ETH Price: $2,278.94 (-5.97%)

Transaction Decoder

Block:
21273769 at Nov-26-2024 06:39:11 PM +UTC
Transaction Fee:
0.001969148162443041 ETH $4.49
Gas Used:
93,183 Gas / 21.132053727 Gwei

Emitted Events:

214 Proxy.0xa7aaf2512769da4e444e3de247be2564225c2e7a8f74cfe528e46e17d24868e2( 0xa7aaf2512769da4e444e3de247be2564225c2e7a8f74cfe528e46e17d24868e2, 0xb20b6b7ec6dc577e281bc2a410aa882216aa1679e647a765edbc37e4d3d07fc9, 0x000000000000000000000000000000000000000000000000000000000000233c, 0x0000000000000000000000000000000000000000000000000000000000f7c4e8, 00000000000000000000000000000000000000000000000000000000674615cf )

Account State Difference:

  Address   Before After State Difference Code
0x4317ba14...a53199b04
(Mode: L2 Output Oracle Proxy)
(Titan Builder)
11.739853027389529359 Eth11.739946210389529359 Eth0.000093183
0x674F64D6...89cCD0ddB
1.592969047130912936 Eth
Nonce: 9021
1.590999898968469895 Eth
Nonce: 9022
0.001969148162443041

Execution Trace

Proxy.9aaab648( )
  • L2OutputOracle.proposeL2Output( _outputRoot=B20B6B7EC6DC577E281BC2A410AA882216AA1679E647A765EDBC37E4D3D07FC9, _l2BlockNumber=16237800, _l1BlockHash=3B5EB904AD0522F20CAF00A882D13436D7E1ADB213E7F4FE212D5EB36AC52433, _l1BlockNumber=21273762 )
    File 1 of 2: Proxy
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    /**
     * @title Proxy
     * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
     *         if the caller is address(0), meaning that the call originated from an off-chain
     *         simulation.
     */
    contract Proxy {
        /**
         * @notice The storage slot that holds the address of the implementation.
         *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
         */
        bytes32 internal constant IMPLEMENTATION_KEY =
            0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /**
         * @notice The storage slot that holds the address of the owner.
         *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
         */
        bytes32 internal constant OWNER_KEY =
            0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /**
         * @notice An event that is emitted each time the implementation is changed. This event is part
         *         of the EIP-1967 specification.
         *
         * @param implementation The address of the implementation contract
         */
        event Upgraded(address indexed implementation);
        /**
         * @notice An event that is emitted each time the owner is upgraded. This event is part of the
         *         EIP-1967 specification.
         *
         * @param previousAdmin The previous owner of the contract
         * @param newAdmin      The new owner of the contract
         */
        event AdminChanged(address previousAdmin, address newAdmin);
        /**
         * @notice A modifier that reverts if not called by the owner or by address(0) to allow
         *         eth_call to interact with this proxy without needing to use low-level storage
         *         inspection. We assume that nobody is able to trigger calls from address(0) during
         *         normal EVM execution.
         */
        modifier proxyCallIfNotAdmin() {
            if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                _;
            } else {
                // This WILL halt the call frame on completion.
                _doProxyCall();
            }
        }
        /**
         * @notice Sets the initial admin during contract deployment. Admin address is stored at the
         *         EIP-1967 admin storage slot so that accidental storage collision with the
         *         implementation is not possible.
         *
         * @param _admin Address of the initial contract admin. Admin as the ability to access the
         *               transparent proxy interface.
         */
        constructor(address _admin) {
            _changeAdmin(_admin);
        }
        // slither-disable-next-line locked-ether
        receive() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        // slither-disable-next-line locked-ether
        fallback() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        /**
         * @notice Set the implementation contract address. The code at the given address will execute
         *         when this contract is called.
         *
         * @param _implementation Address of the implementation contract.
         */
        function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
            _setImplementation(_implementation);
        }
        /**
         * @notice Set the implementation and call a function in a single transaction. Useful to ensure
         *         atomic execution of initialization-based upgrades.
         *
         * @param _implementation Address of the implementation contract.
         * @param _data           Calldata to delegatecall the new implementation with.
         */
        function upgradeToAndCall(address _implementation, bytes calldata _data)
            public
            payable
            virtual
            proxyCallIfNotAdmin
            returns (bytes memory)
        {
            _setImplementation(_implementation);
            (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
            require(success, "Proxy: delegatecall to new implementation contract failed");
            return returndata;
        }
        /**
         * @notice Changes the owner of the proxy contract. Only callable by the owner.
         *
         * @param _admin New owner of the proxy contract.
         */
        function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
            _changeAdmin(_admin);
        }
        /**
         * @notice Gets the owner of the proxy contract.
         *
         * @return Owner address.
         */
        function admin() public virtual proxyCallIfNotAdmin returns (address) {
            return _getAdmin();
        }
        /**
         * @notice Queries the implementation address.
         *
         * @return Implementation address.
         */
        function implementation() public virtual proxyCallIfNotAdmin returns (address) {
            return _getImplementation();
        }
        /**
         * @notice Sets the implementation address.
         *
         * @param _implementation New implementation address.
         */
        function _setImplementation(address _implementation) internal {
            assembly {
                sstore(IMPLEMENTATION_KEY, _implementation)
            }
            emit Upgraded(_implementation);
        }
        /**
         * @notice Changes the owner of the proxy contract.
         *
         * @param _admin New owner of the proxy contract.
         */
        function _changeAdmin(address _admin) internal {
            address previous = _getAdmin();
            assembly {
                sstore(OWNER_KEY, _admin)
            }
            emit AdminChanged(previous, _admin);
        }
        /**
         * @notice Performs the proxy call via a delegatecall.
         */
        function _doProxyCall() internal {
            address impl = _getImplementation();
            require(impl != address(0), "Proxy: implementation not initialized");
            assembly {
                // Copy calldata into memory at 0x0....calldatasize.
                calldatacopy(0x0, 0x0, calldatasize())
                // Perform the delegatecall, make sure to pass all available gas.
                let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                // overwrite the calldata that we just copied into memory but that doesn't really
                // matter because we'll be returning in a second anyway.
                returndatacopy(0x0, 0x0, returndatasize())
                // Success == 0 means a revert. We'll revert too and pass the data up.
                if iszero(success) {
                    revert(0x0, returndatasize())
                }
                // Otherwise we'll just return and pass the data up.
                return(0x0, returndatasize())
            }
        }
        /**
         * @notice Queries the implementation address.
         *
         * @return Implementation address.
         */
        function _getImplementation() internal view returns (address) {
            address impl;
            assembly {
                impl := sload(IMPLEMENTATION_KEY)
            }
            return impl;
        }
        /**
         * @notice Queries the owner of the proxy contract.
         *
         * @return Owner address.
         */
        function _getAdmin() internal view returns (address) {
            address owner;
            assembly {
                owner := sload(OWNER_KEY)
            }
            return owner;
        }
    }
    

    File 2 of 2: L2OutputOracle
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
    import { ISemver } from "src/universal/ISemver.sol";
    import { Types } from "src/libraries/Types.sol";
    import { Constants } from "src/libraries/Constants.sol";
    /// @custom:proxied
    /// @title L2OutputOracle
    /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
    ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
    ///         these outputs to verify information about the state of L2.
    contract L2OutputOracle is Initializable, ISemver {
        /// @notice The number of the first L2 block recorded in this contract.
        uint256 public startingBlockNumber;
        /// @notice The timestamp of the first L2 block recorded in this contract.
        uint256 public startingTimestamp;
        /// @notice An array of L2 output proposals.
        Types.OutputProposal[] internal l2Outputs;
        /// @notice The interval in L2 blocks at which checkpoints must be submitted.
        /// @custom:network-specific
        uint256 public submissionInterval;
        /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
        /// @custom:network-specific
        uint256 public l2BlockTime;
        /// @notice The address of the challenger. Can be updated via upgrade.
        /// @custom:network-specific
        address public challenger;
        /// @notice The address of the proposer. Can be updated via upgrade.
        /// @custom:network-specific
        address public proposer;
        /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
        /// @custom:network-specific
        uint256 public finalizationPeriodSeconds;
        /// @notice Emitted when an output is proposed.
        /// @param outputRoot    The output root.
        /// @param l2OutputIndex The index of the output in the l2Outputs array.
        /// @param l2BlockNumber The L2 block number of the output root.
        /// @param l1Timestamp   The L1 timestamp when proposed.
        event OutputProposed(
            bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
        );
        /// @notice Emitted when outputs are deleted.
        /// @param prevNextOutputIndex Next L2 output index before the deletion.
        /// @param newNextOutputIndex  Next L2 output index after the deletion.
        event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
        /// @notice Semantic version.
        /// @custom:semver 1.8.0
        string public constant version = "1.8.0";
        /// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as
        ///         in the getting-started config.
        constructor() {
            initialize({
                _submissionInterval: 1,
                _l2BlockTime: 1,
                _startingBlockNumber: 0,
                _startingTimestamp: 0,
                _proposer: address(0),
                _challenger: address(0),
                _finalizationPeriodSeconds: 0
            });
        }
        /// @notice Initializer.
        /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
        /// @param _l2BlockTime         The time per L2 block, in seconds.
        /// @param _startingBlockNumber The number of the first L2 block.
        /// @param _startingTimestamp   The timestamp of the first L2 block.
