMode ) internal returns (uint64 schemaId, uint64 attestationId) { SPStorage storage $ = _getSPStorage(); if ($.paused) revert Paused(); attestationId = $.attestationCounter++; attestation.attestTimestamp = uint64(block.timestamp); attestation.revokeTimestamp = 0; // In delegation mode, the attester is already checked ahead of time. if (!delegateMode && attestation.attester != _msgSender()) { revert AttestationWrongAttester(); } if (attestation.linkedAttestationId > 0 && !__attestationExists(attestation.linkedAttestationId)) { revert AttestationNonexistent(); } if ( attestation.linkedAttestationId != 0 && $.attestationRegistry[attestation.linkedAttestationId].attester != _msgSender() ) { revert AttestationWrongAttester(); } Schema memory s = $.schemaRegistry[attestation.schemaId]; if (!__schemaExists(attestation.schemaId)) revert SchemaNonexistent(); if (s.maxValidFor > 0) { uint256 attestationValidFor = attestation.validUntil - block.timestamp; if (s.maxValidFor < attestationValidFor) { revert AttestationInvalidDuration(); } } $.attestationRegistry[attestationId] = attestation; emit AttestationMade(attestationId, indexingKey); return (attestation.schemaId, attestationId); } function _attestOffchain(string calldata offchainAttestationId, address attester) internal { SPStorage storage $ = _getSPStorage(); if ($.paused) revert Paused(); OffchainAttestation storage attestation = $.offchainAttestationRegistry[offchainAttestationId]; if (__offchainAttestationExists(offchainAttestationId)) { revert OffchainAttestationExists(); } attestation.timestamp = uint64(block.timestamp); attestation.attester = attester; emit OffchainAttestationMade(offchainAttestationId); } function _revoke( uint64 attestationId, string memory reason, bool delegateMode ) internal returns (uint64 schemaId) { SPStorage storage $ = _getSPStorage(); if ($.paused) revert Paused(); Attestation storage a = $.attestationRegistry[attestationId]; if (a.attester == address(0)) revert AttestationNonexistent(); // In delegation mode, the attester is already checked ahead of time. if (!delegateMode && a.attester != _msgSender()) revert AttestationWrongAttester(); Schema memory s = $.schemaRegistry[a.schemaId]; if (!s.revocable) revert AttestationIrrevocable(); if (a.revoked) revert AttestationAlreadyRevoked(); a.revoked = true; a.revokeTimestamp = uint64(block.timestamp); emit AttestationRevoked(attestationId, reason); return a.schemaId; } function _revokeOffchain( string calldata offchainAttestationId, string calldata reason, bool delegateMode ) internal { SPStorage storage $ = _getSPStorage(); if ($.paused) revert Paused(); OffchainAttestation storage attestation = $.offchainAttestationRegistry[offchainAttestationId]; if (!__offchainAttestationExists(offchainAttestationId)) { revert OffchainAttestationNonexistent(); } if (!delegateMode && attestation.attester != _msgSender()) { revert AttestationWrongAttester(); } if (attestation.timestamp == 1) { revert OffchainAttestationAlreadyRevoked(); } attestation.timestamp = 1; emit OffchainAttestationRevoked(offchainAttestationId, reason); } // solhint-disable-next-line no-empty-blocks function _authorizeUpgrade(address newImplementation) internal virtual override onlyOwner { } function __checkDelegationSignature( address delegateAttester, bytes32 hash, bytes memory delegateSignature ) internal view { if ( !SignatureChecker.isValidSignatureNow( delegateAttester, MessageHashUtils.toEthSignedMessageHash(hash), delegateSignature ) ) { revert InvalidDelegateSignature(); } } function __getResolverFromAttestationId(uint64 attestationId) internal view returns (ISPHook) { SPStorage storage $ = _getSPStorage(); Attestation memory a = $.attestationRegistry[attestationId]; Schema memory s = $.schemaRegistry[a.schemaId]; return s.hook; } function __schemaExists(uint64 schemaId) internal view returns (bool) { return _getSPStorage().schemaRegistry[schemaId].timestamp > 0; } function __attestationExists(uint64 attestationId) internal view returns (bool) { SPStorage storage $ = _getSPStorage(); return attestationId < $.attestationCounter; } function __offchainAttestationExists(string memory attestationId) internal view returns (bool) { SPStorage storage $ = _getSPStorage(); return $.offchainAttestationRegistry[attestationId].timestamp != 0; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { IVersionable } from "./IVersionable.sol"; import { Schema } from "../models/Schema.sol"; import { Attestation, OffchainAttestation } from "../models/Attestation.