Transaction Hash:
Block:
21022599 at Oct-22-2024 05:25:35 PM +UTC
Transaction Fee:
0.001084374252611855 ETH
$2.65
Gas Used:
57,791 Gas / 18.763721905 Gwei
Emitted Events:
175 |
UniswapV2Pair.Transfer( from=[Receiver] DAOTOKEN, to=0x7f6af9C71EC60f282b01575a4bE0930150013c53, value=10876362634496394036197 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x41902A30...E287e1626 | (DefiAllOdds: Deployer) |
0.087513573168957428 Eth
Nonce: 12
|
0.086429198916345573 Eth
Nonce: 13
| 0.001084374252611855 | |
0xdf99A083...17Dc6A555
Miner
| (Flashbots: Builder 2) | 8.893523195250311293 Eth | 8.893631946354111293 Eth | 0.0001087511038 | |
0xFF4D9A73...62eFA8566 |
Execution Trace
DAOTOKEN.CALL( )

-
UniswapV2Pair.balanceOf( 0x682F3317a8dB21Ba205DC84a0B7BD5010333bda7 ) => ( 10876362634496394036197 )
-
UniswapV2Pair.transfer( to=0x7f6af9C71EC60f282b01575a4bE0930150013c53, value=10876362634496394036197 ) => ( True )
File 1 of 2: DAOTOKEN
File 2 of 2: UniswapV2Pair
// SPDX-License-Identifier: MIT pragma solidity ^0.8.12; interface IERC20 { function totalSupply() external view returns (uint256); function balanceOf(address account) external view returns (uint256); function transfer(address recipient, uint256 amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } library Address { error AddressInsufficientBalance(address account); error AddressEmptyCode(address target); error FailedInnerCall(); function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } function _revert(bytes memory returndata) private pure { if (returndata.length > 0) { assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } } library SafeERC20 { using Address for address; error SafeERC20FailedOperation(address token); error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } function _callOptionalReturn(IERC20 token, bytes memory data) private { bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } } library MerkleProof { error MerkleProofInvalidMultiproof(); function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } interface IUniswapV2Factory { function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountA, uint amountB); function removeLiquidityETHWithPermit( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapTokensForExactTokens( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB); function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut); function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); } interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; } abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } abstract contract Ownable is Context { address private _owner; error OwnableUnauthorizedAccount(address account); error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } modifier onlyOwner() { _checkOwner(); _; } function owner() public view virtual returns (address) { return _owner; } function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } contract DAOTOKEN is Ownable, IERC20 { using SafeERC20 for IERC20; event ChangeBuyTax(uint256 prevTax, uint256 newTax); event ChangeSellTax(uint256 prevTax, uint256 newTax); bool private _swap; uint8 private constant _decimals = 18; uint16 public buyTax = 500; uint16 public sellTax = 500; uint16 public constant denominator = 10_000; uint256 public constant maxSupply = 100_000_000 ether; uint256 private _totalSupply = 61_000_000 ether; uint256 public threshold = 0.25 ether; uint256 public swapPct = 10_000; uint256 public immutable genesis; uint256 public startLiquidity; uint256 public constant firstDate2024 = 1704067200; // 1st Jan 2024 00:00 GMT+0000. address payable private _multiSig; address public immutable pair; bytes32 public OGRoot; bytes32 public annualRoot; string private constant _name = "DAOGAME"; string private constant _symbol = "DAOG"; IUniswapV2Router02 immutable private uniV2Router; uint256[] public remainingCommunity = [1_000_000 ether, 1_000_000 ether]; uint256[] public remainingTeam = [2_500_000 ether, 2_500_000 ether]; uint256[] public remainingRewards = [12_000_000 ether, 10_000_000 ether, 10_000_000 ether]; mapping(address => bool) private _isPool; mapping(address => uint256) private _balances; mapping(address => mapping (address => uint256)) private _allowances; mapping(address => bool) public exempted; mapping(address => bytes32[]) public proofs; constructor(address multiSig_, address router_) Ownable(msg.sender){ require( multiSig_ != address(0) && router_ != address(0), "zero address" ); genesis = block.timestamp; exempted[_msgSender()] = true; exempted[multiSig_] = true; exempted[address(this)] = true; _balances[multiSig_] = 1_000_000 ether; _balances[_msgSender()] = 60_000_000 ether; uniV2Router = IUniswapV2Router02(router_); // mainnet 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D _multiSig = payable(multiSig_); pair = IUniswapV2Factory(uniV2Router.factory()).createPair(uniV2Router.WETH(), address(this)); _isPool[pair] = true; } modifier lockSwap { _swap = true; _; _swap = false; } receive() external payable {} function name() external pure returns (string memory) { return _name; } function symbol() external pure returns (string memory) { return _symbol; } function decimals() external pure returns (uint8) { return _decimals; } function totalSupply() external view override returns(uint256) { return _totalSupply; } function balanceOf(address account) external view override returns (uint256) { return _balances[account]; } function allowance(address owner, address spender) external view