        /// @param _proposer            The address of the proposer.
        /// @param _challenger          The address of the challenger.
        /// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal
        ///                                   can be finalized.
        function initialize(
            uint256 _submissionInterval,
            uint256 _l2BlockTime,
            uint256 _startingBlockNumber,
            uint256 _startingTimestamp,
            address _proposer,
            address _challenger,
            uint256 _finalizationPeriodSeconds
        )
            public
            initializer
        {
            require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
            require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
            require(
                _startingTimestamp <= block.timestamp,
                "L2OutputOracle: starting L2 timestamp must be less than current time"
            );
            submissionInterval = _submissionInterval;
            l2BlockTime = _l2BlockTime;
            startingBlockNumber = _startingBlockNumber;
            startingTimestamp = _startingTimestamp;
            proposer = _proposer;
            challenger = _challenger;
            finalizationPeriodSeconds = _finalizationPeriodSeconds;
        }
        /// @notice Getter for the submissionInterval.
        ///         Public getter is legacy and will be removed in the future. Use `submissionInterval` instead.
        /// @return Submission interval.
        /// @custom:legacy
        function SUBMISSION_INTERVAL() external view returns (uint256) {
            return submissionInterval;
        }
        /// @notice Getter for the l2BlockTime.
        ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead.
        /// @return L2 block time.
        /// @custom:legacy
        function L2_BLOCK_TIME() external view returns (uint256) {
            return l2BlockTime;
        }
        /// @notice Getter for the challenger address.
        ///         Public getter is legacy and will be removed in the future. Use `challenger` instead.
        /// @return Address of the challenger.
        /// @custom:legacy
        function CHALLENGER() external view returns (address) {
            return challenger;
        }
        /// @notice Getter for the proposer address.
        ///         Public getter is legacy and will be removed in the future. Use `proposer` instead.
        /// @return Address of the proposer.
        /// @custom:legacy
        function PROPOSER() external view returns (address) {
            return proposer;
        }
        /// @notice Getter for the finalizationPeriodSeconds.
        ///         Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead.
        /// @return Finalization period in seconds.
        /// @custom:legacy
        function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) {
            return finalizationPeriodSeconds;
        }
        /// @notice Deletes all output proposals after and including the proposal that corresponds to
        ///         the given output index. Only the challenger address can delete outputs.
        /// @param _l2OutputIndex Index of the first L2 output to be deleted.
        ///                       All outputs after this output will also be deleted.
        // solhint-disable-next-line ordering
        function deleteL2Outputs(uint256 _l2OutputIndex) external {
            require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
            // Make sure we're not *increasing* the length of the array.
            require(
                _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
            );
            // Do not allow deleting any outputs that have already been finalized.
            require(
                block.timestamp - l2Outputs[_l2OutputIndex].timestamp < finalizationPeriodSeconds,
                "L2OutputOracle: cannot delete outputs that have already been finalized"
            );
            uint256 prevNextL2OutputIndex = nextOutputIndex();
            // Use assembly to delete the array elements because Solidity doesn't allow it.
            assembly {
                sstore(l2Outputs.slot, _l2OutputIndex)
            }
            emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
        }
        /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
        ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
        ///         order to be accepted. This function may only be called by the Proposer.
        /// @param _outputRoot    The L2 output of the checkpoint block.
        /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
        /// @param _l1BlockHash   A block hash which must be included in the current chain.
        /// @param _l1BlockNumber The block number with the specified block hash.
        function proposeL2Output(
            bytes32 _outputRoot,
            uint256 _l2BlockNumber,
            bytes32 _l1BlockHash,
            uint256 _l1BlockNumber
        )
            external
            payable
        {
            require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
            require(
                _l2BlockNumber == nextBlockNumber(),
                "L2OutputOracle: block number must be equal to next expected block number"
            );
            require(
                computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                "L2OutputOracle: cannot propose L2 output in the future"
            );
            require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
            if (_l1BlockHash != bytes32(0)) {
                // This check allows the proposer to propose an output based on a given L1 block,
                // without fear that it will be reorged out.
                // It will also revert if the blockheight provided is more than 256 blocks behind the
                // chain tip (as the hash will return as zero). This does open the door to a griefing
                // attack in which the proposer's submission is censored until the block is no longer
                // retrievable, if the proposer is experiencing this attack it can simply leave out the
                // blockhash value, and delay submission until it is confident that the L1 block is
                // finalized.
                require(
                    blockhash(_l1BlockNumber) == _l1BlockHash,
                    "L2OutputOracle: block hash does not match the hash at the expected height"
                );
            }
            emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
            l2Outputs.push(
                Types.OutputProposal({
                    outputRoot: _outputRoot,
                    timestamp: uint128(block.timestamp),
                    l2BlockNumber: uint128(_l2BlockNumber)
                })
            );
        }
        /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
        /// @param _l2OutputIndex Index of the output to return.
