ETH Price: $2,440.28 (-1.48%)

Transaction Decoder

Block:
19314047 at Feb-26-2024 08:14:11 PM +UTC
Transaction Fee:
0.00414559177942461 ETH $10.12
Gas Used:
64,010 Gas / 64.764752061 Gwei

Emitted Events:

541 BlocksquareToken.Transfer( _from=[Sender] 0x54e934ee6a2e7584b04321a15690e6b59dbce59d, _to=[Receiver] BSPTStakingProxy, _amount=1773266961137033100000 )
542 BSPTStakingProxy.0x619caafabdd75649b302ba8419e48cccf64f37f1983ac4727cfb38b57703ffc9( 0x619caafabdd75649b302ba8419e48cccf64f37f1983ac4727cfb38b57703ffc9, 0x00000000000000000000000054e934ee6a2e7584b04321a15690e6b59dbce59d, 0000000000000000000000000000000000000000000000602105c9fbad453ae0 )

Account State Difference:

  Address   Before After State Difference Code
0x509A38b7...9eC7c7F4a
0x54e934eE...59dBCe59d
0.827717467952635139 Eth
Nonce: 3522
0.823571876173210529 Eth
Nonce: 3523
0.00414559177942461
0x57ba8864...A22eCc73e
(Fee Recipient: 0xa2...91F)
7.391269236656193149 Eth7.391365251656193149 Eth0.000096015

Execution Trace

BSPTStakingProxy.74de4ec4( )
  • BSPTStaking.addReward( amount=1773266961137033100000 )
    • BlocksquareToken.transferFrom( _from=0x54e934eE6A2E7584b04321A15690e6b59dBCe59d, _to=0x57ba886442d248C2E7a3a5826F2b183A22eCc73e, _amount=1773266961137033100000 ) => ( _success=True )
      File 1 of 3: BSPTStakingProxy
      // Sources flattened with hardhat v2.8.0 https://hardhat.org
      
      // File @openzeppelin/contracts/proxy/[email protected]
      
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (proxy/Proxy.sol)
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       *
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       *
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
      
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
      
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
      
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 {
                      revert(0, returndatasize())
                  }
                  default {
                      return(0, returndatasize())
                  }
              }
          }
      
          /**
           * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
           * and {_fallback} should delegate.
           */
          function _implementation() internal view virtual returns (address);
      
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           *
           * This function does not return to its internall call site, it will return directly to the external caller.
           */
          function _fallback() internal virtual {
              _beforeFallback();
              _delegate(_implementation());
          }
      
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback() external payable virtual {
              _fallback();
          }
      
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
           * is empty.
           */
          receive() external payable virtual {
              _fallback();
          }
      
          /**
           * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
           * call, or as part of the Solidity `fallback` or `receive` functions.
           *
           * If overriden should call `super._beforeFallback()`.
           */
          function _beforeFallback() internal virtual {}
      }
      
      
      // File @openzeppelin/contracts/proxy/beacon/[email protected]
      
      
      // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {BeaconProxy} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      
      
      // File @openzeppelin/contracts/interfaces/[email protected]
      
      
      // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
       * proxy whose upgrades are fully controlled by the current implementation.
       */
      interface IERC1822Proxiable {
          /**
           * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
           * address.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy.
           */
          function proxiableUUID() external view returns (bytes32);
      }
      
      
      // File @openzeppelin/contracts/utils/[email protected]
      
      
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
      
      pragma solidity ^0.8.1;
      
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
      
              return account.code.length > 0;
          }
      
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
      
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
      
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
      
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
      
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(isContract(target), "Address: delegate call to non-contract");
      
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
      
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
      
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      
      
      // File @openzeppelin/contracts/utils/[email protected]
      
      
      // OpenZeppelin Contracts v4.4.1 (utils/StorageSlot.sol)
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
      
          struct BooleanSlot {
              bool value;
          }
      
          struct Bytes32Slot {
              bytes32 value;
          }
      
          struct Uint256Slot {
              uint256 value;
          }
      
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              assembly {
                  r.slot := slot
              }
          }
      
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              assembly {
                  r.slot := slot
              }
          }
      
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              assembly {
                  r.slot := slot
              }
          }
      
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              assembly {
                  r.slot := slot
              }
          }
      }
      
      
      // File @openzeppelin/contracts/proxy/ERC1967/[email protected]
      
      
      // OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)
      
      pragma solidity ^0.8.2;
      
      
      
      
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       *
       * _Available since v4.1._
       *
       * @custom:oz-upgrades-unsafe-allow delegatecall
       */
      abstract contract ERC1967Upgrade {
          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
      
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
      
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
      
          /**
           * @dev Returns the current implementation address.
           */
          function _getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
          }
      
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
              StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
          }
      
          /**
           * @dev Perform implementation upgrade
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
      
          /**
           * @dev Perform implementation upgrade with additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCall(
              address newImplementation,
              bytes memory data,
              bool forceCall
          ) internal {
              _upgradeTo(newImplementation);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(newImplementation, data);
              }
          }
      