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title Sign Protocol Interface * @author Jack Xu @ EthSign */ interface ISP is IVersionable { event SchemaRegistered(uint64 schemaId); event AttestationMade(uint64 attestationId, string indexingKey); event AttestationRevoked(uint64 attestationId, string reason); event OffchainAttestationMade(string attestationId); event OffchainAttestationRevoked(string attestationId, string reason); /** * @dev 0x9e87fac8 */ error Paused(); /** * @dev 0x38f8c6c4 */ error SchemaNonexistent(); /** * @dev 0x71984561 */ error SchemaWrongRegistrant(); /** * @dev 0x8ac42f49 */ error AttestationIrrevocable(); /** * @dev 0x54681a13 */ error AttestationNonexistent(); /** * @dev 0xa65e02ed */ error AttestationInvalidDuration(); /** * @dev 0xd8c3da86 */ error AttestationAlreadyRevoked(); /** * @dev 0xa9ad2007 */ error AttestationWrongAttester(); /** * @dev 0xc83e3cdf */ error OffchainAttestationExists(); /** * @dev 0xa006519a */ error OffchainAttestationNonexistent(); /** * @dev 0xa0671d20 */ error OffchainAttestationAlreadyRevoked(); /** * @dev 0xfdf4e6f9 */ error InvalidDelegateSignature(); /** * @dev 0x5c34b9cc */ error LegacySPRequired(); /** * @notice Registers a Schema. * @dev Emits `SchemaRegistered`. * @param schema See `Schema`. * @param delegateSignature An optional ECDSA delegateSignature if this is a delegated attestation. Use `""` or `0x` * otherwise. * @return schemaId The assigned ID of the registered schema. */ function register(Schema memory schema, bytes calldata delegateSignature) external returns (uint64 schemaId); /** * @notice Makes an attestation. * @dev Emits `AttestationMade`. * @param attestation See `Attestation`. * @param indexingKey Used by the frontend to aid indexing. * @param delegateSignature An optional ECDSA delegateSignature if this is a delegated attestation. Use `""` or `0x` * otherwise. * @param extraData This is forwarded to the resolver directly. * @return attestationId The assigned ID of the attestation. */ function attest( Attestation calldata attestation, string calldata indexingKey, bytes calldata delegateSignature, bytes calldata extraData ) external returns (uint64 attestationId); /** * @notice Makes an attestation where the schema hook expects ETH payment. * @dev Emits `AttestationMade`. * @param attestation See `Attestation`. * @param resolverFeesETH Amount of funds to send to the hook. * @param indexingKey Used by the frontend to aid indexing. * @param delegateSignature An optional ECDSA delegateSignature if this is a delegated attestation. Use `""` or `0x` * otherwise. * @param extraData This is forwarded to the resolver directly. * @return attestationId The assigned ID of the attestation. */ function attest( Attestation calldata attestation, uint256 resolverFeesETH, string calldata indexingKey, bytes calldata delegateSignature, bytes calldata extraData ) external payable returns (uint64 attestationId); /** * @notice Makes an attestation where the schema hook expects ERC20 payment. * @dev Emits `AttestationMade`. * @param attestation See `Attestation`. * @param resolverFeesERC20Token ERC20 token address used for payment. * @param resolverFeesERC20Amount Amount of funds to send to the hook. * @param indexingKey Used by the frontend to aid indexing. * @param delegateSignature An optional ECDSA delegateSignature if this is a delegated attestation. Use `""` or `0x` * otherwise. * @param extraData This is forwarded to the resolver directly. * @return attestationId The assigned ID of the attestation. */ function attest( Attestation calldata attestation, IERC20 resolverFeesERC20Token, uint256 resolverFeesERC20Amount, string calldata indexingKey, bytes calldata delegateSignature, bytes calldata extraData ) external returns (uint64 attestationId); /** * @notice Timestamps an off-chain data ID. * @dev Emits `OffchainAttestationMade`. * @param offchainAttestationId The off-chain data ID. * @param delegateAttester An optional delegated attester that authorized the caller to attest on their behalf if * this is a delegated attestation. Use `address(0)` otherwise. * @param delegateSignature An optional ECDSA delegateSignature if this is a delegated attestation. Use `""` or `0x` * otherwise. Use `""` or `0x` otherwise. */ function attestOffchain( string calldata offchainAttestationId, address delegateAttester, bytes calldata delegateSignature ) external; /** * @notice Revokes an existing revocable attestation. * @dev Emits `AttestationRevoked`. Must be called by the attester. * @param attestationId An existing attestation ID. * @param reason The revocation reason. This is only emitted as an event to save gas. * @param delegateSignature An optional ECDSA delegateSignature if this is a delegated revocation. * @param extraData This is forwarded to the resolver directly. */ function revoke( uint64 attestationId, string calldata reason, bytes calldata delegateSignature, bytes calldata extraData ) external; /** * @notice Revokes an existing revocable attestation where the schema hook expects ERC20 payment. * @dev Emits `AttestationRevoked`. Must be called by the attester. * @param attestationId An existing attestation ID. * @param reason The revocation reason. This is only emitted as an event to save gas. * @param resolverFeesETH Amount of funds to send to the hook. * @param delegateSignature An optional ECDSA delegateSignature if this is a delegated revocation. * @param extraData This is forwarded to the resolver directly. */ function revoke( uint64 attestationId, string calldata reason, uint256 resolverFeesETH, bytes calldata delegateSignature, bytes calldata extraData ) external payable; /** * @notice Revokes an existing revocable attestation where the schema hook expects ERC20 payment. * @dev Emits `AttestationRevoked`. Must be called by the attester. * @param attestationId An existing attestation ID. * @param reason The revocation reason. This is only emitted as an event to save gas. * @param resolverFeesERC20Token ERC20 token address used for payment. * @param resolverFeesERC20Amount Amount of funds to send to the hook. * @param delegateSignature An optional ECDSA delegateSignature if this is a delegated revocation. * @param extraData This is forwarded to the resolver directly. */ function revoke( uint64 attestationId, string calldata reason, IERC20 resolverFeesERC20Token, uint256 resolverFeesERC20Amount, bytes calldata delegateSignature, bytes calldata extraData ) external; /** * @notice Revokes an existing offchain attestation. * @dev Emits `OffchainAttestationRevoked`. Must be called by the attester. * @param offchainAttestationId An existing attestation ID. * @param reason The revocation reason. This is only emitted as an event to save gas. * @param delegateSignature An optional ECDSA delegateSignature if this is a delegated revocation. */ function revokeOffchain( string calldata offchainAttestationId, string calldata reason, bytes calldata delegateSignature ) external; /** * @notice Batch registers a Schema. */ function registerBatch( Schema[] calldata schemas, bytes calldata delegateSignature ) external returns (uint64[] calldata schemaIds); /** * @notice Batch attests. */ function attestBatch( Attestation[] calldata attestations, string[] calldata indexingKeys, bytes calldata delegateSignature, bytes calldata extraData ) external returns (uint64[] calldata attestationIds); /** * @notice Batch attests where the schema hook expects ETH payment. */ function attestBatch( Attestation[] calldata attestations, uint256[] calldata resolverFeesETH, string[] calldata indexingKeys, bytes calldata delegateSignature, bytes calldata extraData ) external payable returns (uint64[] calldata attestationIds); /** * @notice Batch attests where the schema hook expects ERC20 payment. */ function attestBatch( Attestation[] calldata attestations, IERC20[] calldata resolverFeesERC20Tokens, uint256[] calldata resolverFeesERC20Amount, string[] calldata indexingKeys, bytes calldata delegateSignature, bytes calldata extraData ) external returns (uint64[] calldata attestationIds); /** * @notice Batch timestamps off-chain data IDs. */ function attestOffchainBatch( string[] calldata offchainAttestationIds, address delegateAttester, bytes calldata delegateSignature ) external; /** * @notice Batch revokes revocable on-chain attestations. */ function revokeBatch( uint64[] calldata attestationIds, string[] calldata reasons, bytes calldata delegateSignature, bytes calldata extraData ) external; /** * @notice Batch revokes revocable on-chain attestations where the schema hook expects ETH payment. */ function revokeBatch( uint64[] calldata attestationIds, string[] calldata reasons, uint256[] calldata resolverFeesETH, bytes calldata delegateSignature, bytes calldata extraData ) external payable; /** * @notice Batch revokes revocable on-chain attestations where the schema hook expects ERC20 payment. */ function revokeBatch( uint64[] calldata attestationIds, string[] calldata reasons, IERC20[] calldata resolverFeesERC20Tokens, uint256[] calldata resolverFeesERC20Amount, bytes calldata delegateSignature, bytes calldata extraData ) external; /** * @notice Batch revokes off-chain attestations. */ function revokeOffchainBatch( string[] calldata offchainAttestationIds, string[] calldata reasons, bytes calldata delegateSignature ) external; /** * @notice Returns the specified `Schema`. */ function getSchema(uint64 schemaId) external view returns (Schema calldata); /** * @notice Returns the specified `Attestation`. */ function getAttestation(uint64 attestationId) external view returns (Attestation calldata); /** * @notice Returns the specified `OffchainAttestation`. */ function getOffchainAttestation(string calldata offchainAttestationId) external view returns (OffchainAttestation calldata); /** * @notice Returns the hash that will be used to authorize a delegated registration. */ function getDelegatedRegisterHash(Schema memory schema) external pure returns (bytes32); /** * @notice Returns the hash that will be used to authorize a delegated batch registration. */ function getDelegatedRegisterBatchHash(Schema[] memory schemas) external pure returns (bytes32); /** * @notice Returns the hash that will be used to authorize a delegated attestation. */ function getDelegatedAttestHash(Attestation calldata attestation) external pure returns (bytes32); /** * @notice Returns the hash that will be used to authorize a delegated batch attestation. */ function getDelegatedAttestBatchHash(Attestation[] calldata attestations) external pure returns (bytes32); /** * @notice Returns the hash that will be used to authorize a delegated offchain attestation. */ function getDelegatedOffchainAttestHash(string calldata offchainAttestationId) external pure returns (bytes32); /** * @notice Returns the hash that will be used to authorize a delegated batch offchain attestation. */ function getDelegatedOffchainAttestBatchHash(string[] calldata offchainAttestationIds) external pure returns (bytes32); /** * @notice Returns the hash that will be used to authorize a delegated revocation. */ function getDelegatedRevokeHash(uint64 attestationId, string memory reason) external pure returns (bytes32); /** * @notice Returns the hash that will be used to authorize a delegated batch revocation. */ function getDelegatedRevokeBatchHash( uint64[] memory attestationIds, string[] memory reasons ) external pure returns (bytes32); /** * @notice Returns the hash that will be used to authorize a delegated offchain revocation. */ function getDelegatedOffchainRevokeHash( string memory offchainAttestationId, string memory reason ) external pure returns (bytes32); /** * @notice Returns the hash that will be used to authorize a delegated batch offchain revocation. */ function getDelegatedOffchainRevokeBatchHash( string[] memory offchainAttestationIds, string[] memory reasons ) external pure returns (bytes32); /** * @notice Returns the current schema counter. This is incremented for each `Schema` registered. */ function schemaCounter() external view returns (uint64); /** * @notice Returns the current on-chain attestation counter. This is incremented for each `Attestation` made. */ function attestationCounter() external view returns (uint64); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.20; interface ISPGlobalHook { function callHook(bytes calldata msgData, address msgSender) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title SIGN Attestation Protocol Resolver Interface * @author Jack Xu @ EthSign */ interface ISPHook { function didReceiveAttestation( address attester, uint64 schemaId, uint64 attestationId, bytes calldata extraData ) external payable; function didReceiveAttestation( address attester, uint64 schemaId, uint64 attestationId, IERC20 resolverFeeERC20Token, uint256 resolverFeeERC20Amount, bytes calldata extraData ) external; function didReceiveRevocation( address attester, uint64 schemaId, uint64 attestationId, bytes calldata extraData ) external payable; function didReceiveRevocation( address attester, uint64 schemaId, uint64 attestationId, IERC20 resolverFeeERC20Token, uint256 resolverFeeERC20Amount, bytes calldata extraData ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @title IVersionable * @author Jack Xu @ EthSign * @dev This interface helps contracts to keep track of their versioning for upgrade compatibility checks. */ interface IVersionable { function version() external pure returns (string memory); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { DataLocation } from "./DataLocation.sol"; /** * @title Attestation * @author Jack Xu @ EthSign * @notice This struct represents an on-chain attestation record. This record is not deleted after revocation. * * `schemaId`: The `Schema` that this Attestation is based on. It must exist. * `linkedAttestationId`: Useful if the current Attestation references a previous Attestation. It can either be 0 or an * existing attestation ID. * `attestTimestamp`: When the attestation was made. This is automatically populated by `_attest(...)`. * `revokeTimestamp`: When the attestation was revoked. This is automatically populated by `_revoke(...)`. * `attester`: The attester. At this time, the attester must be the caller of `attest()`. * `validUntil`: The expiration timestamp of the Attestation. Must respect `Schema.maxValidFor`. 0 indicates no * expiration date. * `dataLocation`: Where `Attestation.data` is stored. See `DataLocation.DataLocation`. * `revoked`: If the Attestation has been revoked. It is possible to make a revoked Attestation. * `recipients`: The intended ABI-encoded recipients of this Attestation. This is of type `bytes` to support non-EVM * repicients. * `data`: The raw data of the Attestation based on `Schema.schema`. There is no enforcement here, however. Recommended * to use `abi.encode`. */ struct Attestation { uint64 schemaId; uint64 linkedAttestationId; uint64 attestTimestamp; uint64 revokeTimestamp; address attester; uint64 validUntil; DataLocation dataLocation; bool revoked; bytes[] recipients; bytes data; } /** * @title OffchainAttestation * @author Jack Xu @ EthSign * @notice This struct represents an off-chain attestation record. This record is not deleted after revocation. * * `attester`: The attester. At this time, the attester must be the caller of `attestOffchain()`. * `timestamp`: The `block.timestamp` of the function call. */ struct OffchainAttestation { address attester; uint64 timestamp; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @title DataLocation * @author Jack Xu @ EthSign * @notice This enum indicates where `Schema.data` and `Attestation.data` are stored. */ enum DataLocation { ONCHAIN, ARWEAVE, IPFS, CUSTOM } // SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { ISPHook } from "../interfaces/ISPHook.sol"; import { DataLocation } from "./DataLocation.sol"; /** * @title Schema * @author Jack Xu @ EthSign * @notice This struct represents an on-chain Schema that Attestations can conform to. * * `registrant`: The address that registered this schema. * `revocable`: Whether Attestations that adopt this Schema can be revoked. * `dataLocation`: Where `Schema.data` is stored. See `DataLocation.DataLocation`. * `maxValidFor`: The maximum number of seconds that an Attestation can remain valid. 0 means Attestations can be valid * forever. This is enforced through `Attestation.validUntil`. * `hook`: The `ISPHook` that is called at the end of every function. 0 means there is no hook set. See * `ISPHook`. * `timestamp`: When the schema was registered. This is automatically populated by `_register(...)`. * `data`: The raw schema that `Attestation.data` should follow. Since there is no way to enforce this, it is a `string` * for easy readability. */ struct Schema { address registrant; bool revocable; DataLocation dataLocation; uint64 maxValidFor; ISPHook hook; uint64 timestamp; string data; }