override returns (uint256) { return _allowances[owner][spender]; } function isPool(address addr) external view returns (bool){ return _isPool[addr]; } function approve(address spender, uint256 amount) external override returns (bool) { _approve(_msgSender(), spender, amount); return true; } function transfer(address recipient, uint256 amount) external override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) { require (_allowances[sender][_msgSender()] >= amount, "ERC20: transfer amount exceeds allowance"); _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()] - amount); return true; } function setProof(bytes32[] memory _proof) external { proofs[_msgSender()] = _proof; } function setBuyTax(uint16 newTax) external onlyOwner { require (newTax <= 500, "tax cannot exceed 5%"); emit ChangeBuyTax(buyTax, newTax); buyTax = newTax; } function setSellTax(uint16 newTax) external onlyOwner { require (newTax <= 500, "tax cannot exceed 5%"); emit ChangeSellTax(sellTax, newTax); sellTax = newTax; } function setExempted(address _address, bool exempt_) external onlyOwner { exempted[_address] = exempt_; } function setPool(address addr, bool isPool_) external onlyOwner { require(addr != address(0), "zero address cannot be pool"); _isPool[addr] = isPool_; } function safeTokenSwap(uint256 amount) external onlyOwner { _tokensToETH(amount); } function safeETHtransfer() external onlyOwner { (bool success,) = _multiSig.call{value: address(this).balance}(""); require(success, "Failed to send Ether"); } function setOGRoot(bytes32 _OGRoot) external onlyOwner { OGRoot = _OGRoot; } function setAnnualRoot(bytes32 _annualRoot) external onlyOwner { annualRoot = _annualRoot; } function setStartLiquidity() external onlyOwner { require(startLiquidity == 0, "already set"); startLiquidity = block.timestamp; } function setThreshold(uint256 _threshold) external onlyOwner { threshold = _threshold; } function setSwapPct(uint256 _swapPct) external onlyOwner { require(_swapPct <= denominator, "wrong pct"); swapPct = _swapPct; } function mintCommunity() external onlyOwner { _mint(remainingCommunity); } function mintTeam() external onlyOwner { _mint(remainingTeam); } function mintRewards() external onlyOwner { uint256 available; if(block.timestamp >= firstDate2024 + 2 * (365.25 * 1 days)) { available += remainingRewards[2]; delete remainingRewards[2]; } if(block.timestamp >= firstDate2024 + (365.25 * 1 days)) { available += remainingRewards[1]; delete remainingRewards[1]; } if(block.timestamp >= firstDate2024) { available += remainingRewards[0]; delete remainingRewards[0]; } _mintAvailable(available); } function setMultiSig(address payable multiSig_) external onlyOwner { _multiSig = multiSig_; } function withdrawLiquidity() external onlyOwner { // lock 1 year require( startLiquidity != 0 && block.timestamp >= startLiquidity + (365.25 * 1 days), "not yet" ); uint256 lpBalance = IERC20(pair).balanceOf(address(this)); require(lpBalance != 0, "zero lp balance"); IERC20(pair).safeTransfer(_multiSig, lpBalance); } function _approve(address owner, address spender, uint256 amount) private { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } function _transfer(address sender, address recipient, uint256 amount) private { require(amount != 0, "cannot transfer zero"); require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); require(_balances[sender] >= amount, "ERC20: transfer exceeds balance"); require(!(_isPool[sender] && _isPool[recipient]), "cannot transfer pool to pool"); require( startLiquidity != 0 || exempted[sender] || exempted[recipient], "unauthorized transfer" ); uint256 taxedAmount = amount; if(startLiquidity != 0){ uint256 tax; bool buy; bool sell; // if buy if(_isPool[sender]) { buy = true; } else if(_isPool[recipient]) { sell = true; } // whitelist verification if(buy && !exempted[recipient]) { if(block.timestamp <= startLiquidity + 1 hours / 2) { _verify(recipient, OGRoot); } else if(block.timestamp <= startLiquidity + 1 hours) { _verify(recipient, annualRoot); } // apply buy tax tax = amount * buyTax / denominator; } else if(sell && !exempted[sender]) { // apply sell tax tax = amount * sellTax / denominator; } if(tax != 0){ unchecked { taxedAmount -= tax; _balances[address(this)] += tax; } emit Transfer(sender, address(this), tax); } if(sell && _balances[address(this)] != 0) { address[] memory path = _getPath(); uint256 amountOut = uniV2Router.getAmountsOut(_balances[address(this)], path)[1]; // DAOG amount if (amountOut >= threshold && !_swap && swapPct != 0) { _tokensToETH(_balances[address(this)] * swapPct / denominator); } } } // 0.5% limit 1st 24h if(block.timestamp <= startLiquidity + 1 days ){ _checkLimits( recipient, taxedAmount, 50 ); // 1% limit next 72h } else if(block.timestamp <= startLiquidity + 4 days) { _checkLimits( recipient, taxedAmount, 100 ); } unchecked{ _balances[recipient] += taxedAmount; _balances[sender] -= amount; } emit Transfer(sender, recipient, taxedAmount); } function _mint(uint256[] storage remaining) private { uint256 available; if(block.timestamp >= genesis + (365.25 * 2 days) ) { available += remaining[1]; delete remaining[1]; } if(block.timestamp >= genesis + (365.25 * 1 days)) { available += remaining[0]; delete remaining[0]; } _mintAvailable(available); } function _checkLimits( address recipient, uint256 taxedAmount, uint8 pct ) private view { uint256 limit = maxSupply * pct / denominator; string memory pctStr = pct == 50 ? "0.5% supply": "1% supply"; if(!exempted[recipient] && !_isPool[recipient]) { require( _balances[recipient] + taxedAmount <= limit, string.concat("recipient balance ", pctStr) ); } } function _verify(address _whitelisted, bytes32 _root) private view { string memory group = _root == OGRoot ? "OG" : "Annual"; require( MerkleProof.verify( proofs[_whitelisted], _root, keccak256(abi.encodePacked(_whitelisted)) ), string.concat("not whitelisted ", group) ); } function _getPath() private view returns(address[] memory) { address[] memory path = new address[](2); path[0] = address(this); path[1] = uniV2Router.WETH(); return path; } function _tokensToETH(uint256 amount) private lockSwap { if(_multiSig != address(0)){ address[] memory path = _getPath(); _approve(address(this), address(uniV2Router), amount); uniV2Router .swapExactTokensForETHSupportingFeeOnTransferTokens( amount, 0, path, _multiSig, block.timestamp ); } } function _mintAvailable(uint256 available) private { require(available != 0, "nothing to withdraw"); unchecked { _balances[_multiSig] += available; _totalSupply += available; } require(_totalSupply <= maxSupply, "wrong supply"); emit Transfer(address(0), _multiSig, available); } }
File 2 of 2: UniswapV2Pair
// File: contracts/interfaces/IUniswapV2Pair.sol pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // File: contracts/interfaces/IUniswapV2ERC20.sol pragma solidity >=0.5.0; interface IUniswapV2ERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; } // File: contracts/libraries/SafeMath.sol pragma solidity =0.5.16; // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math) library SafeMath { function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x, 'ds-math-add-overflow'); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x, 'ds-math-sub-underflow'); } function mul(uint x, uint y) internal pure returns (uint z) { require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow'); } } // File: contracts/UniswapV2ERC20.sol pragma solidity =0.5.16; contract UniswapV2ERC20 is IUniswapV2ERC20 { using SafeMath for uint; string public constant name = 'Uniswap V2'; string public constant symbol = 'UNI-V2'; uint8 public constant decimals = 18; uint public totalSupply; mapping(address => uint) public balanceOf; mapping(address => mapping(address => uint)) public allowance; bytes32 public DOMAIN_SEPARATOR; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint) public nonces; event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); constructor() public { uint chainId; assembly { chainId := chainid } DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'), keccak256(bytes(name)), keccak256(bytes('1')), chainId, address(this) ) ); } function _mint(address to, uint value) internal { totalSupply = totalSupply.add(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(address(0), to, value); } function _burn(address from, uint value) internal { balanceOf[from] = balanceOf[from].sub(value); totalSupply = totalSupply.sub(value); emit Transfer(from, address(0), value); } function _approve(address owner, address spender, uint value) private { allowance[owner][spender] = value; emit Approval(owner, spender, value); } function _transfer(address from, address to, uint value) private { balanceOf[from] = balanceOf[from].sub(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(from, to, value); } function approve(address spender, uint value) external returns (bool) { _approve(msg.sender, spender, value); return true; } function transfer(address to, uint value) external returns (bool) { _transfer(msg.sender, to, value); return true; } function transferFrom(address from, address to, uint value) external returns (bool) { if (allowance[from][msg.sender] != uint(-1)) { allowance[from][msg.sender] = allowance[from][msg.sender].sub(value); } _transfer(from, to, value); return true; } function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external { require(deadline >= block.timestamp, 'UniswapV2: EXPIRED'); bytes32 digest = keccak256( abi.encodePacked( '\x19\x01', DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline)) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE'); _approve(owner, spender, value); } } // File: contracts/libraries/Math.sol pragma solidity =0.5.16; // a library for performing various math operations library Math { function min(uint x, uint y) internal pure returns (uint z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint y) internal pure returns (uint z) { if (y > 3) { z = y; uint x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // File: contracts/libraries/UQ112x112.sol pragma solidity =0.5.16; // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format)) // range: [0, 2**112 - 1] // resolution: 1 / 2**112 library UQ112x112 { uint224 constant Q112 = 2**112; // encode a uint112 as a UQ112x112 function encode(uint112 y) internal pure returns (uint224 z) { z = uint224(y) * Q112; // never overflows } // divide a UQ112x112 by a uint112, returning a UQ112x112 function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) { z = x / uint224(y); } } // File: contracts/interfaces/IERC20.sol pragma solidity >=0.5.0; interface IERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); } // File: contracts/interfaces/IUniswapV2Factory.sol pragma solidity >=0.5.0; interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // File: contracts/interfaces/IUniswapV2Callee.sol pragma solidity >=0.5.0; interface IUniswapV2Callee { function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external; } // File: contracts/UniswapV2Pair.sol pragma solidity =0.5.16; contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 { using SafeMath for uint; using UQ112x112 for uint224; uint public constant MINIMUM_LIQUIDITY = 10**3; bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)'))); address public factory; address public token0; address public token1; uint112 private reserve0; // uses single storage slot, accessible via getReserves uint112 private reserve1; // uses single storage slot, accessible via getReserves uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint public price0CumulativeLast; uint public price1CumulativeLast; uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event uint private unlocked = 1; modifier lock() { require(unlocked == 1, 'UniswapV2: LOCKED'); unlocked = 0; _; unlocked = 1; } function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } function _safeTransfer(address token, address to, uint value) private { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED'); } event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); constructor() public { factory = msg.sender; } // called once by the factory at time of deployment function initialize(address _token0, address _token1) external { require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check token0 = _token0; token1 = _token1; } // update reserves and, on the first call per block, price accumulators function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private { require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW'); uint32 blockTimestamp = uint32(block.timestamp % 2**32); uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) { // * never overflows, and + overflow is desired price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed; price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed; } reserve0 = uint112(balance0); reserve1 = uint112(balance1); blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k) function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) { address feeTo = IUniswapV2Factory(factory).feeTo(); feeOn = feeTo != address(0); uint _kLast = kLast; // gas savings if (feeOn) { if (_kLast != 0) { uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1)); uint rootKLast = Math.sqrt(_kLast); if (rootK > rootKLast) { uint numerator = totalSupply.mul(rootK.sub(rootKLast)); uint denominator = rootK.mul(5).add(rootKLast); uint liquidity = numerator / denominator; if (liquidity > 0) _mint(feeTo, liquidity); } } } else if (_kLast != 0) { kLast = 0; } } // this low-level function should be called from a contract which performs important safety checks function mint(address to) external lock returns (uint liquidity) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings uint balance0 = IERC20(token0).balanceOf(address(this)); uint balance1 = IERC20(token1).balanceOf(address(this)); uint amount0 = balance0.sub(_reserve0); uint amount1 = balance1.sub(_reserve1); bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee if (_totalSupply == 0) { liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY); _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1); } require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED'); _mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Mint(msg.sender, amount0, amount1); } // this low-level function should be called from a contract which performs important safety checks function burn(address to) external lock returns (uint amount0, uint amount1) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings address _token0 = token0; // gas savings address _token1 = token1; // gas savings uint balance0 = IERC20(_token0).balanceOf(address(this)); uint balance1 = IERC20(_token1).balanceOf(address(this)); uint liquidity = balanceOf[address(this)]; bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED'); _burn(address(this), liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Burn(msg.sender, amount0, amount1, to); } // this low-level function should be called from a contract which performs important safety checks function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock { require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT'); (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY'); uint balance0; uint balance1; { // scope for _token{0,1}, avoids stack too deep errors address _token0 = token0; address _token1 = token1; require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO'); if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); } uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0; uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0; require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT'); { // scope for reserve{0,1}Adjusted, avoids stack too deep errors uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3)); uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3)); require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K'); } _update(balance0, balance1, _reserve0, _reserve1); emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); } // force balances to match reserves function skim(address to) external lock { address _token0 = token0; // gas savings address _token1 = token1; // gas savings _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0)); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1)); } // force reserves to match balances function sync() external lock { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } }