Transaction Hash:
Block:
21923515 at Feb-25-2025 01:03:11 PM +UTC
Transaction Fee:
0.00011750670264456 ETH
$0.29
Gas Used:
46,591 Gas / 2.52209016 Gwei
Emitted Events:
328 |
KtuneTokenBlocks.Approval( owner=[Sender] 0x6d0949ac298f6801d0946e1811d8b1184f3c2605, spender=0xcab2FA2e...2506b4f6C, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x14cC8Dfa...34dc0fE43 | |||||
0x6D0949ac...84F3c2605 |
0.010794057649671161 Eth
Nonce: 325
|
0.010676550947026601 Eth
Nonce: 326
| 0.00011750670264456 | ||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 12.294405417091040166 Eth | 12.294452008091040166 Eth | 0.000046591 |
Execution Trace
KtuneTokenBlocks.approve( spender=0xcab2FA2eeab7065B45CBcF6E3936dDE2506b4f6C, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
approve[ERC20 (ln:291)]
_approve[ERC20 (ln:292)]
Approval[ERC20 (ln:394)]
pragma solidity ^0.5.2; /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor () internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns (bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. * @notice Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } /** * @title Secondary * @dev A Secondary contract can only be used by its primary account (the one that created it) */ contract Secondary { address private _primary; event PrimaryTransferred( address recipient ); /** * @dev Sets the primary account to the one that is creating the Secondary contract. */ constructor () internal { _primary = msg.sender; emit PrimaryTransferred(_primary); } /** * @dev Reverts if called from any account other than the primary. */ modifier onlyPrimary() { require(msg.sender == _primary); _; } /** * @return the address of the primary. */ function primary() public view returns (address) { return _primary; } /** * @dev Transfers contract to a new primary. * @param recipient The address of new primary. */ function transferPrimary(address recipient) public onlyPrimary { require(recipient != address(0)); _primary = recipient; emit PrimaryTransferred(_primary); } } // File: node_modules\openzeppelin-solidity\contracts\token\ERC20\IERC20.sol /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ interface IERC20 { function transfer(address to, uint256 value) external returns (bool); function approve(address spender, uint256 value) external returns (bool); function transferFrom(address from, address to, uint256 value) external returns (bool); function totalSupply() external view returns (uint256); function balanceOf(address who) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } // File: node_modules\openzeppelin-solidity\contracts\math\SafeMath.sol /** * @title SafeMath * @dev Unsigned math operations with safety checks that revert on error */ library SafeMath { /** * @dev Multiplies two unsigned integers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two unsigned integers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } // File: node_modules\openzeppelin-solidity\contracts\token\ERC20\ERC20.sol /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md * Originally based on code by FirstBlood: * https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol * * This implementation emits additional Approval events, allowing applications to reconstruct the allowance status for * all accounts just by listening to said events. Note that this isn't required by the specification, and other * compliant implementations may not do it. */ /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * https://eips.ethereum.org/EIPS/eip-20 * Originally based on code by FirstBlood: * https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol * * This implementation emits additional Approval events, allowing applications to reconstruct the allowance status for * all accounts just by listening to said events. Note that this isn't required by the specification, and other * compliant implementations may not do it. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowed; uint256 private _totalSupply; /** * @dev Total number of tokens in existence */ function totalSupply() public view returns (uint256) { return _totalSupply; } /** * @dev Gets the balance of the specified address. * @param owner The address to query the balance of. * @return A uint256 representing the amount owned by the passed address. */ function balanceOf(address owner) public view returns (uint256) { return _balances[owner]; } /** * @dev Function to check the amount of tokens that an owner allowed to a spender. * @param owner address The address which owns the funds. * @param spender address The address which will spend the funds. * @return A uint256 specifying the amount of tokens still available for the spender. */ function allowance(address owner, address spender) public view returns (uint256) { return _allowed[owner][spender]; } /** * @dev Transfer token to a specified address * @param to The address to transfer to. * @param value The amount to be transferred. */ function transfer(address to, uint256 value) public returns (bool) { _transfer(msg.sender, to, value); return true; } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * Beware that changing an allowance with this method brings the risk that someone may use both the old * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. */ function approve(address spender, uint256 value) public returns (bool) { _approve(msg.sender, spender, value); return true; } /** * @dev Transfer tokens from one address to another. * Note that while this function emits an Approval event, this is not required as per the specification, * and other compliant implementations may not emit the event. * @param from address The address which you want to send tokens from * @param to address The address which you want to transfer to * @param value uint256 the amount of tokens to be transferred */ function transferFrom(address from, address to, uint256 value) public returns (bool) { _transfer(from, to, value); _approve(from, msg.sender, _allowed[from][msg.sender].sub(value)); return true; } /** * @dev Increase the amount of tokens that an owner allowed to a spender. * approve should be called when _allowed[msg.sender][spender] == 0. To increment * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * Emits an Approval event. * @param spender The address which will spend the funds. * @param addedValue The amount of tokens to increase the allowance by. */ function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { _approve(msg.sender, spender, _allowed[msg.sender][spender].add(addedValue)); return true; } /** * @dev Decrease the amount of tokens that an owner allowed to a spender. * approve should be called when _allowed[msg.sender][spender] == 0. To decrement * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * Emits an Approval event. * @param spender The address which will spend the funds. * @param subtractedValue The amount of tokens to decrease the allowance by. */ function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { _approve(msg.sender, spender, _allowed[msg.sender][spender].sub(subtractedValue)); return true; } /** * @dev Transfer token for a specified addresses * @param from The address to transfer from. * @param to The address to transfer to. * @param value The amount to be transferred. */ function _transfer(address from, address to, uint256 value) internal { require(to != address(0)); _balances[from] = _balances[from].sub(value); _balances[to] = _balances[to].add(value); emit Transfer(from, to, value); } /** * @dev Internal function that mints an amount of the token and assigns it to * an account. This encapsulates the modification of balances such that the * proper events are emitted. * @param account The account that will receive the created tokens. * @param value The amount that will be created. */ function _mint(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.add(value); _balances[account] = _balances[account].add(value); emit Transfer(address(0), account, value); } /** * @dev Internal function that burns an amount of the token of a given * account. * @param account The account whose tokens will be burnt. * @param value The amount that will be burnt. */ function _burn(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.sub(value); _balances[account] = _balances[account].sub(value); emit Transfer(account, address(0), value); } /** * @dev Approve an address to spend another addresses' tokens. * @param owner The address that owns the tokens. * @param spender The address that will spend the tokens. * @param value The number of tokens that can be spent. */ function _approve(address owner, address spender, uint256 value) internal { require(spender != address(0)); require(owner != address(0)); _allowed[owner][spender] = value; emit Approval(owner, spender, value); } /** * @dev Internal function that burns an amount of the token of a given * account, deducting from the sender's allowance for said account. Uses the * internal burn function. * Emits an Approval event (reflecting the reduced allowance). * @param account The account whose tokens will be burnt. * @param value The amount that will be burnt. */ function _burnFrom(address account, uint256 value) internal { _burn(account, value); _approve(account, msg.sender, _allowed[account][msg.sender].sub(value)); } } // File: openzeppelin-solidity\contracts\token\ERC20\ERC20Burnable.sol /** * @title Burnable Token * @dev Token that can be irreversibly burned (destroyed). */ contract ERC20Burnable is ERC20 { /** * @dev Burns a specific amount of tokens. * @param value The amount of token to be burned. */ function burn(uint256 value) public { _burn(msg.sender, value); } /** * @dev Burns a specific amount of tokens from the target address and decrements allowance * @param from address The account whose tokens will be burned. * @param value uint256 The amount of token to be burned. */ function burnFrom(address from, uint256 value) public { _burnFrom(from, value); } } // File: node_modules\openzeppelin-solidity\contracts\access\Roles.sol /** * @title Roles * @dev Library for managing addresses assigned to a Role. */ library Roles { struct Role { mapping (address => bool) bearer; } /** * @dev give an account access to this role */ function add(Role storage role, address account) internal { require(account != address(0)); require(!has(role, account)); role.bearer[account] = true; } /** * @dev remove an account's access to this role */ function remove(Role storage role, address account) internal { require(account != address(0)); require(has(role, account)); role.bearer[account] = false; } /** * @dev check if an account has this role * @return bool */ function has(Role storage role, address account) internal view returns (bool) { require(account != address(0)); return role.bearer[account]; } } // File: node_modules\openzeppelin-solidity\contracts\access\roles\MinterRole.sol contract MinterRole { using Roles for Roles.Role; event MinterAdded(address indexed account); event MinterRemoved(address indexed account); Roles.Role private _minters; constructor () internal { _addMinter(msg.sender); } modifier onlyMinter() { require(isMinter(msg.sender)); _; } function isMinter(address account) public view returns (bool) { return _minters.has(account); } function addMinter(address account) public onlyMinter { _addMinter(account); } function renounceMinter() public { _removeMinter(msg.sender); } function _addMinter(address account) internal { _minters.add(account); emit MinterAdded(account); } function _removeMinter(address account) internal { _minters.remove(account); emit MinterRemoved(account); } } // File: openzeppelin-solidity\contracts\token\ERC20\ERC20Mintable.sol /** * @title ERC20Mintable * @dev ERC20 minting logic */ contract ERC20Mintable is ERC20, MinterRole { /** * @dev Function to mint tokens * @param to The address that will receive the minted tokens. * @param value The amount of tokens to mint. * @return A boolean that indicates if the operation was successful. */ function mint(address to, uint256 value) public onlyMinter returns (bool) { _mint(to, value); return true; } } // File: contracts\ERC20Frozenable.sol //truffle-flattener Token.sol contract ERC20Frozenable is ERC20Burnable, ERC20Mintable, Ownable { mapping (address => bool) private _frozenAccount; event FrozenFunds(address target, bool frozen); function frozenAccount(address _address) public view returns(bool isFrozen) { return _frozenAccount[_address]; } function freezeAccount(address target, bool freeze) public onlyOwner { require(_frozenAccount[target] != freeze, "Same as current"); _frozenAccount[target] = freeze; emit FrozenFunds(target, freeze); } function _transfer(address from, address to, uint256 value) internal { require(!_frozenAccount[from], "error - frozen"); require(!_frozenAccount[to], "error - frozen"); super._transfer(from, to, value); } } // File: openzeppelin-solidity\contracts\token\ERC20\ERC20Detailed.sol /** * @title ERC20Detailed token * @dev The decimals are only for visualization purposes. * All the operations are done using the smallest and indivisible token unit, * just as on Ethereum all the operations are done in wei. */ contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor (string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } /** * @return the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @return the symbol of the token. */ function symbol() public view returns (string memory) { return _symbol; } /** * @return the number of decimals of the token. */ function decimals() public view returns (uint8) { return _decimals; } } /** * @title Escrow * @dev Base escrow contract, holds funds designated for a payee until they * withdraw them. * @dev Intended usage: This contract (and derived escrow contracts) should be a * standalone contract, that only interacts with the contract that instantiated * it. That way, it is guaranteed that all Ether will be handled according to * the Escrow rules, and there is no need to check for payable functions or * transfers in the inheritance tree. The contract that uses the escrow as its * payment method should be its primary, and provide public methods redirecting * to the escrow's deposit and withdraw. */ contract Escrow is Secondary { using SafeMath for uint256; event Deposited(address indexed payee, uint256 weiAmount); event Withdrawn(address indexed payee, uint256 weiAmount); mapping(address => uint256) private _deposits; function depositsOf(address payee) public view returns (uint256) { return _deposits[payee]; } /** * @dev Stores the sent amount as credit to be withdrawn. * @param payee The destination address of the funds. */ function deposit(address payee) public onlyPrimary payable { uint256 amount = msg.value; _deposits[payee] = _deposits[payee].add(amount); emit Deposited(payee, amount); } /** * @dev Withdraw accumulated balance for a payee. * @param payee The address whose funds will be withdrawn and transferred to. */ function withdraw(address payable payee) public onlyPrimary { uint256 payment = _deposits[payee]; _deposits[payee] = 0; payee.transfer(payment); emit Withdrawn(payee, payment); } } /** * @title PullPayment * @dev Base contract supporting async send for pull payments. Inherit from this * contract and use _asyncTransfer instead of send or transfer. */ contract PullPayment { Escrow private _escrow; constructor () internal { _escrow = new Escrow(); } /** * @dev Withdraw accumulated balance. * @param payee Whose balance will be withdrawn. */ function withdrawPayments(address payable payee) public { _escrow.withdraw(payee); } /** * @dev Returns the credit owed to an address. * @param dest The creditor's address. */ function payments(address dest) public view returns (uint256) { return _escrow.depositsOf(dest); } /** * @dev Called by the payer to store the sent amount as credit to be pulled. * @param dest The destination address of the funds. * @param amount The amount to transfer. */ function _asyncTransfer(address dest, uint256 amount) internal { _escrow.deposit.value(amount)(dest); } } contract PaymentSplitter { using SafeMath for uint256; event PayeeAdded(address account, uint256 shares); event PaymentReleased(address to, uint256 amount); event PaymentReceived(address from, uint256 amount); uint256 private _totalShares; uint256 private _totalReleased; mapping(address => uint256) private _shares; mapping(address => uint256) private _released; address[] private _payees; /** * @dev Constructor */ constructor (address[] memory payees, uint256[] memory shares) public payable { require(payees.length == shares.length); require(payees.length > 0); for (uint256 i = 0; i < payees.length; i++) { _addPayee(payees[i], shares[i]); } } /** * @dev payable fallback */ function () external payable { emit PaymentReceived(msg.sender, msg.value); } /** * @return the total shares of the contract. */ function totalShares() public view returns (uint256) { return _totalShares; } /** * @return the total amount already released. */ function totalReleased() public view returns (uint256) { return _totalReleased; } /** * @return the shares of an account. */ function shares(address account) public view returns (uint256) { return _shares[account]; } /** * @return the amount already released to an account. */ function released(address account) public view returns (uint256) { return _released[account]; } /** * @return the address of a payee. */ function payee(uint256 index) public view returns (address) { return _payees[index]; } /** * @dev Release one of the payee's proportional payment. * @param account Whose payments will be released. */ function release(address payable account) public { require(_shares[account] > 0); uint256 totalReceived = address(this).balance.add(_totalReleased); uint256 payment = totalReceived.mul(_shares[account]).div(_totalShares).sub(_released[account]); require(payment != 0); _released[account] = _released[account].add(payment); _totalReleased = _totalReleased.add(payment); account.transfer(payment); emit PaymentReleased(account, payment); } /** * @dev Add a new payee to the contract. * @param account The address of the payee to add. * @param shares_ The number of shares owned by the payee. */ function _addPayee(address account, uint256 shares_) private { require(account != address(0)); require(shares_ > 0); require(_shares[account] == 0); _payees.push(account); _shares[account] = shares_; _totalShares = _totalShares.add(shares_); emit PayeeAdded(account, shares_); } } contract ConditionalEscrow is Escrow { /** * @dev Returns whether an address is allowed to withdraw their funds. To be * implemented by derived contracts. * @param payee The destination address of the funds. */ function withdrawalAllowed(address payee) public view returns (bool); function withdraw(address payable payee) public { require(withdrawalAllowed(payee)); super.withdraw(payee); } } contract RefundEscrow is ConditionalEscrow { enum State { Active, Refunding, Closed } event RefundsClosed(); event RefundsEnabled(); State private _state; address payable private _beneficiary; /** * @dev Constructor. * @param beneficiary The beneficiary of the deposits. */ constructor (address payable beneficiary) public { require(beneficiary != address(0)); _beneficiary = beneficiary; _state = State.Active; } /** * @return the current state of the escrow. */ function state() public view returns (State) { return _state; } /** * @return the beneficiary of the escrow. */ function beneficiary() public view returns (address) { return _beneficiary; } /** * @dev Stores funds that may later be refunded. * @param refundee The address funds will be sent to if a refund occurs. */ function deposit(address refundee) public payable { require(_state == State.Active); super.deposit(refundee); } /** * @dev Allows for the beneficiary to withdraw their funds, rejecting * further deposits. */ function close() public onlyPrimary { require(_state == State.Active); _state = State.Closed; emit RefundsClosed(); } /** * @dev Allows for refunds to take place, rejecting further deposits. */ function enableRefunds() public onlyPrimary { require(_state == State.Active); _state = State.Refunding; emit RefundsEnabled(); } /** * @dev Withdraws the beneficiary's funds. */ function beneficiaryWithdraw() public { require(_state == State.Closed); _beneficiary.transfer(address(this).balance); } /** * @dev Returns whether refundees can withdraw their deposits (be refunded). The overridden function receives a * 'payee' argument, but we ignore it here since the condition is global, not per-payee. */ function withdrawalAllowed(address) public view returns (bool) { return _state == State.Refunding; } } // File: contracts\Token.sol //truffle-flattener Token.sol contract KtuneTokenBlocks is ERC20Frozenable, ERC20Detailed { constructor() ERC20Detailed("K-Tune Token", "KTT", 18) public { uint256 supply = 10000000000; uint256 initialSupply = supply * uint(10) ** decimals(); _mint(msg.sender, initialSupply); } }