        /// @return The output at the given index.
        function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
            return l2Outputs[_l2OutputIndex];
        }
        /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
        ///         Uses a binary search to find the first output greater than or equal to the given
        ///         block.
        /// @param _l2BlockNumber L2 block number to find a checkpoint for.
        /// @return Index of the first checkpoint that commits to the given L2 block number.
        function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
            // Make sure an output for this block number has actually been proposed.
            require(
                _l2BlockNumber <= latestBlockNumber(),
                "L2OutputOracle: cannot get output for a block that has not been proposed"
            );
            // Make sure there's at least one output proposed.
            require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
            // Find the output via binary search, guaranteed to exist.
            uint256 lo = 0;
            uint256 hi = l2Outputs.length;
            while (lo < hi) {
                uint256 mid = (lo + hi) / 2;
                if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                    lo = mid + 1;
                } else {
                    hi = mid;
                }
            }
            return lo;
        }
        /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
        ///         Uses a binary search to find the first output greater than or equal to the given
        ///         block.
        /// @param _l2BlockNumber L2 block number to find a checkpoint for.
        /// @return First checkpoint that commits to the given L2 block number.
        function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
            return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
        }
        /// @notice Returns the number of outputs that have been proposed.
        ///         Will revert if no outputs have been proposed yet.
        /// @return The number of outputs that have been proposed.
        function latestOutputIndex() external view returns (uint256) {
            return l2Outputs.length - 1;
        }
        /// @notice Returns the index of the next output to be proposed.
        /// @return The index of the next output to be proposed.
        function nextOutputIndex() public view returns (uint256) {
            return l2Outputs.length;
        }
        /// @notice Returns the block number of the latest submitted L2 output proposal.
        ///         If no proposals been submitted yet then this function will return the starting
        ///         block number.
        /// @return Latest submitted L2 block number.
        function latestBlockNumber() public view returns (uint256) {
            return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
        }
        /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
        /// @return Next L2 block number.
        function nextBlockNumber() public view returns (uint256) {
            return latestBlockNumber() + submissionInterval;
        }
        /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
        /// @param _l2BlockNumber The L2 block number of the target block.
        /// @return L2 timestamp of the given block.
        function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
            return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
    pragma solidity ^0.8.2;
    import "../../utils/Address.sol";
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Indicates that the contract has been initialized.
         * @custom:oz-retyped-from bool
         */
        uint8 private _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool private _initializing;
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint8 version);
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
         */
        modifier initializer() {
            bool isTopLevelCall = !_initializing;
            require(
                (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                "Initializable: contract is already initialized"
            );
            _initialized = 1;
            if (isTopLevelCall) {
                _initializing = true;
            }
            _;
            if (isTopLevelCall) {
                _initializing = false;
                emit Initialized(1);
            }
        }
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
         * initialization step. This is essential to configure modules that are added through upgrades and that require
         * initialization.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         */
        modifier reinitializer(uint8 version) {
            require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
            _initialized = version;
            _initializing = true;
            _;
            _initializing = false;
            emit Initialized(version);
        }
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            require(_initializing, "Initializable: contract is not initializing");
            _;
        }
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         */
        function _disableInitializers() internal virtual {
            require(!_initializing, "Initializable: contract is initializing");
            if (_initialized < type(uint8).max) {
                _initialized = type(uint8).max;
                emit Initialized(type(uint8).max);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /// @title ISemver
    /// @notice ISemver is a simple contract for ensuring that contracts are
    ///         versioned using semantic versioning.
    interface ISemver {
        /// @notice Getter for the semantic version of the contract. This is not
        ///         meant to be used onchain but instead meant to be used by offchain
        ///         tooling.
        /// @return Semver contract version as a string.
        function version() external view returns (string memory);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /// @title Types
    /// @notice Contains various types used throughout the Optimism contract system.
    library Types {
        /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
        ///         timestamp that the output root is posted. This timestamp is used to verify that the
        ///         finalization period has passed since the output root was submitted.
        /// @custom:field outputRoot    Hash of the L2 output.
        /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
        /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
        struct OutputProposal {
            bytes32 outputRoot;
            uint128 timestamp;
            uint128 l2BlockNumber;
        }
        /// @notice Struct representing the elements that are hashed together to generate an output root
        ///         which itself represents a snapshot of the L2 state.
        /// @custom:field version                  Version of the output root.
        /// @custom:field stateRoot                Root of the state trie at the block of this output.
        /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
        /// @custom:field latestBlockhash          Hash of the block this output was generated from.
        struct OutputRootProof {
            bytes32 version;
            bytes32 stateRoot;
            bytes32 messagePasserStorageRoot;
            bytes32 latestBlockhash;
        }
        /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
        ///         user (as opposed to a system deposit transaction generated by the system).
        /// @custom:field from        Address of the sender of the transaction.
        /// @custom:field to          Address of the recipient of the transaction.
        /// @custom:field isCreation  True if the transaction is a contract creation.
        /// @custom:field value       Value to send to the recipient.
        /// @custom:field mint        Amount of ETH to mint.
        /// @custom:field gasLimit    Gas limit of the transaction.
        /// @custom:field data        Data of the transaction.
        /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
        /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
        struct UserDepositTransaction {
            address from;
            address to;
            bool isCreation;
            uint256 value;
            uint256 mint;
            uint64 gasLimit;
            bytes data;
            bytes32 l1BlockHash;
            uint256 logIndex;
        }
        /// @notice Struct representing a withdrawal transaction.
        /// @custom:field nonce    Nonce of the withdrawal transaction
        /// @custom:field sender   Address of the sender of the transaction.
        /// @custom:field target   Address of the recipient of the transaction.
        /// @custom:field value    Value to send to the recipient.
        /// @custom:field gasLimit Gas limit of the transaction.
        /// @custom:field data     Data of the transaction.
        struct WithdrawalTransaction {
            uint256 nonce;
            address sender;
            address target;
            uint256 value;
            uint256 gasLimit;
            bytes data;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import { ResourceMetering } from "src/L1/ResourceMetering.sol";
    /// @title Constants
    /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
    ///         the stuff used in multiple contracts. Constants that only apply to a single contract
    ///         should be defined in that contract instead.
    library Constants {
        /// @notice Special address to be used as the tx origin for gas estimation calls in the
        ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
        ///         the minimum gas limit specified by the user is not actually enough to execute the
        ///         given message and you're attempting to estimate the actual necessary gas limit. We
        ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
        ///         never have any code on any EVM chain.
        address internal constant ESTIMATION_ADDRESS = address(1);
        /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
        ///         CrossDomainMessenger contracts before an actual sender is set. This value is
        ///         non-zero to reduce the gas cost of message passing transactions.
        address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
        /// @notice The storage slot that holds the address of a proxy implementation.
        /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
        bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
            0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /// @notice The storage slot that holds the address of the owner.
        /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
        bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /// @notice Returns the default values for the ResourceConfig. These are the recommended values
        ///         for a production network.
        function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
            ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                maxResourceLimit: 20_000_000,
                elasticityMultiplier: 10,
                baseFeeMaxChangeDenominator: 8,
                minimumBaseFee: 1 gwei,
                systemTxMaxGas: 1_000_000,
                maximumBaseFee: type(uint128).max
            });
            return config;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
    import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
    import { Burn } from "src/libraries/Burn.sol";
    import { Arithmetic } from "src/libraries/Arithmetic.sol";
    /// @custom:upgradeable
    /// @title ResourceMetering
    /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
    ///         updates automatically based on current demand.
    abstract contract ResourceMetering is Initializable {
        /// @notice Represents the various parameters that control the way in which resources are
        ///         metered. Corresponds to the EIP-1559 resource metering system.
        /// @custom:field prevBaseFee   Base fee from the previous block(s).
        /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
        /// @custom:field prevBlockNum  Last block number that the base fee was updated.
        struct ResourceParams {
            uint128 prevBaseFee;
            uint64 prevBoughtGas;
            uint64 prevBlockNum;
        }
        /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
        ///         market. These values should be set with care as it is possible to set them in
        ///         a way that breaks the deposit gas market. The target resource limit is defined as
        ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
        ///         single word. There is additional space for additions in the future.
        /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
        ///                                            can be purchased per block.
        /// @custom:field elasticityMultiplier         Determines the target resource limit along with
        ///                                            the resource limit.
        /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
        /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
        ///                                            value.
        /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
        ///                                            transaction. This should be set to the same
        ///                                            number that the op-node sets as the gas limit
        ///                                            for the system transaction.
        /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
        ///                                            value.
        struct ResourceConfig {
            uint32 maxResourceLimit;
            uint8 elasticityMultiplier;
            uint8 baseFeeMaxChangeDenominator;
            uint32 minimumBaseFee;
            uint32 systemTxMaxGas;
            uint128 maximumBaseFee;
        }
        /// @notice EIP-1559 style gas parameters.
        ResourceParams public params;
        /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
        uint256[48] private __gap;
        /// @notice Meters access to a function based an amount of a requested resource.
        /// @param _amount Amount of the resource requested.
        modifier metered(uint64 _amount) {
            // Record initial gas amount so we can refund for it later.
            uint256 initialGas = gasleft();
            // Run the underlying function.
            _;
            // Run the metering function.
            _metered(_amount, initialGas);
        }
        /// @notice An internal function that holds all of the logic for metering a resource.
        /// @param _amount     Amount of the resource requested.
        /// @param _initialGas The amount of gas before any modifier execution.
        function _metered(uint64 _amount, uint256 _initialGas) internal {
            // Update block number and base fee if necessary.
            uint256 blockDiff = block.number - params.prevBlockNum;
            ResourceConfig memory config = _resourceConfig();
            int256 targetResourceLimit =
                int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
            if (blockDiff > 0) {
                // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                // at which deposits can be created and therefore limit the potential for deposits to
                // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                    / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                // Update base fee by adding the base fee delta and clamp the resulting value between
                // min and max.
                int256 newBaseFee = Arithmetic.clamp({
                    _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                    _min: int256(uint256(config.minimumBaseFee)),
                    _max: int256(uint256(config.maximumBaseFee))
                });
                // If we skipped more than one block, we also need to account for every empty block.
                // Empty block means there was no demand for deposits in that block, so we should
                // reflect this lack of demand in the fee.
                if (blockDiff > 1) {
                    // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                    // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                    // between min and max.
                    newBaseFee = Arithmetic.clamp({
                        _value: Arithmetic.cdexp({
                            _coefficient: newBaseFee,
                            _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                            _exponent: int256(blockDiff - 1)
                        }),
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                }
                // Update new base fee, reset bought gas, and update block number.
                params.prevBaseFee = uint128(uint256(newBaseFee));
                params.prevBoughtGas = 0;
                params.prevBlockNum = uint64(block.number);
            }
            // Make sure we can actually buy the resource amount requested by the user.
            params.prevBoughtGas += _amount;
            require(
                int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                "ResourceMetering: cannot buy more gas than available gas limit"
            );
            // Determine the amount of ETH to be paid.
            uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
            // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
            // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
            // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
            // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
            // during any 1 day period in the last 5 years, so should be fine.
            uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
            // Give the user a refund based on the amount of gas they used to do all of the work up to
            // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
            // effectively like a dynamic stipend (with a minimum value).
            uint256 usedGas = _initialGas - gasleft();
            if (gasCost > usedGas) {
                Burn.gas(gasCost - usedGas);
            }
        }
        /// @notice Virtual function that returns the resource config.
        ///         Contracts that inherit this contract must implement this function.
        /// @return ResourceConfig
        function _resourceConfig() internal virtual returns (ResourceConfig memory);
        /// @notice Sets initial resource parameter values.
        ///         This function must either be called by the initializer function of an upgradeable
        ///         child contract.
        // solhint-disable-next-line func-name-mixedcase
        function __ResourceMetering_init() internal onlyInitializing {
            if (params.prevBlockNum == 0) {
                params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a >= b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`.
            // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
            // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
            // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
            // good first aproximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1;
            uint256 x = a;
            if (x >> 128 > 0) {
                x >>= 128;
                result <<= 64;
            }
            if (x >> 64 > 0) {
                x >>= 64;
                result <<= 32;
            }
            if (x >> 32 > 0) {
                x >>= 32;
                result <<= 16;
            }
            if (x >> 16 > 0) {
                x >>= 16;
                result <<= 8;
            }
            if (x >> 8 > 0) {
                x >>= 8;
                result <<= 4;
            }
            if (x >> 4 > 0) {
                x >>= 4;
                result <<= 2;
            }
            if (x >> 2 > 0) {
                result <<= 1;
            }
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            uint256 result = sqrt(a);
            if (rounding == Rounding.Up && result * result < a) {
                result += 1;
            }
            return result;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    /// @title Burn
    /// @notice Utilities for burning stuff.
    library Burn {
        /// @notice Burns a given amount of ETH.
        /// @param _amount Amount of ETH to burn.
        function eth(uint256 _amount) internal {
            new Burner{ value: _amount }();
        }
        /// @notice Burns a given amount of gas.
        /// @param _amount Amount of gas to burn.
        function gas(uint256 _amount) internal view {
            uint256 i = 0;
            uint256 initialGas = gasleft();
            while (initialGas - gasleft() < _amount) {
                ++i;
            }
        }
    }
    /// @title Burner
    /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
    ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
    ///         from the circulating supply.
    contract Burner {
        constructor() payable {
            selfdestruct(payable(address(this)));
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
    import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
    /// @title Arithmetic
    /// @notice Even more math than before.
    library Arithmetic {
        /// @notice Clamps a value between a minimum and maximum.
        /// @param _value The value to clamp.
        /// @param _min   The minimum value.
        /// @param _max   The maximum value.