          /**
           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCallUUPS(
              address newImplementation,
              bytes memory data,
              bool forceCall
          ) internal {
              // Upgrades from old implementations will perform a rollback test. This test requires the new
              // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
              // this special case will break upgrade paths from old UUPS implementation to new ones.
              if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                  _setImplementation(newImplementation);
              } else {
                  try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                      require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                  } catch {
                      revert("ERC1967Upgrade: new implementation is not UUPS");
                  }
                  _upgradeToAndCall(newImplementation, data, forceCall);
              }
          }
      
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
      
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
      
          /**
           * @dev Returns the current admin.
           */
          function _getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
          }
      
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
              StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
          }
      
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _changeAdmin(address newAdmin) internal {
              emit AdminChanged(_getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
      
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
           */
          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
      
          /**
           * @dev Emitted when the beacon is upgraded.
           */
          event BeaconUpgraded(address indexed beacon);
      
          /**
           * @dev Returns the current beacon.
           */
          function _getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
          }
      
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
              require(
                  Address.isContract(IBeacon(newBeacon).implementation()),
                  "ERC1967: beacon implementation is not a contract"
              );
              StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
          }
      
          /**
           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
           *
           * Emits a {BeaconUpgraded} event.
           */
          function _upgradeBeaconToAndCall(
              address newBeacon,
              bytes memory data,
              bool forceCall
          ) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              }
          }
      }
      
      
      // File @openzeppelin/contracts/proxy/ERC1967/[email protected]
      
      
      // OpenZeppelin Contracts v4.4.1 (proxy/ERC1967/ERC1967Proxy.sol)
      
      pragma solidity ^0.8.0;
      
      
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       */
      contract ERC1967Proxy is Proxy, ERC1967Upgrade {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
           *
           * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
           * function call, and allows initializating the storage of the proxy like a Solidity constructor.
           */
          constructor(address _logic, bytes memory _data) payable {
              assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
              _upgradeToAndCall(_logic, _data, false);
          }
      
          /**
           * @dev Returns the current implementation address.
           */
          function _implementation() internal view virtual override returns (address impl) {
              return ERC1967Upgrade._getImplementation();
          }
      }
      
      
      // File @openzeppelin/contracts/proxy/transparent/[email protected]
      
      
      // OpenZeppelin Contracts v4.4.1 (proxy/transparent/TransparentUpgradeableProxy.sol)
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev This contract implements a proxy that is upgradeable by an admin.
       *
       * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
       * clashing], which can potentially be used in an attack, this contract uses the
       * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
       * things that go hand in hand:
       *
       * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
       * that call matches one of the admin functions exposed by the proxy itself.
       * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
       * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
       * "admin cannot fallback to proxy target".
       *
       * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
       * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
       * to sudden errors when trying to call a function from the proxy implementation.
       *
       * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
       * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
       */
      contract TransparentUpgradeableProxy is ERC1967Proxy {
          /**
           * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
           * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
           */
          constructor(
              address _logic,
              address admin_,
              bytes memory _data
          ) payable ERC1967Proxy(_logic, _data) {
              assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
              _changeAdmin(admin_);
          }
      
          /**
           * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
           */
          modifier ifAdmin() {
              if (msg.sender == _getAdmin()) {
                  _;
              } else {
                  _fallback();
              }
          }
      
          /**
           * @dev Returns the current admin.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function admin() external ifAdmin returns (address admin_) {
              admin_ = _getAdmin();
          }
      
          /**
           * @dev Returns the current implementation.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
           */
          function implementation() external ifAdmin returns (address implementation_) {
              implementation_ = _implementation();
          }
      
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
           */
          function changeAdmin(address newAdmin) external virtual ifAdmin {
              _changeAdmin(newAdmin);
          }
      
          /**
           * @dev Upgrade the implementation of the proxy.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
           */
          function upgradeTo(address newImplementation) external ifAdmin {
              _upgradeToAndCall(newImplementation, bytes(""), false);
          }
      
          /**
           * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
           * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
           * proxied contract.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
           */
          function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
              _upgradeToAndCall(newImplementation, data, true);
          }
      
          /**
           * @dev Returns the current admin.
           */
          function _admin() internal view virtual returns (address) {
              return _getAdmin();
          }
      
          /**
           * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
           */
          function _beforeFallback() internal virtual override {
              require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
              super._beforeFallback();
          }
      }
      
      
      // File contracts/BSPTStakingProxy.sol
      
      /*
       * Copyright © 2022 Blocksquare d.o.o.
       */
      
      pragma solidity 0.8.14;
      
      /// @title Blocksquare Property Token Staking Proxy
      /// @author David Šenica
      contract BSPTStakingProxy is TransparentUpgradeableProxy {
          constructor(
              address logic,
              address admin,
              bytes memory data
          ) TransparentUpgradeableProxy(logic, admin, data) {}
      }

      File 2 of 3: BlocksquareToken
      pragma solidity ^0.4.18;
      
      /*********************/
      /* Blocksquare Token */
      /*********************/
      
      library SafeMath {
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
          assert(b <= a);
          return a - b;
        }
      
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
          uint256 c = a + b;
          assert(c >= a);
          return c;
        }
      }
      
      contract owned {
      
          address public owner;
      
          function owned() public{
              owner = msg.sender;
          }
      
          modifier onlyOwner {
              assert(msg.sender == owner);
              _;
          }
      
          function transferOwnership(address newOwner) public onlyOwner {
              owner = newOwner;
          }
      }
      
      /************************/
      /* STANDARD ERC20 TOKEN */
      /************************/
      
      contract ERC20Token {
      
          /** Functions needed to be implemented by ERC20 standard **/
          function totalSupply() public constant returns (uint256 _totalSupply);
          function balanceOf(address _owner) public constant returns (uint256 _balance);
          function transfer(address _to, uint256 _amount) public returns (bool _success);
          function transferFrom(address _from, address _to, uint256 _amount) public returns (bool _success);
          function approve(address _spender, uint256 _amount) public returns (bool _success);
          function allowance(address _owner, address _spender) public constant returns (uint256 _remaining);
      
          event Transfer(address indexed _from, address indexed _to, uint256 _amount);
          event Approval(address indexed _owner, address indexed _spender, uint256 _amount);
      }
      
      
      /************************************/
      /* BLOCKSQUARE TOKEN IMPLEMENTATION */
      /************************************/
      
      contract BlocksquareToken is ERC20Token, owned {
          using SafeMath for uint256;
      
          /* Public variables */
          string public name = "BlocksquareToken";
          string public symbol = "BST";
          uint8 public decimals = 18;
          bool public tokenFrozen;
      
          /* Private variables */
          uint256 supply;
          mapping (address => uint256) balances;
          mapping (address => mapping (address => uint256)) allowances;
          mapping (address => bool) allowedToMint;
      
          /* Events */
          event TokenFrozen(bool _frozen, string _reason);
          event Mint(address indexed _to, uint256 _value);
      
          /**
          * Constructor function
          *
          * Initializes contract.
          **/
          function BlocksquareToken() public {
              tokenFrozen = true;
          }
      
          /**
          * Internal transfer function.
          **/
          function _transfer(address _from, address _to, uint256 _amount) private {
              require(_to != 0x0);
              require(_to != address(this));
              require(balances[_from] >= _amount);
              balances[_to] = balances[_to].add(_amount);
              balances[_from] = balances[_from].sub(_amount);
              Transfer(_from, _to, _amount);
          }
      
          /**
          * Transfer token
          *
          * Send '_amount' tokens to '_to' from your address.
          *
          * @param _to Address of recipient.
          * @param _amount Amount to send.
          * @return Whether the transfer was successful or not.
          **/
          function transfer(address _to, uint256 _amount) public returns (bool _success) {
              require(!tokenFrozen);
              _transfer(msg.sender, _to, _amount);
              return true;
          }
      
          /**
          * Set allowance
          *
          * Allows '_spender' to spend '_amount' tokens from your address
          *
          * @param _spender Address of spender.
          * @param _amount Max amount allowed to spend.
          * @return Whether the approve was successful or not.
          **/
          function approve(address _spender, uint256 _amount) public returns (bool _success) {
              allowances[msg.sender][_spender] = _amount;
              Approval(msg.sender, _spender, _amount);
              return true;
          }
      
          /**
          *Transfer token from
          *
          * Send '_amount' token from address '_from' to address '_to'
          *
          * @param _from Address of sender.
          * @param _to Address of recipient.
          * @param _amount Amount of token to send.
          * @return Whether the transfer was successful or not.
          **/
          function transferFrom(address _from, address _to, uint256 _amount) public returns (bool _success) {
              require(_amount <= allowances[_from][msg.sender]);
              require(!tokenFrozen);
              _transfer(_from, _to, _amount);
              allowances[_from][msg.sender] = allowances[_from][msg.sender].sub(_amount);
              return true;
          }
      
          /**
          * Mint Tokens
          *
          * Adds _amount of tokens to _atAddress
          *
          * @param _atAddress Adds tokens to address
          * @param _amount Amount of tokens to add
          **/
          function mintTokens(address _atAddress, uint256 _amount) public {
              require(allowedToMint[msg.sender]);
              require(balances[_atAddress].add(_amount) > balances[_atAddress]);
              require((supply.add(_amount)) <= 100000000 * 10**18);
              supply = supply.add(_amount);
              balances[_atAddress] = balances[_atAddress].add(_amount);
              Mint(_atAddress, _amount);
              Transfer(0x0, _atAddress, _amount);
          }
      
          /**
          * Change freeze
          *
          * Changes status of frozen because of '_reason'
          *
          * @param _reason Reason for freezing or unfreezing token
          **/
          function changeFreezeTransaction(string _reason) public onlyOwner {
              tokenFrozen = !tokenFrozen;
              TokenFrozen(tokenFrozen, _reason);
          }
      
