ETH Price: $3,989.00 (-2.83%)

Transaction Decoder

Block:
23576029 at Oct-14-2025 12:45:23 PM +UTC
Transaction Fee:
0.000073081231443015 ETH $0.29
Gas Used:
155,033 Gas / 0.471391455 Gwei

Emitted Events:

576 CurveStableSwapNG.Transfer( sender=[Sender] 0x488c8e0213051dc78155048e947257742d928bdf, receiver=0x0000000000000000000000000000000000000000, value=10000000000000000000000 )
577 TransparentUpgradeableProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x00000000000000000000000098e9599dab3a936c35de48e13e026ef4ea20b5e6, 0x000000000000000000000000488c8e0213051dc78155048e947257742d928bdf, 00000000000000000000000000000000000000000000021f24d4ae58fce8ce7c )
578 CurveStableSwapNG.RemoveLiquidityOne( provider=[Sender] 0x488c8e0213051dc78155048e947257742d928bdf, token_id=1, token_amount=10000000000000000000000, coin_amount=10019235969801938062972, token_supply=3669425605168484252369474 )

Account State Difference:

  Address   Before After State Difference Code
0x488c8E02...42d928BDf
0.006853392465517704 Eth
Nonce: 879
0.006780311234074689 Eth
Nonce: 880
0.000073081231443015
0x98E9599d...4eA20B5e6
(BuilderNet)
359.856631375621544037 Eth359.856631395310735037 Eth0.000000019689191
0xFa2B947e...f7c24CeC2

Execution Trace

CurveStableSwapNG.remove_liquidity_one_coin( _burn_amount=10000000000000000000000, i=1, _min_received=10016230199010997481553 ) => ( 10019235969801938062972 )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • Null: 0x000...004.00000000( )
  • TransparentUpgradeableProxy.a9059cbb( )
    • USDf.transfer( to=0x488c8E0213051DC78155048E947257742d928BDf, value=10019235969801938062972 ) => ( True )
    • Null: 0x000...004.00000000( )
    • Null: 0x000...004.00000000( )
    • Null: 0x000...004.00000000( )
    • Null: 0x000...004.00000000( )
    • Null: 0x000...004.00000000( )
    • Null: 0x000...004.00000000( )
    • Null: 0x000...004.00000000( )
    • Null: 0x000...004.00000000( )
      File 1 of 3: CurveStableSwapNG
      # pragma version 0.3.10
      # pragma optimize codesize
      # pragma evm-version shanghai
      """
      @title CurveStableSwapNG
      @author Curve.Fi
      @license Copyright (c) Curve.Fi, 2020-2023 - all rights reserved
      @notice Stableswap implementation for up to 8 coins with no rehypothecation,
              i.e. the AMM does not deposit tokens into other contracts. The Pool contract also
              records exponential moving averages for coins relative to coin 0.
      @dev Asset Types:
              0. Standard ERC20 token with no additional features.
                                Note: Users are advised to do careful due-diligence on
                                      ERC20 tokens that they interact with, as this
                                      contract cannot differentiate between harmless and
                                      malicious ERC20 tokens.
              1. Oracle - token with rate oracle (e.g. wstETH)
                          Note: Oracles may be controlled externally by an EOA. Users
                                are advised to proceed with caution.
              2. Rebasing - token with rebase (e.g. stETH).
                            Note: Users and Integrators are advised to understand how
                                  the AMM contract works with rebasing balances.
              3. ERC4626 - token with convertToAssets method (e.g. sDAI).
                           Note: Some ERC4626 implementations may be susceptible to
                                 Donation/Inflation attacks. Users are advised to
                                 proceed with caution.
              NOTE: Pool Cannot support tokens with multiple asset types: e.g. ERC4626
                    with fees are not supported.
           Supports:
              1. ERC20 support for return True/revert, return True/False, return None
              2. ERC20 tokens can have arbitrary decimals (<=18).
              3. ERC20 tokens that rebase (either positive or fee on transfer)
              4. ERC20 tokens that have a rate oracle (e.g. wstETH, cbETH, sDAI, etc.)
                 Note: Oracle precision _must_ be 10**18.
              5. ERC4626 tokens with arbitrary precision (<=18) of Vault token and underlying
                 asset.
           Additional features include:
              1. Adds price oracles based on AMM State Price (and _not_ last traded price).
              2. Adds TVL oracle based on D.
              3. `exchange_received`: swaps that expect an ERC20 transfer to have occurred
                 prior to executing the swap.
                 Note: a. If pool contains rebasing tokens and one of the `asset_types` is 2 (Rebasing)
                          then calling `exchange_received` will REVERT.
                       b. If pool contains rebasing token and `asset_types` does not contain 2 (Rebasing)
                          then this is an incorrect implementation and rebases can be
                          stolen.
              4. Adds `get_dx`: Similar to `get_dy` which returns an expected output
                 of coin[j] for given `dx` amount of coin[i], `get_dx` returns expected
                 input of coin[i] for an output amount of coin[j].
              5. Fees are dynamic: AMM will charge a higher fee if pool depegs. This can cause very
                                   slight discrepancies between calculated fees and realised fees.
      """
      
      from vyper.interfaces import ERC20
      from vyper.interfaces import ERC20Detailed
      from vyper.interfaces import ERC4626
      
      implements: ERC20
      
      # ------------------------------- Interfaces ---------------------------------
      
      interface Factory:
          def fee_receiver() -> address: view
          def admin() -> address: view
          def views_implementation() -> address: view
      
      interface ERC1271:
          def isValidSignature(_hash: bytes32, _signature: Bytes[65]) -> bytes32: view
      
      interface StableSwapViews:
          def get_dx(i: int128, j: int128, dy: uint256, pool: address) -> uint256: view
          def get_dy(i: int128, j: int128, dx: uint256, pool: address) -> uint256: view
          def dynamic_fee(i: int128, j: int128, pool: address) -> uint256: view
          def calc_token_amount(
              _amounts: DynArray[uint256, MAX_COINS],
              _is_deposit: bool,
              _pool: address
          ) -> uint256: view
      
      # --------------------------------- Events -----------------------------------
      
      event Transfer:
          sender: indexed(address)
          receiver: indexed(address)
          value: uint256
      
      event Approval:
          owner: indexed(address)
          spender: indexed(address)
          value: uint256
      
      event TokenExchange:
          buyer: indexed(address)
          sold_id: int128
          tokens_sold: uint256
          bought_id: int128
          tokens_bought: uint256
      
      event TokenExchangeUnderlying:
          buyer: indexed(address)
          sold_id: int128
          tokens_sold: uint256
          bought_id: int128
          tokens_bought: uint256
      
      event AddLiquidity:
          provider: indexed(address)
          token_amounts: DynArray[uint256, MAX_COINS]
          fees: DynArray[uint256, MAX_COINS]
          invariant: uint256
          token_supply: uint256
      
      event RemoveLiquidity:
          provider: indexed(address)
          token_amounts: DynArray[uint256, MAX_COINS]
          fees: DynArray[uint256, MAX_COINS]
          token_supply: uint256
      
      event RemoveLiquidityOne:
          provider: indexed(address)
          token_id: int128
          token_amount: uint256
          coin_amount: uint256
          token_supply: uint256
      
      event RemoveLiquidityImbalance:
          provider: indexed(address)
          token_amounts: DynArray[uint256, MAX_COINS]
          fees: DynArray[uint256, MAX_COINS]
          invariant: uint256
          token_supply: uint256
      
      event RampA:
          old_A: uint256
          new_A: uint256
          initial_time: uint256
          future_time: uint256
      
      event StopRampA:
          A: uint256
          t: uint256
      
      event ApplyNewFee:
          fee: uint256
          offpeg_fee_multiplier: uint256
      
      event SetNewMATime:
          ma_exp_time: uint256
          D_ma_time: uint256
      
      
      MAX_COINS: constant(uint256) = 8  # max coins is 8 in the factory
      MAX_COINS_128: constant(int128) = 8
      
      # ---------------------------- Pool Variables --------------------------------
      
      N_COINS: public(immutable(uint256))
      N_COINS_128: immutable(int128)
      PRECISION: constant(uint256) = 10 ** 18
      
      factory: immutable(Factory)
      coins: public(immutable(DynArray[address, MAX_COINS]))
      asset_types: immutable(DynArray[uint8, MAX_COINS])
      pool_contains_rebasing_tokens: immutable(bool)
      stored_balances: DynArray[uint256, MAX_COINS]
      
      # Fee specific vars
      FEE_DENOMINATOR: constant(uint256) = 10 ** 10
      fee: public(uint256)  # fee * 1e10
      offpeg_fee_multiplier: public(uint256)  # * 1e10
      admin_fee: public(constant(uint256)) = 5000000000
      MAX_FEE: constant(uint256) = 5 * 10 ** 9
      
      # ---------------------- Pool Amplification Parameters -----------------------
      
      A_PRECISION: constant(uint256) = 100
      MAX_A: constant(uint256) = 10 ** 6
      MAX_A_CHANGE: constant(uint256) = 10
      
      initial_A: public(uint256)
      future_A: public(uint256)
      initial_A_time: public(uint256)
      future_A_time: public(uint256)
      
      # ---------------------------- Admin Variables -------------------------------
      
      MIN_RAMP_TIME: constant(uint256) = 86400
      admin_balances: public(DynArray[uint256, MAX_COINS])
      
      # ----------------------- Oracle Specific vars -------------------------------
      
      rate_multipliers: immutable(DynArray[uint256, MAX_COINS])
      # [bytes4 method_id][bytes8 <empty>][bytes20 oracle]
      rate_oracles: immutable(DynArray[uint256, MAX_COINS])
      
      # For ERC4626 tokens, we need:
      call_amount: immutable(DynArray[uint256, MAX_COINS])
      scale_factor: immutable(DynArray[uint256, MAX_COINS])
      
      last_prices_packed: DynArray[uint256, MAX_COINS]  #  packing: last_price, ma_price
      last_D_packed: uint256                            #  packing: last_D, ma_D
      ma_exp_time: public(uint256)
      D_ma_time: public(uint256)
      ma_last_time: public(uint256)                     # packing: ma_last_time_p, ma_last_time_D
      # ma_last_time has a distinction for p and D because p is _not_ updated if
      # users remove_liquidity, but D is.
      
      # shift(2**32 - 1, 224)
      ORACLE_BIT_MASK: constant(uint256) = (2**32 - 1) * 256**28
      
      # --------------------------- ERC20 Specific Vars ----------------------------
      
      name: public(immutable(String[64]))
      symbol: public(immutable(String[32]))
      decimals: public(constant(uint8)) = 18
      version: public(constant(String[8])) = "v7.0.0"
      
      balanceOf: public(HashMap[address, uint256])
      allowance: public(HashMap[address, HashMap[address, uint256]])
      total_supply: uint256
      nonces: public(HashMap[address, uint256])
      
      # keccak256("isValidSignature(bytes32,bytes)")[:4] << 224
      ERC1271_MAGIC_VAL: constant(bytes32) = 0x1626ba7e00000000000000000000000000000000000000000000000000000000
      EIP712_TYPEHASH: constant(bytes32) = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract,bytes32 salt)")
      EIP2612_TYPEHASH: constant(bytes32) = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")
      
      VERSION_HASH: constant(bytes32) = keccak256(version)
      NAME_HASH: immutable(bytes32)
      CACHED_CHAIN_ID: immutable(uint256)
      salt: public(immutable(bytes32))
      CACHED_DOMAIN_SEPARATOR: immutable(bytes32)
      
      
      # ------------------------------ AMM Setup -----------------------------------
      
      
      @external
      def __init__(
          _name: String[32],
          _symbol: String[10],
          _A: uint256,
          _fee: uint256,
          _offpeg_fee_multiplier: uint256,
          _ma_exp_time: uint256,
          _coins: DynArray[address, MAX_COINS],
          _rate_multipliers: DynArray[uint256, MAX_COINS],
          _asset_types: DynArray[uint8, MAX_COINS],
          _method_ids: DynArray[bytes4, MAX_COINS],
          _oracles: DynArray[address, MAX_COINS],
      ):
          """
          @notice Initialize the pool contract
          @param _name Name of the new plain pool.
          @param _symbol Symbol for the new plain pool.
          @param _A Amplification co-efficient - a lower value here means
                    less tolerance for imbalance within the pool's assets.
                    Suggested values include:
                     * Uncollateralized algorithmic stablecoins: 5-10
                     * Non-redeemable, collateralized assets: 100
                     * Redeemable assets: 200-400
          @param _fee Trade fee, given as an integer with 1e10 precision. The
                      the maximum is 1% (100000000).
                      50% of the fee is distributed to veCRV holders.
          @param _offpeg_fee_multiplier A multiplier that determines how much to increase
                                        Fees by when assets in the AMM depeg. Example value: 20000000000
          @param _ma_exp_time Averaging window of oracle. Set as time_in_seconds / ln(2)
                              Example: for 10 minute EMA, _ma_exp_time is 600 / ln(2) ~= 866
          @param _coins List of addresses of the coins being used in the pool.
          @param _rate_multipliers An array of: [10 ** (36 - _coins[n].decimals()), ... for n in range(N_COINS)]
          @param _asset_types Array of uint8 representing tokens in pool
          @param _method_ids Array of first four bytes of the Keccak-256 hash of the function signatures
                             of the oracle addresses that gives rate oracles.
                             Calculated as: keccak(text=event_signature.replace(" ", ""))[:4]
          @param _oracles Array of rate oracle addresses.
          """
      
          coins = _coins
          asset_types = _asset_types
          pool_contains_rebasing_tokens = 2 in asset_types
          __n_coins: uint256 = len(_coins)
          N_COINS = __n_coins
          N_COINS_128 = convert(__n_coins, int128)
      
          rate_multipliers = _rate_multipliers
      
          factory = Factory(msg.sender)
      
          A: uint256 = unsafe_mul(_A, A_PRECISION)
          self.initial_A = A
          self.future_A = A
          self.fee = _fee
          self.offpeg_fee_multiplier = _offpeg_fee_multiplier
      
          assert _ma_exp_time != 0
          self.ma_exp_time = _ma_exp_time
          self.D_ma_time = 62324  # <--------- 12 hours default on contract start.
          self.ma_last_time = self.pack_2(block.timestamp, block.timestamp)
      
          #  ------------------- initialize storage for DynArrays ------------------
      
          _call_amount: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS])
          _scale_factor: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS])
          _rate_oracles: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS])
          for i in range(N_COINS_128, bound=MAX_COINS_128):
      
              if i < N_COINS_128 - 1:
                  self.last_prices_packed.append(self.pack_2(10**18, 10**18))
      
              _rate_oracles.append(convert(_method_ids[i], uint256) * 2**224 | convert(_oracles[i], uint256))
              self.stored_balances.append(0)
              self.admin_balances.append(0)
      
              if _asset_types[i] == 3:
      
                  _call_amount.append(10**convert(ERC20Detailed(_coins[i]).decimals(), uint256))
                  _underlying_asset: address = ERC4626(_coins[i]).asset()
                  _scale_factor.append(10**(18 - convert(ERC20Detailed(_underlying_asset).decimals(), uint256)))
      
              else:
      
                  _call_amount.append(0)
                  _scale_factor.append(0)
      
          call_amount = _call_amount
          scale_factor = _scale_factor
          rate_oracles = _rate_oracles
      
          # ----------------------------- ERC20 stuff ------------------------------
      
          name = _name
          symbol = _symbol
      
          # EIP712 related params -----------------
          NAME_HASH = keccak256(name)
          salt = block.prevhash
          CACHED_CHAIN_ID = chain.id
          CACHED_DOMAIN_SEPARATOR = keccak256(
              _abi_encode(
                  EIP712_TYPEHASH,
                  NAME_HASH,
                  VERSION_HASH,
                  chain.id,
                  self,
                  salt,
              )
          )
      
          # ------------------------ Fire a transfer event -------------------------
      
          log Transfer(empty(address), msg.sender, 0)
      
      
      # ------------------ Token transfers in and out of the AMM -------------------
      
      
      @internal
      def _transfer_in(
          coin_idx: int128,
          dx: uint256,
          sender: address,
          expect_optimistic_transfer: bool,
      ) -> uint256:
          """
          @notice Contains all logic to handle ERC20 token transfers.
          @param coin_idx Index of the coin to transfer in.
          @param dx amount of `_coin` to transfer into the pool.
          @param sender address to transfer `_coin` from.
          @param receiver address to transfer `_coin` to.
          @param expect_optimistic_transfer True if contract expects an optimistic coin transfer
          """
          _dx: uint256 = ERC20(coins[coin_idx]).balanceOf(self)
      
          # ------------------------- Handle Transfers -----------------------------
      
          if expect_optimistic_transfer:
      
              _dx = _dx - self.stored_balances[coin_idx]
              assert _dx >= dx
      
          else:
      
              assert dx > 0  # dev : do not transferFrom 0 tokens into the pool
              assert ERC20(coins[coin_idx]).transferFrom(
                  sender, self, dx, default_return_value=True
              )
      
              _dx = ERC20(coins[coin_idx]).balanceOf(self) - _dx
      
          # --------------------------- Store transferred in amount ---------------------------
      
          self.stored_balances[coin_idx] += _dx
      
          return _dx
      
      
      @internal
      def _transfer_out(_coin_idx: int128, _amount: uint256, receiver: address):
          """
          @notice Transfer a single token from the pool to receiver.
          @dev This function is called by `remove_liquidity` and
               `remove_liquidity_one_coin`, `_exchange`, `_withdraw_admin_fees` and
               `remove_liquidity_imbalance` methods.
          @param _coin_idx Index of the token to transfer out
          @param _amount Amount of token to transfer out
          @param receiver Address to send the tokens to
          """
          assert receiver != empty(address)  # dev: do not send tokens to zero_address
      
          if not pool_contains_rebasing_tokens:
      
              # we need not cache balanceOf pool before swap out
              self.stored_balances[_coin_idx] -= _amount
              assert ERC20(coins[_coin_idx]).transfer(
                  receiver, _amount, default_return_value=True
              )
      
          else:
      
              # cache balances pre and post to account for fee on transfers etc.
              coin_balance: uint256 = ERC20(coins[_coin_idx]).balanceOf(self)
              assert ERC20(coins[_coin_idx]).transfer(
                  receiver, _amount, default_return_value=True
              )
              self.stored_balances[_coin_idx] = coin_balance - _amount
      
      
      # -------------------------- AMM Special Methods -----------------------------
      
      
      @view
      @internal
      def _stored_rates() -> DynArray[uint256, MAX_COINS]:
          """
          @notice Gets rate multipliers for each coin.
          @dev If the coin has a rate oracle that has been properly initialised,
               this method queries that rate by static-calling an external
               contract.
          """
          rates: DynArray[uint256, MAX_COINS] = rate_multipliers
      
          for i in range(N_COINS_128, bound=MAX_COINS_128):
      
              if asset_types[i] == 1 and not rate_oracles[i] == 0:
      