        /// @return The clamped value.
        function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
            return SignedMath.min(SignedMath.max(_value, _min), _max);
        }
        /// @notice (c)oefficient (d)enominator (exp)onentiation function.
        ///         Returns the result of: c * (1 - 1/d)^exp.
        /// @param _coefficient Coefficient of the function.
        /// @param _denominator Fractional denominator.
        /// @param _exponent    Power function exponent.
        /// @return Result of c * (1 - 1/d)^exp.
        function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
            return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMath {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a >= b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.0;
    /// @notice Arithmetic library with operations for fixed-point numbers.
    /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
    library FixedPointMathLib {
        /*//////////////////////////////////////////////////////////////
                        SIMPLIFIED FIXED POINT OPERATIONS
        //////////////////////////////////////////////////////////////*/
        uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
        function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
        }
        function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
        }
        function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
        }
        function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
        }
        function powWad(int256 x, int256 y) internal pure returns (int256) {
            // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
            return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
        }
        function expWad(int256 x) internal pure returns (int256 r) {
            unchecked {
                // When the result is < 0.5 we return zero. This happens when
                // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                if (x <= -42139678854452767551) return 0;
                // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                // for more intermediate precision and a binary basis. This base conversion
                // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                x = (x << 78) / 5**18;
                // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                x = x - k * 54916777467707473351141471128;
                // k is in the range [-61, 195].
                // Evaluate using a (6, 7)-term rational approximation.
                // p is made monic, we'll multiply by a scale factor later.
                int256 y = x + 1346386616545796478920950773328;
                y = ((y * x) >> 96) + 57155421227552351082224309758442;
                int256 p = y + x - 94201549194550492254356042504812;
                p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                p = p * x + (4385272521454847904659076985693276 << 96);
                // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                int256 q = x - 2855989394907223263936484059900;
                q = ((q * x) >> 96) + 50020603652535783019961831881945;
                q = ((q * x) >> 96) - 533845033583426703283633433725380;
                q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                assembly {
                    // Div in assembly because solidity adds a zero check despite the unchecked.
                    // The q polynomial won't have zeros in the domain as all its roots are complex.
                    // No scaling is necessary because p is already 2**96 too large.
                    r := sdiv(p, q)
                }
                // r should be in the range (0.09, 0.25) * 2**96.
                // We now need to multiply r by:
                // * the scale factor s = ~6.031367120.
                // * the 2**k factor from the range reduction.
                // * the 1e18 / 2**96 factor for base conversion.
                // We do this all at once, with an intermediate result in 2**213
                // basis, so the final right shift is always by a positive amount.
                r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
            }
        }
        function lnWad(int256 x) internal pure returns (int256 r) {
            unchecked {
                require(x > 0, "UNDEFINED");
                // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                // We do this by multiplying by 2**96 / 10**18. But since
                // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                // and add ln(2**96 / 10**18) at the end.
                // Reduce range of x to (1, 2) * 2**96
                // ln(2^k * x) = k * ln(2) + ln(x)
                int256 k = int256(log2(uint256(x))) - 96;
                x <<= uint256(159 - k);
                x = int256(uint256(x) >> 159);
                // Evaluate using a (8, 8)-term rational approximation.
                // p is made monic, we will multiply by a scale factor later.
                int256 p = x + 3273285459638523848632254066296;
                p = ((p * x) >> 96) + 24828157081833163892658089445524;
                p = ((p * x) >> 96) + 43456485725739037958740375743393;
                p = ((p * x) >> 96) - 11111509109440967052023855526967;
                p = ((p * x) >> 96) - 45023709667254063763336534515857;
                p = ((p * x) >> 96) - 14706773417378608786704636184526;
                p = p * x - (795164235651350426258249787498 << 96);
                // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                // q is monic by convention.
                int256 q = x + 5573035233440673466300451813936;
                q = ((q * x) >> 96) + 71694874799317883764090561454958;
                q = ((q * x) >> 96) + 283447036172924575727196451306956;
                q = ((q * x) >> 96) + 401686690394027663651624208769553;
                q = ((q * x) >> 96) + 204048457590392012362485061816622;
                q = ((q * x) >> 96) + 31853899698501571402653359427138;
                q = ((q * x) >> 96) + 909429971244387300277376558375;
                assembly {
                    // Div in assembly because solidity adds a zero check despite the unchecked.
                    // The q polynomial is known not to have zeros in the domain.