          /**
          * Change mint address
          *
          *  Changes the address to mint
          *
          * @param _addressToMint Address of new minter
          **/
          function changeAllowanceToMint(address _addressToMint) public onlyOwner {
              allowedToMint[_addressToMint] = !allowedToMint[_addressToMint];
          }
      
          /**
          * Get allowance
          *
          * @return Return amount allowed to spend from '_owner' by '_spender'
          **/
          function allowance(address _owner, address _spender) public constant returns (uint256 _remaining) {
              return allowances[_owner][_spender];
          }
      
          /**
          * Total amount of token
          *
          * @return Total amount of token
          **/
          function totalSupply() public constant returns (uint256 _totalSupply) {
              return supply;
          }
      
          /**
          * Balance of address
          *
          * Check balance of '_owner'
          *
          * @param _owner Address
          * @return Amount of token in possession
          **/
          function balanceOf(address _owner) public constant returns (uint256 _balance) {
              return balances[_owner];
          }
      
          /**
          * Address allowed to mint
          *
          * Checks if '_address' is allowed to mint
          *
          * @param _address Address
          * @return Allowance to mint
          **/
          function isAllowedToMint(address _address) public constant returns (bool _allowed) {
              return allowedToMint[_address];
          }
      
          /** Revert if someone sends ether to this contract **/
          function () public {
              revert();
          }
      
          /**
          * This part is here only for testing and will not be included into final version
          **/
          /**
          function killContract() onlyOwner{
          selfdestruct(msg.sender);
          }
          **/
      }

