ETH Price: $2,525.41 (-0.08%)
Gas: 2.43 Gwei

Transaction Decoder

Block:
21342272 at Dec-06-2024 08:30:23 AM +UTC
Transaction Fee:
0.002381639409242966 ETH $6.01
Gas Used:
153,383 Gas / 15.527401402 Gwei

Emitted Events:

102 0xf3de3c0d654fda23dad170f0f320a92172509127.0x7724394874fdd8ad13292ec739b441f85c6559f10dc4141b8d4c0fa4cbf55bdb( 0x7724394874fdd8ad13292ec739b441f85c6559f10dc4141b8d4c0fa4cbf55bdb, 0000000000000000000000000000000000000000000000000000000000000000 )
103 WAVX.Transfer( from=UniswapV3Pool, to=[Sender] 0x41f42bdd9a3d3a2113ebdd96a13b73c1a4389c7d, value=214777529573144584711 )
104 TetherToken.Transfer( from=[Sender] 0x41f42bdd9a3d3a2113ebdd96a13b73c1a4389c7d, to=UniswapV3Pool, value=55000000 )
105 UniswapV3Pool.Swap( sender=[Receiver] 0xf3de3c0d654fda23dad170f0f320a92172509127, recipient=[Sender] 0x41f42bdd9a3d3a2113ebdd96a13b73c1a4389c7d, amount0=-214777529573144584711, amount1=55000000, sqrtPriceX96=40035880308973866943049, liquidity=667656571637688232, tick=-289976 )
106 0xf3de3c0d654fda23dad170f0f320a92172509127.0x1bb43f2da90e35f7b0cf38521ca95a49e68eb42fac49924930a5bd73cdf7576c( 0x1bb43f2da90e35f7b0cf38521ca95a49e68eb42fac49924930a5bd73cdf7576c, 000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7, 000000000000000000000000d0c30a2b5fe8904d625552a49c61f14b0a2d5b6c, 00000000000000000000000041f42bdd9a3d3a2113ebdd96a13b73c1a4389c7d, 0000000000000000000000000000000000000000000000000000000003473bc0, 00000000000000000000000000000000000000000000000ba4a31134e73ce207 )

Account State Difference:

  Address   Before After State Difference Code
0x0721DB85...759F376da
(Uniswap V3: WAVX-USDT)
(Lido: Execution Layer Rewards Vault)
222.364084980483697945 Eth222.364249385758327054 Eth0.000164405274629109
0x41f42BdD...1a4389c7d
0.131008808827730602 Eth
Nonce: 406
0.128627169418487636 Eth
Nonce: 407
0.002381639409242966
0xd0c30A2B...b0a2d5B6c
0xdAC17F95...13D831ec7