                  # NOTE: fetched_rate is assumed to be 10**18 precision
                  oracle_response: Bytes[32] = raw_call(
                      convert(rate_oracles[i] % 2**160, address),
                      _abi_encode(rate_oracles[i] & ORACLE_BIT_MASK),
                      max_outsize=32,
                      is_static_call=True,
                  )
                  assert len(oracle_response) == 32
                  fetched_rate: uint256 = convert(oracle_response, uint256)
      
                  rates[i] = unsafe_div(rates[i] * fetched_rate, PRECISION)
      
              elif asset_types[i] == 3:  # ERC4626
      
                  # fetched_rate: uint256 = ERC4626(coins[i]).convertToAssets(call_amount[i]) * scale_factor[i]
                  # here: call_amount has ERC4626 precision, but the returned value is scaled up to 18
                  # using scale_factor which is (18 - n) if underlying asset has n decimals.
                  rates[i] = unsafe_div(
                      rates[i] * ERC4626(coins[i]).convertToAssets(call_amount[i]) * scale_factor[i],
                      PRECISION
                  )  # 1e18 precision
      
          return rates
      
      
      @view
      @internal
      def _balances() -> DynArray[uint256, MAX_COINS]:
          """
          @notice Calculates the pool's balances _excluding_ the admin's balances.
          @dev If the pool contains rebasing tokens, this method ensures LPs keep all
                  rebases and admin only claims swap fees. This also means that, since
                  admin's balances are stored in an array and not inferred from read balances,
                  the fees in the rebasing token that the admin collects is immune to
                  slashing events.
          """
          result: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS])
          balances_i: uint256 = 0
      
          for i in range(N_COINS_128, bound=MAX_COINS_128):
      
              if pool_contains_rebasing_tokens:
                  # Read balances by gulping to account for rebases
                  balances_i = ERC20(coins[i]).balanceOf(self) - self.admin_balances[i]
              else:
                  # Use cached balances
                  balances_i = self.stored_balances[i] - self.admin_balances[i]
      
              result.append(balances_i)
      
          return result
      
      
      # -------------------------- AMM Main Functions ------------------------------
      
      
      @external
      @nonreentrant('lock')
      def exchange(
          i: int128,
          j: int128,
          _dx: uint256,
          _min_dy: uint256,
          _receiver: address = msg.sender,
      ) -> uint256:
          """
          @notice Perform an exchange between two coins
          @dev Index values can be found via the `coins` public getter method
          @param i Index value for the coin to send
          @param j Index value of the coin to receive
          @param _dx Amount of `i` being exchanged
          @param _min_dy Minimum amount of `j` to receive
          @param _receiver Address that receives `j`
          @return Actual amount of `j` received
          """
          return self._exchange(
              msg.sender,
              i,
              j,
              _dx,
              _min_dy,
              _receiver,
              False
          )
      
      
      @external
      @nonreentrant('lock')
      def exchange_received(
          i: int128,
          j: int128,
          _dx: uint256,
          _min_dy: uint256,
          _receiver: address = msg.sender,
      ) -> uint256:
          """
          @notice Perform an exchange between two coins without transferring token in
          @dev The contract swaps tokens based on a change in balance of coin[i]. The
               dx = ERC20(coin[i]).balanceOf(self) - self.stored_balances[i]. Users of
               this method are dex aggregators, arbitrageurs, or other users who do not
               wish to grant approvals to the contract: they would instead send tokens
               directly to the contract and call `exchange_received`.
               Note: This is disabled if pool contains rebasing tokens.
          @param i Index value for the coin to send
          @param j Index value of the coin to receive
          @param _dx Amount of `i` being exchanged
          @param _min_dy Minimum amount of `j` to receive
          @param _receiver Address that receives `j`
          @return Actual amount of `j` received
          """
          assert not pool_contains_rebasing_tokens  # dev: exchange_received not supported if pool contains rebasing tokens
          return self._exchange(
              msg.sender,
              i,
              j,
              _dx,
              _min_dy,
              _receiver,
              True,  # <--------------------------------------- swap optimistically.
          )
      
      
      @external
      @nonreentrant('lock')
      def add_liquidity(
          _amounts: DynArray[uint256, MAX_COINS],
          _min_mint_amount: uint256,
          _receiver: address = msg.sender
      ) -> uint256:
          """
          @notice Deposit coins into the pool
          @param _amounts List of amounts of coins to deposit
          @param _min_mint_amount Minimum amount of LP tokens to mint from the deposit
          @param _receiver Address that owns the minted LP tokens
          @return Amount of LP tokens received by depositing
          """
          assert _receiver != empty(address)  # dev: do not send LP tokens to zero_address
      
          amp: uint256 = self._A()
          old_balances: DynArray[uint256, MAX_COINS] = self._balances()
          rates: DynArray[uint256, MAX_COINS] = self._stored_rates()
      
          # Initial invariant
          D0: uint256 = self.get_D_mem(rates, old_balances, amp)
      
          total_supply: uint256 = self.total_supply
          new_balances: DynArray[uint256, MAX_COINS] = old_balances
      
          # -------------------------- Do Transfers In -----------------------------
      
          for i in range(N_COINS_128, bound=MAX_COINS_128):
      
              if _amounts[i] > 0:
      
                  new_balances[i] += self._transfer_in(
                      i,
                      _amounts[i],
                      msg.sender,
                      False,  # expect_optimistic_transfer
                  )
      
              else:
      
                  assert total_supply != 0  # dev: initial deposit requires all coins
      
          # ------------------------------------------------------------------------
      
          # Invariant after change
          D1: uint256 = self.get_D_mem(rates, new_balances, amp)
          assert D1 > D0
      
          # We need to recalculate the invariant accounting for fees
          # to calculate fair user's share
          fees: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS])
          mint_amount: uint256 = 0
      
          if total_supply > 0:
      
              ideal_balance: uint256 = 0
              difference: uint256 = 0
              new_balance: uint256 = 0
      
              ys: uint256 = unsafe_div(D0 + D1, N_COINS)
              xs: uint256 = 0
              _dynamic_fee_i: uint256 = 0
      
              # Only account for fees if we are not the first to deposit
              base_fee: uint256 = unsafe_div(
                  unsafe_mul(self.fee, N_COINS),
                  unsafe_mul(4, unsafe_sub(N_COINS, 1))
              )
      
              for i in range(N_COINS_128, bound=MAX_COINS_128):
      
                  ideal_balance = D1 * old_balances[i] / D0
                  difference = 0
                  new_balance = new_balances[i]
      
                  if ideal_balance > new_balance:
                      difference = unsafe_sub(ideal_balance, new_balance)
                  else:
                      difference = unsafe_sub(new_balance, ideal_balance)
      
                  # fee[i] = _dynamic_fee(i, j) * difference / FEE_DENOMINATOR
                  xs = unsafe_div(rates[i] * (old_balances[i] + new_balance), PRECISION)
                  _dynamic_fee_i = self._dynamic_fee(xs, ys, base_fee)
                  fees.append(unsafe_div(_dynamic_fee_i * difference, FEE_DENOMINATOR))
                  self.admin_balances[i] += unsafe_div(fees[i] * admin_fee, FEE_DENOMINATOR)
                  new_balances[i] -= fees[i]
      
              xp: DynArray[uint256, MAX_COINS] = self._xp_mem(rates, new_balances)
              D1 = self.get_D(xp, amp)  # <--------------- Reuse D1 for new D value.
              mint_amount = unsafe_div(total_supply * (D1 - D0), D0)
              self.upkeep_oracles(xp, amp, D1)
      
          else:
      
              mint_amount = D1  # Take the dust if there was any
      
              # (re)instantiate D oracle if totalSupply is zero.
              self.last_D_packed = self.pack_2(D1, D1)
      
              # Update D ma time:
              ma_last_time_unpacked: uint256[2] = self.unpack_2(self.ma_last_time)
              if ma_last_time_unpacked[1] < block.timestamp:
                  ma_last_time_unpacked[1] = block.timestamp
                  self.ma_last_time = self.pack_2(ma_last_time_unpacked[0], ma_last_time_unpacked[1])
      
          assert mint_amount >= _min_mint_amount, "Slippage screwed you"
      
          # Mint pool tokens
          total_supply += mint_amount
          self.balanceOf[_receiver] += mint_amount
          self.total_supply = total_supply
          log Transfer(empty(address), _receiver, mint_amount)
      
          log AddLiquidity(msg.sender, _amounts, fees, D1, total_supply)
      
          return mint_amount
      
      
      @external
      @nonreentrant('lock')
      def remove_liquidity_one_coin(
          _burn_amount: uint256,
          i: int128,
          _min_received: uint256,
          _receiver: address = msg.sender,
      ) -> uint256:
          """
          @notice Withdraw a single coin from the pool
          @param _burn_amount Amount of LP tokens to burn in the withdrawal
          @param i Index value of the coin to withdraw
          @param _min_received Minimum amount of coin to receive
          @param _receiver Address that receives the withdrawn coins
          @return Amount of coin received
          """
          assert _burn_amount > 0  # dev: do not remove 0 LP tokens
          dy: uint256 = 0
          fee: uint256 = 0
          xp: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS])
          amp: uint256 = empty(uint256)
          D: uint256 = empty(uint256)
      
          dy, fee, xp, amp, D = self._calc_withdraw_one_coin(_burn_amount, i)
          assert dy >= _min_received, "Not enough coins removed"
      
          self.admin_balances[i] += unsafe_div(fee * admin_fee, FEE_DENOMINATOR)
      
          self._burnFrom(msg.sender, _burn_amount)
      
          self._transfer_out(i, dy, _receiver)
      
          log RemoveLiquidityOne(msg.sender, i, _burn_amount, dy, self.total_supply)
      
          self.upkeep_oracles(xp, amp, D)
      
          return dy
      
      
      @external
      @nonreentrant('lock')
      def remove_liquidity_imbalance(
          _amounts: DynArray[uint256, MAX_COINS],
          _max_burn_amount: uint256,
          _receiver: address = msg.sender
      ) -> uint256:
          """
          @notice Withdraw coins from the pool in an imbalanced amount
          @param _amounts List of amounts of underlying coins to withdraw
          @param _max_burn_amount Maximum amount of LP token to burn in the withdrawal
          @param _receiver Address that receives the withdrawn coins
          @return Actual amount of the LP token burned in the withdrawal
          """
          amp: uint256 = self._A()
          rates: DynArray[uint256, MAX_COINS] = self._stored_rates()
          old_balances: DynArray[uint256, MAX_COINS] = self._balances()
          D0: uint256 = self.get_D_mem(rates, old_balances, amp)
          new_balances: DynArray[uint256, MAX_COINS] = old_balances
      
          for i in range(N_COINS_128, bound=MAX_COINS_128):
      
              if _amounts[i] != 0:
                  new_balances[i] -= _amounts[i]
                  self._transfer_out(i, _amounts[i], _receiver)
      
          D1: uint256 = self.get_D_mem(rates, new_balances, amp)
          base_fee: uint256 = unsafe_div(
              unsafe_mul(self.fee, N_COINS),
              unsafe_mul(4, unsafe_sub(N_COINS, 1))
          )
          ys: uint256 = unsafe_div((D0 + D1), N_COINS)
      
          fees: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS])
          dynamic_fee: uint256 = 0
          xs: uint256 = 0
          ideal_balance: uint256 = 0
          difference: uint256 = 0
          new_balance: uint256 = 0
      
          for i in range(N_COINS_128, bound=MAX_COINS_128):
      
              ideal_balance = D1 * old_balances[i] / D0
              difference = 0
              new_balance = new_balances[i]
      
              if ideal_balance > new_balance:
                  difference = unsafe_sub(ideal_balance, new_balance)
              else:
                  difference = unsafe_sub(new_balance, ideal_balance)
      
              xs = unsafe_div(rates[i] * (old_balances[i] + new_balance), PRECISION)
              dynamic_fee = self._dynamic_fee(xs, ys, base_fee)
              fees.append(unsafe_div(dynamic_fee * difference, FEE_DENOMINATOR))
      
              self.admin_balances[i] += unsafe_div(fees[i] * admin_fee, FEE_DENOMINATOR)
              new_balances[i] -= fees[i]
      
          D1 = self.get_D_mem(rates, new_balances, amp)  # dev: reuse D1 for new D.
          self.upkeep_oracles(self._xp_mem(rates, new_balances), amp, D1)
      
          total_supply: uint256 = self.total_supply
          burn_amount: uint256 = unsafe_div((D0 - D1) * total_supply, D0) + 1
          assert burn_amount > 1  # dev: zero tokens burned
          assert burn_amount <= _max_burn_amount, "Slippage screwed you"
      
          self._burnFrom(msg.sender, burn_amount)
      
          log RemoveLiquidityImbalance(
              msg.sender,
              _amounts,
              fees,
              D1,
              total_supply - burn_amount
          )
      
          return burn_amount
      
      
      @external
      @nonreentrant('lock')
      def remove_liquidity(
          _burn_amount: uint256,
          _min_amounts: DynArray[uint256, MAX_COINS],
          _receiver: address = msg.sender,
          _claim_admin_fees: bool = True,
      ) -> DynArray[uint256, MAX_COINS]:
          """
          @notice Withdraw coins from the pool
          @dev Withdrawal amounts are based on current deposit ratios
          @param _burn_amount Quantity of LP tokens to burn in the withdrawal
          @param _min_amounts Minimum amounts of underlying coins to receive
          @param _receiver Address that receives the withdrawn coins
          @return List of amounts of coins that were withdrawn
          """
          total_supply: uint256 = self.total_supply
          assert _burn_amount > 0  # dev: invalid burn amount
          assert len(_min_amounts) == N_COINS  # dev: invalid array length for _min_amounts
      
          amounts: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS])
          balances: DynArray[uint256, MAX_COINS] = self._balances()
      
          value: uint256 = 0
          for i in range(N_COINS_128, bound=MAX_COINS_128):
      
              value = unsafe_div(balances[i] * _burn_amount, total_supply)
              assert value >= _min_amounts[i], "Withdrawal resulted in fewer coins than expected"
              amounts.append(value)
              self._transfer_out(i, value, _receiver)
      
          self._burnFrom(msg.sender, _burn_amount)  # <---- Updates self.total_supply
      
          # --------------------------- Upkeep D_oracle ----------------------------
      
          ma_last_time_unpacked: uint256[2] = self.unpack_2(self.ma_last_time)
          last_D_packed_current: uint256 = self.last_D_packed
          old_D: uint256 = last_D_packed_current & (2**128 - 1)
      
          self.last_D_packed = self.pack_2(
              old_D - unsafe_div(old_D * _burn_amount, total_supply),  # new_D = proportionally reduce D.
              self._calc_moving_average(
                  last_D_packed_current,
                  self.D_ma_time,
                  ma_last_time_unpacked[1]
              )
          )
      
          if ma_last_time_unpacked[1] < block.timestamp:
              ma_last_time_unpacked[1] = block.timestamp
              self.ma_last_time = self.pack_2(ma_last_time_unpacked[0], ma_last_time_unpacked[1])
      
          # ------------------------------- Log event ------------------------------
      
          log RemoveLiquidity(
              msg.sender,
              amounts,
              empty(DynArray[uint256, MAX_COINS]),
              unsafe_sub(total_supply, _burn_amount)
          )
      
          # ------- Withdraw admin fees if _claim_admin_fees is set to True --------
          if _claim_admin_fees:
              self._withdraw_admin_fees()
      
          return amounts
      
      
      @external
      @nonreentrant('lock')
      def withdraw_admin_fees():
          """
          @notice Claim admin fees. Callable by anyone.
          """
          self._withdraw_admin_fees()
      
      
      # ------------------------ AMM Internal Functions ----------------------------
      
      
      @view
      @internal
      def _dynamic_fee(xpi: uint256, xpj: uint256, _fee: uint256) -> uint256:
      
          _offpeg_fee_multiplier: uint256 = self.offpeg_fee_multiplier
          if _offpeg_fee_multiplier <= FEE_DENOMINATOR:
              return _fee
      
          xps2: uint256 = (xpi + xpj) ** 2
          return unsafe_div(
              unsafe_mul(_offpeg_fee_multiplier, _fee),
              unsafe_add(
                  unsafe_sub(_offpeg_fee_multiplier, FEE_DENOMINATOR) * 4 * xpi * xpj / xps2,
                  FEE_DENOMINATOR
              )
          )
      
      
      @internal
      def __exchange(
          x: uint256,
          _xp: DynArray[uint256, MAX_COINS],
          rates: DynArray[uint256, MAX_COINS],
          i: int128,
          j: int128,
      ) -> uint256:
      
          amp: uint256 = self._A()
          D: uint256 = self.get_D(_xp, amp)
          y: uint256 = self.get_y(i, j, x, _xp, amp, D)
      
          dy: uint256 = _xp[j] - y - 1  # -1 just in case there were some rounding errors
          dy_fee: uint256 = unsafe_div(
              dy * self._dynamic_fee(
                  unsafe_div(_xp[i] + x, 2), unsafe_div(_xp[j] + y, 2), self.fee
              ),
              FEE_DENOMINATOR
          )
      
          # Convert all to real units
          dy = (dy - dy_fee) * PRECISION / rates[j]
      
          self.admin_balances[j] += unsafe_div(
              unsafe_div(dy_fee * admin_fee, FEE_DENOMINATOR) * PRECISION,
              rates[j]
          )
      
          # Calculate and store state prices:
          xp: DynArray[uint256, MAX_COINS] = _xp
          xp[i] = x
          xp[j] = y
          # D is not changed because we did not apply a fee
          self.upkeep_oracles(xp, amp, D)
      
          return dy
      
      
      @internal
      def _exchange(
          sender: address,
          i: int128,
          j: int128,
          _dx: uint256,
          _min_dy: uint256,
          receiver: address,
          expect_optimistic_transfer: bool
      ) -> uint256:
      
          assert i != j  # dev: coin index out of range
          assert _dx > 0  # dev: do not exchange 0 coins
      
          rates: DynArray[uint256, MAX_COINS] = self._stored_rates()
          old_balances: DynArray[uint256, MAX_COINS] = self._balances()
          xp: DynArray[uint256, MAX_COINS] = self._xp_mem(rates, old_balances)
      
          # --------------------------- Do Transfer in -----------------------------
      
          # `dx` is whatever the pool received after ERC20 transfer:
          dx: uint256 = self._transfer_in(
              i,
              _dx,
              sender,
              expect_optimistic_transfer
          )
      
          # ------------------------------- Exchange -------------------------------
      
          x: uint256 = xp[i] + unsafe_div(dx * rates[i], PRECISION)
          dy: uint256 = self.__exchange(x, xp, rates, i, j)
          assert dy >= _min_dy, "Exchange resulted in fewer coins than expected"
      
          # --------------------------- Do Transfer out ----------------------------
      
          self._transfer_out(j, dy, receiver)
      