      File 3 of 3: BSPTStaking
      /*
       * SPDX-License-Identifier: UNLICENSED
       * Copyright © 2022 Blocksquare d.o.o.
       */
      pragma solidity 0.8.14;
      import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
      import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
      /// @notice A collection of helper functions
      interface BSPTStakingHelpers {
          function mint(address to, uint256 amount) external;
          function owner() external view returns (address);
          function getPropertyValuation(address property)
              external
              view
              returns (uint256);
          function getCPOfProperty(address prop) external view returns (address);
          function sellBSPT(
              address property,
              address user,
              uint256 stakedBSPT
          ) external returns (bool);
          function addVestingInfo(
              address property,
              address user,
              uint256 amount
          ) external returns (bool);
      }
      /// @title Blocksquare Property Token Staking
      /// @author David Šenica
      /// @notice Allows to stake different BSPT
      contract BSPTStaking is OwnableUpgradeable, ERC20Upgradeable, ReentrancyGuard {
          string private constant _NAME = "sBlocksquarePropertyToken";
          string private constant _SYMBOL = "sBSPT";
          uint256 private constant _EIGHTEEN_DECIMALS = 10**18;
          uint256 private constant _BSPT_TOTAL_SUPPLY = _EIGHTEEN_DECIMALS * 100_000;
          uint256 private _lockPeriod;
          uint256 private _fee;
          uint256 private _tbsptBalanceThis;
          uint256 private _totalValuation;
          address private _oceanPoint;
          address private _propertyRegistry;
          address private _dataProxy;
          address private _rewardVesting;
          IERC20 private _rewardToken;
          mapping(address => mapping(address => uint256)) private _lockedUntil;
          mapping(address => mapping(address => uint256)) private _bsptStaked;
          mapping(address => mapping(address => uint256)) private _tBSPT;
          mapping(address => mapping(address => uint256)) private _sBSPT;
          /// @notice Event triggers every time a deposit is made
          /// @param owner Address of user wallet
          /// @param property BSPT address
          /// @param inAmount Amount of BSPT staked
          /// @param outAmount Amount of staked BSPT returned (your share in the pool)
          /// @param lockedUntil Timestamp when withdrawal can be made
          event Deposit(
              address indexed owner,
              address property,
              uint256 inAmount,
              uint256 outAmount,
              uint256 lockedUntil
          );
          /// @notice Event triggers every time a withdrawal is made
          /// @param owner Address of user wallet
          /// @param property BSPT address
          /// @param inAmount Amount of staked BSPT
          /// @param outAmount Amount of BSPT returned
          /// @param rewardToUser Amount of BST user got as reward
          /// @param rewardToFeeReciever Amount of BST received by certified partner as fee
          /// @param isWithdraw Whether user withdrew BSPT or sold them to oceanpoint contract
          event Withdraw(
              address indexed owner,
              address property,
              uint256 inAmount,
              uint256 outAmount,
              uint256 rewardToUser,
              uint256 rewardToFeeReciever,
              bool isWithdraw
          );
          /// @notice Event triggers every time a reward is added
          /// @param from Address of user who added reward
          /// @param amount Amount of BST added as reward
          event Reward(address indexed from, uint256 amount);
          /// @dev Initialize contract params with `initialize` function behind a proxy
          constructor() initializer {
              // Only interact with this contract through proxy
          }
          /// @notice Initialize contract. Can only be called once
          /// @param rewardToken Address of reward token (BST token)
          /// @param propertyRegistry Address of smart contract where properties that can be staked are stored
          /// @param dataProxy Address of smart contract where information about certified partner is held
          /// @param owner Address of owner of this contract
          function initialize(
              address rewardToken,
              address propertyRegistry,
              address dataProxy,
              address owner
          ) external initializer {
              require(
                  rewardToken != address(0) &&
                      propertyRegistry != address(0) &&
                      dataProxy != address(0) &&
                      owner != address(0),
                  "BSPTStaking: Address iz zero"
              );
              _rewardToken = IERC20(rewardToken);
              _transferOwnership(owner);
              __ERC20_init(_NAME, _SYMBOL);
              changePropertyRegistry(propertyRegistry);
              changeDataProxy(dataProxy);
              changeLockPeriod(60 * 60 * 24 * 30 * 6);
              changeRewardFee(1000);
              // 10 %
          }
          /// @notice Calculates sBSPT based on different BSPT already in contract and reward
          /// @dev Each BSPT has different weight based on its evaluation,
          ///      meaning different BSPT (when depositing same amount of BSPT) will yield different amount of sBSPT
          ///      Each BSPT is fixed at 100000 supply
          /// @param property Address of property token
          /// @param user Address of user, making deposit
          /// @param amount Amount of property tokens being deposited
          /// @param propertyValuation Evaluation of property
          /// @return amountsbsptToMint Amount of sBSPT depositor should receive
          function _updateBeforeStakeStart(
              address property,
              address user,
              uint256 amount,
              uint256 propertyValuation
          ) private returns (uint256 amountsbsptToMint) {
              _lockedUntil[property][user] = block.timestamp + _lockPeriod;
              uint256 tempBSPTAmount = (amount * propertyValuation) /
                  _BSPT_TOTAL_SUPPLY;
              uint256 tempBSPTBalance = _tbsptBalanceThis;
              uint256 sbsptSupply = totalSupply();
              amountsbsptToMint = (sbsptSupply == 0 || tempBSPTBalance == 0)
                  ? tempBSPTAmount
                  : (tempBSPTAmount * sbsptSupply) / tempBSPTBalance;
              _bsptStaked[property][user] += amount;
              _tbsptBalanceThis += tempBSPTAmount;
              _totalValuation += tempBSPTAmount;
              _tBSPT[property][user] += tempBSPTAmount;
              _sBSPT[property][user] += amountsbsptToMint;
              emit Deposit(
                  user,
                  property,
                  amount,
                  amountsbsptToMint,
                  _lockedUntil[property][user]
              );
          }
          /// @notice Calculates reward and BSPT user should get
          /// @param property Address of property
          /// @param user Address of user
          /// @return reward Amount of reward
          /// @return share Amount of sBSPT user should get
          function _updateAtStakeEnd(address property, address user)
              private
              returns (uint256 reward, uint256 share)
          {
              uint256 tempBSPTBalance = _tbsptBalanceThis;
              uint256 sbsptSupply = totalSupply();
              share = _sBSPT[property][user];
              _sBSPT[property][user] = 0;
              uint256 tempBSPTToReturn = ((share * tempBSPTBalance * 1000) /
                  (sbsptSupply * 100000)) * 100;