Execution Trace

0xf3de3c0d654fda23dad170f0f320a92172509127.0d5f0e3b( )
  • UniswapV3Pool.swap( recipient=0x41f42BdD9a3D3a2113ebdd96a13B73c1a4389c7d, zeroForOne=False, amountSpecified=55000000, sqrtPriceLimitX96=1461446703485210103287273052203988822378723970341, data=0x00000000000000000000000041F42BDD9A3D3A2113EBDD96A13B73C1A4389C7D ) => ( amount0=-214777529573144584711, amount1=55000000 )
    • WAVX.transfer( to=0x41f42BdD9a3D3a2113ebdd96a13B73c1a4389c7d, value=214777529573144584711 ) => ( True )
    • TetherToken.balanceOf( who=0x0721DB8588A24423c1399cAa7Cef9F6759F376da ) => ( 6144603869 )
    • 0xf3de3c0d654fda23dad170f0f320a92172509127.fa461e33( )
      • UniswapV3Pool.STATICCALL( )
      • UniswapV3Pool.STATICCALL( )
      • UniswapV3Pool.STATICCALL( )
      • OKX: Dex Aggregator.0a5ea466( )
        • TokenApprove.claimTokens( _token=0xdAC17F958D2ee523a2206206994597C13D831ec7, _who=0x41f42BdD9a3D3a2113ebdd96a13B73c1a4389c7d, _dest=0x0721DB8588A24423c1399cAa7Cef9F6759F376da, _amount=55000000 )
          • TetherToken.transferFrom( _from=0x41f42BdD9a3D3a2113ebdd96a13B73c1a4389c7d, _to=0x0721DB8588A24423c1399cAa7Cef9F6759F376da, _value=55000000 )
          • TetherToken.balanceOf( who=0x0721DB8588A24423c1399cAa7Cef9F6759F376da ) => ( 6199603869 )
          • UniswapV3Pool.STATICCALL( )
          • UniswapV3Pool.STATICCALL( )
            File 1 of 4: UniswapV3Pool
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity =0.7.6;
            import './interfaces/IUniswapV3Pool.sol';
            import './NoDelegateCall.sol';
            import './libraries/LowGasSafeMath.sol';
            import './libraries/SafeCast.sol';
            import './libraries/Tick.sol';
            import './libraries/TickBitmap.sol';
            import './libraries/Position.sol';
            import './libraries/Oracle.sol';
            import './libraries/FullMath.sol';
            import './libraries/FixedPoint128.sol';
            import './libraries/TransferHelper.sol';
            import './libraries/TickMath.sol';
            import './libraries/LiquidityMath.sol';
            import './libraries/SqrtPriceMath.sol';
            import './libraries/SwapMath.sol';
            import './interfaces/IUniswapV3PoolDeployer.sol';
            import './interfaces/IUniswapV3Factory.sol';
            import './interfaces/IERC20Minimal.sol';
            import './interfaces/callback/IUniswapV3MintCallback.sol';
            import './interfaces/callback/IUniswapV3SwapCallback.sol';
            import './interfaces/callback/IUniswapV3FlashCallback.sol';
            contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
                using LowGasSafeMath for uint256;
                using LowGasSafeMath for int256;
                using SafeCast for uint256;
                using SafeCast for int256;
                using Tick for mapping(int24 => Tick.Info);
                using TickBitmap for mapping(int16 => uint256);
                using Position for mapping(bytes32 => Position.Info);
                using Position for Position.Info;
                using Oracle for Oracle.Observation[65535];
                /// @inheritdoc IUniswapV3PoolImmutables
                address public immutable override factory;
                /// @inheritdoc IUniswapV3PoolImmutables
                address public immutable override token0;
                /// @inheritdoc IUniswapV3PoolImmutables
                address public immutable override token1;
                /// @inheritdoc IUniswapV3PoolImmutables
                uint24 public immutable override fee;
                /// @inheritdoc IUniswapV3PoolImmutables
                int24 public immutable override tickSpacing;
                /// @inheritdoc IUniswapV3PoolImmutables
                uint128 public immutable override maxLiquidityPerTick;
                struct Slot0 {
                    // the current price
                    uint160 sqrtPriceX96;
                    // the current tick
                    int24 tick;
                    // the most-recently updated index of the observations array
                    uint16 observationIndex;
                    // the current maximum number of observations that are being stored
                    uint16 observationCardinality;
                    // the next maximum number of observations to store, triggered in observations.write
                    uint16 observationCardinalityNext;
                    // the current protocol fee as a percentage of the swap fee taken on withdrawal
                    // represented as an integer denominator (1/x)%
                    uint8 feeProtocol;
                    // whether the pool is locked
                    bool unlocked;
                }
                /// @inheritdoc IUniswapV3PoolState
                Slot0 public override slot0;
                /// @inheritdoc IUniswapV3PoolState
                uint256 public override feeGrowthGlobal0X128;
                /// @inheritdoc IUniswapV3PoolState
                uint256 public override feeGrowthGlobal1X128;
                // accumulated protocol fees in token0/token1 units
                struct ProtocolFees {
                    uint128 token0;
                    uint128 token1;
                }
                /// @inheritdoc IUniswapV3PoolState
                ProtocolFees public override protocolFees;
                /// @inheritdoc IUniswapV3PoolState
                uint128 public override liquidity;
                /// @inheritdoc IUniswapV3PoolState
                mapping(int24 => Tick.Info) public override ticks;
                /// @inheritdoc IUniswapV3PoolState
                mapping(int16 => uint256) public override tickBitmap;
                /// @inheritdoc IUniswapV3PoolState
                mapping(bytes32 => Position.Info) public override positions;
                /// @inheritdoc IUniswapV3PoolState
                Oracle.Observation[65535] public override observations;
                /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
                /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
                /// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
                modifier lock() {
                    require(slot0.unlocked, 'LOK');
                    slot0.unlocked = false;
                    _;
                    slot0.unlocked = true;
                }
                /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
                modifier onlyFactoryOwner() {
                    require(msg.sender == IUniswapV3Factory(factory).owner());
                    _;
                }
                constructor() {
                    int24 _tickSpacing;
                    (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
                    tickSpacing = _tickSpacing;
                    maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
                }
                /// @dev Common checks for valid tick inputs.
                function checkTicks(int24 tickLower, int24 tickUpper) private pure {
                    require(tickLower < tickUpper, 'TLU');
                    require(tickLower >= TickMath.MIN_TICK, 'TLM');
                    require(tickUpper <= TickMath.MAX_TICK, 'TUM');
                }
                /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
                function _blockTimestamp() internal view virtual returns (uint32) {
                    return uint32(block.timestamp); // truncation is desired
                }
                /// @dev Get the pool's balance of token0
                /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                /// check
                function balance0() private view returns (uint256) {
                    (bool success, bytes memory data) =
                        token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                    require(success && data.length >= 32);
                    return abi.decode(data, (uint256));
                }
                /// @dev Get the pool's balance of token1
                /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                /// check
                function balance1() private view returns (uint256) {
                    (bool success, bytes memory data) =
                        token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                    require(success && data.length >= 32);
                    return abi.decode(data, (uint256));
                }
                /// @inheritdoc IUniswapV3PoolDerivedState
                function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                    external
                    view
                    override
                    noDelegateCall
                    returns (
                        int56 tickCumulativeInside,
                        uint160 secondsPerLiquidityInsideX128,
                        uint32 secondsInside
                    )
                {
                    checkTicks(tickLower, tickUpper);
                    int56 tickCumulativeLower;
                    int56 tickCumulativeUpper;
                    uint160 secondsPerLiquidityOutsideLowerX128;
                    uint160 secondsPerLiquidityOutsideUpperX128;
                    uint32 secondsOutsideLower;
                    uint32 secondsOutsideUpper;
                    {
                        Tick.Info storage lower = ticks[tickLower];
                        Tick.Info storage upper = ticks[tickUpper];
                        bool initializedLower;
                        (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
                            lower.tickCumulativeOutside,
                            lower.secondsPerLiquidityOutsideX128,
                            lower.secondsOutside,
                            lower.initialized
                        );
                        require(initializedLower);
                        bool initializedUpper;
                        (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
                            upper.tickCumulativeOutside,
                            upper.secondsPerLiquidityOutsideX128,
                            upper.secondsOutside,
                            upper.initialized
                        );
                        require(initializedUpper);
                    }
                    Slot0 memory _slot0 = slot0;
                    if (_slot0.tick < tickLower) {
                        return (
                            tickCumulativeLower - tickCumulativeUpper,
                            secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
                            secondsOutsideLower - secondsOutsideUpper
                        );
                    } else if (_slot0.tick < tickUpper) {
                        uint32 time = _blockTimestamp();
                        (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                            observations.observeSingle(
                                time,
                                0,
                                _slot0.tick,
                                _slot0.observationIndex,
                                liquidity,
                                _slot0.observationCardinality
                            );
                        return (
                            tickCumulative - tickCumulativeLower - tickCumulativeUpper,
                            secondsPerLiquidityCumulativeX128 -
                                secondsPerLiquidityOutsideLowerX128 -
                                secondsPerLiquidityOutsideUpperX128,
                            time - secondsOutsideLower - secondsOutsideUpper
                        );
                    } else {
                        return (
                            tickCumulativeUpper - tickCumulativeLower,
                            secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
                            secondsOutsideUpper - secondsOutsideLower
                        );
                    }
                }
                /// @inheritdoc IUniswapV3PoolDerivedState
                function observe(uint32[] calldata secondsAgos)
                    external
                    view
                    override
                    noDelegateCall
                    returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
                {
                    return
                        observations.observe(
                            _blockTimestamp(),
                            secondsAgos,
                            slot0.tick,
                            slot0.observationIndex,
                            liquidity,
                            slot0.observationCardinality
                        );
                }
                /// @inheritdoc IUniswapV3PoolActions
                function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
                    external
                    override
                    lock
                    noDelegateCall
                {
                    uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
                    uint16 observationCardinalityNextNew =
                        observations.grow(observationCardinalityNextOld, observationCardinalityNext);
                    slot0.observationCardinalityNext = observationCardinalityNextNew;
                    if (observationCardinalityNextOld != observationCardinalityNextNew)
                        emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
                }
                /// @inheritdoc IUniswapV3PoolActions
                /// @dev not locked because it initializes unlocked
                function initialize(uint160 sqrtPriceX96) external override {
                    require(slot0.sqrtPriceX96 == 0, 'AI');
                    int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
                    (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
                    slot0 = Slot0({
                        sqrtPriceX96: sqrtPriceX96,
                        tick: tick,
                        observationIndex: 0,
                        observationCardinality: cardinality,
                        observationCardinalityNext: cardinalityNext,
                        feeProtocol: 0,
                        unlocked: true
                    });
                    emit Initialize(sqrtPriceX96, tick);
                }
                struct ModifyPositionParams {
                    // the address that owns the position
                    address owner;
                    // the lower and upper tick of the position
                    int24 tickLower;
                    int24 tickUpper;
                    // any change in liquidity
                    int128 liquidityDelta;
                }
                /// @dev Effect some changes to a position
                /// @param params the position details and the change to the position's liquidity to effect
                /// @return position a storage pointer referencing the position with the given owner and tick range
                /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
                /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
                function _modifyPosition(ModifyPositionParams memory params)
                    private
                    noDelegateCall
                    returns (
                        Position.Info storage position,
                        int256 amount0,
                        int256 amount1
                    )
                {
                    checkTicks(params.tickLower, params.tickUpper);
                    Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
                    position = _updatePosition(
                        params.owner,
                        params.tickLower,
                        params.tickUpper,
                        params.liquidityDelta,
                        _slot0.tick
                    );
                    if (params.liquidityDelta != 0) {
                        if (_slot0.tick < params.tickLower) {
                            // current tick is below the passed range; liquidity can only become in range by crossing from left to
                            // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
                            amount0 = SqrtPriceMath.getAmount0Delta(
                                TickMath.getSqrtRatioAtTick(params.tickLower),
                                TickMath.getSqrtRatioAtTick(params.tickUpper),
                                params.liquidityDelta
                            );
                        } else if (_slot0.tick < params.tickUpper) {
                            // current tick is inside the passed range
                            uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
                            // write an oracle entry
                            (slot0.observationIndex, slot0.observationCardinality) = observations.write(
                                _slot0.observationIndex,
                                _blockTimestamp(),
                                _slot0.tick,
                                liquidityBefore,
                                _slot0.observationCardinality,
                                _slot0.observationCardinalityNext
                            );
                            amount0 = SqrtPriceMath.getAmount0Delta(
                                _slot0.sqrtPriceX96,
                                TickMath.getSqrtRatioAtTick(params.tickUpper),
                                params.liquidityDelta
                            );
                            amount1 = SqrtPriceMath.getAmount1Delta(
                                TickMath.getSqrtRatioAtTick(params.tickLower),
                                _slot0.sqrtPriceX96,
                                params.liquidityDelta
                            );
                            liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
                        } else {
                            // current tick is above the passed range; liquidity can only become in range by crossing from right to
                            // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
                            amount1 = SqrtPriceMath.getAmount1Delta(
                                TickMath.getSqrtRatioAtTick(params.tickLower),
                                TickMath.getSqrtRatioAtTick(params.tickUpper),
                                params.liquidityDelta
                            );
                        }
                    }
                }
                /// @dev Gets and updates a position with the given liquidity delta
                /// @param owner the owner of the position
                /// @param tickLower the lower tick of the position's tick range
                /// @param tickUpper the upper tick of the position's tick range
                /// @param tick the current tick, passed to avoid sloads
                function _updatePosition(
                    address owner,
                    int24 tickLower,
                    int24 tickUpper,
                    int128 liquidityDelta,
                    int24 tick
                ) private returns (Position.Info storage position) {
                    position = positions.get(owner, tickLower, tickUpper);
                    uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
                    uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
                    // if we need to update the ticks, do it
                    bool flippedLower;
                    bool flippedUpper;
                    if (liquidityDelta != 0) {
                        uint32 time = _blockTimestamp();
                        (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                            observations.observeSingle(
                                time,
                                0,
                                slot0.tick,
                                slot0.observationIndex,
                                liquidity,
                                slot0.observationCardinality
                            );
                        flippedLower = ticks.update(
                            tickLower,
                            tick,
                            liquidityDelta,
                            _feeGrowthGlobal0X128,
                            _feeGrowthGlobal1X128,
                            secondsPerLiquidityCumulativeX128,
                            tickCumulative,
                            time,
                            false,
                            maxLiquidityPerTick
                        );
                        flippedUpper = ticks.update(
                            tickUpper,
                            tick,
                            liquidityDelta,
                            _feeGrowthGlobal0X128,
                            _feeGrowthGlobal1X128,
                            secondsPerLiquidityCumulativeX128,
                            tickCumulative,
                            time,
                            true,
                            maxLiquidityPerTick
                        );
                        if (flippedLower) {
                            tickBitmap.flipTick(tickLower, tickSpacing);
                        }
                        if (flippedUpper) {
                            tickBitmap.flipTick(tickUpper, tickSpacing);
                        }
                    }
                    (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
                        ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
                    position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
                    // clear any tick data that is no longer needed
                    if (liquidityDelta < 0) {
                        if (flippedLower) {
                            ticks.clear(tickLower);
                        }
                        if (flippedUpper) {
                            ticks.clear(tickUpper);
                        }
                    }
                }
                /// @inheritdoc IUniswapV3PoolActions
                /// @dev noDelegateCall is applied indirectly via _modifyPosition
                function mint(
                    address recipient,
                    int24 tickLower,
                    int24 tickUpper,
                    uint128 amount,
                    bytes calldata data
                ) external override lock returns (uint256 amount0, uint256 amount1) {
                    require(amount > 0);
                    (, int256 amount0Int, int256 amount1Int) =
                        _modifyPosition(
                            ModifyPositionParams({
                                owner: recipient,
                                tickLower: tickLower,
                                tickUpper: tickUpper,
                                liquidityDelta: int256(amount).toInt128()
                            })
                        );
                    amount0 = uint256(amount0Int);
                    amount1 = uint256(amount1Int);
                    uint256 balance0Before;
                    uint256 balance1Before;
                    if (amount0 > 0) balance0Before = balance0();
                    if (amount1 > 0) balance1Before = balance1();
                    IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
                    if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
                    if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
                    emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
                }
                /// @inheritdoc IUniswapV3PoolActions
                function collect(
                    address recipient,
                    int24 tickLower,
                    int24 tickUpper,
                    uint128 amount0Requested,
                    uint128 amount1Requested
                ) external override lock returns (uint128 amount0, uint128 amount1) {
                    // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
                    Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
                    amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
                    amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
                    if (amount0 > 0) {
                        position.tokensOwed0 -= amount0;
                        TransferHelper.safeTransfer(token0, recipient, amount0);
                    }
                    if (amount1 > 0) {
                        position.tokensOwed1 -= amount1;
                        TransferHelper.safeTransfer(token1, recipient, amount1);
                    }
                    emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
                }
                /// @inheritdoc IUniswapV3PoolActions
                /// @dev noDelegateCall is applied indirectly via _modifyPosition
                function burn(
                    int24 tickLower,
                    int24 tickUpper,
                    uint128 amount
                ) external override lock returns (uint256 amount0, uint256 amount1) {
                    (Position.Info storage position, int256 amount0Int, int256 amount1Int) =
                        _modifyPosition(
                            ModifyPositionParams({
                                owner: msg.sender,
                                tickLower: tickLower,
                                tickUpper: tickUpper,
                                liquidityDelta: -int256(amount).toInt128()
                            })
                        );
                    amount0 = uint256(-amount0Int);
                    amount1 = uint256(-amount1Int);
                    if (amount0 > 0 || amount1 > 0) {
                        (position.tokensOwed0, position.tokensOwed1) = (
                            position.tokensOwed0 + uint128(amount0),
                            position.tokensOwed1 + uint128(amount1)
                        );
                    }
                    emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
                }
                struct SwapCache {
                    // the protocol fee for the input token
                    uint8 feeProtocol;
                    // liquidity at the beginning of the swap
                    uint128 liquidityStart;
                    // the timestamp of the current block
                    uint32 blockTimestamp;
                    // the current value of the tick accumulator, computed only if we cross an initialized tick
                    int56 tickCumulative;
                    // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
                    uint160 secondsPerLiquidityCumulativeX128;
                    // whether we've computed and cached the above two accumulators
                    bool computedLatestObservation;
                }
                // the top level state of the swap, the results of which are recorded in storage at the end
                struct SwapState {
                    // the amount remaining to be swapped in/out of the input/output asset
                    int256 amountSpecifiedRemaining;
                    // the amount already swapped out/in of the output/input asset
                    int256 amountCalculated;
                    // current sqrt(price)
                    uint160 sqrtPriceX96;
                    // the tick associated with the current price
                    int24 tick;
                    // the global fee growth of the input token
                    uint256 feeGrowthGlobalX128;
                    // amount of input token paid as protocol fee
                    uint128 protocolFee;
                    // the current liquidity in range
                    uint128 liquidity;
                }
                struct StepComputations {
                    // the price at the beginning of the step
                    uint160 sqrtPriceStartX96;
                    // the next tick to swap to from the current tick in the swap direction
                    int24 tickNext;
                    // whether tickNext is initialized or not
                    bool initialized;
                    // sqrt(price) for the next tick (1/0)
                    uint160 sqrtPriceNextX96;
                    // how much is being swapped in in this step
                    uint256 amountIn;
                    // how much is being swapped out
                    uint256 amountOut;
                    // how much fee is being paid in
                    uint256 feeAmount;
                }
                /// @inheritdoc IUniswapV3PoolActions
                function swap(
                    address recipient,
                    bool zeroForOne,
                    int256 amountSpecified,
                    uint160 sqrtPriceLimitX96,
                    bytes calldata data
                ) external override noDelegateCall returns (int256 amount0, int256 amount1) {
                    require(amountSpecified != 0, 'AS');
                    Slot0 memory slot0Start = slot0;
                    require(slot0Start.unlocked, 'LOK');
                    require(
                        zeroForOne
                            ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
                            : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
                        'SPL'
                    );
                    slot0.unlocked = false;
                    SwapCache memory cache =
                        SwapCache({
                            liquidityStart: liquidity,
                            blockTimestamp: _blockTimestamp(),
                            feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
                            secondsPerLiquidityCumulativeX128: 0,
                            tickCumulative: 0,
                            computedLatestObservation: false
                        });
                    bool exactInput = amountSpecified > 0;
                    SwapState memory state =
                        SwapState({
                            amountSpecifiedRemaining: amountSpecified,
                            amountCalculated: 0,
                            sqrtPriceX96: slot0Start.sqrtPriceX96,
                            tick: slot0Start.tick,
                            feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
                            protocolFee: 0,
                            liquidity: cache.liquidityStart
                        });
                    // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
                    while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
                        StepComputations memory step;
                        step.sqrtPriceStartX96 = state.sqrtPriceX96;
                        (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
                            state.tick,
                            tickSpacing,
                            zeroForOne
                        );
                        // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
                        if (step.tickNext < TickMath.MIN_TICK) {
                            step.tickNext = TickMath.MIN_TICK;
                        } else if (step.tickNext > TickMath.MAX_TICK) {
                            step.tickNext = TickMath.MAX_TICK;
                        }
                        // get the price for the next tick
                        step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
                        // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
                        (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
                            state.sqrtPriceX96,
                            (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
                                ? sqrtPriceLimitX96
                                : step.sqrtPriceNextX96,
                            state.liquidity,
                            state.amountSpecifiedRemaining,
                            fee
                        );
                        if (exactInput) {
                            state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
                            state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
                        } else {
                            state.amountSpecifiedRemaining += step.amountOut.toInt256();
                            state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
                        }
                        // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
                        if (cache.feeProtocol > 0) {
                            uint256 delta = step.feeAmount / cache.feeProtocol;
                            step.feeAmount -= delta;
                            state.protocolFee += uint128(delta);
                        }
                        // update global fee tracker
                        if (state.liquidity > 0)
                            state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
                        // shift tick if we reached the next price
                        if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
                            // if the tick is initialized, run the tick transition
                            if (step.initialized) {
                                // check for the placeholder value, which we replace with the actual value the first time the swap
                                // crosses an initialized tick
                                if (!cache.computedLatestObservation) {
                                    (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                                        cache.blockTimestamp,
                                        0,
                                        slot0Start.tick,
                                        slot0Start.observationIndex,
                                        cache.liquidityStart,
                                        slot0Start.observationCardinality
                                    );
                                    cache.computedLatestObservation = true;
                                }
                                int128 liquidityNet =
                                    ticks.cross(
                                        step.tickNext,
                                        (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                                        (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                                        cache.secondsPerLiquidityCumulativeX128,
                                        cache.tickCumulative,
                                        cache.blockTimestamp
                                    );
                                // if we're moving leftward, we interpret liquidityNet as the opposite sign
                                // safe because liquidityNet cannot be type(int128).min
                                if (zeroForOne) liquidityNet = -liquidityNet;
                                state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
                            }
                            state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
                        } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
                            // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
                            state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
                        }
                    }
                    // update tick and write an oracle entry if the tick change
                    if (state.tick != slot0Start.tick) {
                        (uint16 observationIndex, uint16 observationCardinality) =
                            observations.write(
                                slot0Start.observationIndex,
                                cache.blockTimestamp,
                                slot0Start.tick,
                                cache.liquidityStart,
                                slot0Start.observationCardinality,
                                slot0Start.observationCardinalityNext
                            );
                        (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
                            state.sqrtPriceX96,
                            state.tick,
                            observationIndex,
                            observationCardinality
                        );
                    } else {
                        // otherwise just update the price
                        slot0.sqrtPriceX96 = state.sqrtPriceX96;
                    }
                    // update liquidity if it changed
                    if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
                    // update fee growth global and, if necessary, protocol fees
                    // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
                    if (zeroForOne) {
                        feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
                        if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
                    } else {
                        feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
                        if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
                    }
                    (amount0, amount1) = zeroForOne == exactInput
                        ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
                        : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
                    // do the transfers and collect payment
                    if (zeroForOne) {
                        if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
                        uint256 balance0Before = balance0();
                        IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                        require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
                    } else {
                        if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
                        uint256 balance1Before = balance1();
                        IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                        require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
                    }
                    emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
                    slot0.unlocked = true;
                }
                /// @inheritdoc IUniswapV3PoolActions
                function flash(
                    address recipient,
                    uint256 amount0,
                    uint256 amount1,
                    bytes calldata data
                ) external override lock noDelegateCall {
                    uint128 _liquidity = liquidity;
                    require(_liquidity > 0, 'L');
                    uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
                    uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
                    uint256 balance0Before = balance0();
                    uint256 balance1Before = balance1();
                    if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
                    if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
                    IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
                    uint256 balance0After = balance0();
                    uint256 balance1After = balance1();
                    require(balance0Before.add(fee0) <= balance0After, 'F0');
                    require(balance1Before.add(fee1) <= balance1After, 'F1');
                    // sub is safe because we know balanceAfter is gt balanceBefore by at least fee
                    uint256 paid0 = balance0After - balance0Before;
                    uint256 paid1 = balance1After - balance1Before;
                    if (paid0 > 0) {
                        uint8 feeProtocol0 = slot0.feeProtocol % 16;
                        uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
                        if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
                        feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
                    }
                    if (paid1 > 0) {
                        uint8 feeProtocol1 = slot0.feeProtocol >> 4;
                        uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
                        if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
                        feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
                    }
                    emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
                }
                /// @inheritdoc IUniswapV3PoolOwnerActions
                function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
                    require(
                        (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
                            (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
                    );
                    uint8 feeProtocolOld = slot0.feeProtocol;
                    slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
                    emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
                }
                /// @inheritdoc IUniswapV3PoolOwnerActions
                function collectProtocol(
                    address recipient,
                    uint128 amount0Requested,
                    uint128 amount1Requested
                ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
                    amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
                    amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
                    if (amount0 > 0) {
                        if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
                        protocolFees.token0 -= amount0;
                        TransferHelper.safeTransfer(token0, recipient, amount0);
                    }
                    if (amount1 > 0) {
                        if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
                        protocolFees.token1 -= amount1;
                        TransferHelper.safeTransfer(token1, recipient, amount1);
                    }
                    emit CollectProtocol(msg.sender, recipient, amount0, amount1);
                }
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            import './pool/IUniswapV3PoolImmutables.sol';
            import './pool/IUniswapV3PoolState.sol';
            import './pool/IUniswapV3PoolDerivedState.sol';
            import './pool/IUniswapV3PoolActions.sol';
            import './pool/IUniswapV3PoolOwnerActions.sol';
            import './pool/IUniswapV3PoolEvents.sol';
            /// @title The interface for a Uniswap V3 Pool
            /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
            /// to the ERC20 specification
            /// @dev The pool interface is broken up into many smaller pieces
            interface IUniswapV3Pool is
                IUniswapV3PoolImmutables,
                IUniswapV3PoolState,
                IUniswapV3PoolDerivedState,
                IUniswapV3PoolActions,
                IUniswapV3PoolOwnerActions,
                IUniswapV3PoolEvents
            {
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity =0.7.6;
            /// @title Prevents delegatecall to a contract
            /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
            abstract contract NoDelegateCall {
                /// @dev The original address of this contract
                address private immutable original;
                constructor() {
                    // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
                    // In other words, this variable won't change when it's checked at runtime.
                    original = address(this);
                }
                /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
                ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
                function checkNotDelegateCall() private view {
                    require(address(this) == original);
                }
                /// @notice Prevents delegatecall into the modified method
                modifier noDelegateCall() {
                    checkNotDelegateCall();
                    _;
                }
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.7.0;
            /// @title Optimized overflow and underflow safe math operations
            /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
            library LowGasSafeMath {
                /// @notice Returns x + y, reverts if sum overflows uint256
                /// @param x The augend
                /// @param y The addend
                /// @return z The sum of x and y
                function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                    require((z = x + y) >= x);
                }
                /// @notice Returns x - y, reverts if underflows
                /// @param x The minuend
                /// @param y The subtrahend
                /// @return z The difference of x and y
                function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                    require((z = x - y) <= x);
                }
                /// @notice Returns x * y, reverts if overflows
                /// @param x The multiplicand
                /// @param y The multiplier
                /// @return z The product of x and y
                function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                    require(x == 0 || (z = x * y) / x == y);
                }
                /// @notice Returns x + y, reverts if overflows or underflows
                /// @param x The augend
                /// @param y The addend
                /// @return z The sum of x and y
                function add(int256 x, int256 y) internal pure returns (int256 z) {
                    require((z = x + y) >= x == (y >= 0));
                }
                /// @notice Returns x - y, reverts if overflows or underflows
                /// @param x The minuend
                /// @param y The subtrahend
                /// @return z The difference of x and y
                function sub(int256 x, int256 y) internal pure returns (int256 z) {
                    require((z = x - y) <= x == (y >= 0));
                }
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Safe casting methods
            /// @notice Contains methods for safely casting between types
            library SafeCast {
                /// @notice Cast a uint256 to a uint160, revert on overflow
                /// @param y The uint256 to be downcasted
                /// @return z The downcasted integer, now type uint160
                function toUint160(uint256 y) internal pure returns (uint160 z) {
                    require((z = uint160(y)) == y);
                }
                /// @notice Cast a int256 to a int128, revert on overflow or underflow
                /// @param y The int256 to be downcasted
                /// @return z The downcasted integer, now type int128
                function toInt128(int256 y) internal pure returns (int128 z) {
                    require((z = int128(y)) == y);
                }
                /// @notice Cast a uint256 to a int256, revert on overflow
                /// @param y The uint256 to be casted
                /// @return z The casted integer, now type int256
                function toInt256(uint256 y) internal pure returns (int256 z) {
                    require(y < 2**255);
                    z = int256(y);
                }
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity >=0.5.0;
            import './LowGasSafeMath.sol';
            import './SafeCast.sol';
            import './TickMath.sol';
            import './LiquidityMath.sol';
            /// @title Tick
            /// @notice Contains functions for managing tick processes and relevant calculations
            library Tick {
                using LowGasSafeMath for int256;
                using SafeCast for int256;
                // info stored for each initialized individual tick
                struct Info {
                    // the total position liquidity that references this tick
                    uint128 liquidityGross;
                    // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
                    int128 liquidityNet;
                    // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                    // only has relative meaning, not absolute — the value depends on when the tick is initialized
                    uint256 feeGrowthOutside0X128;
                    uint256 feeGrowthOutside1X128;
                    // the cumulative tick value on the other side of the tick
                    int56 tickCumulativeOutside;
                    // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                    // only has relative meaning, not absolute — the value depends on when the tick is initialized
                    uint160 secondsPerLiquidityOutsideX128;
                    // the seconds spent on the other side of the tick (relative to the current tick)
                    // only has relative meaning, not absolute — the value depends on when the tick is initialized
                    uint32 secondsOutside;
                    // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
                    // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
                    bool initialized;
                }
                /// @notice Derives max liquidity per tick from given tick spacing
                /// @dev Executed within the pool constructor
                /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
                ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
                /// @return The max liquidity per tick
                function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
                    int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
                    int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
                    uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
                    return type(uint128).max / numTicks;
                }
                /// @notice Retrieves fee growth data
                /// @param self The mapping containing all tick information for initialized ticks
                /// @param tickLower The lower tick boundary of the position
                /// @param tickUpper The upper tick boundary of the position
                /// @param tickCurrent The current tick
                /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                function getFeeGrowthInside(
                    mapping(int24 => Tick.Info) storage self,
                    int24 tickLower,
                    int24 tickUpper,
                    int24 tickCurrent,
                    uint256 feeGrowthGlobal0X128,
                    uint256 feeGrowthGlobal1X128
                ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
                    Info storage lower = self[tickLower];
                    Info storage upper = self[tickUpper];
                    // calculate fee growth below
                    uint256 feeGrowthBelow0X128;
                    uint256 feeGrowthBelow1X128;
                    if (tickCurrent >= tickLower) {
                        feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
                        feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
                    } else {
                        feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
                        feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
                    }
                    // calculate fee growth above
                    uint256 feeGrowthAbove0X128;
                    uint256 feeGrowthAbove1X128;
                    if (tickCurrent < tickUpper) {
                        feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
                        feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
                    } else {
                        feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
                        feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
                    }
                    feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
                    feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
                }
                /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
                /// @param self The mapping containing all tick information for initialized ticks
                /// @param tick The tick that will be updated
                /// @param tickCurrent The current tick
                /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
                /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
                /// @param time The current block timestamp cast to a uint32
                /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
                /// @param maxLiquidity The maximum liquidity allocation for a single tick
                /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
                function update(
                    mapping(int24 => Tick.Info) storage self,
                    int24 tick,
                    int24 tickCurrent,
                    int128 liquidityDelta,
                    uint256 feeGrowthGlobal0X128,
                    uint256 feeGrowthGlobal1X128,
                    uint160 secondsPerLiquidityCumulativeX128,
                    int56 tickCumulative,
                    uint32 time,
                    bool upper,
                    uint128 maxLiquidity
                ) internal returns (bool flipped) {
                    Tick.Info storage info = self[tick];
                    uint128 liquidityGrossBefore = info.liquidityGross;
                    uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
                    require(liquidityGrossAfter <= maxLiquidity, 'LO');
                    flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
                    if (liquidityGrossBefore == 0) {
                        // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
                        if (tick <= tickCurrent) {
                            info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
                            info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
                            info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
                            info.tickCumulativeOutside = tickCumulative;
                            info.secondsOutside = time;
                        }
                        info.initialized = true;
                    }
                    info.liquidityGross = liquidityGrossAfter;
                    // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
                    info.liquidityNet = upper
                        ? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
                        : int256(info.liquidityNet).add(liquidityDelta).toInt128();
                }
                /// @notice Clears tick data
                /// @param self The mapping containing all initialized tick information for initialized ticks
                /// @param tick The tick that will be cleared
                function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
                    delete self[tick];
                }
                /// @notice Transitions to next tick as needed by price movement
                /// @param self The mapping containing all tick information for initialized ticks
                /// @param tick The destination tick of the transition
                /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
                /// @param time The current block.timestamp
                /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
                function cross(
                    mapping(int24 => Tick.Info) storage self,
                    int24 tick,
                    uint256 feeGrowthGlobal0X128,
                    uint256 feeGrowthGlobal1X128,
                    uint160 secondsPerLiquidityCumulativeX128,
                    int56 tickCumulative,
                    uint32 time
                ) internal returns (int128 liquidityNet) {
                    Tick.Info storage info = self[tick];
                    info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
                    info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
                    info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
                    info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
                    info.secondsOutside = time - info.secondsOutside;
                    liquidityNet = info.liquidityNet;
                }
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity >=0.5.0;
            import './BitMath.sol';
            /// @title Packed tick initialized state library
            /// @notice Stores a packed mapping of tick index to its initialized state
            /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
            library TickBitmap {
                /// @notice Computes the position in the mapping where the initialized bit for a tick lives
                /// @param tick The tick for which to compute the position
                /// @return wordPos The key in the mapping containing the word in which the bit is stored
                /// @return bitPos The bit position in the word where the flag is stored
                function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
                    wordPos = int16(tick >> 8);
                    bitPos = uint8(tick % 256);
                }
                /// @notice Flips the initialized state for a given tick from false to true, or vice versa
                /// @param self The mapping in which to flip the tick
                /// @param tick The tick to flip
                /// @param tickSpacing The spacing between usable ticks
                function flipTick(
                    mapping(int16 => uint256) storage self,
                    int24 tick,
                    int24 tickSpacing
                ) internal {
                    require(tick % tickSpacing == 0); // ensure that the tick is spaced
                    (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
                    uint256 mask = 1 << bitPos;
                    self[wordPos] ^= mask;
                }
                /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
                /// to the left (less than or equal to) or right (greater than) of the given tick
                /// @param self The mapping in which to compute the next initialized tick
                /// @param tick The starting tick
                /// @param tickSpacing The spacing between usable ticks
                /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
                /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
                /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
                function nextInitializedTickWithinOneWord(
                    mapping(int16 => uint256) storage self,
                    int24 tick,
                    int24 tickSpacing,
                    bool lte
                ) internal view returns (int24 next, bool initialized) {
                    int24 compressed = tick / tickSpacing;
                    if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
                    if (lte) {
                        (int16 wordPos, uint8 bitPos) = position(compressed);
                        // all the 1s at or to the right of the current bitPos
                        uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
                        uint256 masked = self[wordPos] & mask;
                        // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
                        initialized = masked != 0;
                        // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                        next = initialized
                            ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
                            : (compressed - int24(bitPos)) * tickSpacing;
                    } else {
                        // start from the word of the next tick, since the current tick state doesn't matter
                        (int16 wordPos, uint8 bitPos) = position(compressed + 1);
                        // all the 1s at or to the left of the bitPos
                        uint256 mask = ~((1 << bitPos) - 1);
                        uint256 masked = self[wordPos] & mask;
                        // if there are no initialized ticks to the left of the current tick, return leftmost in the word
                        initialized = masked != 0;
                        // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                        next = initialized
                            ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
                            : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
                    }
                }
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity >=0.5.0;
            import './FullMath.sol';
            import './FixedPoint128.sol';
            import './LiquidityMath.sol';
            /// @title Position
            /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
            /// @dev Positions store additional state for tracking fees owed to the position
            library Position {
                // info stored for each user's position
                struct Info {
                    // the amount of liquidity owned by this position
                    uint128 liquidity;
                    // fee growth per unit of liquidity as of the last update to liquidity or fees owed
                    uint256 feeGrowthInside0LastX128;
                    uint256 feeGrowthInside1LastX128;
                    // the fees owed to the position owner in token0/token1
                    uint128 tokensOwed0;
                    uint128 tokensOwed1;
                }
                /// @notice Returns the Info struct of a position, given an owner and position boundaries
                /// @param self The mapping containing all user positions
                /// @param owner The address of the position owner
                /// @param tickLower The lower tick boundary of the position
                /// @param tickUpper The upper tick boundary of the position
                /// @return position The position info struct of the given owners' position
                function get(
                    mapping(bytes32 => Info) storage self,
                    address owner,
                    int24 tickLower,
                    int24 tickUpper
                ) internal view returns (Position.Info storage position) {
                    position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
                }
                /// @notice Credits accumulated fees to a user's position
                /// @param self The individual position to update
                /// @param liquidityDelta The change in pool liquidity as a result of the position update
                /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                function update(
                    Info storage self,
                    int128 liquidityDelta,
                    uint256 feeGrowthInside0X128,
                    uint256 feeGrowthInside1X128
                ) internal {
                    Info memory _self = self;
                    uint128 liquidityNext;
                    if (liquidityDelta == 0) {
                        require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
                        liquidityNext = _self.liquidity;
                    } else {
                        liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
                    }
                    // calculate accumulated fees
                    uint128 tokensOwed0 =
                        uint128(
                            FullMath.mulDiv(
                                feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
                                _self.liquidity,
                                FixedPoint128.Q128
                            )
                        );
                    uint128 tokensOwed1 =
                        uint128(
                            FullMath.mulDiv(
                                feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
                                _self.liquidity,
                                FixedPoint128.Q128
                            )
                        );
                    // update the position
                    if (liquidityDelta != 0) self.liquidity = liquidityNext;
                    self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
                    self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
                    if (tokensOwed0 > 0 || tokensOwed1 > 0) {
                        // overflow is acceptable, have to withdraw before you hit type(uint128).max fees
                        self.tokensOwed0 += tokensOwed0;
                        self.tokensOwed1 += tokensOwed1;
                    }
                }
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity >=0.5.0;
            /// @title Oracle
            /// @notice Provides price and liquidity data useful for a wide variety of system designs
            /// @dev Instances of stored oracle data, "observations", are collected in the oracle array
            /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
            /// maximum length of the oracle array. New slots will be added when the array is fully populated.
            /// Observations are overwritten when the full length of the oracle array is populated.
            /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
            library Oracle {
                struct Observation {
                    // the block timestamp of the observation
                    uint32 blockTimestamp;
                    // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
                    int56 tickCumulative;
                    // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
                    uint160 secondsPerLiquidityCumulativeX128;
                    // whether or not the observation is initialized
                    bool initialized;
                }
                /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
                /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
                /// @param last The specified observation to be transformed
                /// @param blockTimestamp The timestamp of the new observation
                /// @param tick The active tick at the time of the new observation
                /// @param liquidity The total in-range liquidity at the time of the new observation
                /// @return Observation The newly populated observation
                function transform(
                    Observation memory last,
                    uint32 blockTimestamp,
                    int24 tick,
                    uint128 liquidity
                ) private pure returns (Observation memory) {
                    uint32 delta = blockTimestamp - last.blockTimestamp;
                    return
                        Observation({
                            blockTimestamp: blockTimestamp,
                            tickCumulative: last.tickCumulative + int56(tick) * delta,
                            secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
                                ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
                            initialized: true
                        });
                }
                /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
                /// @param self The stored oracle array
                /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
                /// @return cardinality The number of populated elements in the oracle array
                /// @return cardinalityNext The new length of the oracle array, independent of population
                function initialize(Observation[65535] storage self, uint32 time)
                    internal
                    returns (uint16 cardinality, uint16 cardinalityNext)
                {
                    self[0] = Observation({
                        blockTimestamp: time,
                        tickCumulative: 0,
                        secondsPerLiquidityCumulativeX128: 0,
                        initialized: true
                    });
                    return (1, 1);
                }
                /// @notice Writes an oracle observation to the array
                /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
                /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
                /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
                /// @param self The stored oracle array
                /// @param index The index of the observation that was most recently written to the observations array
                /// @param blockTimestamp The timestamp of the new observation
                /// @param tick The active tick at the time of the new observation
                /// @param liquidity The total in-range liquidity at the time of the new observation
                /// @param cardinality The number of populated elements in the oracle array
                /// @param cardinalityNext The new length of the oracle array, independent of population
                /// @return indexUpdated The new index of the most recently written element in the oracle array
                /// @return cardinalityUpdated The new cardinality of the oracle array
                function write(
                    Observation[65535] storage self,
                    uint16 index,
                    uint32 blockTimestamp,
                    int24 tick,
                    uint128 liquidity,
                    uint16 cardinality,
                    uint16 cardinalityNext
                ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
                    Observation memory last = self[index];
                    // early return if we've already written an observation this block
                    if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
                    // if the conditions are right, we can bump the cardinality
                    if (cardinalityNext > cardinality && index == (cardinality - 1)) {
                        cardinalityUpdated = cardinalityNext;
                    } else {
                        cardinalityUpdated = cardinality;
                    }
                    indexUpdated = (index + 1) % cardinalityUpdated;
                    self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
                }
                /// @notice Prepares the oracle array to store up to `next` observations
                /// @param self The stored oracle array
                /// @param current The current next cardinality of the oracle array
                /// @param next The proposed next cardinality which will be populated in the oracle array
                /// @return next The next cardinality which will be populated in the oracle array
                function grow(
                    Observation[65535] storage self,
                    uint16 current,
                    uint16 next
                ) internal returns (uint16) {
                    require(current > 0, 'I');
                    // no-op if the passed next value isn't greater than the current next value
                    if (next <= current) return current;
                    // store in each slot to prevent fresh SSTOREs in swaps
                    // this data will not be used because the initialized boolean is still false
                    for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
                    return next;
                }
                /// @notice comparator for 32-bit timestamps
                /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
                /// @param time A timestamp truncated to 32 bits
                /// @param a A comparison timestamp from which to determine the relative position of `time`
                /// @param b From which to determine the relative position of `time`
                /// @return bool Whether `a` is chronologically <= `b`
                function lte(
                    uint32 time,
                    uint32 a,
                    uint32 b
                ) private pure returns (bool) {
                    // if there hasn't been overflow, no need to adjust
                    if (a <= time && b <= time) return a <= b;
                    uint256 aAdjusted = a > time ? a : a + 2**32;
                    uint256 bAdjusted = b > time ? b : b + 2**32;
                    return aAdjusted <= bAdjusted;
                }
                /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
                /// The result may be the same observation, or adjacent observations.
                /// @dev The answer must be contained in the array, used when the target is located within the stored observation
                /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
                /// @param self The stored oracle array
                /// @param time The current block.timestamp
                /// @param target The timestamp at which the reserved observation should be for
                /// @param index The index of the observation that was most recently written to the observations array
                /// @param cardinality The number of populated elements in the oracle array
                /// @return beforeOrAt The observation recorded before, or at, the target
                /// @return atOrAfter The observation recorded at, or after, the target
                function binarySearch(
                    Observation[65535] storage self,
                    uint32 time,
                    uint32 target,
                    uint16 index,
                    uint16 cardinality
                ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                    uint256 l = (index + 1) % cardinality; // oldest observation
                    uint256 r = l + cardinality - 1; // newest observation
                    uint256 i;
                    while (true) {
                        i = (l + r) / 2;
                        beforeOrAt = self[i % cardinality];
                        // we've landed on an uninitialized tick, keep searching higher (more recently)
                        if (!beforeOrAt.initialized) {
                            l = i + 1;
                            continue;
                        }
                        atOrAfter = self[(i + 1) % cardinality];
                        bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
                        // check if we've found the answer!
                        if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
                        if (!targetAtOrAfter) r = i - 1;
                        else l = i + 1;
                    }
                }
                /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
                /// @dev Assumes there is at least 1 initialized observation.
                /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
                /// @param self The stored oracle array
                /// @param time The current block.timestamp
                /// @param target The timestamp at which the reserved observation should be for
                /// @param tick The active tick at the time of the returned or simulated observation
                /// @param index The index of the observation that was most recently written to the observations array
                /// @param liquidity The total pool liquidity at the time of the call
                /// @param cardinality The number of populated elements in the oracle array
                /// @return beforeOrAt The observation which occurred at, or before, the given timestamp
                /// @return atOrAfter The observation which occurred at, or after, the given timestamp
                function getSurroundingObservations(
                    Observation[65535] storage self,
                    uint32 time,
                    uint32 target,
                    int24 tick,
                    uint16 index,
                    uint128 liquidity,
                    uint16 cardinality
                ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                    // optimistically set before to the newest observation
                    beforeOrAt = self[index];
                    // if the target is chronologically at or after the newest observation, we can early return
                    if (lte(time, beforeOrAt.blockTimestamp, target)) {
                        if (beforeOrAt.blockTimestamp == target) {
                            // if newest observation equals target, we're in the same block, so we can ignore atOrAfter
                            return (beforeOrAt, atOrAfter);
                        } else {
                            // otherwise, we need to transform
                            return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
                        }
                    }
                    // now, set before to the oldest observation
                    beforeOrAt = self[(index + 1) % cardinality];
                    if (!beforeOrAt.initialized) beforeOrAt = self[0];
                    // ensure that the target is chronologically at or after the oldest observation
                    require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
                    // if we've reached this point, we have to binary search
                    return binarySearch(self, time, target, index, cardinality);
                }
                /// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
                /// 0 may be passed as `secondsAgo' to return the current cumulative values.
                /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
                /// at exactly the timestamp between the two observations.
                /// @param self The stored oracle array
                /// @param time The current block timestamp
                /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
                /// @param tick The current tick
                /// @param index The index of the observation that was most recently written to the observations array
                /// @param liquidity The current in-range pool liquidity
                /// @param cardinality The number of populated elements in the oracle array
                /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
                /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
                function observeSingle(
                    Observation[65535] storage self,
                    uint32 time,
                    uint32 secondsAgo,
                    int24 tick,
                    uint16 index,
                    uint128 liquidity,
                    uint16 cardinality
                ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
                    if (secondsAgo == 0) {
                        Observation memory last = self[index];
                        if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
                        return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
                    }
                    uint32 target = time - secondsAgo;
                    (Observation memory beforeOrAt, Observation memory atOrAfter) =
                        getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
                    if (target == beforeOrAt.blockTimestamp) {
                        // we're at the left boundary
                        return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
                    } else if (target == atOrAfter.blockTimestamp) {
                        // we're at the right boundary
                        return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
                    } else {
                        // we're in the middle
                        uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
                        uint32 targetDelta = target - beforeOrAt.blockTimestamp;
                        return (
                            beforeOrAt.tickCumulative +
                                ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
                                targetDelta,
                            beforeOrAt.secondsPerLiquidityCumulativeX128 +
                                uint160(
                                    (uint256(
                                        atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
                                    ) * targetDelta) / observationTimeDelta
                                )
                        );
                    }
                }
                /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
                /// @dev Reverts if `secondsAgos` > oldest observation
                /// @param self The stored oracle array
                /// @param time The current block.timestamp
                /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
                /// @param tick The current tick
                /// @param index The index of the observation that was most recently written to the observations array
                /// @param liquidity The current in-range pool liquidity
                /// @param cardinality The number of populated elements in the oracle array
                /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
                /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
                function observe(
                    Observation[65535] storage self,
                    uint32 time,
                    uint32[] memory secondsAgos,
                    int24 tick,
                    uint16 index,
                    uint128 liquidity,
                    uint16 cardinality
                ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
                    require(cardinality > 0, 'I');
                    tickCumulatives = new int56[](secondsAgos.length);
                    secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
                    for (uint256 i = 0; i < secondsAgos.length; i++) {
                        (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
                            self,
                            time,
                            secondsAgos[i],
                            tick,
                            index,
                            liquidity,
                            cardinality
                        );
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.4.0;
            /// @title Contains 512-bit math functions
            /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
            /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
            library FullMath {
                /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                /// @param a The multiplicand
                /// @param b The multiplier
                /// @param denominator The divisor
                /// @return result The 256-bit result
                /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                function mulDiv(
                    uint256 a,
                    uint256 b,
                    uint256 denominator
                ) internal pure returns (uint256 result) {
                    // 512-bit multiply [prod1 prod0] = a * b
                    // Compute the product mod 2**256 and mod 2**256 - 1
                    // then use the Chinese Remainder Theorem to reconstruct
                    // the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2**256 + prod0
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(a, b, not(0))
                        prod0 := mul(a, b)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division
                    if (prod1 == 0) {
                        require(denominator > 0);
                        assembly {
                            result := div(prod0, denominator)
                        }
                        return result;
                    }
                    // Make sure the result is less than 2**256.
                    // Also prevents denominator == 0
                    require(denominator > prod1);
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0]
                    // Compute remainder using mulmod
                    uint256 remainder;
                    assembly {
                        remainder := mulmod(a, b, denominator)
                    }
                    // Subtract 256 bit number from 512 bit number
                    assembly {
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator
                    // Compute largest power of two divisor of denominator.
                    // Always >= 1.
                    uint256 twos = -denominator & denominator;
                    // Divide denominator by power of two
                    assembly {
                        denominator := div(denominator, twos)
                    }
                    // Divide [prod1 prod0] by the factors of two
                    assembly {
                        prod0 := div(prod0, twos)
                    }
                    // Shift in bits from prod1 into prod0. For this we need
                    // to flip `twos` such that it is 2**256 / twos.
                    // If twos is zero, then it becomes one
                    assembly {
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2**256
                    // Now that denominator is an odd number, it has an inverse
                    // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, denominator * inv = 1 mod 2**4
                    uint256 inv = (3 * denominator) ^ 2;
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv *= 2 - denominator * inv; // inverse mod 2**8
                    inv *= 2 - denominator * inv; // inverse mod 2**16
                    inv *= 2 - denominator * inv; // inverse mod 2**32
                    inv *= 2 - denominator * inv; // inverse mod 2**64
                    inv *= 2 - denominator * inv; // inverse mod 2**128
                    inv *= 2 - denominator * inv; // inverse mod 2**256
                    // Because the division is now exact we can divide by multiplying
                    // with the modular inverse of denominator. This will give us the
                    // correct result modulo 2**256. Since the precoditions guarantee
                    // that the outcome is less than 2**256, this is the final result.
                    // We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inv;
                    return result;
                }
                /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                /// @param a The multiplicand
                /// @param b The multiplier
                /// @param denominator The divisor
                /// @return result The 256-bit result
                function mulDivRoundingUp(
                    uint256 a,
                    uint256 b,
                    uint256 denominator
                ) internal pure returns (uint256 result) {
                    result = mulDiv(a, b, denominator);
                    if (mulmod(a, b, denominator) > 0) {
                        require(result < type(uint256).max);
                        result++;
                    }
                }
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.4.0;
            /// @title FixedPoint128
            /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
            library FixedPoint128 {
                uint256 internal constant Q128 = 0x100000000000000000000000000000000;
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.6.0;
            import '../interfaces/IERC20Minimal.sol';
            /// @title TransferHelper
            /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
            library TransferHelper {
                /// @notice Transfers tokens from msg.sender to a recipient
                /// @dev Calls transfer on token contract, errors with TF if transfer fails
                /// @param token The contract address of the token which will be transferred
                /// @param to The recipient of the transfer
                /// @param value The value of the transfer
                function safeTransfer(
                    address token,
                    address to,
                    uint256 value
                ) internal {
                    (bool success, bytes memory data) =
                        token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
                    require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
                }
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Math library for computing sqrt prices from ticks and vice versa
            /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
            /// prices between 2**-128 and 2**128
            library TickMath {
                /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
                int24 internal constant MIN_TICK = -887272;
                /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
                int24 internal constant MAX_TICK = -MIN_TICK;
                /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
                uint160 internal constant MIN_SQRT_RATIO = 4295128739;
                /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
                uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
                /// @notice Calculates sqrt(1.0001^tick) * 2^96
                /// @dev Throws if |tick| > max tick
                /// @param tick The input tick for the above formula
                /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
                /// at the given tick
                function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                    uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                    require(absTick <= uint256(MAX_TICK), 'T');
                    uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                    if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                    if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                    if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                    if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                    if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                    if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                    if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                    if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                    if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                    if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                    if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                    if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                    if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                    if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                    if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                    if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                    if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                    if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                    if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                    if (tick > 0) ratio = type(uint256).max / ratio;
                    // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                    // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                    // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                    sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
                }
                /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
                /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
                /// ever return.
                /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
                /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
                function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                    // second inequality must be < because the price can never reach the price at the max tick
                    require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                    uint256 ratio = uint256(sqrtPriceX96) << 32;
                    uint256 r = ratio;
                    uint256 msb = 0;
                    assembly {
                        let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                        msb := or(msb, f)
                        r := shr(f, r)
                    }
                    assembly {
                        let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                        msb := or(msb, f)
                        r := shr(f, r)
                    }
                    assembly {
                        let f := shl(5, gt(r, 0xFFFFFFFF))
                        msb := or(msb, f)
                        r := shr(f, r)
                    }
                    assembly {
                        let f := shl(4, gt(r, 0xFFFF))
                        msb := or(msb, f)
                        r := shr(f, r)
                    }
                    assembly {
                        let f := shl(3, gt(r, 0xFF))
                        msb := or(msb, f)
                        r := shr(f, r)
                    }
                    assembly {
                        let f := shl(2, gt(r, 0xF))
                        msb := or(msb, f)
                        r := shr(f, r)
                    }
                    assembly {
                        let f := shl(1, gt(r, 0x3))
                        msb := or(msb, f)
                        r := shr(f, r)
                    }
                    assembly {
                        let f := gt(r, 0x1)
                        msb := or(msb, f)
                    }
                    if (msb >= 128) r = ratio >> (msb - 127);
                    else r = ratio << (127 - msb);
                    int256 log_2 = (int256(msb) - 128) << 64;
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(63, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(62, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(61, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(60, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(59, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(58, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(57, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(56, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(55, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(54, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(53, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(52, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(51, f))
                        r := shr(f, r)
                    }
                    assembly {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(50, f))
                    }
                    int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                    int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                    int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                    tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
                }
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Math library for liquidity
            library LiquidityMath {
                /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
                /// @param x The liquidity before change
                /// @param y The delta by which liquidity should be changed
                /// @return z The liquidity delta
                function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
                    if (y < 0) {
                        require((z = x - uint128(-y)) < x, 'LS');
                    } else {
                        require((z = x + uint128(y)) >= x, 'LA');
                    }
                }
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity >=0.5.0;
            import './LowGasSafeMath.sol';
            import './SafeCast.sol';
            import './FullMath.sol';
            import './UnsafeMath.sol';
            import './FixedPoint96.sol';
            /// @title Functions based on Q64.96 sqrt price and liquidity
            /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
            library SqrtPriceMath {
                using LowGasSafeMath for uint256;
                using SafeCast for uint256;
                /// @notice Gets the next sqrt price given a delta of token0
                /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
                /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
                /// price less in order to not send too much output.
                /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
                /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
                /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
                /// @param liquidity The amount of usable liquidity
                /// @param amount How much of token0 to add or remove from virtual reserves
                /// @param add Whether to add or remove the amount of token0
                /// @return The price after adding or removing amount, depending on add
                function getNextSqrtPriceFromAmount0RoundingUp(
                    uint160 sqrtPX96,
                    uint128 liquidity,
                    uint256 amount,
                    bool add
                ) internal pure returns (uint160) {
                    // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
                    if (amount == 0) return sqrtPX96;
                    uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                    if (add) {
                        uint256 product;
                        if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
                            uint256 denominator = numerator1 + product;
                            if (denominator >= numerator1)
                                // always fits in 160 bits
                                return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                        }
                        return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
                    } else {
                        uint256 product;
                        // if the product overflows, we know the denominator underflows
                        // in addition, we must check that the denominator does not underflow
                        require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
                        uint256 denominator = numerator1 - product;
                        return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
                    }
                }
                /// @notice Gets the next sqrt price given a delta of token1
                /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
                /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
                /// price less in order to not send too much output.
                /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
                /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
                /// @param liquidity The amount of usable liquidity
                /// @param amount How much of token1 to add, or remove, from virtual reserves
                /// @param add Whether to add, or remove, the amount of token1
                /// @return The price after adding or removing `amount`
                function getNextSqrtPriceFromAmount1RoundingDown(
                    uint160 sqrtPX96,
                    uint128 liquidity,
                    uint256 amount,
                    bool add
                ) internal pure returns (uint160) {
                    // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
                    // in both cases, avoid a mulDiv for most inputs
                    if (add) {
                        uint256 quotient =
                            (
                                amount <= type(uint160).max
                                    ? (amount << FixedPoint96.RESOLUTION) / liquidity
                                    : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
                            );
                        return uint256(sqrtPX96).add(quotient).toUint160();
                    } else {
                        uint256 quotient =
                            (
                                amount <= type(uint160).max
                                    ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                                    : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
                            );
                        require(sqrtPX96 > quotient);