                    // No scaling required because p is already 2**96 too large.
                    r := sdiv(p, q)
                }
                // r is in the range (0, 0.125) * 2**96
                // Finalization, we need to:
                // * multiply by the scale factor s = 5.549…
                // * add ln(2**96 / 10**18)
                // * add k * ln(2)
                // * multiply by 10**18 / 2**96 = 5**18 >> 78
                // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                r *= 1677202110996718588342820967067443963516166;
                // add ln(2) * k * 5e18 * 2**192
                r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                // add ln(2**96 / 10**18) * 5e18 * 2**192
                r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                // base conversion: mul 2**18 / 2**192
                r >>= 174;
            }
        }
        /*//////////////////////////////////////////////////////////////
                        LOW LEVEL FIXED POINT OPERATIONS
        //////////////////////////////////////////////////////////////*/
        function mulDivDown(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 z) {
            assembly {
                // Store x * y in z for now.
                z := mul(x, y)
                // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                    revert(0, 0)
                }
                // Divide z by the denominator.
                z := div(z, denominator)
            }
        }
        function mulDivUp(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 z) {
            assembly {
                // Store x * y in z for now.
                z := mul(x, y)
                // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                    revert(0, 0)
                }
                // First, divide z - 1 by the denominator and add 1.
                // We allow z - 1 to underflow if z is 0, because we multiply the
                // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
            }
        }
        function rpow(
            uint256 x,
            uint256 n,
            uint256 scalar
        ) internal pure returns (uint256 z) {
            assembly {
                switch x
                case 0 {
                    switch n
                    case 0 {
                        // 0 ** 0 = 1
                        z := scalar
                    }
                    default {
                        // 0 ** n = 0
                        z := 0
                    }
                }
                default {
                    switch mod(n, 2)
                    case 0 {
                        // If n is even, store scalar in z for now.
                        z := scalar
                    }
                    default {
                        // If n is odd, store x in z for now.
                        z := x
                    }
                    // Shifting right by 1 is like dividing by 2.
                    let half := shr(1, scalar)
                    for {
                        // Shift n right by 1 before looping to halve it.
                        n := shr(1, n)
                    } n {
                        // Shift n right by 1 each iteration to halve it.
                        n := shr(1, n)
                    } {
                        // Revert immediately if x ** 2 would overflow.
                        // Equivalent to iszero(eq(div(xx, x), x)) here.
                        if shr(128, x) {
                            revert(0, 0)
                        }
                        // Store x squared.
                        let xx := mul(x, x)
                        // Round to the nearest number.
                        let xxRound := add(xx, half)
                        // Revert if xx + half overflowed.
                        if lt(xxRound, xx) {
                            revert(0, 0)
                        }
                        // Set x to scaled xxRound.
                        x := div(xxRound, scalar)
                        // If n is even:
                        if mod(n, 2) {
                            // Compute z * x.
                            let zx := mul(z, x)
                            // If z * x overflowed:
                            if iszero(eq(div(zx, x), z)) {
                                // Revert if x is non-zero.
                                if iszero(iszero(x)) {
                                    revert(0, 0)
                                }
                            }
                            // Round to the nearest number.
                            let zxRound := add(zx, half)
                            // Revert if zx + half overflowed.
                            if lt(zxRound, zx) {
                                revert(0, 0)
                            }
                            // Return properly scaled zxRound.
                            z := div(zxRound, scalar)
                        }
                    }
                }
            }
        }
        /*//////////////////////////////////////////////////////////////
                            GENERAL NUMBER UTILITIES
        //////////////////////////////////////////////////////////////*/
        function sqrt(uint256 x) internal pure returns (uint256 z) {
            assembly {
                let y := x // We start y at x, which will help us make our initial estimate.
                z := 181 // The "correct" value is 1, but this saves a multiplication later.
                // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                // We check y >= 2^(k + 8) but shift right by k bits
                // each branch to ensure that if x >= 256, then y >= 256.
                if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                    y := shr(128, y)
                    z := shl(64, z)
                }
                if iszero(lt(y, 0x1000000000000000000)) {
                    y := shr(64, y)
                    z := shl(32, z)
                }
                if iszero(lt(y, 0x10000000000)) {
                    y := shr(32, y)
                    z := shl(16, z)
                }
                if iszero(lt(y, 0x1000000)) {
                    y := shr(16, y)
                    z := shl(8, z)
                }
                // Goal was to get z*z*y within a small factor of x. More iterations could
                // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                // That's not possible if x < 256 but we can just verify those cases exhaustively.
                // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                // There is no overflow risk here since y < 2^136 after the first branch above.
                z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                // If x+1 is a perfect square, the Babylonian method cycles between
                // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                z := sub(z, lt(div(x, z), z))
            }
        }
        function log2(uint256 x) internal pure returns (uint256 r) {
            require(x > 0, "UNDEFINED");
            assembly {
                r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                r := or(r, shl(3, lt(0xff, shr(r, x))))
                r := or(r, shl(2, lt(0xf, shr(r, x))))
                r := or(r, shl(1, lt(0x3, shr(r, x))))
                r := or(r, lt(0x1, shr(r, x)))
            }
        }
    }