ETH Price: $2,549.44 (-7.75%)

Transaction Decoder

Block:
18464803 at Oct-30-2023 06:37:11 PM +UTC
Transaction Fee:
0.002873983764982302 ETH $7.33
Gas Used:
83,097 Gas / 34.585890766 Gwei

Emitted Events:

79 TransparentUpgradeableProxy.0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0( 0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0, 0x0000000000000000000000005ea627ba4ca4e043d38de4ad34b73bb4354daf8d, 0x0000000000000000000000000000000000000000000000000000000000000000 )
80 GnosisSafeProxy.0x442e715f626346e8c54381002da614f62bee8d27386535b2521ec8540898556e( 0x442e715f626346e8c54381002da614f62bee8d27386535b2521ec8540898556e, f7c4151685ce30fbacf1a61258d09211113bd950d2dae2768117b6a2a670446a, 0000000000000000000000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x0eC78ED4...4d2C79bf8
(Lido: Execution Layer Rewards Vault)
105.3744848896980732 Eth105.3744931993980732 Eth0.0000083097
0x5eA627ba...4354daf8d
0x6132D220...a0eD67619
(Wilder World: Deployer)
0.013823863306997496 Eth
Nonce: 43
0.010949879542015194 Eth
Nonce: 44
0.002873983764982302

Execution Trace

GnosisSafeProxy.6a761202( )
  • GnosisSafe.execTransaction( to=0x0eC78ED49C2D27b315D462d43B5BAB94d2C79bf8, value=0, data=0x715018A6, operation=0, safeTxGas=0, baseGas=0, gasPrice=0, gasToken=0x0000000000000000000000000000000000000000, refundReceiver=0x0000000000000000000000000000000000000000, signatures=0xCEC156EC3F14F96AC8D5BD520088D7F73F27D49D86F168F46211A136E233C4416E3DCF508B2EA9E26C28DBB783E19E2A4C5A485ED99A49E05B16BF537D07D97E1C31B91C51046A159F5A10E53191BE71B0137A3C556090CB8F6501DEBEFDE5BDD200DA2D811E33FE2BAA1FA36D79D3813632B827F4F4656A9FCB2CB38FF3C2C6DC206158A440B4B6DA53DCCA2D945755D232C6BA1FDE494339FA9BEECC81CF22448C08B7FAAE0F6FE1C4C739A4794AEB176D1BD326C50B36086A608F2E6B287CD3131C927E89AE782196CB8E9657ED5EB7E5E873D425401ADF30FA50C27845DCD4DB477F2E322831DD8B971889019F09C2001CAF02434DF32F362FEF8853E4EB066C8920 ) => ( success=True )
    • Null: 0x000...001.f7c41516( )
    • Null: 0x000...001.158018a5( )
    • Null: 0x000...001.f7c41516( )
    • Null: 0x000...001.158018a5( )
    • TransparentUpgradeableProxy.CALL( )
      • MeowToken.DELEGATECALL( )
        File 1 of 4: GnosisSafeProxy
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        
        /// @title IProxy - Helper interface to access masterCopy of the Proxy on-chain
        /// @author Richard Meissner - <[email protected]>
        interface IProxy {
            function masterCopy() external view returns (address);
        }
        
        /// @title GnosisSafeProxy - Generic proxy contract allows to execute all transactions applying the code of a master contract.
        /// @author Stefan George - <[email protected]>
        /// @author Richard Meissner - <[email protected]>
        contract GnosisSafeProxy {
            // singleton always needs to be first declared variable, to ensure that it is at the same location in the contracts to which calls are delegated.
            // To reduce deployment costs this variable is internal and needs to be retrieved via `getStorageAt`
            address internal singleton;
        
            /// @dev Constructor function sets address of singleton contract.
            /// @param _singleton Singleton address.
            constructor(address _singleton) {
                require(_singleton != address(0), "Invalid singleton address provided");
                singleton = _singleton;
            }
        
            /// @dev Fallback function forwards all transactions and returns all received return data.
            fallback() external payable {
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let _singleton := and(sload(0), 0xffffffffffffffffffffffffffffffffffffffff)
                    // 0xa619486e == keccak("masterCopy()"). The value is right padded to 32-bytes with 0s
                    if eq(calldataload(0), 0xa619486e00000000000000000000000000000000000000000000000000000000) {
                        mstore(0, _singleton)
                        return(0, 0x20)
                    }
                    calldatacopy(0, 0, calldatasize())
                    let success := delegatecall(gas(), _singleton, 0, calldatasize(), 0, 0)
                    returndatacopy(0, 0, returndatasize())
                    if eq(success, 0) {
                        revert(0, returndatasize())
                    }
                    return(0, returndatasize())
                }
            }
        }
        
        /// @title Proxy Factory - Allows to create new proxy contact and execute a message call to the new proxy within one transaction.
        /// @author Stefan George - <[email protected]>
        contract GnosisSafeProxyFactory {
            event ProxyCreation(GnosisSafeProxy proxy, address singleton);
        
            /// @dev Allows to create new proxy contact and execute a message call to the new proxy within one transaction.
            /// @param singleton Address of singleton contract.
            /// @param data Payload for message call sent to new proxy contract.
            function createProxy(address singleton, bytes memory data) public returns (GnosisSafeProxy proxy) {
                proxy = new GnosisSafeProxy(singleton);
                if (data.length > 0)
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        if eq(call(gas(), proxy, 0, add(data, 0x20), mload(data), 0, 0), 0) {
                            revert(0, 0)
                        }
                    }
                emit ProxyCreation(proxy, singleton);
            }
        
            /// @dev Allows to retrieve the runtime code of a deployed Proxy. This can be used to check that the expected Proxy was deployed.
            function proxyRuntimeCode() public pure returns (bytes memory) {
                return type(GnosisSafeProxy).runtimeCode;
            }
        
            /// @dev Allows to retrieve the creation code used for the Proxy deployment. With this it is easily possible to calculate predicted address.
            function proxyCreationCode() public pure returns (bytes memory) {
                return type(GnosisSafeProxy).creationCode;
            }
        
            /// @dev Allows to create new proxy contact using CREATE2 but it doesn't run the initializer.
            ///      This method is only meant as an utility to be called from other methods
            /// @param _singleton Address of singleton contract.
            /// @param initializer Payload for message call sent to new proxy contract.
            /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
            function deployProxyWithNonce(
                address _singleton,
                bytes memory initializer,
                uint256 saltNonce
            ) internal returns (GnosisSafeProxy proxy) {
                // If the initializer changes the proxy address should change too. Hashing the initializer data is cheaper than just concatinating it
                bytes32 salt = keccak256(abi.encodePacked(keccak256(initializer), saltNonce));
                bytes memory deploymentData = abi.encodePacked(type(GnosisSafeProxy).creationCode, uint256(uint160(_singleton)));
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    proxy := create2(0x0, add(0x20, deploymentData), mload(deploymentData), salt)
                }
                require(address(proxy) != address(0), "Create2 call failed");
            }
        
            /// @dev Allows to create new proxy contact and execute a message call to the new proxy within one transaction.
            /// @param _singleton Address of singleton contract.
            /// @param initializer Payload for message call sent to new proxy contract.
            /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
            function createProxyWithNonce(
                address _singleton,
                bytes memory initializer,
                uint256 saltNonce
            ) public returns (GnosisSafeProxy proxy) {
                proxy = deployProxyWithNonce(_singleton, initializer, saltNonce);
                if (initializer.length > 0)
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        if eq(call(gas(), proxy, 0, add(initializer, 0x20), mload(initializer), 0, 0), 0) {
                            revert(0, 0)
                        }
                    }
                emit ProxyCreation(proxy, _singleton);
            }
        
            /// @dev Allows to create new proxy contact, execute a message call to the new proxy and call a specified callback within one transaction
            /// @param _singleton Address of singleton contract.
            /// @param initializer Payload for message call sent to new proxy contract.
            /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
            /// @param callback Callback that will be invoced after the new proxy contract has been successfully deployed and initialized.
            function createProxyWithCallback(
                address _singleton,
                bytes memory initializer,
                uint256 saltNonce,
                IProxyCreationCallback callback
            ) public returns (GnosisSafeProxy proxy) {
                uint256 saltNonceWithCallback = uint256(keccak256(abi.encodePacked(saltNonce, callback)));
                proxy = createProxyWithNonce(_singleton, initializer, saltNonceWithCallback);
                if (address(callback) != address(0)) callback.proxyCreated(proxy, _singleton, initializer, saltNonce);
            }
        
            /// @dev Allows to get the address for a new proxy contact created via `createProxyWithNonce`
            ///      This method is only meant for address calculation purpose when you use an initializer that would revert,
            ///      therefore the response is returned with a revert. When calling this method set `from` to the address of the proxy factory.
            /// @param _singleton Address of singleton contract.
            /// @param initializer Payload for message call sent to new proxy contract.
            /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
            function calculateCreateProxyWithNonceAddress(
                address _singleton,
                bytes calldata initializer,
                uint256 saltNonce
            ) external returns (GnosisSafeProxy proxy) {
                proxy = deployProxyWithNonce(_singleton, initializer, saltNonce);
                revert(string(abi.encodePacked(proxy)));
            }
        }
        
        interface IProxyCreationCallback {
            function proxyCreated(
                GnosisSafeProxy proxy,
                address _singleton,
                bytes calldata initializer,
                uint256 saltNonce
            ) external;
        }