                        // always fits 160 bits
                        return uint160(sqrtPX96 - quotient);
                    }
                }
                /// @notice Gets the next sqrt price given an input amount of token0 or token1
                /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
                /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
                /// @param liquidity The amount of usable liquidity
                /// @param amountIn How much of token0, or token1, is being swapped in
                /// @param zeroForOne Whether the amount in is token0 or token1
                /// @return sqrtQX96 The price after adding the input amount to token0 or token1
                function getNextSqrtPriceFromInput(
                    uint160 sqrtPX96,
                    uint128 liquidity,
                    uint256 amountIn,
                    bool zeroForOne
                ) internal pure returns (uint160 sqrtQX96) {
                    require(sqrtPX96 > 0);
                    require(liquidity > 0);
                    // round to make sure that we don't pass the target price
                    return
                        zeroForOne
                            ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                            : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
                }
                /// @notice Gets the next sqrt price given an output amount of token0 or token1
                /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
                /// @param sqrtPX96 The starting price before accounting for the output amount
                /// @param liquidity The amount of usable liquidity
                /// @param amountOut How much of token0, or token1, is being swapped out
                /// @param zeroForOne Whether the amount out is token0 or token1
                /// @return sqrtQX96 The price after removing the output amount of token0 or token1
                function getNextSqrtPriceFromOutput(
                    uint160 sqrtPX96,
                    uint128 liquidity,
                    uint256 amountOut,
                    bool zeroForOne
                ) internal pure returns (uint160 sqrtQX96) {
                    require(sqrtPX96 > 0);
                    require(liquidity > 0);
                    // round to make sure that we pass the target price
                    return
                        zeroForOne
                            ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                            : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
                }
                /// @notice Gets the amount0 delta between two prices
                /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
                /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
                /// @param sqrtRatioAX96 A sqrt price
                /// @param sqrtRatioBX96 Another sqrt price
                /// @param liquidity The amount of usable liquidity
                /// @param roundUp Whether to round the amount up or down
                /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
                function getAmount0Delta(
                    uint160 sqrtRatioAX96,
                    uint160 sqrtRatioBX96,
                    uint128 liquidity,
                    bool roundUp
                ) internal pure returns (uint256 amount0) {
                    if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                    uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                    uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
                    require(sqrtRatioAX96 > 0);
                    return
                        roundUp
                            ? UnsafeMath.divRoundingUp(
                                FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                                sqrtRatioAX96
                            )
                            : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
                }
                /// @notice Gets the amount1 delta between two prices
                /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
                /// @param sqrtRatioAX96 A sqrt price
                /// @param sqrtRatioBX96 Another sqrt price
                /// @param liquidity The amount of usable liquidity
                /// @param roundUp Whether to round the amount up, or down
                /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
                function getAmount1Delta(
                    uint160 sqrtRatioAX96,
                    uint160 sqrtRatioBX96,
                    uint128 liquidity,
                    bool roundUp
                ) internal pure returns (uint256 amount1) {
                    if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                    return
                        roundUp
                            ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
                            : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
                }
                /// @notice Helper that gets signed token0 delta
                /// @param sqrtRatioAX96 A sqrt price
                /// @param sqrtRatioBX96 Another sqrt price
                /// @param liquidity The change in liquidity for which to compute the amount0 delta
                /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
                function getAmount0Delta(
                    uint160 sqrtRatioAX96,
                    uint160 sqrtRatioBX96,
                    int128 liquidity
                ) internal pure returns (int256 amount0) {
                    return
                        liquidity < 0
                            ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                            : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                }
                /// @notice Helper that gets signed token1 delta
                /// @param sqrtRatioAX96 A sqrt price
                /// @param sqrtRatioBX96 Another sqrt price
                /// @param liquidity The change in liquidity for which to compute the amount1 delta
                /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
                function getAmount1Delta(
                    uint160 sqrtRatioAX96,
                    uint160 sqrtRatioBX96,
                    int128 liquidity
                ) internal pure returns (int256 amount1) {
                    return
                        liquidity < 0
                            ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                            : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                }
            }
            // SPDX-License-Identifier: BUSL-1.1
            pragma solidity >=0.5.0;
            import './FullMath.sol';
            import './SqrtPriceMath.sol';
            /// @title Computes the result of a swap within ticks
            /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
            library SwapMath {
                /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
                /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
                /// @param sqrtRatioCurrentX96 The current sqrt price of the pool
                /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
                /// @param liquidity The usable liquidity
                /// @param amountRemaining How much input or output amount is remaining to be swapped in/out
                /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
                /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
                /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
                /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
                /// @return feeAmount The amount of input that will be taken as a fee
                function computeSwapStep(
                    uint160 sqrtRatioCurrentX96,
                    uint160 sqrtRatioTargetX96,
                    uint128 liquidity,
                    int256 amountRemaining,
                    uint24 feePips
                )
                    internal
                    pure
                    returns (
                        uint160 sqrtRatioNextX96,
                        uint256 amountIn,
                        uint256 amountOut,
                        uint256 feeAmount
                    )
                {
                    bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
                    bool exactIn = amountRemaining >= 0;
                    if (exactIn) {
                        uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
                        amountIn = zeroForOne
                            ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
                            : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
                        if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
                        else
                            sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
                                sqrtRatioCurrentX96,
                                liquidity,
                                amountRemainingLessFee,
                                zeroForOne
                            );
                    } else {
                        amountOut = zeroForOne
                            ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
                            : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
                        if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
                        else
                            sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
                                sqrtRatioCurrentX96,
                                liquidity,
                                uint256(-amountRemaining),
                                zeroForOne
                            );
                    }
                    bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
                    // get the input/output amounts
                    if (zeroForOne) {
                        amountIn = max && exactIn
                            ? amountIn
                            : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
                        amountOut = max && !exactIn
                            ? amountOut
                            : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
                    } else {
                        amountIn = max && exactIn
                            ? amountIn
                            : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
                        amountOut = max && !exactIn
                            ? amountOut
                            : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
                    }
                    // cap the output amount to not exceed the remaining output amount
                    if (!exactIn && amountOut > uint256(-amountRemaining)) {
                        amountOut = uint256(-amountRemaining);
                    }
                    if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
                        // we didn't reach the target, so take the remainder of the maximum input as fee
                        feeAmount = uint256(amountRemaining) - amountIn;
                    } else {
                        feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
                    }
                }
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
            /// @notice A contract that constructs a pool must implement this to pass arguments to the pool
            /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
            /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
            interface IUniswapV3PoolDeployer {
                /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
                /// @dev Called by the pool constructor to fetch the parameters of the pool
                /// Returns factory The factory address
                /// Returns token0 The first token of the pool by address sort order
                /// Returns token1 The second token of the pool by address sort order
                /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                /// Returns tickSpacing The minimum number of ticks between initialized ticks
                function parameters()
                    external
                    view
                    returns (
                        address factory,
                        address token0,
                        address token1,
                        uint24 fee,
                        int24 tickSpacing
                    );
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title The interface for the Uniswap V3 Factory
            /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
            interface IUniswapV3Factory {
                /// @notice Emitted when the owner of the factory is changed
                /// @param oldOwner The owner before the owner was changed
                /// @param newOwner The owner after the owner was changed
                event OwnerChanged(address indexed oldOwner, address indexed newOwner);
                /// @notice Emitted when a pool is created
                /// @param token0 The first token of the pool by address sort order
                /// @param token1 The second token of the pool by address sort order
                /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                /// @param tickSpacing The minimum number of ticks between initialized ticks
                /// @param pool The address of the created pool
                event PoolCreated(
                    address indexed token0,
                    address indexed token1,
                    uint24 indexed fee,
                    int24 tickSpacing,
                    address pool
                );
                /// @notice Emitted when a new fee amount is enabled for pool creation via the factory
                /// @param fee The enabled fee, denominated in hundredths of a bip
                /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
                event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
                /// @notice Returns the current owner of the factory
                /// @dev Can be changed by the current owner via setOwner
                /// @return The address of the factory owner
                function owner() external view returns (address);
                /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
                /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
                /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
                /// @return The tick spacing
                function feeAmountTickSpacing(uint24 fee) external view returns (int24);
                /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
                /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
                /// @param tokenA The contract address of either token0 or token1
                /// @param tokenB The contract address of the other token
                /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                /// @return pool The pool address
                function getPool(
                    address tokenA,
                    address tokenB,
                    uint24 fee
                ) external view returns (address pool);
                /// @notice Creates a pool for the given two tokens and fee
                /// @param tokenA One of the two tokens in the desired pool
                /// @param tokenB The other of the two tokens in the desired pool
                /// @param fee The desired fee for the pool
                /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
                /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
                /// are invalid.
                /// @return pool The address of the newly created pool
                function createPool(
                    address tokenA,
                    address tokenB,
                    uint24 fee
                ) external returns (address pool);
                /// @notice Updates the owner of the factory
                /// @dev Must be called by the current owner
                /// @param _owner The new owner of the factory
                function setOwner(address _owner) external;
                /// @notice Enables a fee amount with the given tickSpacing
                /// @dev Fee amounts may never be removed once enabled
                /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
                /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
                function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Minimal ERC20 interface for Uniswap
            /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
            interface IERC20Minimal {
                /// @notice Returns the balance of a token
                /// @param account The account for which to look up the number of tokens it has, i.e. its balance
                /// @return The number of tokens held by the account
                function balanceOf(address account) external view returns (uint256);
                /// @notice Transfers the amount of token from the `msg.sender` to the recipient
                /// @param recipient The account that will receive the amount transferred
                /// @param amount The number of tokens to send from the sender to the recipient
                /// @return Returns true for a successful transfer, false for an unsuccessful transfer
                function transfer(address recipient, uint256 amount) external returns (bool);
                /// @notice Returns the current allowance given to a spender by an owner
                /// @param owner The account of the token owner
                /// @param spender The account of the token spender
                /// @return The current allowance granted by `owner` to `spender`
                function allowance(address owner, address spender) external view returns (uint256);
                /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
                /// @param spender The account which will be allowed to spend a given amount of the owners tokens
                /// @param amount The amount of tokens allowed to be used by `spender`
                /// @return Returns true for a successful approval, false for unsuccessful
                function approve(address spender, uint256 amount) external returns (bool);
                /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
                /// @param sender The account from which the transfer will be initiated
                /// @param recipient The recipient of the transfer
                /// @param amount The amount of the transfer
                /// @return Returns true for a successful transfer, false for unsuccessful
                function transferFrom(
                    address sender,
                    address recipient,
                    uint256 amount
                ) external returns (bool);
                /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
                /// @param from The account from which the tokens were sent, i.e. the balance decreased
                /// @param to The account to which the tokens were sent, i.e. the balance increased
                /// @param value The amount of tokens that were transferred
                event Transfer(address indexed from, address indexed to, uint256 value);
                /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
                /// @param owner The account that approved spending of its tokens
                /// @param spender The account for which the spending allowance was modified
                /// @param value The new allowance from the owner to the spender
                event Approval(address indexed owner, address indexed spender, uint256 value);
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Callback for IUniswapV3PoolActions#mint
            /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
            interface IUniswapV3MintCallback {
                /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
                /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
                /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
                /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
                /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
                function uniswapV3MintCallback(
                    uint256 amount0Owed,
                    uint256 amount1Owed,
                    bytes calldata data
                ) external;
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Callback for IUniswapV3PoolActions#swap
            /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
            interface IUniswapV3SwapCallback {
                /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
                /// @dev In the implementation you must pay the pool tokens owed for the swap.
                /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
                function uniswapV3SwapCallback(
                    int256 amount0Delta,
                    int256 amount1Delta,
                    bytes calldata data
                ) external;
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Callback for IUniswapV3PoolActions#flash
            /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
            interface IUniswapV3FlashCallback {
                /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
                /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
                /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                /// @param fee0 The fee amount in token0 due to the pool by the end of the flash
                /// @param fee1 The fee amount in token1 due to the pool by the end of the flash
                /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
                function uniswapV3FlashCallback(
                    uint256 fee0,
                    uint256 fee1,
                    bytes calldata data
                ) external;
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Pool state that never changes
            /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
            interface IUniswapV3PoolImmutables {
                /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
                /// @return The contract address
                function factory() external view returns (address);
                /// @notice The first of the two tokens of the pool, sorted by address
                /// @return The token contract address
                function token0() external view returns (address);
                /// @notice The second of the two tokens of the pool, sorted by address
                /// @return The token contract address
                function token1() external view returns (address);
                /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
                /// @return The fee
                function fee() external view returns (uint24);
                /// @notice The pool tick spacing
                /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
                /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
                /// This value is an int24 to avoid casting even though it is always positive.
                /// @return The tick spacing
                function tickSpacing() external view returns (int24);
                /// @notice The maximum amount of position liquidity that can use any tick in the range
                /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
                /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
                /// @return The max amount of liquidity per tick
                function maxLiquidityPerTick() external view returns (uint128);
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Pool state that can change
            /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
            /// per transaction
            interface IUniswapV3PoolState {
                /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
                /// when accessed externally.
                /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
                /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
                /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
                /// boundary.
                /// observationIndex The index of the last oracle observation that was written,
                /// observationCardinality The current maximum number of observations stored in the pool,
                /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
                /// feeProtocol The protocol fee for both tokens of the pool.
                /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
                /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
                /// unlocked Whether the pool is currently locked to reentrancy
                function slot0()
                    external
                    view
                    returns (
                        uint160 sqrtPriceX96,
                        int24 tick,
                        uint16 observationIndex,
                        uint16 observationCardinality,
                        uint16 observationCardinalityNext,
                        uint8 feeProtocol,
                        bool unlocked
                    );
                /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
                /// @dev This value can overflow the uint256
                function feeGrowthGlobal0X128() external view returns (uint256);
                /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
                /// @dev This value can overflow the uint256
                function feeGrowthGlobal1X128() external view returns (uint256);
                /// @notice The amounts of token0 and token1 that are owed to the protocol
                /// @dev Protocol fees will never exceed uint128 max in either token
                function protocolFees() external view returns (uint128 token0, uint128 token1);
                /// @notice The currently in range liquidity available to the pool
                /// @dev This value has no relationship to the total liquidity across all ticks
                function liquidity() external view returns (uint128);
                /// @notice Look up information about a specific tick in the pool
                /// @param tick The tick to look up
                /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
                /// tick upper,
                /// liquidityNet how much liquidity changes when the pool price crosses the tick,
                /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
                /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
                /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
                /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
                /// secondsOutside the seconds spent on the other side of the tick from the current tick,
                /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
                /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
                /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
                /// a specific position.
                function ticks(int24 tick)
                    external
                    view
                    returns (
                        uint128 liquidityGross,
                        int128 liquidityNet,
                        uint256 feeGrowthOutside0X128,
                        uint256 feeGrowthOutside1X128,
                        int56 tickCumulativeOutside,
                        uint160 secondsPerLiquidityOutsideX128,
                        uint32 secondsOutside,
                        bool initialized
                    );
                /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
                function tickBitmap(int16 wordPosition) external view returns (uint256);
                /// @notice Returns the information about a position by the position's key
                /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
                /// @return _liquidity The amount of liquidity in the position,
                /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
                /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
                /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
                /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
                function positions(bytes32 key)
                    external
                    view
                    returns (
                        uint128 _liquidity,
                        uint256 feeGrowthInside0LastX128,
                        uint256 feeGrowthInside1LastX128,
                        uint128 tokensOwed0,
                        uint128 tokensOwed1
                    );
                /// @notice Returns data about a specific observation index
                /// @param index The element of the observations array to fetch
                /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
                /// ago, rather than at a specific index in the array.
                /// @return blockTimestamp The timestamp of the observation,
                /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
                /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
                /// Returns initialized whether the observation has been initialized and the values are safe to use
                function observations(uint256 index)
                    external
                    view
                    returns (
                        uint32 blockTimestamp,
                        int56 tickCumulative,
                        uint160 secondsPerLiquidityCumulativeX128,
                        bool initialized
                    );
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Pool state that is not stored
            /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
            /// blockchain. The functions here may have variable gas costs.
            interface IUniswapV3PoolDerivedState {
                /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
                /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
                /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
                /// you must call it with secondsAgos = [3600, 0].
                /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
                /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
                /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
                /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
                /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
                /// timestamp
                function observe(uint32[] calldata secondsAgos)
                    external
                    view
                    returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
                /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
                /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
                /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
                /// snapshot is taken and the second snapshot is taken.
                /// @param tickLower The lower tick of the range
                /// @param tickUpper The upper tick of the range
                /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
                /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
                /// @return secondsInside The snapshot of seconds per liquidity for the range
                function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                    external
                    view
                    returns (
                        int56 tickCumulativeInside,
                        uint160 secondsPerLiquidityInsideX128,
                        uint32 secondsInside
                    );
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Permissionless pool actions
            /// @notice Contains pool methods that can be called by anyone
            interface IUniswapV3PoolActions {
                /// @notice Sets the initial price for the pool
                /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
                /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
                function initialize(uint160 sqrtPriceX96) external;
                /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
                /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
                /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
                /// on tickLower, tickUpper, the amount of liquidity, and the current price.
                /// @param recipient The address for which the liquidity will be created
                /// @param tickLower The lower tick of the position in which to add liquidity
                /// @param tickUpper The upper tick of the position in which to add liquidity
                /// @param amount The amount of liquidity to mint
                /// @param data Any data that should be passed through to the callback
                /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
                /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
                function mint(
                    address recipient,
                    int24 tickLower,
                    int24 tickUpper,
                    uint128 amount,
                    bytes calldata data
                ) external returns (uint256 amount0, uint256 amount1);
                /// @notice Collects tokens owed to a position
                /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
                /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
                /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
                /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
                /// @param recipient The address which should receive the fees collected
                /// @param tickLower The lower tick of the position for which to collect fees
                /// @param tickUpper The upper tick of the position for which to collect fees
                /// @param amount0Requested How much token0 should be withdrawn from the fees owed
                /// @param amount1Requested How much token1 should be withdrawn from the fees owed
                /// @return amount0 The amount of fees collected in token0
                /// @return amount1 The amount of fees collected in token1
                function collect(
                    address recipient,
                    int24 tickLower,
                    int24 tickUpper,
                    uint128 amount0Requested,
                    uint128 amount1Requested
                ) external returns (uint128 amount0, uint128 amount1);
                /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
                /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
                /// @dev Fees must be collected separately via a call to #collect
                /// @param tickLower The lower tick of the position for which to burn liquidity
                /// @param tickUpper The upper tick of the position for which to burn liquidity
                /// @param amount How much liquidity to burn
                /// @return amount0 The amount of token0 sent to the recipient
                /// @return amount1 The amount of token1 sent to the recipient
                function burn(
                    int24 tickLower,
                    int24 tickUpper,
                    uint128 amount
                ) external returns (uint256 amount0, uint256 amount1);
                /// @notice Swap token0 for token1, or token1 for token0
                /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
                /// @param recipient The address to receive the output of the swap
                /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
                /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
                /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
                /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
                /// @param data Any data to be passed through to the callback
                /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
                /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
                function swap(
                    address recipient,
                    bool zeroForOne,
                    int256 amountSpecified,
                    uint160 sqrtPriceLimitX96,
                    bytes calldata data
                ) external returns (int256 amount0, int256 amount1);
                /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
                /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
                /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
                /// with 0 amount{0,1} and sending the donation amount(s) from the callback
                /// @param recipient The address which will receive the token0 and token1 amounts
                /// @param amount0 The amount of token0 to send
                /// @param amount1 The amount of token1 to send
                /// @param data Any data to be passed through to the callback
                function flash(
                    address recipient,
                    uint256 amount0,
                    uint256 amount1,
                    bytes calldata data
                ) external;
                /// @notice Increase the maximum number of price and liquidity observations that this pool will store
                /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
                /// the input observationCardinalityNext.
                /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
                function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Permissioned pool actions
            /// @notice Contains pool methods that may only be called by the factory owner
            interface IUniswapV3PoolOwnerActions {
                /// @notice Set the denominator of the protocol's % share of the fees
                /// @param feeProtocol0 new protocol fee for token0 of the pool
                /// @param feeProtocol1 new protocol fee for token1 of the pool
                function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
                /// @notice Collect the protocol fee accrued to the pool
                /// @param recipient The address to which collected protocol fees should be sent
                /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
                /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
                /// @return amount0 The protocol fee collected in token0
                /// @return amount1 The protocol fee collected in token1
                function collectProtocol(
                    address recipient,
                    uint128 amount0Requested,
                    uint128 amount1Requested
                ) external returns (uint128 amount0, uint128 amount1);
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Events emitted by a pool
            /// @notice Contains all events emitted by the pool
            interface IUniswapV3PoolEvents {
                /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
                /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
                /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
                /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
                event Initialize(uint160 sqrtPriceX96, int24 tick);
                /// @notice Emitted when liquidity is minted for a given position
                /// @param sender The address that minted the liquidity
                /// @param owner The owner of the position and recipient of any minted liquidity
                /// @param tickLower The lower tick of the position
                /// @param tickUpper The upper tick of the position
                /// @param amount The amount of liquidity minted to the position range
                /// @param amount0 How much token0 was required for the minted liquidity
                /// @param amount1 How much token1 was required for the minted liquidity
                event Mint(
                    address sender,
                    address indexed owner,
                    int24 indexed tickLower,
                    int24 indexed tickUpper,
                    uint128 amount,
                    uint256 amount0,
                    uint256 amount1
                );
                /// @notice Emitted when fees are collected by the owner of a position
                /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
                /// @param owner The owner of the position for which fees are collected
                /// @param tickLower The lower tick of the position
                /// @param tickUpper The upper tick of the position
                /// @param amount0 The amount of token0 fees collected
                /// @param amount1 The amount of token1 fees collected
                event Collect(
                    address indexed owner,
                    address recipient,
                    int24 indexed tickLower,
                    int24 indexed tickUpper,
                    uint128 amount0,
                    uint128 amount1
                );
                /// @notice Emitted when a position's liquidity is removed
                /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
                /// @param owner The owner of the position for which liquidity is removed
                /// @param tickLower The lower tick of the position
                /// @param tickUpper The upper tick of the position
                /// @param amount The amount of liquidity to remove
                /// @param amount0 The amount of token0 withdrawn
                /// @param amount1 The amount of token1 withdrawn
                event Burn(
                    address indexed owner,
                    int24 indexed tickLower,
                    int24 indexed tickUpper,
                    uint128 amount,
                    uint256 amount0,
                    uint256 amount1
                );
                /// @notice Emitted by the pool for any swaps between token0 and token1
                /// @param sender The address that initiated the swap call, and that received the callback
                /// @param recipient The address that received the output of the swap
                /// @param amount0 The delta of the token0 balance of the pool
                /// @param amount1 The delta of the token1 balance of the pool
                /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
                /// @param liquidity The liquidity of the pool after the swap
                /// @param tick The log base 1.0001 of price of the pool after the swap
                event Swap(
                    address indexed sender,
                    address indexed recipient,
                    int256 amount0,
                    int256 amount1,
                    uint160 sqrtPriceX96,
                    uint128 liquidity,
                    int24 tick
                );
                /// @notice Emitted by the pool for any flashes of token0/token1
                /// @param sender The address that initiated the swap call, and that received the callback
                /// @param recipient The address that received the tokens from flash
                /// @param amount0 The amount of token0 that was flashed
                /// @param amount1 The amount of token1 that was flashed
                /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
                /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
                event Flash(
                    address indexed sender,
                    address indexed recipient,
                    uint256 amount0,
                    uint256 amount1,
                    uint256 paid0,
                    uint256 paid1
                );
                /// @notice Emitted by the pool for increases to the number of observations that can be stored
                /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
                /// just before a mint/swap/burn.
                /// @param observationCardinalityNextOld The previous value of the next observation cardinality
                /// @param observationCardinalityNextNew The updated value of the next observation cardinality
                event IncreaseObservationCardinalityNext(
                    uint16 observationCardinalityNextOld,
                    uint16 observationCardinalityNextNew
                );
                /// @notice Emitted when the protocol fee is changed by the pool
                /// @param feeProtocol0Old The previous value of the token0 protocol fee
                /// @param feeProtocol1Old The previous value of the token1 protocol fee
                /// @param feeProtocol0New The updated value of the token0 protocol fee
                /// @param feeProtocol1New The updated value of the token1 protocol fee
                event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
                /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
                /// @param sender The address that collects the protocol fees
                /// @param recipient The address that receives the collected protocol fees
                /// @param amount0 The amount of token0 protocol fees that is withdrawn
                /// @param amount0 The amount of token1 protocol fees that is withdrawn
                event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title BitMath
            /// @dev This library provides functionality for computing bit properties of an unsigned integer
            library BitMath {
                /// @notice Returns the index of the most significant bit of the number,
                ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                /// @dev The function satisfies the property:
                ///     x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
                /// @param x the value for which to compute the most significant bit, must be greater than 0
                /// @return r the index of the most significant bit
                function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                    require(x > 0);
                    if (x >= 0x100000000000000000000000000000000) {
                        x >>= 128;
                        r += 128;
                    }
                    if (x >= 0x10000000000000000) {
                        x >>= 64;
                        r += 64;
                    }
                    if (x >= 0x100000000) {
                        x >>= 32;
                        r += 32;
                    }
                    if (x >= 0x10000) {
                        x >>= 16;
                        r += 16;
                    }
                    if (x >= 0x100) {
                        x >>= 8;
                        r += 8;
                    }
                    if (x >= 0x10) {
                        x >>= 4;
                        r += 4;
                    }
                    if (x >= 0x4) {
                        x >>= 2;
                        r += 2;
                    }
                    if (x >= 0x2) r += 1;
                }
                /// @notice Returns the index of the least significant bit of the number,
                ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                /// @dev The function satisfies the property:
                ///     (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
                /// @param x the value for which to compute the least significant bit, must be greater than 0
                /// @return r the index of the least significant bit
                function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                    require(x > 0);
                    r = 255;
                    if (x & type(uint128).max > 0) {
                        r -= 128;
                    } else {
                        x >>= 128;
                    }
                    if (x & type(uint64).max > 0) {
                        r -= 64;
                    } else {
                        x >>= 64;
                    }
                    if (x & type(uint32).max > 0) {
                        r -= 32;
                    } else {
                        x >>= 32;
                    }
                    if (x & type(uint16).max > 0) {
                        r -= 16;
                    } else {
                        x >>= 16;
                    }
                    if (x & type(uint8).max > 0) {
                        r -= 8;
                    } else {
                        x >>= 8;
                    }
                    if (x & 0xf > 0) {
                        r -= 4;
                    } else {
                        x >>= 4;
                    }
                    if (x & 0x3 > 0) {
                        r -= 2;
                    } else {
                        x >>= 2;
                    }
                    if (x & 0x1 > 0) r -= 1;
                }
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.5.0;
            /// @title Math functions that do not check inputs or outputs
            /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
            library UnsafeMath {
                /// @notice Returns ceil(x / y)
                /// @dev division by 0 has unspecified behavior, and must be checked externally
                /// @param x The dividend
                /// @param y The divisor
                /// @return z The quotient, ceil(x / y)
                function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                    assembly {
                        z := add(div(x, y), gt(mod(x, y), 0))
                    }
                }
            }
            // SPDX-License-Identifier: GPL-2.0-or-later
            pragma solidity >=0.4.0;
            /// @title FixedPoint96
            /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
            /// @dev Used in SqrtPriceMath.sol
            library FixedPoint96 {
                uint8 internal constant RESOLUTION = 96;
                uint256 internal constant Q96 = 0x1000000000000000000000000;
            }
            

            File 2 of 4: WAVX
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
            pragma solidity ^0.8.20;
            import {Context} from "../utils/Context.sol";
            /**
             * @dev Contract module which provides a basic access control mechanism, where
             * there is an account (an owner) that can be granted exclusive access to
             * specific functions.
             *
             * The initial owner is set to the address provided by the deployer. This can
             * later be changed with {transferOwnership}.
             *
             * This module is used through inheritance. It will make available the modifier
             * `onlyOwner`, which can be applied to your functions to restrict their use to
             * the owner.
             */
            abstract contract Ownable is Context {
                address private _owner;
                /**
                 * @dev The caller account is not authorized to perform an operation.
                 */
                error OwnableUnauthorizedAccount(address account);
                /**
                 * @dev The owner is not a valid owner account. (eg. `address(0)`)
                 */
                error OwnableInvalidOwner(address owner);
                event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                /**
                 * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
                 */
                constructor(address initialOwner) {
                    if (initialOwner == address(0)) {
                        revert OwnableInvalidOwner(address(0));
                    }
                    _transferOwnership(initialOwner);
                }
                /**
                 * @dev Throws if called by any account other than the owner.
                 */
                modifier onlyOwner() {
                    _checkOwner();
                    _;
                }
                /**
                 * @dev Returns the address of the current owner.
                 */
                function owner() public view virtual returns (address) {
                    return _owner;
                }
                /**
                 * @dev Throws if the sender is not the owner.
                 */
                function _checkOwner() internal view virtual {
                    if (owner() != _msgSender()) {
                        revert OwnableUnauthorizedAccount(_msgSender());
                    }
                }
                /**
                 * @dev Leaves the contract without owner. It will not be possible to call
                 * `onlyOwner` functions. Can only be called by the current owner.
                 *
                 * NOTE: Renouncing ownership will leave the contract without an owner,
                 * thereby disabling any functionality that is only available to the owner.
                 */
                function renounceOwnership() public virtual onlyOwner {
                    _transferOwnership(address(0));
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Can only be called by the current owner.
                 */
                function transferOwnership(address newOwner) public virtual onlyOwner {
                    if (newOwner == address(0)) {
                        revert OwnableInvalidOwner(address(0));
                    }
                    _transferOwnership(newOwner);
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Internal function without access restriction.
                 */
                function _transferOwnership(address newOwner) internal virtual {
                    address oldOwner = _owner;
                    _owner = newOwner;
                    emit OwnershipTransferred(oldOwner, newOwner);
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
            pragma solidity ^0.8.20;
            import {Ownable} from "./Ownable.sol";
            /**
             * @dev Contract module which provides access control mechanism, where
             * there is an account (an owner) that can be granted exclusive access to
             * specific functions.
             *
             * The initial owner is specified at deployment time in the constructor for `Ownable`. This
             * can later be changed with {transferOwnership} and {acceptOwnership}.
             *
             * This module is used through inheritance. It will make available all functions
             * from parent (Ownable).
             */
            abstract contract Ownable2Step is Ownable {
                address private _pendingOwner;
                event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
                /**
                 * @dev Returns the address of the pending owner.
                 */
                function pendingOwner() public view virtual returns (address) {
                    return _pendingOwner;
                }
                /**
                 * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
                 * Can only be called by the current owner.
                 */
                function transferOwnership(address newOwner) public virtual override onlyOwner {
                    _pendingOwner = newOwner;
                    emit OwnershipTransferStarted(owner(), newOwner);
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
                 * Internal function without access restriction.
                 */
                function _transferOwnership(address newOwner) internal virtual override {
                    delete _pendingOwner;
                    super._transferOwnership(newOwner);
                }
                /**
                 * @dev The new owner accepts the ownership transfer.
                 */
                function acceptOwnership() public virtual {
                    address sender = _msgSender();
                    if (pendingOwner() != sender) {
                        revert OwnableUnauthorizedAccount(sender);
                    }
                    _transferOwnership(sender);
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
            pragma solidity ^0.8.20;
            /**
             * @dev Standard ERC20 Errors
             * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
             */
            interface IERC20Errors {
                /**
                 * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
                 * @param sender Address whose tokens are being transferred.
                 * @param balance Current balance for the interacting account.
                 * @param needed Minimum amount required to perform a transfer.
                 */
                error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
                /**
                 * @dev Indicates a failure with the token `sender`. Used in transfers.
                 * @param sender Address whose tokens are being transferred.
                 */
                error ERC20InvalidSender(address sender);
                /**
                 * @dev Indicates a failure with the token `receiver`. Used in transfers.
                 * @param receiver Address to which tokens are being transferred.
                 */
                error ERC20InvalidReceiver(address receiver);
                /**
                 * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
                 * @param spender Address that may be allowed to operate on tokens without being their owner.
                 * @param allowance Amount of tokens a `spender` is allowed to operate with.
                 * @param needed Minimum amount required to perform a transfer.
                 */
                error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
                /**
                 * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
                 * @param approver Address initiating an approval operation.
                 */
                error ERC20InvalidApprover(address approver);
                /**
                 * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
                 * @param spender Address that may be allowed to operate on tokens without being their owner.
                 */
                error ERC20InvalidSpender(address spender);
            }
            /**
             * @dev Standard ERC721 Errors
             * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
             */
            interface IERC721Errors {
                /**
                 * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
                 * Used in balance queries.
                 * @param owner Address of the current owner of a token.
                 */
                error ERC721InvalidOwner(address owner);
                /**
                 * @dev Indicates a `tokenId` whose `owner` is the zero address.
                 * @param tokenId Identifier number of a token.
                 */
                error ERC721NonexistentToken(uint256 tokenId);
                /**
                 * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
                 * @param sender Address whose tokens are being transferred.
                 * @param tokenId Identifier number of a token.
                 * @param owner Address of the current owner of a token.
                 */
                error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
                /**
                 * @dev Indicates a failure with the token `sender`. Used in transfers.
                 * @param sender Address whose tokens are being transferred.
                 */
                error ERC721InvalidSender(address sender);
                /**
                 * @dev Indicates a failure with the token `receiver`. Used in transfers.
                 * @param receiver Address to which tokens are being transferred.
                 */
                error ERC721InvalidReceiver(address receiver);
                /**
                 * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
                 * @param operator Address that may be allowed to operate on tokens without being their owner.
                 * @param tokenId Identifier number of a token.
                 */
                error ERC721InsufficientApproval(address operator, uint256 tokenId);
                /**
                 * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
                 * @param approver Address initiating an approval operation.
                 */
                error ERC721InvalidApprover(address approver);
                /**
                 * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
                 * @param operator Address that may be allowed to operate on tokens without being their owner.
                 */
                error ERC721InvalidOperator(address operator);
            }
            /**
             * @dev Standard ERC1155 Errors
             * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
             */
            interface IERC1155Errors {
                /**
                 * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
                 * @param sender Address whose tokens are being transferred.
                 * @param balance Current balance for the interacting account.
                 * @param needed Minimum amount required to perform a transfer.
                 * @param tokenId Identifier number of a token.
                 */
                error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
                /**
                 * @dev Indicates a failure with the token `sender`. Used in transfers.
                 * @param sender Address whose tokens are being transferred.
                 */
                error ERC1155InvalidSender(address sender);
                /**
                 * @dev Indicates a failure with the token `receiver`. Used in transfers.
                 * @param receiver Address to which tokens are being transferred.
                 */
                error ERC1155InvalidReceiver(address receiver);
                /**
                 * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
                 * @param operator Address that may be allowed to operate on tokens without being their owner.
                 * @param owner Address of the current owner of a token.
                 */
                error ERC1155MissingApprovalForAll(address operator, address owner);
                /**
                 * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
                 * @param approver Address initiating an approval operation.
                 */
                error ERC1155InvalidApprover(address approver);
                /**
                 * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
                 * @param operator Address that may be allowed to operate on tokens without being their owner.
                 */
                error ERC1155InvalidOperator(address operator);
                /**
                 * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
                 * Used in batch transfers.
                 * @param idsLength Length of the array of token identifiers
                 * @param valuesLength Length of the array of token amounts
                 */
                error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
            pragma solidity ^0.8.20;
            import {IERC20} from "./IERC20.sol";
            import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
            import {Context} from "../../utils/Context.sol";
            import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
            /**
             * @dev Implementation of the {IERC20} interface.
             *
             * This implementation is agnostic to the way tokens are created. This means
             * that a supply mechanism has to be added in a derived contract using {_mint}.
             *
             * TIP: For a detailed writeup see our guide
             * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
             * to implement supply mechanisms].
             *
             * The default value of {decimals} is 18. To change this, you should override
             * this function so it returns a different value.
             *
             * We have followed general OpenZeppelin Contracts guidelines: functions revert
             * instead returning `false` on failure. This behavior is nonetheless
             * conventional and does not conflict with the expectations of ERC20
             * applications.
             *
             * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
             * This allows applications to reconstruct the allowance for all accounts just
             * by listening to said events. Other implementations of the EIP may not emit
             * these events, as it isn't required by the specification.
             */
            abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
                mapping(address account => uint256) private _balances;
                mapping(address account => mapping(address spender => uint256)) private _allowances;
                uint256 private _totalSupply;
                string private _name;
                string private _symbol;
                /**
                 * @dev Sets the values for {name} and {symbol}.
                 *
                 * All two of these values are immutable: they can only be set once during
                 * construction.
                 */
                constructor(string memory name_, string memory symbol_) {
                    _name = name_;
                    _symbol = symbol_;
                }
                /**
                 * @dev Returns the name of the token.
                 */
                function name() public view virtual returns (string memory) {
                    return _name;
                }
                /**
                 * @dev Returns the symbol of the token, usually a shorter version of the
                 * name.
                 */
                function symbol() public view virtual returns (string memory) {
                    return _symbol;
                }
                /**
                 * @dev Returns the number of decimals used to get its user representation.
                 * For example, if `decimals` equals `2`, a balance of `505` tokens should
                 * be displayed to a user as `5.05` (`505 / 10 ** 2`).
                 *
                 * Tokens usually opt for a value of 18, imitating the relationship between
                 * Ether and Wei. This is the default value returned by this function, unless
                 * it's overridden.
                 *
                 * NOTE: This information is only used for _display_ purposes: it in
                 * no way affects any of the arithmetic of the contract, including
                 * {IERC20-balanceOf} and {IERC20-transfer}.
                 */
                function decimals() public view virtual returns (uint8) {
                    return 18;
                }
                /**
                 * @dev See {IERC20-totalSupply}.
                 */
                function totalSupply() public view virtual returns (uint256) {
                    return _totalSupply;
                }
                /**
                 * @dev See {IERC20-balanceOf}.
                 */
                function balanceOf(address account) public view virtual returns (uint256) {
                    return _balances[account];
                }
                /**
                 * @dev See {IERC20-transfer}.
                 *
                 * Requirements:
                 *
                 * - `to` cannot be the zero address.
                 * - the caller must have a balance of at least `value`.
                 */
                function transfer(address to, uint256 value) public virtual returns (bool) {
                    address owner = _msgSender();
                    _transfer(owner, to, value);
                    return true;
                }
                /**
                 * @dev See {IERC20-allowance}.
                 */
                function allowance(address owner, address spender) public view virtual returns (uint256) {
                    return _allowances[owner][spender];
                }
                /**
                 * @dev See {IERC20-approve}.
                 *
                 * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
                 * `transferFrom`. This is semantically equivalent to an infinite approval.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 */
                function approve(address spender, uint256 value) public virtual returns (bool) {
                    address owner = _msgSender();
                    _approve(owner, spender, value);
                    return true;
                }
                /**
                 * @dev See {IERC20-transferFrom}.
                 *
                 * Emits an {Approval} event indicating the updated allowance. This is not
                 * required by the EIP. See the note at the beginning of {ERC20}.
                 *
                 * NOTE: Does not update the allowance if the current allowance
                 * is the maximum `uint256`.
                 *
                 * Requirements:
                 *
                 * - `from` and `to` cannot be the zero address.
                 * - `from` must have a balance of at least `value`.
                 * - the caller must have allowance for ``from``'s tokens of at least
                 * `value`.
                 */
                function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
                    address spender = _msgSender();
                    _spendAllowance(from, spender, value);
                    _transfer(from, to, value);
                    return true;
                }
                /**
                 * @dev Moves a `value` amount of tokens from `from` to `to`.
                 *
                 * This internal function is equivalent to {transfer}, and can be used to
                 * e.g. implement automatic token fees, slashing mechanisms, etc.
                 *
                 * Emits a {Transfer} event.
                 *
                 * NOTE: This function is not virtual, {_update} should be overridden instead.
                 */
                function _transfer(address from, address to, uint256 value) internal {
                    if (from == address(0)) {
                        revert ERC20InvalidSender(address(0));
                    }
                    if (to == address(0)) {
                        revert ERC20InvalidReceiver(address(0));
                    }
                    _update(from, to, value);
                }
                /**
                 * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
                 * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
                 * this function.
                 *
                 * Emits a {Transfer} event.
                 */
                function _update(address from, address to, uint256 value) internal virtual {
                    if (from == address(0)) {
                        // Overflow check required: The rest of the code assumes that totalSupply never overflows
                        _totalSupply += value;
                    } else {
                        uint256 fromBalance = _balances[from];
                        if (fromBalance < value) {
                            revert ERC20InsufficientBalance(from, fromBalance, value);
                        }
                        unchecked {
                            // Overflow not possible: value <= fromBalance <= totalSupply.
                            _balances[from] = fromBalance - value;
                        }
                    }
                    if (to == address(0)) {
                        unchecked {
                            // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                            _totalSupply -= value;
                        }
                    } else {
                        unchecked {
                            // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                            _balances[to] += value;
                        }
                    }
                    emit Transfer(from, to, value);
                }
                /**
                 * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
                 * Relies on the `_update` mechanism
                 *
                 * Emits a {Transfer} event with `from` set to the zero address.
                 *
                 * NOTE: This function is not virtual, {_update} should be overridden instead.
                 */
                function _mint(address account, uint256 value) internal {
                    if (account == address(0)) {
                        revert ERC20InvalidReceiver(address(0));
                    }
                    _update(address(0), account, value);
                }
                /**
                 * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
                 * Relies on the `_update` mechanism.
                 *
                 * Emits a {Transfer} event with `to` set to the zero address.
                 *
                 * NOTE: This function is not virtual, {_update} should be overridden instead
                 */
                function _burn(address account, uint256 value) internal {
                    if (account == address(0)) {
                        revert ERC20InvalidSender(address(0));
                    }
                    _update(account, address(0), value);
                }
                /**
                 * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
                 *
                 * This internal function is equivalent to `approve`, and can be used to
                 * e.g. set automatic allowances for certain subsystems, etc.
                 *
                 * Emits an {Approval} event.
                 *
                 * Requirements:
                 *
                 * - `owner` cannot be the zero address.
                 * - `spender` cannot be the zero address.
                 *
                 * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
                 */
                function _approve(address owner, address spender, uint256 value) internal {
                    _approve(owner, spender, value, true);
                }
                /**
                 * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
                 *
                 * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
                 * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
                 * `Approval` event during `transferFrom` operations.
                 *
                 * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
                 * true using the following override:
                 * ```
                 * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
                 *     super._approve(owner, spender, value, true);
                 * }
                 * ```
                 *
                 * Requirements are the same as {_approve}.
                 */
                function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
                    if (owner == address(0)) {
                        revert ERC20InvalidApprover(address(0));
                    }
                    if (spender == address(0)) {
                        revert ERC20InvalidSpender(address(0));
                    }
                    _allowances[owner][spender] = value;
                    if (emitEvent) {
                        emit Approval(owner, spender, value);
                    }
                }
                /**
                 * @dev Updates `owner` s allowance for `spender` based on spent `value`.
                 *
                 * Does not update the allowance value in case of infinite allowance.
                 * Revert if not enough allowance is available.
                 *
                 * Does not emit an {Approval} event.
                 */
                function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
                    uint256 currentAllowance = allowance(owner, spender);
                    if (currentAllowance != type(uint256).max) {
                        if (currentAllowance < value) {
                            revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                        }
                        unchecked {
                            _approve(owner, spender, currentAllowance - value, false);
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
            pragma solidity ^0.8.20;
            import {IERC20} from "../IERC20.sol";
            /**
             * @dev Interface for the optional metadata functions from the ERC20 standard.
             */
            interface IERC20Metadata is IERC20 {
                /**
                 * @dev Returns the name of the token.
                 */
                function name() external view returns (string memory);
                /**
                 * @dev Returns the symbol of the token.
                 */
                function symbol() external view returns (string memory);
                /**
                 * @dev Returns the decimals places of the token.
                 */
                function decimals() external view returns (uint8);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
            pragma solidity ^0.8.20;
            /**
             * @dev Interface of the ERC20 standard as defined in the EIP.
             */
            interface IERC20 {
                /**
                 * @dev Emitted when `value` tokens are moved from one account (`from`) to
                 * another (`to`).
                 *
                 * Note that `value` may be zero.
                 */
                event Transfer(address indexed from, address indexed to, uint256 value);
                /**
                 * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                 * a call to {approve}. `value` is the new allowance.
                 */
                event Approval(address indexed owner, address indexed spender, uint256 value);
                /**
                 * @dev Returns the value of tokens in existence.
                 */
                function totalSupply() external view returns (uint256);
                /**
                 * @dev Returns the value of tokens owned by `account`.
                 */
                function balanceOf(address account) external view returns (uint256);
                /**
                 * @dev Moves a `value` amount of tokens from the caller's account to `to`.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transfer(address to, uint256 value) external returns (bool);
                /**
                 * @dev Returns the remaining number of tokens that `spender` will be
                 * allowed to spend on behalf of `owner` through {transferFrom}. This is
                 * zero by default.
                 *
                 * This value changes when {approve} or {transferFrom} are called.
                 */
                function allowance(address owner, address spender) external view returns (uint256);
                /**
                 * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
                 * caller's tokens.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * IMPORTANT: Beware that changing an allowance with this method brings the risk
                 * that someone may use both the old and the new allowance by unfortunate
                 * transaction ordering. One possible solution to mitigate this race
                 * condition is to first reduce the spender's allowance to 0 and set the
                 * desired value afterwards:
                 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                 *
                 * Emits an {Approval} event.
                 */
                function approve(address spender, uint256 value) external returns (bool);
                /**
                 * @dev Moves a `value` amount of tokens from `from` to `to` using the
                 * allowance mechanism. `value` is then deducted from the caller's
                 * allowance.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transferFrom(address from, address to, uint256 value) external returns (bool);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
            pragma solidity ^0.8.20;
            /**
             * @dev Provides information about the current execution context, including the
             * sender of the transaction and its data. While these are generally available
             * via msg.sender and msg.data, they should not be accessed in such a direct
             * manner, since when dealing with meta-transactions the account sending and
             * paying for execution may not be the actual sender (as far as an application
             * is concerned).
             *
             * This contract is only required for intermediate, library-like contracts.
             */
            abstract contract Context {
                function _msgSender() internal view virtual returns (address) {
                    return msg.sender;
                }
                function _msgData() internal view virtual returns (bytes calldata) {
                    return msg.data;
                }
                function _contextSuffixLength() internal view virtual returns (uint256) {
                    return 0;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.20;
            import "@openzeppelin/contracts/access/Ownable2Step.sol";
            import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
            interface IUniswapV2Pair {
                function token0() external view returns (address);
                function token1() external view returns (address);
            }
            interface IUniswapV2Router01 {
                function factory() external pure returns (address);
                function WETH() external pure returns (address);
                function addLiquidity(
                    address tokenA,
                    address tokenB,
                    uint amountADesired,
                    uint amountBDesired,
                    uint amountAMin,
                    uint amountBMin,
                    address to,
                    uint deadline
                ) external returns (uint amountA, uint amountB, uint liquidity);
                function addLiquidityETH(
                    address token,
                    uint amountTokenDesired,
                    uint amountTokenMin,
                    uint amountETHMin,
                    address to,
                    uint deadline
                )
                    external
                    payable
                    returns (uint amountToken, uint amountETH, uint liquidity);
                function removeLiquidity(
                    address tokenA,
                    address tokenB,
                    uint liquidity,
                    uint amountAMin,
                    uint amountBMin,
                    address to,
                    uint deadline
                ) external returns (uint amountA, uint amountB);
                function removeLiquidityETH(
                    address token,
                    uint liquidity,
                    uint amountTokenMin,
                    uint amountETHMin,
                    address to,
                    uint deadline
                ) external returns (uint amountToken, uint amountETH);
                function removeLiquidityWithPermit(
                    address tokenA,
                    address tokenB,
                    uint liquidity,
                    uint amountAMin,
                    uint amountBMin,
                    address to,
                    uint deadline,
                    bool approveMax,
                    uint8 v,
                    bytes32 r,
                    bytes32 s
                ) external returns (uint amountA, uint amountB);
                function removeLiquidityETHWithPermit(
                    address token,
                    uint liquidity,
                    uint amountTokenMin,
                    uint amountETHMin,
                    address to,
                    uint deadline,
                    bool approveMax,
                    uint8 v,
                    bytes32 r,
                    bytes32 s
                ) external returns (uint amountToken, uint amountETH);
                function swapExactTokensForTokens(
                    uint amountIn,
                    uint amountOutMin,
                    address[] calldata path,
                    address to,
                    uint deadline
                ) external returns (uint[] memory amounts);
                function swapTokensForExactTokens(
                    uint amountOut,
                    uint amountInMax,
                    address[] calldata path,
                    address to,
                    uint deadline
                ) external returns (uint[] memory amounts);
                function swapExactETHForTokens(
                    uint amountOutMin,
                    address[] calldata path,
                    address to,
                    uint deadline
                ) external payable returns (uint[] memory amounts);
                function swapTokensForExactETH(
                    uint amountOut,
                    uint amountInMax,
                    address[] calldata path,
                    address to,
                    uint deadline
                ) external returns (uint[] memory amounts);
                function swapExactTokensForETH(
                    uint amountIn,
                    uint amountOutMin,
                    address[] calldata path,
                    address to,
                    uint deadline
                ) external returns (uint[] memory amounts);
                function swapETHForExactTokens(
                    uint amountOut,
                    address[] calldata path,
                    address to,
                    uint deadline
                ) external payable returns (uint[] memory amounts);
                function quote(
                    uint amountA,
                    uint reserveA,
                    uint reserveB
                ) external pure returns (uint amountB);
                function getAmountOut(
                    uint amountIn,
                    uint reserveIn,
                    uint reserveOut
                ) external pure returns (uint amountOut);
                function getAmountIn(
                    uint amountOut,
                    uint reserveIn,
                    uint reserveOut
                ) external pure returns (uint amountIn);
                function getAmountsOut(
                    uint amountIn,
                    address[] calldata path
                ) external view returns (uint[] memory amounts);
                function getAmountsIn(
                    uint amountOut,
                    address[] calldata path
                ) external view returns (uint[] memory amounts);
            }
            interface IUniswapV2Router02 is IUniswapV2Router01 {
                function removeLiquidityETHSupportingFeeOnTransferTokens(
                    address token,
                    uint liquidity,
                    uint amountTokenMin,
                    uint amountETHMin,
                    address to,
                    uint deadline
                ) external returns (uint amountETH);
                function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
                    address token,
                    uint liquidity,
                    uint amountTokenMin,
                    uint amountETHMin,
                    address to,
                    uint deadline,
                    bool approveMax,
                    uint8 v,
                    bytes32 r,
                    bytes32 s
                ) external returns (uint amountETH);
                function swapExactTokensForTokensSupportingFeeOnTransferTokens(
                    uint amountIn,
                    uint amountOutMin,
                    address[] calldata path,
                    address to,
                    uint deadline
                ) external;
                function swapExactETHForTokensSupportingFeeOnTransferTokens(
                    uint amountOutMin,
                    address[] calldata path,
                    address to,
                    uint deadline
                ) external payable;
                function swapExactTokensForETHSupportingFeeOnTransferTokens(
                    uint amountIn,
                    uint amountOutMin,
                    address[] calldata path,
                    address to,
                    uint deadline
                ) external;
            }
            contract WAVX is ERC20, Ownable2Step {
                uint256 public constant MAX_SUPPLY = 522504675 * 1e18; // 522,504,675 Max supply
                uint256 public constant FEE_SELL = 5;
                uint256 public constant MAX_SLIPPAGE = 550; // 5.5% as decimal is 2
                uint256 public constant MAX_AMOUNT_PER_TRANSACTION_LIMIT = (MAX_SUPPLY * 50) / 100;
                uint256 public constant MAX_DELAY_COOLDOWN_BLOCKS = 25; // 5 minutes
                uint256 public maxAmountPerTransaction = (MAX_SUPPLY * 40) / 100; // set initially as 40% of max supply
                uint256 public cumulatedFeeLimit = 10000 * 1e18;
                uint256 public delayCooldownBlocks = 2; // delay in 2 blocks for next transaction
                uint256 public slippageOnFeeCollection = 100; // slippage tolerance to 1% when fee collection process (decimal is 2)
                IUniswapV2Router02 public uniswapV2Router;
                address public treasury;
                bool isRunningCollection;
                mapping(address => uint256) public lastTransactionBlock;
                mapping(address => bool) public uniswapPoolAddresses;
                mapping(address => bool) public excludedFeeAddresses;
                event WithdrawFeeToTreasury(uint256 contractTokenBalance);
                event AddUniswapPoolAddresses(address _address);
                event RemoveUniswapPoolAddress(address _address);
                event AddExcludedFeeAddress(address _address);
                event RemoveExcludedFeeAddress(address _address);
                event CollectFeeToTreasury(
                    uint256 contractTokenBalance,
                    address pairAddress
                );
                event SwapTokensForTokensAndSendToTreasury(
                    uint256 amountIn,
                    address tokenOut,
                    address to
                );
                event SetTreasuryAddress(address _address);
                event SetSlippage(uint256 _slippage);
                event SetDelayCooldownBlocks(uint256 _blocks);
                event SetMaxAmountPerTransaction(uint256 _amount);
                event SetRouterAddress(address _routerAddress);
                event SetCumulatedFeeLimit(uint256 _amount);
                
                modifier lockCollection() {
                    isRunningCollection = true;
                    _;
                    isRunningCollection = false;
                }
                constructor(
                    address _routerAddress,
                    address _treasury,
                    address[] memory _supplyAddresses,
                    uint8[] memory _supplyPercents
                ) ERC20("WAVX", "WAVX") Ownable(msg.sender) {
                    require(
                        _supplyAddresses.length == _supplyPercents.length, "Deploy: Invailid supply param's length"
                    );
                    require(_treasury != address(0), "Deploy: Zero treasury address");
                    excludedFeeAddresses[address(this)] = true;
                    excludedFeeAddresses[_treasury] = true;
                    uint8 sumPercentage = 0;
                    for (uint i = 0; i < _supplyAddresses.length; i++) {
                        sumPercentage += _supplyPercents[i];
                        _mint(_supplyAddresses[i], (MAX_SUPPLY * _supplyPercents[i]) / 100);
                        excludedFeeAddresses[_supplyAddresses[i]] = true;
                    }
                    require(sumPercentage == 100, "Invailid value of supply percentages");
                    uniswapV2Router = IUniswapV2Router02(_routerAddress);
                    treasury = _treasury;
                }
                /**
                 * Contract holds WAVX tokens from gathering fees and enforce a cumulative limit on the amount of WAVX tokens held.
                 */
                function _update(
                    address from,
                    address to,
                    uint256 amount
                ) internal override {
                    uint256 contractTokenBalance = balanceOf(address(this));
                    // Once the cumulative limit is reached or exceeded, collect fees to treasury wallet
                    // restriction:
                    //    - revert when already runing collection
                    //    - execute when a sell transaction occurs
                    if (
                        contractTokenBalance >= cumulatedFeeLimit &&
                        !isRunningCollection &&
                        uniswapPoolAddresses[to]
                    ) {
                        collectFeeToTreasury(contractTokenBalance, to);
                    }
                    uint256 feePercent = 0;
                    // If it is not a mint process or a collection process
                    if (
                        from != address(0) &&
                        !excludedFeeAddresses[from] &&
                        !excludedFeeAddresses[to]
                    ) {
                        if (uniswapPoolAddresses[to]) {
                            // When selling, apply fee 5%
                            feePercent = FEE_SELL;
                        }
                        // Anti Bot
                        require(
                            amount < maxAmountPerTransaction,
                            "Transaction amount exceeds maximum limit"
                        );
                        require(
                            block.number >
                                lastTransactionBlock[tx.origin] + delayCooldownBlocks,
                            "Terminated due to presumed bot"
                        );
                        lastTransactionBlock[tx.origin] = block.number;
                    }
                    uint256 feeAmount = (amount * feePercent) / 100;
                    // Deduct fee from transaction amount to this contract
                    if (feeAmount > 0) {
                        super._update(from, address(this), feeAmount);
                    }
                    super._update(from, to, amount - feeAmount);
                }
                function collectFeeToTreasury(
                    uint256 contractTokenBalance,
                    address pairAddress
                ) private lockCollection {
                    // get the opposite token address
                    address token0 = IUniswapV2Pair(pairAddress).token0();
                    address token1 = IUniswapV2Pair(pairAddress).token1();
                    address oppositeTokenAddress = token0 == address(this)
                        ? token1
                        : token0;
                    // split the contract balance into halves
                    uint256 half = contractTokenBalance / 2;
                    swapTokensForTokensAndSendToTreasury(half, oppositeTokenAddress);
                    super._transfer(address(this), treasury, half);
                    emit CollectFeeToTreasury(contractTokenBalance, pairAddress);
                }
                function swapTokensForTokensAndSendToTreasury(
                    uint256 amountIn,
                    address tokenOut
                ) private {
                    address[] memory path = new address[](2);
                    path[0] = address(this);
                    path[1] = tokenOut;
                    _approve(address(this), address(uniswapV2Router), amountIn);
                    // Calculate the minimum amount out with slippage
                    uint256[] memory amounts = uniswapV2Router.getAmountsOut(
                        amountIn,
                        path
                    );
                    uint256 amountOutMin = amounts[1] - ((amounts[1] * slippageOnFeeCollection) / 10000);
                    uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
                        amountIn,
                        amountOutMin,
                        path,
                        treasury,
                        block.timestamp
                    );
                    emit SwapTokensForTokensAndSendToTreasury(amountIn, tokenOut, treasury);
                }
                /**
                 * Withdraw all amount of fee is collected on the contract by only Owner.
                 */
                function withdrawFeeToTreasury() external onlyOwner {
                    uint256 contractTokenBalance = balanceOf(address(this));
                    if (contractTokenBalance > 0)
                        super._transfer(address(this), treasury, contractTokenBalance);
                    emit WithdrawFeeToTreasury(contractTokenBalance);
                }
                function addUniswapPoolAddress(address _a) external onlyOwner {
                    uniswapPoolAddresses[_a] = true;
                    emit AddUniswapPoolAddresses(_a);
                }
                function removeUniswapPoolAddress(address _a) external onlyOwner {
                    uniswapPoolAddresses[_a] = false;
                    emit RemoveUniswapPoolAddress(_a);
                }
                function addExcludedFeeAddress(address _a) external onlyOwner {
                    excludedFeeAddresses[_a] = true;
                    emit AddExcludedFeeAddress(_a);
                }
                function removeExcludedFeeAddress(address _a) external onlyOwner {
                    excludedFeeAddresses[_a] = false;
                    emit RemoveExcludedFeeAddress(_a);
                }
                function setCumulatedFeeLimit(uint256 _amount) external onlyOwner {
                    cumulatedFeeLimit = _amount;
                    emit SetCumulatedFeeLimit(_amount);
                }
                function updateMaxAmountPerTransaction(uint256 _amount) external onlyOwner {
                    require(
                        _amount < MAX_AMOUNT_PER_TRANSACTION_LIMIT && _amount > 0,
                        "updateMaxAmountPerTransaction: You exceed the predefined limit"
                    );
                    maxAmountPerTransaction = _amount;
                    emit SetMaxAmountPerTransaction(_amount);
                }
                function updateDelayCooldownBlocks(uint256 _blocks) external onlyOwner {
                    require(
                        _blocks < MAX_DELAY_COOLDOWN_BLOCKS,
                        "updateDelayCooldownBlocks: You exceed the predefined limit"
                    );
                    delayCooldownBlocks = _blocks;
                    emit SetDelayCooldownBlocks(_blocks);
                }
                function updateTreasuryAddress(address _treasury) external onlyOwner {
                    require(_treasury != address(0), "updateTreasuryAddress: zero address");
                    treasury = _treasury;
                    emit SetTreasuryAddress(_treasury);
                }
                function updateSlippage(uint256 _slippage) external onlyOwner {
                    require(
                        _slippage < MAX_SLIPPAGE,
                        "updateSlippage: You exceed the predefined limit"
                    );
                    slippageOnFeeCollection = _slippage;
                    emit SetSlippage(_slippage);
                }
                function updateRouterAddress(address _routerAddress) external onlyOwner {
                    require(_routerAddress != address(0), "updateRouterAddress: zero address");
                    uniswapV2Router = IUniswapV2Router02(_routerAddress);
                    emit SetRouterAddress(_routerAddress);
                }
            }
            

            File 3 of 4: TetherToken
            pragma solidity ^0.4.17;
            
            /**
             * @title SafeMath
             * @dev Math operations with safety checks that throw on error
             */
            library SafeMath {
                function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                    if (a == 0) {
                        return 0;
                    }
                    uint256 c = a * b;
                    assert(c / a == b);
                    return c;
                }
            
                function div(uint256 a, uint256 b) internal pure returns (uint256) {
                    // assert(b > 0); // Solidity automatically throws when dividing by 0
                    uint256 c = a / b;
                    // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                    return c;
                }
            
                function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                    assert(b <= a);
                    return a - b;
                }
            
                function add(uint256 a, uint256 b) internal pure returns (uint256) {
                    uint256 c = a + b;
                    assert(c >= a);
                    return c;
                }
            }
            
            /**
             * @title Ownable
             * @dev The Ownable contract has an owner address, and provides basic authorization control
             * functions, this simplifies the implementation of "user permissions".
             */
            contract Ownable {
                address public owner;
            
                /**
                  * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                  * account.
                  */
                function Ownable() public {
                    owner = msg.sender;
                }
            
                /**
                  * @dev Throws if called by any account other than the owner.
                  */
                modifier onlyOwner() {
                    require(msg.sender == owner);
                    _;
                }
            
                /**
                * @dev Allows the current owner to transfer control of the contract to a newOwner.
                * @param newOwner The address to transfer ownership to.
                */
                function transferOwnership(address newOwner) public onlyOwner {
                    if (newOwner != address(0)) {
                        owner = newOwner;
                    }
                }
            
            }
            
            /**
             * @title ERC20Basic
             * @dev Simpler version of ERC20 interface
             * @dev see https://github.com/ethereum/EIPs/issues/20
             */
            contract ERC20Basic {
                uint public _totalSupply;
                function totalSupply() public constant returns (uint);
                function balanceOf(address who) public constant returns (uint);
                function transfer(address to, uint value) public;
                event Transfer(address indexed from, address indexed to, uint value);
            }
            
            /**
             * @title ERC20 interface
             * @dev see https://github.com/ethereum/EIPs/issues/20
             */
            contract ERC20 is ERC20Basic {
                function allowance(address owner, address spender) public constant returns (uint);
                function transferFrom(address from, address to, uint value) public;
                function approve(address spender, uint value) public;
                event Approval(address indexed owner, address indexed spender, uint value);
            }
            
            /**
             * @title Basic token
             * @dev Basic version of StandardToken, with no allowances.
             */
            contract BasicToken is Ownable, ERC20Basic {
                using SafeMath for uint;
            
                mapping(address => uint) public balances;
            
                // additional variables for use if transaction fees ever became necessary
                uint public basisPointsRate = 0;
                uint public maximumFee = 0;
            
                /**
                * @dev Fix for the ERC20 short address attack.
                */
                modifier onlyPayloadSize(uint size) {
                    require(!(msg.data.length < size + 4));
                    _;
                }
            
                /**
                * @dev transfer token for a specified address
                * @param _to The address to transfer to.
                * @param _value The amount to be transferred.
                */
                function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
                    uint fee = (_value.mul(basisPointsRate)).div(10000);
                    if (fee > maximumFee) {
                        fee = maximumFee;
                    }
                    uint sendAmount = _value.sub(fee);
                    balances[msg.sender] = balances[msg.sender].sub(_value);
                    balances[_to] = balances[_to].add(sendAmount);
                    if (fee > 0) {
                        balances[owner] = balances[owner].add(fee);
                        Transfer(msg.sender, owner, fee);
                    }
                    Transfer(msg.sender, _to, sendAmount);
                }
            
                /**
                * @dev Gets the balance of the specified address.
                * @param _owner The address to query the the balance of.
                * @return An uint representing the amount owned by the passed address.
                */
                function balanceOf(address _owner) public constant returns (uint balance) {
                    return balances[_owner];
                }
            
            }
            
            /**
             * @title Standard ERC20 token
             *
             * @dev Implementation of the basic standard token.
             * @dev https://github.com/ethereum/EIPs/issues/20
             * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
             */
            contract StandardToken is BasicToken, ERC20 {
            
                mapping (address => mapping (address => uint)) public allowed;
            
                uint public constant MAX_UINT = 2**256 - 1;
            
                /**
                * @dev Transfer tokens from one address to another
                * @param _from address The address which you want to send tokens from
                * @param _to address The address which you want to transfer to
                * @param _value uint the amount of tokens to be transferred
                */
                function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
                    var _allowance = allowed[_from][msg.sender];
            
                    // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
                    // if (_value > _allowance) throw;
            
                    uint fee = (_value.mul(basisPointsRate)).div(10000);
                    if (fee > maximumFee) {
                        fee = maximumFee;
                    }
                    if (_allowance < MAX_UINT) {
                        allowed[_from][msg.sender] = _allowance.sub(_value);
                    }
                    uint sendAmount = _value.sub(fee);
                    balances[_from] = balances[_from].sub(_value);
                    balances[_to] = balances[_to].add(sendAmount);
                    if (fee > 0) {
                        balances[owner] = balances[owner].add(fee);
                        Transfer(_from, owner, fee);
                    }
                    Transfer(_from, _to, sendAmount);
                }
            
                /**
                * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
                * @param _spender The address which will spend the funds.
                * @param _value The amount of tokens to be spent.
                */
                function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
            
                    // To change the approve amount you first have to reduce the addresses`
                    //  allowance to zero by calling `approve(_spender, 0)` if it is not
                    //  already 0 to mitigate the race condition described here:
                    //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                    require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
            
                    allowed[msg.sender][_spender] = _value;
                    Approval(msg.sender, _spender, _value);
                }
            
                /**
                * @dev Function to check the amount of tokens than an owner allowed to a spender.
                * @param _owner address The address which owns the funds.
                * @param _spender address The address which will spend the funds.
                * @return A uint specifying the amount of tokens still available for the spender.
                */
                function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                    return allowed[_owner][_spender];
                }
            
            }
            
            
            /**
             * @title Pausable
             * @dev Base contract which allows children to implement an emergency stop mechanism.
             */
            contract Pausable is Ownable {
              event Pause();
              event Unpause();
            
              bool public paused = false;
            
            
              /**
               * @dev Modifier to make a function callable only when the contract is not paused.
               */
              modifier whenNotPaused() {
                require(!paused);
                _;
              }
            
              /**
               * @dev Modifier to make a function callable only when the contract is paused.
               */
              modifier whenPaused() {
                require(paused);
                _;
              }
            
              /**
               * @dev called by the owner to pause, triggers stopped state
               */
              function pause() onlyOwner whenNotPaused public {
                paused = true;
                Pause();
              }
            
              /**
               * @dev called by the owner to unpause, returns to normal state
               */
              function unpause() onlyOwner whenPaused public {
                paused = false;
                Unpause();
              }
            }
            
            contract BlackList is Ownable, BasicToken {
            
                /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
                function getBlackListStatus(address _maker) external constant returns (bool) {
                    return isBlackListed[_maker];
                }
            
                function getOwner() external constant returns (address) {
                    return owner;
                }
            
                mapping (address => bool) public isBlackListed;
                
                function addBlackList (address _evilUser) public onlyOwner {
                    isBlackListed[_evilUser] = true;
                    AddedBlackList(_evilUser);
                }
            
                function removeBlackList (address _clearedUser) public onlyOwner {
                    isBlackListed[_clearedUser] = false;
                    RemovedBlackList(_clearedUser);
                }
            
                function destroyBlackFunds (address _blackListedUser) public onlyOwner {
                    require(isBlackListed[_blackListedUser]);
                    uint dirtyFunds = balanceOf(_blackListedUser);
                    balances[_blackListedUser] = 0;
                    _totalSupply -= dirtyFunds;
                    DestroyedBlackFunds(_blackListedUser, dirtyFunds);
                }
            
                event DestroyedBlackFunds(address _blackListedUser, uint _balance);
            
                event AddedBlackList(address _user);
            
                event RemovedBlackList(address _user);
            
            }
            
            contract UpgradedStandardToken is StandardToken{
                // those methods are called by the legacy contract
                // and they must ensure msg.sender to be the contract address
                function transferByLegacy(address from, address to, uint value) public;
                function transferFromByLegacy(address sender, address from, address spender, uint value) public;
                function approveByLegacy(address from, address spender, uint value) public;
            }
            
            contract TetherToken is Pausable, StandardToken, BlackList {
            
                string public name;
                string public symbol;
                uint public decimals;
                address public upgradedAddress;
                bool public deprecated;
            
                //  The contract can be initialized with a number of tokens
                //  All the tokens are deposited to the owner address
                //
                // @param _balance Initial supply of the contract
                // @param _name Token Name
                // @param _symbol Token symbol
                // @param _decimals Token decimals
                function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
                    _totalSupply = _initialSupply;
                    name = _name;
                    symbol = _symbol;
                    decimals = _decimals;
                    balances[owner] = _initialSupply;
                    deprecated = false;
                }
            
                // Forward ERC20 methods to upgraded contract if this one is deprecated
                function transfer(address _to, uint _value) public whenNotPaused {
                    require(!isBlackListed[msg.sender]);
                    if (deprecated) {
                        return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
                    } else {
                        return super.transfer(_to, _value);
                    }
                }
            
                // Forward ERC20 methods to upgraded contract if this one is deprecated
                function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
                    require(!isBlackListed[_from]);
                    if (deprecated) {
                        return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
                    } else {
                        return super.transferFrom(_from, _to, _value);
                    }
                }
            
                // Forward ERC20 methods to upgraded contract if this one is deprecated
                function balanceOf(address who) public constant returns (uint) {
                    if (deprecated) {
                        return UpgradedStandardToken(upgradedAddress).balanceOf(who);
                    } else {
                        return super.balanceOf(who);
                    }
                }
            
                // Forward ERC20 methods to upgraded contract if this one is deprecated
                function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                    if (deprecated) {
                        return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
                    } else {
                        return super.approve(_spender, _value);
                    }
                }
            
                // Forward ERC20 methods to upgraded contract if this one is deprecated
                function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                    if (deprecated) {
                        return StandardToken(upgradedAddress).allowance(_owner, _spender);
                    } else {
                        return super.allowance(_owner, _spender);
                    }
                }
            
                // deprecate current contract in favour of a new one
                function deprecate(address _upgradedAddress) public onlyOwner {
                    deprecated = true;
                    upgradedAddress = _upgradedAddress;
                    Deprecate(_upgradedAddress);
                }
            
                // deprecate current contract if favour of a new one
                function totalSupply() public constant returns (uint) {
                    if (deprecated) {
                        return StandardToken(upgradedAddress).totalSupply();
                    } else {
                        return _totalSupply;
                    }
                }
            
                // Issue a new amount of tokens
                // these tokens are deposited into the owner address
                //
                // @param _amount Number of tokens to be issued
                function issue(uint amount) public onlyOwner {
                    require(_totalSupply + amount > _totalSupply);
                    require(balances[owner] + amount > balances[owner]);
            
                    balances[owner] += amount;
                    _totalSupply += amount;
                    Issue(amount);
                }
            
                // Redeem tokens.
                // These tokens are withdrawn from the owner address
                // if the balance must be enough to cover the redeem
                // or the call will fail.
                // @param _amount Number of tokens to be issued
                function redeem(uint amount) public onlyOwner {
                    require(_totalSupply >= amount);
                    require(balances[owner] >= amount);
            
                    _totalSupply -= amount;
                    balances[owner] -= amount;
                    Redeem(amount);
                }
            
                function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
                    // Ensure transparency by hardcoding limit beyond which fees can never be added
                    require(newBasisPoints < 20);
                    require(newMaxFee < 50);
            
                    basisPointsRate = newBasisPoints;
                    maximumFee = newMaxFee.mul(10**decimals);
            
                    Params(basisPointsRate, maximumFee);
                }
            
                // Called when new token are issued
                event Issue(uint amount);
            
                // Called when tokens are redeemed
                event Redeem(uint amount);
            
                // Called when contract is deprecated
                event Deprecate(address newAddress);
            
                // Called if contract ever adds fees
                event Params(uint feeBasisPoints, uint maxFee);
            }

            File 4 of 4: TokenApprove
            /**
             *Submitted for verification at BscScan.com on 2023-06-26
            */
            
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            
            // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
            
            // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
            
            // OpenZeppelin Contracts v4.4.1 (proxy/utils/Initializable.sol)
            
            // OpenZeppelin Contracts v4.4.1 (utils/Address.sol)
            
            /**
             * @dev Collection of functions related to the address type
             */
            library AddressUpgradeable {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize, which returns 0 for contracts in
                    // construction, since the code is only stored at the end of the
                    // constructor execution.
            
                    uint256 size;
                    assembly {
                        size := extcodesize(account)
                    }
                    return size > 0;
                }
            
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
            
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
            
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
            
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
            
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
            
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
            
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
            
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
            
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
            
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
            
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
            
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the
             * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() initializer {}
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 */
                bool private _initialized;
            
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
            
                /**
                 * @dev Modifier to protect an initializer function from being invoked twice.
                 */
                modifier initializer() {
                    // If the contract is initializing we ignore whether _initialized is set in order to support multiple
                    // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the
                    // contract may have been reentered.
                    require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized");
            
                    bool isTopLevelCall = !_initializing;
                    if (isTopLevelCall) {
                        _initializing = true;
                        _initialized = true;
                    }
            
                    _;
            
                    if (isTopLevelCall) {
                        _initializing = false;
                    }
                }
            
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} modifier, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
            
                function _isConstructor() private view returns (bool) {
                    return !AddressUpgradeable.isContract(address(this));
                }
            }
            
            /**
             * @dev Provides information about the current execution context, including the
             * sender of the transaction and its data. While these are generally available
             * via msg.sender and msg.data, they should not be accessed in such a direct
             * manner, since when dealing with meta-transactions the account sending and
             * paying for execution may not be the actual sender (as far as an application
             * is concerned).
             *
             * This contract is only required for intermediate, library-like contracts.
             */
            abstract contract ContextUpgradeable is Initializable {
                function __Context_init() internal onlyInitializing {
                    __Context_init_unchained();
                }
            
                function __Context_init_unchained() internal onlyInitializing {
                }
                function _msgSender() internal view virtual returns (address) {
                    return msg.sender;
                }
            
                function _msgData() internal view virtual returns (bytes calldata) {
                    return msg.data;
                }
                uint256[50] private __gap;
            }
            
            /**
             * @dev Contract module which provides a basic access control mechanism, where
             * there is an account (an owner) that can be granted exclusive access to
             * specific functions.
             *
             * By default, the owner account will be the one that deploys the contract. This
             * can later be changed with {transferOwnership}.
             *
             * This module is used through inheritance. It will make available the modifier
             * `onlyOwner`, which can be applied to your functions to restrict their use to
             * the owner.
             */
            abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
                address private _owner;
            
                event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            
                /**
                 * @dev Initializes the contract setting the deployer as the initial owner.
                 */
                function __Ownable_init() internal onlyInitializing {
                    __Context_init_unchained();
                    __Ownable_init_unchained();
                }
            
                function __Ownable_init_unchained() internal onlyInitializing {
                    _transferOwnership(_msgSender());
                }
            
                /**
                 * @dev Returns the address of the current owner.
                 */
                function owner() public view virtual returns (address) {
                    return _owner;
                }
            
                /**
                 * @dev Throws if called by any account other than the owner.
                 */
                modifier onlyOwner() {
                    require(owner() == _msgSender(), "Ownable: caller is not the owner");
                    _;
                }
            
                /**
                 * @dev Leaves the contract without owner. It will not be possible to call
                 * `onlyOwner` functions anymore. Can only be called by the current owner.
                 *
                 * NOTE: Renouncing ownership will leave the contract without an owner,
                 * thereby removing any functionality that is only available to the owner.
                 */
                function renounceOwnership() public virtual onlyOwner {
                    _transferOwnership(address(0));
                }
            
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Can only be called by the current owner.
                 */
                function transferOwnership(address newOwner) public virtual onlyOwner {
                    require(newOwner != address(0), "Ownable: new owner is the zero address");
                    _transferOwnership(newOwner);
                }
            
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Internal function without access restriction.
                 */
                function _transferOwnership(address newOwner) internal virtual {
                    address oldOwner = _owner;
                    _owner = newOwner;
                    emit OwnershipTransferred(oldOwner, newOwner);
                }
                uint256[49] private __gap;
            }
            
            interface IERC20 {
                event Approval(address indexed owner, address indexed spender, uint value);
                event Transfer(address indexed from, address indexed to, uint value);
            
                function name() external view returns (string memory);
            
                function symbol() external view returns (string memory);
            
                function decimals() external view returns (uint8);
            
                function totalSupply() external view returns (uint);
            
                function balanceOf(address owner) external view returns (uint);
            
                function allowance(address owner, address spender) external view returns (uint);
            
                function approve(address spender, uint value) external returns (bool);
            
                function transfer(address to, uint value) external returns (bool);
            
                function transferFrom(address from, address to, uint value) external returns (bool);
            }
            
            library SafeMath {
                uint256 constant WAD = 10 ** 18;
                uint256 constant RAY = 10 ** 27;
            
                function wad() public pure returns (uint256) {
                    return WAD;
                }
            
                function ray() public pure returns (uint256) {
                    return RAY;
                }
            
                function add(uint256 a, uint256 b) internal pure returns (uint256) {
                    uint256 c = a + b;
                    require(c >= a, "SafeMath: addition overflow");
            
                    return c;
                }
            
                function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                    return sub(a, b, "SafeMath: subtraction overflow");
                }
            
                function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                    require(b <= a, errorMessage);
                    uint256 c = a - b;
            
                    return c;
                }
            
                function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                    // benefit is lost if 'b' is also tested.
                    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                    if (a == 0) {
                        return 0;
                    }
            
                    uint256 c = a * b;
                    require(c / a == b, "SafeMath: multiplication overflow");
            
                    return c;
                }
            
                function div(uint256 a, uint256 b) internal pure returns (uint256) {
                    return div(a, b, "SafeMath: division by zero");
                }
            
                function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                    // Solidity only automatically asserts when dividing by 0
                    require(b > 0, errorMessage);
                    uint256 c = a / b;
                    // assert(a == b * c + a % b); // There is no case in which this doesn't hold
            
                    return c;
                }
            
                function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                    return mod(a, b, "SafeMath: modulo by zero");
                }
            
                function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                    require(b != 0, errorMessage);
                    return a % b;
                }
            
                function min(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a <= b ? a : b;
                }
            
                function max(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a >= b ? a : b;
                }
            
                function sqrt(uint256 a) internal pure returns (uint256 b) {
                    if (a > 3) {
                        b = a;
                        uint256 x = a / 2 + 1;
                        while (x < b) {
                            b = x;
                            x = (a / x + x) / 2;
                        }
                    } else if (a != 0) {
                        b = 1;
                    }
                }
            
                function wmul(uint256 a, uint256 b) internal pure returns (uint256) {
                    return mul(a, b) / WAD;
                }
            
                function wmulRound(uint256 a, uint256 b) internal pure returns (uint256) {
                    return add(mul(a, b), WAD / 2) / WAD;
                }
            
                function rmul(uint256 a, uint256 b) internal pure returns (uint256) {
                    return mul(a, b) / RAY;
                }
            
                function rmulRound(uint256 a, uint256 b) internal pure returns (uint256) {
                    return add(mul(a, b), RAY / 2) / RAY;
                }
            
                function wdiv(uint256 a, uint256 b) internal pure returns (uint256) {
                    return div(mul(a, WAD), b);
                }
            
                function wdivRound(uint256 a, uint256 b) internal pure returns (uint256) {
                    return add(mul(a, WAD), b / 2) / b;
                }
            
                function rdiv(uint256 a, uint256 b) internal pure returns (uint256) {
                    return div(mul(a, RAY), b);
                }
            
                function rdivRound(uint256 a, uint256 b) internal pure returns (uint256) {
                    return add(mul(a, RAY), b / 2) / b;
                }
            
                function wpow(uint256 x, uint256 n) internal pure returns (uint256) {
                    uint256 result = WAD;
                    while (n > 0) {
                        if (n % 2 != 0) {
                            result = wmul(result, x);
                        }
                        x = wmul(x, x);
                        n /= 2;
                    }
                    return result;
                }
            
                function rpow(uint256 x, uint256 n) internal pure returns (uint256) {
                    uint256 result = RAY;
                    while (n > 0) {
                        if (n % 2 != 0) {
                            result = rmul(result, x);
                        }
                        x = rmul(x, x);
                        n /= 2;
                    }
                    return result;
                }
            
                function divCeil(uint256 a, uint256 b) internal pure returns (uint256) {
                    uint256 quotient = div(a, b);
                    uint256 remainder = a - quotient * b;
                    if (remainder > 0) {
                        return quotient + 1;
                    } else {
                        return quotient;
                    }
                }
            }
            
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following 
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
                    // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
                    // for accounts without code, i.e. `keccak256('')`
                    bytes32 codehash;
                    bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
                    // solhint-disable-next-line no-inline-assembly
                    assembly { codehash := extcodehash(account) }
                    return (codehash != accountHash && codehash != 0x0);
                }
            
                /**
                 * @dev Converts an `address` into `address payable`. Note that this is
                 * simply a type cast: the actual underlying value is not changed.
                 *
                 * _Available since v2.4.0._
                 */
                function toPayable(address account) internal pure returns (address payable) {
                    return payable(account);
                }
            
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 *
                 * _Available since v2.4.0._
                 */
                function sendValue(address recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
            
                    // solhint-disable-next-line avoid-call-value
                    (bool success, ) = recipient.call{ value: amount }("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
            }
            
            /**
             * @title SafeERC20
             * @dev Wrappers around ERC20 operations that throw on failure (when the token
             * contract returns false). Tokens that return no value (and instead revert or
             * throw on failure) are also supported, non-reverting calls are assumed to be
             * successful.
             * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
             * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
             */
            library SafeERC20 {
                using SafeMath for uint256;
                using Address for address;
            
                function safeTransfer(IERC20 token, address to, uint256 value) internal {
                    callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                }
            
                function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                    callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                }
            
                function safeApprove(IERC20 token, address spender, uint256 value) internal {
                    // safeApprove should only be called when setting an initial allowance,
                    // or when resetting it to zero. To increase and decrease it, use
                    // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                    // solhint-disable-next-line max-line-length
                    require((value == 0) || (token.allowance(address(this), spender) == 0),
                        "SafeERC20: approve from non-zero to non-zero allowance"
                    );
                    callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                }
            
                function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                    uint256 newAllowance = token.allowance(address(this), spender).add(value);
                    callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                }
            
                function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                    uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
                    callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                }
            
                /**
                 * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                 * on the return value: the return value is optional (but if data is returned, it must not be false).
                 * @param token The token targeted by the call.
                 * @param data The call data (encoded using abi.encode or one of its variants).
                 */
                function callOptionalReturn(IERC20 token, bytes memory data) private {
                    // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                    // we're implementing it ourselves.
            
                    // A Solidity high level call has three parts:
                    //  1. The target address is checked to verify it contains contract code
                    //  2. The call itself is made, and success asserted
                    //  3. The return value is decoded, which in turn checks the size of the returned data.
                    // solhint-disable-next-line max-line-length
                    require(address(token).isContract(), "SafeERC20: call to non-contract");
            
                    // solhint-disable-next-line avoid-low-level-calls
                    (bool success, bytes memory returndata) = address(token).call(data);
                    require(success, "SafeERC20: low-level call failed");
            
                    if (returndata.length > 0) { // Return data is optional
                        // solhint-disable-next-line max-line-length
                        require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                    }
                }
            }
            
            /// @title Handle authorizations in dex platform
            /// @notice Explain to an end user what this does
            /// @dev Explain to a developer any extra details
            contract TokenApprove is OwnableUpgradeable {
              using SafeERC20 for IERC20;
            
              address public tokenApproveProxy;
            
              function initialize(address _tokenApproveProxy) public initializer {
                __Ownable_init();
                tokenApproveProxy = _tokenApproveProxy;
              }
            
              //-------------------------------
              //------- Events ----------------
              //-------------------------------
            
              event ProxyUpdate(address indexed oldProxy, address indexed newProxy);
            
              //-------------------------------
              //------- Modifier --------------
              //-------------------------------
            
              //--------------------------------
              //------- Internal Functions -----
              //--------------------------------
            
              //---------------------------------
              //------- Admin functions ---------
              //---------------------------------
            
              function setApproveProxy(address _newTokenApproveProxy) external onlyOwner {
                tokenApproveProxy = _newTokenApproveProxy;
                emit ProxyUpdate(tokenApproveProxy, _newTokenApproveProxy);
              }
            
              //---------------------------------
              //-------  Users Functions --------
              //---------------------------------
            
              function claimTokens(
                address _token,
                address _who,
                address _dest,
                uint256 _amount
              ) external {
                require(msg.sender == tokenApproveProxy, "TokenApprove: Access restricted");
                if (_amount > 0) {
                  IERC20(_token).safeTransferFrom(_who, _dest, _amount);
                }
              }
            }