          # ------------------------------------------------------------------------
      
          log TokenExchange(msg.sender, i, dx, j, dy)
      
          return dy
      
      
      @internal
      def _withdraw_admin_fees():
          fee_receiver: address = factory.fee_receiver()
          if fee_receiver == empty(address):
              return  # Do nothing.
      
          admin_balances: DynArray[uint256, MAX_COINS] = self.admin_balances
          for i in range(N_COINS_128, bound=MAX_COINS_128):
      
              if admin_balances[i] > 0:
      
                  self._transfer_out(i, admin_balances[i], fee_receiver)
                  admin_balances[i] = 0
      
          self.admin_balances = admin_balances
      
      
      # --------------------------- AMM Math Functions -----------------------------
      
      
      @view
      @internal
      def get_y(
          i: int128,
          j: int128,
          x: uint256,
          xp: DynArray[uint256, MAX_COINS],
          _amp: uint256,
          _D: uint256
      ) -> uint256:
          """
          Calculate x[j] if one makes x[i] = x
      
          Done by solving quadratic equation iteratively.
          x_1**2 + x_1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
          x_1**2 + b*x_1 = c
      
          x_1 = (x_1**2 + c) / (2*x_1 + b)
          """
          # x in the input is converted to the same price/precision
      
          assert i != j       # dev: same coin
          assert j >= 0       # dev: j below zero
          assert j < N_COINS_128  # dev: j above N_COINS
      
          # should be unreachable, but good for safety
          assert i >= 0
          assert i < N_COINS_128
      
          amp: uint256 = _amp
          D: uint256 = _D
      
          S_: uint256 = 0
          _x: uint256 = 0
          y_prev: uint256 = 0
          c: uint256 = D
          Ann: uint256 = amp * N_COINS
      
          for _i in range(MAX_COINS_128):
      
              if _i == N_COINS_128:
                  break
      
              if _i == i:
                  _x = x
              elif _i != j:
                  _x = xp[_i]
              else:
                  continue
      
              S_ += _x
              c = c * D / (_x * N_COINS)
      
          c = c * D * A_PRECISION / (Ann * N_COINS)
          b: uint256 = S_ + D * A_PRECISION / Ann  # - D
          y: uint256 = D
      
          for _i in range(255):
              y_prev = y
              y = (y*y + c) / (2 * y + b - D)
              # Equality with the precision of 1
              if y > y_prev:
                  if y - y_prev <= 1:
                      return y
              else:
                  if y_prev - y <= 1:
                      return y
          raise
      
      
      @pure
      @internal
      def get_D(_xp: DynArray[uint256, MAX_COINS], _amp: uint256) -> uint256:
          """
          D invariant calculation in non-overflowing integer operations
          iteratively
      
          A * sum(x_i) * n**n + D = A * D * n**n + D**(n+1) / (n**n * prod(x_i))
      
          Converging solution:
          D[j+1] = (A * n**n * sum(x_i) - D[j]**(n+1) / (n**n prod(x_i))) / (A * n**n - 1)
          """
          S: uint256 = 0
          for x in _xp:
              S += x
          if S == 0:
              return 0
      
          D: uint256 = S
          Ann: uint256 = _amp * N_COINS
      
          for i in range(255):
      
              D_P: uint256 = D
              for x in _xp:
                  D_P = D_P * D / x
              D_P /= pow_mod256(N_COINS, N_COINS)
              Dprev: uint256 = D
      
              # (Ann * S / A_PRECISION + D_P * N_COINS) * D / ((Ann - A_PRECISION) * D / A_PRECISION + (N_COINS + 1) * D_P)
              D = (
                  (unsafe_div(Ann * S, A_PRECISION) + D_P * N_COINS) * D
                  /
                  (
                      unsafe_div((Ann - A_PRECISION) * D, A_PRECISION) +
                      unsafe_add(N_COINS, 1) * D_P
                  )
              )
      
              # Equality with the precision of 1
              if D > Dprev:
                  if D - Dprev <= 1:
                      return D
              else:
                  if Dprev - D <= 1:
                      return D
          # convergence typically occurs in 4 rounds or less, this should be unreachable!
          # if it does happen the pool is borked and LPs can withdraw via `remove_liquidity`
          raise
      
      
      @pure
      @internal
      def get_y_D(
          A: uint256,
          i: int128,
          xp: DynArray[uint256, MAX_COINS],
          D: uint256
      ) -> uint256:
          """
          Calculate x[i] if one reduces D from being calculated for xp to D
      
          Done by solving quadratic equation iteratively.
          x_1**2 + x_1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
          x_1**2 + b*x_1 = c
      
          x_1 = (x_1**2 + c) / (2*x_1 + b)
          """
          # x in the input is converted to the same price/precision
      
          assert i >= 0  # dev: i below zero
          assert i < N_COINS_128  # dev: i above N_COINS
      
          S_: uint256 = 0
          _x: uint256 = 0
          y_prev: uint256 = 0
          c: uint256 = D
          Ann: uint256 = A * N_COINS
      
          for _i in range(MAX_COINS_128):
      
              if _i == N_COINS_128:
                  break
      
              if _i != i:
                  _x = xp[_i]
              else:
                  continue
              S_ += _x
              c = c * D / (_x * N_COINS)
      
          c = c * D * A_PRECISION / (Ann * N_COINS)
          b: uint256 = S_ + D * A_PRECISION / Ann
          y: uint256 = D
      
          for _i in range(255):
              y_prev = y
              y = (y*y + c) / (2 * y + b - D)
              # Equality with the precision of 1
              if y > y_prev:
                  if y - y_prev <= 1:
                      return y
              else:
                  if y_prev - y <= 1:
                      return y
          raise
      
      
      @view
      @internal
      def _A() -> uint256:
          """
          Handle ramping A up or down
          """
          t1: uint256 = self.future_A_time
          A1: uint256 = self.future_A
      
          if block.timestamp < t1:
              A0: uint256 = self.initial_A
              t0: uint256 = self.initial_A_time
              # Expressions in uint256 cannot have negative numbers, thus "if"
              if A1 > A0:
                  return A0 + unsafe_sub(A1, A0) * (block.timestamp - t0) / (t1 - t0)
              else:
                  return A0 - unsafe_sub(A0, A1) * (block.timestamp - t0) / (t1 - t0)
      
          else:  # when t1 == 0 or block.timestamp >= t1
              return A1
      
      
      @pure
      @internal
      def _xp_mem(
          _rates: DynArray[uint256, MAX_COINS],
          _balances: DynArray[uint256, MAX_COINS]
      ) -> DynArray[uint256, MAX_COINS]:
      
          result: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS])
          for i in range(N_COINS_128, bound=MAX_COINS_128):
              result.append(unsafe_div(_rates[i] * _balances[i], PRECISION))
          return result
      
      
      @view
      @internal
      def get_D_mem(
          _rates: DynArray[uint256, MAX_COINS],
          _balances: DynArray[uint256, MAX_COINS],
          _amp: uint256
      ) -> uint256:
          xp: DynArray[uint256, MAX_COINS] = self._xp_mem(_rates, _balances)
          return self.get_D(xp, _amp)
      
      
      @view
      @internal
      def _calc_withdraw_one_coin(
          _burn_amount: uint256,
          i: int128
      ) -> (
          uint256,
          uint256,
          DynArray[uint256, MAX_COINS],
          uint256,
          uint256
      ):
          # First, need to calculate
          # * Get current D
          # * Solve Eqn against y_i for D - _token_amount
          amp: uint256 = self._A()
          rates: DynArray[uint256, MAX_COINS] = self._stored_rates()
          xp: DynArray[uint256, MAX_COINS] = self._xp_mem(rates, self._balances())
          D0: uint256 = self.get_D(xp, amp)
      
          total_supply: uint256 = self.total_supply
          D1: uint256 = D0 - _burn_amount * D0 / total_supply
          new_y: uint256 = self.get_y_D(amp, i, xp, D1)
      
          base_fee: uint256 = unsafe_div(
              unsafe_mul(self.fee, N_COINS),
              unsafe_mul(4, unsafe_sub(N_COINS, 1))
          )
          xp_reduced: DynArray[uint256, MAX_COINS] = xp
          ys: uint256 = unsafe_div((D0 + D1), unsafe_mul(2, N_COINS))
      
          dx_expected: uint256 = 0
          xp_j: uint256 = 0
          xavg: uint256 = 0
          dynamic_fee: uint256 = 0
      
          for j in range(MAX_COINS_128):
      
              if j == N_COINS_128:
                  break
      
              dx_expected = 0
              xp_j = xp[j]
      
              if j == i:
                  dx_expected = xp_j * D1 / D0 - new_y
                  xavg = unsafe_div((xp_j + new_y), 2)
              else:
                  dx_expected = xp_j - xp_j * D1 / D0
                  xavg = xp_j
      
              dynamic_fee = self._dynamic_fee(xavg, ys, base_fee)
              xp_reduced[j] = xp_j - unsafe_div(dynamic_fee * dx_expected, FEE_DENOMINATOR)
      
          dy: uint256 = xp_reduced[i] - self.get_y_D(amp, i, xp_reduced, D1)
          dy_0: uint256 = (xp[i] - new_y) * PRECISION / rates[i]  # w/o fees
          dy = unsafe_div((dy - 1) * PRECISION, rates[i])  # Withdraw less to account for rounding errors
      
          # update xp with new_y for p calculations.
          xp[i] = new_y
      
          return dy, dy_0 - dy, xp, amp, D1
      
      
      # -------------------------- AMM Price Methods -------------------------------
      
      @pure
      @internal
      def pack_2(p1: uint256, p2: uint256) -> uint256:
          assert p1 < 2**128
          assert p2 < 2**128
          return p1 | (p2 << 128)
      
      
      @pure
      @internal
      def unpack_2(packed: uint256) -> uint256[2]:
          return [packed & (2**128 - 1), packed >> 128]
      
      
      @internal
      @pure
      def _get_p(
          xp: DynArray[uint256, MAX_COINS],
          amp: uint256,
          D: uint256,
      ) -> DynArray[uint256, MAX_COINS]:
      
          # dx_0 / dx_1 only, however can have any number of coins in pool
          ANN: uint256 = unsafe_mul(amp, N_COINS)
          Dr: uint256 = unsafe_div(D, pow_mod256(N_COINS, N_COINS))
      
          for i in range(N_COINS_128, bound=MAX_COINS_128):
              Dr = Dr * D / xp[i]
      
          p: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS])
          xp0_A: uint256 = unsafe_div(ANN * xp[0], A_PRECISION)
      
          for i in range(1, MAX_COINS):
      
              if i == N_COINS:
                  break
      
              p.append(10**18 * (xp0_A + unsafe_div(Dr * xp[0], xp[i])) / (xp0_A + Dr))
      
          return p
      
      
      @internal
      def upkeep_oracles(xp: DynArray[uint256, MAX_COINS], amp: uint256, D: uint256):
          """
          @notice Upkeeps price and D oracles.
          """
          ma_last_time_unpacked: uint256[2] = self.unpack_2(self.ma_last_time)
          last_prices_packed_current: DynArray[uint256, MAX_COINS] = self.last_prices_packed
          last_prices_packed_new: DynArray[uint256, MAX_COINS] = last_prices_packed_current
      
          spot_price: DynArray[uint256, MAX_COINS] = self._get_p(xp, amp, D)
      
          # -------------------------- Upkeep price oracle -------------------------
      
          for i in range(MAX_COINS):
      
              if i == N_COINS - 1:
                  break
      
              if spot_price[i] != 0:
      
                  # Update packed prices -----------------
                  last_prices_packed_new[i] = self.pack_2(
                      min(spot_price[i], 2 * 10**18),  # <----- Cap spot value by 2.
                      self._calc_moving_average(
                          last_prices_packed_current[i],
                          self.ma_exp_time,
                          ma_last_time_unpacked[0],  # index 0 is ma_last_time for prices
                      )
                  )
      
          self.last_prices_packed = last_prices_packed_new
      
          # ---------------------------- Upkeep D oracle ---------------------------
      
          last_D_packed_current: uint256 = self.last_D_packed
          self.last_D_packed = self.pack_2(
              D,
              self._calc_moving_average(
                  last_D_packed_current,
                  self.D_ma_time,
                  ma_last_time_unpacked[1],  # index 1 is ma_last_time for D
              )
          )
      
          # Housekeeping: Update ma_last_time for p and D oracles ------------------
          for i in range(2):
              if ma_last_time_unpacked[i] < block.timestamp:
                  ma_last_time_unpacked[i] = block.timestamp
      
          self.ma_last_time = self.pack_2(ma_last_time_unpacked[0], ma_last_time_unpacked[1])
      
      
      @internal
      @view
      def _calc_moving_average(
          packed_value: uint256,
          averaging_window: uint256,
          ma_last_time: uint256
      ) -> uint256:
      
          last_spot_value: uint256 = packed_value & (2**128 - 1)
          last_ema_value: uint256 = (packed_value >> 128)
      
          if ma_last_time < block.timestamp:  # calculate new_ema_value and return that.
              alpha: uint256 = self.exp(
                  -convert(
                      unsafe_div(unsafe_mul(unsafe_sub(block.timestamp, ma_last_time), 10**18), averaging_window), int256
                  )
              )
              return unsafe_div(last_spot_value * (10**18 - alpha) + last_ema_value * alpha, 10**18)
      
          return last_ema_value
      
      
      @view
      @external
      def last_price(i: uint256) -> uint256:
          return self.last_prices_packed[i] & (2**128 - 1)
      
      
      @view
      @external
      def ema_price(i: uint256) -> uint256:
          return (self.last_prices_packed[i] >> 128)
      
      
      @external
      @view
      def get_p(i: uint256) -> uint256:
          """
          @notice Returns the AMM State price of token
          @dev if i = 0, it will return the state price of coin[1].
          @param i index of state price (0 for coin[1], 1 for coin[2], ...)
          @return uint256 The state price quoted by the AMM for coin[i+1]
          """
          amp: uint256 = self._A()
          xp: DynArray[uint256, MAX_COINS] = self._xp_mem(
              self._stored_rates(), self._balances()
          )
          D: uint256 = self.get_D(xp, amp)
          return self._get_p(xp, amp, D)[i]
      
      
      @external
      @view
      @nonreentrant('lock')
      def price_oracle(i: uint256) -> uint256:
          return self._calc_moving_average(
              self.last_prices_packed[i],
              self.ma_exp_time,
              self.ma_last_time & (2**128 - 1)
          )
      
      
      @external
      @view
      @nonreentrant('lock')
      def D_oracle() -> uint256:
          return self._calc_moving_average(
              self.last_D_packed,
              self.D_ma_time,
              self.ma_last_time >> 128
          )
      
      
      # ----------------------------- Math Utils -----------------------------------
      
      
      @internal
      @pure
      def exp(x: int256) -> uint256:
          """
          @dev Calculates the natural exponential function of a signed integer with
               a precision of 1e18.
          @notice Note that this function consumes about 810 gas units. The implementation
                  is inspired by Remco Bloemen's implementation under the MIT license here:
                  https://xn--2-umb.com/22/exp-ln.
          @dev This implementation is derived from Snekmate, which is authored
               by pcaversaccio (Snekmate), distributed under the AGPL-3.0 license.
               https://github.com/pcaversaccio/snekmate
          @param x The 32-byte variable.
          @return int256 The 32-byte calculation result.
          """
          value: int256 = x
      
          # If the result is `< 0.5`, we return zero. This happens when we have the following:
          # "x <= floor(log(0.5e18) * 1e18) ~ -42e18".
          if (x <= -41446531673892822313):
              return empty(uint256)
      
          # When the result is "> (2 ** 255 - 1) / 1e18" we cannot represent it as a signed integer.
          # This happens when "x >= floor(log((2 ** 255 - 1) / 1e18) * 1e18) ~ 135".
          assert x < 135305999368893231589, "wad_exp overflow"
      
          # `x` is now in the range "(-42, 136) * 1e18". Convert to "(-42, 136) * 2 ** 96" for higher
          # intermediate precision and a binary base. This base conversion is a multiplication with
          # "1e18 / 2 ** 96 = 5 ** 18 / 2 ** 78".
          value = unsafe_div(x << 78, 5 ** 18)
      
          # Reduce the range of `x` to "(-½ ln 2, ½ ln 2) * 2 ** 96" by factoring out powers of two
          # so that "exp(x) = exp(x') * 2 ** k", where `k` is a signer integer. Solving this gives
          # "k = round(x / log(2))" and "x' = x - k * log(2)". Thus, `k` is in the range "[-61, 195]".
          k: int256 = unsafe_add(unsafe_div(value << 96, 54916777467707473351141471128), 2 ** 95) >> 96
          value = unsafe_sub(value, unsafe_mul(k, 54916777467707473351141471128))
      
          # Evaluate using a "(6, 7)"-term rational approximation. Since `p` is monic,
          # we will multiply by a scaling factor later.
          y: int256 = unsafe_add(unsafe_mul(unsafe_add(value, 1346386616545796478920950773328), value) >> 96, 57155421227552351082224309758442)
          p: int256 = unsafe_add(unsafe_mul(unsafe_add(unsafe_mul(unsafe_sub(unsafe_add(y, value), 94201549194550492254356042504812), y) >> 96,\
                                 28719021644029726153956944680412240), value), 4385272521454847904659076985693276 << 96)
      
          # We leave `p` in the "2 ** 192" base so that we do not have to scale it up
          # again for the division.
          q: int256 = unsafe_add(unsafe_mul(unsafe_sub(value, 2855989394907223263936484059900), value) >> 96, 50020603652535783019961831881945)
          q = unsafe_sub(unsafe_mul(q, value) >> 96, 533845033583426703283633433725380)
          q = unsafe_add(unsafe_mul(q, value) >> 96, 3604857256930695427073651918091429)
          q = unsafe_sub(unsafe_mul(q, value) >> 96, 14423608567350463180887372962807573)
          q = unsafe_add(unsafe_mul(q, value) >> 96, 26449188498355588339934803723976023)
      
          # The polynomial `q` has no zeros in the range because all its roots are complex.
          # No scaling is required, as `p` is already "2 ** 96" too large. Also,
          # `r` is in the range "(0.09, 0.25) * 2**96" after the division.
          r: int256 = unsafe_div(p, q)
      
          # To finalise the calculation, we have to multiply `r` by:
          #   - the scale factor "s = ~6.031367120",
          #   - the factor "2 ** k" from the range reduction, and
          #   - the factor "1e18 / 2 ** 96" for the base conversion.
          # We do this all at once, with an intermediate result in "2**213" base,
          # so that the final right shift always gives a positive value.
      
          # Note that to circumvent Vyper's safecast feature for the potentially
          # negative parameter value `r`, we first convert `r` to `bytes32` and
          # subsequently to `uint256`. Remember that the EVM default behaviour is
          # to use two's complement representation to handle signed integers.
          return unsafe_mul(convert(convert(r, bytes32), uint256), 3822833074963236453042738258902158003155416615667) >> convert(unsafe_sub(195, k), uint256)
      
      
      # ---------------------------- ERC20 Utils -----------------------------------
      
      @view
      @internal
      def _domain_separator() -> bytes32:
          if chain.id != CACHED_CHAIN_ID:
              return keccak256(
                  _abi_encode(
                      EIP712_TYPEHASH,
                      NAME_HASH,
                      VERSION_HASH,
                      chain.id,
                      self,
                      salt,
                  )
              )
          return CACHED_DOMAIN_SEPARATOR
      
      
      @internal
      def _transfer(_from: address, _to: address, _value: uint256):
          # # NOTE: vyper does not allow underflows
          # #       so the following subtraction would revert on insufficient balance
          self.balanceOf[_from] -= _value
          self.balanceOf[_to] += _value
      
          log Transfer(_from, _to, _value)
      
      
      @internal
      def _burnFrom(_from: address, _burn_amount: uint256):
      
          self.total_supply -= _burn_amount
          self.balanceOf[_from] -= _burn_amount
          log Transfer(_from, empty(address), _burn_amount)
      
      
      @external
      def transfer(_to : address, _value : uint256) -> bool:
          """
          @dev Transfer token for a specified address
          @param _to The address to transfer to.
          @param _value The amount to be transferred.
          """
          self._transfer(msg.sender, _to, _value)
          return True
      
      
      @external
      def transferFrom(_from : address, _to : address, _value : uint256) -> bool:
          """
           @dev Transfer tokens from one address to another.
           @param _from address The address which you want to send tokens from
           @param _to address The address which you want to transfer to
           @param _value uint256 the amount of tokens to be transferred
          """
          self._transfer(_from, _to, _value)
      
          _allowance: uint256 = self.allowance[_from][msg.sender]
          if _allowance != max_value(uint256):
              _new_allowance: uint256 = _allowance - _value
              self.allowance[_from][msg.sender] = _new_allowance
              log Approval(_from, msg.sender, _new_allowance)
      
          return True
      
      
      @external
      def approve(_spender : address, _value : uint256) -> bool:
          """
          @notice Approve the passed address to transfer the specified amount of
                  tokens on behalf of msg.sender
          @dev Beware that changing an allowance via this method brings the risk that
               someone may use both the old and new allowance by unfortunate transaction
               ordering: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
          @param _spender The address which will transfer the funds
          @param _value The amount of tokens that may be transferred
          @return bool success
          """
          self.allowance[msg.sender][_spender] = _value
      
          log Approval(msg.sender, _spender, _value)
          return True
      
      
      @external
      def permit(
          _owner: address,
          _spender: address,
          _value: uint256,
          _deadline: uint256,
          _v: uint8,
          _r: bytes32,
          _s: bytes32
      ) -> bool:
          """
          @notice Approves spender by owner's signature to expend owner's tokens.
              See https://eips.ethereum.org/EIPS/eip-2612.
          @dev Inspired by https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy#L753-L793
          @dev Supports smart contract wallets which implement ERC1271
              https://eips.ethereum.org/EIPS/eip-1271
          @param _owner The address which is a source of funds and has signed the Permit.
          @param _spender The address which is allowed to spend the funds.
          @param _value The amount of tokens to be spent.
          @param _deadline The timestamp after which the Permit is no longer valid.
          @param _v The bytes[64] of the valid secp256k1 signature of permit by owner
          @param _r The bytes[0:32] of the valid secp256k1 signature of permit by owner
          @param _s The bytes[32:64] of the valid secp256k1 signature of permit by owner
          @return True, if transaction completes successfully
          """
          assert _owner != empty(address)
          assert block.timestamp <= _deadline
      
          nonce: uint256 = self.nonces[_owner]
          digest: bytes32 = keccak256(
              concat(
                  b"\x19\x01",
                  self._domain_separator(),
                  keccak256(_abi_encode(EIP2612_TYPEHASH, _owner, _spender, _value, nonce, _deadline))
              )
          )
      
          if _owner.is_contract:
              sig: Bytes[65] = concat(_abi_encode(_r, _s), slice(convert(_v, bytes32), 31, 1))
              # reentrancy not a concern since this is a staticcall
              assert ERC1271(_owner).isValidSignature(digest, sig) == ERC1271_MAGIC_VAL
          else:
              assert ecrecover(digest, convert(_v, uint256), convert(_r, uint256), convert(_s, uint256)) == _owner
      
          self.allowance[_owner][_spender] = _value
          self.nonces[_owner] = unsafe_add(nonce, 1)
      
          log Approval(_owner, _spender, _value)
          return True
      
      
      @view
      @external
      def DOMAIN_SEPARATOR() -> bytes32:
          """
          @notice EIP712 domain separator.
          @return bytes32 Domain Separator set for the current chain.
          """
          return self._domain_separator()
      
      
      # ------------------------- AMM View Functions -------------------------------
      
      
      @view
      @external
      def get_dx(i: int128, j: int128, dy: uint256) -> uint256:
          """
          @notice Calculate the current input dx given output dy
          @dev Index values can be found via the `coins` public getter method
          @param i Index value for the coin to send
          @param j Index value of the coin to receive
          @param dy Amount of `j` being received after exchange
          @return Amount of `i` predicted
          """
          return StableSwapViews(factory.views_implementation()).get_dx(i, j, dy, self)
      
      
      @view
      @external
      def get_dy(i: int128, j: int128, dx: uint256) -> uint256:
          """
          @notice Calculate the current output dy given input dx
          @dev Index values can be found via the `coins` public getter method
          @param i Index value for the coin to send
          @param j Index value of the coin to receive
          @param dx Amount of `i` being exchanged
          @return Amount of `j` predicted
          """
          return StableSwapViews(factory.views_implementation()).get_dy(i, j, dx, self)
      
      
      @view
      @external
      def calc_withdraw_one_coin(_burn_amount: uint256, i: int128) -> uint256:
          """
          @notice Calculate the amount received when withdrawing a single coin
          @param _burn_amount Amount of LP tokens to burn in the withdrawal
          @param i Index value of the coin to withdraw
          @return Amount of coin received
          """
          return self._calc_withdraw_one_coin(_burn_amount, i)[0]
      
      
      @view
      @external
      @nonreentrant('lock')
      def totalSupply() -> uint256:
          """
          @notice The total supply of pool LP tokens
          @return self.total_supply, 18 decimals.
          """
          return self.total_supply
      
      
      @view
      @external
      @nonreentrant('lock')
      def get_virtual_price() -> uint256:
          """
          @notice The current virtual price of the pool LP token
          @dev Useful for calculating profits.
               The method may be vulnerable to donation-style attacks if implementation
               contains rebasing tokens. For integrators, caution is advised.
          @return LP token virtual price normalized to 1e18
          """
          amp: uint256 = self._A()
          xp: DynArray[uint256, MAX_COINS] = self._xp_mem(
              self._stored_rates(), self._balances()
          )
          D: uint256 = self.get_D(xp, amp)
          # D is in the units similar to DAI (e.g. converted to precision 1e18)
          # When balanced, D = n * x_u - total virtual value of the portfolio
          return D * PRECISION / self.total_supply
      
      
      @view
      @external
      def calc_token_amount(
          _amounts: DynArray[uint256, MAX_COINS],
          _is_deposit: bool
      ) -> uint256:
          """
          @notice Calculate addition or reduction in token supply from a deposit or withdrawal
          @param _amounts Amount of each coin being deposited
          @param _is_deposit set True for deposits, False for withdrawals
          @return Expected amount of LP tokens received
          """
          return StableSwapViews(factory.views_implementation()).calc_token_amount(_amounts, _is_deposit, self)
      
      
      @view
      @external
      def A() -> uint256:
          return unsafe_div(self._A(), A_PRECISION)
      
      
      @view
      @external
      def A_precise() -> uint256:
          return self._A()
      
      
      @view
      @external
      def balances(i: uint256) -> uint256:
          """
          @notice Get the current balance of a coin within the
                  pool, less the accrued admin fees
          @param i Index value for the coin to query balance of
          @return Token balance
          """
          return self._balances()[i]
      
      
      @view
      @external
      def get_balances() -> DynArray[uint256, MAX_COINS]:
          return self._balances()
      
      
      @view
      @external
      def stored_rates() -> DynArray[uint256, MAX_COINS]:
          return self._stored_rates()
      
      
      @view
      @external
      def dynamic_fee(i: int128, j: int128) -> uint256:
          """
          @notice Return the fee for swapping between `i` and `j`
          @param i Index value for the coin to send
          @param j Index value of the coin to receive
          @return Swap fee expressed as an integer with 1e10 precision
          """
          return StableSwapViews(factory.views_implementation()).dynamic_fee(i, j, self)
      
      
      # --------------------------- AMM Admin Functions ----------------------------
      
      
      @external
      def ramp_A(_future_A: uint256, _future_time: uint256):
          assert msg.sender == factory.admin()  # dev: only owner
          assert block.timestamp >= self.initial_A_time + MIN_RAMP_TIME
          assert _future_time >= block.timestamp + MIN_RAMP_TIME  # dev: insufficient time
      
          _initial_A: uint256 = self._A()
          _future_A_p: uint256 = _future_A * A_PRECISION
      
          assert _future_A > 0 and _future_A < MAX_A
          if _future_A_p < _initial_A:
              assert _future_A_p * MAX_A_CHANGE >= _initial_A
          else:
              assert _future_A_p <= _initial_A * MAX_A_CHANGE
      
          self.initial_A = _initial_A
          self.future_A = _future_A_p
          self.initial_A_time = block.timestamp
          self.future_A_time = _future_time
      
          log RampA(_initial_A, _future_A_p, block.timestamp, _future_time)
      
      
      @external
      def stop_ramp_A():
          assert msg.sender == factory.admin()  # dev: only owner
      
          current_A: uint256 = self._A()
          self.initial_A = current_A
          self.future_A = current_A
          self.initial_A_time = block.timestamp
          self.future_A_time = block.timestamp
          # now (block.timestamp < t1) is always False, so we return saved A
      
          log StopRampA(current_A, block.timestamp)
      
      
      @external
      def set_new_fee(_new_fee: uint256, _new_offpeg_fee_multiplier: uint256):
      
          assert msg.sender == factory.admin()
      
          # set new fee:
          assert _new_fee <= MAX_FEE
          self.fee = _new_fee
      
          # set new offpeg_fee_multiplier:
          assert _new_offpeg_fee_multiplier * _new_fee <= MAX_FEE * FEE_DENOMINATOR  # dev: offpeg multiplier exceeds maximum
          self.offpeg_fee_multiplier = _new_offpeg_fee_multiplier
      
          log ApplyNewFee(_new_fee, _new_offpeg_fee_multiplier)
      
      
      @external
      def set_ma_exp_time(_ma_exp_time: uint256, _D_ma_time: uint256):
          """
          @notice Set the moving average window of the price oracles.
          @param _ma_exp_time Moving average window for the price oracle. It is time_in_seconds / ln(2).
          @param _D_ma_time Moving average window for the D oracle. It is time_in_seconds / ln(2).
          """
          assert msg.sender == factory.admin()  # dev: only owner
          assert unsafe_mul(_ma_exp_time, _D_ma_time) > 0  # dev: 0 in input values
      
          self.ma_exp_time = _ma_exp_time
          self.D_ma_time = _D_ma_time
      
          log SetNewMATime(_ma_exp_time, _D_ma_time)

      File 2 of 3: TransparentUpgradeableProxy
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (proxy/transparent/TransparentUpgradeableProxy.sol)
      pragma solidity ^0.8.20;
      import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
      import {ERC1967Proxy} from "../ERC1967/ERC1967Proxy.sol";
      import {IERC1967} from "../../interfaces/IERC1967.sol";
      import {ProxyAdmin} from "./ProxyAdmin.sol";
      /**
       * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
       * does not implement this interface directly, and its upgradeability mechanism is implemented by an internal dispatch
       * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
       * include them in the ABI so this interface must be used to interact with it.
       */
      interface ITransparentUpgradeableProxy is IERC1967 {
          /// @dev See {UUPSUpgradeable-upgradeToAndCall}
          function upgradeToAndCall(address newImplementation, bytes calldata data) external payable;
      }
      /**
       * @dev This contract implements a proxy that is upgradeable through an associated {ProxyAdmin} instance.
       *
       * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
       * clashing], which can potentially be used in an attack, this contract uses the
       * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
       * things that go hand in hand:
       *
       * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
       * that call matches the {ITransparentUpgradeableProxy-upgradeToAndCall} function exposed by the proxy itself.
       * 2. If the admin calls the proxy, it can call the `upgradeToAndCall` function but any other call won't be forwarded to
       * the implementation. If the admin tries to call a function on the implementation it will fail with an error indicating
       * the proxy admin cannot fallback to the target implementation.
       *
       * These properties mean that the admin account can only be used for upgrading the proxy, so it's best if it's a
       * dedicated account that is not used for anything else. This will avoid headaches due to sudden errors when trying to
       * call a function from the proxy implementation. For this reason, the proxy deploys an instance of {ProxyAdmin} and
       * allows upgrades only if they come through it. You should think of the `ProxyAdmin` instance as the administrative
       * interface of the proxy, including the ability to change who can trigger upgrades by transferring ownership.
       *
       * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
       * inherit from that interface, and instead `upgradeToAndCall` is implicitly implemented using a custom dispatch
       * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
       * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
       * implementation.
       *
       * NOTE: This proxy does not inherit from {Context} deliberately. The {ProxyAdmin} of this contract won't send a
       * meta-transaction in any way, and any other meta-transaction setup should be made in the implementation contract.
       *
       * IMPORTANT: This contract avoids unnecessary storage reads by setting the admin only during construction as an
       * immutable variable, preventing any changes thereafter. However, the admin slot defined in ERC-1967 can still be
       * overwritten by the implementation logic pointed to by this proxy. In such cases, the contract may end up in an
       * undesirable state where the admin slot is different from the actual admin. Relying on the value of the admin slot
       * is generally fine if the implementation is trusted.
       *
       * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the
       * compiler will not check that there are no selector conflicts, due to the note above. A selector clash between any new
       * function and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This
       * could render the `upgradeToAndCall` function inaccessible, preventing upgradeability and compromising transparency.
       */
      contract TransparentUpgradeableProxy is ERC1967Proxy {
          // An immutable address for the admin to avoid unnecessary SLOADs before each call
          // at the expense of removing the ability to change the admin once it's set.
          // This is acceptable if the admin is always a ProxyAdmin instance or similar contract
          // with its own ability to transfer the permissions to another account.
          address private immutable _admin;
          /**
           * @dev The proxy caller is the current admin, and can't fallback to the proxy target.
           */
          error ProxyDeniedAdminAccess();
          /**
           * @dev Initializes an upgradeable proxy managed by an instance of a {ProxyAdmin} with an `initialOwner`,
           * backed by the implementation at `_logic`, and optionally initialized with `_data` as explained in
           * {ERC1967Proxy-constructor}.
           */
          constructor(address _logic, address initialOwner, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
              _admin = address(new ProxyAdmin(initialOwner));
              // Set the storage value and emit an event for ERC-1967 compatibility
              ERC1967Utils.changeAdmin(_proxyAdmin());
          }
          /**
           * @dev Returns the admin of this proxy.
           */
          function _proxyAdmin() internal view virtual returns (address) {
              return _admin;
          }
          /**
           * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior.
           */
          function _fallback() internal virtual override {
              if (msg.sender == _proxyAdmin()) {
                  if (msg.sig != ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                      revert ProxyDeniedAdminAccess();
                  } else {
                      _dispatchUpgradeToAndCall();
                  }
              } else {
                  super._fallback();
              }
          }
          /**
           * @dev Upgrade the implementation of the proxy. See {ERC1967Utils-upgradeToAndCall}.
           *
           * Requirements:
           *
           * - If `data` is empty, `msg.value` must be zero.
           */
          function _dispatchUpgradeToAndCall() private {
              (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
              ERC1967Utils.upgradeToAndCall(newImplementation, data);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (proxy/ERC1967/ERC1967Utils.sol)
      pragma solidity ^0.8.21;
      import {IBeacon} from "../beacon/IBeacon.sol";
      import {IERC1967} from "../../interfaces/IERC1967.sol";
      import {Address} from "../../utils/Address.sol";
      import {StorageSlot} from "../../utils/StorageSlot.sol";
      /**
       * @dev This library provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
       */
      library ERC1967Utils {
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev The `implementation` of the proxy is invalid.
           */
          error ERC1967InvalidImplementation(address implementation);
          /**
           * @dev The `admin` of the proxy is invalid.
           */
          error ERC1967InvalidAdmin(address admin);
          /**
           * @dev The `beacon` of the proxy is invalid.
           */
          error ERC1967InvalidBeacon(address beacon);
          /**
           * @dev An upgrade function sees `msg.value > 0` that may be lost.
           */
          error ERC1967NonPayable();
          /**
           * @dev Returns the current implementation address.
           */
          function getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the ERC-1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              if (newImplementation.code.length == 0) {
                  revert ERC1967InvalidImplementation(newImplementation);
              }
              StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Performs implementation upgrade with additional setup call if data is nonempty.
           * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
           * to avoid stuck value in the contract.
           *
           * Emits an {IERC1967-Upgraded} event.
           */
          function upgradeToAndCall(address newImplementation, bytes memory data) internal {
              _setImplementation(newImplementation);
              emit IERC1967.Upgraded(newImplementation);
              if (data.length > 0) {
                  Address.functionDelegateCall(newImplementation, data);
              } else {
                  _checkNonPayable();
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Returns the current admin.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
           * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the ERC-1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              if (newAdmin == address(0)) {
                  revert ERC1967InvalidAdmin(address(0));
              }
              StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {IERC1967-AdminChanged} event.
           */
          function changeAdmin(address newAdmin) internal {
              emit IERC1967.AdminChanged(getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Returns the current beacon.
           */
          function getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the ERC-1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              if (newBeacon.code.length == 0) {
                  revert ERC1967InvalidBeacon(newBeacon);
              }
              StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
              address beaconImplementation = IBeacon(newBeacon).implementation();
              if (beaconImplementation.code.length == 0) {
                  revert ERC1967InvalidImplementation(beaconImplementation);
              }
          }
          /**
           * @dev Change the beacon and trigger a setup call if data is nonempty.
           * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
           * to avoid stuck value in the contract.
           *
           * Emits an {IERC1967-BeaconUpgraded} event.
           *
           * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
           * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
           * efficiency.
           */
          function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
              _setBeacon(newBeacon);
              emit IERC1967.BeaconUpgraded(newBeacon);
              if (data.length > 0) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              } else {
                  _checkNonPayable();
              }
          }
          /**
           * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
           * if an upgrade doesn't perform an initialization call.
           */
          function _checkNonPayable() private {
              if (msg.value > 0) {
                  revert ERC1967NonPayable();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (proxy/ERC1967/ERC1967Proxy.sol)
      pragma solidity ^0.8.20;
      import {Proxy} from "../Proxy.sol";
      import {ERC1967Utils} from "./ERC1967Utils.sol";
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       */
      contract ERC1967Proxy is Proxy {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
           *
           * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
           * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
           *
           * Requirements:
           *
           * - If `data` is empty, `msg.value` must be zero.
           */
          constructor(address implementation, bytes memory _data) payable {
              ERC1967Utils.upgradeToAndCall(implementation, _data);
          }
          /**
           * @dev Returns the current implementation address.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
           * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
           */
          function _implementation() internal view virtual override returns (address) {
              return ERC1967Utils.getImplementation();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
       */
      interface IERC1967 {
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Emitted when the beacon is changed.
           */
          event BeaconUpgraded(address indexed beacon);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (proxy/transparent/ProxyAdmin.sol)
      pragma solidity ^0.8.20;
      import {ITransparentUpgradeableProxy} from "./TransparentUpgradeableProxy.sol";
      import {Ownable} from "../../access/Ownable.sol";
      /**
       * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
       * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
       */
      contract ProxyAdmin is Ownable {
          /**
           * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgrade(address,address)`
           * and `upgradeAndCall(address,address,bytes)` are present, and `upgrade` must be used if no function should be called,
           * while `upgradeAndCall` will invoke the `receive` function if the third argument is the empty byte string.
           * If the getter returns `"5.0.0"`, only `upgradeAndCall(address,address,bytes)` is present, and the third argument must
           * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
           * during an upgrade.
           */
          string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
          /**
           * @dev Sets the initial owner who can perform upgrades.
           */
          constructor(address initialOwner) Ownable(initialOwner) {}
          /**
           * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation.
           * See {TransparentUpgradeableProxy-_dispatchUpgradeToAndCall}.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           * - If `data` is empty, `msg.value` must be zero.
           */
          function upgradeAndCall(
              ITransparentUpgradeableProxy proxy,
              address implementation,
              bytes memory data
          ) public payable virtual onlyOwner {
              proxy.upgradeToAndCall{value: msg.value}(implementation, data);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {UpgradeableBeacon} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
      pragma solidity ^0.8.20;
      import {Errors} from "./Errors.sol";
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev There's no code at `target` (it is not a contract).
           */
          error AddressEmptyCode(address target);
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              if (address(this).balance < amount) {
                  revert Errors.InsufficientBalance(address(this).balance, amount);
              }
              (bool success, ) = recipient.call{value: amount}("");
              if (!success) {
                  revert Errors.FailedCall();
              }
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason or custom error, it is bubbled
           * up by this function (like regular Solidity function calls). However, if
           * the call reverted with no returned reason, this function reverts with a
           * {Errors.FailedCall} error.
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              if (address(this).balance < value) {
                  revert Errors.InsufficientBalance(address(this).balance, value);
              }
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
           * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
           * of an unsuccessful call.
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata
          ) internal view returns (bytes memory) {
              if (!success) {
                  _revert(returndata);
              } else {
                  // only check if target is a contract if the call was successful and the return data is empty
                  // otherwise we already know that it was a contract
                  if (returndata.length == 0 && target.code.length == 0) {
                      revert AddressEmptyCode(target);
                  }
                  return returndata;
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
           * revert reason or with a default {Errors.FailedCall} error.
           */
          function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
              if (!success) {
                  _revert(returndata);
              } else {
                  return returndata;
              }
          }
          /**
           * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
           */
          function _revert(bytes memory returndata) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  assembly ("memory-safe") {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert Errors.FailedCall();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC-1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(newImplementation.code.length > 0);
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * TIP: Consider using this library along with {SlotDerivation}.
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct Int256Slot {
              int256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `Int256Slot` with member `value` located at `slot`.
           */
          function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns a `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns a `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              assembly ("memory-safe") {
                  r.slot := store.slot
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       *
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       *
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 {
                      revert(0, returndatasize())
                  }
                  default {
                      return(0, returndatasize())
                  }
              }
          }
          /**
           * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
           * function and {_fallback} should delegate.
           */
          function _implementation() internal view virtual returns (address);
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _fallback() internal virtual {
              _delegate(_implementation());
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback() external payable virtual {
              _fallback();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
      pragma solidity ^0.8.20;
      import {Context} from "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * The initial owner is set to the address provided by the deployer. This can
       * later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          /**
           * @dev The caller account is not authorized to perform an operation.
           */
          error OwnableUnauthorizedAccount(address account);
          /**
           * @dev The owner is not a valid owner account. (eg. `address(0)`)
           */
          error OwnableInvalidOwner(address owner);
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
           */
          constructor(address initialOwner) {
              if (initialOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(initialOwner);
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              if (owner() != _msgSender()) {
                  revert OwnableUnauthorizedAccount(_msgSender());
              }
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              if (newOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Collection of common custom errors used in multiple contracts
       *
       * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
       * It is recommended to avoid relying on the error API for critical functionality.
       *
       * _Available since v5.1._
       */
      library Errors {
          /**
           * @dev The ETH balance of the account is not enough to perform the operation.
           */
          error InsufficientBalance(uint256 balance, uint256 needed);
          /**
           * @dev A call to an address target failed. The target may have reverted.
           */
          error FailedCall();
          /**
           * @dev The deployment failed.
           */
          error FailedDeployment();
          /**
           * @dev A necessary precompile is missing.
           */
          error MissingPrecompile(address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      

      File 3 of 3: USDf
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.28;
      import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
      import {ERC20PermitUpgradeable} from
          "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PermitUpgradeable.sol";
      import {IUSDf} from "src/interfaces/IUSDf.sol";
      contract USDf is IUSDf, ERC20PermitUpgradeable, AccessControlUpgradeable {
          bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
          bytes32 public constant BURNER_ROLE = keccak256("BURNER_ROLE");
          /// @inheritdoc IUSDf
          mapping(address => bool) public isRestricted;
          /// @custom:oz-upgrades-unsafe-allow constructor
          constructor() {
              _disableInitializers();
          }
          function initialize(address admin) external initializer {
              __AccessControl_init();
              __ERC20_init("Falcon USD", "USDf");
              __ERC20Permit_init("Falcon USD");
              require(admin != address(0), ZeroAddress());
              _grantRole(DEFAULT_ADMIN_ROLE, admin);
          }
          /// @inheritdoc IUSDf
          function setRestriction(address account, bool restricted) external onlyRole(DEFAULT_ADMIN_ROLE) {
              require(account != address(0), ZeroAddress());
              require(isRestricted[account] != restricted, StatusNotChanged());
              isRestricted[account] = restricted;
              emit AddressRestrictionSet(account, restricted);
          }
          /// @inheritdoc IUSDf
          function mint(address to, uint256 amount) external onlyRole(MINTER_ROLE) {
              _mint(to, amount);
          }
          /// @inheritdoc IUSDf
          function burn(address from, uint256 amount) external onlyRole(BURNER_ROLE) {
              _burn(from, amount);
          }
          function _update(address from, address to, uint256 amount) internal override {
              require(!isRestricted[from], AddressRestricted(from));
              require(!isRestricted[to], AddressRestricted(to));
              super._update(from, to, amount);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
      pragma solidity ^0.8.20;
      import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
      import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
      import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol";
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module that allows children to implement role-based access
       * control mechanisms. This is a lightweight version that doesn't allow enumerating role
       * members except through off-chain means by accessing the contract event logs. Some
       * applications may benefit from on-chain enumerability, for those cases see
       * {AccessControlEnumerable}.
       *
       * Roles are referred to by their `bytes32` identifier. These should be exposed
       * in the external API and be unique. The best way to achieve this is by
       * using `public constant` hash digests:
       *
       * ```solidity
       * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
       * ```
       *
       * Roles can be used to represent a set of permissions. To restrict access to a
       * function call, use {hasRole}:
       *
       * ```solidity
       * function foo() public {
       *     require(hasRole(MY_ROLE, msg.sender));
       *     ...
       * }
       * ```
       *
       * Roles can be granted and revoked dynamically via the {grantRole} and
       * {revokeRole} functions. Each role has an associated admin role, and only
       * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
       *
       * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
       * that only accounts with this role will be able to grant or revoke other
       * roles. More complex role relationships can be created by using
       * {_setRoleAdmin}.
       *
       * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
       * grant and revoke this role. Extra precautions should be taken to secure
       * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
       * to enforce additional security measures for this role.
       */
      abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable {
          struct RoleData {
              mapping(address account => bool) hasRole;
              bytes32 adminRole;
          }
          bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
          /// @custom:storage-location erc7201:openzeppelin.storage.AccessControl
          struct AccessControlStorage {
              mapping(bytes32 role => RoleData) _roles;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800;
          function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) {
              assembly {
                  $.slot := AccessControlStorageLocation
              }
          }
          /**
           * @dev Modifier that checks that an account has a specific role. Reverts
           * with an {AccessControlUnauthorizedAccount} error including the required role.
           */
          modifier onlyRole(bytes32 role) {
              _checkRole(role);
              _;
          }
          function __AccessControl_init() internal onlyInitializing {
          }
          function __AccessControl_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
          }
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) public view virtual returns (bool) {
              AccessControlStorage storage $ = _getAccessControlStorage();
              return $._roles[role].hasRole[account];
          }
          /**
           * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
           * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
           */
          function _checkRole(bytes32 role) internal view virtual {
              _checkRole(role, _msgSender());
          }
          /**
           * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
           * is missing `role`.
           */
          function _checkRole(bytes32 role, address account) internal view virtual {
              if (!hasRole(role, account)) {
                  revert AccessControlUnauthorizedAccount(account, role);
              }
          }
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
              AccessControlStorage storage $ = _getAccessControlStorage();
              return $._roles[role].adminRole;
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           *
           * May emit a {RoleGranted} event.
           */
          function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
              _grantRole(role, account);
          }
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           *
           * May emit a {RoleRevoked} event.
           */
          function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
              _revokeRole(role, account);
          }
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been revoked `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `callerConfirmation`.
           *
           * May emit a {RoleRevoked} event.
           */
          function renounceRole(bytes32 role, address callerConfirmation) public virtual {
              if (callerConfirmation != _msgSender()) {
                  revert AccessControlBadConfirmation();
              }
              _revokeRole(role, callerConfirmation);
          }
          /**
           * @dev Sets `adminRole` as ``role``'s admin role.
           *
           * Emits a {RoleAdminChanged} event.
           */
          function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
              AccessControlStorage storage $ = _getAccessControlStorage();
              bytes32 previousAdminRole = getRoleAdmin(role);
              $._roles[role].adminRole = adminRole;
              emit RoleAdminChanged(role, previousAdminRole, adminRole);
          }
          /**
           * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
           *
           * Internal function without access restriction.
           *
           * May emit a {RoleGranted} event.
           */
          function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
              AccessControlStorage storage $ = _getAccessControlStorage();
              if (!hasRole(role, account)) {
                  $._roles[role].hasRole[account] = true;
                  emit RoleGranted(role, account, _msgSender());
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
           *
           * Internal function without access restriction.
           *
           * May emit a {RoleRevoked} event.
           */
          function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
              AccessControlStorage storage $ = _getAccessControlStorage();
              if (hasRole(role, account)) {
                  $._roles[role].hasRole[account] = false;
                  emit RoleRevoked(role, account, _msgSender());
                  return true;
              } else {
                  return false;
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)
      pragma solidity ^0.8.20;
      import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
      import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
      import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
      import {EIP712Upgradeable} from "../../../utils/cryptography/EIP712Upgradeable.sol";
      import {NoncesUpgradeable} from "../../../utils/NoncesUpgradeable.sol";
      import {Initializable} from "../../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20Permit, EIP712Upgradeable, NoncesUpgradeable {
          bytes32 private constant PERMIT_TYPEHASH =
              keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
          /**
           * @dev Permit deadline has expired.
           */
          error ERC2612ExpiredSignature(uint256 deadline);
          /**
           * @dev Mismatched signature.
           */
          error ERC2612InvalidSigner(address signer, address owner);
          /**
           * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
           *
           * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
           */
          function __ERC20Permit_init(string memory name) internal onlyInitializing {
              __EIP712_init_unchained(name, "1");
          }
          function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {}
          /**
           * @inheritdoc IERC20Permit
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual {
              if (block.timestamp > deadline) {
                  revert ERC2612ExpiredSignature(deadline);
              }
              bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
              bytes32 hash = _hashTypedDataV4(structHash);
              address signer = ECDSA.recover(hash, v, r, s);
              if (signer != owner) {
                  revert ERC2612InvalidSigner(signer, owner);
              }
              _approve(owner, spender, value);
          }
          /**
           * @inheritdoc IERC20Permit
           */
          function nonces(address owner) public view virtual override(IERC20Permit, NoncesUpgradeable) returns (uint256) {
              return super.nonces(owner);
          }
          /**
           * @inheritdoc IERC20Permit
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
              return _domainSeparatorV4();
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.28;
      import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
      interface IUSDf {
          error ZeroAddress();
          error StatusNotChanged();
          error AddressRestricted(address account);
          event AddressRestrictionSet(address indexed account, bool restricted);
          /**
           * @notice Mint `amount` of USDf tokens to `to`.
           * @dev Can only be called by accounts with the MINTER_ROLE.
           * @param to The address to mint tokens to.
           * @param amount The amount of tokens to mint.
           */
          function mint(address to, uint256 amount) external;
          /**
           * @notice Burn `amount` of USDf tokens from `from`.
           * @dev Can only be called by accounts with the BURNER_ROLE.
           * @param from The address to burn tokens from.
           * @param amount The amount of tokens to burn.
           */
          function burn(address from, uint256 amount) external;
          /**
           * @notice Set the restriction status of an address, forbidding transfers of any kind.
           * @dev Can only be called by accounts with the DEFAULT_ADMIN_ROLE.
           * @param account The address to set the restriction status for.
           * @param restricted The restriction status to set.
           */
          function setRestriction(address account, bool restricted) external;
          /**
           * @notice Returns the restriction status of an address.
           * @param account The address to check the restriction status for.
           */
          function isRestricted(address account) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (access/IAccessControl.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev External interface of AccessControl declared to support ERC-165 detection.
       */
      interface IAccessControl {
          /**
           * @dev The `account` is missing a role.
           */
          error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
          /**
           * @dev The caller of a function is not the expected one.
           *
           * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
           */
          error AccessControlBadConfirmation();
          /**
           * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
           *
           * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
           * {RoleAdminChanged} not being emitted signaling this.
           */
          event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
          /**
           * @dev Emitted when `account` is granted `role`.
           *
           * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
           * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
           */
          event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Emitted when `account` is revoked `role`.
           *
           * `sender` is the account that originated the contract call:
           *   - if using `revokeRole`, it is the admin role bearer
           *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
           */
          event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) external view returns (bool);
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {AccessControl-_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) external view returns (bytes32);
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function grantRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function revokeRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been granted `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `callerConfirmation`.
           */
          function renounceRole(bytes32 role, address callerConfirmation) external;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      pragma solidity ^0.8.20;
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
      pragma solidity ^0.8.20;
      import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
      import {Initializable} from "../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the {IERC165} interface.
       *
       * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
       * for the additional interface id that will be supported. For example:
       *
       * ```solidity
       * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
       *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
       * }
       * ```
       */
      abstract contract ERC165Upgradeable is Initializable, IERC165 {
          function __ERC165_init() internal onlyInitializing {
          }
          function __ERC165_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
              return interfaceId == type(IERC165).interfaceId;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```solidity
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       *
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Storage of the initializable contract.
           *
           * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
           * when using with upgradeable contracts.
           *
           * @custom:storage-location erc7201:openzeppelin.storage.Initializable
           */
          struct InitializableStorage {
              /**
               * @dev Indicates that the contract has been initialized.
               */
              uint64 _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool _initializing;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
          /**
           * @dev The contract is already initialized.
           */
          error InvalidInitialization();
          /**
           * @dev The contract is not initializing.
           */
          error NotInitializing();
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint64 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts.
           *
           * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
           * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
           * production.
           *
           * Emits an {Initialized} event.
           */
          modifier initializer() {
              // solhint-disable-next-line var-name-mixedcase
              InitializableStorage storage $ = _getInitializableStorage();
              // Cache values to avoid duplicated sloads
              bool isTopLevelCall = !$._initializing;
              uint64 initialized = $._initialized;
              // Allowed calls:
              // - initialSetup: the contract is not in the initializing state and no previous version was
              //                 initialized
              // - construction: the contract is initialized at version 1 (no reininitialization) and the
              //                 current contract is just being deployed
              bool initialSetup = initialized == 0 && isTopLevelCall;
              bool construction = initialized == 1 && address(this).code.length == 0;
              if (!initialSetup && !construction) {
                  revert InvalidInitialization();
              }
              $._initialized = 1;
              if (isTopLevelCall) {
                  $._initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  $._initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * A reinitializer may be used after the original initialization step. This is essential to configure modules that
           * are added through upgrades and that require initialization.
           *
           * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
           * cannot be nested. If one is invoked in the context of another, execution will revert.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           *
           * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
           *
           * Emits an {Initialized} event.
           */
          modifier reinitializer(uint64 version) {
              // solhint-disable-next-line var-name-mixedcase
              InitializableStorage storage $ = _getInitializableStorage();
              if ($._initializing || $._initialized >= version) {
                  revert InvalidInitialization();
              }
              $._initialized = version;
              $._initializing = true;
              _;
              $._initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              _checkInitializing();
              _;
          }
          /**
           * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
           */
          function _checkInitializing() internal view virtual {
              if (!_isInitializing()) {
                  revert NotInitializing();
              }
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           *
           * Emits an {Initialized} event the first time it is successfully executed.
           */
          function _disableInitializers() internal virtual {
              // solhint-disable-next-line var-name-mixedcase
              InitializableStorage storage $ = _getInitializableStorage();
              if ($._initializing) {
                  revert InvalidInitialization();
              }
              if ($._initialized != type(uint64).max) {
                  $._initialized = type(uint64).max;
                  emit Initialized(type(uint64).max);
              }
          }
          /**
           * @dev Returns the highest version that has been initialized. See {reinitializer}.
           */
          function _getInitializedVersion() internal view returns (uint64) {
              return _getInitializableStorage()._initialized;
          }
          /**
           * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
           */
          function _isInitializing() internal view returns (bool) {
              return _getInitializableStorage()._initializing;
          }
          /**
           * @dev Returns a pointer to the storage namespace.
           */
          // solhint-disable-next-line var-name-mixedcase
          function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
              assembly {
                  $.slot := INITIALIZABLE_STORAGE
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       *
       * ==== Security Considerations
       *
       * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
       * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
       * considered as an intention to spend the allowance in any specific way. The second is that because permits have
       * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
       * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
       * generally recommended is:
       *
       * ```solidity
       * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
       *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
       *     doThing(..., value);
       * }
       *
       * function doThing(..., uint256 value) public {
       *     token.safeTransferFrom(msg.sender, address(this), value);
       *     ...
       * }
       * ```
       *
       * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
       * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
       * {SafeERC20-safeTransferFrom}).
       *
       * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
       * contracts should have entry points that don't rely on permit.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           *
           * CAUTION: See Security Considerations above.
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
      import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
      import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
      import {Initializable} from "../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * The default value of {decimals} is 18. To change this, you should override
       * this function so it returns a different value.
       *
       * We have followed general OpenZeppelin Contracts guidelines: functions revert
       * instead returning `false` on failure. This behavior is nonetheless
       * conventional and does not conflict with the expectations of ERC-20
       * applications.
       */
      abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors {
          /// @custom:storage-location erc7201:openzeppelin.storage.ERC20
          struct ERC20Storage {
              mapping(address account => uint256) _balances;
              mapping(address account => mapping(address spender => uint256)) _allowances;
              uint256 _totalSupply;
              string _name;
              string _symbol;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;
          function _getERC20Storage() private pure returns (ERC20Storage storage $) {
              assembly {
                  $.slot := ERC20StorageLocation
              }
          }
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
              __ERC20_init_unchained(name_, symbol_);
          }
          function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
              ERC20Storage storage $ = _getERC20Storage();
              $._name = name_;
              $._symbol = symbol_;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual returns (string memory) {
              ERC20Storage storage $ = _getERC20Storage();
              return $._name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual returns (string memory) {
              ERC20Storage storage $ = _getERC20Storage();
              return $._symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the default value returned by this function, unless
           * it's overridden.
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual returns (uint8) {
              return 18;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual returns (uint256) {
              ERC20Storage storage $ = _getERC20Storage();
              return $._totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual returns (uint256) {
              ERC20Storage storage $ = _getERC20Storage();
              return $._balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - the caller must have a balance of at least `value`.
           */
          function transfer(address to, uint256 value) public virtual returns (bool) {
              address owner = _msgSender();
              _transfer(owner, to, value);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual returns (uint256) {
              ERC20Storage storage $ = _getERC20Storage();
              return $._allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
           * `transferFrom`. This is semantically equivalent to an infinite approval.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 value) public virtual returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, value);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Skips emitting an {Approval} event indicating an allowance update. This is not
           * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
           *
           * NOTE: Does not update the allowance if the current allowance
           * is the maximum `uint256`.
           *
           * Requirements:
           *
           * - `from` and `to` cannot be the zero address.
           * - `from` must have a balance of at least `value`.
           * - the caller must have allowance for ``from``'s tokens of at least
           * `value`.
           */
          function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
              address spender = _msgSender();
              _spendAllowance(from, spender, value);
              _transfer(from, to, value);
              return true;
          }
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead.
           */
          function _transfer(address from, address to, uint256 value) internal {
              if (from == address(0)) {
                  revert ERC20InvalidSender(address(0));
              }
              if (to == address(0)) {
                  revert ERC20InvalidReceiver(address(0));
              }
              _update(from, to, value);
          }
          /**
           * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
           * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
           * this function.
           *
           * Emits a {Transfer} event.
           */
          function _update(address from, address to, uint256 value) internal virtual {
              ERC20Storage storage $ = _getERC20Storage();
              if (from == address(0)) {
                  // Overflow check required: The rest of the code assumes that totalSupply never overflows
                  $._totalSupply += value;
              } else {
                  uint256 fromBalance = $._balances[from];
                  if (fromBalance < value) {
                      revert ERC20InsufficientBalance(from, fromBalance, value);
                  }
                  unchecked {
                      // Overflow not possible: value <= fromBalance <= totalSupply.
                      $._balances[from] = fromBalance - value;
                  }
              }
              if (to == address(0)) {
                  unchecked {
                      // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                      $._totalSupply -= value;
                  }
              } else {
                  unchecked {
                      // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                      $._balances[to] += value;
                  }
              }
              emit Transfer(from, to, value);
          }
          /**
           * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
           * Relies on the `_update` mechanism
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead.
           */
          function _mint(address account, uint256 value) internal {
              if (account == address(0)) {
                  revert ERC20InvalidReceiver(address(0));
              }
              _update(address(0), account, value);
          }
          /**
           * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
           * Relies on the `_update` mechanism.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead
           */
          function _burn(address account, uint256 value) internal {
              if (account == address(0)) {
                  revert ERC20InvalidSender(address(0));
              }
              _update(account, address(0), value);
          }
          /**
           * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           *
           * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
           */
          function _approve(address owner, address spender, uint256 value) internal {
              _approve(owner, spender, value, true);
          }
          /**
           * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
           *
           * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
           * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
           * `Approval` event during `transferFrom` operations.
           *
           * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
           * true using the following override:
           *
           * ```solidity
           * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
           *     super._approve(owner, spender, value, true);
           * }
           * ```
           *
           * Requirements are the same as {_approve}.
           */
          function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
              ERC20Storage storage $ = _getERC20Storage();
              if (owner == address(0)) {
                  revert ERC20InvalidApprover(address(0));
              }
              if (spender == address(0)) {
                  revert ERC20InvalidSpender(address(0));
              }
              $._allowances[owner][spender] = value;
              if (emitEvent) {
                  emit Approval(owner, spender, value);
              }
          }
          /**
           * @dev Updates `owner` s allowance for `spender` based on spent `value`.
           *
           * Does not update the allowance value in case of infinite allowance.
           * Revert if not enough allowance is available.
           *
           * Does not emit an {Approval} event.
           */
          function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance < type(uint256).max) {
                  if (currentAllowance < value) {
                      revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                  }
                  unchecked {
                      _approve(owner, spender, currentAllowance - value, false);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
       *
       * These functions can be used to verify that a message was signed by the holder
       * of the private keys of a given address.
       */
      library ECDSA {
          enum RecoverError {
              NoError,
              InvalidSignature,
              InvalidSignatureLength,
              InvalidSignatureS
          }
          /**
           * @dev The signature derives the `address(0)`.
           */
          error ECDSAInvalidSignature();
          /**
           * @dev The signature has an invalid length.
           */
          error ECDSAInvalidSignatureLength(uint256 length);
          /**
           * @dev The signature has an S value that is in the upper half order.
           */
          error ECDSAInvalidSignatureS(bytes32 s);
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
           * return address(0) without also returning an error description. Errors are documented using an enum (error type)
           * and a bytes32 providing additional information about the error.
           *
           * If no error is returned, then the address can be used for verification purposes.
           *
           * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
           *
           * Documentation for signature generation:
           * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
           * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
           */
          function tryRecover(
              bytes32 hash,
              bytes memory signature
          ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
              if (signature.length == 65) {
                  bytes32 r;
                  bytes32 s;
                  uint8 v;
                  // ecrecover takes the signature parameters, and the only way to get them
                  // currently is to use assembly.
                  assembly ("memory-safe") {
                      r := mload(add(signature, 0x20))
                      s := mload(add(signature, 0x40))
                      v := byte(0, mload(add(signature, 0x60)))
                  }
                  return tryRecover(hash, v, r, s);
              } else {
                  return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
              }
          }
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature`. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
           */
          function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
           *
           * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
           */
          function tryRecover(
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
              unchecked {
                  bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                  // We do not check for an overflow here since the shift operation results in 0 or 1.
                  uint8 v = uint8((uint256(vs) >> 255) + 27);
                  return tryRecover(hash, v, r, s);
              }
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
           */
          function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function tryRecover(
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
              // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
              // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
              // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
              // signatures from current libraries generate a unique signature with an s-value in the lower half order.
              //
              // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
              // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
              // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
              // these malleable signatures as well.
              if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                  return (address(0), RecoverError.InvalidSignatureS, s);
              }
              // If the signature is valid (and not malleable), return the signer address
              address signer = ecrecover(hash, v, r, s);
              if (signer == address(0)) {
                  return (address(0), RecoverError.InvalidSignature, bytes32(0));
              }
              return (signer, RecoverError.NoError, bytes32(0));
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
           */
          function _throwError(RecoverError error, bytes32 errorArg) private pure {
              if (error == RecoverError.NoError) {
                  return; // no error: do nothing
              } else if (error == RecoverError.InvalidSignature) {
                  revert ECDSAInvalidSignature();
              } else if (error == RecoverError.InvalidSignatureLength) {
                  revert ECDSAInvalidSignatureLength(uint256(errorArg));
              } else if (error == RecoverError.InvalidSignatureS) {
                  revert ECDSAInvalidSignatureS(errorArg);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)
      pragma solidity ^0.8.20;
      import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
      import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol";
      import {Initializable} from "../../proxy/utils/Initializable.sol";
      /**
       * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
       *
       * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
       * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
       * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
       * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
       *
       * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
       * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
       * ({_hashTypedDataV4}).
       *
       * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
       * the chain id to protect against replay attacks on an eventual fork of the chain.
       *
       * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
       * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
       *
       * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
       * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
       * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
       */
      abstract contract EIP712Upgradeable is Initializable, IERC5267 {
          bytes32 private constant TYPE_HASH =
              keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
          /// @custom:storage-location erc7201:openzeppelin.storage.EIP712
          struct EIP712Storage {
              /// @custom:oz-renamed-from _HASHED_NAME
              bytes32 _hashedName;
              /// @custom:oz-renamed-from _HASHED_VERSION
              bytes32 _hashedVersion;
              string _name;
              string _version;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100;
          function _getEIP712Storage() private pure returns (EIP712Storage storage $) {
              assembly {
                  $.slot := EIP712StorageLocation
              }
          }
          /**
           * @dev Initializes the domain separator and parameter caches.
           *
           * The meaning of `name` and `version` is specified in
           * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
           *
           * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
           * - `version`: the current major version of the signing domain.
           *
           * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
           * contract upgrade].
           */
          function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
              __EIP712_init_unchained(name, version);
          }
          function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
              EIP712Storage storage $ = _getEIP712Storage();
              $._name = name;
              $._version = version;
              // Reset prior values in storage if upgrading
              $._hashedName = 0;
              $._hashedVersion = 0;
          }
          /**
           * @dev Returns the domain separator for the current chain.
           */
          function _domainSeparatorV4() internal view returns (bytes32) {
              return _buildDomainSeparator();
          }
          function _buildDomainSeparator() private view returns (bytes32) {
              return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
          }
          /**
           * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
           * function returns the hash of the fully encoded EIP712 message for this domain.
           *
           * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
           *
           * ```solidity
           * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
           *     keccak256("Mail(address to,string contents)"),
           *     mailTo,
           *     keccak256(bytes(mailContents))
           * )));
           * address signer = ECDSA.recover(digest, signature);
           * ```
           */
          function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
              return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
          }
          /**
           * @dev See {IERC-5267}.
           */
          function eip712Domain()
              public
              view
              virtual
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              )
          {
              EIP712Storage storage $ = _getEIP712Storage();
              // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
              // and the EIP712 domain is not reliable, as it will be missing name and version.
              require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized");
              return (
                  hex"0f", // 01111
                  _EIP712Name(),
                  _EIP712Version(),
                  block.chainid,
                  address(this),
                  bytes32(0),
                  new uint256[](0)
              );
          }
          /**
           * @dev The name parameter for the EIP712 domain.
           *
           * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
           * are a concern.
           */
          function _EIP712Name() internal view virtual returns (string memory) {
              EIP712Storage storage $ = _getEIP712Storage();
              return $._name;
          }
          /**
           * @dev The version parameter for the EIP712 domain.
           *
           * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
           * are a concern.
           */
          function _EIP712Version() internal view virtual returns (string memory) {
              EIP712Storage storage $ = _getEIP712Storage();
              return $._version;
          }
          /**
           * @dev The hash of the name parameter for the EIP712 domain.
           *
           * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
           */
          function _EIP712NameHash() internal view returns (bytes32) {
              EIP712Storage storage $ = _getEIP712Storage();
              string memory name = _EIP712Name();
              if (bytes(name).length > 0) {
                  return keccak256(bytes(name));
              } else {
                  // If the name is empty, the contract may have been upgraded without initializing the new storage.
                  // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
                  bytes32 hashedName = $._hashedName;
                  if (hashedName != 0) {
                      return hashedName;
                  } else {
                      return keccak256("");
                  }
              }
          }
          /**
           * @dev The hash of the version parameter for the EIP712 domain.
           *
           * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
           */
          function _EIP712VersionHash() internal view returns (bytes32) {
              EIP712Storage storage $ = _getEIP712Storage();
              string memory version = _EIP712Version();
              if (bytes(version).length > 0) {
                  return keccak256(bytes(version));
              } else {
                  // If the version is empty, the contract may have been upgraded without initializing the new storage.
                  // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
                  bytes32 hashedVersion = $._hashedVersion;
                  if (hashedVersion != 0) {
                      return hashedVersion;
                  } else {
                      return keccak256("");
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
      pragma solidity ^0.8.20;
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides tracking nonces for addresses. Nonces will only increment.
       */
      abstract contract NoncesUpgradeable is Initializable {
          /**
           * @dev The nonce used for an `account` is not the expected current nonce.
           */
          error InvalidAccountNonce(address account, uint256 currentNonce);
          /// @custom:storage-location erc7201:openzeppelin.storage.Nonces
          struct NoncesStorage {
              mapping(address account => uint256) _nonces;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Nonces")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant NoncesStorageLocation = 0x5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00;
          function _getNoncesStorage() private pure returns (NoncesStorage storage $) {
              assembly {
                  $.slot := NoncesStorageLocation
              }
          }
          function __Nonces_init() internal onlyInitializing {
          }
          function __Nonces_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev Returns the next unused nonce for an address.
           */
          function nonces(address owner) public view virtual returns (uint256) {
              NoncesStorage storage $ = _getNoncesStorage();
              return $._nonces[owner];
          }
          /**
           * @dev Consumes a nonce.
           *
           * Returns the current value and increments nonce.
           */
          function _useNonce(address owner) internal virtual returns (uint256) {
              NoncesStorage storage $ = _getNoncesStorage();
              // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
              // decremented or reset. This guarantees that the nonce never overflows.
              unchecked {
                  // It is important to do x++ and not ++x here.
                  return $._nonces[owner]++;
              }
          }
          /**
           * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
           */
          function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
              uint256 current = _useNonce(owner);
              if (nonce != current) {
                  revert InvalidAccountNonce(owner, current);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "../IERC20.sol";
      /**
       * @dev Interface for the optional metadata functions from the ERC-20 standard.
       */
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC-165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[ERC].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165 {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC-20 standard as defined in the ERC.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the value of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the value of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves a `value` amount of tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 value) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
           * caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 value) external returns (bool);
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to` using the
           * allowance mechanism. `value` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 value) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard ERC-20 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
       */
      interface IERC20Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC20InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC20InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           * @param allowance Amount of tokens a `spender` is allowed to operate with.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC20InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC20InvalidSpender(address spender);
      }
      /**
       * @dev Standard ERC-721 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
       */
      interface IERC721Errors {
          /**
           * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
           * Used in balance queries.
           * @param owner Address of the current owner of a token.
           */
          error ERC721InvalidOwner(address owner);
          /**
           * @dev Indicates a `tokenId` whose `owner` is the zero address.
           * @param tokenId Identifier number of a token.
           */
          error ERC721NonexistentToken(uint256 tokenId);
          /**
           * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param tokenId Identifier number of a token.
           * @param owner Address of the current owner of a token.
           */
          error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC721InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC721InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param tokenId Identifier number of a token.
           */
          error ERC721InsufficientApproval(address operator, uint256 tokenId);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC721InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC721InvalidOperator(address operator);
      }
      /**
       * @dev Standard ERC-1155 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
       */
      interface IERC1155Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           * @param tokenId Identifier number of a token.
           */
          error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC1155InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC1155InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param owner Address of the current owner of a token.
           */
          error ERC1155MissingApprovalForAll(address operator, address owner);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC1155InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC1155InvalidOperator(address operator);
          /**
           * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
           * Used in batch transfers.
           * @param idsLength Length of the array of token identifiers
           * @param valuesLength Length of the array of token amounts
           */
          error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
      pragma solidity ^0.8.20;
      import {Strings} from "../Strings.sol";
      /**
       * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
       *
       * The library provides methods for generating a hash of a message that conforms to the
       * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
       * specifications.
       */
      library MessageHashUtils {
          /**
           * @dev Returns the keccak256 digest of an ERC-191 signed data with version
           * `0x45` (`personal_sign` messages).
           *
           * The digest is calculated by prefixing a bytes32 `messageHash` with
           * `"\\x19Ethereum Signed Message:\
      32"` and hashing the result. It corresponds with the
           * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
           *
           * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
           * keccak256, although any bytes32 value can be safely used because the final digest will
           * be re-hashed.
           *
           * See {ECDSA-recover}.
           */
          function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
              assembly ("memory-safe") {
                  mstore(0x00, "\\x19Ethereum Signed Message:\
      32") // 32 is the bytes-length of messageHash
                  mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                  digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
              }
          }
          /**
           * @dev Returns the keccak256 digest of an ERC-191 signed data with version
           * `0x45` (`personal_sign` messages).
           *
           * The digest is calculated by prefixing an arbitrary `message` with
           * `"\\x19Ethereum Signed Message:\
      " + len(message)` and hashing the result. It corresponds with the
           * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
           *
           * See {ECDSA-recover}.
           */
          function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
              return
                  keccak256(bytes.concat("\\x19Ethereum Signed Message:\
      ", bytes(Strings.toString(message.length)), message));
          }
          /**
           * @dev Returns the keccak256 digest of an ERC-191 signed data with version
           * `0x00` (data with intended validator).
           *
           * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
           * `validator` address. Then hashing the result.
           *
           * See {ECDSA-recover}.
           */
          function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked(hex"19_00", validator, data));
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
           *
           * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
           * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
           * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
           *
           * See {ECDSA-recover}.
           */
          function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
              assembly ("memory-safe") {
                  let ptr := mload(0x40)
                  mstore(ptr, hex"19_01")
                  mstore(add(ptr, 0x02), domainSeparator)
                  mstore(add(ptr, 0x22), structHash)
                  digest := keccak256(ptr, 0x42)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
      pragma solidity ^0.8.20;
      interface IERC5267 {
          /**
           * @dev MAY be emitted to signal that the domain could have changed.
           */
          event EIP712DomainChanged();
          /**
           * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
           * signature.
           */
          function eip712Domain()
              external
              view
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              );
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
      pragma solidity ^0.8.20;
      import {Math} from "./math/Math.sol";
      import {SignedMath} from "./math/SignedMath.sol";
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant HEX_DIGITS = "0123456789abcdef";
          uint8 private constant ADDRESS_LENGTH = 20;
          /**
           * @dev The `value` string doesn't fit in the specified `length`.
           */
          error StringsInsufficientHexLength(uint256 value, uint256 length);
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = Math.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  assembly ("memory-safe") {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      assembly ("memory-safe") {
                          mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `int256` to its ASCII `string` decimal representation.
           */
          function toStringSigned(int256 value) internal pure returns (string memory) {
              return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, Math.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              uint256 localValue = value;
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = HEX_DIGITS[localValue & 0xf];
                  localValue >>= 4;
              }
              if (localValue != 0) {
                  revert StringsInsufficientHexLength(value, length);
              }
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
           * representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
           * representation, according to EIP-55.
           */
          function toChecksumHexString(address addr) internal pure returns (string memory) {
              bytes memory buffer = bytes(toHexString(addr));
              // hash the hex part of buffer (skip length + 2 bytes, length 40)
              uint256 hashValue;
              assembly ("memory-safe") {
                  hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
              }
              for (uint256 i = 41; i > 1; --i) {
                  // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
                  if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                      // case shift by xoring with 0x20
                      buffer[i] ^= 0x20;
                  }
                  hashValue >>= 4;
              }
              return string(buffer);
          }
          /**
           * @dev Returns true if the two strings are equal.
           */
          function equal(string memory a, string memory b) internal pure returns (bool) {
              return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
      pragma solidity ^0.8.20;
      import {Panic} from "../Panic.sol";
      import {SafeCast} from "./SafeCast.sol";
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Floor, // Toward negative infinity
              Ceil, // Toward positive infinity
              Trunc, // Toward zero
              Expand // Away from zero
          }
          /**
           * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
           */
          function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  uint256 c = a + b;
                  if (c < a) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
           */
          function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b > a) return (false, 0);
                  return (true, a - b);
              }
          }
          /**
           * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
           */
          function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) return (true, 0);
                  uint256 c = a * b;
                  if (c / a != b) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
           */
          function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a / b);
              }
          }
          /**
           * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
           */
          function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a % b);
              }
          }
          /**
           * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
           *
           * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
           * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
           * one branch when needed, making this function more expensive.
           */
          function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
              unchecked {
                  // branchless ternary works because:
                  // b ^ (a ^ b) == a
                  // b ^ 0 == b
                  return b ^ ((a ^ b) * SafeCast.toUint(condition));
              }
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return ternary(a > b, a, b);
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return ternary(a < b, a, b);
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds towards infinity instead
           * of rounding towards zero.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              if (b == 0) {
                  // Guarantee the same behavior as in a regular Solidity division.
                  Panic.panic(Panic.DIVISION_BY_ZERO);
              }
              // The following calculation ensures accurate ceiling division without overflow.
              // Since a is non-zero, (a - 1) / b will not overflow.
              // The largest possible result occurs when (a - 1) / b is type(uint256).max,
              // but the largest value we can obtain is type(uint256).max - 1, which happens
              // when a = type(uint256).max and b = 1.
              unchecked {
                  return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
              }
          }
          /**
           * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
           * denominator == 0.
           *
           * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
           * Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
                  // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2²⁵⁶ + prod0.
                  uint256 prod0 = x * y; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                      // The surrounding unchecked block does not change this fact.
                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
                  if (denominator <= prod1) {
                      Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
                  }
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                  // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                  uint256 twos = denominator & (0 - denominator);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
                  // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                  // works in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2⁸
                  inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
                  inverse *= 2 - denominator * inverse; // inverse mod 2³²
                  inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
                  inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
                  inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
                  // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
          }
          /**
           * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
           *
           * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
           * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
           *
           * If the input value is not inversible, 0 is returned.
           *
           * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
           * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
           */
          function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
              unchecked {
                  if (n == 0) return 0;
                  // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
                  // Used to compute integers x and y such that: ax + ny = gcd(a, n).
                  // When the gcd is 1, then the inverse of a modulo n exists and it's x.
                  // ax + ny = 1
                  // ax = 1 + (-y)n
                  // ax ≡ 1 (mod n) # x is the inverse of a modulo n
                  // If the remainder is 0 the gcd is n right away.
                  uint256 remainder = a % n;
                  uint256 gcd = n;
                  // Therefore the initial coefficients are:
                  // ax + ny = gcd(a, n) = n
                  // 0a + 1n = n
                  int256 x = 0;
                  int256 y = 1;
                  while (remainder != 0) {
                      uint256 quotient = gcd / remainder;
                      (gcd, remainder) = (
                          // The old remainder is the next gcd to try.
                          remainder,
                          // Compute the next remainder.
                          // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                          // where gcd is at most n (capped to type(uint256).max)
                          gcd - remainder * quotient
                      );
                      (x, y) = (
                          // Increment the coefficient of a.
                          y,
                          // Decrement the coefficient of n.
                          // Can overflow, but the result is casted to uint256 so that the
                          // next value of y is "wrapped around" to a value between 0 and n - 1.
                          x - y * int256(quotient)
                      );
                  }
                  if (gcd != 1) return 0; // No inverse exists.
                  return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
              }
          }
          /**
           * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
           *
           * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
           * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
           * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
           *
           * NOTE: this function does NOT check that `p` is a prime greater than `2`.
           */
          function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
              unchecked {
                  return Math.modExp(a, p - 2, p);
              }
          }
          /**
           * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
           *
           * Requirements:
           * - modulus can't be zero
           * - underlying staticcall to precompile must succeed
           *
           * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
           * sure the chain you're using it on supports the precompiled contract for modular exponentiation
           * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
           * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
           * interpreted as 0.
           */
          function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
              (bool success, uint256 result) = tryModExp(b, e, m);
              if (!success) {
                  Panic.panic(Panic.DIVISION_BY_ZERO);
              }
              return result;
          }
          /**
           * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
           * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
           * to operate modulo 0 or if the underlying precompile reverted.
           *
           * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
           * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
           * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
           * of a revert, but the result may be incorrectly interpreted as 0.
           */
          function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
              if (m == 0) return (false, 0);
              assembly ("memory-safe") {
                  let ptr := mload(0x40)
                  // | Offset    | Content    | Content (Hex)                                                      |
                  // |-----------|------------|--------------------------------------------------------------------|
                  // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                  // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                  // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                  // | 0x60:0x7f | value of b | 0x<.............................................................b> |
                  // | 0x80:0x9f | value of e | 0x<.............................................................e> |
                  // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
                  mstore(ptr, 0x20)
                  mstore(add(ptr, 0x20), 0x20)
                  mstore(add(ptr, 0x40), 0x20)
                  mstore(add(ptr, 0x60), b)
                  mstore(add(ptr, 0x80), e)
                  mstore(add(ptr, 0xa0), m)
                  // Given the result < m, it's guaranteed to fit in 32 bytes,
                  // so we can use the memory scratch space located at offset 0.
                  success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
                  result := mload(0x00)
              }
          }
          /**
           * @dev Variant of {modExp} that supports inputs of arbitrary length.
           */
          function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
              (bool success, bytes memory result) = tryModExp(b, e, m);
              if (!success) {
                  Panic.panic(Panic.DIVISION_BY_ZERO);
              }
              return result;
          }
          /**
           * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
           */
          function tryModExp(
              bytes memory b,
              bytes memory e,
              bytes memory m
          ) internal view returns (bool success, bytes memory result) {
              if (_zeroBytes(m)) return (false, new bytes(0));
              uint256 mLen = m.length;
              // Encode call args in result and move the free memory pointer
              result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
              assembly ("memory-safe") {
                  let dataPtr := add(result, 0x20)
                  // Write result on top of args to avoid allocating extra memory.
                  success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
                  // Overwrite the length.
                  // result.length > returndatasize() is guaranteed because returndatasize() == m.length
                  mstore(result, mLen)
                  // Set the memory pointer after the returned data.
                  mstore(0x40, add(dataPtr, mLen))
              }
          }
          /**
           * @dev Returns whether the provided byte array is zero.
           */
          function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
              for (uint256 i = 0; i < byteArray.length; ++i) {
                  if (byteArray[i] != 0) {
                      return false;
                  }
              }
              return true;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
           * towards zero.
           *
           * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
           * using integer operations.
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              unchecked {
                  // Take care of easy edge cases when a == 0 or a == 1
                  if (a <= 1) {
                      return a;
                  }
                  // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
                  // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
                  // the current value as `ε_n = | x_n - sqrt(a) |`.
                  //
                  // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
                  // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
                  // bigger than any uint256.
                  //
                  // By noticing that
                  // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
                  // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
                  // to the msb function.
                  uint256 aa = a;
                  uint256 xn = 1;
                  if (aa >= (1 << 128)) {
                      aa >>= 128;
                      xn <<= 64;
                  }
                  if (aa >= (1 << 64)) {
                      aa >>= 64;
                      xn <<= 32;
                  }
                  if (aa >= (1 << 32)) {
                      aa >>= 32;
                      xn <<= 16;
                  }
                  if (aa >= (1 << 16)) {
                      aa >>= 16;
                      xn <<= 8;
                  }
                  if (aa >= (1 << 8)) {
                      aa >>= 8;
                      xn <<= 4;
                  }
                  if (aa >= (1 << 4)) {
                      aa >>= 4;
                      xn <<= 2;
                  }
                  if (aa >= (1 << 2)) {
                      xn <<= 1;
                  }
                  // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
                  //
                  // We can refine our estimation by noticing that the middle of that interval minimizes the error.
                  // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
                  // This is going to be our x_0 (and ε_0)
                  xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
                  // From here, Newton's method give us:
                  // x_{n+1} = (x_n + a / x_n) / 2
                  //
                  // One should note that:
                  // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
                  //              = ((x_n² + a) / (2 * x_n))² - a
                  //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
                  //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
                  //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
                  //              = (x_n² - a)² / (2 * x_n)²
                  //              = ((x_n² - a) / (2 * x_n))²
                  //              ≥ 0
                  // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
                  //
                  // This gives us the proof of quadratic convergence of the sequence:
                  // ε_{n+1} = | x_{n+1} - sqrt(a) |
                  //         = | (x_n + a / x_n) / 2 - sqrt(a) |
                  //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
                  //         = | (x_n - sqrt(a))² / (2 * x_n) |
                  //         = | ε_n² / (2 * x_n) |
                  //         = ε_n² / | (2 * x_n) |
                  //
                  // For the first iteration, we have a special case where x_0 is known:
                  // ε_1 = ε_0² / | (2 * x_0) |
                  //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
                  //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
                  //     ≤ 2**(e-3) / 3
                  //     ≤ 2**(e-3-log2(3))
                  //     ≤ 2**(e-4.5)
                  //
                  // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
                  // ε_{n+1} = ε_n² / | (2 * x_n) |
                  //         ≤ (2**(e-k))² / (2 * 2**(e-1))
                  //         ≤ 2**(2*e-2*k) / 2**e
                  //         ≤ 2**(e-2*k)
                  xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
                  xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
                  xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
                  xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
                  xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
                  xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72
                  // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
                  // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
                  // sqrt(a) or sqrt(a) + 1.
                  return xn - SafeCast.toUint(xn > a / xn);
              }
          }
          /**
           * @dev Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
              }
          }
          /**
           * @dev Return the log in base 2 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              uint256 exp;
              unchecked {
                  exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
                  value >>= exp;
                  result += exp;
                  result += SafeCast.toUint(value > 1);
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
              }
          }
          /**
           * @dev Return the log in base 10 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
              }
          }
          /**
           * @dev Return the log in base 256 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              uint256 isGt;
              unchecked {
                  isGt = SafeCast.toUint(value > (1 << 128) - 1);
                  value >>= isGt * 128;
                  result += isGt * 16;
                  isGt = SafeCast.toUint(value > (1 << 64) - 1);
                  value >>= isGt * 64;
                  result += isGt * 8;
                  isGt = SafeCast.toUint(value > (1 << 32) - 1);
                  value >>= isGt * 32;
                  result += isGt * 4;
                  isGt = SafeCast.toUint(value > (1 << 16) - 1);
                  value >>= isGt * 16;
                  result += isGt * 2;
                  result += SafeCast.toUint(value > (1 << 8) - 1);
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
              }
          }
          /**
           * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
           */
          function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
              return uint8(rounding) % 2 == 1;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.20;
      import {SafeCast} from "./SafeCast.sol";
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
           *
           * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
           * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
           * one branch when needed, making this function more expensive.
           */
          function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
              unchecked {
                  // branchless ternary works because:
                  // b ^ (a ^ b) == a
                  // b ^ 0 == b
                  return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
              }
          }
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return ternary(a > b, a, b);
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return ternary(a < b, a, b);
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
                  // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
                  // taking advantage of the most significant (or "sign" bit) in two's complement representation.
                  // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
                  // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
                  int256 mask = n >> 255;
                  // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
                  return uint256((n + mask) ^ mask);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Helper library for emitting standardized panic codes.
       *
       * ```solidity
       * contract Example {
       *      using Panic for uint256;
       *
       *      // Use any of the declared internal constants
       *      function foo() { Panic.GENERIC.panic(); }
       *
       *      // Alternatively
       *      function foo() { Panic.panic(Panic.GENERIC); }
       * }
       * ```
       *
       * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
       *
       * _Available since v5.1._
       */
      // slither-disable-next-line unused-state
      library Panic {
          /// @dev generic / unspecified error
          uint256 internal constant GENERIC = 0x00;
          /// @dev used by the assert() builtin
          uint256 internal constant ASSERT = 0x01;
          /// @dev arithmetic underflow or overflow
          uint256 internal constant UNDER_OVERFLOW = 0x11;
          /// @dev division or modulo by zero
          uint256 internal constant DIVISION_BY_ZERO = 0x12;
          /// @dev enum conversion error
          uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
          /// @dev invalid encoding in storage
          uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
          /// @dev empty array pop
          uint256 internal constant EMPTY_ARRAY_POP = 0x31;
          /// @dev array out of bounds access
          uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
          /// @dev resource error (too large allocation or too large array)
          uint256 internal constant RESOURCE_ERROR = 0x41;
          /// @dev calling invalid internal function
          uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
          /// @dev Reverts with a panic code. Recommended to use with
          /// the internal constants with predefined codes.
          function panic(uint256 code) internal pure {
              assembly ("memory-safe") {
                  mstore(0x00, 0x4e487b71)
                  mstore(0x20, code)
                  revert(0x1c, 0x24)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
      // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
       * checks.
       *
       * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
       * easily result in undesired exploitation or bugs, since developers usually
       * assume that overflows raise errors. `SafeCast` restores this intuition by
       * reverting the transaction when such an operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       */
      library SafeCast {
          /**
           * @dev Value doesn't fit in an uint of `bits` size.
           */
          error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
          /**
           * @dev An int value doesn't fit in an uint of `bits` size.
           */
          error SafeCastOverflowedIntToUint(int256 value);
          /**
           * @dev Value doesn't fit in an int of `bits` size.
           */
          error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
          /**
           * @dev An uint value doesn't fit in an int of `bits` size.
           */
          error SafeCastOverflowedUintToInt(uint256 value);
          /**
           * @dev Returns the downcasted uint248 from uint256, reverting on
           * overflow (when the input is greater than largest uint248).
           *
           * Counterpart to Solidity's `uint248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           */
          function toUint248(uint256 value) internal pure returns (uint248) {
              if (value > type(uint248).max) {
                  revert SafeCastOverflowedUintDowncast(248, value);
              }
              return uint248(value);
          }
          /**
           * @dev Returns the downcasted uint240 from uint256, reverting on
           * overflow (when the input is greater than largest uint240).
           *
           * Counterpart to Solidity's `uint240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           */
          function toUint240(uint256 value) internal pure returns (uint240) {
              if (value > type(uint240).max) {
                  revert SafeCastOverflowedUintDowncast(240, value);
              }
              return uint240(value);
          }
          /**
           * @dev Returns the downcasted uint232 from uint256, reverting on
           * overflow (when the input is greater than largest uint232).
           *
           * Counterpart to Solidity's `uint232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           */
          function toUint232(uint256 value) internal pure returns (uint232) {
              if (value > type(uint232).max) {
                  revert SafeCastOverflowedUintDowncast(232, value);
              }
              return uint232(value);
          }
          /**
           * @dev Returns the downcasted uint224 from uint256, reverting on
           * overflow (when the input is greater than largest uint224).
           *
           * Counterpart to Solidity's `uint224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           */
          function toUint224(uint256 value) internal pure returns (uint224) {
              if (value > type(uint224).max) {
                  revert SafeCastOverflowedUintDowncast(224, value);
              }
              return uint224(value);
          }
          /**
           * @dev Returns the downcasted uint216 from uint256, reverting on
           * overflow (when the input is greater than largest uint216).
           *
           * Counterpart to Solidity's `uint216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           */
          function toUint216(uint256 value) internal pure returns (uint216) {
              if (value > type(uint216).max) {
                  revert SafeCastOverflowedUintDowncast(216, value);
              }
              return uint216(value);
          }
          /**
           * @dev Returns the downcasted uint208 from uint256, reverting on
           * overflow (when the input is greater than largest uint208).
           *
           * Counterpart to Solidity's `uint208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           */
          function toUint208(uint256 value) internal pure returns (uint208) {
              if (value > type(uint208).max) {
                  revert SafeCastOverflowedUintDowncast(208, value);
              }
              return uint208(value);
          }
          /**
           * @dev Returns the downcasted uint200 from uint256, reverting on
           * overflow (when the input is greater than largest uint200).
           *
           * Counterpart to Solidity's `uint200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           */
          function toUint200(uint256 value) internal pure returns (uint200) {
              if (value > type(uint200).max) {
                  revert SafeCastOverflowedUintDowncast(200, value);
              }
              return uint200(value);
          }
          /**
           * @dev Returns the downcasted uint192 from uint256, reverting on
           * overflow (when the input is greater than largest uint192).
           *
           * Counterpart to Solidity's `uint192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           */
          function toUint192(uint256 value) internal pure returns (uint192) {
              if (value > type(uint192).max) {
                  revert SafeCastOverflowedUintDowncast(192, value);
              }
              return uint192(value);
          }
          /**
           * @dev Returns the downcasted uint184 from uint256, reverting on
           * overflow (when the input is greater than largest uint184).
           *
           * Counterpart to Solidity's `uint184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           */
          function toUint184(uint256 value) internal pure returns (uint184) {
              if (value > type(uint184).max) {
                  revert SafeCastOverflowedUintDowncast(184, value);
              }
              return uint184(value);
          }
          /**
           * @dev Returns the downcasted uint176 from uint256, reverting on
           * overflow (when the input is greater than largest uint176).
           *
           * Counterpart to Solidity's `uint176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           */
          function toUint176(uint256 value) internal pure returns (uint176) {
              if (value > type(uint176).max) {
                  revert SafeCastOverflowedUintDowncast(176, value);
              }
              return uint176(value);
          }
          /**
           * @dev Returns the downcasted uint168 from uint256, reverting on
           * overflow (when the input is greater than largest uint168).
           *
           * Counterpart to Solidity's `uint168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           */
          function toUint168(uint256 value) internal pure returns (uint168) {
              if (value > type(uint168).max) {
                  revert SafeCastOverflowedUintDowncast(168, value);
              }
              return uint168(value);
          }
          /**
           * @dev Returns the downcasted uint160 from uint256, reverting on
           * overflow (when the input is greater than largest uint160).
           *
           * Counterpart to Solidity's `uint160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           */
          function toUint160(uint256 value) internal pure returns (uint160) {
              if (value > type(uint160).max) {
                  revert SafeCastOverflowedUintDowncast(160, value);
              }
              return uint160(value);
          }
          /**
           * @dev Returns the downcasted uint152 from uint256, reverting on
           * overflow (when the input is greater than largest uint152).
           *
           * Counterpart to Solidity's `uint152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           */
          function toUint152(uint256 value) internal pure returns (uint152) {
              if (value > type(uint152).max) {
                  revert SafeCastOverflowedUintDowncast(152, value);
              }
              return uint152(value);
          }
          /**
           * @dev Returns the downcasted uint144 from uint256, reverting on
           * overflow (when the input is greater than largest uint144).
           *
           * Counterpart to Solidity's `uint144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           */
          function toUint144(uint256 value) internal pure returns (uint144) {
              if (value > type(uint144).max) {
                  revert SafeCastOverflowedUintDowncast(144, value);
              }
              return uint144(value);
          }
          /**
           * @dev Returns the downcasted uint136 from uint256, reverting on
           * overflow (when the input is greater than largest uint136).
           *
           * Counterpart to Solidity's `uint136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           */
          function toUint136(uint256 value) internal pure returns (uint136) {
              if (value > type(uint136).max) {
                  revert SafeCastOverflowedUintDowncast(136, value);
              }
              return uint136(value);
          }
          /**
           * @dev Returns the downcasted uint128 from uint256, reverting on
           * overflow (when the input is greater than largest uint128).
           *
           * Counterpart to Solidity's `uint128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           */
          function toUint128(uint256 value) internal pure returns (uint128) {
              if (value > type(uint128).max) {
                  revert SafeCastOverflowedUintDowncast(128, value);
              }
              return uint128(value);
          }
          /**
           * @dev Returns the downcasted uint120 from uint256, reverting on
           * overflow (when the input is greater than largest uint120).
           *
           * Counterpart to Solidity's `uint120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           */
          function toUint120(uint256 value) internal pure returns (uint120) {
              if (value > type(uint120).max) {
                  revert SafeCastOverflowedUintDowncast(120, value);
              }
              return uint120(value);
          }
          /**
           * @dev Returns the downcasted uint112 from uint256, reverting on
           * overflow (when the input is greater than largest uint112).
           *
           * Counterpart to Solidity's `uint112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           */
          function toUint112(uint256 value) internal pure returns (uint112) {
              if (value > type(uint112).max) {
                  revert SafeCastOverflowedUintDowncast(112, value);
              }
              return uint112(value);
          }
          /**
           * @dev Returns the downcasted uint104 from uint256, reverting on
           * overflow (when the input is greater than largest uint104).
           *
           * Counterpart to Solidity's `uint104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           */
          function toUint104(uint256 value) internal pure returns (uint104) {
              if (value > type(uint104).max) {
                  revert SafeCastOverflowedUintDowncast(104, value);
              }
              return uint104(value);
          }
          /**
           * @dev Returns the downcasted uint96 from uint256, reverting on
           * overflow (when the input is greater than largest uint96).
           *
           * Counterpart to Solidity's `uint96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           */
          function toUint96(uint256 value) internal pure returns (uint96) {
              if (value > type(uint96).max) {
                  revert SafeCastOverflowedUintDowncast(96, value);
              }
              return uint96(value);
          }
          /**
           * @dev Returns the downcasted uint88 from uint256, reverting on
           * overflow (when the input is greater than largest uint88).
           *
           * Counterpart to Solidity's `uint88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           */
          function toUint88(uint256 value) internal pure returns (uint88) {
              if (value > type(uint88).max) {
                  revert SafeCastOverflowedUintDowncast(88, value);
              }
              return uint88(value);
          }
          /**
           * @dev Returns the downcasted uint80 from uint256, reverting on
           * overflow (when the input is greater than largest uint80).
           *
           * Counterpart to Solidity's `uint80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           */
          function toUint80(uint256 value) internal pure returns (uint80) {
              if (value > type(uint80).max) {
                  revert SafeCastOverflowedUintDowncast(80, value);
              }
              return uint80(value);
          }
          /**
           * @dev Returns the downcasted uint72 from uint256, reverting on
           * overflow (when the input is greater than largest uint72).
           *
           * Counterpart to Solidity's `uint72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           */
          function toUint72(uint256 value) internal pure returns (uint72) {
              if (value > type(uint72).max) {
                  revert SafeCastOverflowedUintDowncast(72, value);
              }
              return uint72(value);
          }
          /**
           * @dev Returns the downcasted uint64 from uint256, reverting on
           * overflow (when the input is greater than largest uint64).
           *
           * Counterpart to Solidity's `uint64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           */
          function toUint64(uint256 value) internal pure returns (uint64) {
              if (value > type(uint64).max) {
                  revert SafeCastOverflowedUintDowncast(64, value);
              }
              return uint64(value);
          }
          /**
           * @dev Returns the downcasted uint56 from uint256, reverting on
           * overflow (when the input is greater than largest uint56).
           *
           * Counterpart to Solidity's `uint56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           */
          function toUint56(uint256 value) internal pure returns (uint56) {
              if (value > type(uint56).max) {
                  revert SafeCastOverflowedUintDowncast(56, value);
              }
              return uint56(value);
          }
          /**
           * @dev Returns the downcasted uint48 from uint256, reverting on
           * overflow (when the input is greater than largest uint48).
           *
           * Counterpart to Solidity's `uint48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           */
          function toUint48(uint256 value) internal pure returns (uint48) {
              if (value > type(uint48).max) {
                  revert SafeCastOverflowedUintDowncast(48, value);
              }
              return uint48(value);
          }
          /**
           * @dev Returns the downcasted uint40 from uint256, reverting on
           * overflow (when the input is greater than largest uint40).
           *
           * Counterpart to Solidity's `uint40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           */
          function toUint40(uint256 value) internal pure returns (uint40) {
              if (value > type(uint40).max) {
                  revert SafeCastOverflowedUintDowncast(40, value);
              }
              return uint40(value);
          }
          /**
           * @dev Returns the downcasted uint32 from uint256, reverting on
           * overflow (when the input is greater than largest uint32).
           *
           * Counterpart to Solidity's `uint32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           */
          function toUint32(uint256 value) internal pure returns (uint32) {
              if (value > type(uint32).max) {
                  revert SafeCastOverflowedUintDowncast(32, value);
              }
              return uint32(value);
          }
          /**
           * @dev Returns the downcasted uint24 from uint256, reverting on
           * overflow (when the input is greater than largest uint24).
           *
           * Counterpart to Solidity's `uint24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           */
          function toUint24(uint256 value) internal pure returns (uint24) {
              if (value > type(uint24).max) {
                  revert SafeCastOverflowedUintDowncast(24, value);
              }
              return uint24(value);
          }
          /**
           * @dev Returns the downcasted uint16 from uint256, reverting on
           * overflow (when the input is greater than largest uint16).
           *
           * Counterpart to Solidity's `uint16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           */
          function toUint16(uint256 value) internal pure returns (uint16) {
              if (value > type(uint16).max) {
                  revert SafeCastOverflowedUintDowncast(16, value);
              }
              return uint16(value);
          }
          /**
           * @dev Returns the downcasted uint8 from uint256, reverting on
           * overflow (when the input is greater than largest uint8).
           *
           * Counterpart to Solidity's `uint8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           */
          function toUint8(uint256 value) internal pure returns (uint8) {
              if (value > type(uint8).max) {
                  revert SafeCastOverflowedUintDowncast(8, value);
              }
              return uint8(value);
          }
          /**
           * @dev Converts a signed int256 into an unsigned uint256.
           *
           * Requirements:
           *
           * - input must be greater than or equal to 0.
           */
          function toUint256(int256 value) internal pure returns (uint256) {
              if (value < 0) {
                  revert SafeCastOverflowedIntToUint(value);
              }
              return uint256(value);
          }
          /**
           * @dev Returns the downcasted int248 from int256, reverting on
           * overflow (when the input is less than smallest int248 or
           * greater than largest int248).
           *
           * Counterpart to Solidity's `int248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           */
          function toInt248(int256 value) internal pure returns (int248 downcasted) {
              downcasted = int248(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(248, value);
              }
          }
          /**
           * @dev Returns the downcasted int240 from int256, reverting on
           * overflow (when the input is less than smallest int240 or
           * greater than largest int240).
           *
           * Counterpart to Solidity's `int240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           */
          function toInt240(int256 value) internal pure returns (int240 downcasted) {
              downcasted = int240(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(240, value);
              }
          }
          /**
           * @dev Returns the downcasted int232 from int256, reverting on
           * overflow (when the input is less than smallest int232 or
           * greater than largest int232).
           *
           * Counterpart to Solidity's `int232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           */
          function toInt232(int256 value) internal pure returns (int232 downcasted) {
              downcasted = int232(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(232, value);
              }
          }
          /**
           * @dev Returns the downcasted int224 from int256, reverting on
           * overflow (when the input is less than smallest int224 or
           * greater than largest int224).
           *
           * Counterpart to Solidity's `int224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           */
          function toInt224(int256 value) internal pure returns (int224 downcasted) {
              downcasted = int224(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(224, value);
              }
          }
          /**
           * @dev Returns the downcasted int216 from int256, reverting on
           * overflow (when the input is less than smallest int216 or
           * greater than largest int216).
           *
           * Counterpart to Solidity's `int216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           */
          function toInt216(int256 value) internal pure returns (int216 downcasted) {
              downcasted = int216(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(216, value);
              }
          }
          /**
           * @dev Returns the downcasted int208 from int256, reverting on
           * overflow (when the input is less than smallest int208 or
           * greater than largest int208).
           *
           * Counterpart to Solidity's `int208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           */
          function toInt208(int256 value) internal pure returns (int208 downcasted) {
              downcasted = int208(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(208, value);
              }
          }
          /**
           * @dev Returns the downcasted int200 from int256, reverting on
           * overflow (when the input is less than smallest int200 or
           * greater than largest int200).
           *
           * Counterpart to Solidity's `int200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           */
          function toInt200(int256 value) internal pure returns (int200 downcasted) {
              downcasted = int200(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(200, value);
              }
          }
          /**
           * @dev Returns the downcasted int192 from int256, reverting on
           * overflow (when the input is less than smallest int192 or
           * greater than largest int192).
           *
           * Counterpart to Solidity's `int192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           */
          function toInt192(int256 value) internal pure returns (int192 downcasted) {
              downcasted = int192(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(192, value);
              }
          }
          /**
           * @dev Returns the downcasted int184 from int256, reverting on
           * overflow (when the input is less than smallest int184 or
           * greater than largest int184).
           *
           * Counterpart to Solidity's `int184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           */
          function toInt184(int256 value) internal pure returns (int184 downcasted) {
              downcasted = int184(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(184, value);
              }
          }
          /**
           * @dev Returns the downcasted int176 from int256, reverting on
           * overflow (when the input is less than smallest int176 or
           * greater than largest int176).
           *
           * Counterpart to Solidity's `int176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           */
          function toInt176(int256 value) internal pure returns (int176 downcasted) {
              downcasted = int176(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(176, value);
              }
          }
          /**
           * @dev Returns the downcasted int168 from int256, reverting on
           * overflow (when the input is less than smallest int168 or
           * greater than largest int168).
           *
           * Counterpart to Solidity's `int168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           */
          function toInt168(int256 value) internal pure returns (int168 downcasted) {
              downcasted = int168(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(168, value);
              }
          }
          /**
           * @dev Returns the downcasted int160 from int256, reverting on
           * overflow (when the input is less than smallest int160 or
           * greater than largest int160).
           *
           * Counterpart to Solidity's `int160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           */
          function toInt160(int256 value) internal pure returns (int160 downcasted) {
              downcasted = int160(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(160, value);
              }
          }
          /**
           * @dev Returns the downcasted int152 from int256, reverting on
           * overflow (when the input is less than smallest int152 or
           * greater than largest int152).
           *
           * Counterpart to Solidity's `int152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           */
          function toInt152(int256 value) internal pure returns (int152 downcasted) {
              downcasted = int152(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(152, value);
              }
          }
          /**
           * @dev Returns the downcasted int144 from int256, reverting on
           * overflow (when the input is less than smallest int144 or
           * greater than largest int144).
           *
           * Counterpart to Solidity's `int144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           */
          function toInt144(int256 value) internal pure returns (int144 downcasted) {
              downcasted = int144(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(144, value);
              }
          }
          /**
           * @dev Returns the downcasted int136 from int256, reverting on
           * overflow (when the input is less than smallest int136 or
           * greater than largest int136).
           *
           * Counterpart to Solidity's `int136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           */
          function toInt136(int256 value) internal pure returns (int136 downcasted) {
              downcasted = int136(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(136, value);
              }
          }
          /**
           * @dev Returns the downcasted int128 from int256, reverting on
           * overflow (when the input is less than smallest int128 or
           * greater than largest int128).
           *
           * Counterpart to Solidity's `int128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           */
          function toInt128(int256 value) internal pure returns (int128 downcasted) {
              downcasted = int128(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(128, value);
              }
          }
          /**
           * @dev Returns the downcasted int120 from int256, reverting on
           * overflow (when the input is less than smallest int120 or
           * greater than largest int120).
           *
           * Counterpart to Solidity's `int120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           */
          function toInt120(int256 value) internal pure returns (int120 downcasted) {
              downcasted = int120(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(120, value);
              }
          }
          /**
           * @dev Returns the downcasted int112 from int256, reverting on
           * overflow (when the input is less than smallest int112 or
           * greater than largest int112).
           *
           * Counterpart to Solidity's `int112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           */
          function toInt112(int256 value) internal pure returns (int112 downcasted) {
              downcasted = int112(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(112, value);
              }
          }
          /**
           * @dev Returns the downcasted int104 from int256, reverting on
           * overflow (when the input is less than smallest int104 or
           * greater than largest int104).
           *
           * Counterpart to Solidity's `int104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           */
          function toInt104(int256 value) internal pure returns (int104 downcasted) {
              downcasted = int104(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(104, value);
              }
          }
          /**
           * @dev Returns the downcasted int96 from int256, reverting on
           * overflow (when the input is less than smallest int96 or
           * greater than largest int96).
           *
           * Counterpart to Solidity's `int96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           */
          function toInt96(int256 value) internal pure returns (int96 downcasted) {
              downcasted = int96(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(96, value);
              }
          }
          /**
           * @dev Returns the downcasted int88 from int256, reverting on
           * overflow (when the input is less than smallest int88 or
           * greater than largest int88).
           *
           * Counterpart to Solidity's `int88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           */
          function toInt88(int256 value) internal pure returns (int88 downcasted) {
              downcasted = int88(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(88, value);
              }
          }
          /**
           * @dev Returns the downcasted int80 from int256, reverting on
           * overflow (when the input is less than smallest int80 or
           * greater than largest int80).
           *
           * Counterpart to Solidity's `int80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           */
          function toInt80(int256 value) internal pure returns (int80 downcasted) {
              downcasted = int80(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(80, value);
              }
          }
          /**
           * @dev Returns the downcasted int72 from int256, reverting on
           * overflow (when the input is less than smallest int72 or
           * greater than largest int72).
           *
           * Counterpart to Solidity's `int72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           */
          function toInt72(int256 value) internal pure returns (int72 downcasted) {
              downcasted = int72(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(72, value);
              }
          }
          /**
           * @dev Returns the downcasted int64 from int256, reverting on
           * overflow (when the input is less than smallest int64 or
           * greater than largest int64).
           *
           * Counterpart to Solidity's `int64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           */
          function toInt64(int256 value) internal pure returns (int64 downcasted) {
              downcasted = int64(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(64, value);
              }
          }
          /**
           * @dev Returns the downcasted int56 from int256, reverting on
           * overflow (when the input is less than smallest int56 or
           * greater than largest int56).
           *
           * Counterpart to Solidity's `int56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           */
          function toInt56(int256 value) internal pure returns (int56 downcasted) {
              downcasted = int56(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(56, value);
              }
          }
          /**
           * @dev Returns the downcasted int48 from int256, reverting on
           * overflow (when the input is less than smallest int48 or
           * greater than largest int48).
           *
           * Counterpart to Solidity's `int48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           */
          function toInt48(int256 value) internal pure returns (int48 downcasted) {
              downcasted = int48(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(48, value);
              }
          }
          /**
           * @dev Returns the downcasted int40 from int256, reverting on
           * overflow (when the input is less than smallest int40 or
           * greater than largest int40).
           *
           * Counterpart to Solidity's `int40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           */
          function toInt40(int256 value) internal pure returns (int40 downcasted) {
              downcasted = int40(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(40, value);
              }
          }
          /**
           * @dev Returns the downcasted int32 from int256, reverting on
           * overflow (when the input is less than smallest int32 or
           * greater than largest int32).
           *
           * Counterpart to Solidity's `int32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           */
          function toInt32(int256 value) internal pure returns (int32 downcasted) {
              downcasted = int32(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(32, value);
              }
          }
          /**
           * @dev Returns the downcasted int24 from int256, reverting on
           * overflow (when the input is less than smallest int24 or
           * greater than largest int24).
           *
           * Counterpart to Solidity's `int24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           */
          function toInt24(int256 value) internal pure returns (int24 downcasted) {
              downcasted = int24(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(24, value);
              }
          }
          /**
           * @dev Returns the downcasted int16 from int256, reverting on
           * overflow (when the input is less than smallest int16 or
           * greater than largest int16).
           *
           * Counterpart to Solidity's `int16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           */
          function toInt16(int256 value) internal pure returns (int16 downcasted) {
              downcasted = int16(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(16, value);
              }
          }
          /**
           * @dev Returns the downcasted int8 from int256, reverting on
           * overflow (when the input is less than smallest int8 or
           * greater than largest int8).
           *
           * Counterpart to Solidity's `int8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           */
          function toInt8(int256 value) internal pure returns (int8 downcasted) {
              downcasted = int8(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(8, value);
              }
          }
          /**
           * @dev Converts an unsigned uint256 into a signed int256.
           *
           * Requirements:
           *
           * - input must be less than or equal to maxInt256.
           */
          function toInt256(uint256 value) internal pure returns (int256) {
              // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
              if (value > uint256(type(int256).max)) {
                  revert SafeCastOverflowedUintToInt(value);
              }
              return int256(value);
          }
          /**
           * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
           */
          function toUint(bool b) internal pure returns (uint256 u) {
              assembly ("memory-safe") {
                  u := iszero(iszero(b))
              }
          }
      }