              // This fixes some small rounding errors
              _burn(user, share);
              if(tempBSPTToReturn > _tBSPT[property][user]) {
                  reward = tempBSPTToReturn - _tBSPT[property][user];
              } else {
                  reward = 0;
              }
              _tBSPT[property][user] = 0;
              _tbsptBalanceThis -= tempBSPTToReturn;
              _totalValuation -= (tempBSPTToReturn - reward);
          }
          /// @notice Deposit BSPT for staking
          /// @dev Only one combination wallet-property can be staked, this means that
          ///      stake amount cannot increase for that combination and withdrawal needs to be done before depositing again
          ///      There is a fee on transferring BSPT so the `amount` deposited is bigger then the staking amount
          /// @param property Address of property
          /// @param amount Amount of BSPT to stake
          function deposit(address property, uint256 amount) external nonReentrant {
              require(
                  _bsptStaked[property][_msgSender()] == 0,
                  "BSPTStaking: You need to transfer staked BSPT"
              );
              // This should ensure only BSPT in our system can be used for staking
              uint256 propertyValuation = BSPTStakingHelpers(_propertyRegistry)
                  .getPropertyValuation(property);
              require(
                  propertyValuation > 0 && propertyValuation / _EIGHTEEN_DECIMALS > 0,
                  "BSPTStaking: Invalid valuation"
              );
              // If normal user transfers then the 1.5% fee on BSPT applies
              // meaning less then amount of BSPT comes into this contract
              uint256 balanceBeforeTransfer = IERC20(property).balanceOf(
                  address(this)
              );
              require(
                  IERC20(property).transferFrom(_msgSender(), address(this), amount),
                  "BSPTStaking: Couldn't transfer BSPT"
              );
              uint256 balanceAfterTransfer = IERC20(property).balanceOf(
                  address(this)
              );
              uint256 amountToMint = _updateBeforeStakeStart(
                  property,
                  _msgSender(),
                  balanceAfterTransfer - balanceBeforeTransfer,
                  propertyValuation
              );
              _mint(_msgSender(), amountToMint);
          }
          /// @notice Called when withdrawing BSPT or selling them to oceanpoint
          /// @dev Handles withdraw and selling to oceanpoint in one function
          /// @param property Address of property
          /// @param user Address user
          /// @param isWithdraw True if user is withdrawing and false if user is selling to oceanpoint
          /// @return stakedBSPT Amount of staked BSPT that should be returned or sold
          function _withdraw(
              address property,
              address user,
              bool isWithdraw
          ) private returns (uint256 stakedBSPT) {
              require(
                  _lockedUntil[property][_msgSender()] < block.timestamp,
                  "BSPTStaking: You need to wait for time lock to expire."
              );
              require(
                  _sBSPT[property][user] > 0,
                  "BSPTStaking: You need to stake BSPT for this property."
              );
              (uint256 reward, uint256 share) = _updateAtStakeEnd(
                  property,
                  _msgSender()
              );
              uint256 feeReward = (reward * _fee) / 10000;
              reward -= feeReward;
              if (_rewardVesting != address(0)) {
                  require(
                      _rewardToken.approve(_rewardVesting, reward),
                      "BSPTStaking: Couldn't approve for vesting"
                  );
                  require(
                      BSPTStakingHelpers(_rewardVesting).addVestingInfo(
                          property,
                          user,
                          reward
                      ),
                      "BSPTStaking: Couldn't add vesting"
                  );
              } else {
                  require(
                      _rewardToken.transfer(user, reward),
                      "BSPTStaking: Couldn't transfer reward"
                  );
              }
              require(
                  _rewardToken.transfer(
                      BSPTStakingHelpers(_dataProxy).getCPOfProperty(property),
                      feeReward
                  ),
                  "BSPTStaking: Couldn't transfer fee reward"
              );
              stakedBSPT = _bsptStaked[property][_msgSender()];
              _bsptStaked[property][_msgSender()] = 0;
              emit Withdraw(
                  _msgSender(),
                  property,
                  share,
                  stakedBSPT,
                  reward,
                  feeReward,
                  isWithdraw
              );
          }
          /// @notice It withdraws all BSPT for given property
          /// @param property Address of property
          function withdraw(address property) external nonReentrant {
              uint256 stakedBSPT = _withdraw(property, _msgSender(), true);
              require(
                  IERC20(property).transfer(_msgSender(), stakedBSPT),
                  "BSPTStaking: Couldn't transfer BSPT on withdrawal"
              );
          }
          /// @notice It sells all BSPT for given property to oceanpoint contract
          /// @param property Address of property
          function sellBSPTToOceanPoint(address property) external nonReentrant {
              uint256 stakedBSPT = _withdraw(property, _msgSender(), false);
              address user = _msgSender();
              require(
                  IERC20(property).approve(_oceanPoint, stakedBSPT),
                  "BSPTStaking: Couldn't approve oceanpoint"
              );
              require(
                  BSPTStakingHelpers(_oceanPoint).sellBSPT(
                      property,
                      user,
                      stakedBSPT
                  ),
                  "BSPTStaking: Couldn't sell to oceanpoint"
              );
          }
          /// @notice Adds `amount` reward
          /// @param amount Amount of reward
          function addReward(uint256 amount) external nonReentrant {
              require(
                  _rewardToken.transferFrom(_msgSender(), address(this), amount),
                  "BSPTStaking: Couldn't add reward"
              );
              _tbsptBalanceThis += amount;
              emit Reward(_msgSender(), amount);
          }
          // @dev Don't allow the transfer of sBSPT (sBPST token is only used for tracking share)
          function _transfer(
              address from,
              address to,
              uint256 amount
          ) internal override {
              revert("sBSPT is non transferable");
          }
          /// @notice Change the duration before user can withdraw deposited tokens
          /// @param newPeriod Duration in seconds
          function changeLockPeriod(uint256 newPeriod) public onlyOwner {
              _lockPeriod = newPeriod;
          }
          /// @notice Change percentage of reward that goes to certified partner.
          /// @param newFee New percent, it need additional two zeros (for 10 percent value should be 1000)
          function changeRewardFee(uint256 newFee) public onlyOwner {
              _fee = newFee;
          }
          /// @notice Change oceanpoint contract address
          /// @param newOceanPoint New oceanpoint contract address
          function changeOceanPointContract(address newOceanPoint)
              external
              onlyOwner
          {
              _oceanPoint = newOceanPoint;
          }
          /// @notice Change address of data proxy contract
          /// @param newDataProxy Address of new data proxy
          function changeDataProxy(address newDataProxy) public onlyOwner {
              _dataProxy = newDataProxy;
          }
          /// @notice Change address of property registry contract
          /// @param newPropertyRegistry address of new property registry
          function changePropertyRegistry(address newPropertyRegistry)
              public
              onlyOwner
          {
              _propertyRegistry = newPropertyRegistry;
          }
          /// @notice Change vesting contract address
          /// @param newVestingReward New vesting contract address
          function changeVestingRewardContract(address newVestingReward)
              external
              onlyOwner
          {
              _rewardVesting = newVestingReward;
          }
          /// @notice Get current fee
          /// @return Fee amount
          function getRewardFee() external view returns (uint256) {
              return _fee;
          }
          /// @notice Get current lock duration
          /// @return Duration in seconds
          function getLockPeriod() external view returns (uint256) {
              return _lockPeriod;
          }
          /// @notice Get amount of BSPT staked for `user`
          /// @param property Address of property
          /// @param user Address of user wallet
          /// @return Amount of BSPT staked
          function getBSPTStaked(address property, address user)
              external
              view
              returns (uint256)
          {
              return _bsptStaked[property][user];
          }
          /// @notice Get amount of sBSPT for `property` `user` combination
          /// @param property Address of property
          /// @param user Address of user wallet
          /// @return Amount of sBSPT
          function getsBSPTWalletProperty(address property, address user)
              external
              view
              returns (uint256)
          {
              return _sBSPT[property][user];
          }
          /// @notice Get oceanpoint contract address
          /// @return Oceanpoint address
          function getOceanPointContract() external view returns (address) {
              return _oceanPoint;
          }
          /// @notice Get vesting contract address
          /// @return Vesting address
          function getVestingRewardContract() external view returns (address) {
              return _rewardVesting;
          }
          /// @notice Get total evaluation of BSPTs in this contract
          /// @return Total evaluation
          function getTotalValuation() external view returns (uint256) {
              return _totalValuation;
          }
          /// @notice Get reward for wallet and given property
          /// @param wallet Address of user wallet
          /// @param property Address of property
          /// @param withoutFee If we should return reward without the fee subtraction
          /// @return reward Amount of reward wallet will receive for given property
          function getUnclaimedReward(
              address wallet,
              address property,
              bool withoutFee
          ) external view returns (uint256 reward) {
              uint256 tempBSPTToReturn = ((_sBSPT[property][wallet] *
                  _tbsptBalanceThis *
                  1000) / (totalSupply() * 100000)) * 100;
              if(tempBSPTToReturn > _tBSPT[property][wallet]) {
                  reward = tempBSPTToReturn - _tBSPT[property][wallet];
              } else {
                  reward = 0;
              }
              if (withoutFee) {
                  uint256 feeReward = (reward * _fee) / 10000;
                  reward -= feeReward;
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
      pragma solidity ^0.8.0;
      import "./IERC20Upgradeable.sol";
      import "./extensions/IERC20MetadataUpgradeable.sol";
      import "../../utils/ContextUpgradeable.sol";
      import "../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20PresetMinterPauser}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin Contracts guidelines: functions revert
       * instead returning `false` on failure. This behavior is nonetheless
       * conventional and does not conflict with the expectations of ERC20
       * applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
          mapping(address => uint256) private _balances;
          mapping(address => mapping(address => uint256)) private _allowances;
          uint256 private _totalSupply;
          string private _name;
          string private _symbol;
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * The default value of {decimals} is 18. To select a different value for
           * {decimals} you should overload it.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
              __ERC20_init_unchained(name_, symbol_);
          }
          function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual override returns (string memory) {
              return _name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual override returns (string memory) {
              return _symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the value {ERC20} uses, unless this function is
           * overridden;
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual override returns (uint8) {
              return 18;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              return _totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual override returns (uint256) {
              return _balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address to, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _transfer(owner, to, amount);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
           * `transferFrom`. This is semantically equivalent to an infinite approval.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, amount);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * NOTE: Does not update the allowance if the current allowance
           * is the maximum `uint256`.
           *
           * Requirements:
           *
           * - `from` and `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           * - the caller must have allowance for ``from``'s tokens of at least
           * `amount`.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) public virtual override returns (bool) {
              address spender = _msgSender();
              _spendAllowance(from, spender, amount);
              _transfer(from, to, amount);
              return true;
          }
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, allowance(owner, spender) + addedValue);
              return true;
          }
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
              address owner = _msgSender();
              uint256 currentAllowance = allowance(owner, spender);
              require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
              unchecked {
                  _approve(owner, spender, currentAllowance - subtractedValue);
              }
              return true;
          }
          /**
           * @dev Moves `amount` of tokens from `from` to `to`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           */
          function _transfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {
              require(from != address(0), "ERC20: transfer from the zero address");
              require(to != address(0), "ERC20: transfer to the zero address");
              _beforeTokenTransfer(from, to, amount);
              uint256 fromBalance = _balances[from];
              require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
              unchecked {
                  _balances[from] = fromBalance - amount;
