ETH Price: $2,310.36 (-4.21%)

Transaction Decoder

Block:
15927260 at Nov-08-2022 06:59:11 PM +UTC
Transaction Fee:
0.0074777997235942 ETH $17.28
Gas Used:
61,100 Gas / 122.386247522 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x06E64c7B...aFa55a4EA
4.911139606574711991 Eth
Nonce: 14896
4.903661806851117791 Eth
Nonce: 14897
0.0074777997235942
(builder0x69)
14.647492747261309771 Eth14.647584397261309771 Eth0.00009165

Execution Trace

MEV Bot: 0x80d...a13.00000000( )
  • 0xfa300ae4b7b7a35b5156d6d03c0da227851a335d.0008246e( )
    • 0x1f4de5cc412ff43db7663e39aaa04221ca9e995f.dab61759( )
      • Uniswap V3: FTX Token 2.STATICCALL( )
      • Uniswap V3: FTX Token 2.STATICCALL( )
      • Uniswap V3: FTX Token 2.STATICCALL( )
      • Uniswap V3: FTX Token 2.5339c296( )
      • UniswapV2Pair.STATICCALL( )
        // File: contracts/uniswapv2/interfaces/IUniswapV2Factory.sol
        
        pragma solidity >=0.5.0;
        
        interface IUniswapV2Factory {
            event PairCreated(address indexed token0, address indexed token1, address pair, uint);
        
            function feeTo() external view returns (address);
            function feeToSetter() external view returns (address);
            function migrator() external view returns (address);
        
            function getPair(address tokenA, address tokenB) external view returns (address pair);
            function allPairs(uint) external view returns (address pair);
            function allPairsLength() external view returns (uint);
        
            function createPair(address tokenA, address tokenB) external returns (address pair);
        
            function setFeeTo(address) external;
            function setFeeToSetter(address) external;
            function setMigrator(address) external;
        }
        
        // File: contracts/uniswapv2/libraries/SafeMath.sol
        
        pragma solidity =0.6.12;
        
        // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
        
        library SafeMathUniswap {
            function add(uint x, uint y) internal pure returns (uint z) {
                require((z = x + y) >= x, 'ds-math-add-overflow');
            }
        
            function sub(uint x, uint y) internal pure returns (uint z) {
                require((z = x - y) <= x, 'ds-math-sub-underflow');
            }
        
            function mul(uint x, uint y) internal pure returns (uint z) {
                require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
            }
        }
        
        // File: contracts/uniswapv2/UniswapV2ERC20.sol
        
        pragma solidity =0.6.12;
        
        
        contract UniswapV2ERC20 {
            using SafeMathUniswap for uint;
        
            string public constant name = 'SushiSwap LP Token';
            string public constant symbol = 'SLP';
            uint8 public constant decimals = 18;
            uint  public totalSupply;
            mapping(address => uint) public balanceOf;
            mapping(address => mapping(address => uint)) public allowance;
        
            bytes32 public DOMAIN_SEPARATOR;
            // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
            bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
            mapping(address => uint) public nonces;
        
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            constructor() public {
                uint chainId;
                assembly {
                    chainId := chainid()
                }
                DOMAIN_SEPARATOR = keccak256(
                    abi.encode(
                        keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                        keccak256(bytes(name)),
                        keccak256(bytes('1')),
                        chainId,
                        address(this)
                    )
                );
            }
        
            function _mint(address to, uint value) internal {
                totalSupply = totalSupply.add(value);
                balanceOf[to] = balanceOf[to].add(value);
                emit Transfer(address(0), to, value);
            }
        
            function _burn(address from, uint value) internal {
                balanceOf[from] = balanceOf[from].sub(value);
                totalSupply = totalSupply.sub(value);
                emit Transfer(from, address(0), value);
            }
        
            function _approve(address owner, address spender, uint value) private {
                allowance[owner][spender] = value;
                emit Approval(owner, spender, value);
            }
        
            function _transfer(address from, address to, uint value) private {
                balanceOf[from] = balanceOf[from].sub(value);
                balanceOf[to] = balanceOf[to].add(value);
                emit Transfer(from, to, value);
            }
        
            function approve(address spender, uint value) external returns (bool) {
                _approve(msg.sender, spender, value);
                return true;
            }
        
            function transfer(address to, uint value) external returns (bool) {
                _transfer(msg.sender, to, value);
                return true;
            }
        
            function transferFrom(address from, address to, uint value) external returns (bool) {
                if (allowance[from][msg.sender] != uint(-1)) {
                    allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
                }
                _transfer(from, to, value);
                return true;
            }
        
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
                require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
                bytes32 digest = keccak256(
                    abi.encodePacked(
                        '\x19\x01',
                        DOMAIN_SEPARATOR,
                        keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                    )
                );
                address recoveredAddress = ecrecover(digest, v, r, s);
                require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
                _approve(owner, spender, value);
            }
        }
        
        // File: contracts/uniswapv2/libraries/Math.sol
        
        pragma solidity =0.6.12;
        
        // a library for performing various math operations
        
        library Math {
            function min(uint x, uint y) internal pure returns (uint z) {
                z = x < y ? x : y;
            }
        
            // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
            function sqrt(uint y) internal pure returns (uint z) {
                if (y > 3) {
                    z = y;
                    uint x = y / 2 + 1;
                    while (x < z) {
                        z = x;
                        x = (y / x + x) / 2;
                    }
                } else if (y != 0) {
                    z = 1;
                }
            }
        }
        
        // File: contracts/uniswapv2/libraries/UQ112x112.sol
        
        pragma solidity =0.6.12;
        
        // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
        
        // range: [0, 2**112 - 1]
        // resolution: 1 / 2**112
        
        library UQ112x112 {
            uint224 constant Q112 = 2**112;
        
            // encode a uint112 as a UQ112x112
            function encode(uint112 y) internal pure returns (uint224 z) {
                z = uint224(y) * Q112; // never overflows
            }
        
            // divide a UQ112x112 by a uint112, returning a UQ112x112
            function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
                z = x / uint224(y);
            }
        }
        
        // File: contracts/uniswapv2/interfaces/IERC20.sol
        
        pragma solidity >=0.5.0;
        
        interface IERC20Uniswap {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            function name() external view returns (string memory);
            function symbol() external view returns (string memory);
            function decimals() external view returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
        
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
        }
        
        // File: contracts/uniswapv2/interfaces/IUniswapV2Callee.sol
        
        pragma solidity >=0.5.0;
        
        interface IUniswapV2Callee {
            function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
        }
        
        // File: contracts/uniswapv2/UniswapV2Pair.sol
        
        pragma solidity =0.6.12;
        
        
        
        
        
        
        
        
        interface IMigrator {
            // Return the desired amount of liquidity token that the migrator wants.
            function desiredLiquidity() external view returns (uint256);
        }
        
        contract UniswapV2Pair is UniswapV2ERC20 {
            using SafeMathUniswap  for uint;
            using UQ112x112 for uint224;
        
            uint public constant MINIMUM_LIQUIDITY = 10**3;
            bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
        
            address public factory;
            address public token0;
            address public token1;
        
            uint112 private reserve0;           // uses single storage slot, accessible via getReserves
            uint112 private reserve1;           // uses single storage slot, accessible via getReserves
            uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves
        
            uint public price0CumulativeLast;
            uint public price1CumulativeLast;
            uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
        
            uint private unlocked = 1;
            modifier lock() {
                require(unlocked == 1, 'UniswapV2: LOCKED');
                unlocked = 0;
                _;
                unlocked = 1;
            }
        
            function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
                _reserve0 = reserve0;
                _reserve1 = reserve1;
                _blockTimestampLast = blockTimestampLast;
            }
        
            function _safeTransfer(address token, address to, uint value) private {
                (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
            }
        
            event Mint(address indexed sender, uint amount0, uint amount1);
            event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
            event Swap(
                address indexed sender,
                uint amount0In,
                uint amount1In,
                uint amount0Out,
                uint amount1Out,
                address indexed to
            );
            event Sync(uint112 reserve0, uint112 reserve1);
        
            constructor() public {
                factory = msg.sender;
            }
        
            // called once by the factory at time of deployment
            function initialize(address _token0, address _token1) external {
                require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
                token0 = _token0;
                token1 = _token1;
            }
        
            // update reserves and, on the first call per block, price accumulators
            function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
                require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
                uint32 blockTimestamp = uint32(block.timestamp % 2**32);
                uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
                if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                    // * never overflows, and + overflow is desired
                    price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                    price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
                }
                reserve0 = uint112(balance0);
                reserve1 = uint112(balance1);
                blockTimestampLast = blockTimestamp;
                emit Sync(reserve0, reserve1);
            }
        
            // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
            function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
                address feeTo = IUniswapV2Factory(factory).feeTo();
                feeOn = feeTo != address(0);
                uint _kLast = kLast; // gas savings
                if (feeOn) {
                    if (_kLast != 0) {
                        uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                        uint rootKLast = Math.sqrt(_kLast);
                        if (rootK > rootKLast) {
                            uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                            uint denominator = rootK.mul(5).add(rootKLast);
                            uint liquidity = numerator / denominator;
                            if (liquidity > 0) _mint(feeTo, liquidity);
                        }
                    }
                } else if (_kLast != 0) {
                    kLast = 0;
                }
            }
        
            // this low-level function should be called from a contract which performs important safety checks
            function mint(address to) external lock returns (uint liquidity) {
                (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                uint balance0 = IERC20Uniswap(token0).balanceOf(address(this));
                uint balance1 = IERC20Uniswap(token1).balanceOf(address(this));
                uint amount0 = balance0.sub(_reserve0);
                uint amount1 = balance1.sub(_reserve1);
        
                bool feeOn = _mintFee(_reserve0, _reserve1);
                uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                if (_totalSupply == 0) {
                    address migrator = IUniswapV2Factory(factory).migrator();
                    if (msg.sender == migrator) {
                        liquidity = IMigrator(migrator).desiredLiquidity();
                        require(liquidity > 0 && liquidity != uint256(-1), "Bad desired liquidity");
                    } else {
                        require(migrator == address(0), "Must not have migrator");
                        liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
                        _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
                    }
                } else {
                    liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
                }
                require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
                _mint(to, liquidity);
        
                _update(balance0, balance1, _reserve0, _reserve1);
                if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                emit Mint(msg.sender, amount0, amount1);
            }
        
            // this low-level function should be called from a contract which performs important safety checks
            function burn(address to) external lock returns (uint amount0, uint amount1) {
                (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                address _token0 = token0;                                // gas savings
                address _token1 = token1;                                // gas savings
                uint balance0 = IERC20Uniswap(_token0).balanceOf(address(this));
                uint balance1 = IERC20Uniswap(_token1).balanceOf(address(this));
                uint liquidity = balanceOf[address(this)];
        
                bool feeOn = _mintFee(_reserve0, _reserve1);
                uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
                amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
                require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
                _burn(address(this), liquidity);
                _safeTransfer(_token0, to, amount0);
                _safeTransfer(_token1, to, amount1);
                balance0 = IERC20Uniswap(_token0).balanceOf(address(this));
                balance1 = IERC20Uniswap(_token1).balanceOf(address(this));
        
                _update(balance0, balance1, _reserve0, _reserve1);
                if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                emit Burn(msg.sender, amount0, amount1, to);
            }
        
            // this low-level function should be called from a contract which performs important safety checks
            function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
                require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
                (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
        
                uint balance0;
                uint balance1;
                { // scope for _token{0,1}, avoids stack too deep errors
                address _token0 = token0;
                address _token1 = token1;
                require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
                if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
                if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
                if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
                balance0 = IERC20Uniswap(_token0).balanceOf(address(this));
                balance1 = IERC20Uniswap(_token1).balanceOf(address(this));
                }
                uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
                uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
                require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
                { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
                uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
                uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
                require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
                }
        
                _update(balance0, balance1, _reserve0, _reserve1);
                emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
            }
        
            // force balances to match reserves
            function skim(address to) external lock {
                address _token0 = token0; // gas savings
                address _token1 = token1; // gas savings
                _safeTransfer(_token0, to, IERC20Uniswap(_token0).balanceOf(address(this)).sub(reserve0));
                _safeTransfer(_token1, to, IERC20Uniswap(_token1).balanceOf(address(this)).sub(reserve1));
            }
        
            // force reserves to match balances
            function sync() external lock {
                _update(IERC20Uniswap(token0).balanceOf(address(this)), IERC20Uniswap(token1).balanceOf(address(this)), reserve0, reserve1);
            }
        }