        File 2 of 4: TransparentUpgradeableProxy
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
        import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol";
        import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol";
        // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins.
        contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy {
            constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {}
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "../Proxy.sol";
        import "./ERC1967Upgrade.sol";
        /**
         * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
         * implementation address that can be changed. This address is stored in storage in the location specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
         * implementation behind the proxy.
         */
        contract ERC1967Proxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
             *
             * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
             * function call, and allows initializating the storage of the proxy like a Solidity constructor.
             */
            constructor(address _logic, bytes memory _data) payable {
                assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                _upgradeToAndCall(_logic, _data, false);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function _implementation() internal view virtual override returns (address impl) {
                return ERC1967Upgrade._getImplementation();
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "../ERC1967/ERC1967Proxy.sol";
        /**
         * @dev This contract implements a proxy that is upgradeable by an admin.
         *
         * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
         * clashing], which can potentially be used in an attack, this contract uses the
         * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
         * things that go hand in hand:
         *
         * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
         * that call matches one of the admin functions exposed by the proxy itself.
         * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
         * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
         * "admin cannot fallback to proxy target".
         *
         * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
         * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
         * to sudden errors when trying to call a function from the proxy implementation.
         *
         * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
         * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
         */
        contract TransparentUpgradeableProxy is ERC1967Proxy {
            /**
             * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
             * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
             */
            constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                _changeAdmin(admin_);
            }
            /**
             * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
             */
            modifier ifAdmin() {
                if (msg.sender == _getAdmin()) {
                    _;
                } else {
                    _fallback();
                }
            }
            /**
             * @dev Returns the current admin.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
             */
            function admin() external ifAdmin returns (address admin_) {
                admin_ = _getAdmin();
            }
            /**
             * @dev Returns the current implementation.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
             */
            function implementation() external ifAdmin returns (address implementation_) {
                implementation_ = _implementation();
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
             */
            function changeAdmin(address newAdmin) external virtual ifAdmin {
                _changeAdmin(newAdmin);
            }
            /**
             * @dev Upgrade the implementation of the proxy.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
             */
            function upgradeTo(address newImplementation) external ifAdmin {
                _upgradeToAndCall(newImplementation, bytes(""), false);
            }
            /**
             * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
             * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
             * proxied contract.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
             */
            function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
                _upgradeToAndCall(newImplementation, data, true);
            }
            /**
             * @dev Returns the current admin.
             */
            function _admin() internal view virtual returns (address) {
                return _getAdmin();
            }
            /**
             * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
             */
            function _beforeFallback() internal virtual override {
                require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                super._beforeFallback();
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "./TransparentUpgradeableProxy.sol";
        import "../../access/Ownable.sol";
        /**
         * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
         * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
         */
        contract ProxyAdmin is Ownable {
            /**
             * @dev Returns the current implementation of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("implementation()")) == 0x5c60da1b
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Returns the current admin of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("admin()")) == 0xf851a440
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Changes the admin of `proxy` to `newAdmin`.
             *
             * Requirements:
             *
             * - This contract must be the current admin of `proxy`.
             */
            function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
                proxy.changeAdmin(newAdmin);
            }
            /**
             * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
                proxy.upgradeTo(implementation);
            }
            /**
             * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
             * {TransparentUpgradeableProxy-upgradeToAndCall}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner {
                proxy.upgradeToAndCall{value: msg.value}(implementation, data);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
         * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
         * be specified by overriding the virtual {_implementation} function.
         *
         * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
         * different contract through the {_delegate} function.
         *
         * The success and return data of the delegated call will be returned back to the caller of the proxy.
         */
        abstract contract Proxy {
            /**
             * @dev Delegates the current call to `implementation`.
             *
             * This function does not return to its internall call site, it will return directly to the external caller.
             */
            function _delegate(address implementation) internal virtual {
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    // Copy msg.data. We take full control of memory in this inline assembly
                    // block because it will not return to Solidity code. We overwrite the
                    // Solidity scratch pad at memory position 0.
                    calldatacopy(0, 0, calldatasize())
                    // Call the implementation.
                    // out and outsize are 0 because we don't know the size yet.
                    let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                    // Copy the returned data.
                    returndatacopy(0, 0, returndatasize())
                    switch result
                    // delegatecall returns 0 on error.
                    case 0 { revert(0, returndatasize()) }
                    default { return(0, returndatasize()) }
                }
            }
            /**
             * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
             * and {_fallback} should delegate.
             */
            function _implementation() internal view virtual returns (address);
            /**
             * @dev Delegates the current call to the address returned by `_implementation()`.
             *
             * This function does not return to its internall call site, it will return directly to the external caller.
             */
            function _fallback() internal virtual {
                _beforeFallback();
                _delegate(_implementation());
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
             * function in the contract matches the call data.
             */
            fallback () external payable virtual {
                _fallback();
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
             * is empty.
             */
            receive () external payable virtual {
                _fallback();
            }
            /**
             * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
             * call, or as part of the Solidity `fallback` or `receive` functions.
             *
             * If overriden should call `super._beforeFallback()`.
             */
            function _beforeFallback() internal virtual {
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.2;
        import "../beacon/IBeacon.sol";
        import "../../utils/Address.sol";
        import "../../utils/StorageSlot.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         *
         * @custom:oz-upgrades-unsafe-allow delegatecall
         */
        abstract contract ERC1967Upgrade {
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal {
                address oldImplementation = _getImplementation();
                // Initial upgrade and setup call
                _setImplementation(newImplementation);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(newImplementation, data);
                }
                // Perform rollback test if not already in progress
                StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT);
                if (!rollbackTesting.value) {
                    // Trigger rollback using upgradeTo from the new implementation
                    rollbackTesting.value = true;
                    Address.functionDelegateCall(
                        newImplementation,
                        abi.encodeWithSignature(
                            "upgradeTo(address)",
                            oldImplementation
                        )
                    );
                    rollbackTesting.value = false;
                    // Check rollback was effective
                    require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades");
                    // Finally reset to the new implementation and log the upgrade
                    _setImplementation(newImplementation);
                    emit Upgraded(newImplementation);
                }
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Emitted when the beacon is upgraded.
             */
            event BeaconUpgraded(address indexed beacon);
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(
                    Address.isContract(newBeacon),
                    "ERC1967: new beacon is not a contract"
                );
                require(
                    Address.isContract(IBeacon(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeacon {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize, which returns 0 for contracts in
                // construction, since the code is only stored at the end of the
                // constructor execution.
                uint256 size;
                // solhint-disable-next-line no-inline-assembly
                assembly { size := extcodesize(account) }
                return size > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                (bool success, ) = recipient.call{ value: amount }("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain`call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.call{ value: value }(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.staticcall(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                assembly {
                    r.slot := slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor () {
                address msgSender = _msgSender();
                _owner = msgSender;
                emit OwnershipTransferred(address(0), msgSender);
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
                _;
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                emit OwnershipTransferred(_owner, address(0));
                _owner = address(0);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                emit OwnershipTransferred(_owner, newOwner);
                _owner = newOwner;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /*
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "../ERC1967/ERC1967Upgrade.sol";
        /**
         * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes
         * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify
         * continuation of the upgradability.
         *
         * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism.
         *
         * _Available since v4.1._
         */
        abstract contract UUPSUpgradeable is ERC1967Upgrade {
            function upgradeTo(address newImplementation) external virtual {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallSecure(newImplementation, bytes(""), false);
            }
            function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallSecure(newImplementation, data, true);
            }
            function _authorizeUpgrade(address newImplementation) internal virtual;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.2;
        import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol";
        abstract contract Proxiable is UUPSUpgradeable {
            function _authorizeUpgrade(address newImplementation) internal override {
                _beforeUpgrade(newImplementation);
            }
            function _beforeUpgrade(address newImplementation) internal virtual;
        }
        contract ChildOfProxiable is Proxiable {
            function _beforeUpgrade(address newImplementation) internal virtual override {}
        }
        

        File 3 of 4: GnosisSafe
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        import "./base/ModuleManager.sol";
        import "./base/OwnerManager.sol";
        import "./base/FallbackManager.sol";
        import "./base/GuardManager.sol";
        import "./common/EtherPaymentFallback.sol";
        import "./common/Singleton.sol";
        import "./common/SignatureDecoder.sol";
        import "./common/SecuredTokenTransfer.sol";
        import "./common/StorageAccessible.sol";
        import "./interfaces/ISignatureValidator.sol";
        import "./external/GnosisSafeMath.sol";
        /// @title Gnosis Safe - A multisignature wallet with support for confirmations using signed messages based on ERC191.
        /// @author Stefan George - <[email protected]>
        /// @author Richard Meissner - <[email protected]>
        contract GnosisSafe is
            EtherPaymentFallback,
            Singleton,
            ModuleManager,
            OwnerManager,
            SignatureDecoder,
            SecuredTokenTransfer,
            ISignatureValidatorConstants,
            FallbackManager,
            StorageAccessible,
            GuardManager
        {
            using GnosisSafeMath for uint256;
            string public constant VERSION = "1.3.0";
            // keccak256(
            //     "EIP712Domain(uint256 chainId,address verifyingContract)"
            // );
            bytes32 private constant DOMAIN_SEPARATOR_TYPEHASH = 0x47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a79469218;
            // keccak256(
            //     "SafeTx(address to,uint256 value,bytes data,uint8 operation,uint256 safeTxGas,uint256 baseGas,uint256 gasPrice,address gasToken,address refundReceiver,uint256 nonce)"
            // );
            bytes32 private constant SAFE_TX_TYPEHASH = 0xbb8310d486368db6bd6f849402fdd73ad53d316b5a4b2644ad6efe0f941286d8;
            event SafeSetup(address indexed initiator, address[] owners, uint256 threshold, address initializer, address fallbackHandler);
            event ApproveHash(bytes32 indexed approvedHash, address indexed owner);
            event SignMsg(bytes32 indexed msgHash);
            event ExecutionFailure(bytes32 txHash, uint256 payment);
            event ExecutionSuccess(bytes32 txHash, uint256 payment);
            uint256 public nonce;
            bytes32 private _deprecatedDomainSeparator;
            // Mapping to keep track of all message hashes that have been approve by ALL REQUIRED owners
            mapping(bytes32 => uint256) public signedMessages;
            // Mapping to keep track of all hashes (message or transaction) that have been approve by ANY owners
            mapping(address => mapping(bytes32 => uint256)) public approvedHashes;
            // This constructor ensures that this contract can only be used as a master copy for Proxy contracts
            constructor() {
                // By setting the threshold it is not possible to call setup anymore,
                // so we create a Safe with 0 owners and threshold 1.
                // This is an unusable Safe, perfect for the singleton
                threshold = 1;
            }
            /// @dev Setup function sets initial storage of contract.
            /// @param _owners List of Safe owners.
            /// @param _threshold Number of required confirmations for a Safe transaction.
            /// @param to Contract address for optional delegate call.
            /// @param data Data payload for optional delegate call.
            /// @param fallbackHandler Handler for fallback calls to this contract
            /// @param paymentToken Token that should be used for the payment (0 is ETH)
            /// @param payment Value that should be paid
            /// @param paymentReceiver Adddress that should receive the payment (or 0 if tx.origin)
            function setup(
                address[] calldata _owners,
                uint256 _threshold,
                address to,
                bytes calldata data,
                address fallbackHandler,
                address paymentToken,
                uint256 payment,
                address payable paymentReceiver
            ) external {
                // setupOwners checks if the Threshold is already set, therefore preventing that this method is called twice
                setupOwners(_owners, _threshold);
                if (fallbackHandler != address(0)) internalSetFallbackHandler(fallbackHandler);
                // As setupOwners can only be called if the contract has not been initialized we don't need a check for setupModules
                setupModules(to, data);
                if (payment > 0) {
                    // To avoid running into issues with EIP-170 we reuse the handlePayment function (to avoid adjusting code of that has been verified we do not adjust the method itself)
                    // baseGas = 0, gasPrice = 1 and gas = payment => amount = (payment + 0) * 1 = payment
                    handlePayment(payment, 0, 1, paymentToken, paymentReceiver);
                }
                emit SafeSetup(msg.sender, _owners, _threshold, to, fallbackHandler);
            }
            /// @dev Allows to execute a Safe transaction confirmed by required number of owners and then pays the account that submitted the transaction.
            ///      Note: The fees are always transferred, even if the user transaction fails.
            /// @param to Destination address of Safe transaction.
            /// @param value Ether value of Safe transaction.
            /// @param data Data payload of Safe transaction.
            /// @param operation Operation type of Safe transaction.
            /// @param safeTxGas Gas that should be used for the Safe transaction.
            /// @param baseGas Gas costs that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
            /// @param gasPrice Gas price that should be used for the payment calculation.
            /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
            /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
            /// @param signatures Packed signature data ({bytes32 r}{bytes32 s}{uint8 v})
            function execTransaction(
                address to,
                uint256 value,
                bytes calldata data,
                Enum.Operation operation,
                uint256 safeTxGas,
                uint256 baseGas,
                uint256 gasPrice,
                address gasToken,
                address payable refundReceiver,
                bytes memory signatures
            ) public payable virtual returns (bool success) {
                bytes32 txHash;
                // Use scope here to limit variable lifetime and prevent `stack too deep` errors
                {
                    bytes memory txHashData =
                        encodeTransactionData(
                            // Transaction info
                            to,
                            value,
                            data,
                            operation,
                            safeTxGas,
                            // Payment info
                            baseGas,
                            gasPrice,
                            gasToken,
                            refundReceiver,
                            // Signature info
                            nonce
                        );
                    // Increase nonce and execute transaction.
                    nonce++;
                    txHash = keccak256(txHashData);
                    checkSignatures(txHash, txHashData, signatures);
                }
                address guard = getGuard();
                {
                    if (guard != address(0)) {
                        Guard(guard).checkTransaction(
                            // Transaction info
                            to,
                            value,
                            data,
                            operation,
                            safeTxGas,
                            // Payment info
                            baseGas,
                            gasPrice,
                            gasToken,
                            refundReceiver,
                            // Signature info
                            signatures,
                            msg.sender
                        );
                    }
                }
                // We require some gas to emit the events (at least 2500) after the execution and some to perform code until the execution (500)
                // We also include the 1/64 in the check that is not send along with a call to counteract potential shortings because of EIP-150
                require(gasleft() >= ((safeTxGas * 64) / 63).max(safeTxGas + 2500) + 500, "GS010");
                // Use scope here to limit variable lifetime and prevent `stack too deep` errors
                {
                    uint256 gasUsed = gasleft();
                    // If the gasPrice is 0 we assume that nearly all available gas can be used (it is always more than safeTxGas)
                    // We only substract 2500 (compared to the 3000 before) to ensure that the amount passed is still higher than safeTxGas
                    success = execute(to, value, data, operation, gasPrice == 0 ? (gasleft() - 2500) : safeTxGas);
                    gasUsed = gasUsed.sub(gasleft());
                    // If no safeTxGas and no gasPrice was set (e.g. both are 0), then the internal tx is required to be successful
                    // This makes it possible to use `estimateGas` without issues, as it searches for the minimum gas where the tx doesn't revert
                    require(success || safeTxGas != 0 || gasPrice != 0, "GS013");
                    // We transfer the calculated tx costs to the tx.origin to avoid sending it to intermediate contracts that have made calls
                    uint256 payment = 0;
                    if (gasPrice > 0) {
                        payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken, refundReceiver);
                    }
                    if (success) emit ExecutionSuccess(txHash, payment);
                    else emit ExecutionFailure(txHash, payment);
                }
                {
                    if (guard != address(0)) {
                        Guard(guard).checkAfterExecution(txHash, success);
                    }
                }
            }
            function handlePayment(
                uint256 gasUsed,
                uint256 baseGas,
                uint256 gasPrice,
                address gasToken,
                address payable refundReceiver
            ) private returns (uint256 payment) {
                // solhint-disable-next-line avoid-tx-origin
                address payable receiver = refundReceiver == address(0) ? payable(tx.origin) : refundReceiver;
                if (gasToken == address(0)) {
                    // For ETH we will only adjust the gas price to not be higher than the actual used gas price
                    payment = gasUsed.add(baseGas).mul(gasPrice < tx.gasprice ? gasPrice : tx.gasprice);
                    require(receiver.send(payment), "GS011");
                } else {
                    payment = gasUsed.add(baseGas).mul(gasPrice);
                    require(transferToken(gasToken, receiver, payment), "GS012");
                }
            }
            /**
             * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise.
             * @param dataHash Hash of the data (could be either a message hash or transaction hash)
             * @param data That should be signed (this is passed to an external validator contract)
             * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash.
             */
            function checkSignatures(
                bytes32 dataHash,
                bytes memory data,
                bytes memory signatures
            ) public view {
                // Load threshold to avoid multiple storage loads
                uint256 _threshold = threshold;
                // Check that a threshold is set
                require(_threshold > 0, "GS001");
                checkNSignatures(dataHash, data, signatures, _threshold);
            }
            /**
             * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise.
             * @param dataHash Hash of the data (could be either a message hash or transaction hash)
             * @param data That should be signed (this is passed to an external validator contract)
             * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash.
             * @param requiredSignatures Amount of required valid signatures.
             */
            function checkNSignatures(
                bytes32 dataHash,
                bytes memory data,
                bytes memory signatures,
                uint256 requiredSignatures
            ) public view {
                // Check that the provided signature data is not too short
                require(signatures.length >= requiredSignatures.mul(65), "GS020");
                // There cannot be an owner with address 0.
                address lastOwner = address(0);
                address currentOwner;
                uint8 v;
                bytes32 r;
                bytes32 s;
                uint256 i;
                for (i = 0; i < requiredSignatures; i++) {
                    (v, r, s) = signatureSplit(signatures, i);
                    if (v == 0) {
                        // If v is 0 then it is a contract signature
                        // When handling contract signatures the address of the contract is encoded into r
                        currentOwner = address(uint160(uint256(r)));
                        // Check that signature data pointer (s) is not pointing inside the static part of the signatures bytes
                        // This check is not completely accurate, since it is possible that more signatures than the threshold are send.
                        // Here we only check that the pointer is not pointing inside the part that is being processed
                        require(uint256(s) >= requiredSignatures.mul(65), "GS021");
                        // Check that signature data pointer (s) is in bounds (points to the length of data -> 32 bytes)
                        require(uint256(s).add(32) <= signatures.length, "GS022");
                        // Check if the contract signature is in bounds: start of data is s + 32 and end is start + signature length
                        uint256 contractSignatureLen;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            contractSignatureLen := mload(add(add(signatures, s), 0x20))
                        }
                        require(uint256(s).add(32).add(contractSignatureLen) <= signatures.length, "GS023");
                        // Check signature
                        bytes memory contractSignature;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            // The signature data for contract signatures is appended to the concatenated signatures and the offset is stored in s
                            contractSignature := add(add(signatures, s), 0x20)
                        }
                        require(ISignatureValidator(currentOwner).isValidSignature(data, contractSignature) == EIP1271_MAGIC_VALUE, "GS024");
                    } else if (v == 1) {
                        // If v is 1 then it is an approved hash
                        // When handling approved hashes the address of the approver is encoded into r
                        currentOwner = address(uint160(uint256(r)));
                        // Hashes are automatically approved by the sender of the message or when they have been pre-approved via a separate transaction
                        require(msg.sender == currentOwner || approvedHashes[currentOwner][dataHash] != 0, "GS025");
                    } else if (v > 30) {
                        // If v > 30 then default va (27,28) has been adjusted for eth_sign flow
                        // To support eth_sign and similar we adjust v and hash the messageHash with the Ethereum message prefix before applying ecrecover
                        currentOwner = ecrecover(keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
        32", dataHash)), v - 4, r, s);
                    } else {
                        // Default is the ecrecover flow with the provided data hash
                        // Use ecrecover with the messageHash for EOA signatures
                        currentOwner = ecrecover(dataHash, v, r, s);
                    }
                    require(currentOwner > lastOwner && owners[currentOwner] != address(0) && currentOwner != SENTINEL_OWNERS, "GS026");
                    lastOwner = currentOwner;
                }
            }
            /// @dev Allows to estimate a Safe transaction.
            ///      This method is only meant for estimation purpose, therefore the call will always revert and encode the result in the revert data.
            ///      Since the `estimateGas` function includes refunds, call this method to get an estimated of the costs that are deducted from the safe with `execTransaction`
            /// @param to Destination address of Safe transaction.
            /// @param value Ether value of Safe transaction.
            /// @param data Data payload of Safe transaction.
            /// @param operation Operation type of Safe transaction.
            /// @return Estimate without refunds and overhead fees (base transaction and payload data gas costs).
            /// @notice Deprecated in favor of common/StorageAccessible.sol and will be removed in next version.
            function requiredTxGas(
                address to,
                uint256 value,
                bytes calldata data,
                Enum.Operation operation
            ) external returns (uint256) {
                uint256 startGas = gasleft();
                // We don't provide an error message here, as we use it to return the estimate
                require(execute(to, value, data, operation, gasleft()));
                uint256 requiredGas = startGas - gasleft();
                // Convert response to string and return via error message
                revert(string(abi.encodePacked(requiredGas)));
            }
            /**
             * @dev Marks a hash as approved. This can be used to validate a hash that is used by a signature.
             * @param hashToApprove The hash that should be marked as approved for signatures that are verified by this contract.
             */
            function approveHash(bytes32 hashToApprove) external {
                require(owners[msg.sender] != address(0), "GS030");
                approvedHashes[msg.sender][hashToApprove] = 1;
                emit ApproveHash(hashToApprove, msg.sender);
            }
            /// @dev Returns the chain id used by this contract.
            function getChainId() public view returns (uint256) {
                uint256 id;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    id := chainid()
                }
                return id;
            }
            function domainSeparator() public view returns (bytes32) {
                return keccak256(abi.encode(DOMAIN_SEPARATOR_TYPEHASH, getChainId(), this));
            }
            /// @dev Returns the bytes that are hashed to be signed by owners.
            /// @param to Destination address.
            /// @param value Ether value.
            /// @param data Data payload.
            /// @param operation Operation type.
            /// @param safeTxGas Gas that should be used for the safe transaction.
            /// @param baseGas Gas costs for that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
            /// @param gasPrice Maximum gas price that should be used for this transaction.
            /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
            /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
            /// @param _nonce Transaction nonce.
            /// @return Transaction hash bytes.
            function encodeTransactionData(
                address to,
                uint256 value,
                bytes calldata data,
                Enum.Operation operation,
                uint256 safeTxGas,
                uint256 baseGas,
                uint256 gasPrice,
                address gasToken,
                address refundReceiver,
                uint256 _nonce
            ) public view returns (bytes memory) {
                bytes32 safeTxHash =
                    keccak256(
                        abi.encode(
                            SAFE_TX_TYPEHASH,
                            to,
                            value,
                            keccak256(data),
                            operation,
                            safeTxGas,
                            baseGas,
                            gasPrice,
                            gasToken,
                            refundReceiver,
                            _nonce
                        )
                    );
                return abi.encodePacked(bytes1(0x19), bytes1(0x01), domainSeparator(), safeTxHash);
            }
            /// @dev Returns hash to be signed by owners.
            /// @param to Destination address.
            /// @param value Ether value.
            /// @param data Data payload.
            /// @param operation Operation type.
            /// @param safeTxGas Fas that should be used for the safe transaction.
            /// @param baseGas Gas costs for data used to trigger the safe transaction.
            /// @param gasPrice Maximum gas price that should be used for this transaction.
            /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
            /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
            /// @param _nonce Transaction nonce.
            /// @return Transaction hash.
            function getTransactionHash(
                address to,
                uint256 value,
                bytes calldata data,
                Enum.Operation operation,
                uint256 safeTxGas,
                uint256 baseGas,
                uint256 gasPrice,
                address gasToken,
                address refundReceiver,
                uint256 _nonce
            ) public view returns (bytes32) {
                return keccak256(encodeTransactionData(to, value, data, operation, safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, _nonce));
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        import "../common/Enum.sol";
        /// @title Executor - A contract that can execute transactions
        /// @author Richard Meissner - <[email protected]>
        contract Executor {
            function execute(
                address to,
                uint256 value,
                bytes memory data,
                Enum.Operation operation,
                uint256 txGas
            ) internal returns (bool success) {
                if (operation == Enum.Operation.DelegateCall) {
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0)
                    }
                } else {
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0)
                    }
                }
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        import "../common/SelfAuthorized.sol";
        /// @title Fallback Manager - A contract that manages fallback calls made to this contract
        /// @author Richard Meissner - <[email protected]>
        contract FallbackManager is SelfAuthorized {
            event ChangedFallbackHandler(address handler);
            // keccak256("fallback_manager.handler.address")
            bytes32 internal constant FALLBACK_HANDLER_STORAGE_SLOT = 0x6c9a6c4a39284e37ed1cf53d337577d14212a4870fb976a4366c693b939918d5;
            function internalSetFallbackHandler(address handler) internal {
                bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    sstore(slot, handler)
                }
            }
            /// @dev Allows to add a contract to handle fallback calls.
            ///      Only fallback calls without value and with data will be forwarded.
            ///      This can only be done via a Safe transaction.
            /// @param handler contract to handle fallbacks calls.
            function setFallbackHandler(address handler) public authorized {
                internalSetFallbackHandler(handler);
                emit ChangedFallbackHandler(handler);
            }
            // solhint-disable-next-line payable-fallback,no-complex-fallback
            fallback() external {
                bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let handler := sload(slot)
                    if iszero(handler) {
                        return(0, 0)
                    }
                    calldatacopy(0, 0, calldatasize())
                    // The msg.sender address is shifted to the left by 12 bytes to remove the padding
                    // Then the address without padding is stored right after the calldata
                    mstore(calldatasize(), shl(96, caller()))
                    // Add 20 bytes for the address appended add the end
                    let success := call(gas(), handler, 0, 0, add(calldatasize(), 20), 0, 0)
                    returndatacopy(0, 0, returndatasize())
                    if iszero(success) {
                        revert(0, returndatasize())
                    }
                    return(0, returndatasize())
                }
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        import "../common/Enum.sol";
        import "../common/SelfAuthorized.sol";
        interface Guard {
            function checkTransaction(
                address to,
                uint256 value,
                bytes memory data,
                Enum.Operation operation,
                uint256 safeTxGas,
                uint256 baseGas,
                uint256 gasPrice,
                address gasToken,
                address payable refundReceiver,
                bytes memory signatures,
                address msgSender
            ) external;
            function checkAfterExecution(bytes32 txHash, bool success) external;
        }
        /// @title Fallback Manager - A contract that manages fallback calls made to this contract
        /// @author Richard Meissner - <[email protected]>
        contract GuardManager is SelfAuthorized {
            event ChangedGuard(address guard);
            // keccak256("guard_manager.guard.address")
            bytes32 internal constant GUARD_STORAGE_SLOT = 0x4a204f620c8c5ccdca3fd54d003badd85ba500436a431f0cbda4f558c93c34c8;
            /// @dev Set a guard that checks transactions before execution
            /// @param guard The address of the guard to be used or the 0 address to disable the guard
            function setGuard(address guard) external authorized {
                bytes32 slot = GUARD_STORAGE_SLOT;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    sstore(slot, guard)
                }
                emit ChangedGuard(guard);
            }
            function getGuard() internal view returns (address guard) {
                bytes32 slot = GUARD_STORAGE_SLOT;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    guard := sload(slot)
                }
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        import "../common/Enum.sol";
        import "../common/SelfAuthorized.sol";
        import "./Executor.sol";
        /// @title Module Manager - A contract that manages modules that can execute transactions via this contract
        /// @author Stefan George - <[email protected]>
        /// @author Richard Meissner - <[email protected]>
        contract ModuleManager is SelfAuthorized, Executor {
            event EnabledModule(address module);
            event DisabledModule(address module);
            event ExecutionFromModuleSuccess(address indexed module);
            event ExecutionFromModuleFailure(address indexed module);
            address internal constant SENTINEL_MODULES = address(0x1);
            mapping(address => address) internal modules;
            function setupModules(address to, bytes memory data) internal {
                require(modules[SENTINEL_MODULES] == address(0), "GS100");
                modules[SENTINEL_MODULES] = SENTINEL_MODULES;
                if (to != address(0))
                    // Setup has to complete successfully or transaction fails.
                    require(execute(to, 0, data, Enum.Operation.DelegateCall, gasleft()), "GS000");
            }
            /// @dev Allows to add a module to the whitelist.
            ///      This can only be done via a Safe transaction.
            /// @notice Enables the module `module` for the Safe.
            /// @param module Module to be whitelisted.
            function enableModule(address module) public authorized {
                // Module address cannot be null or sentinel.
                require(module != address(0) && module != SENTINEL_MODULES, "GS101");
                // Module cannot be added twice.
                require(modules[module] == address(0), "GS102");
                modules[module] = modules[SENTINEL_MODULES];
                modules[SENTINEL_MODULES] = module;
                emit EnabledModule(module);
            }
            /// @dev Allows to remove a module from the whitelist.
            ///      This can only be done via a Safe transaction.
            /// @notice Disables the module `module` for the Safe.
            /// @param prevModule Module that pointed to the module to be removed in the linked list
            /// @param module Module to be removed.
            function disableModule(address prevModule, address module) public authorized {
                // Validate module address and check that it corresponds to module index.
                require(module != address(0) && module != SENTINEL_MODULES, "GS101");
                require(modules[prevModule] == module, "GS103");
                modules[prevModule] = modules[module];
                modules[module] = address(0);
                emit DisabledModule(module);
            }
            /// @dev Allows a Module to execute a Safe transaction without any further confirmations.
            /// @param to Destination address of module transaction.
            /// @param value Ether value of module transaction.
            /// @param data Data payload of module transaction.
            /// @param operation Operation type of module transaction.
            function execTransactionFromModule(
                address to,
                uint256 value,
                bytes memory data,
                Enum.Operation operation
            ) public virtual returns (bool success) {
                // Only whitelisted modules are allowed.
                require(msg.sender != SENTINEL_MODULES && modules[msg.sender] != address(0), "GS104");
                // Execute transaction without further confirmations.
                success = execute(to, value, data, operation, gasleft());
                if (success) emit ExecutionFromModuleSuccess(msg.sender);
                else emit ExecutionFromModuleFailure(msg.sender);
            }
            /// @dev Allows a Module to execute a Safe transaction without any further confirmations and return data
            /// @param to Destination address of module transaction.
            /// @param value Ether value of module transaction.
            /// @param data Data payload of module transaction.
            /// @param operation Operation type of module transaction.
            function execTransactionFromModuleReturnData(
                address to,
                uint256 value,
                bytes memory data,
                Enum.Operation operation
            ) public returns (bool success, bytes memory returnData) {
                success = execTransactionFromModule(to, value, data, operation);
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    // Load free memory location
                    let ptr := mload(0x40)
                    // We allocate memory for the return data by setting the free memory location to
                    // current free memory location + data size + 32 bytes for data size value
                    mstore(0x40, add(ptr, add(returndatasize(), 0x20)))
                    // Store the size
                    mstore(ptr, returndatasize())
                    // Store the data
                    returndatacopy(add(ptr, 0x20), 0, returndatasize())
                    // Point the return data to the correct memory location
                    returnData := ptr
                }
            }
            /// @dev Returns if an module is enabled
            /// @return True if the module is enabled
            function isModuleEnabled(address module) public view returns (bool) {
                return SENTINEL_MODULES != module && modules[module] != address(0);
            }
            /// @dev Returns array of modules.
            /// @param start Start of the page.
            /// @param pageSize Maximum number of modules that should be returned.
            /// @return array Array of modules.
            /// @return next Start of the next page.
            function getModulesPaginated(address start, uint256 pageSize) external view returns (address[] memory array, address next) {
                // Init array with max page size
                array = new address[](pageSize);
                // Populate return array
                uint256 moduleCount = 0;
                address currentModule = modules[start];
                while (currentModule != address(0x0) && currentModule != SENTINEL_MODULES && moduleCount < pageSize) {
                    array[moduleCount] = currentModule;
                    currentModule = modules[currentModule];
                    moduleCount++;
                }
                next = currentModule;
                // Set correct size of returned array
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    mstore(array, moduleCount)
                }
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        import "../common/SelfAuthorized.sol";
        /// @title OwnerManager - Manages a set of owners and a threshold to perform actions.