                  // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                  // decrementing then incrementing.
                  _balances[to] += amount;
              }
              emit Transfer(from, to, amount);
              _afterTokenTransfer(from, to, amount);
          }
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
              _beforeTokenTransfer(address(0), account, amount);
              _totalSupply += amount;
              unchecked {
                  // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                  _balances[account] += amount;
              }
              emit Transfer(address(0), account, amount);
              _afterTokenTransfer(address(0), account, amount);
          }
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
              _beforeTokenTransfer(account, address(0), amount);
              uint256 accountBalance = _balances[account];
              require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
              unchecked {
                  _balances[account] = accountBalance - amount;
                  // Overflow not possible: amount <= accountBalance <= totalSupply.
                  _totalSupply -= amount;
              }
              emit Transfer(account, address(0), amount);
              _afterTokenTransfer(account, address(0), amount);
          }
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
          /**
           * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
           *
           * Does not update the allowance amount in case of infinite allowance.
           * Revert if not enough allowance is available.
           *
           * Might emit an {Approval} event.
           */
          function _spendAllowance(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance != type(uint256).max) {
                  require(currentAllowance >= amount, "ERC20: insufficient allowance");
                  unchecked {
                      _approve(owner, spender, currentAllowance - amount);
                  }
              }
          }
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
          /**
           * @dev Hook that is called after any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * has been transferred to `to`.
           * - when `from` is zero, `amount` tokens have been minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _afterTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[45] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/ContextUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          function __Ownable_init() internal onlyInitializing {
              __Ownable_init_unchained();
          }
          function __Ownable_init_unchained() internal onlyInitializing {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Contract module that helps prevent reentrant calls to a function.
       *
       * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
       * available, which can be applied to functions to make sure there are no nested
       * (reentrant) calls to them.
       *
       * Note that because there is a single `nonReentrant` guard, functions marked as
       * `nonReentrant` may not call one another. This can be worked around by making
       * those functions `private`, and then adding `external` `nonReentrant` entry
       * points to them.
       *
       * TIP: If you would like to learn more about reentrancy and alternative ways
       * to protect against it, check out our blog post
       * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
       */
      abstract contract ReentrancyGuard {
          // Booleans are more expensive than uint256 or any type that takes up a full
          // word because each write operation emits an extra SLOAD to first read the
          // slot's contents, replace the bits taken up by the boolean, and then write
          // back. This is the compiler's defense against contract upgrades and
          // pointer aliasing, and it cannot be disabled.
          // The values being non-zero value makes deployment a bit more expensive,
          // but in exchange the refund on every call to nonReentrant will be lower in
          // amount. Since refunds are capped to a percentage of the total
          // transaction's gas, it is best to keep them low in cases like this one, to
          // increase the likelihood of the full refund coming into effect.
          uint256 private constant _NOT_ENTERED = 1;
          uint256 private constant _ENTERED = 2;
          uint256 private _status;
          constructor() {
              _status = _NOT_ENTERED;
          }
          /**
           * @dev Prevents a contract from calling itself, directly or indirectly.
           * Calling a `nonReentrant` function from another `nonReentrant`
           * function is not supported. It is possible to prevent this from happening
           * by making the `nonReentrant` function external, and making it call a
           * `private` function that does the actual work.
           */
          modifier nonReentrant() {
              _nonReentrantBefore();
              _;
              _nonReentrantAfter();
          }
          function _nonReentrantBefore() private {
              // On the first call to nonReentrant, _status will be _NOT_ENTERED
              require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
              // Any calls to nonReentrant after this point will fail
              _status = _ENTERED;
          }
          function _nonReentrantAfter() private {
              // By storing the original value once again, a refund is triggered (see
              // https://eips.ethereum.org/EIPS/eip-2200)
              _status = _NOT_ENTERED;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20Upgradeable {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
      pragma solidity ^0.8.0;
      import "../IERC20Upgradeable.sol";
      /**
       * @dev Interface for the optional metadata functions from the ERC20 standard.
       *
       * _Available since v4.1._
       */
      interface IERC20MetadataUpgradeable is IERC20Upgradeable {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/AddressUpgradeable.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts.
           *
           * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
           * constructor.
           *
           * Emits an {Initialized} event.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * A reinitializer may be used after the original initialization step. This is essential to configure modules that
           * are added through upgrades and that require initialization.
           *
           * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
           * cannot be nested. If one is invoked in the context of another, execution will revert.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           *
           * WARNING: setting the version to 255 will prevent any future reinitialization.
           *
           * Emits an {Initialized} event.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           *
           * Emits an {Initialized} event the first time it is successfully executed.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized < type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
          /**
           * @dev Returns the highest version that has been initialized. See {reinitializer}.
           */
          function _getInitializedVersion() internal view returns (uint8) {
              return _initialized;
          }
          /**
           * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
           */
          function _isInitializing() internal view returns (bool) {
              return _initializing;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library AddressUpgradeable {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }