Transaction Hash:
Block:
21138739 at Nov-07-2024 10:25:35 PM +UTC
Transaction Fee:
0.00248141170816742 ETH
$5.60
Gas Used:
130,555 Gas / 19.006638644 Gwei
Emitted Events:
387 |
TITANX.Approval( owner=[Sender] 0x7843c6022abba22f353ee85881d154d34cadba81, spender=[Receiver] ElementNFT, value=100000000000000000000100000 )
|
388 |
TITANX.Transfer( from=[Sender] 0x7843c6022abba22f353ee85881d154d34cadba81, to=Element280, value=1000000000000000000000000000 )
|
389 |
TITANX.Approval( owner=[Sender] 0x7843c6022abba22f353ee85881d154d34cadba81, spender=[Receiver] ElementNFT, value=100000 )
|
390 |
TITANX.Transfer( from=[Sender] 0x7843c6022abba22f353ee85881d154d34cadba81, to=GnosisSafeProxy, value=100000000000000000000000000 )
|
391 |
ElementNFT.Transfer( from=0x00000000...000000000, to=[Sender] 0x7843c6022abba22f353ee85881d154d34cadba81, tokenId=15192 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x7843C602...34cADba81 |
0.012337301817491335 Eth
Nonce: 198
|
0.009855890109323915 Eth
Nonce: 199
| 0.00248141170816742 | ||
0x7F090d10...fC0Cf46c9 | |||||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 14.445384552687193339 Eth | 14.445394861309993339 Eth | 0.0000103086228 | |
0xF19308F9...BEC6665B1 |
Execution Trace
ElementNFT.mintWithTitanX( tieredNfts=[4] )

-
TITANX.transferFrom( from=0x7843C6022ABBA22F353eE85881D154D34cADba81, to=0xe9A53C43a0B58706e67341C4055de861e29Ee943, amount=1000000000000000000000000000 ) => ( True )
-
TITANX.transferFrom( from=0x7843C6022ABBA22F353eE85881D154D34cADba81, to=0x15E5B9B9Adf208cC7CA3aE1e6a49506eB5f397Dd, amount=100000000000000000000000000 ) => ( True )
File 1 of 4: ElementNFT
File 2 of 4: TITANX
File 3 of 4: Element280
File 4 of 4: GnosisSafeProxy
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol"; // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol"; // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC20Permit} from "../extensions/IERC20Permit.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success,) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget(address target, bool success, bytes memory returndata) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#swap /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface interface IUniswapV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; import "@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol"; /// @title Router token swapping functionality /// @notice Functions for swapping tokens via Uniswap V3 interface ISwapRouter is IUniswapV3SwapCallback { struct ExactInputSingleParams { address tokenIn; address tokenOut; uint24 fee; address recipient; uint256 deadline; uint256 amountIn; uint256 amountOutMinimum; uint160 sqrtPriceLimitX96; } /// @notice Swaps `amountIn` of one token for as much as possible of another token /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata /// @return amountOut The amount of the received token function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut); struct ExactInputParams { bytes path; address recipient; uint256 deadline; uint256 amountIn; uint256 amountOutMinimum; } /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata /// @return amountOut The amount of the received token function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut); struct ExactOutputSingleParams { address tokenIn; address tokenOut; uint24 fee; address recipient; uint256 deadline; uint256 amountOut; uint256 amountInMaximum; uint160 sqrtPriceLimitX96; } /// @notice Swaps as little as possible of one token for `amountOut` of another token /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata /// @return amountIn The amount of the input token function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn); struct ExactOutputParams { bytes path; address recipient; uint256 deadline; uint256 amountOut; uint256 amountInMaximum; } /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed) /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata /// @return amountIn The amount of the input token function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn); } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.24; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/interfaces/IERC20.sol"; import "@openzeppelin/contracts/interfaces/IERC165.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; import "@uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol"; import "erc721a/contracts/ERC721A.sol"; import "./interfaces/IElement280.sol"; import "./interfaces/IWETH9.sol"; import "./lib/constants.sol"; /// @title Element 280 NFT Contract contract ElementNFT is ERC721A, Ownable, IERC165 { using SafeERC20 for IERC20; using Strings for uint256; // --------------------------- STATE VARIABLES --------------------------- // address public immutable E280; address public treasury; uint256 private constant _BITPOS_NFT_TIER = 0; uint256 private constant _BITMASK_NFT_TIER = (1 << 8) - 1; uint256 private constant _BITPOS_TIMESTAMP = 8; uint256 private constant _BITMASK_TIMESTAMP = (1 << 64) - 1; uint256 private constant _BITPOS_MULTIPLIER = 72; uint256 private constant _BITMASK_MULTIPLIER = (1 << 16) - 1; /// @notice Total multipliers of all existing tokens. /// @dev Used in cycle reward calculation of the Element 280 Holder Vault contract. uint256 public multiplierPool; /// @notice Timestamp in seconds of the presale end date. uint256 public presaleEnd; string public contractURI; mapping(uint8 tier => string) public baseURIs; /// @notice Static multipliers per tier. mapping(uint8 tier => uint16) public tierMultipliers; /// @notice Static Element 280 token allocations per tier. /// @dev Also used for price calculation. mapping(uint8 tier => uint256) public tierAllocations; mapping(uint256 => uint256) private _packedTokenData; // --------------------------- EVENTS & MODIFIERS --------------------------- // event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId); event ContractURIUpdated(); modifier onlyPresale() { require(presaleEnd > block.timestamp, "Presale not active"); _; } // --------------------------- CONSTRUCTOR --------------------------- // constructor(address _owner, address _treasury, string memory _contractURI, address _E280, string[] memory _baseURIs) ERC721A("Element 280", "ELMNT") Ownable(_owner) { require(_owner != address(0), "Owner address not provided"); require(_treasury != address(0), "Treasury address not provided"); require(_E280 != address(0), "E280 address not provided"); require(_baseURIs.length == 6, "Incorrect number of base URIs sent"); contractURI = _contractURI; E280 = _E280; treasury = _treasury; tierMultipliers[1] = 10; tierMultipliers[2] = 12; tierMultipliers[3] = 100; tierMultipliers[4] = 120; tierMultipliers[5] = 1000; tierMultipliers[6] = 1200; tierAllocations[1] = 100_000_000 ether; tierAllocations[2] = 100_000_000 ether; tierAllocations[3] = 1_000_000_000 ether; tierAllocations[4] = 1_000_000_000 ether; tierAllocations[5] = 10_000_000_000 ether; tierAllocations[6] = 10_000_000_000 ether; for (uint8 i = 0; i < _baseURIs.length; i++) { baseURIs[i + 1] = _baseURIs[i]; } } // --------------------------- PUBLIC FUNCTIONS --------------------------- // /// @notice Mints NFTs using TitanX tokens during the presale. /// @param tieredNfts List of NFTs to mint, represented by their tier number. function mintWithTitanX(uint8[] calldata tieredNfts) public onlyPresale { (uint256 titanXPool, uint256 ampPool) = _processNftTiers(tieredNfts); IERC20 titanX = IERC20(TITANX); titanX.safeTransferFrom(msg.sender, E280, titanXPool); if (ampPool > 0) titanX.safeTransferFrom(msg.sender, treasury, ampPool); _mint(msg.sender, tieredNfts.length); } /// @notice Mints NFTs using Ethereum during the presale. /// @notice Refunds TitanX if the amount swapped is greater than the price. /// @param tieredNfts List of NFTs to mint, represented by their tier number. function mintWithEth(uint8[] calldata tieredNfts, uint256 deadline) public payable onlyPresale { (uint256 titanXPool, uint256 ampPool) = _processNftTiers(tieredNfts); uint256 totalTitanX; unchecked { totalTitanX = titanXPool + ampPool; } uint256 swappedAmount = _swapETHForTitanX(totalTitanX, deadline); IERC20 titanX = IERC20(TITANX); titanX.safeTransfer(E280, titanXPool); if (ampPool > 0) titanX.safeTransfer(treasury, ampPool); _mint(msg.sender, tieredNfts.length); if (swappedAmount > totalTitanX) { titanX.safeTransfer(msg.sender, swappedAmount - totalTitanX); } } /// @notice Burns the NFT and mints Element 280 tokens to the user. /// @param tokenIds An array of token IDs to redeem. function redeemNFTs(uint256[] calldata tokenIds) external { uint256 totalAllocation; require(tokenIds.length > 0, "Empty array"); address initialOwner = ownerOf(tokenIds[0]); for (uint256 i = 0; i < tokenIds.length; i++) { uint256 tokenId = tokenIds[i]; uint256 data = _packedTokenData[tokenId]; require(block.timestamp > _getTimestamp(data) + COOLDOWN_PERIOD, "Cooldown is active"); uint8 tier = _getNftTier(data); unchecked { totalAllocation += tierAllocations[tier]; multiplierPool -= _getMultiplier(data); require(initialOwner == ownerOf(tokenId), "NFT not owned by same user"); } _burn(tokenId, true); } IElement280(E280).handleRedeem(totalAllocation, initialOwner); } // --------------------------- ADMINISTRATIVE FUNCTIONS --------------------------- // /// @notice Starts the presale with a specific end date. /// @param _presaleEnd The timestamp when the presale will end. /// @dev Can only be called by the E280 contract. function startPresale(uint256 _presaleEnd) external { require(msg.sender == address(E280), "Unauthorized"); presaleEnd = _presaleEnd; } /// @notice Sets the contract-level metadata URI. /// @param _uri The URI of the contract metadata. function setContractURI(string memory _uri) external onlyOwner { contractURI = _uri; emit ContractURIUpdated(); } /// @notice Sets the base URI for a specific tier. /// @param tier The NFT tier to set the URI for. /// @param _uri The base URI for the specified tier. function setBaseURI(uint8 tier, string memory _uri) external onlyOwner { baseURIs[tier] = _uri; emit BatchMetadataUpdate(1, type(uint256).max); } // --------------------------- VIEW FUNCTIONS --------------------------- // /// @notice Calculates the total allocation of Element 280 tokens for a set of NFTs. /// @param tokenIds An array of token IDs to calculate allocations for. /// @return totalAllocation The total allocation of Element 280 tokens in WEI. function calculateAllocation(uint256[] calldata tokenIds) external view returns (uint256) { require(tokenIds.length > 0, "No tokens provided"); uint256 totalAllocation; for (uint256 i = 0; i < tokenIds.length; i++) { for (uint256 j = i + 1; j < tokenIds.length; j++) { require(tokenIds[i] != tokenIds[j], "Duplicate token ID"); } unchecked { require(_exists(tokenIds[i]), "Token ID does not exist"); totalAllocation += tierAllocations[getNftTier(tokenIds[i])]; } } return totalAllocation; } /// @notice Returns a tier number for a specific token ID. /// @param tokenId Token ID of the token. /// @return Tier of the NFT. function getNftTier(uint256 tokenId) public view returns (uint8) { uint256 packedData = _packedTokenData[tokenId]; return _getNftTier(packedData); } /// @notice Returns time of purchase for a specific token ID. /// @param tokenId Token ID of the token. /// @return Time of purchase in seconds. function getTimestamp(uint256 tokenId) public view returns (uint64) { uint256 packedData = _packedTokenData[tokenId]; return _getTimestamp(packedData); } /// @notice Returns a multiplier for a specific token ID. /// @param tokenId Token ID of the token. /// @return Multiplier of the NFT. function getMultiplier(uint256 tokenId) public view returns (uint64) { uint256 packedData = _packedTokenData[tokenId]; return _getMultiplier(packedData); } /// @notice Retrieves the timestamps and multipliers of the specified NFTs. /// @param tokenIds An array of token IDs to query. /// @param nftOwner The owner address of the NFTs. /// @return timestamps An array of timestamps for each token. /// @return multipliers An array of multipliers for each token. /// @dev Used by Holder Vault to calculate cycle rewards. function getBatchedTokensData(uint256[] calldata tokenIds, address nftOwner) external view returns (uint256[] memory timestamps, uint16[] memory multipliers) { timestamps = new uint256[](tokenIds.length); multipliers = new uint16[](tokenIds.length); for (uint256 i = 0; i < tokenIds.length; i++) { uint256 tokenId = tokenIds[i]; require(ownerOf(tokenId) == nftOwner, "Unauthorized"); uint256 packedData = _packedTokenData[tokenId]; timestamps[i] = _getTimestamp(packedData); multipliers[i] = _getMultiplier(packedData); } } /// @notice Returns the total number of NFTs per tier. /// @return total An array where each index corresponds to the total NFTs for a specific tier. /// @dev Should not be called by contracts. function getTotalNftsPerTiers() external view returns (uint256[] memory total) { uint256 totalTokenIds = _nextTokenId(); total = new uint256[](6); for (uint256 tokenId = 1; tokenId < totalTokenIds; tokenId++) { if (_exists(tokenId)) { total[_getNftTier(_packedTokenData[tokenId]) - 1]++; } } } /// @notice Returns all token IDs owned by a specific account. /// @param account The address of the token owner. /// @return tokenIds An array of token IDs owned by the account. /// @dev Should not be called by contracts. function tokenIdsOf(address account) external view returns (uint256[] memory tokenIds) { uint256 totalTokenIds = _nextTokenId(); uint256 userBalance = balanceOf(account); tokenIds = new uint256[](userBalance); if (userBalance == 0) return tokenIds; uint256 counter; for (uint256 tokenId = 1; tokenId < totalTokenIds; tokenId++) { if (_exists(tokenId) && ownerOf(tokenId) == account) { tokenIds[counter] = tokenId; counter++; if (counter == userBalance) return tokenIds; } } } /// @notice Returns the total TitanX amount required for minting the given list of NFTs. /// @param tieredNfts An array of NFT to mint, represented by their respected tiers. /// @return titanXPool The total TitanX required for the minting transaction (in WEI). function getTotalPrice(uint8[] calldata tieredNfts) external view returns (uint256 titanXPool) { for (uint256 i = 0; i < tieredNfts.length; i++) { uint8 tier = tieredNfts[i]; (bool isValid, bool isAmped) = _processTier(tier); require(isValid, "Not a valid tier"); unchecked { titanXPool += tierAllocations[tier]; if (isAmped) titanXPool += tierAllocations[tier] * 10 / 100; } } } /// @notice Returns the total number of NFTs burned. function totalBurned() external view returns (uint256) { return _totalBurned(); } function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { require(_exists(tokenId), "URI query for nonexistent token"); return bytes(baseURIs[getNftTier(tokenId)]).length != 0 ? baseURIs[getNftTier(tokenId)] : ""; } function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721A) returns (bool) { return interfaceId == INTERFACE_ID_ERC165 || interfaceId == INTERFACE_ID_ERC721 || interfaceId == INTERFACE_ID_ERC721Metadata || super.supportsInterface(interfaceId); } // --------------------------- INTERNAL FUNCTIONS --------------------------- // function _startTokenId() internal view virtual override returns (uint256) { return 1; } function _processNftTiers(uint8[] calldata tieredNfts) internal returns (uint256 titanXPool, uint256 ampPool) { require(tieredNfts.length > 0, "Need to mint at least 1 NFT"); uint256 currentIndex = _nextTokenId(); for (uint256 i = 0; i < tieredNfts.length; i++) { uint8 tier = tieredNfts[i]; (bool isValid, bool isAmped) = _processTier(tier); require(isValid, "Not a valid tier"); uint16 multiplier = tierMultipliers[tier]; _setNftData(currentIndex + i, tier, uint64(block.timestamp), multiplier); unchecked { multiplierPool += multiplier; titanXPool += tierAllocations[tier]; if (isAmped) ampPool += tierAllocations[tier] * 10 / 100; } } } function _packData(uint8 nftTier, uint64 timestamp, uint16 multiplier) internal pure returns (uint256) { return (uint256(nftTier) << _BITPOS_NFT_TIER) | (uint256(timestamp) << _BITPOS_TIMESTAMP) | (uint256(multiplier) << _BITPOS_MULTIPLIER); } function _getNftTier(uint256 packedData) internal pure returns (uint8) { return uint8(packedData & _BITMASK_NFT_TIER); } function _getTimestamp(uint256 packedData) internal pure returns (uint64) { return uint64((packedData >> _BITPOS_TIMESTAMP) & _BITMASK_TIMESTAMP); } function _getMultiplier(uint256 packedData) internal pure returns (uint16) { return uint16((packedData >> _BITPOS_MULTIPLIER) & _BITMASK_MULTIPLIER); } function _setNftData(uint256 tokenId, uint8 nftTier, uint64 timestamp, uint16 multiplier) internal { uint256 packedData = _packData(nftTier, timestamp, multiplier); _packedTokenData[tokenId] = packedData; } function _processTier(uint8 tier) private pure returns (bool isValid, bool isAmped) { return (tier > 0 && tier < 7, tier % 2 == 0); } function _swapETHForTitanX(uint256 minAmountOut, uint256 deadline) internal returns (uint256) { IWETH9(WETH9).deposit{value: msg.value}(); ISwapRouter.ExactInputSingleParams memory params = ISwapRouter.ExactInputSingleParams({ tokenIn: WETH9, tokenOut: TITANX, fee: POOL_FEE_1PERCENT, recipient: address(this), deadline: deadline, amountIn: msg.value, amountOutMinimum: minAmountOut, sqrtPriceLimitX96: 0 }); IERC20(WETH9).safeIncreaseAllowance(UNISWAP_V3_ROUTER, msg.value); uint256 amountOut = ISwapRouter(UNISWAP_V3_ROUTER).exactInputSingle(params); return amountOut; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import "./IERC20Burnable.sol"; interface IElement280 is IERC20Burnable { function presaleEnd() external returns (uint256); function handleRedeem(uint256 amount, address receiver) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.24; interface IERC20Burnable { function burn(uint256 value) external; function balanceOf(address account) external view returns (uint256); function transfer(address to, uint256 value) external returns (bool); function transferFrom(address from, address to, uint256 value) external returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface ITitanOnBurn { function onBurn(address user, uint256 amount) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.10; import "@openzeppelin/contracts/interfaces/IERC20.sol"; /// @title Interface for WETH9 interface IWETH9 is IERC20 { /// @notice Deposit ether to get wrapped ether function deposit() external payable; /// @notice Withdraw wrapped ether to get ether function withdraw(uint256) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import "../interfaces/ITitanOnBurn.sol"; import "@openzeppelin/contracts/interfaces/IERC20.sol"; // ===================== Contract Addresses ===================================== uint8 constant NUM_ECOSYSTEM_TOKENS = 14; address constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; address constant TITANX = 0xF19308F923582A6f7c465e5CE7a9Dc1BEC6665B1; address constant HYPER_ADDRESS = 0xE2cfD7a01ec63875cd9Da6C7c1B7025166c2fA2F; address constant HELIOS_ADDRESS = 0x2614f29C39dE46468A921Fd0b41fdd99A01f2EDf; address constant DRAGONX_ADDRESS = 0x96a5399D07896f757Bd4c6eF56461F58DB951862; address constant BDX_ADDRESS = 0x9f278Dc799BbC61ecB8e5Fb8035cbfA29803623B; address constant BLAZE_ADDRESS = 0xfcd7cceE4071aA4ecFAC1683b7CC0aFeCAF42A36; address constant INFERNO_ADDRESS = 0x00F116ac0c304C570daAA68FA6c30a86A04B5C5F; address constant HYDRA_ADDRESS = 0xCC7ed2ab6c3396DdBc4316D2d7C1b59ff9d2091F; address constant AWESOMEX_ADDRESS = 0xa99AFcC6Aa4530d01DFFF8E55ec66E4C424c048c; address constant FLUX_ADDRESS = 0xBFDE5ac4f5Adb419A931a5bF64B0f3BB5a623d06; address constant DRAGONX_BURN_ADDRESS = 0x1d59429571d8Fde785F45bf593E94F2Da6072Edb; // ===================== Presale ================================================ uint256 constant PRESALE_LENGTH = 28 days; uint256 constant COOLDOWN_PERIOD = 48 hours; uint256 constant LP_POOL_SIZE = 200_000_000_000 ether; // ===================== Fees =================================================== uint256 constant DEV_PERCENT = 6; uint256 constant TREASURY_PERCENT = 4; uint256 constant BURN_PERCENT = 10; // ===================== Sell Tax =============================================== uint256 constant PRESALE_TRANSFER_TAX_PERCENTAGE = 16; uint256 constant TRANSFER_TAX_PERCENTAGE = 4; uint256 constant NFT_REDEEM_TAX_PERCENTAGE = 3; // ===================== Holder Vault =========================================== uint16 constant MAX_CYCLES_PER_CLAIM = 100; uint32 constant CYCLE_INTERVAL = 7 days; // ===================== UNISWAP Interface ====================================== address constant UNISWAP_V2_FACTORY = 0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f; address constant UNISWAP_V2_ROUTER = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; address constant UNISWAP_V3_ROUTER = 0xE592427A0AEce92De3Edee1F18E0157C05861564; uint24 constant POOL_FEE_1PERCENT = 10000; // ===================== Interface IDs ========================================== bytes4 constant INTERFACE_ID_ERC165 = 0x01ffc9a7; bytes4 constant INTERFACE_ID_ERC20 = type(IERC20).interfaceId; bytes4 constant INTERFACE_ID_ERC721 = 0x80ac58cd; bytes4 constant INTERFACE_ID_ERC721Metadata = 0x5b5e139f; bytes4 constant INTERFACE_ID_ITITANONBURN = type(ITitanOnBurn).interfaceId; // SPDX-License-Identifier: MIT // ERC721A Contracts v4.3.0 // Creator: Chiru Labs pragma solidity ^0.8.4; import "./IERC721A.sol"; /** * @dev Interface of ERC721 token receiver. */ interface ERC721A__IERC721Receiver { function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data) external returns (bytes4); } /** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * The `_sequentialUpTo()` function can be overriden to enable spot mints * (i.e. non-consecutive mints) for `tokenId`s greater than `_sequentialUpTo()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is IERC721A { // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). struct TokenApprovalRef { address value; } // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 private _currentIndex; // The number of tokens burned. uint256 private _burnCounter; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) private _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) private _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => TokenApprovalRef) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // The amount of tokens minted above `_sequentialUpTo()`. // We call these spot mints (i.e. non-sequential mints). uint256 private _spotMinted; // ============================================================= // CONSTRUCTOR // ============================================================= constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _currentIndex = _startTokenId(); if (_sequentialUpTo() < _startTokenId()) _revert(SequentialUpToTooSmall.selector); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID for sequential mints. * * Override this function to change the starting token ID for sequential mints. * * Note: The value returned must never change after any tokens have been minted. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the maximum token ID (inclusive) for sequential mints. * * Override this function to return a value less than 2**256 - 1, * but greater than `_startTokenId()`, to enable spot (non-sequential) mints. * * Note: The value returned must never change after any tokens have been minted. */ function _sequentialUpTo() internal view virtual returns (uint256) { return type(uint256).max; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return _currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256 result) { // Counter underflow is impossible as `_burnCounter` cannot be incremented // more than `_currentIndex + _spotMinted - _startTokenId()` times. unchecked { // With spot minting, the intermediate `result` can be temporarily negative, // and the computation must be unchecked. result = _currentIndex - _burnCounter - _startTokenId(); if (_sequentialUpTo() != type(uint256).max) result += _spotMinted; } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256 result) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { result = _currentIndex - _startTokenId(); if (_sequentialUpTo() != type(uint256).max) result += _spotMinted; } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return _burnCounter; } /** * @dev Returns the total number of tokens that are spot-minted. */ function _totalSpotMinted() internal view virtual returns (uint256) { return _spotMinted; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector); return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(_packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = _packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); _packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 // ERC165 interface ID for ERC165. || interfaceId == 0x80ac58cd // ERC165 interface ID for ERC721. || interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnerships[index]); } /** * @dev Returns whether the ownership slot at `index` is initialized. * An uninitialized slot does not necessarily mean that the slot has no owner. */ function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) { return _packedOwnerships[index] != 0; } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (_packedOwnerships[index] == 0) { _packedOwnerships[index] = _packedOwnershipOf(index); } } /** * @dev Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) { if (_startTokenId() <= tokenId) { packed = _packedOwnerships[tokenId]; if (tokenId > _sequentialUpTo()) { if (_packedOwnershipExists(packed)) return packed; _revert(OwnerQueryForNonexistentToken.selector); } // If the data at the starting slot does not exist, start the scan. if (packed == 0) { if (tokenId >= _currentIndex) _revert(OwnerQueryForNonexistentToken.selector); // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `tokenId` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. for (;;) { unchecked { packed = _packedOwnerships[--tokenId]; } if (packed == 0) continue; if (packed & _BITMASK_BURNED == 0) return packed; // Otherwise, the token is burned, and we must revert. // This handles the case of batch burned tokens, where only the burned bit // of the starting slot is set, and remaining slots are left uninitialized. _revert(OwnerQueryForNonexistentToken.selector); } } // Otherwise, the data exists and we can skip the scan. // This is possible because we have already achieved the target condition. // This saves 2143 gas on transfers of initialized tokens. // If the token is not burned, return `packed`. Otherwise, revert. if (packed & _BITMASK_BURNED == 0) return packed; } _revert(OwnerQueryForNonexistentToken.selector); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}. * * Requirements: * * - The caller must own the token or be an approved operator. */ function approve(address to, uint256 tokenId) public payable virtual override { _approve(to, tokenId, true); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) _revert(ApprovalQueryForNonexistentToken.selector); return _tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { _operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool result) { if (_startTokenId() <= tokenId) { if (tokenId > _sequentialUpTo()) return _packedOwnershipExists(_packedOwnerships[tokenId]); if (tokenId < _currentIndex) { uint256 packed; while ((packed = _packedOwnerships[tokenId]) == 0) --tokenId; result = packed & _BITMASK_BURNED == 0; } } } /** * @dev Returns whether `packed` represents a token that exists. */ function _packedOwnershipExists(uint256 packed) private pure returns (bool result) { assembly { // The following is equivalent to `owner != address(0) && burned == false`. // Symbolically tested. result := gt(and(packed, _BITMASK_ADDRESS), and(packed, _BITMASK_BURNED)) } } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner(address approvedAddress, address owner, address msgSender) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) public payable virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); // Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean. from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS)); if (address(uint160(prevOwnershipPacked)) != from) _revert(TransferFromIncorrectOwner.selector); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) { if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector); } _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --_packedAddressData[from]; // Updates: `balance -= 1`. ++_packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData(to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. from, // `from`. toMasked, // `to`. tokenId // `tokenId`. ) } if (toMasked == 0) _revert(TransferToZeroAddress.selector); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom(address from, address to, uint256 tokenId) public payable virtual override { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public payable virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) { if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers(address from, address to, uint256 startTokenId, uint256 quantity) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers(address from, address to, uint256 startTokenId, uint256 quantity) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) private returns (bool) { try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns ( bytes4 retval ) { return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { _revert(TransferToNonERC721ReceiverImplementer.selector); } assembly { revert(add(32, reason), mload(reason)) } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (quantity == 0) _revert(MintZeroQuantity.selector); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData(to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)); // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; if (toMasked == 0) _revert(MintToZeroAddress.selector); uint256 end = startTokenId + quantity; uint256 tokenId = startTokenId; if (end - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector); do { assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. tokenId // `tokenId`. ) } // The `!=` check ensures that large values of `quantity` // that overflows uint256 will make the loop run out of gas. } while (++tokenId != end); _currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (to == address(0)) _revert(MintToZeroAddress.selector); if (quantity == 0) _revert(MintZeroQuantity.selector); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) _revert(MintERC2309QuantityExceedsLimit.selector); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData(to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)); if (startTokenId + quantity - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); _currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint(address to, uint256 quantity, bytes memory _data) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = _currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } } while (index < end); // This prevents reentrancy to `_safeMint`. // It does not prevent reentrancy to `_safeMintSpot`. if (_currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ""); } /** * @dev Mints a single token at `tokenId`. * * Note: A spot-minted `tokenId` that has been burned can be re-minted again. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` must be greater than `_sequentialUpTo()`. * - `tokenId` must not exist. * * Emits a {Transfer} event for each mint. */ function _mintSpot(address to, uint256 tokenId) internal virtual { if (tokenId <= _sequentialUpTo()) _revert(SpotMintTokenIdTooSmall.selector); uint256 prevOwnershipPacked = _packedOwnerships[tokenId]; if (_packedOwnershipExists(prevOwnershipPacked)) _revert(TokenAlreadyExists.selector); _beforeTokenTransfers(address(0), to, tokenId, 1); // Overflows are incredibly unrealistic. // The `numberMinted` for `to` is incremented by 1, and has a max limit of 2**64 - 1. // `_spotMinted` is incremented by 1, and has a max limit of 2**256 - 1. unchecked { // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `true` (as `quantity == 1`). _packedOwnerships[tokenId] = _packOwnershipData(to, _nextInitializedFlag(1) | _nextExtraData(address(0), to, prevOwnershipPacked)); // Updates: // - `balance += 1`. // - `numberMinted += 1`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += (1 << _BITPOS_NUMBER_MINTED) | 1; // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; if (toMasked == 0) _revert(MintToZeroAddress.selector); assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. tokenId // `tokenId`. ) } ++_spotMinted; } _afterTokenTransfers(address(0), to, tokenId, 1); } /** * @dev Safely mints a single token at `tokenId`. * * Note: A spot-minted `tokenId` that has been burned can be re-minted again. * * Requirements: * * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}. * - `tokenId` must be greater than `_sequentialUpTo()`. * - `tokenId` must not exist. * * See {_mintSpot}. * * Emits a {Transfer} event. */ function _safeMintSpot(address to, uint256 tokenId, bytes memory _data) internal virtual { _mintSpot(to, tokenId); unchecked { if (to.code.length != 0) { uint256 currentSpotMinted = _spotMinted; if (!_checkContractOnERC721Received(address(0), to, tokenId, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } // This prevents reentrancy to `_safeMintSpot`. // It does not prevent reentrancy to `_safeMint`. if (_spotMinted != currentSpotMinted) revert(); } } } /** * @dev Equivalent to `_safeMintSpot(to, tokenId, '')`. */ function _safeMintSpot(address to, uint256 tokenId) internal virtual { _safeMintSpot(to, tokenId, ""); } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Equivalent to `_approve(to, tokenId, false)`. */ function _approve(address to, uint256 tokenId) internal virtual { _approve(to, tokenId, false); } /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - `tokenId` must exist. * * Emits an {Approval} event. */ function _approve(address to, uint256 tokenId, bool approvalCheck) internal virtual { address owner = ownerOf(tokenId); if (approvalCheck && _msgSenderERC721A() != owner) { if (!isApprovedForAll(owner, _msgSenderERC721A())) { _revert(ApprovalCallerNotOwnerNorApproved.selector); } } _tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) { if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector); } } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as `_burnCounter` cannot be exceed `_currentIndex + _spotMinted` times. unchecked { _burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = _packedOwnerships[index]; if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); _packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData(address from, address to, uint24 previousExtraData) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData(address from, address to, uint256 prevOwnershipPacked) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } /** * @dev For more efficient reverts. */ function _revert(bytes4 errorSelector) internal pure { assembly { mstore(0x00, errorSelector) revert(0x00, 0x04) } } } // SPDX-License-Identifier: MIT // ERC721A Contracts v4.3.0 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721A. */ interface IERC721A { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); /** * `_sequentialUpTo()` must be greater than `_startTokenId()`. */ error SequentialUpToTooSmall(); /** * The `tokenId` of a sequential mint exceeds `_sequentialUpTo()`. */ error SequentialMintExceedsLimit(); /** * Spot minting requires a `tokenId` greater than `_sequentialUpTo()`. */ error SpotMintTokenIdTooSmall(); /** * Cannot mint over a token that already exists. */ error TokenAlreadyExists(); /** * The feature is not compatible with spot mints. */ error NotCompatibleWithSpotMints(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external payable; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom(address from, address to, uint256 tokenId) external payable; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external payable; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external payable; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); }
File 2 of 4: TITANX
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; import "./openzeppelin/security/ReentrancyGuard.sol"; import "./openzeppelin/token/ERC20/ERC20.sol"; import "./openzeppelin/interfaces/IERC165.sol"; import "../interfaces/ITitanOnBurn.sol"; import "../interfaces/ITITANX.sol"; import "../libs/calcFunctions.sol"; import "./GlobalInfo.sol"; import "./MintInfo.sol"; import "./StakeInfo.sol"; import "./BurnInfo.sol"; import "./OwnerInfo.sol"; //custom errors error TitanX_InvalidAmount(); error TitanX_InsufficientBalance(); error TitanX_NotSupportedContract(); error TitanX_InsufficientProtocolFees(); error TitanX_FailedToSendAmount(); error TitanX_NotAllowed(); error TitanX_NoCycleRewardToClaim(); error TitanX_NoSharesExist(); error TitanX_EmptyUndistributeFees(); error TitanX_InvalidBurnRewardPercent(); error TitanX_InvalidBatchCount(); error TitanX_InvalidMintLadderInterval(); error TitanX_InvalidMintLadderRange(); error TitanX_MaxedWalletMints(); error TitanX_LPTokensHasMinted(); error TitanX_InvalidAddress(); error TitanX_InsufficientBurnAllowance(); /** @title Titan X */ contract TITANX is ERC20, ReentrancyGuard, GlobalInfo, MintInfo, StakeInfo, BurnInfo, OwnerInfo { /** Storage Variables*/ /** @dev stores genesis wallet address */ address private s_genesisAddress; /** @dev stores buy and burn contract address */ address private s_buyAndBurnAddress; /** @dev tracks collected protocol fees until it is distributed */ uint88 private s_undistributedEth; /** @dev tracks burn reward from distributeETH() until payout is triggered */ uint88 private s_cycleBurnReward; /** @dev tracks if initial LP tokens has minted or not */ InitialLPMinted private s_initialLPMinted; /** @dev trigger to turn on burn pool reward */ BurnPoolEnabled private s_burnPoolEnabled; /** @dev tracks user + project burn mints allowance */ mapping(address => mapping(address => uint256)) private s_allowanceBurnMints; /** @dev tracks user + project burn stakes allowance */ mapping(address => mapping(address => uint256)) private s_allowanceBurnStakes; event ProtocolFeeRecevied(address indexed user, uint256 indexed day, uint256 indexed amount); event ETHDistributed(address indexed caller, uint256 indexed amount); event CyclePayoutTriggered( address indexed caller, uint256 indexed cycleNo, uint256 indexed reward, uint256 burnReward ); event RewardClaimed(address indexed user, uint256 indexed reward); event ApproveBurnStakes(address indexed user, address indexed project, uint256 indexed amount); event ApproveBurnMints(address indexed user, address indexed project, uint256 indexed amount); constructor(address genesisAddress, address buyAndBurnAddress) ERC20("TITAN X", "TITANX") { if (genesisAddress == address(0)) revert TitanX_InvalidAddress(); if (buyAndBurnAddress == address(0)) revert TitanX_InvalidAddress(); s_genesisAddress = genesisAddress; s_buyAndBurnAddress = buyAndBurnAddress; } /**** Mint Functions *****/ /** @notice create a new mint * @param mintPower 1 - 100 * @param numOfDays mint length of 1 - 280 */ function startMint( uint256 mintPower, uint256 numOfDays ) external payable nonReentrant dailyUpdate { if (getUserLatestMintId(_msgSender()) + 1 > MAX_MINT_PER_WALLET) revert TitanX_MaxedWalletMints(); uint256 gMintPower = getGlobalMintPower() + mintPower; uint256 currentTRank = getGlobalTRank() + 1; uint256 gMinting = getTotalMinting() + _startMint( _msgSender(), mintPower, numOfDays, getCurrentMintableTitan(), getCurrentMintPowerBonus(), getCurrentEAABonus(), getUserBurnAmplifierBonus(_msgSender()), gMintPower, currentTRank, getBatchMintCost(mintPower, 1, getCurrentMintCost()) ); _updateMintStats(currentTRank, gMintPower, gMinting); _protocolFees(mintPower, 1); } /** @notice create new mints in batch of up to 100 mints * @param mintPower 1 - 100 * @param numOfDays mint length of 1 - 280 * @param count 1 - 100 */ function batchMint( uint256 mintPower, uint256 numOfDays, uint256 count ) external payable nonReentrant dailyUpdate { if (count == 0 || count > MAX_BATCH_MINT_COUNT) revert TitanX_InvalidBatchCount(); if (getUserLatestMintId(_msgSender()) + count > MAX_MINT_PER_WALLET) revert TitanX_MaxedWalletMints(); _startBatchMint( _msgSender(), mintPower, numOfDays, getCurrentMintableTitan(), getCurrentMintPowerBonus(), getCurrentEAABonus(), getUserBurnAmplifierBonus(_msgSender()), count, getBatchMintCost(mintPower, 1, getCurrentMintCost()) //only need 1 mint cost for all mints ); _protocolFees(mintPower, count); } /** @notice create new mints in ladder up to 100 mints * @param mintPower 1 - 100 * @param minDay minimum mint length * @param maxDay maximum mint lenght * @param dayInterval day increase from previous mint length * @param countPerInterval how many mints per mint length */ function batchMintLadder( uint256 mintPower, uint256 minDay, uint256 maxDay, uint256 dayInterval, uint256 countPerInterval ) external payable nonReentrant dailyUpdate { if (dayInterval == 0) revert TitanX_InvalidMintLadderInterval(); if (maxDay < minDay || minDay == 0 || maxDay > MAX_MINT_LENGTH) revert TitanX_InvalidMintLadderRange(); uint256 count = getBatchMintLadderCount(minDay, maxDay, dayInterval, countPerInterval); if (count == 0 || count > MAX_BATCH_MINT_COUNT) revert TitanX_InvalidBatchCount(); if (getUserLatestMintId(_msgSender()) + count > MAX_MINT_PER_WALLET) revert TitanX_MaxedWalletMints(); uint256 mintCost = getBatchMintCost(mintPower, 1, getCurrentMintCost()); //only need 1 mint cost for all mints _startbatchMintLadder( _msgSender(), mintPower, minDay, maxDay, dayInterval, countPerInterval, getCurrentMintableTitan(), getCurrentMintPowerBonus(), getCurrentEAABonus(), getUserBurnAmplifierBonus(_msgSender()), mintCost ); _protocolFees(mintPower, count); } /** @notice claim a matured mint * @param id mint id */ function claimMint(uint256 id) external dailyUpdate nonReentrant { _mintReward(_claimMint(_msgSender(), id, MintAction.CLAIM)); } /** @notice batch claim matured mint of up to 100 claims per run */ function batchClaimMint() external dailyUpdate nonReentrant { _mintReward(_batchClaimMint(_msgSender())); } /**** Stake Functions *****/ /** @notice start a new stake * @param amount titan amount * @param numOfDays stake length */ function startStake(uint256 amount, uint256 numOfDays) external dailyUpdate nonReentrant { if (balanceOf(_msgSender()) < amount) revert TitanX_InsufficientBalance(); _burn(_msgSender(), amount); _initFirstSharesCycleIndex( _msgSender(), _startStake( _msgSender(), amount, numOfDays, getCurrentShareRate(), getCurrentContractDay(), getGlobalPayoutTriggered() ) ); } /** @notice end a stake * @param id stake id */ function endStake(uint256 id) external dailyUpdate nonReentrant { _mint( _msgSender(), _endStake( _msgSender(), id, getCurrentContractDay(), StakeAction.END, StakeAction.END_OWN, getGlobalPayoutTriggered() ) ); } /** @notice end a stake for others * @param user wallet address * @param id stake id */ function endStakeForOthers(address user, uint256 id) external dailyUpdate nonReentrant { _mint( user, _endStake( user, id, getCurrentContractDay(), StakeAction.END, StakeAction.END_OTHER, getGlobalPayoutTriggered() ) ); } /** @notice distribute the collected protocol fees into different pools/payouts * automatically send the incentive fee to caller, buyAndBurnFunds to BuyAndBurn contract, and genesis wallet */ function distributeETH() external dailyUpdate nonReentrant { (uint256 incentiveFee, uint256 buyAndBurnFunds, uint256 genesisWallet) = _distributeETH(); _sendFunds(incentiveFee, buyAndBurnFunds, genesisWallet); } /** @notice trigger cylce payouts for day 8, 28, 90, 369, 888 including the burn reward cycle 28 * As long as the cycle has met its maturiy day (eg. Cycle8 is day 8), payout can be triggered in any day onwards */ function triggerPayouts() external dailyUpdate nonReentrant { uint256 globalActiveShares = getGlobalShares() - getGlobalExpiredShares(); if (globalActiveShares < 1) revert TitanX_NoSharesExist(); uint256 incentiveFee; uint256 buyAndBurnFunds; uint256 genesisWallet; if (s_undistributedEth != 0) (incentiveFee, buyAndBurnFunds, genesisWallet) = _distributeETH(); uint256 currentContractDay = getCurrentContractDay(); PayoutTriggered isTriggered = PayoutTriggered.NO; _triggerCyclePayout(DAY8, globalActiveShares, currentContractDay) == PayoutTriggered.YES && isTriggered == PayoutTriggered.NO ? isTriggered = PayoutTriggered.YES : isTriggered; _triggerCyclePayout(DAY28, globalActiveShares, currentContractDay) == PayoutTriggered.YES && isTriggered == PayoutTriggered.NO ? isTriggered = PayoutTriggered.YES : isTriggered; _triggerCyclePayout(DAY90, globalActiveShares, currentContractDay) == PayoutTriggered.YES && isTriggered == PayoutTriggered.NO ? isTriggered = PayoutTriggered.YES : isTriggered; _triggerCyclePayout(DAY369, globalActiveShares, currentContractDay) == PayoutTriggered.YES && isTriggered == PayoutTriggered.NO ? isTriggered = PayoutTriggered.YES : isTriggered; _triggerCyclePayout(DAY888, globalActiveShares, currentContractDay) == PayoutTriggered.YES && isTriggered == PayoutTriggered.NO ? isTriggered = PayoutTriggered.YES : isTriggered; if (isTriggered == PayoutTriggered.YES) { if (getGlobalPayoutTriggered() == PayoutTriggered.NO) _setGlobalPayoutTriggered(); } if (incentiveFee != 0) _sendFunds(incentiveFee, buyAndBurnFunds, genesisWallet); } /** @notice claim all user available ETH payouts in one call */ function claimUserAvailableETHPayouts() external dailyUpdate nonReentrant { uint256 reward = _claimCyclePayout(DAY8, PayoutClaim.SHARES); reward += _claimCyclePayout(DAY28, PayoutClaim.SHARES); reward += _claimCyclePayout(DAY90, PayoutClaim.SHARES); reward += _claimCyclePayout(DAY369, PayoutClaim.SHARES); reward += _claimCyclePayout(DAY888, PayoutClaim.SHARES); if (reward == 0) revert TitanX_NoCycleRewardToClaim(); _sendViaCall(payable(_msgSender()), reward); emit RewardClaimed(_msgSender(), reward); } /** @notice claim all user available burn rewards in one call */ function claimUserAvailableETHBurnPool() external dailyUpdate nonReentrant { uint256 reward = _claimCyclePayout(DAY28, PayoutClaim.BURN); if (reward == 0) revert TitanX_NoCycleRewardToClaim(); _sendViaCall(payable(_msgSender()), reward); emit RewardClaimed(_msgSender(), reward); } /** @notice Set BuyAndBurn Contract Address - able to change to new contract that supports UniswapV4+ * Only owner can call this function * @param contractAddress BuyAndBurn contract address */ function setBuyAndBurnContractAddress(address contractAddress) external onlyOwner { if (contractAddress == address(0)) revert TitanX_InvalidAddress(); s_buyAndBurnAddress = contractAddress; } /** @notice enable burn pool to start accumulate reward. Only owner can call this function. */ function enableBurnPoolReward() external onlyOwner { s_burnPoolEnabled = BurnPoolEnabled.TRUE; } /** @notice Set to new genesis wallet. Only genesis wallet can call this function * @param newAddress new genesis wallet address */ function setNewGenesisAddress(address newAddress) external { if (_msgSender() != s_genesisAddress) revert TitanX_NotAllowed(); if (newAddress == address(0)) revert TitanX_InvalidAddress(); s_genesisAddress = newAddress; } /** @notice mint initial LP tokens. Only BuyAndBurn contract set by genesis wallet can call this function */ function mintLPTokens() external { if (_msgSender() != s_buyAndBurnAddress) revert TitanX_NotAllowed(); if (s_initialLPMinted == InitialLPMinted.YES) revert TitanX_LPTokensHasMinted(); s_initialLPMinted = InitialLPMinted.YES; _mint(s_buyAndBurnAddress, INITAL_LP_TOKENS); } /** @notice burn all BuyAndBurn contract Titan */ function burnLPTokens() external dailyUpdate { _burn(s_buyAndBurnAddress, balanceOf(s_buyAndBurnAddress)); } //private functions /** @dev mint reward to user and 1% to genesis wallet * @param reward titan amount */ function _mintReward(uint256 reward) private { _mint(_msgSender(), reward); _mint(s_genesisAddress, (reward * 800) / PERCENT_BPS); } /** @dev send ETH to respective parties * @param incentiveFee fees for caller to run distributeETH() * @param buyAndBurnFunds funds for buy and burn * @param genesisWalletFunds funds for genesis wallet */ function _sendFunds( uint256 incentiveFee, uint256 buyAndBurnFunds, uint256 genesisWalletFunds ) private { _sendViaCall(payable(_msgSender()), incentiveFee); _sendViaCall(payable(s_genesisAddress), genesisWalletFunds); _sendViaCall(payable(s_buyAndBurnAddress), buyAndBurnFunds); } /** @dev calculation to distribute collected protocol fees into different pools/parties */ function _distributeETH() private returns (uint256 incentiveFee, uint256 buyAndBurnFunds, uint256 genesisWallet) { uint256 accumulatedFees = s_undistributedEth; if (accumulatedFees == 0) revert TitanX_EmptyUndistributeFees(); s_undistributedEth = 0; emit ETHDistributed(_msgSender(), accumulatedFees); incentiveFee = (accumulatedFees * INCENTIVE_FEE_PERCENT) / INCENTIVE_FEE_PERCENT_BASE; //0.01% accumulatedFees -= incentiveFee; buyAndBurnFunds = (accumulatedFees * PERCENT_TO_BUY_AND_BURN) / PERCENT_BPS; uint256 cylceBurnReward = (accumulatedFees * PERCENT_TO_BURN_PAYOUTS) / PERCENT_BPS; genesisWallet = (accumulatedFees * PERCENT_TO_GENESIS) / PERCENT_BPS; uint256 cycleRewardPool = accumulatedFees - buyAndBurnFunds - cylceBurnReward - genesisWallet; if (s_burnPoolEnabled == BurnPoolEnabled.TRUE) s_cycleBurnReward += uint88(cylceBurnReward); else buyAndBurnFunds += cylceBurnReward; //cycle payout if (cycleRewardPool != 0) { uint256 cycle8Reward = (cycleRewardPool * CYCLE_8_PERCENT) / PERCENT_BPS; uint256 cycle28Reward = (cycleRewardPool * CYCLE_28_PERCENT) / PERCENT_BPS; uint256 cycle90Reward = (cycleRewardPool * CYCLE_90_PERCENT) / PERCENT_BPS; uint256 cycle369Reward = (cycleRewardPool * CYCLE_369_PERCENT) / PERCENT_BPS; _setCyclePayoutPool(DAY8, cycle8Reward); _setCyclePayoutPool(DAY28, cycle28Reward); _setCyclePayoutPool(DAY90, cycle90Reward); _setCyclePayoutPool(DAY369, cycle369Reward); _setCyclePayoutPool( DAY888, cycleRewardPool - cycle8Reward - cycle28Reward - cycle90Reward - cycle369Reward ); } } /** @dev calcualte required protocol fees, and return the balance (if any) * @param mintPower mint power 1-100 * @param count how many mints */ function _protocolFees(uint256 mintPower, uint256 count) private { uint256 protocolFee; protocolFee = getBatchMintCost(mintPower, count, getCurrentMintCost()); if (msg.value < protocolFee) revert TitanX_InsufficientProtocolFees(); uint256 feeBalance; s_undistributedEth += uint88(protocolFee); feeBalance = msg.value - protocolFee; if (feeBalance != 0) { _sendViaCall(payable(_msgSender()), feeBalance); } emit ProtocolFeeRecevied(_msgSender(), getCurrentContractDay(), protocolFee); } /** @dev calculate payouts for each cycle day tracked by cycle index * @param cycleNo cylce day 8, 28, 90, 369, 888 * @param globalActiveShares global active shares * @param currentContractDay current contract day * @return triggered is payout triggered succesfully */ function _triggerCyclePayout( uint256 cycleNo, uint256 globalActiveShares, uint256 currentContractDay ) private returns (PayoutTriggered triggered) { //check against cylce payout maturity day if (currentContractDay < getNextCyclePayoutDay(cycleNo)) return PayoutTriggered.NO; //update the next cycle payout day regardless of payout triggered succesfully or not _setNextCyclePayoutDay(cycleNo); uint256 reward = getCyclePayoutPool(cycleNo); if (reward == 0) return PayoutTriggered.NO; //calculate cycle reward per share and get new cycle Index uint256 cycleIndex = _calculateCycleRewardPerShare(cycleNo, reward, globalActiveShares); //calculate burn reward if cycle is 28 uint256 totalCycleBurn = getCycleBurnTotal(cycleIndex); uint256 burnReward; if (cycleNo == DAY28 && totalCycleBurn != 0) { burnReward = s_cycleBurnReward; if (burnReward != 0) { s_cycleBurnReward = 0; _calculateCycleBurnRewardPerToken(cycleIndex, burnReward, totalCycleBurn); } } emit CyclePayoutTriggered(_msgSender(), cycleNo, reward, burnReward); return PayoutTriggered.YES; } /** @dev calculate user reward with specified cycle day and claim type (shares/burn) and update user's last claim cycle index * @param cycleNo cycle day 8, 28, 90, 369, 888 * @param payoutClaim claim type - (Shares=0/Burn=1) */ function _claimCyclePayout(uint256 cycleNo, PayoutClaim payoutClaim) private returns (uint256) { ( uint256 reward, uint256 userClaimCycleIndex, uint256 userClaimSharesIndex, uint256 userClaimBurnCycleIndex ) = _calculateUserCycleReward(_msgSender(), cycleNo, payoutClaim); if (payoutClaim == PayoutClaim.SHARES) _updateUserClaimIndexes( _msgSender(), cycleNo, userClaimCycleIndex, userClaimSharesIndex ); if (payoutClaim == PayoutClaim.BURN) { _updateUserBurnCycleClaimIndex(_msgSender(), cycleNo, userClaimBurnCycleIndex); } return reward; } /** @dev burn liquid Titan through other project. * called by other contracts for proof of burn 2.0 with up to 8% for both builder fee and user rebate * @param user user address * @param amount liquid titan amount * @param userRebatePercentage percentage for user rebate in liquid titan (0 - 8) * @param rewardPaybackPercentage percentage for builder fee in liquid titan (0 - 8) * @param rewardPaybackAddress builder can opt to receive fee in another address */ function _burnLiquidTitan( address user, uint256 amount, uint256 userRebatePercentage, uint256 rewardPaybackPercentage, address rewardPaybackAddress ) private { if (amount == 0) revert TitanX_InvalidAmount(); if (balanceOf(user) < amount) revert TitanX_InsufficientBalance(); _spendAllowance(user, _msgSender(), amount); _burnbefore(userRebatePercentage, rewardPaybackPercentage); _burn(user, amount); _burnAfter( user, amount, userRebatePercentage, rewardPaybackPercentage, rewardPaybackAddress, BurnSource.LIQUID ); } /** @dev burn stake through other project. * called by other contracts for proof of burn 2.0 with up to 8% for both builder fee and user rebate * @param user user address * @param id stake id * @param userRebatePercentage percentage for user rebate in liquid titan (0 - 8) * @param rewardPaybackPercentage percentage for builder fee in liquid titan (0 - 8) * @param rewardPaybackAddress builder can opt to receive fee in another address */ function _burnStake( address user, uint256 id, uint256 userRebatePercentage, uint256 rewardPaybackPercentage, address rewardPaybackAddress ) private { _spendBurnStakeAllowance(user); _burnbefore(userRebatePercentage, rewardPaybackPercentage); _burnAfter( user, _endStake( user, id, getCurrentContractDay(), StakeAction.BURN, StakeAction.END_OWN, getGlobalPayoutTriggered() ), userRebatePercentage, rewardPaybackPercentage, rewardPaybackAddress, BurnSource.STAKE ); } /** @dev burn mint through other project. * called by other contracts for proof of burn 2.0 * burn mint has no builder reward and no user rebate * @param user user address * @param id mint id */ function _burnMint(address user, uint256 id) private { _spendBurnMintAllowance(user); _burnbefore(0, 0); uint256 amount = _claimMint(user, id, MintAction.BURN); _mint(s_genesisAddress, (amount * 800) / PERCENT_BPS); _burnAfter(user, amount, 0, 0, _msgSender(), BurnSource.MINT); } /** @dev perform checks before burning starts. * check reward percentage and check if called by supported contract * @param userRebatePercentage percentage for user rebate * @param rewardPaybackPercentage percentage for builder fee */ function _burnbefore( uint256 userRebatePercentage, uint256 rewardPaybackPercentage ) private view { if (rewardPaybackPercentage + userRebatePercentage > MAX_BURN_REWARD_PERCENT) revert TitanX_InvalidBurnRewardPercent(); //Only supported contracts is allowed to call this function if ( !IERC165(_msgSender()).supportsInterface(IERC165.supportsInterface.selector) || !IERC165(_msgSender()).supportsInterface(type(ITitanOnBurn).interfaceId) ) revert TitanX_NotSupportedContract(); } /** @dev update burn stats and mint reward to builder or user if applicable * @param user user address * @param amount titan amount burned * @param userRebatePercentage percentage for user rebate in liquid titan (0 - 8) * @param rewardPaybackPercentage percentage for builder fee in liquid titan (0 - 8) * @param rewardPaybackAddress builder can opt to receive fee in another address * @param source liquid/mint/stake */ function _burnAfter( address user, uint256 amount, uint256 userRebatePercentage, uint256 rewardPaybackPercentage, address rewardPaybackAddress, BurnSource source ) private { uint256 index = getCurrentCycleIndex(DAY28) + 1; /** set to the latest cylceIndex + 1 for fresh wallet * same concept as _initFirstSharesCycleIndex, refer to its dev comment */ if (getUserBurnTotal(user) == 0) _updateUserBurnCycleClaimIndex(user, DAY28, index); _updateBurnAmount(user, _msgSender(), amount, index, source); uint256 devFee; uint256 userRebate; if (rewardPaybackPercentage != 0) devFee = (amount * rewardPaybackPercentage * PERCENT_BPS) / (100 * PERCENT_BPS); if (userRebatePercentage != 0) userRebate = (amount * userRebatePercentage * PERCENT_BPS) / (100 * PERCENT_BPS); if (devFee != 0) _mint(rewardPaybackAddress, devFee); if (userRebate != 0) _mint(user, userRebate); ITitanOnBurn(_msgSender()).onBurn(user, amount); } /** @dev Recommended method to use to send native coins. * @param to receiving address. * @param amount in wei. */ function _sendViaCall(address payable to, uint256 amount) private { if (to == address(0)) revert TitanX_InvalidAddress(); (bool sent, ) = to.call{value: amount}(""); if (!sent) revert TitanX_FailedToSendAmount(); } /** @dev reduce user's allowance for caller (spender/project) by 1 (burn 1 stake at a time) * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * @param user user address */ function _spendBurnStakeAllowance(address user) private { uint256 currentAllowance = allowanceBurnStakes(user, _msgSender()); if (currentAllowance != type(uint256).max) { if (currentAllowance == 0) revert TitanX_InsufficientBurnAllowance(); --s_allowanceBurnStakes[user][_msgSender()]; } } /** @dev reduce user's allowance for caller (spender/project) by 1 (burn 1 mint at a time) * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * @param user user address */ function _spendBurnMintAllowance(address user) private { uint256 currentAllowance = allowanceBurnMints(user, _msgSender()); if (currentAllowance != type(uint256).max) { if (currentAllowance == 0) revert TitanX_InsufficientBurnAllowance(); --s_allowanceBurnMints[user][_msgSender()]; } } //Views /** @dev calculate user payout reward with specified cycle day and claim type (shares/burn). * it loops through all the unclaimed cylce index until the latest cycle index * @param user user address * @param cycleNo cycle day 8, 28, 90, 369, 888 * @param payoutClaim claim type (Shares=0/Burn=1) * @return rewards calculated reward * @return userClaimCycleIndex last claim cycle index * @return userClaimSharesIndex last claim shares index * @return userClaimBurnCycleIndex last claim burn cycle index */ function _calculateUserCycleReward( address user, uint256 cycleNo, PayoutClaim payoutClaim ) private view returns ( uint256 rewards, uint256 userClaimCycleIndex, uint256 userClaimSharesIndex, uint256 userClaimBurnCycleIndex ) { uint256 cycleMaxIndex = getCurrentCycleIndex(cycleNo); if (payoutClaim == PayoutClaim.SHARES) { (userClaimCycleIndex, userClaimSharesIndex) = getUserLastClaimIndex(user, cycleNo); uint256 sharesMaxIndex = getUserLatestShareIndex(user); for (uint256 i = userClaimCycleIndex; i <= cycleMaxIndex; i++) { (uint256 payoutPerShare, uint256 payoutDay) = getPayoutPerShare(cycleNo, i); uint256 shares; //loop shares indexes to find the last updated shares before/same triggered payout day for (uint256 j = userClaimSharesIndex; j <= sharesMaxIndex; j++) { if (getUserActiveSharesDay(user, j) <= payoutDay) shares = getUserActiveShares(user, j); else break; userClaimSharesIndex = j; } if (payoutPerShare != 0 && shares != 0) { //reward has 18 decimals scaling, so here divide by 1e18 rewards += (shares * payoutPerShare) / SCALING_FACTOR_1e18; } userClaimCycleIndex = i + 1; } } else if (cycleNo == DAY28 && payoutClaim == PayoutClaim.BURN) { userClaimBurnCycleIndex = getUserLastBurnClaimIndex(user, cycleNo); for (uint256 i = userClaimBurnCycleIndex; i <= cycleMaxIndex; i++) { uint256 burnPayoutPerToken = getCycleBurnPayoutPerToken(i); rewards += (burnPayoutPerToken != 0) ? (burnPayoutPerToken * _getUserCycleBurnTotal(user, i)) / SCALING_FACTOR_1e18 : 0; userClaimBurnCycleIndex = i + 1; } } } /** @notice get contract ETH balance * @return balance eth balance */ function getBalance() public view returns (uint256) { return address(this).balance; } /** @notice get undistributed ETH balance * @return amount eth amount */ function getUndistributedEth() public view returns (uint256) { return s_undistributedEth; } /** @notice get user ETH payout for all cycles * @param user user address * @return reward total reward */ function getUserETHClaimableTotal(address user) public view returns (uint256 reward) { uint256 _reward; (_reward, , , ) = _calculateUserCycleReward(user, DAY8, PayoutClaim.SHARES); reward += _reward; (_reward, , , ) = _calculateUserCycleReward(user, DAY28, PayoutClaim.SHARES); reward += _reward; (_reward, , , ) = _calculateUserCycleReward(user, DAY90, PayoutClaim.SHARES); reward += _reward; (_reward, , , ) = _calculateUserCycleReward(user, DAY369, PayoutClaim.SHARES); reward += _reward; (_reward, , , ) = _calculateUserCycleReward(user, DAY888, PayoutClaim.SHARES); reward += _reward; } /** @notice get user burn reward ETH payout * @param user user address * @return reward burn reward */ function getUserBurnPoolETHClaimableTotal(address user) public view returns (uint256 reward) { (reward, , , ) = _calculateUserCycleReward(user, DAY28, PayoutClaim.BURN); } /** @notice get total penalties from mint and stake * @return amount total penalties */ function getTotalPenalties() public view returns (uint256) { return getTotalMintPenalty() + getTotalStakePenalty(); } /** @notice get burn pool reward * @return reward burn pool reward */ function getCycleBurnPool() public view returns (uint256) { return s_cycleBurnReward; } /** @notice get user current burn cycle percentage * @return percentage in 18 decimals */ function getCurrentUserBurnCyclePercentage() public view returns (uint256) { uint256 index = getCurrentCycleIndex(DAY28) + 1; uint256 cycleBurnTotal = getCycleBurnTotal(index); return cycleBurnTotal == 0 ? 0 : (_getUserCycleBurnTotal(_msgSender(), index) * 100 * SCALING_FACTOR_1e18) / cycleBurnTotal; } /** @notice get user current cycle total titan burned * @param user user address * @return burnTotal total titan burned in curreny burn cycle */ function getUserCycleBurnTotal(address user) public view returns (uint256) { return _getUserCycleBurnTotal(user, getCurrentCycleIndex(DAY28) + 1); } function isBurnPoolEnabled() public view returns (BurnPoolEnabled) { return s_burnPoolEnabled; } /** @notice returns user's burn stakes allowance of a project * @param user user address * @param spender project address */ function allowanceBurnStakes(address user, address spender) public view returns (uint256) { return s_allowanceBurnStakes[user][spender]; } /** @notice returns user's burn mints allowance of a project * @param user user address * @param spender project address */ function allowanceBurnMints(address user, address spender) public view returns (uint256) { return s_allowanceBurnMints[user][spender]; } //Public functions for devs to intergrate with Titan /** @notice allow anyone to sync dailyUpdate manually */ function manualDailyUpdate() public dailyUpdate {} /** @notice Burn Titan tokens and creates Proof-Of-Burn record to be used by connected DeFi and fee is paid to specified address * @param user user address * @param amount titan amount * @param userRebatePercentage percentage for user rebate in liquid titan (0 - 8) * @param rewardPaybackPercentage percentage for builder fee in liquid titan (0 - 8) * @param rewardPaybackAddress builder can opt to receive fee in another address */ function burnTokensToPayAddress( address user, uint256 amount, uint256 userRebatePercentage, uint256 rewardPaybackPercentage, address rewardPaybackAddress ) public dailyUpdate nonReentrant { _burnLiquidTitan( user, amount, userRebatePercentage, rewardPaybackPercentage, rewardPaybackAddress ); } /** @notice Burn Titan tokens and creates Proof-Of-Burn record to be used by connected DeFi and fee is paid to specified address * @param user user address * @param amount titan amount * @param userRebatePercentage percentage for user rebate in liquid titan (0 - 8) * @param rewardPaybackPercentage percentage for builder fee in liquid titan (0 - 8) */ function burnTokens( address user, uint256 amount, uint256 userRebatePercentage, uint256 rewardPaybackPercentage ) public dailyUpdate nonReentrant { _burnLiquidTitan(user, amount, userRebatePercentage, rewardPaybackPercentage, _msgSender()); } /** @notice allows user to burn liquid titan directly from contract * @param amount titan amount */ function userBurnTokens(uint256 amount) public dailyUpdate nonReentrant { if (amount == 0) revert TitanX_InvalidAmount(); if (balanceOf(_msgSender()) < amount) revert TitanX_InsufficientBalance(); _burn(_msgSender(), amount); _updateBurnAmount( _msgSender(), address(0), amount, getCurrentCycleIndex(DAY28) + 1, BurnSource.LIQUID ); } /** @notice Burn stake and creates Proof-Of-Burn record to be used by connected DeFi and fee is paid to specified address * @param user user address * @param id stake id * @param userRebatePercentage percentage for user rebate in liquid titan (0 - 8) * @param rewardPaybackPercentage percentage for builder fee in liquid titan (0 - 8) * @param rewardPaybackAddress builder can opt to receive fee in another address */ function burnStakeToPayAddress( address user, uint256 id, uint256 userRebatePercentage, uint256 rewardPaybackPercentage, address rewardPaybackAddress ) public dailyUpdate nonReentrant { _burnStake(user, id, userRebatePercentage, rewardPaybackPercentage, rewardPaybackAddress); } /** @notice Burn stake and creates Proof-Of-Burn record to be used by connected DeFi and fee is paid to project contract address * @param user user address * @param id stake id * @param userRebatePercentage percentage for user rebate in liquid titan (0 - 8) * @param rewardPaybackPercentage percentage for builder fee in liquid titan (0 - 8) */ function burnStake( address user, uint256 id, uint256 userRebatePercentage, uint256 rewardPaybackPercentage ) public dailyUpdate nonReentrant { _burnStake(user, id, userRebatePercentage, rewardPaybackPercentage, _msgSender()); } /** @notice allows user to burn stake directly from contract * @param id stake id */ function userBurnStake(uint256 id) public dailyUpdate nonReentrant { _updateBurnAmount( _msgSender(), address(0), _endStake( _msgSender(), id, getCurrentContractDay(), StakeAction.BURN, StakeAction.END_OWN, getGlobalPayoutTriggered() ), getCurrentCycleIndex(DAY28) + 1, BurnSource.STAKE ); } /** @notice Burn mint and creates Proof-Of-Burn record to be used by connected DeFi. * Burn mint has no project reward or user rebate * @param user user address * @param id mint id */ function burnMint(address user, uint256 id) public dailyUpdate nonReentrant { _burnMint(user, id); } /** @notice allows user to burn mint directly from contract * @param id mint id */ function userBurnMint(uint256 id) public dailyUpdate nonReentrant { _updateBurnAmount( _msgSender(), address(0), _claimMint(_msgSender(), id, MintAction.BURN), getCurrentCycleIndex(DAY28) + 1, BurnSource.MINT ); } /** @notice Sets `amount` as the allowance of `spender` over the caller's (user) mints. * @param spender contract address * @param amount allowance amount */ function approveBurnMints(address spender, uint256 amount) public returns (bool) { if (spender == address(0)) revert TitanX_InvalidAddress(); s_allowanceBurnMints[_msgSender()][spender] = amount; emit ApproveBurnMints(_msgSender(), spender, amount); return true; } /** @notice Sets `amount` as the allowance of `spender` over the caller's (user) stakes. * @param spender contract address * @param amount allowance amount */ function approveBurnStakes(address spender, uint256 amount) public returns (bool) { if (spender == address(0)) revert TitanX_InvalidAddress(); s_allowanceBurnStakes[_msgSender()][spender] = amount; emit ApproveBurnStakes(_msgSender(), spender, amount); return true; } } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; import "./openzeppelin/utils/Context.sol"; error TitanX_NotOnwer(); abstract contract OwnerInfo is Context { address private s_owner; /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { s_owner = _msgSender(); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (s_owner != _msgSender()) revert TitanX_NotOnwer(); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public onlyOwner { _setOwner(newOwner); } function _setOwner(address newOwner) private { s_owner = newOwner; } } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; import "../libs/constant.sol"; import "../libs/enum.sol"; /** * @title BurnInfo * @dev this contract is meant to be inherited into main contract * @notice It has the variables and functions specifically for tracking burn amount and reward */ abstract contract BurnInfo { //Variables //track the total titan burn amount uint256 private s_totalTitanBurned; //mappings //track wallet address -> total titan burn amount mapping(address => uint256) private s_userBurnAmount; //track contract/project address -> total titan burn amount mapping(address => uint256) private s_project_BurnAmount; //track contract/project address, wallet address -> total titan burn amount mapping(address => mapping(address => uint256)) private s_projectUser_BurnAmount; /** @dev cycleIndex is increased when triggerPayouts() was called successfully * so we track data in current cycleIndex + 1 which means tracking for the next cycle payout * cycleIndex is passed from the TITANX contract during function call */ //track cycleIndex + 1 -> total burn amount mapping(uint256 => uint256) private s_cycle28TotalBurn; //track address, cycleIndex + 1 -> total burn amount mapping(address => mapping(uint256 => uint256)) private s_userCycle28TotalBurn; //track cycleIndex + 1 -> burn payout per token mapping(uint256 => uint256) private s_cycle28BurnPayoutPerToken; //events /** @dev log user burn titan event * project can be address(0) if user burns Titan directly from Titan contract * burnPoolCycleIndex is the cycle 28 index, which reuse the same index as Day 28 cycle index * titanSource 0=Liquid, 1=Mint, 2=Stake */ event TitanBurned( address indexed user, address indexed project, uint256 indexed burnPoolCycleIndex, uint256 amount, BurnSource titanSource ); //functions /** @dev update the burn amount in each 28-cylce for user and project (if any) * @param user wallet address * @param project contract address * @param amount titan amount burned * @param cycleIndex cycle payout triggered index */ function _updateBurnAmount( address user, address project, uint256 amount, uint256 cycleIndex, BurnSource source ) internal { s_userBurnAmount[user] += amount; s_totalTitanBurned += amount; s_cycle28TotalBurn[cycleIndex] += amount; s_userCycle28TotalBurn[user][cycleIndex] += amount; if (project != address(0)) { s_project_BurnAmount[project] += amount; s_projectUser_BurnAmount[project][user] += amount; } emit TitanBurned(user, project, cycleIndex, amount, source); } /** * @dev calculate burn reward per titan burned based on total reward / total titan burned in current cycle * @param cycleIndex wallet address * @param reward contract address * @param cycleBurnAmount titan amount burned */ function _calculateCycleBurnRewardPerToken( uint256 cycleIndex, uint256 reward, uint256 cycleBurnAmount ) internal { //add 18 decimals to reward for better precision in calculation s_cycle28BurnPayoutPerToken[cycleIndex] = (reward * SCALING_FACTOR_1e18) / cycleBurnAmount; } /** @dev returned value is in 18 decimals, need to divide it by 1e18 and 100 (percentage) when using this value for reward calculation * The burn amplifier percentage is applied to all future mints. Capped at MAX_BURN_AMP_PERCENT (8%) * @param user wallet address * @return percentage returns percentage value in 18 decimals */ function getUserBurnAmplifierBonus(address user) public view returns (uint256) { uint256 userBurnTotal = getUserBurnTotal(user); if (userBurnTotal == 0) return 0; if (userBurnTotal >= MAX_BURN_AMP_BASE) return MAX_BURN_AMP_PERCENT; return (MAX_BURN_AMP_PERCENT * userBurnTotal) / MAX_BURN_AMP_BASE; } //views /** @notice return total burned titan amount from all users burn or projects burn * @return totalBurnAmount returns entire burned titan */ function getTotalBurnTotal() public view returns (uint256) { return s_totalTitanBurned; } /** @notice return user address total burned titan * @return userBurnAmount returns user address total burned titan */ function getUserBurnTotal(address user) public view returns (uint256) { return s_userBurnAmount[user]; } /** @notice return project address total burned titan amount * @return projectTotalBurnAmount returns project total burned titan */ function getProjectBurnTotal(address contractAddress) public view returns (uint256) { return s_project_BurnAmount[contractAddress]; } /** @notice return user address total burned titan amount via a project address * @param contractAddress project address * @param user user address * @return projectUserTotalBurnAmount returns user address total burned titan via a project address */ function getProjectUserBurnTotal( address contractAddress, address user ) public view returns (uint256) { return s_projectUser_BurnAmount[contractAddress][user]; } /** @notice return cycle28 total burned titan amount with the specified cycleIndex * @param cycleIndex cycle index * @return cycle28TotalBurn returns cycle28 total burned titan amount with the specified cycleIndex */ function getCycleBurnTotal(uint256 cycleIndex) public view returns (uint256) { return s_cycle28TotalBurn[cycleIndex]; } /** @notice return cycle28 total burned titan amount with the specified cycleIndex * @param user user address * @param cycleIndex cycle index * @return cycle28TotalBurn returns cycle28 user address total burned titan amount with the specified cycleIndex */ function _getUserCycleBurnTotal( address user, uint256 cycleIndex ) internal view returns (uint256) { return s_userCycle28TotalBurn[user][cycleIndex]; } /** @notice return cycle28 burn payout per titan with the specified cycleIndex * @param cycleIndex cycle index * @return cycle28TotalBurn returns cycle28 burn payout per titan with the specified cycleIndex */ function getCycleBurnPayoutPerToken(uint256 cycleIndex) public view returns (uint256) { return s_cycle28BurnPayoutPerToken[cycleIndex]; } } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; import "../libs/calcFunctions.sol"; //custom errors error TitanX_InvalidStakeLength(); error TitanX_RequireOneMinimumShare(); error TitanX_ExceedMaxAmountPerStake(); error TitanX_NoStakeExists(); error TitanX_StakeHasEnded(); error TitanX_StakeNotMatured(); error TitanX_StakeHasBurned(); error TitanX_MaxedWalletStakes(); abstract contract StakeInfo { //Variables /** @dev track global stake Id */ uint256 private s_globalStakeId; /** @dev track global shares */ uint256 private s_globalShares; /** @dev track global expired shares */ uint256 private s_globalExpiredShares; /** @dev track global staked titan */ uint256 private s_globalTitanStaked; /** @dev track global end stake penalty */ uint256 private s_globalStakePenalty; /** @dev track global ended stake */ uint256 private s_globalStakeEnd; /** @dev track global burned stake */ uint256 private s_globalStakeBurn; //mappings /** @dev track address => stakeId */ mapping(address => uint256) private s_addressSId; /** @dev track address, stakeId => global stake Id */ mapping(address => mapping(uint256 => uint256)) private s_addressSIdToGlobalStakeId; /** @dev track global stake Id => stake info */ mapping(uint256 => UserStakeInfo) private s_globalStakeIdToStakeInfo; /** @dev track address => shares Index */ mapping(address => uint256) private s_userSharesIndex; /** @dev track user total active shares by user shares index * s_addressIdToActiveShares[user][index] = UserActiveShares (contract day, total user active shares) * works like a snapshot or log when user shares has changed (increase/decrease) */ mapping(address => mapping(uint256 => UserActiveShares)) private s_addressIdToActiveShares; //structs struct UserStakeInfo { uint152 titanAmount; uint128 shares; uint16 numOfDays; uint48 stakeStartTs; uint48 maturityTs; StakeStatus status; } struct UserStake { uint256 sId; uint256 globalStakeId; UserStakeInfo stakeInfo; } struct UserActiveShares { uint256 day; uint256 activeShares; } //events event StakeStarted( address indexed user, uint256 indexed globalStakeId, uint256 numOfDays, UserStakeInfo indexed userStakeInfo ); event StakeEnded( address indexed user, uint256 indexed globalStakeId, uint256 titanAmount, uint256 indexed penalty, uint256 penaltyAmount ); //functions /** @dev create a new stake * @param user user address * @param amount titan amount * @param numOfDays stake lenght * @param shareRate current share rate * @param day current contract day * @param isPayoutTriggered has global payout triggered * @return isFirstShares first created shares or not */ function _startStake( address user, uint256 amount, uint256 numOfDays, uint256 shareRate, uint256 day, PayoutTriggered isPayoutTriggered ) internal returns (uint256 isFirstShares) { uint256 sId = ++s_addressSId[user]; if (sId > MAX_STAKE_PER_WALLET) revert TitanX_MaxedWalletStakes(); if (numOfDays < MIN_STAKE_LENGTH || numOfDays > MAX_STAKE_LENGTH) revert TitanX_InvalidStakeLength(); //calculate shares uint256 shares = calculateShares(amount, numOfDays, shareRate); if (shares / SCALING_FACTOR_1e18 < 1) revert TitanX_RequireOneMinimumShare(); uint256 currentGStakeId = ++s_globalStakeId; uint256 maturityTs; maturityTs = block.timestamp + (numOfDays * SECONDS_IN_DAY); UserStakeInfo memory userStakeInfo = UserStakeInfo({ titanAmount: uint152(amount), shares: uint128(shares), numOfDays: uint16(numOfDays), stakeStartTs: uint48(block.timestamp), maturityTs: uint48(maturityTs), status: StakeStatus.ACTIVE }); /** s_addressSId[user] tracks stake Id for each address * s_addressSIdToGlobalStakeId[user][id] tracks stack id to global stake Id * s_globalStakeIdToStakeInfo[currentGStakeId] stores stake info */ s_addressSIdToGlobalStakeId[user][sId] = currentGStakeId; s_globalStakeIdToStakeInfo[currentGStakeId] = userStakeInfo; //update shares changes isFirstShares = _updateSharesStats( user, shares, amount, day, isPayoutTriggered, StakeAction.START ); emit StakeStarted(user, currentGStakeId, numOfDays, userStakeInfo); } /** @dev end stake and calculate pinciple with penalties (if any) or burn stake * @param user user address * @param id stake Id * @param day current contract day * @param action end stake or burn stake * @param payOther is end stake for others * @param isPayoutTriggered has global payout triggered * @return titan titan principle */ function _endStake( address user, uint256 id, uint256 day, StakeAction action, StakeAction payOther, PayoutTriggered isPayoutTriggered ) internal returns (uint256 titan) { uint256 globalStakeId = s_addressSIdToGlobalStakeId[user][id]; if (globalStakeId == 0) revert TitanX_NoStakeExists(); UserStakeInfo memory userStakeInfo = s_globalStakeIdToStakeInfo[globalStakeId]; if (userStakeInfo.status == StakeStatus.ENDED) revert TitanX_StakeHasEnded(); if (userStakeInfo.status == StakeStatus.BURNED) revert TitanX_StakeHasBurned(); //end stake for others requires matured stake to prevent EES for others if (payOther == StakeAction.END_OTHER && block.timestamp < userStakeInfo.maturityTs) revert TitanX_StakeNotMatured(); //update shares changes uint256 shares = userStakeInfo.shares; _updateSharesStats(user, shares, userStakeInfo.titanAmount, day, isPayoutTriggered, action); if (action == StakeAction.END) { ++s_globalStakeEnd; s_globalStakeIdToStakeInfo[globalStakeId].status = StakeStatus.ENDED; } else if (action == StakeAction.BURN) { ++s_globalStakeBurn; s_globalStakeIdToStakeInfo[globalStakeId].status = StakeStatus.BURNED; } titan = _calculatePrinciple(user, globalStakeId, userStakeInfo, action); } /** @dev update shares changes to track when user shares has changed, this affect the payout calculation * @param user user address * @param shares shares * @param amount titan amount * @param day current contract day * @param isPayoutTriggered has global payout triggered * @param action start stake or end stake * @return isFirstShares first created shares or not */ function _updateSharesStats( address user, uint256 shares, uint256 amount, uint256 day, PayoutTriggered isPayoutTriggered, StakeAction action ) private returns (uint256 isFirstShares) { //Get previous active shares to calculate new shares change uint256 index = s_userSharesIndex[user]; uint256 previousShares = s_addressIdToActiveShares[user][index].activeShares; if (action == StakeAction.START) { //return 1 if this is a new wallet address //this is used to initialize last claim index to the latest cycle index if (index == 0) isFirstShares = 1; s_addressIdToActiveShares[user][++index].activeShares = previousShares + shares; s_globalShares += shares; s_globalTitanStaked += amount; } else { s_addressIdToActiveShares[user][++index].activeShares = previousShares - shares; s_globalExpiredShares += shares; s_globalTitanStaked -= amount; } //If global payout hasn't triggered, use current contract day to eligible for payout //If global payout has triggered, then start with next contract day as it's no longer eligible to claim latest payout s_addressIdToActiveShares[user][index].day = uint128( isPayoutTriggered == PayoutTriggered.NO ? day : day + 1 ); s_userSharesIndex[user] = index; } /** @dev calculate stake principle and apply penalty (if any) * @param user user address * @param globalStakeId global stake Id * @param userStakeInfo stake info * @param action end stake or burn stake * @return principle calculated principle after penalty (if any) */ function _calculatePrinciple( address user, uint256 globalStakeId, UserStakeInfo memory userStakeInfo, StakeAction action ) internal returns (uint256 principle) { uint256 titanAmount = userStakeInfo.titanAmount; //penalty is in percentage uint256 penalty = calculateEndStakePenalty( userStakeInfo.stakeStartTs, userStakeInfo.maturityTs, block.timestamp, action ); uint256 penaltyAmount; penaltyAmount = (titanAmount * penalty) / 100; principle = titanAmount - penaltyAmount; s_globalStakePenalty += penaltyAmount; emit StakeEnded(user, globalStakeId, principle, penalty, penaltyAmount); } //Views /** @notice get global shares * @return globalShares global shares */ function getGlobalShares() public view returns (uint256) { return s_globalShares; } /** @notice get global expired shares * @return globalExpiredShares global expired shares */ function getGlobalExpiredShares() public view returns (uint256) { return s_globalExpiredShares; } /** @notice get global active shares * @return globalActiveShares global active shares */ function getGlobalActiveShares() public view returns (uint256) { return s_globalShares - s_globalExpiredShares; } /** @notice get total titan staked * @return totalTitanStaked total titan staked */ function getTotalTitanStaked() public view returns (uint256) { return s_globalTitanStaked; } /** @notice get global stake id * @return globalStakeId global stake id */ function getGlobalStakeId() public view returns (uint256) { return s_globalStakeId; } /** @notice get global active stakes * @return globalActiveStakes global active stakes */ function getGlobalActiveStakes() public view returns (uint256) { return s_globalStakeId - getTotalStakeEnd(); } /** @notice get total stake ended * @return totalStakeEnded total stake ended */ function getTotalStakeEnd() public view returns (uint256) { return s_globalStakeEnd; } /** @notice get total stake burned * @return totalStakeBurned total stake burned */ function getTotalStakeBurn() public view returns (uint256) { return s_globalStakeBurn; } /** @notice get total end stake penalty * @return totalEndStakePenalty total end stake penalty */ function getTotalStakePenalty() public view returns (uint256) { return s_globalStakePenalty; } /** @notice get user latest shares index * @return latestSharesIndex latest shares index */ function getUserLatestShareIndex(address user) public view returns (uint256) { return s_userSharesIndex[user]; } /** @notice get user current active shares * @return currentActiveShares current active shares */ function getUserCurrentActiveShares(address user) public view returns (uint256) { return s_addressIdToActiveShares[user][getUserLatestShareIndex(user)].activeShares; } /** @notice get user active shares at sharesIndex * @return activeShares active shares at sharesIndex */ function getUserActiveShares( address user, uint256 sharesIndex ) internal view returns (uint256) { return s_addressIdToActiveShares[user][sharesIndex].activeShares; } /** @notice get user active shares contract day at sharesIndex * @return activeSharesDay active shares contract day at sharesIndex */ function getUserActiveSharesDay( address user, uint256 sharesIndex ) internal view returns (uint256) { return s_addressIdToActiveShares[user][sharesIndex].day; } /** @notice get stake info with stake id * @return stakeInfo stake info */ function getUserStakeInfo(address user, uint256 id) public view returns (UserStakeInfo memory) { return s_globalStakeIdToStakeInfo[s_addressSIdToGlobalStakeId[user][id]]; } /** @notice get all stake info of an address * @return stakeInfos all stake info of an address */ function getUserStakes(address user) public view returns (UserStake[] memory) { uint256 count = s_addressSId[user]; UserStake[] memory stakes = new UserStake[](count); for (uint256 i = 1; i <= count; i++) { stakes[i - 1] = UserStake({ sId: i, globalStakeId: uint128(s_addressSIdToGlobalStakeId[user][i]), stakeInfo: getUserStakeInfo(user, i) }); } return stakes; } } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; import "../libs/calcFunctions.sol"; //custom errors error TitanX_InvalidMintLength(); error TitanX_InvalidMintPower(); error TitanX_NoMintExists(); error TitanX_MintHasClaimed(); error TitanX_MintNotMature(); error TitanX_MintHasBurned(); abstract contract MintInfo { //variables /** @dev track global tRank */ uint256 private s_globalTRank; /** @dev track total mint claimed */ uint256 private s_globalMintClaim; /** @dev track total mint burned */ uint256 private s_globalMintBurn; /** @dev track total titan minting */ uint256 private s_globalTitanMinting; /** @dev track total titan penalty */ uint256 private s_globalTitanMintPenalty; /** @dev track global mint power */ uint256 private s_globalMintPower; //mappings /** @dev track address => mintId */ mapping(address => uint256) private s_addressMId; /** @dev track address, mintId => tRank info (gTrank, gMintPower) */ mapping(address => mapping(uint256 => TRankInfo)) private s_addressMIdToTRankInfo; /** @dev track global tRank => mintInfo*/ mapping(uint256 => UserMintInfo) private s_tRankToMintInfo; //structs struct UserMintInfo { uint8 mintPower; uint16 numOfDays; uint96 mintableTitan; uint48 mintStartTs; uint48 maturityTs; uint32 mintPowerBonus; uint32 EAABonus; uint128 mintedTitan; uint64 mintCost; MintStatus status; } struct TRankInfo { uint256 tRank; uint256 gMintPower; } struct UserMint { uint256 mId; uint256 tRank; uint256 gMintPower; UserMintInfo mintInfo; } //events event MintStarted( address indexed user, uint256 indexed tRank, uint256 indexed gMintpower, UserMintInfo userMintInfo ); event MintClaimed( address indexed user, uint256 indexed tRank, uint256 rewardMinted, uint256 indexed penalty, uint256 mintPenalty ); //functions /** @dev create a new mint * @param user user address * @param mintPower mint power * @param numOfDays mint lenght * @param mintableTitan mintable titan * @param mintPowerBonus mint power bonus * @param EAABonus EAA bonus * @param burnAmpBonus burn amplifier bonus * @param gMintPower global mint power * @param currentTRank current global tRank * @param mintCost actual mint cost paid for a mint */ function _startMint( address user, uint256 mintPower, uint256 numOfDays, uint256 mintableTitan, uint256 mintPowerBonus, uint256 EAABonus, uint256 burnAmpBonus, uint256 gMintPower, uint256 currentTRank, uint256 mintCost ) internal returns (uint256 mintable) { if (numOfDays == 0 || numOfDays > MAX_MINT_LENGTH) revert TitanX_InvalidMintLength(); if (mintPower == 0 || mintPower > MAX_MINT_POWER_CAP) revert TitanX_InvalidMintPower(); //calculate mint reward up front with the provided params mintable = calculateMintReward(mintPower, numOfDays, mintableTitan, EAABonus, burnAmpBonus); //store variables into mint info UserMintInfo memory userMintInfo = UserMintInfo({ mintPower: uint8(mintPower), numOfDays: uint16(numOfDays), mintableTitan: uint96(mintable), mintPowerBonus: uint32(mintPowerBonus), EAABonus: uint32(EAABonus), mintStartTs: uint48(block.timestamp), maturityTs: uint48(block.timestamp + (numOfDays * SECONDS_IN_DAY)), mintedTitan: 0, mintCost: uint64(mintCost), status: MintStatus.ACTIVE }); /** s_addressMId[user] tracks mintId for each addrress * s_addressMIdToTRankInfo[user][id] tracks current mint tRank and gPowerMint * s_tRankToMintInfo[currentTRank] stores mint info */ uint256 id = ++s_addressMId[user]; s_addressMIdToTRankInfo[user][id].tRank = currentTRank; s_addressMIdToTRankInfo[user][id].gMintPower = gMintPower; s_tRankToMintInfo[currentTRank] = userMintInfo; emit MintStarted(user, currentTRank, gMintPower, userMintInfo); } /** @dev create new mint in a batch of up to max 100 mints with the same mint length * @param user user address * @param mintPower mint power * @param numOfDays mint lenght * @param mintableTitan mintable titan * @param mintPowerBonus mint power bonus * @param EAABonus EAA bonus * @param burnAmpBonus burn amplifier bonus * @param mintCost actual mint cost paid for a mint */ function _startBatchMint( address user, uint256 mintPower, uint256 numOfDays, uint256 mintableTitan, uint256 mintPowerBonus, uint256 EAABonus, uint256 burnAmpBonus, uint256 count, uint256 mintCost ) internal { uint256 gMintPower = s_globalMintPower; uint256 currentTRank = s_globalTRank; uint256 gMinting = s_globalTitanMinting; for (uint256 i = 0; i < count; i++) { gMintPower += mintPower; gMinting += _startMint( user, mintPower, numOfDays, mintableTitan, mintPowerBonus, EAABonus, burnAmpBonus, gMintPower, ++currentTRank, mintCost ); } _updateMintStats(currentTRank, gMintPower, gMinting); } /** @dev create new mint in a batch of up to max 100 mints with different mint length * @param user user address * @param mintPower mint power * @param minDay minimum start day * @param maxDay maximum end day * @param dayInterval days interval between each new mint length * @param countPerInterval number of mint(s) to create in each mint length interval * @param mintableTitan mintable titan * @param mintPowerBonus mint power bonus * @param EAABonus EAA bonus * @param burnAmpBonus burn amplifier bonus * @param mintCost actual mint cost paid for a mint */ function _startbatchMintLadder( address user, uint256 mintPower, uint256 minDay, uint256 maxDay, uint256 dayInterval, uint256 countPerInterval, uint256 mintableTitan, uint256 mintPowerBonus, uint256 EAABonus, uint256 burnAmpBonus, uint256 mintCost ) internal { uint256 gMintPower = s_globalMintPower; uint256 currentTRank = s_globalTRank; uint256 gMinting = s_globalTitanMinting; /**first for loop is used to determine mint length * minDay is the starting mint length * maxDay is the max mint length where it stops * dayInterval increases the minDay for the next mint */ for (; minDay <= maxDay; minDay += dayInterval) { /**first for loop is used to determine mint length * second for loop is to create number mints per mint length */ for (uint256 j = 0; j < countPerInterval; j++) { gMintPower += mintPower; gMinting += _startMint( user, mintPower, minDay, mintableTitan, mintPowerBonus, EAABonus, burnAmpBonus, gMintPower, ++currentTRank, mintCost ); } } _updateMintStats(currentTRank, gMintPower, gMinting); } /** @dev update variables * @param currentTRank current tRank * @param gMintPower current global mint power * @param gMinting current global minting */ function _updateMintStats(uint256 currentTRank, uint256 gMintPower, uint256 gMinting) internal { s_globalTRank = currentTRank; s_globalMintPower = gMintPower; s_globalTitanMinting = gMinting; } /** @dev calculate reward for claim mint or burn mint. * Claim mint has maturity check while burn mint would bypass maturity check. * @param user user address * @param id mint id * @param action claim mint or burn mint * @return reward calculated final reward after all bonuses and penalty (if any) */ function _claimMint( address user, uint256 id, MintAction action ) internal returns (uint256 reward) { uint256 tRank = s_addressMIdToTRankInfo[user][id].tRank; uint256 gMintPower = s_addressMIdToTRankInfo[user][id].gMintPower; if (tRank == 0) revert TitanX_NoMintExists(); UserMintInfo memory mint = s_tRankToMintInfo[tRank]; if (mint.status == MintStatus.CLAIMED) revert TitanX_MintHasClaimed(); if (mint.status == MintStatus.BURNED) revert TitanX_MintHasBurned(); //Only check maturity for claim mint action, burn mint bypass this check if (mint.maturityTs > block.timestamp && action == MintAction.CLAIM) revert TitanX_MintNotMature(); s_globalTitanMinting -= mint.mintableTitan; reward = _calculateClaimReward(user, tRank, gMintPower, mint, action); } /** @dev calculate reward up to 100 claims for batch claim function. Only calculate active and matured mints. * @param user user address * @return reward total batch claims final calculated reward after all bonuses and penalty (if any) */ function _batchClaimMint(address user) internal returns (uint256 reward) { uint256 maxId = s_addressMId[user]; uint256 claimCount; uint256 tRank; uint256 gMinting; UserMintInfo memory mint; for (uint256 i = 1; i <= maxId; i++) { tRank = s_addressMIdToTRankInfo[user][i].tRank; mint = s_tRankToMintInfo[tRank]; if (mint.status == MintStatus.ACTIVE && block.timestamp >= mint.maturityTs) { reward += _calculateClaimReward( user, tRank, s_addressMIdToTRankInfo[user][i].gMintPower, mint, MintAction.CLAIM ); gMinting += mint.mintableTitan; ++claimCount; } if (claimCount == 100) break; } s_globalTitanMinting -= gMinting; } /** @dev calculate final reward with bonuses and penalty (if any) * @param user user address * @param tRank mint's tRank * @param gMintPower mint's gMintPower * @param userMintInfo mint's info * @param action claim mint or burn mint * @return reward calculated final reward after all bonuses and penalty (if any) */ function _calculateClaimReward( address user, uint256 tRank, uint256 gMintPower, UserMintInfo memory userMintInfo, MintAction action ) private returns (uint256 reward) { if (action == MintAction.CLAIM) s_tRankToMintInfo[tRank].status = MintStatus.CLAIMED; if (action == MintAction.BURN) s_tRankToMintInfo[tRank].status = MintStatus.BURNED; uint256 penaltyAmount; uint256 penalty; uint256 bonus; //only calculate penalty when current block timestamp > maturity timestamp if (block.timestamp > userMintInfo.maturityTs) { penalty = calculateClaimMintPenalty(block.timestamp - userMintInfo.maturityTs); } //Only Claim action has mintPower bonus if (action == MintAction.CLAIM) { bonus = calculateMintPowerBonus( userMintInfo.mintPowerBonus, userMintInfo.mintPower, gMintPower, s_globalMintPower ); } //mintPowerBonus has scaling factor of 1e7, so divide by 1e7 reward = uint256(userMintInfo.mintableTitan) + (bonus / SCALING_FACTOR_1e7); penaltyAmount = (reward * penalty) / 100; reward -= penaltyAmount; if (action == MintAction.CLAIM) ++s_globalMintClaim; if (action == MintAction.BURN) ++s_globalMintBurn; if (penaltyAmount != 0) s_globalTitanMintPenalty += penaltyAmount; //only stored minted amount for claim mint if (action == MintAction.CLAIM) s_tRankToMintInfo[tRank].mintedTitan = uint128(reward); emit MintClaimed(user, tRank, reward, penalty, penaltyAmount); } //views /** @notice Returns the latest Mint Id of an address * @param user address * @return mId latest mint id */ function getUserLatestMintId(address user) public view returns (uint256) { return s_addressMId[user]; } /** @notice Returns mint info of an address + mint id * @param user address * @param id mint id * @return mintInfo user mint info */ function getUserMintInfo( address user, uint256 id ) public view returns (UserMintInfo memory mintInfo) { return s_tRankToMintInfo[s_addressMIdToTRankInfo[user][id].tRank]; } /** @notice Return all mints info of an address * @param user address * @return mintInfos all mints info of an address including mint id, tRank and gMintPower */ function getUserMints(address user) public view returns (UserMint[] memory mintInfos) { uint256 count = s_addressMId[user]; mintInfos = new UserMint[](count); for (uint256 i = 1; i <= count; i++) { mintInfos[i - 1] = UserMint({ mId: i, tRank: s_addressMIdToTRankInfo[user][i].tRank, gMintPower: s_addressMIdToTRankInfo[user][i].gMintPower, mintInfo: getUserMintInfo(user, i) }); } } /** @notice Return total mints burned * @return totalMintBurned total mints burned */ function getTotalMintBurn() public view returns (uint256) { return s_globalMintBurn; } /** @notice Return current gobal tRank * @return globalTRank global tRank */ function getGlobalTRank() public view returns (uint256) { return s_globalTRank; } /** @notice Return current gobal mint power * @return globalMintPower global mint power */ function getGlobalMintPower() public view returns (uint256) { return s_globalMintPower; } /** @notice Return total mints claimed * @return totalMintClaimed total mints claimed */ function getTotalMintClaim() public view returns (uint256) { return s_globalMintClaim; } /** @notice Return total active mints (exluded claimed and burned mints) * @return totalActiveMints total active mints */ function getTotalActiveMints() public view returns (uint256) { return s_globalTRank - s_globalMintClaim - s_globalMintBurn; } /** @notice Return total minting titan * @return totalMinting total minting titan */ function getTotalMinting() public view returns (uint256) { return s_globalTitanMinting; } /** @notice Return total titan penalty * @return totalTitanPenalty total titan penalty */ function getTotalMintPenalty() public view returns (uint256) { return s_globalTitanMintPenalty; } } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; import "../libs/enum.sol"; import "../libs/constant.sol"; abstract contract GlobalInfo { //Variables //deployed timestamp uint256 private immutable i_genesisTs; /** @dev track current contract day */ uint256 private s_currentContractDay; /** @dev shareRate starts 800 ether and increases capped at 2800 ether, uint72 has enough size */ uint72 private s_currentshareRate; /** @dev mintCost starts 0.2 ether increases and capped at 1 ether, uint64 has enough size */ uint64 private s_currentMintCost; /** @dev mintableTitan starts 8m ether decreases and capped at 800 ether, uint96 has enough size */ uint96 private s_currentMintableTitan; /** @dev mintPowerBonus starts 350_000_000 and decreases capped at 35_000, uint32 has enough size */ uint32 private s_currentMintPowerBonus; /** @dev EAABonus starts 10_000_000 and decreases to 0, uint32 has enough size */ uint32 private s_currentEAABonus; /** @dev track if any of the cycle day 8, 28, 90, 369, 888 has payout triggered succesfully * this is used in end stake where either the shares change should be tracked in current/next payout cycle */ PayoutTriggered private s_isGlobalPayoutTriggered; /** @dev track payouts based on every cycle day 8, 28, 90, 369, 888 when distributeETH() is called */ mapping(uint256 => uint256) private s_cyclePayouts; /** @dev track payout index for each cycle day, increased by 1 when triggerPayouts() is called succesfully * eg. curent index is 2, s_cyclePayoutIndex[DAY8] = 2 */ mapping(uint256 => uint256) private s_cyclePayoutIndex; /** @dev track payout info (day and payout per share) for each cycle day * eg. s_cyclePayoutIndex is 2, * s_CyclePayoutPerShare[DAY8][2].day = 8 * s_CyclePayoutPerShare[DAY8][2].payoutPerShare = 0.1 */ mapping(uint256 => mapping(uint256 => CycleRewardPerShare)) private s_cyclePayoutPerShare; /** @dev track user last payout reward claim index for cycleIndex, burnCycleIndex and sharesIndex * so calculation would start from next index instead of the first index * [address][DAY8].cycleIndex = 1 * [address][DAY8].burnCycleIndex = 1 * [address][DAY8].sharesIndex = 2 * cycleIndex is the last stop in s_cyclePayoutPerShare * sharesIndex is the last stop in s_addressIdToActiveShares */ mapping(address => mapping(uint256 => UserCycleClaimIndex)) private s_addressCycleToLastClaimIndex; /** @dev track when is the next cycle payout day for each cycle day * eg. s_nextCyclePayoutDay[DAY8] = 8 * s_nextCyclePayoutDay[DAY28] = 28 */ mapping(uint256 => uint256) s_nextCyclePayoutDay; //structs struct CycleRewardPerShare { uint256 day; uint256 payoutPerShare; } struct UserCycleClaimIndex { uint96 cycleIndex; uint96 burnCycleIndex; uint64 sharesIndex; } //event event GlobalDailyUpdateStats( uint256 indexed day, uint256 indexed mintCost, uint256 indexed shareRate, uint256 mintableTitan, uint256 mintPowerBonus, uint256 EAABonus ); /** @dev Update variables in terms of day, modifier is used in all external/public functions (exclude view) * Every interaction to the contract would run this function to update variables */ modifier dailyUpdate() { _dailyUpdate(); _; } constructor() { i_genesisTs = block.timestamp; s_currentContractDay = 1; s_currentMintCost = uint64(START_MAX_MINT_COST); s_currentMintableTitan = uint96(START_MAX_MINTABLE_PER_DAY); s_currentshareRate = uint72(START_SHARE_RATE); s_currentMintPowerBonus = uint32(START_MINTPOWER_INCREASE_BONUS); s_currentEAABonus = uint32(EAA_START); s_nextCyclePayoutDay[DAY8] = DAY8; s_nextCyclePayoutDay[DAY28] = DAY28; s_nextCyclePayoutDay[DAY90] = DAY90; s_nextCyclePayoutDay[DAY369] = DAY369; s_nextCyclePayoutDay[DAY888] = DAY888; } /** @dev calculate and update variables daily and reset triggers flag */ function _dailyUpdate() private { uint256 currentContractDay = s_currentContractDay; uint256 currentBlockDay = ((block.timestamp - i_genesisTs) / 1 days) + 1; if (currentBlockDay > currentContractDay) { //get last day info ready for calculation uint256 newMintCost = s_currentMintCost; uint256 newShareRate = s_currentshareRate; uint256 newMintableTitan = s_currentMintableTitan; uint256 newMintPowerBonus = s_currentMintPowerBonus; uint256 newEAABonus = s_currentEAABonus; uint256 dayDifference = currentBlockDay - currentContractDay; /** Reason for a for loop to update Mint supply * Ideally, user interaction happens daily, so Mint supply is synced in every day * (cylceDifference = 1) * However, if there's no interaction for more than 1 day, then * Mint supply isn't updated correctly due to cylceDifference > 1 day * Eg. 2 days of no interaction, then interaction happens in 3rd day. * It's incorrect to only decrease the Mint supply one time as now it's in 3rd day. * And if this happens, there will be no tracked data for the skipped days as not needed */ for (uint256 i; i < dayDifference; i++) { newMintCost = (newMintCost * DAILY_MINT_COST_INCREASE_STEP) / PERCENT_BPS; newShareRate = (newShareRate * DAILY_SHARE_RATE_INCREASE_STEP) / PERCENT_BPS; newMintableTitan = (newMintableTitan * DAILY_SUPPLY_MINTABLE_REDUCTION) / PERCENT_BPS; newMintPowerBonus = (newMintPowerBonus * DAILY_MINTPOWER_INCREASE_BONUS_REDUCTION) / PERCENT_BPS; if (newMintCost > 1 ether) { newMintCost = CAPPED_MAX_MINT_COST; } if (newShareRate > CAPPED_MAX_RATE) newShareRate = CAPPED_MAX_RATE; if (newMintableTitan < CAPPED_MIN_DAILY_TITAN_MINTABLE) { newMintableTitan = CAPPED_MIN_DAILY_TITAN_MINTABLE; } if (newMintPowerBonus < CAPPED_MIN_MINTPOWER_BONUS) { newMintPowerBonus = CAPPED_MIN_MINTPOWER_BONUS; } if (currentBlockDay <= MAX_BONUS_DAY) { newEAABonus -= EAA_BONUSE_FIXED_REDUCTION_PER_DAY; } else { newEAABonus = EAA_END; } emit GlobalDailyUpdateStats( ++currentContractDay, newMintCost, newShareRate, newMintableTitan, newMintPowerBonus, newEAABonus ); } s_currentMintCost = uint64(newMintCost); s_currentshareRate = uint72(newShareRate); s_currentMintableTitan = uint96(newMintableTitan); s_currentMintPowerBonus = uint32(newMintPowerBonus); s_currentEAABonus = uint32(newEAABonus); s_currentContractDay = currentBlockDay; s_isGlobalPayoutTriggered = PayoutTriggered.NO; } } /** @dev first created shares will start from the last payout index + 1 (next cycle payout) * as first shares will always disqualified from past payouts * reduce gas cost needed to loop from first index * @param user user address * @param isFirstShares flag to only initialize when address is fresh wallet */ function _initFirstSharesCycleIndex(address user, uint256 isFirstShares) internal { if (isFirstShares == 1) { if (s_cyclePayoutIndex[DAY8] != 0) { s_addressCycleToLastClaimIndex[user][DAY8].cycleIndex = uint96( s_cyclePayoutIndex[DAY8] + 1 ); s_addressCycleToLastClaimIndex[user][DAY28].cycleIndex = uint96( s_cyclePayoutIndex[DAY28] + 1 ); s_addressCycleToLastClaimIndex[user][DAY90].cycleIndex = uint96( s_cyclePayoutIndex[DAY90] + 1 ); s_addressCycleToLastClaimIndex[user][DAY369].cycleIndex = uint96( s_cyclePayoutIndex[DAY369] + 1 ); s_addressCycleToLastClaimIndex[user][DAY888].cycleIndex = uint96( s_cyclePayoutIndex[DAY888] + 1 ); } } } /** @dev first created shares will start from the last payout index + 1 (next cycle payout) * as first shares will always disqualified from past payouts * reduce gas cost needed to loop from first index * @param cycleNo cylce day 8, 28, 90, 369, 888 * @param reward total accumulated reward in cycle day 8, 28, 90, 369, 888 * @param globalActiveShares global active shares * @return index return latest current cycleIndex */ function _calculateCycleRewardPerShare( uint256 cycleNo, uint256 reward, uint256 globalActiveShares ) internal returns (uint256 index) { s_cyclePayouts[cycleNo] = 0; index = ++s_cyclePayoutIndex[cycleNo]; //add 18 decimals to reward for better precision in calculation s_cyclePayoutPerShare[cycleNo][index].payoutPerShare = (reward * SCALING_FACTOR_1e18) / globalActiveShares; s_cyclePayoutPerShare[cycleNo][index].day = getCurrentContractDay(); } /** @dev update with the last index where a user has claimed the payout reward * @param user user address * @param cycleNo cylce day 8, 28, 90, 369, 888 * @param userClaimCycleIndex last claimed cycle index * @param userClaimSharesIndex last claimed shares index */ function _updateUserClaimIndexes( address user, uint256 cycleNo, uint256 userClaimCycleIndex, uint256 userClaimSharesIndex ) internal { if (userClaimCycleIndex != s_addressCycleToLastClaimIndex[user][cycleNo].cycleIndex) s_addressCycleToLastClaimIndex[user][cycleNo].cycleIndex = uint96(userClaimCycleIndex); if (userClaimSharesIndex != s_addressCycleToLastClaimIndex[user][cycleNo].sharesIndex) s_addressCycleToLastClaimIndex[user][cycleNo].sharesIndex = uint64( userClaimSharesIndex ); } /** @dev update with the last index where a user has claimed the burn payout reward * @param user user address * @param cycleNo cylce day 8, 28, 90, 369, 888 * @param userClaimBurnCycleIndex last claimed burn cycle index */ function _updateUserBurnCycleClaimIndex( address user, uint256 cycleNo, uint256 userClaimBurnCycleIndex ) internal { if (userClaimBurnCycleIndex != s_addressCycleToLastClaimIndex[user][cycleNo].burnCycleIndex) s_addressCycleToLastClaimIndex[user][cycleNo].burnCycleIndex = uint96( userClaimBurnCycleIndex ); } /** @dev set to YES when any of the cycle days payout is triggered * reset to NO in new contract day */ function _setGlobalPayoutTriggered() internal { s_isGlobalPayoutTriggered = PayoutTriggered.YES; } /** @dev add reward into cycle day 8, 28, 90, 369, 888 pool * @param cycleNo cycle day 8, 28, 90, 369, 888 * @param reward reward from distributeETH() */ function _setCyclePayoutPool(uint256 cycleNo, uint256 reward) internal { s_cyclePayouts[cycleNo] += reward; } /** @dev calculate and update the next payout day for specified cycleNo * the formula will update the payout day based on current contract day * this is to make sure the value is correct when for some reason has skipped more than one cycle payout * @param cycleNo cycle day 8, 28, 90, 369, 888 */ function _setNextCyclePayoutDay(uint256 cycleNo) internal { uint256 maturityDay = s_nextCyclePayoutDay[cycleNo]; uint256 currentContractDay = s_currentContractDay; if (currentContractDay >= maturityDay) { s_nextCyclePayoutDay[cycleNo] += cycleNo * (((currentContractDay - maturityDay) / cycleNo) + 1); } } /** Views */ /** @notice Returns current block timestamp * @return currentBlockTs current block timestamp */ function getCurrentBlockTimeStamp() public view returns (uint256) { return block.timestamp; } /** @notice Returns current contract day * @return currentContractDay current contract day */ function getCurrentContractDay() public view returns (uint256) { return s_currentContractDay; } /** @notice Returns current mint cost * @return currentMintCost current block timestamp */ function getCurrentMintCost() public view returns (uint256) { return s_currentMintCost; } /** @notice Returns current share rate * @return currentShareRate current share rate */ function getCurrentShareRate() public view returns (uint256) { return s_currentshareRate; } /** @notice Returns current mintable titan * @return currentMintableTitan current mintable titan */ function getCurrentMintableTitan() public view returns (uint256) { return s_currentMintableTitan; } /** @notice Returns current mint power bonus * @return currentMintPowerBonus current mint power bonus */ function getCurrentMintPowerBonus() public view returns (uint256) { return s_currentMintPowerBonus; } /** @notice Returns current contract EAA bonus * @return currentEAABonus current EAA bonus */ function getCurrentEAABonus() public view returns (uint256) { return s_currentEAABonus; } /** @notice Returns current cycle index for the specified cycle day * @param cycleNo cycle day 8, 28, 90, 369, 888 * @return currentCycleIndex current cycle index to track the payouts */ function getCurrentCycleIndex(uint256 cycleNo) public view returns (uint256) { return s_cyclePayoutIndex[cycleNo]; } /** @notice Returns whether payout is triggered successfully in any cylce day * @return isTriggered 0 or 1, 0= No, 1=Yes */ function getGlobalPayoutTriggered() public view returns (PayoutTriggered) { return s_isGlobalPayoutTriggered; } /** @notice Returns the distributed pool reward for the specified cycle day * @param cycleNo cycle day 8, 28, 90, 369, 888 * @return currentPayoutPool current accumulated payout pool */ function getCyclePayoutPool(uint256 cycleNo) public view returns (uint256) { return s_cyclePayouts[cycleNo]; } /** @notice Returns the calculated payout per share and contract day for the specified cycle day and index * @param cycleNo cycle day 8, 28, 90, 369, 888 * @param index cycle index * @return payoutPerShare calculated payout per share * @return triggeredDay the day when payout was triggered to perform calculation */ function getPayoutPerShare( uint256 cycleNo, uint256 index ) public view returns (uint256, uint256) { return ( s_cyclePayoutPerShare[cycleNo][index].payoutPerShare, s_cyclePayoutPerShare[cycleNo][index].day ); } /** @notice Returns user's last claimed shares payout indexes for the specified cycle day * @param user user address * @param cycleNo cycle day 8, 28, 90, 369, 888 * @return cycleIndex cycle index * @return sharesIndex shares index */ function getUserLastClaimIndex( address user, uint256 cycleNo ) public view returns (uint256 cycleIndex, uint256 sharesIndex) { return ( s_addressCycleToLastClaimIndex[user][cycleNo].cycleIndex, s_addressCycleToLastClaimIndex[user][cycleNo].sharesIndex ); } /** @notice Returns user's last claimed burn payout index for the specified cycle day * @param user user address * @param cycleNo cycle day 8, 28, 90, 369, 888 * @return burnCycleIndex burn cycle index */ function getUserLastBurnClaimIndex( address user, uint256 cycleNo ) public view returns (uint256 burnCycleIndex) { return s_addressCycleToLastClaimIndex[user][cycleNo].burnCycleIndex; } /** @notice Returns contract deployment block timestamp * @return genesisTs deployed timestamp */ function genesisTs() public view returns (uint256) { return i_genesisTs; } /** @notice Returns next payout day for the specified cycle day * @param cycleNo cycle day 8, 28, 90, 369, 888 * @return nextPayoutDay next payout day */ function getNextCyclePayoutDay(uint256 cycleNo) public view returns (uint256) { return s_nextCyclePayoutDay[cycleNo]; } } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; import "./constant.sol"; import "./enum.sol"; //TitanX /**@notice get batch mint ladder total count * @param minDay minimum mint length * @param maxDay maximum mint length, cap at 280 * @param dayInterval day increase from previous mint length * @param countPerInterval number of mints per minth length * @return count total mints */ function getBatchMintLadderCount( uint256 minDay, uint256 maxDay, uint256 dayInterval, uint256 countPerInterval ) pure returns (uint256 count) { if (maxDay > minDay) { count = (((maxDay - minDay) / dayInterval) + 1) * countPerInterval; } } /** @notice get incentive fee in 4 decimals scaling * @return fee fee */ function getIncentiveFeePercent() pure returns (uint256) { return (INCENTIVE_FEE_PERCENT * 1e4) / INCENTIVE_FEE_PERCENT_BASE; } /** @notice get batch mint cost * @param mintPower mint power (1 - 100) * @param count number of mints * @return mintCost total mint cost */ function getBatchMintCost( uint256 mintPower, uint256 count, uint256 mintCost ) pure returns (uint256) { return (mintCost * mintPower * count) / MAX_MINT_POWER_CAP; } //MintInfo /** @notice the formula to calculate mint reward at create new mint * @param mintPower mint power 1 - 100 * @param numOfDays mint length 1 - 280 * @param mintableTitan current contract day mintable titan * @param EAABonus current contract day EAA Bonus * @param burnAmpBonus user burn amplifier bonus from getUserBurnAmplifierBonus(user) * @return reward base titan amount */ function calculateMintReward( uint256 mintPower, uint256 numOfDays, uint256 mintableTitan, uint256 EAABonus, uint256 burnAmpBonus ) pure returns (uint256 reward) { uint256 baseReward = (mintableTitan * mintPower * numOfDays); if (numOfDays != 1) baseReward -= (baseReward * MINT_DAILY_REDUCTION * (numOfDays - 1)) / PERCENT_BPS; reward = baseReward; if (EAABonus != 0) { //EAA Bonus has 1e6 scaling, so here divide by 1e6 reward += ((baseReward * EAABonus) / 100 / SCALING_FACTOR_1e6); } if (burnAmpBonus != 0) { //burnAmpBonus has 1e18 scaling reward += (baseReward * burnAmpBonus) / 100 / SCALING_FACTOR_1e18; } reward /= MAX_MINT_POWER_CAP; } /** @notice the formula to calculate bonus reward * heavily influenced by the difference between current global mint power and user mint's global mint power * @param mintPowerBonus mint power bonus from mintinfo * @param mintPower mint power 1 - 100 from mintinfo * @param gMintPower global mint power from mintinfo * @param globalMintPower current global mint power * @return bonus bonus amount in titan */ function calculateMintPowerBonus( uint256 mintPowerBonus, uint256 mintPower, uint256 gMintPower, uint256 globalMintPower ) pure returns (uint256 bonus) { if (globalMintPower <= gMintPower) return 0; bonus = (((mintPowerBonus * mintPower * (globalMintPower - gMintPower)) * SCALING_FACTOR_1e18) / MAX_MINT_POWER_CAP); } /** @notice Return max mint length * @return maxMintLength max mint length */ function getMaxMintDays() pure returns (uint256) { return MAX_MINT_LENGTH; } /** @notice Return max mints per wallet * @return maxMintPerWallet max mints per wallet */ function getMaxMintsPerWallet() pure returns (uint256) { return MAX_MINT_PER_WALLET; } /** * @dev Return penalty percentage based on number of days late after the grace period of 7 days * @param secsLate seconds late (block timestamp - maturity timestamp) * @return penalty penalty in percentage */ function calculateClaimMintPenalty(uint256 secsLate) pure returns (uint256 penalty) { if (secsLate <= CLAIM_MINT_GRACE_PERIOD * SECONDS_IN_DAY) return 0; if (secsLate <= (CLAIM_MINT_GRACE_PERIOD + 1) * SECONDS_IN_DAY) return 1; if (secsLate <= (CLAIM_MINT_GRACE_PERIOD + 2) * SECONDS_IN_DAY) return 3; if (secsLate <= (CLAIM_MINT_GRACE_PERIOD + 3) * SECONDS_IN_DAY) return 8; if (secsLate <= (CLAIM_MINT_GRACE_PERIOD + 4) * SECONDS_IN_DAY) return 17; if (secsLate <= (CLAIM_MINT_GRACE_PERIOD + 5) * SECONDS_IN_DAY) return 35; if (secsLate <= (CLAIM_MINT_GRACE_PERIOD + 6) * SECONDS_IN_DAY) return 72; return 99; } //StakeInfo error TitanX_AtLeastHalfMaturity(); /** @notice get max stake length * @return maxStakeLength max stake length */ function getMaxStakeLength() pure returns (uint256) { return MAX_STAKE_LENGTH; } /** @notice calculate shares and shares bonus * @param amount titan amount * @param noOfDays stake length * @param shareRate current contract share rate * @return shares calculated shares in 18 decimals */ function calculateShares( uint256 amount, uint256 noOfDays, uint256 shareRate ) pure returns (uint256) { uint256 shares = amount; shares += (shares * calculateShareBonus(amount, noOfDays)) / SCALING_FACTOR_1e11; shares /= (shareRate / SCALING_FACTOR_1e18); return shares; } /** @notice calculate share bonus * @param amount titan amount * @param noOfDays stake length * @return shareBonus calculated shares bonus in 11 decimals */ function calculateShareBonus(uint256 amount, uint256 noOfDays) pure returns (uint256 shareBonus) { uint256 cappedExtraDays = noOfDays <= LPB_MAX_DAYS ? noOfDays : LPB_MAX_DAYS; uint256 cappedStakedTitan = amount <= BPB_MAX_TITAN ? amount : BPB_MAX_TITAN; shareBonus = ((cappedExtraDays * SCALING_FACTOR_1e11) / LPB_PER_PERCENT) + ((cappedStakedTitan * SCALING_FACTOR_1e11) / BPB_PER_PERCENT); return shareBonus; } /** @notice calculate end stake penalty * @param stakeStartTs start stake timestamp * @param maturityTs maturity timestamp * @param currentBlockTs current block timestamp * @param action end stake or burn stake * @return penalty penalty in percentage */ function calculateEndStakePenalty( uint256 stakeStartTs, uint256 maturityTs, uint256 currentBlockTs, StakeAction action ) view returns (uint256) { //Matured, then calculate and return penalty if (currentBlockTs > maturityTs) { uint256 lateSec = currentBlockTs - maturityTs; uint256 gracePeriodSec = END_STAKE_GRACE_PERIOD * SECONDS_IN_DAY; if (lateSec <= gracePeriodSec) return 0; return max((min((lateSec - gracePeriodSec), 1) / SECONDS_IN_DAY) + 1, 99); } //burn stake is excluded from penalty //if not matured and action is burn stake then return 0 if (action == StakeAction.BURN) return 0; //Emergency End Stake //Not allow to EES below 50% maturity if (block.timestamp < stakeStartTs + (maturityTs - stakeStartTs) / 2) revert TitanX_AtLeastHalfMaturity(); //50% penalty for EES before maturity timestamp return 50; } //a - input to check against b //b - minimum number function min(uint256 a, uint256 b) pure returns (uint256) { if (a > b) return a; return b; } //a - input to check against b //b - maximum number function max(uint256 a, uint256 b) pure returns (uint256) { if (a > b) return b; return a; } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; interface ITITANX { function balanceOf(address account) external returns (uint256); function getBalance() external; function mintLPTokens() external; function burnLPTokens() external; } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; interface ITitanOnBurn { function onBurn(address user, uint256 amount) external; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol) pragma solidity ^0.8.0; import "../utils/introspection/IERC165.sol"; // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance( address owner, address spender ) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; enum MintAction { CLAIM, BURN } enum MintStatus { ACTIVE, CLAIMED, BURNED } enum StakeAction { START, END, BURN, END_OWN, END_OTHER } enum StakeStatus { ACTIVE, ENDED, BURNED } enum PayoutTriggered { NO, YES } enum InitialLPMinted { NO, YES } enum PayoutClaim { SHARES, BURN } enum BurnSource { LIQUID, MINT, STAKE } enum BurnPoolEnabled { FALSE, TRUE } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; // ===================== common ========================================== uint256 constant SECONDS_IN_DAY = 86400; uint256 constant SCALING_FACTOR_1e3 = 1e3; uint256 constant SCALING_FACTOR_1e6 = 1e6; uint256 constant SCALING_FACTOR_1e7 = 1e7; uint256 constant SCALING_FACTOR_1e11 = 1e11; uint256 constant SCALING_FACTOR_1e18 = 1e18; // ===================== TITANX ========================================== uint256 constant PERCENT_TO_BUY_AND_BURN = 62_00; uint256 constant PERCENT_TO_CYCLE_PAYOUTS = 28_00; uint256 constant PERCENT_TO_BURN_PAYOUTS = 7_00; uint256 constant PERCENT_TO_GENESIS = 3_00; uint256 constant INCENTIVE_FEE_PERCENT = 3300; uint256 constant INCENTIVE_FEE_PERCENT_BASE = 1_000_000; uint256 constant INITAL_LP_TOKENS = 100_000_000_000 ether; // ===================== globalInfo ========================================== //Titan Supply Variables uint256 constant START_MAX_MINTABLE_PER_DAY = 8_000_000 ether; uint256 constant CAPPED_MIN_DAILY_TITAN_MINTABLE = 800 ether; uint256 constant DAILY_SUPPLY_MINTABLE_REDUCTION = 99_65; //EAA Variables uint256 constant EAA_START = 10 * SCALING_FACTOR_1e6; uint256 constant EAA_BONUSE_FIXED_REDUCTION_PER_DAY = 28_571; uint256 constant EAA_END = 0; uint256 constant MAX_BONUS_DAY = 350; //Mint Cost Variables uint256 constant START_MAX_MINT_COST = 0.2 ether; uint256 constant CAPPED_MAX_MINT_COST = 1 ether; uint256 constant DAILY_MINT_COST_INCREASE_STEP = 100_08; //mintPower Bonus Variables uint256 constant START_MINTPOWER_INCREASE_BONUS = 35 * SCALING_FACTOR_1e7; //starts at 35 with 1e7 scaling factor uint256 constant CAPPED_MIN_MINTPOWER_BONUS = 35 * SCALING_FACTOR_1e3; //capped min of 0.0035 * 1e7 = 35 * 1e3 uint256 constant DAILY_MINTPOWER_INCREASE_BONUS_REDUCTION = 99_65; //Share Rate Variables uint256 constant START_SHARE_RATE = 800 ether; uint256 constant DAILY_SHARE_RATE_INCREASE_STEP = 100_03; uint256 constant CAPPED_MAX_RATE = 2_800 ether; //Cycle Variables uint256 constant DAY8 = 8; uint256 constant DAY28 = 28; uint256 constant DAY90 = 90; uint256 constant DAY369 = 369; uint256 constant DAY888 = 888; uint256 constant CYCLE_8_PERCENT = 28_00; uint256 constant CYCLE_28_PERCENT = 28_00; uint256 constant CYCLE_90_PERCENT = 18_00; uint256 constant CYCLE_369_PERCENT = 18_00; uint256 constant CYCLE_888_PERCENT = 8_00; uint256 constant PERCENT_BPS = 100_00; // ===================== mintInfo ========================================== uint256 constant MAX_MINT_POWER_CAP = 100; uint256 constant MAX_MINT_LENGTH = 280; uint256 constant CLAIM_MINT_GRACE_PERIOD = 7; uint256 constant MAX_BATCH_MINT_COUNT = 100; uint256 constant MAX_MINT_PER_WALLET = 1000; uint256 constant MAX_BURN_AMP_BASE = 80 * 1e9 * 1 ether; uint256 constant MAX_BURN_AMP_PERCENT = 8 ether; uint256 constant MINT_DAILY_REDUCTION = 11; // ===================== stakeInfo ========================================== uint256 constant MAX_STAKE_PER_WALLET = 1000; uint256 constant MIN_STAKE_LENGTH = 28; uint256 constant MAX_STAKE_LENGTH = 3500; uint256 constant END_STAKE_GRACE_PERIOD = 7; /* Stake Longer Pays Better bonus */ uint256 constant LPB_MAX_DAYS = 2888; uint256 constant LPB_PER_PERCENT = 825; /* Stake Bigger Pays Better bonus */ uint256 constant BPB_MAX_TITAN = 100 * 1e9 * SCALING_FACTOR_1e18; //100 billion uint256 constant BPB_PER_PERCENT = 1_250_000_000_000 * SCALING_FACTOR_1e18; // ===================== burnInfo ========================================== uint256 constant MAX_BURN_REWARD_PERCENT = 8; // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
File 3 of 4: Element280
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol"; // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol"; // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC20Permit} from "../extensions/IERC20Permit.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success,) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget(address target, bool success, bytes memory returndata) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.20; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } } pragma solidity >=0.5.0; interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint256); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint256) external view returns (address pair); function allPairsLength() external view returns (uint256); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint256 value); event Transfer(address indexed from, address indexed to, uint256 value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint256); function balanceOf(address owner) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 value) external returns (bool); function transfer(address to, uint256 value) external returns (bool); function transferFrom(address from, address to, uint256 value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint256); function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint256 amount0, uint256 amount1); event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to); event Swap( address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint256); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint256); function price1CumulativeLast() external view returns (uint256); function kLast() external view returns (uint256); function mint(address to) external returns (uint256 liquidity); function burn(address to) external returns (uint256 amount0, uint256 amount1); function swap(uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } pragma solidity >=0.6.2; interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint256 amountADesired, uint256 amountBDesired, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity); function addLiquidityETH( address token, uint256 amountTokenDesired, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external payable returns (uint256 amountToken, uint256 amountETH, uint256 liquidity); function removeLiquidity( address tokenA, address tokenB, uint256 liquidity, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external returns (uint256 amountA, uint256 amountB); function removeLiquidityETH( address token, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external returns (uint256 amountToken, uint256 amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint256 liquidity, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint256 amountA, uint256 amountB); function removeLiquidityETHWithPermit( address token, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint256 amountToken, uint256 amountETH); function swapExactTokensForTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapTokensForExactTokens( uint256 amountOut, uint256 amountInMax, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapExactETHForTokens(uint256 amountOutMin, address[] calldata path, address to, uint256 deadline) external payable returns (uint256[] memory amounts); function swapTokensForExactETH( uint256 amountOut, uint256 amountInMax, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapExactTokensForETH( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapETHForExactTokens(uint256 amountOut, address[] calldata path, address to, uint256 deadline) external payable returns (uint256[] memory amounts); function quote(uint256 amountA, uint256 reserveA, uint256 reserveB) external pure returns (uint256 amountB); function getAmountOut(uint256 amountIn, uint256 reserveIn, uint256 reserveOut) external pure returns (uint256 amountOut); function getAmountIn(uint256 amountOut, uint256 reserveIn, uint256 reserveOut) external pure returns (uint256 amountIn); function getAmountsOut(uint256 amountIn, address[] calldata path) external view returns (uint256[] memory amounts); function getAmountsIn(uint256 amountOut, address[] calldata path) external view returns (uint256[] memory amounts); } pragma solidity >=0.6.2; import "./IUniswapV2Router01.sol"; interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external returns (uint256 amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint256 amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#swap /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface interface IUniswapV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; import "@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol"; /// @title Router token swapping functionality /// @notice Functions for swapping tokens via Uniswap V3 interface ISwapRouter is IUniswapV3SwapCallback { struct ExactInputSingleParams { address tokenIn; address tokenOut; uint24 fee; address recipient; uint256 deadline; uint256 amountIn; uint256 amountOutMinimum; uint160 sqrtPriceLimitX96; } /// @notice Swaps `amountIn` of one token for as much as possible of another token /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata /// @return amountOut The amount of the received token function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut); struct ExactInputParams { bytes path; address recipient; uint256 deadline; uint256 amountIn; uint256 amountOutMinimum; } /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata /// @return amountOut The amount of the received token function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut); struct ExactOutputSingleParams { address tokenIn; address tokenOut; uint24 fee; address recipient; uint256 deadline; uint256 amountOut; uint256 amountInMaximum; uint160 sqrtPriceLimitX96; } /// @notice Swaps as little as possible of one token for `amountOut` of another token /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata /// @return amountIn The amount of the input token function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn); struct ExactOutputParams { bytes path; address recipient; uint256 deadline; uint256 amountOut; uint256 amountInMaximum; } /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed) /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata /// @return amountIn The amount of the input token function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn); } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.24; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "@openzeppelin/contracts/interfaces/IERC20.sol"; import "@openzeppelin/contracts/interfaces/IERC165.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/access/Ownable2Step.sol"; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol"; import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol"; import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol"; import "@uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol"; import "./interfaces/IElementNFT.sol"; import "./interfaces/ITITANX.sol"; import "./interfaces/IWETH9.sol"; import "./lib/constants.sol"; /// @title Element 280 Token Contract contract Element280 is ERC20, Ownable2Step, IERC165 { using SafeERC20 for IERC20; using EnumerableSet for EnumerableSet.UintSet; // --------------------------- STATE VARIABLES --------------------------- // struct UserPurchase { uint256 timestamp; uint256 amount; } address public treasury; address public devWallet; address public E280NFT; address public HOLDER_VAULT; address public BUY_AND_BURN; /// @notice Total number of liqudity pools created for Element 280 protocol tokens uint8 public totalLPsCreated; /// @notice Purchases of ecosystem tokens are in progress bool public lpPurchaseStarted; /// @notice Purchases of ecosystem tokens are done bool public lpPurchaseFinished; /// @notice Trading is disabled until all LPs are created. Enables automatically with the creation of the last LP. bool public tradingEnabled; /// @notice TitanX tokens designated for ecosystem token purchases. uint256 public lpPool; /// @notice TitanX tokens used for ecosystem token purchases. uint256 public totalLpPoolUsed; /// @notice Total ELMT tokens burned to date. uint256 public totalBurned; /// @notice Timestamp in seconds of the presale end date. uint256 public presaleEnd; uint256 private _currentPurchaseId; /// @notice Purchase information for a specific purchase ID. /// @return timestamp The time when the purchase was made (as a Unix timestamp). /// @return amount The amount of Element 280 toknes of the purchase. mapping(uint256 purchaseId => UserPurchase) public purchases; /// @notice Returns the total amount of ecosystem tokens purchased for LP creation for a specific token. /// @return The total amount of the specified token allocated to the LP pool (in WEI). mapping(address token => uint256) public tokenPool; /// @notice Percent of the lpPool to calculate the allocation per ecosystem token purchases. mapping(address token => uint8) public tokenLpPercent; /// @notice Are transcations to provided address whitelisted. mapping(address => bool) public whitelistTo; /// @notice Are transcations from provided address whitelisted. mapping(address => bool) public whitelistFrom; /// @notice Total number of purchases per each ecosystem token. 5 per token is required. mapping(address token => uint8) public lpPurchases; mapping(address user => EnumerableSet.UintSet) private _userPurchases; // --------------------------- EVENTS & MODIFIERS --------------------------- // event PresaleStarted(); modifier onlyPresale() { require(isPresaleActive(), "Presale not active"); _; } modifier onlyNftContract() { require(msg.sender == E280NFT, "Unauthorized"); _; } // --------------------------- CONSTRUCTOR --------------------------- // constructor( address _owner, address _devWallet, address _treasury, address[] memory _ecosystemTokens, uint8[] memory _lpPercentages ) ERC20("Element 280", "ELMNT") Ownable(_owner) { require(_ecosystemTokens.length == NUM_ECOSYSTEM_TOKENS, "Incorrect number of tokens"); require(_lpPercentages.length == NUM_ECOSYSTEM_TOKENS, "Incorrect number of tokens"); require(_owner != address(0), "Owner wallet not provided"); require(_devWallet != address(0), "Dev wallet address not provided"); require(_treasury != address(0), "Treasury address not provided"); devWallet = _devWallet; treasury = _treasury; whitelistFrom[address(0)] = true; whitelistTo[address(0)] = true; uint8 totalPercentage; for (uint256 i = 0; i < _ecosystemTokens.length; i++) { address token = _ecosystemTokens[i]; uint8 allocation = _lpPercentages[i]; require(token != address(0), "Incorrect token address"); require(allocation > 0, "Incorrect percentage value"); require(tokenLpPercent[token] == 0, "Duplicate token"); tokenLpPercent[token] = allocation; totalPercentage += allocation; } require(totalPercentage == 100, "Percentages do not add to 100"); } // --------------------------- PUBLIC FUNCTIONS --------------------------- // /// @notice Allows users to purchase tokens during the presale using TitanX tokens. /// @param amount The amount of TitanX tokens to spend. function purchaseWithTitanX(uint256 amount) external onlyPresale { require(amount > 0, "Cannot purchase 0 tokens"); IERC20(TITANX).safeTransferFrom(msg.sender, address(this), amount); _writePurchaseData(amount, msg.sender); } /// @notice Allows users to purchase tokens during the presale using ETH. /// @param minAmount The minimum amount of Element 280 tokens to purchase. function purchaseWithETH(uint256 minAmount, uint256 deadline) external payable onlyPresale { require(minAmount > 0, "Cannot purchase 0 tokens"); uint256 swappedAmount = _swapETHForTitanX(minAmount, deadline); _writePurchaseData(swappedAmount, msg.sender); } /// @notice Allows users to claim their purchased tokens after the cooldown period. /// @param purchaseId The ID of the purchase to claim. function claimPurchase(uint256 purchaseId) external { require(_userPurchases[msg.sender].contains(purchaseId), "Cannot claim"); UserPurchase memory purchase = purchases[purchaseId]; require(purchase.timestamp + COOLDOWN_PERIOD < block.timestamp, "Cooldown is active"); _userPurchases[msg.sender].remove(purchaseId); _mint(msg.sender, purchase.amount); } /// @notice Transfers TitanX allocation to Element 280 Buy&Burn contract. /// @dev Can only be called when there is an allocation for buy and burn. function distributeBuyAndBurn() external { uint256 allocation = getBuyBurnAllocation(); require(allocation > 0, "Nothing to distribute"); IERC20(TITANX).safeTransfer(BUY_AND_BURN, allocation); } /// @notice Burns the specified amount of tokens from the user's balance. /// @param value The amount of tokens in wei. function burn(uint256 value) public virtual { totalBurned += value; _burn(_msgSender(), value); } // --------------------------- PRESALE MANAGEMENT FUNCTIONS --------------------------- // /// @notice Starts the presale for the token. function startPresale() external onlyOwner { require(E280NFT != address(0), "NFT not set"); require(presaleEnd == 0, "Can only be done once"); unchecked { presaleEnd = block.timestamp + PRESALE_LENGTH; } IElementNFT(E280NFT).startPresale(presaleEnd); emit PresaleStarted(); } /// @notice Begins the liquidity pool creation process after the presale has either ended or accumulated more than 200B TitanX. function startLpPurchases() external onlyOwner { require(presaleEnd != 0, "Presale not started yet"); require(!lpPurchaseStarted, "LP creation already started"); uint256 availableBalance = IERC20(TITANX).balanceOf(address(this)); require(availableBalance > 0, "No TitanX available"); if (availableBalance < LP_POOL_SIZE) { require(block.timestamp >= presaleEnd, "Presale not finished yet"); _registerLPPool(availableBalance); } else { _registerLPPool(LP_POOL_SIZE); } lpPurchaseStarted = true; } /// @notice Executes token purchase of the ecosystem tokens for the liquidity pool based on the allocation. /// @param target The target token to purchase. /// @param minAmountOut Minimum amout to be received after swap. /// @dev Can only be called by the contract owner during the LP purchase phase. function purchaseTokenForLP(address target, uint256 minAmountOut, uint256 deadline) external onlyOwner { require(lpPurchaseStarted && !lpPurchaseFinished, "LP phase not active"); require(lpPurchases[target] < 5, "All purchases have been made for target token"); uint8 allocation = tokenLpPercent[target]; require(allocation > 0, "Incorrect target token"); uint256 amount = lpPool * allocation / 500; totalLpPoolUsed += amount; uint256 swappedAmount = _swapTitanXToToken(target, amount, minAmountOut, deadline); unchecked { tokenPool[target] += swappedAmount; lpPurchases[target]++; // account for rounding error if (totalLpPoolUsed >= lpPool - NUM_ECOSYSTEM_TOKENS * 5) lpPurchaseFinished = true; } } /// @notice Deploys the liquidity pool for a specific ecosystem token. /// @param target The token for which the liquidity pool will be deployed. /// @dev Can only be called by the contract owner after the LP phase has completed. function deployLP(address target, uint256 minTokenAmount, uint256 minE280Amount) external onlyOwner { require(lpPurchaseFinished, "Not all tokens have been purchased"); uint8 allocation = tokenLpPercent[target]; require(allocation > 0, "Incorrect target token"); uint256 e280Amount = lpPool * allocation / 100; uint256 tokenAmount = tokenPool[target]; require(tokenAmount > 0, "Pool already deployed"); _deployLiqudityPool(target, tokenAmount, e280Amount, minTokenAmount, minE280Amount); unchecked { totalLPsCreated++; } if (totalLPsCreated == NUM_ECOSYSTEM_TOKENS) _enableTrading(); } // --------------------------- ADMINISTRATIVE FUNCTIONS --------------------------- // /// @notice Sets the required addresses for the Element 280 protocol. /// @param nftAddress The address of the Element 280 NFT contract. /// @param vaultAddress The address of the Element 280 Holder Vault contract. /// @param buyAndBurn The address of the Element 280 Buy&Burn contract. /// @dev Can only be set once and can only be called by the owner. function setProtocolAddresses(address nftAddress, address vaultAddress, address buyAndBurn) external onlyOwner { require(E280NFT == address(0), "Can only be done once"); require(nftAddress != address(0), "NFT address not provided"); require(vaultAddress != address(0), "Holder Vault address not provided"); require(buyAndBurn != address(0), "Buy&Burn address not provided"); E280NFT = nftAddress; HOLDER_VAULT = vaultAddress; BUY_AND_BURN = buyAndBurn; whitelistFrom[HOLDER_VAULT] = true; whitelistTo[BUY_AND_BURN] = true; } /// @notice Sets the treasury address. /// @param _address The address of the treasury. /// @dev Can only be called by the owner. function setTreasury(address _address) external onlyOwner { require(_address != address(0), "Treasury address not provided"); treasury = _address; } /// @notice Sets the whitelist status for transfers to a specified address. /// @param _address The address which whitelist status will be modified. /// @param enabled Will the address be whitelisted. /// @dev Can only be called by the owner. function setWhitelistTo(address _address, bool enabled) external onlyOwner { whitelistTo[_address] = enabled; } /// @notice Sets the whitelist status for transfers from a specified address. /// @param _address The address which whitelist status will be modified. /// @param enabled Will the address be whitelisted. /// @dev Can only be called by the owner. function setWhitelistFrom(address _address, bool enabled) external onlyOwner { whitelistFrom[_address] = enabled; } // --------------------------- VIEW FUNCTIONS --------------------------- // /// @notice Checks if the presale is currently active. /// @return A boolean indicating whether the presale is still active. function isPresaleActive() public view returns (bool) { return presaleEnd > block.timestamp; } /// @notice Returns all purchase IDs associated with a specific user. /// @param account The address of the user. /// @return An array of purchase IDs owned by the user. function getUserPurchaseIds(address account) external view returns (uint256[] memory) { return _userPurchases[account].values(); } /// @notice Returns the available TitanX tokens for Element 280 Buy&Burn contract. /// @return The amount of TitanX tokens allocated (in WEI). /// @dev Requires that trading has been enabled. function getBuyBurnAllocation() public view returns (uint256) { require(tradingEnabled, "Trading is not enabled yet"); return IERC20(TITANX).balanceOf(address(this)); } function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165) returns (bool) { return interfaceId == INTERFACE_ID_ERC165 || interfaceId == INTERFACE_ID_ERC20; } // --------------------------- INTERNAL FUNCTIONS --------------------------- // /// @notice Handles the redemption process, applying tax and distributing the remaining amount. /// @param amount The amount to redeem. /// @param receiver The address to receive the redeemed amount after tax. /// @dev This function is only callable by the NFT contract. function handleRedeem(uint256 amount, address receiver) external onlyNftContract { (uint256 taxAmount, uint256 amountAfterTax) = _processTax(amount, NFT_REDEEM_TAX_PERCENTAGE); _mint(HOLDER_VAULT, taxAmount); _mint(receiver, amountAfterTax); } function _enableTrading() internal { tradingEnabled = true; } function _update(address from, address to, uint256 amount) internal override { if (!tradingEnabled) { if (from == address(this) || from == address(0)) { super._update(from, to, amount); } else { revert("Trading is disabled"); } } else { if (whitelistTo[to] || whitelistFrom[from]) { super._update(from, to, amount); } else { uint256 taxPercentage = isPresaleActive() ? PRESALE_TRANSFER_TAX_PERCENTAGE : TRANSFER_TAX_PERCENTAGE; (uint256 taxAmount, uint256 amountAfterTax) = _processTax(amount, taxPercentage); super._update(from, HOLDER_VAULT, taxAmount); super._update(from, to, amountAfterTax); } } } function _writePurchaseData(uint256 amount, address to) internal { purchases[_currentPurchaseId] = UserPurchase(block.timestamp, amount); _userPurchases[to].add(_currentPurchaseId); unchecked { _currentPurchaseId++; } } function _processTax(uint256 amount, uint256 percentage) internal pure returns (uint256 taxAmount, uint256 amountAfterTax) { unchecked { taxAmount = (amount * percentage) / 100; amountAfterTax = amount - taxAmount; } } function _registerLPPool(uint256 amount) internal { uint256 devAmount = amount * DEV_PERCENT / 100; uint256 treasuryAmount = amount * TREASURY_PERCENT / 100; IERC20(TITANX).safeTransfer(devWallet, devAmount); IERC20(TITANX).safeTransfer(treasury, treasuryAmount); lpPool = amount - devAmount - treasuryAmount; lpPurchases[TITANX] = 5; uint256 titanXPool = lpPool * tokenLpPercent[TITANX] / 100; tokenPool[TITANX] = titanXPool; totalLpPoolUsed += titanXPool; } function _deployLiqudityPool(address tokenAddress, uint256 tokenAmount, uint256 e280Amount, uint256 minTokenAmount, uint256 minE280Amount) internal { (uint256 pairBalance, address pairAddress) = _checkPoolValidity(tokenAddress); if (pairBalance > 0) _fixPool(pairAddress, tokenAmount, e280Amount, pairBalance); _mint(address(this), e280Amount); IERC20(address(this)).safeIncreaseAllowance(UNISWAP_V2_ROUTER, e280Amount); IERC20(tokenAddress).safeIncreaseAllowance(UNISWAP_V2_ROUTER, tokenAmount); IUniswapV2Router02(UNISWAP_V2_ROUTER).addLiquidity( address(this), tokenAddress, e280Amount, tokenAmount, minE280Amount, minTokenAmount, address(0), //send governance tokens directly to zero address block.timestamp ); tokenPool[tokenAddress] = 0; } function _checkPoolValidity(address target) internal view returns (uint256, address) { address pairAddress = IUniswapV2Factory(UNISWAP_V2_FACTORY).getPair(address(this), target); if (pairAddress == address(0)) return (0, pairAddress); IUniswapV2Pair pair = IUniswapV2Pair(pairAddress); (uint112 reserve0, uint112 reserve1, ) = pair.getReserves(); if (reserve0 != 0) return (reserve0, pairAddress); if (reserve1 != 0) return (reserve1, pairAddress); return (0, pairAddress); } function _fixPool(address pairAddress, uint256 tokenAmount, uint256 e280Amount, uint256 currentBalance) internal { uint256 requiredE280 = currentBalance * e280Amount / tokenAmount; _mint(pairAddress, requiredE280); IUniswapV2Pair(pairAddress).sync(); } function _swapETHForTitanX(uint256 minAmountOut, uint256 deadline) internal returns (uint256) { IWETH9(WETH9).deposit{value: msg.value}(); ISwapRouter.ExactInputSingleParams memory params = ISwapRouter.ExactInputSingleParams({ tokenIn: WETH9, tokenOut: TITANX, fee: POOL_FEE_1PERCENT, recipient: address(this), deadline: deadline, amountIn: msg.value, amountOutMinimum: minAmountOut, sqrtPriceLimitX96: 0 }); IERC20(WETH9).safeIncreaseAllowance(UNISWAP_V3_ROUTER, msg.value); uint256 amountOut = ISwapRouter(UNISWAP_V3_ROUTER).exactInputSingle(params); return amountOut; } function _swapTitanXToToken(address outputToken, uint256 amount, uint256 minAmountOut, uint256 deadline) internal returns (uint256) { if (outputToken == BLAZE_ADDRESS) return _swapUniswapV2Pool(outputToken, amount, minAmountOut, deadline); if (outputToken == BDX_ADDRESS || outputToken == HYDRA_ADDRESS || outputToken == AWESOMEX_ADDRESS) { return _swapMultihop(outputToken, DRAGONX_ADDRESS, amount, minAmountOut, deadline); } if (outputToken == FLUX_ADDRESS) { return _swapMultihop(outputToken, INFERNO_ADDRESS, amount, minAmountOut, deadline); } return _swapUniswapV3Pool(outputToken, amount, minAmountOut, deadline); } function _swapUniswapV3Pool(address outputToken, uint256 amountIn, uint256 minAmountOut, uint256 deadline) internal returns (uint256) { ISwapRouter.ExactInputSingleParams memory params = ISwapRouter.ExactInputSingleParams({ tokenIn: TITANX, tokenOut: outputToken, fee: POOL_FEE_1PERCENT, recipient: address(this), deadline: deadline, amountIn: amountIn, amountOutMinimum: minAmountOut, sqrtPriceLimitX96: 0 }); IERC20(TITANX).safeIncreaseAllowance(UNISWAP_V3_ROUTER, amountIn); uint256 amountOut = ISwapRouter(UNISWAP_V3_ROUTER).exactInputSingle(params); return amountOut; } function _swapUniswapV2Pool(address outputToken, uint256 amountIn, uint256 minAmountOut, uint256 deadline) internal returns (uint256) { require(minAmountOut > 0, "minAmountOut not provided"); IERC20(TITANX).safeIncreaseAllowance(UNISWAP_V2_ROUTER, amountIn); address[] memory path = new address[](2); path[0] = TITANX; path[1] = outputToken; uint256[] memory amounts = IUniswapV2Router02(UNISWAP_V2_ROUTER).swapExactTokensForTokens( amountIn, minAmountOut, path, address(this), deadline ); return amounts[1]; } function _swapMultihop( address outputToken, address midToken, uint256 amountIn, uint256 minAmountOut, uint256 deadline ) internal returns (uint256) { bytes memory path = abi.encodePacked(TITANX, POOL_FEE_1PERCENT, midToken, POOL_FEE_1PERCENT, outputToken); ISwapRouter.ExactInputParams memory params = ISwapRouter.ExactInputParams({ path: path, recipient: address(this), deadline: deadline, amountIn: amountIn, amountOutMinimum: minAmountOut }); IERC20(TITANX).safeIncreaseAllowance(UNISWAP_V3_ROUTER, amountIn); uint256 amoutOut = ISwapRouter(UNISWAP_V3_ROUTER).exactInput(params); return amoutOut; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.24; interface IElementNFT { function startPresale(uint256 _presaleEnd) external; function multiplierPool() external returns (uint256); function getBatchedTokensData(uint256[] calldata tokenIds, address owner) external view returns (uint256[] memory timestamps, uint16[] memory multipliers); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface ITitanOnBurn { function onBurn(address user, uint256 amount) external; } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.10; interface ITITANX { error TitanX_InvalidAmount(); error TitanX_InsufficientBalance(); error TitanX_NotSupportedContract(); error TitanX_InsufficientProtocolFees(); error TitanX_FailedToSendAmount(); error TitanX_NotAllowed(); error TitanX_NoCycleRewardToClaim(); error TitanX_NoSharesExist(); error TitanX_EmptyUndistributeFees(); error TitanX_InvalidBurnRewardPercent(); error TitanX_InvalidBatchCount(); error TitanX_InvalidMintLadderInterval(); error TitanX_InvalidMintLadderRange(); error TitanX_MaxedWalletMints(); error TitanX_LPTokensHasMinted(); error TitanX_InvalidAddress(); error TitanX_InsufficientBurnAllowance(); function getBalance() external; /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); function burnTokensToPayAddress( address user, uint256 amount, uint256 userRebatePercentage, uint256 rewardPaybackPercentage, address rewardPaybackAddress ) external; function burnTokens(address user, uint256 amount, uint256 userRebatePercentage, uint256 rewardPaybackPercentage) external; function userBurnTokens(uint256 amount) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.10; import "@openzeppelin/contracts/interfaces/IERC20.sol"; /// @title Interface for WETH9 interface IWETH9 is IERC20 { /// @notice Deposit ether to get wrapped ether function deposit() external payable; /// @notice Withdraw wrapped ether to get ether function withdraw(uint256) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import "../interfaces/ITitanOnBurn.sol"; import "@openzeppelin/contracts/interfaces/IERC20.sol"; // ===================== Contract Addresses ===================================== uint8 constant NUM_ECOSYSTEM_TOKENS = 14; address constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; address constant TITANX = 0xF19308F923582A6f7c465e5CE7a9Dc1BEC6665B1; address constant HYPER_ADDRESS = 0xE2cfD7a01ec63875cd9Da6C7c1B7025166c2fA2F; address constant HELIOS_ADDRESS = 0x2614f29C39dE46468A921Fd0b41fdd99A01f2EDf; address constant DRAGONX_ADDRESS = 0x96a5399D07896f757Bd4c6eF56461F58DB951862; address constant BDX_ADDRESS = 0x9f278Dc799BbC61ecB8e5Fb8035cbfA29803623B; address constant BLAZE_ADDRESS = 0xfcd7cceE4071aA4ecFAC1683b7CC0aFeCAF42A36; address constant INFERNO_ADDRESS = 0x00F116ac0c304C570daAA68FA6c30a86A04B5C5F; address constant HYDRA_ADDRESS = 0xCC7ed2ab6c3396DdBc4316D2d7C1b59ff9d2091F; address constant AWESOMEX_ADDRESS = 0xa99AFcC6Aa4530d01DFFF8E55ec66E4C424c048c; address constant FLUX_ADDRESS = 0xBFDE5ac4f5Adb419A931a5bF64B0f3BB5a623d06; address constant DRAGONX_BURN_ADDRESS = 0x1d59429571d8Fde785F45bf593E94F2Da6072Edb; // ===================== Presale ================================================ uint256 constant PRESALE_LENGTH = 28 days; uint256 constant COOLDOWN_PERIOD = 48 hours; uint256 constant LP_POOL_SIZE = 200_000_000_000 ether; // ===================== Fees =================================================== uint256 constant DEV_PERCENT = 6; uint256 constant TREASURY_PERCENT = 4; uint256 constant BURN_PERCENT = 10; // ===================== Sell Tax =============================================== uint256 constant PRESALE_TRANSFER_TAX_PERCENTAGE = 16; uint256 constant TRANSFER_TAX_PERCENTAGE = 4; uint256 constant NFT_REDEEM_TAX_PERCENTAGE = 3; // ===================== Holder Vault =========================================== uint16 constant MAX_CYCLES_PER_CLAIM = 100; uint32 constant CYCLE_INTERVAL = 7 days; // ===================== UNISWAP Interface ====================================== address constant UNISWAP_V2_FACTORY = 0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f; address constant UNISWAP_V2_ROUTER = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; address constant UNISWAP_V3_ROUTER = 0xE592427A0AEce92De3Edee1F18E0157C05861564; uint24 constant POOL_FEE_1PERCENT = 10000; // ===================== Interface IDs ========================================== bytes4 constant INTERFACE_ID_ERC165 = 0x01ffc9a7; bytes4 constant INTERFACE_ID_ERC20 = type(IERC20).interfaceId; bytes4 constant INTERFACE_ID_ERC721 = 0x80ac58cd; bytes4 constant INTERFACE_ID_ERC721Metadata = 0x5b5e139f; bytes4 constant INTERFACE_ID_ITITANONBURN = type(ITitanOnBurn).interfaceId;
File 4 of 4: GnosisSafeProxy
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; /// @title IProxy - Helper interface to access masterCopy of the Proxy on-chain /// @author Richard Meissner - <[email protected]> interface IProxy { function masterCopy() external view returns (address); } /// @title GnosisSafeProxy - Generic proxy contract allows to execute all transactions applying the code of a master contract. /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> contract GnosisSafeProxy { // singleton always needs to be first declared variable, to ensure that it is at the same location in the contracts to which calls are delegated. // To reduce deployment costs this variable is internal and needs to be retrieved via `getStorageAt` address internal singleton; /// @dev Constructor function sets address of singleton contract. /// @param _singleton Singleton address. constructor(address _singleton) { require(_singleton != address(0), "Invalid singleton address provided"); singleton = _singleton; } /// @dev Fallback function forwards all transactions and returns all received return data. fallback() external payable { // solhint-disable-next-line no-inline-assembly assembly { let _singleton := and(sload(0), 0xffffffffffffffffffffffffffffffffffffffff) // 0xa619486e == keccak("masterCopy()"). The value is right padded to 32-bytes with 0s if eq(calldataload(0), 0xa619486e00000000000000000000000000000000000000000000000000000000) { mstore(0, _singleton) return(0, 0x20) } calldatacopy(0, 0, calldatasize()) let success := delegatecall(gas(), _singleton, 0, calldatasize(), 0, 0) returndatacopy(0, 0, returndatasize()) if eq(success, 0) { revert(0, returndatasize()) } return(0, returndatasize()) } } } /// @title Proxy Factory - Allows to create new proxy contact and execute a message call to the new proxy within one transaction. /// @author Stefan George - <[email protected]> contract GnosisSafeProxyFactory { event ProxyCreation(GnosisSafeProxy proxy, address singleton); /// @dev Allows to create new proxy contact and execute a message call to the new proxy within one transaction. /// @param singleton Address of singleton contract. /// @param data Payload for message call sent to new proxy contract. function createProxy(address singleton, bytes memory data) public returns (GnosisSafeProxy proxy) { proxy = new GnosisSafeProxy(singleton); if (data.length > 0) // solhint-disable-next-line no-inline-assembly assembly { if eq(call(gas(), proxy, 0, add(data, 0x20), mload(data), 0, 0), 0) { revert(0, 0) } } emit ProxyCreation(proxy, singleton); } /// @dev Allows to retrieve the runtime code of a deployed Proxy. This can be used to check that the expected Proxy was deployed. function proxyRuntimeCode() public pure returns (bytes memory) { return type(GnosisSafeProxy).runtimeCode; } /// @dev Allows to retrieve the creation code used for the Proxy deployment. With this it is easily possible to calculate predicted address. function proxyCreationCode() public pure returns (bytes memory) { return type(GnosisSafeProxy).creationCode; } /// @dev Allows to create new proxy contact using CREATE2 but it doesn't run the initializer. /// This method is only meant as an utility to be called from other methods /// @param _singleton Address of singleton contract. /// @param initializer Payload for message call sent to new proxy contract. /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract. function deployProxyWithNonce( address _singleton, bytes memory initializer, uint256 saltNonce ) internal returns (GnosisSafeProxy proxy) { // If the initializer changes the proxy address should change too. Hashing the initializer data is cheaper than just concatinating it bytes32 salt = keccak256(abi.encodePacked(keccak256(initializer), saltNonce)); bytes memory deploymentData = abi.encodePacked(type(GnosisSafeProxy).creationCode, uint256(uint160(_singleton))); // solhint-disable-next-line no-inline-assembly assembly { proxy := create2(0x0, add(0x20, deploymentData), mload(deploymentData), salt) } require(address(proxy) != address(0), "Create2 call failed"); } /// @dev Allows to create new proxy contact and execute a message call to the new proxy within one transaction. /// @param _singleton Address of singleton contract. /// @param initializer Payload for message call sent to new proxy contract. /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract. function createProxyWithNonce( address _singleton, bytes memory initializer, uint256 saltNonce ) public returns (GnosisSafeProxy proxy) { proxy = deployProxyWithNonce(_singleton, initializer, saltNonce); if (initializer.length > 0) // solhint-disable-next-line no-inline-assembly assembly { if eq(call(gas(), proxy, 0, add(initializer, 0x20), mload(initializer), 0, 0), 0) { revert(0, 0) } } emit ProxyCreation(proxy, _singleton); } /// @dev Allows to create new proxy contact, execute a message call to the new proxy and call a specified callback within one transaction /// @param _singleton Address of singleton contract. /// @param initializer Payload for message call sent to new proxy contract. /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract. /// @param callback Callback that will be invoced after the new proxy contract has been successfully deployed and initialized. function createProxyWithCallback( address _singleton, bytes memory initializer, uint256 saltNonce, IProxyCreationCallback callback ) public returns (GnosisSafeProxy proxy) { uint256 saltNonceWithCallback = uint256(keccak256(abi.encodePacked(saltNonce, callback))); proxy = createProxyWithNonce(_singleton, initializer, saltNonceWithCallback); if (address(callback) != address(0)) callback.proxyCreated(proxy, _singleton, initializer, saltNonce); } /// @dev Allows to get the address for a new proxy contact created via `createProxyWithNonce` /// This method is only meant for address calculation purpose when you use an initializer that would revert, /// therefore the response is returned with a revert. When calling this method set `from` to the address of the proxy factory. /// @param _singleton Address of singleton contract. /// @param initializer Payload for message call sent to new proxy contract. /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract. function calculateCreateProxyWithNonceAddress( address _singleton, bytes calldata initializer, uint256 saltNonce ) external returns (GnosisSafeProxy proxy) { proxy = deployProxyWithNonce(_singleton, initializer, saltNonce); revert(string(abi.encodePacked(proxy))); } } interface IProxyCreationCallback { function proxyCreated( GnosisSafeProxy proxy, address _singleton, bytes calldata initializer, uint256 saltNonce ) external; }