        /// @author Stefan George - <[email protected]>
        /// @author Richard Meissner - <[email protected]>
        contract OwnerManager is SelfAuthorized {
            event AddedOwner(address owner);
            event RemovedOwner(address owner);
            event ChangedThreshold(uint256 threshold);
            address internal constant SENTINEL_OWNERS = address(0x1);
            mapping(address => address) internal owners;
            uint256 internal ownerCount;
            uint256 internal threshold;
            /// @dev Setup function sets initial storage of contract.
            /// @param _owners List of Safe owners.
            /// @param _threshold Number of required confirmations for a Safe transaction.
            function setupOwners(address[] memory _owners, uint256 _threshold) internal {
                // Threshold can only be 0 at initialization.
                // Check ensures that setup function can only be called once.
                require(threshold == 0, "GS200");
                // Validate that threshold is smaller than number of added owners.
                require(_threshold <= _owners.length, "GS201");
                // There has to be at least one Safe owner.
                require(_threshold >= 1, "GS202");
                // Initializing Safe owners.
                address currentOwner = SENTINEL_OWNERS;
                for (uint256 i = 0; i < _owners.length; i++) {
                    // Owner address cannot be null.
                    address owner = _owners[i];
                    require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this) && currentOwner != owner, "GS203");
                    // No duplicate owners allowed.
                    require(owners[owner] == address(0), "GS204");
                    owners[currentOwner] = owner;
                    currentOwner = owner;
                }
                owners[currentOwner] = SENTINEL_OWNERS;
                ownerCount = _owners.length;
                threshold = _threshold;
            }
            /// @dev Allows to add a new owner to the Safe and update the threshold at the same time.
            ///      This can only be done via a Safe transaction.
            /// @notice Adds the owner `owner` to the Safe and updates the threshold to `_threshold`.
            /// @param owner New owner address.
            /// @param _threshold New threshold.
            function addOwnerWithThreshold(address owner, uint256 _threshold) public authorized {
                // Owner address cannot be null, the sentinel or the Safe itself.
                require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this), "GS203");
                // No duplicate owners allowed.
                require(owners[owner] == address(0), "GS204");
                owners[owner] = owners[SENTINEL_OWNERS];
                owners[SENTINEL_OWNERS] = owner;
                ownerCount++;
                emit AddedOwner(owner);
                // Change threshold if threshold was changed.
                if (threshold != _threshold) changeThreshold(_threshold);
            }
            /// @dev Allows to remove an owner from the Safe and update the threshold at the same time.
            ///      This can only be done via a Safe transaction.
            /// @notice Removes the owner `owner` from the Safe and updates the threshold to `_threshold`.
            /// @param prevOwner Owner that pointed to the owner to be removed in the linked list
            /// @param owner Owner address to be removed.
            /// @param _threshold New threshold.
            function removeOwner(
                address prevOwner,
                address owner,
                uint256 _threshold
            ) public authorized {
                // Only allow to remove an owner, if threshold can still be reached.
                require(ownerCount - 1 >= _threshold, "GS201");
                // Validate owner address and check that it corresponds to owner index.
                require(owner != address(0) && owner != SENTINEL_OWNERS, "GS203");
                require(owners[prevOwner] == owner, "GS205");
                owners[prevOwner] = owners[owner];
                owners[owner] = address(0);
                ownerCount--;
                emit RemovedOwner(owner);
                // Change threshold if threshold was changed.
                if (threshold != _threshold) changeThreshold(_threshold);
            }
            /// @dev Allows to swap/replace an owner from the Safe with another address.
            ///      This can only be done via a Safe transaction.
            /// @notice Replaces the owner `oldOwner` in the Safe with `newOwner`.
            /// @param prevOwner Owner that pointed to the owner to be replaced in the linked list
            /// @param oldOwner Owner address to be replaced.
            /// @param newOwner New owner address.
            function swapOwner(
                address prevOwner,
                address oldOwner,
                address newOwner
            ) public authorized {
                // Owner address cannot be null, the sentinel or the Safe itself.
                require(newOwner != address(0) && newOwner != SENTINEL_OWNERS && newOwner != address(this), "GS203");
                // No duplicate owners allowed.
                require(owners[newOwner] == address(0), "GS204");
                // Validate oldOwner address and check that it corresponds to owner index.
                require(oldOwner != address(0) && oldOwner != SENTINEL_OWNERS, "GS203");
                require(owners[prevOwner] == oldOwner, "GS205");
                owners[newOwner] = owners[oldOwner];
                owners[prevOwner] = newOwner;
                owners[oldOwner] = address(0);
                emit RemovedOwner(oldOwner);
                emit AddedOwner(newOwner);
            }
            /// @dev Allows to update the number of required confirmations by Safe owners.
            ///      This can only be done via a Safe transaction.
            /// @notice Changes the threshold of the Safe to `_threshold`.
            /// @param _threshold New threshold.
            function changeThreshold(uint256 _threshold) public authorized {
                // Validate that threshold is smaller than number of owners.
                require(_threshold <= ownerCount, "GS201");
                // There has to be at least one Safe owner.
                require(_threshold >= 1, "GS202");
                threshold = _threshold;
                emit ChangedThreshold(threshold);
            }
            function getThreshold() public view returns (uint256) {
                return threshold;
            }
            function isOwner(address owner) public view returns (bool) {
                return owner != SENTINEL_OWNERS && owners[owner] != address(0);
            }
            /// @dev Returns array of owners.
            /// @return Array of Safe owners.
            function getOwners() public view returns (address[] memory) {
                address[] memory array = new address[](ownerCount);
                // populate return array
                uint256 index = 0;
                address currentOwner = owners[SENTINEL_OWNERS];
                while (currentOwner != SENTINEL_OWNERS) {
                    array[index] = currentOwner;
                    currentOwner = owners[currentOwner];
                    index++;
                }
                return array;
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        /// @title Enum - Collection of enums
        /// @author Richard Meissner - <[email protected]>
        contract Enum {
            enum Operation {Call, DelegateCall}
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        /// @title EtherPaymentFallback - A contract that has a fallback to accept ether payments
        /// @author Richard Meissner - <[email protected]>
        contract EtherPaymentFallback {
            event SafeReceived(address indexed sender, uint256 value);
            /// @dev Fallback function accepts Ether transactions.
            receive() external payable {
                emit SafeReceived(msg.sender, msg.value);
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        /// @title SecuredTokenTransfer - Secure token transfer
        /// @author Richard Meissner - <[email protected]>
        contract SecuredTokenTransfer {
            /// @dev Transfers a token and returns if it was a success
            /// @param token Token that should be transferred
            /// @param receiver Receiver to whom the token should be transferred
            /// @param amount The amount of tokens that should be transferred
            function transferToken(
                address token,
                address receiver,
                uint256 amount
            ) internal returns (bool transferred) {
                // 0xa9059cbb - keccack("transfer(address,uint256)")
                bytes memory data = abi.encodeWithSelector(0xa9059cbb, receiver, amount);
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    // We write the return value to scratch space.
                    // See https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory
                    let success := call(sub(gas(), 10000), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                    switch returndatasize()
                        case 0 {
                            transferred := success
                        }
                        case 0x20 {
                            transferred := iszero(or(iszero(success), iszero(mload(0))))
                        }
                        default {
                            transferred := 0
                        }
                }
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        /// @title SelfAuthorized - authorizes current contract to perform actions
        /// @author Richard Meissner - <[email protected]>
        contract SelfAuthorized {
            function requireSelfCall() private view {
                require(msg.sender == address(this), "GS031");
            }
            modifier authorized() {
                // This is a function call as it minimized the bytecode size
                requireSelfCall();
                _;
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        /// @title SignatureDecoder - Decodes signatures that a encoded as bytes
        /// @author Richard Meissner - <[email protected]>
        contract SignatureDecoder {
            /// @dev divides bytes signature into `uint8 v, bytes32 r, bytes32 s`.
            /// @notice Make sure to peform a bounds check for @param pos, to avoid out of bounds access on @param signatures
            /// @param pos which signature to read. A prior bounds check of this parameter should be performed, to avoid out of bounds access
            /// @param signatures concatenated rsv signatures
            function signatureSplit(bytes memory signatures, uint256 pos)
                internal
                pure
                returns (
                    uint8 v,
                    bytes32 r,
                    bytes32 s
                )
            {
                // The signature format is a compact form of:
                //   {bytes32 r}{bytes32 s}{uint8 v}
                // Compact means, uint8 is not padded to 32 bytes.
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let signaturePos := mul(0x41, pos)
                    r := mload(add(signatures, add(signaturePos, 0x20)))
                    s := mload(add(signatures, add(signaturePos, 0x40)))
                    // Here we are loading the last 32 bytes, including 31 bytes
                    // of 's'. There is no 'mload8' to do this.
                    //
                    // 'byte' is not working due to the Solidity parser, so lets
                    // use the second best option, 'and'
                    v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff)
                }
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        /// @title Singleton - Base for singleton contracts (should always be first super contract)
        ///         This contract is tightly coupled to our proxy contract (see `proxies/GnosisSafeProxy.sol`)
        /// @author Richard Meissner - <[email protected]>
        contract Singleton {
            // singleton always needs to be first declared variable, to ensure that it is at the same location as in the Proxy contract.
            // It should also always be ensured that the address is stored alone (uses a full word)
            address private singleton;
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        /// @title StorageAccessible - generic base contract that allows callers to access all internal storage.
        /// @notice See https://github.com/gnosis/util-contracts/blob/bb5fe5fb5df6d8400998094fb1b32a178a47c3a1/contracts/StorageAccessible.sol
        contract StorageAccessible {
            /**
             * @dev Reads `length` bytes of storage in the currents contract
             * @param offset - the offset in the current contract's storage in words to start reading from
             * @param length - the number of words (32 bytes) of data to read
             * @return the bytes that were read.
             */
            function getStorageAt(uint256 offset, uint256 length) public view returns (bytes memory) {
                bytes memory result = new bytes(length * 32);
                for (uint256 index = 0; index < length; index++) {
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let word := sload(add(offset, index))
                        mstore(add(add(result, 0x20), mul(index, 0x20)), word)
                    }
                }
                return result;
            }
            /**
             * @dev Performs a delegetecall on a targetContract in the context of self.
             * Internally reverts execution to avoid side effects (making it static).
             *
             * This method reverts with data equal to `abi.encode(bool(success), bytes(response))`.
             * Specifically, the `returndata` after a call to this method will be:
             * `success:bool || response.length:uint256 || response:bytes`.
             *
             * @param targetContract Address of the contract containing the code to execute.
             * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
             */
            function simulateAndRevert(address targetContract, bytes memory calldataPayload) external {
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let success := delegatecall(gas(), targetContract, add(calldataPayload, 0x20), mload(calldataPayload), 0, 0)
                    mstore(0x00, success)
                    mstore(0x20, returndatasize())
                    returndatacopy(0x40, 0, returndatasize())
                    revert(0, add(returndatasize(), 0x40))
                }
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        /**
         * @title GnosisSafeMath
         * @dev Math operations with safety checks that revert on error
         * Renamed from SafeMath to GnosisSafeMath to avoid conflicts
         * TODO: remove once open zeppelin update to solc 0.5.0
         */
        library GnosisSafeMath {
            /**
             * @dev Multiplies two numbers, reverts on overflow.
             */
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
                if (a == 0) {
                    return 0;
                }
                uint256 c = a * b;
                require(c / a == b);
                return c;
            }
            /**
             * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend).
             */
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b <= a);
                uint256 c = a - b;
                return c;
            }
            /**
             * @dev Adds two numbers, reverts on overflow.
             */
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                uint256 c = a + b;
                require(c >= a);
                return c;
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a >= b ? a : b;
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        contract ISignatureValidatorConstants {
            // bytes4(keccak256("isValidSignature(bytes,bytes)")
            bytes4 internal constant EIP1271_MAGIC_VALUE = 0x20c13b0b;
        }
        abstract contract ISignatureValidator is ISignatureValidatorConstants {
            /**
             * @dev Should return whether the signature provided is valid for the provided data
             * @param _data Arbitrary length data signed on the behalf of address(this)
             * @param _signature Signature byte array associated with _data
             *
             * MUST return the bytes4 magic value 0x20c13b0b when function passes.
             * MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5)
             * MUST allow external calls
             */
            function isValidSignature(bytes memory _data, bytes memory _signature) public view virtual returns (bytes4);
        }
        

        File 4 of 4: MeowToken
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/ContextUpgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            function __Ownable_init() internal onlyInitializing {
                __Ownable_init_unchained();
            }
            function __Ownable_init_unchained() internal onlyInitializing {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby disabling any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```solidity
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         *
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts.
             *
             * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
             * constructor.
             *
             * Emits an {Initialized} event.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * A reinitializer may be used after the original initialization step. This is essential to configure modules that
             * are added through upgrades and that require initialization.
             *
             * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
             * cannot be nested. If one is invoked in the context of another, execution will revert.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             *
             * WARNING: setting the version to 255 will prevent any future reinitialization.
             *
             * Emits an {Initialized} event.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             *
             * Emits an {Initialized} event the first time it is successfully executed.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized != type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
            /**
             * @dev Returns the highest version that has been initialized. See {reinitializer}.
             */
            function _getInitializedVersion() internal view returns (uint8) {
                return _initialized;
            }
            /**
             * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
             */
            function _isInitializing() internal view returns (bool) {
                return _initializing;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
        pragma solidity ^0.8.0;
        import "../utils/ContextUpgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which allows children to implement an emergency stop
         * mechanism that can be triggered by an authorized account.
         *
         * This module is used through inheritance. It will make available the
         * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
         * the functions of your contract. Note that they will not be pausable by
         * simply including this module, only once the modifiers are put in place.
         */
        abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
            /**
             * @dev Emitted when the pause is triggered by `account`.
             */
            event Paused(address account);
            /**
             * @dev Emitted when the pause is lifted by `account`.
             */
            event Unpaused(address account);
            bool private _paused;
            /**
             * @dev Initializes the contract in unpaused state.
             */
            function __Pausable_init() internal onlyInitializing {
                __Pausable_init_unchained();
            }
            function __Pausable_init_unchained() internal onlyInitializing {
                _paused = false;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is not paused.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            modifier whenNotPaused() {
                _requireNotPaused();
                _;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is paused.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            modifier whenPaused() {
                _requirePaused();
                _;
            }
            /**
             * @dev Returns true if the contract is paused, and false otherwise.
             */
            function paused() public view virtual returns (bool) {
                return _paused;
            }
            /**
             * @dev Throws if the contract is paused.
             */
            function _requireNotPaused() internal view virtual {
                require(!paused(), "Pausable: paused");
            }
            /**
             * @dev Throws if the contract is not paused.
             */
            function _requirePaused() internal view virtual {
                require(paused(), "Pausable: not paused");
            }
            /**
             * @dev Triggers stopped state.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            function _pause() internal virtual whenNotPaused {
                _paused = true;
                emit Paused(_msgSender());
            }
            /**
             * @dev Returns to normal state.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            function _unpause() internal virtual whenPaused {
                _paused = false;
                emit Unpaused(_msgSender());
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
        pragma solidity ^0.8.0;
        import "./IERC20Upgradeable.sol";
        import "./extensions/IERC20MetadataUpgradeable.sol";
        import "../../utils/ContextUpgradeable.sol";
        import "../../proxy/utils/Initializable.sol";
        /**
         * @dev Implementation of the {IERC20} interface.
         *
         * This implementation is agnostic to the way tokens are created. This means
         * that a supply mechanism has to be added in a derived contract using {_mint}.
         * For a generic mechanism see {ERC20PresetMinterPauser}.
         *
         * TIP: For a detailed writeup see our guide
         * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
         * to implement supply mechanisms].
         *
         * The default value of {decimals} is 18. To change this, you should override
         * this function so it returns a different value.
         *
         * We have followed general OpenZeppelin Contracts guidelines: functions revert
         * instead returning `false` on failure. This behavior is nonetheless
         * conventional and does not conflict with the expectations of ERC20
         * applications.
         *
         * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
         * This allows applications to reconstruct the allowance for all accounts just
         * by listening to said events. Other implementations of the EIP may not emit
         * these events, as it isn't required by the specification.
         *
         * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
         * functions have been added to mitigate the well-known issues around setting
         * allowances. See {IERC20-approve}.
         */
        contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
            mapping(address => uint256) private _balances;
            mapping(address => mapping(address => uint256)) private _allowances;
            uint256 private _totalSupply;
            string private _name;
            string private _symbol;
            /**
             * @dev Sets the values for {name} and {symbol}.
             *
             * All two of these values are immutable: they can only be set once during
             * construction.
             */
            function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
                __ERC20_init_unchained(name_, symbol_);
            }
            function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
                _name = name_;
                _symbol = symbol_;
            }
            /**
             * @dev Returns the name of the token.
             */
            function name() public view virtual override returns (string memory) {
                return _name;
            }
            /**
             * @dev Returns the symbol of the token, usually a shorter version of the
             * name.
             */
            function symbol() public view virtual override returns (string memory) {
                return _symbol;
            }
            /**
             * @dev Returns the number of decimals used to get its user representation.
             * For example, if `decimals` equals `2`, a balance of `505` tokens should
             * be displayed to a user as `5.05` (`505 / 10 ** 2`).
             *
             * Tokens usually opt for a value of 18, imitating the relationship between
             * Ether and Wei. This is the default value returned by this function, unless
             * it's overridden.
             *
             * NOTE: This information is only used for _display_ purposes: it in
             * no way affects any of the arithmetic of the contract, including
             * {IERC20-balanceOf} and {IERC20-transfer}.
             */
            function decimals() public view virtual override returns (uint8) {
                return 18;
            }
            /**
             * @dev See {IERC20-totalSupply}.
             */
            function totalSupply() public view virtual override returns (uint256) {
                return _totalSupply;
            }
            /**
             * @dev See {IERC20-balanceOf}.
             */
            function balanceOf(address account) public view virtual override returns (uint256) {
                return _balances[account];
            }
            /**
             * @dev See {IERC20-transfer}.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - the caller must have a balance of at least `amount`.
             */
            function transfer(address to, uint256 amount) public virtual override returns (bool) {
                address owner = _msgSender();
                _transfer(owner, to, amount);
                return true;
            }
            /**
             * @dev See {IERC20-allowance}.
             */
            function allowance(address owner, address spender) public view virtual override returns (uint256) {
                return _allowances[owner][spender];
            }
            /**
             * @dev See {IERC20-approve}.
             *
             * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
             * `transferFrom`. This is semantically equivalent to an infinite approval.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function approve(address spender, uint256 amount) public virtual override returns (bool) {
                address owner = _msgSender();
                _approve(owner, spender, amount);
                return true;
            }
            /**
             * @dev See {IERC20-transferFrom}.
             *
             * Emits an {Approval} event indicating the updated allowance. This is not
             * required by the EIP. See the note at the beginning of {ERC20}.
             *
             * NOTE: Does not update the allowance if the current allowance
             * is the maximum `uint256`.
             *
             * Requirements:
             *
             * - `from` and `to` cannot be the zero address.
             * - `from` must have a balance of at least `amount`.
             * - the caller must have allowance for ``from``'s tokens of at least
             * `amount`.
             */
            function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
                address spender = _msgSender();
                _spendAllowance(from, spender, amount);
                _transfer(from, to, amount);
                return true;
            }
            /**
             * @dev Atomically increases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                address owner = _msgSender();
                _approve(owner, spender, allowance(owner, spender) + addedValue);
                return true;
            }
            /**
             * @dev Atomically decreases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `spender` must have allowance for the caller of at least
             * `subtractedValue`.
             */
            function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                address owner = _msgSender();
                uint256 currentAllowance = allowance(owner, spender);
                require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                unchecked {
                    _approve(owner, spender, currentAllowance - subtractedValue);
                }
                return true;
            }
            /**
             * @dev Moves `amount` of tokens from `from` to `to`.
             *
             * This internal function is equivalent to {transfer}, and can be used to
             * e.g. implement automatic token fees, slashing mechanisms, etc.
             *
             * Emits a {Transfer} event.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `from` must have a balance of at least `amount`.
             */
            function _transfer(address from, address to, uint256 amount) internal virtual {
                require(from != address(0), "ERC20: transfer from the zero address");
                require(to != address(0), "ERC20: transfer to the zero address");
                _beforeTokenTransfer(from, to, amount);
                uint256 fromBalance = _balances[from];
                require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                unchecked {
                    _balances[from] = fromBalance - amount;
                    // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                    // decrementing then incrementing.
                    _balances[to] += amount;
                }
                emit Transfer(from, to, amount);
                _afterTokenTransfer(from, to, amount);
            }
            /** @dev Creates `amount` tokens and assigns them to `account`, increasing
             * the total supply.
             *
             * Emits a {Transfer} event with `from` set to the zero address.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             */
            function _mint(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: mint to the zero address");
                _beforeTokenTransfer(address(0), account, amount);
                _totalSupply += amount;
                unchecked {
                    // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                    _balances[account] += amount;
                }
                emit Transfer(address(0), account, amount);
                _afterTokenTransfer(address(0), account, amount);
            }
            /**
             * @dev Destroys `amount` tokens from `account`, reducing the
             * total supply.
             *
             * Emits a {Transfer} event with `to` set to the zero address.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             * - `account` must have at least `amount` tokens.
             */
            function _burn(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: burn from the zero address");
                _beforeTokenTransfer(account, address(0), amount);
                uint256 accountBalance = _balances[account];
                require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                unchecked {
                    _balances[account] = accountBalance - amount;
                    // Overflow not possible: amount <= accountBalance <= totalSupply.
                    _totalSupply -= amount;
                }
                emit Transfer(account, address(0), amount);
                _afterTokenTransfer(account, address(0), amount);
            }
            /**
             * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
             *
             * This internal function is equivalent to `approve`, and can be used to
             * e.g. set automatic allowances for certain subsystems, etc.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `owner` cannot be the zero address.
             * - `spender` cannot be the zero address.
             */
            function _approve(address owner, address spender, uint256 amount) internal virtual {
                require(owner != address(0), "ERC20: approve from the zero address");
                require(spender != address(0), "ERC20: approve to the zero address");
                _allowances[owner][spender] = amount;
                emit Approval(owner, spender, amount);
            }
            /**
             * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
             *
             * Does not update the allowance amount in case of infinite allowance.
             * Revert if not enough allowance is available.
             *
             * Might emit an {Approval} event.
             */
            function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
                uint256 currentAllowance = allowance(owner, spender);
                if (currentAllowance != type(uint256).max) {
                    require(currentAllowance >= amount, "ERC20: insufficient allowance");
                    unchecked {
                        _approve(owner, spender, currentAllowance - amount);
                    }
                }
            }
            /**
             * @dev Hook that is called before any transfer of tokens. This includes
             * minting and burning.
             *
             * Calling conditions:
             *
             * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * will be transferred to `to`.
             * - when `from` is zero, `amount` tokens will be minted for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
             * - `from` and `to` are never both zero.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
            /**
             * @dev Hook that is called after any transfer of tokens. This includes
             * minting and burning.
             *
             * Calling conditions:
             *
             * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * has been transferred to `to`.
             * - when `from` is zero, `amount` tokens have been minted for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
             * - `from` and `to` are never both zero.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[45] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Pausable.sol)
        pragma solidity ^0.8.0;
        import "../ERC20Upgradeable.sol";
        import "../../../security/PausableUpgradeable.sol";
        import "../../../proxy/utils/Initializable.sol";
        /**
         * @dev ERC20 token with pausable token transfers, minting and burning.
         *
         * Useful for scenarios such as preventing trades until the end of an evaluation
         * period, or having an emergency switch for freezing all token transfers in the
         * event of a large bug.
         *
         * IMPORTANT: This contract does not include public pause and unpause functions. In
         * addition to inheriting this contract, you must define both functions, invoking the
         * {Pausable-_pause} and {Pausable-_unpause} internal functions, with appropriate
         * access control, e.g. using {AccessControl} or {Ownable}. Not doing so will
         * make the contract unpausable.
         */
        abstract contract ERC20PausableUpgradeable is Initializable, ERC20Upgradeable, PausableUpgradeable {
            function __ERC20Pausable_init() internal onlyInitializing {
                __Pausable_init_unchained();
            }
            function __ERC20Pausable_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev See {ERC20-_beforeTokenTransfer}.
             *
             * Requirements:
             *
             * - the contract must not be paused.
             */
            function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
                super._beforeTokenTransfer(from, to, amount);
                require(!paused(), "ERC20Pausable: token transfer while paused");
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Snapshot.sol)
        pragma solidity ^0.8.0;
        import "../ERC20Upgradeable.sol";
        import "../../../utils/ArraysUpgradeable.sol";
        import "../../../utils/CountersUpgradeable.sol";
        import "../../../proxy/utils/Initializable.sol";
        /**
         * @dev This contract extends an ERC20 token with a snapshot mechanism. When a snapshot is created, the balances and
         * total supply at the time are recorded for later access.
         *
         * This can be used to safely create mechanisms based on token balances such as trustless dividends or weighted voting.
         * In naive implementations it's possible to perform a "double spend" attack by reusing the same balance from different
         * accounts. By using snapshots to calculate dividends or voting power, those attacks no longer apply. It can also be
         * used to create an efficient ERC20 forking mechanism.
         *
         * Snapshots are created by the internal {_snapshot} function, which will emit the {Snapshot} event and return a
         * snapshot id. To get the total supply at the time of a snapshot, call the function {totalSupplyAt} with the snapshot
         * id. To get the balance of an account at the time of a snapshot, call the {balanceOfAt} function with the snapshot id
         * and the account address.
         *
         * NOTE: Snapshot policy can be customized by overriding the {_getCurrentSnapshotId} method. For example, having it
         * return `block.number` will trigger the creation of snapshot at the beginning of each new block. When overriding this
         * function, be careful about the monotonicity of its result. Non-monotonic snapshot ids will break the contract.
         *
         * Implementing snapshots for every block using this method will incur significant gas costs. For a gas-efficient
         * alternative consider {ERC20Votes}.
         *
         * ==== Gas Costs
         *
         * Snapshots are efficient. Snapshot creation is _O(1)_. Retrieval of balances or total supply from a snapshot is _O(log
         * n)_ in the number of snapshots that have been created, although _n_ for a specific account will generally be much
         * smaller since identical balances in subsequent snapshots are stored as a single entry.
         *
         * There is a constant overhead for normal ERC20 transfers due to the additional snapshot bookkeeping. This overhead is
         * only significant for the first transfer that immediately follows a snapshot for a particular account. Subsequent
         * transfers will have normal cost until the next snapshot, and so on.
         */
        abstract contract ERC20SnapshotUpgradeable is Initializable, ERC20Upgradeable {
            function __ERC20Snapshot_init() internal onlyInitializing {
            }
            function __ERC20Snapshot_init_unchained() internal onlyInitializing {
            }
            // Inspired by Jordi Baylina's MiniMeToken to record historical balances:
            // https://github.com/Giveth/minime/blob/ea04d950eea153a04c51fa510b068b9dded390cb/contracts/MiniMeToken.sol
            using ArraysUpgradeable for uint256[];
            using CountersUpgradeable for CountersUpgradeable.Counter;
            // Snapshotted values have arrays of ids and the value corresponding to that id. These could be an array of a
            // Snapshot struct, but that would impede usage of functions that work on an array.
            struct Snapshots {
                uint256[] ids;
                uint256[] values;
            }
            mapping(address => Snapshots) private _accountBalanceSnapshots;
            Snapshots private _totalSupplySnapshots;
            // Snapshot ids increase monotonically, with the first value being 1. An id of 0 is invalid.
            CountersUpgradeable.Counter private _currentSnapshotId;
            /**
             * @dev Emitted by {_snapshot} when a snapshot identified by `id` is created.
             */
            event Snapshot(uint256 id);
            /**
             * @dev Creates a new snapshot and returns its snapshot id.
             *
             * Emits a {Snapshot} event that contains the same id.
             *
             * {_snapshot} is `internal` and you have to decide how to expose it externally. Its usage may be restricted to a
             * set of accounts, for example using {AccessControl}, or it may be open to the public.
             *
             * [WARNING]
             * ====
             * While an open way of calling {_snapshot} is required for certain trust minimization mechanisms such as forking,
             * you must consider that it can potentially be used by attackers in two ways.
             *
             * First, it can be used to increase the cost of retrieval of values from snapshots, although it will grow
             * logarithmically thus rendering this attack ineffective in the long term. Second, it can be used to target
             * specific accounts and increase the cost of ERC20 transfers for them, in the ways specified in the Gas Costs
             * section above.
             *
             * We haven't measured the actual numbers; if this is something you're interested in please reach out to us.
             * ====
             */
            function _snapshot() internal virtual returns (uint256) {
                _currentSnapshotId.increment();
                uint256 currentId = _getCurrentSnapshotId();
                emit Snapshot(currentId);
                return currentId;
            }
            /**
             * @dev Get the current snapshotId
             */
            function _getCurrentSnapshotId() internal view virtual returns (uint256) {
                return _currentSnapshotId.current();
            }
            /**
             * @dev Retrieves the balance of `account` at the time `snapshotId` was created.
             */
            function balanceOfAt(address account, uint256 snapshotId) public view virtual returns (uint256) {
                (bool snapshotted, uint256 value) = _valueAt(snapshotId, _accountBalanceSnapshots[account]);
                return snapshotted ? value : balanceOf(account);
            }
            /**
             * @dev Retrieves the total supply at the time `snapshotId` was created.
             */
            function totalSupplyAt(uint256 snapshotId) public view virtual returns (uint256) {
                (bool snapshotted, uint256 value) = _valueAt(snapshotId, _totalSupplySnapshots);
                return snapshotted ? value : totalSupply();
            }
            // Update balance and/or total supply snapshots before the values are modified. This is implemented
            // in the _beforeTokenTransfer hook, which is executed for _mint, _burn, and _transfer operations.
            function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
                super._beforeTokenTransfer(from, to, amount);
                if (from == address(0)) {
                    // mint
                    _updateAccountSnapshot(to);
                    _updateTotalSupplySnapshot();
                } else if (to == address(0)) {
                    // burn
                    _updateAccountSnapshot(from);
                    _updateTotalSupplySnapshot();
                } else {
                    // transfer
                    _updateAccountSnapshot(from);
                    _updateAccountSnapshot(to);
                }
            }
            function _valueAt(uint256 snapshotId, Snapshots storage snapshots) private view returns (bool, uint256) {
                require(snapshotId > 0, "ERC20Snapshot: id is 0");
                require(snapshotId <= _getCurrentSnapshotId(), "ERC20Snapshot: nonexistent id");
                // When a valid snapshot is queried, there are three possibilities:
                //  a) The queried value was not modified after the snapshot was taken. Therefore, a snapshot entry was never
                //  created for this id, and all stored snapshot ids are smaller than the requested one. The value that corresponds
                //  to this id is the current one.
                //  b) The queried value was modified after the snapshot was taken. Therefore, there will be an entry with the
                //  requested id, and its value is the one to return.
                //  c) More snapshots were created after the requested one, and the queried value was later modified. There will be
                //  no entry for the requested id: the value that corresponds to it is that of the smallest snapshot id that is
                //  larger than the requested one.
                //
                // In summary, we need to find an element in an array, returning the index of the smallest value that is larger if
                // it is not found, unless said value doesn't exist (e.g. when all values are smaller). Arrays.findUpperBound does
                // exactly this.
                uint256 index = snapshots.ids.findUpperBound(snapshotId);
                if (index == snapshots.ids.length) {
                    return (false, 0);
                } else {
                    return (true, snapshots.values[index]);
                }
            }
            function _updateAccountSnapshot(address account) private {
                _updateSnapshot(_accountBalanceSnapshots[account], balanceOf(account));
            }
            function _updateTotalSupplySnapshot() private {
                _updateSnapshot(_totalSupplySnapshots, totalSupply());
            }
            function _updateSnapshot(Snapshots storage snapshots, uint256 currentValue) private {
                uint256 currentId = _getCurrentSnapshotId();
                if (_lastSnapshotId(snapshots.ids) < currentId) {
                    snapshots.ids.push(currentId);
                    snapshots.values.push(currentValue);
                }
            }
            function _lastSnapshotId(uint256[] storage ids) private view returns (uint256) {
                if (ids.length == 0) {
                    return 0;
                } else {
                    return ids[ids.length - 1];
                }
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[46] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
        pragma solidity ^0.8.0;
        import "../IERC20Upgradeable.sol";
        /**
         * @dev Interface for the optional metadata functions from the ERC20 standard.
         *
         * _Available since v4.1._
         */
        interface IERC20MetadataUpgradeable is IERC20Upgradeable {
            /**
             * @dev Returns the name of the token.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the symbol of the token.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the decimals places of the token.
             */
            function decimals() external view returns (uint8);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20Upgradeable {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `from` to `to` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 amount) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             *
             * Furthermore, `isContract` will also return true if the target contract within
             * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
             * which only has an effect at the end of a transaction.
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Arrays.sol)
        pragma solidity ^0.8.0;
        import "./StorageSlotUpgradeable.sol";
        import "./math/MathUpgradeable.sol";
        /**
         * @dev Collection of functions related to array types.
         */
        library ArraysUpgradeable {
            using StorageSlotUpgradeable for bytes32;
            /**
             * @dev Searches a sorted `array` and returns the first index that contains
             * a value greater or equal to `element`. If no such index exists (i.e. all
             * values in the array are strictly less than `element`), the array length is
             * returned. Time complexity O(log n).
             *
             * `array` is expected to be sorted in ascending order, and to contain no
             * repeated elements.
             */
            function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
                if (array.length == 0) {
                    return 0;
                }
                uint256 low = 0;
                uint256 high = array.length;
                while (low < high) {
                    uint256 mid = MathUpgradeable.average(low, high);
                    // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
                    // because Math.average rounds down (it does integer division with truncation).
                    if (unsafeAccess(array, mid).value > element) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
                if (low > 0 && unsafeAccess(array, low - 1).value == element) {
                    return low - 1;
                } else {
                    return low;
                }
            }
            /**
             * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
             *
             * WARNING: Only use if you are certain `pos` is lower than the array length.
             */
            function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlotUpgradeable.AddressSlot storage) {
                bytes32 slot;
                // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
                // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0, arr.slot)
                    slot := add(keccak256(0, 0x20), pos)
                }
                return slot.getAddressSlot();
            }
            /**
             * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
             *
             * WARNING: Only use if you are certain `pos` is lower than the array length.
             */
            function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlotUpgradeable.Bytes32Slot storage) {
                bytes32 slot;
                // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
                // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0, arr.slot)
                    slot := add(keccak256(0, 0x20), pos)
                }
                return slot.getBytes32Slot();
            }
            /**
             * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
             *
             * WARNING: Only use if you are certain `pos` is lower than the array length.
             */
            function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlotUpgradeable.Uint256Slot storage) {
                bytes32 slot;
                // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
                // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0, arr.slot)
                    slot := add(keccak256(0, 0x20), pos)
                }
                return slot.getUint256Slot();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
        pragma solidity ^0.8.0;
        /**
         * @title Counters
         * @author Matt Condon (@shrugs)
         * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
         * of elements in a mapping, issuing ERC721 ids, or counting request ids.
         *
         * Include with `using Counters for Counters.Counter;`
         */
        library CountersUpgradeable {
            struct Counter {
                // This variable should never be directly accessed by users of the library: interactions must be restricted to
                // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
                // this feature: see https://github.com/ethereum/solidity/issues/4637
                uint256 _value; // default: 0
            }
            function current(Counter storage counter) internal view returns (uint256) {
                return counter._value;
            }
            function increment(Counter storage counter) internal {
                unchecked {
                    counter._value += 1;
                }
            }
            function decrement(Counter storage counter) internal {
                uint256 value = counter._value;
                require(value > 0, "Counter: decrement overflow");
                unchecked {
                    counter._value = value - 1;
                }
            }
            function reset(Counter storage counter) internal {
                counter._value = 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library MathUpgradeable {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                        // The surrounding unchecked block does not change this fact.
                        // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1, "Math: mulDiv overflow");
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                //
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                //
                // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                //
                // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1 << (log2(a) >> 1);
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 2, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 128;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 64;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 32;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 16;
                    }
                    if (value >> 8 > 0) {
                        value >>= 8;
                        result += 8;
                    }
                    if (value >> 4 > 0) {
                        value >>= 4;
                        result += 4;
                    }
                    if (value >> 2 > 0) {
                        value >>= 2;
                        result += 2;
                    }
                    if (value >> 1 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 10, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10 ** 64) {
                        value /= 10 ** 64;
                        result += 64;
                    }
                    if (value >= 10 ** 32) {
                        value /= 10 ** 32;
                        result += 32;
                    }
                    if (value >= 10 ** 16) {
                        value /= 10 ** 16;
                        result += 16;
                    }
                    if (value >= 10 ** 8) {
                        value /= 10 ** 8;
                        result += 8;
                    }
                    if (value >= 10 ** 4) {
                        value /= 10 ** 4;
                        result += 4;
                    }
                    if (value >= 10 ** 2) {
                        value /= 10 ** 2;
                        result += 2;
                    }
                    if (value >= 10 ** 1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 256, rounded down, of a positive value.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 16;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 8;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 4;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 2;
                    }
                    if (value >> 8 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
         * _Available since v4.9 for `string`, `bytes`._
         */
        library StorageSlotUpgradeable {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.3;
        import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PausableUpgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20SnapshotUpgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        contract MeowToken is
          OwnableUpgradeable,
          ERC20Upgradeable,
          ERC20PausableUpgradeable,
          ERC20SnapshotUpgradeable {
          // Mapping which stores all addresses allowed to snapshot
          mapping(address => bool) authorizedToSnapshot;
          /**
           * @dev We add this to disallow initializing the implementation contract
           * when deployed as recommended by OpenZeppelin
           * https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
           */
          /// @custom:oz-upgrades-unsafe-allow constructor
          constructor() {
            _disableInitializers();
          }
          /**
           * @dev Initializer for the proxy with token name, symbol and amount
           * @param name_ is the Token Name
           * @param symbol_ is the Token Symbol
           */
          function initialize(string memory name_, string memory symbol_)
          public
          initializer
          {
            __Ownable_init();
            __ERC20_init(name_, symbol_);
            __ERC20Snapshot_init();
            __ERC20Pausable_init();
          }
          /**
           * @dev Retrieves the balance of `account` at the time `snapshotId` was created.
           * @return uint 256
           * @notice  implementation disabled because snapshot not used anymore, only to preserve state variables
           */
          function balanceOfAt(address, uint256) public view virtual override returns (uint256) {
            revert("Snapshot functionality removed");
          }
          /**
           * @dev Retrieves the total supply at the time `snapshotId` was created.
           * @return uint256
           * @notice  implementation disabled because snapshot not used anymore, only to preserve state variables
           */
          function totalSupplyAt(uint256) public view virtual override returns(uint256) {
              revert("Snapshot functionality removed");
          }
          /**
           * Utility function to transfer tokens to many addresses at once.
           * @param recipients The addresses to send tokens to
           * @param amount The amount of tokens to send
           * @return Boolean if the transfer was a success
           */
          function transferBulk(address[] calldata recipients, uint256 amount)
          external
          returns (bool)
          {
            require(amount > 0, "MeowToken: amount must be greater than 0");
            address sender = _msgSender();
            uint256 length = recipients.length;
            for (uint256 i; i < length;) {
              address recipient = recipients[i];
              _transfer(sender, recipient, amount);
              unchecked {++i;}
            }
            return true;
          }
          /**
           * Utility function to transfer tokens to many addresses at once.
           * @param sender The address to send the tokens from
           * @param recipients The addresses to send tokens to
           * @param amount The amount of tokens to send
           * @return Boolean if the transfer was a success
           */
          function transferFromBulk(
            address sender,
            address[] calldata recipients,
            uint256 amount
          ) external returns (bool) {
            require(amount > 0, "MeowToken: amount must be greater than 0");
            uint256 length = recipients.length;
            for (uint256 i; i < length;) {
              address recipient = recipients[i];
              transferFrom(sender, recipient, amount);
              unchecked {++i;}
            }
            return true;
          }
          function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
          )
          internal
          virtual
          override(
          ERC20PausableUpgradeable,
          ERC20SnapshotUpgradeable,
          ERC20Upgradeable
          )
          {}
          function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
          ) internal virtual override {
            if (to == address(this)) { //token were sent to this address, we need to burn them
              _burn (to, amount); // burn from the contract itself.
            }
          }
        }