ETH Price: $3,099.38 (-0.46%)

Transaction Decoder

Block:
17463288 at Jun-12-2023 10:08:35 AM +UTC
Transaction Fee:
0.0017003393438097 ETH $5.27
Gas Used:
103,396 Gas / 16.444923825 Gwei

Emitted Events:

240 XENCrypto.Transfer( from=0x0000000000000000000000000000000000000000, to=0x3f3FCabde7c5987E9131E14BFCC2BaB2aCBd4B75, value=0 )
241 XENCrypto.Transfer( from=0x0000000000000000000000000000000000000000, to=[Sender] 0xd468ccf48c72ca2adb083e91ce8dc4ce2707319d, value=46493000000000000000000 )
242 XENCrypto.MintClaimed( user=0x3f3FCabde7c5987E9131E14BFCC2BaB2aCBd4B75, rewardAmount=46493000000000000000000 )
243 0x0a252663dbcc0b073063d6420a40319e438cfa59.0x7ae39cb5fb0bebb7775f35a0009e0c94f59c2e40c8967af20842619edac4694d( 0x7ae39cb5fb0bebb7775f35a0009e0c94f59c2e40c8967af20842619edac4694d, 0x000000000000000000000000d468ccf48c72ca2adb083e91ce8dc4ce2707319d, 000000000000000000000000000000000000000000000000000000000000b724, 000000000000000000000000d468ccf48c72ca2adb083e91ce8dc4ce2707319d )

Account State Difference:

  Address   Before After State Difference Code
0x06450dEe...5599a6Fb8
0x0a252663...e438Cfa59
0x3f3FCabd...2aCBd4B75
0 Eth
Nonce: 0
0 Eth
Nonce: 0
From: 0 To: 0
0xd468CcF4...e2707319D
0.014144519153410073 Eth
Nonce: 79
0.012444179809600373 Eth
Nonce: 80
0.0017003393438097
(Fee Recipient: 0xdC5...BF0)
1.045418846114835394 Eth1.045429185714835394 Eth0.0000103396

Execution Trace

XEN Crypto: XENT Token.f5878b9b( )
  • MintInfo.getRedeemed( info=1766847064939925090561508203458901287273963493555913298849712703176441856 ) => ( redeemed=False )
  • 0x3f3fcabde7c5987e9131e14bfcc2bab2acbd4b75.df0030ef( )
    • XEN Crypto: XENT Token.df0030ef( )
      • XENCrypto.claimMintRewardAndShare( other=0xd468CcF48C72ca2ADb083e91cE8dc4ce2707319D, pct=100 )
        • Math.min( a=0, b=99 ) => ( 0 )
        • Math.max( a=120295, b=2 ) => ( 120295 )
        • 0x3f3fcabde7c5987e9131e14bfcc2bab2acbd4b75.CALL( )
          • XEN Crypto: XENT Token.DELEGATECALL( )
            • Null: 0x000...000.SELFDESTRUCT( )
              File 1 of 3: XENCrypto
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.10;
              import "./Math.sol";
              import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
              import "@openzeppelin/contracts/interfaces/IERC165.sol";
              import "abdk-libraries-solidity/ABDKMath64x64.sol";
              import "./interfaces/IStakingToken.sol";
              import "./interfaces/IRankedMintingToken.sol";
              import "./interfaces/IBurnableToken.sol";
              import "./interfaces/IBurnRedeemable.sol";
              contract XENCrypto is Context, IRankedMintingToken, IStakingToken, IBurnableToken, ERC20("XEN Crypto", "XEN") {
                  using Math for uint256;
                  using ABDKMath64x64 for int128;
                  using ABDKMath64x64 for uint256;
                  // INTERNAL TYPE TO DESCRIBE A XEN MINT INFO
                  struct MintInfo {
                      address user;
                      uint256 term;
                      uint256 maturityTs;
                      uint256 rank;
                      uint256 amplifier;
                      uint256 eaaRate;
                  }
                  // INTERNAL TYPE TO DESCRIBE A XEN STAKE
                  struct StakeInfo {
                      uint256 term;
                      uint256 maturityTs;
                      uint256 amount;
                      uint256 apy;
                  }
                  // PUBLIC CONSTANTS
                  uint256 public constant SECONDS_IN_DAY = 3_600 * 24;
                  uint256 public constant DAYS_IN_YEAR = 365;
                  uint256 public constant GENESIS_RANK = 1;
                  uint256 public constant MIN_TERM = 1 * SECONDS_IN_DAY - 1;
                  uint256 public constant MAX_TERM_START = 100 * SECONDS_IN_DAY;
                  uint256 public constant MAX_TERM_END = 1_000 * SECONDS_IN_DAY;
                  uint256 public constant TERM_AMPLIFIER = 15;
                  uint256 public constant TERM_AMPLIFIER_THRESHOLD = 5_000;
                  uint256 public constant REWARD_AMPLIFIER_START = 3_000;
                  uint256 public constant REWARD_AMPLIFIER_END = 1;
                  uint256 public constant EAA_PM_START = 100;
                  uint256 public constant EAA_PM_STEP = 1;
                  uint256 public constant EAA_RANK_STEP = 100_000;
                  uint256 public constant WITHDRAWAL_WINDOW_DAYS = 7;
                  uint256 public constant MAX_PENALTY_PCT = 99;
                  uint256 public constant XEN_MIN_STAKE = 0;
                  uint256 public constant XEN_MIN_BURN = 0;
                  uint256 public constant XEN_APY_START = 20;
                  uint256 public constant XEN_APY_DAYS_STEP = 90;
                  uint256 public constant XEN_APY_END = 2;
                  string public constant AUTHORS = "@MrJackLevin @lbelyaev faircrypto.org";
                  // PUBLIC STATE, READABLE VIA NAMESAKE GETTERS
                  uint256 public immutable genesisTs;
                  uint256 public globalRank = GENESIS_RANK;
                  uint256 public activeMinters;
                  uint256 public activeStakes;
                  uint256 public totalXenStaked;
                  // user address => XEN mint info
                  mapping(address => MintInfo) public userMints;
                  // user address => XEN stake info
                  mapping(address => StakeInfo) public userStakes;
                  // user address => XEN burn amount
                  mapping(address => uint256) public userBurns;
                  // CONSTRUCTOR
                  constructor() {
                      genesisTs = block.timestamp;
                  }
                  // PRIVATE METHODS
                  /**
                   * @dev calculates current MaxTerm based on Global Rank
                   *      (if Global Rank crosses over TERM_AMPLIFIER_THRESHOLD)
                   */
                  function _calculateMaxTerm() private view returns (uint256) {
                      if (globalRank > TERM_AMPLIFIER_THRESHOLD) {
                          uint256 delta = globalRank.fromUInt().log_2().mul(TERM_AMPLIFIER.fromUInt()).toUInt();
                          uint256 newMax = MAX_TERM_START + delta * SECONDS_IN_DAY;
                          return Math.min(newMax, MAX_TERM_END);
                      }
                      return MAX_TERM_START;
                  }
                  /**
                   * @dev calculates Withdrawal Penalty depending on lateness
                   */
                  function _penalty(uint256 secsLate) private pure returns (uint256) {
                      // =MIN(2^(daysLate+3)/window-1,99)
                      uint256 daysLate = secsLate / SECONDS_IN_DAY;
                      if (daysLate > WITHDRAWAL_WINDOW_DAYS - 1) return MAX_PENALTY_PCT;
                      uint256 penalty = (uint256(1) << (daysLate + 3)) / WITHDRAWAL_WINDOW_DAYS - 1;
                      return Math.min(penalty, MAX_PENALTY_PCT);
                  }
                  /**
                   * @dev calculates net Mint Reward (adjusted for Penalty)
                   */
                  function _calculateMintReward(
                      uint256 cRank,
                      uint256 term,
                      uint256 maturityTs,
                      uint256 amplifier,
                      uint256 eeaRate
                  ) private view returns (uint256) {
                      uint256 secsLate = block.timestamp - maturityTs;
                      uint256 penalty = _penalty(secsLate);
                      uint256 rankDelta = Math.max(globalRank - cRank, 2);
                      uint256 EAA = (1_000 + eeaRate);
                      uint256 reward = getGrossReward(rankDelta, amplifier, term, EAA);
                      return (reward * (100 - penalty)) / 100;
                  }
                  /**
                   * @dev cleans up User Mint storage (gets some Gas credit;))
                   */
                  function _cleanUpUserMint() private {
                      delete userMints[_msgSender()];
                      activeMinters--;
                  }
                  /**
                   * @dev calculates XEN Stake Reward
                   */
                  function _calculateStakeReward(
                      uint256 amount,
                      uint256 term,
                      uint256 maturityTs,
                      uint256 apy
                  ) private view returns (uint256) {
                      if (block.timestamp > maturityTs) {
                          uint256 rate = (apy * term * 1_000_000) / DAYS_IN_YEAR;
                          return (amount * rate) / 100_000_000;
                      }
                      return 0;
                  }
                  /**
                   * @dev calculates Reward Amplifier
                   */
                  function _calculateRewardAmplifier() private view returns (uint256) {
                      uint256 amplifierDecrease = (block.timestamp - genesisTs) / SECONDS_IN_DAY;
                      if (amplifierDecrease < REWARD_AMPLIFIER_START) {
                          return Math.max(REWARD_AMPLIFIER_START - amplifierDecrease, REWARD_AMPLIFIER_END);
                      } else {
                          return REWARD_AMPLIFIER_END;
                      }
                  }
                  /**
                   * @dev calculates Early Adopter Amplifier Rate (in 1/000ths)
                   *      actual EAA is (1_000 + EAAR) / 1_000
                   */
                  function _calculateEAARate() private view returns (uint256) {
                      uint256 decrease = (EAA_PM_STEP * globalRank) / EAA_RANK_STEP;
                      if (decrease > EAA_PM_START) return 0;
                      return EAA_PM_START - decrease;
                  }
                  /**
                   * @dev calculates APY (in %)
                   */
                  function _calculateAPY() private view returns (uint256) {
                      uint256 decrease = (block.timestamp - genesisTs) / (SECONDS_IN_DAY * XEN_APY_DAYS_STEP);
                      if (XEN_APY_START - XEN_APY_END < decrease) return XEN_APY_END;
                      return XEN_APY_START - decrease;
                  }
                  /**
                   * @dev creates User Stake
                   */
                  function _createStake(uint256 amount, uint256 term) private {
                      userStakes[_msgSender()] = StakeInfo({
                          term: term,
                          maturityTs: block.timestamp + term * SECONDS_IN_DAY,
                          amount: amount,
                          apy: _calculateAPY()
                      });
                      activeStakes++;
                      totalXenStaked += amount;
                  }
                  // PUBLIC CONVENIENCE GETTERS
                  /**
                   * @dev calculates gross Mint Reward
                   */
                  function getGrossReward(
                      uint256 rankDelta,
                      uint256 amplifier,
                      uint256 term,
                      uint256 eaa
                  ) public pure returns (uint256) {
                      int128 log128 = rankDelta.fromUInt().log_2();
                      int128 reward128 = log128.mul(amplifier.fromUInt()).mul(term.fromUInt()).mul(eaa.fromUInt());
                      return reward128.div(uint256(1_000).fromUInt()).toUInt();
                  }
                  /**
                   * @dev returns User Mint object associated with User account address
                   */
                  function getUserMint() external view returns (MintInfo memory) {
                      return userMints[_msgSender()];
                  }
                  /**
                   * @dev returns XEN Stake object associated with User account address
                   */
                  function getUserStake() external view returns (StakeInfo memory) {
                      return userStakes[_msgSender()];
                  }
                  /**
                   * @dev returns current AMP
                   */
                  function getCurrentAMP() external view returns (uint256) {
                      return _calculateRewardAmplifier();
                  }
                  /**
                   * @dev returns current EAA Rate
                   */
                  function getCurrentEAAR() external view returns (uint256) {
                      return _calculateEAARate();
                  }
                  /**
                   * @dev returns current APY
                   */
                  function getCurrentAPY() external view returns (uint256) {
                      return _calculateAPY();
                  }
                  /**
                   * @dev returns current MaxTerm
                   */
                  function getCurrentMaxTerm() external view returns (uint256) {
                      return _calculateMaxTerm();
                  }
                  // PUBLIC STATE-CHANGING METHODS
                  /**
                   * @dev accepts User cRank claim provided all checks pass (incl. no current claim exists)
                   */
                  function claimRank(uint256 term) external {
                      uint256 termSec = term * SECONDS_IN_DAY;
                      require(termSec > MIN_TERM, "CRank: Term less than min");
                      require(termSec < _calculateMaxTerm() + 1, "CRank: Term more than current max term");
                      require(userMints[_msgSender()].rank == 0, "CRank: Mint already in progress");
                      // create and store new MintInfo
                      MintInfo memory mintInfo = MintInfo({
                          user: _msgSender(),
                          term: term,
                          maturityTs: block.timestamp + termSec,
                          rank: globalRank,
                          amplifier: _calculateRewardAmplifier(),
                          eaaRate: _calculateEAARate()
                      });
                      userMints[_msgSender()] = mintInfo;
                      activeMinters++;
                      emit RankClaimed(_msgSender(), term, globalRank++);
                  }
                  /**
                   * @dev ends minting upon maturity (and within permitted Withdrawal Time Window), gets minted XEN
                   */
                  function claimMintReward() external {
                      MintInfo memory mintInfo = userMints[_msgSender()];
                      require(mintInfo.rank > 0, "CRank: No mint exists");
                      require(block.timestamp > mintInfo.maturityTs, "CRank: Mint maturity not reached");
                      // calculate reward and mint tokens
                      uint256 rewardAmount = _calculateMintReward(
                          mintInfo.rank,
                          mintInfo.term,
                          mintInfo.maturityTs,
                          mintInfo.amplifier,
                          mintInfo.eaaRate
                      ) * 1 ether;
                      _mint(_msgSender(), rewardAmount);
                      _cleanUpUserMint();
                      emit MintClaimed(_msgSender(), rewardAmount);
                  }
                  /**
                   * @dev  ends minting upon maturity (and within permitted Withdrawal time Window)
                   *       mints XEN coins and splits them between User and designated other address
                   */
                  function claimMintRewardAndShare(address other, uint256 pct) external {
                      MintInfo memory mintInfo = userMints[_msgSender()];
                      require(other != address(0), "CRank: Cannot share with zero address");
                      require(pct > 0, "CRank: Cannot share zero percent");
                      require(pct < 101, "CRank: Cannot share 100+ percent");
                      require(mintInfo.rank > 0, "CRank: No mint exists");
                      require(block.timestamp > mintInfo.maturityTs, "CRank: Mint maturity not reached");
                      // calculate reward
                      uint256 rewardAmount = _calculateMintReward(
                          mintInfo.rank,
                          mintInfo.term,
                          mintInfo.maturityTs,
                          mintInfo.amplifier,
                          mintInfo.eaaRate
                      ) * 1 ether;
                      uint256 sharedReward = (rewardAmount * pct) / 100;
                      uint256 ownReward = rewardAmount - sharedReward;
                      // mint reward tokens
                      _mint(_msgSender(), ownReward);
                      _mint(other, sharedReward);
                      _cleanUpUserMint();
                      emit MintClaimed(_msgSender(), rewardAmount);
                  }
                  /**
                   * @dev  ends minting upon maturity (and within permitted Withdrawal time Window)
                   *       mints XEN coins and stakes 'pct' of it for 'term'
                   */
                  function claimMintRewardAndStake(uint256 pct, uint256 term) external {
                      MintInfo memory mintInfo = userMints[_msgSender()];
                      // require(pct > 0, "CRank: Cannot share zero percent");
                      require(pct < 101, "CRank: Cannot share >100 percent");
                      require(mintInfo.rank > 0, "CRank: No mint exists");
                      require(block.timestamp > mintInfo.maturityTs, "CRank: Mint maturity not reached");
                      // calculate reward
                      uint256 rewardAmount = _calculateMintReward(
                          mintInfo.rank,
                          mintInfo.term,
                          mintInfo.maturityTs,
                          mintInfo.amplifier,
                          mintInfo.eaaRate
                      ) * 1 ether;
                      uint256 stakedReward = (rewardAmount * pct) / 100;
                      uint256 ownReward = rewardAmount - stakedReward;
                      // mint reward tokens part
                      _mint(_msgSender(), ownReward);
                      _cleanUpUserMint();
                      emit MintClaimed(_msgSender(), rewardAmount);
                      // nothing to burn since we haven't minted this part yet
                      // stake extra tokens part
                      require(stakedReward > XEN_MIN_STAKE, "XEN: Below min stake");
                      require(term * SECONDS_IN_DAY > MIN_TERM, "XEN: Below min stake term");
                      require(term * SECONDS_IN_DAY < MAX_TERM_END + 1, "XEN: Above max stake term");
                      require(userStakes[_msgSender()].amount == 0, "XEN: stake exists");
                      _createStake(stakedReward, term);
                      emit Staked(_msgSender(), stakedReward, term);
                  }
                  /**
                   * @dev initiates XEN Stake in amount for a term (days)
                   */
                  function stake(uint256 amount, uint256 term) external {
                      require(balanceOf(_msgSender()) >= amount, "XEN: not enough balance");
                      require(amount > XEN_MIN_STAKE, "XEN: Below min stake");
                      require(term * SECONDS_IN_DAY > MIN_TERM, "XEN: Below min stake term");
                      require(term * SECONDS_IN_DAY < MAX_TERM_END + 1, "XEN: Above max stake term");
                      require(userStakes[_msgSender()].amount == 0, "XEN: stake exists");
                      // burn staked XEN
                      _burn(_msgSender(), amount);
                      // create XEN Stake
                      _createStake(amount, term);
                      emit Staked(_msgSender(), amount, term);
                  }
                  /**
                   * @dev ends XEN Stake and gets reward if the Stake is mature
                   */
                  function withdraw() external {
                      StakeInfo memory userStake = userStakes[_msgSender()];
                      require(userStake.amount > 0, "XEN: no stake exists");
                      uint256 xenReward = _calculateStakeReward(
                          userStake.amount,
                          userStake.term,
                          userStake.maturityTs,
                          userStake.apy
                      );
                      activeStakes--;
                      totalXenStaked -= userStake.amount;
                      // mint staked XEN (+ reward)
                      _mint(_msgSender(), userStake.amount + xenReward);
                      emit Withdrawn(_msgSender(), userStake.amount, xenReward);
                      delete userStakes[_msgSender()];
                  }
                  /**
                   * @dev burns XEN tokens and creates Proof-Of-Burn record to be used by connected DeFi services
                   */
                  function burn(address user, uint256 amount) public {
                      require(amount > XEN_MIN_BURN, "Burn: Below min limit");
                      require(
                          IERC165(_msgSender()).supportsInterface(type(IBurnRedeemable).interfaceId),
                          "Burn: not a supported contract"
                      );
                      _spendAllowance(user, _msgSender(), amount);
                      _burn(user, amount);
                      userBurns[user] += amount;
                      IBurnRedeemable(_msgSender()).onTokenBurned(user, amount);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.10;
              interface IStakingToken {
                  event Staked(address indexed user, uint256 amount, uint256 term);
                  event Withdrawn(address indexed user, uint256 amount, uint256 reward);
                  function stake(uint256 amount, uint256 term) external;
                  function withdraw() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.10;
              interface IRankedMintingToken {
                  event RankClaimed(address indexed user, uint256 term, uint256 rank);
                  event MintClaimed(address indexed user, uint256 rewardAmount);
                  function claimRank(uint256 term) external;
                  function claimMintReward() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.10;
              interface IBurnableToken {
                  function burn(address user, uint256 amount) external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.10;
              interface IBurnRedeemable {
                  event Redeemed(
                      address indexed user,
                      address indexed xenContract,
                      address indexed tokenContract,
                      uint256 xenAmount,
                      uint256 tokenAmount
                  );
                  function onTokenBurned(address user, uint256 amount) external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.10;
              import "abdk-libraries-solidity/ABDKMath64x64.sol";
              library Math {
                  function min(uint256 a, uint256 b) external pure returns (uint256) {
                      if (a > b) return b;
                      return a;
                  }
                  function max(uint256 a, uint256 b) external pure returns (uint256) {
                      if (a > b) return a;
                      return b;
                  }
                  function logX64(uint256 x) external pure returns (int128) {
                      return ABDKMath64x64.log_2(ABDKMath64x64.fromUInt(x));
                  }
              }
              // SPDX-License-Identifier: BSD-4-Clause
              /*
               * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
               * Author: Mikhail Vladimirov <[email protected]>
               */
              pragma solidity ^0.8.0;
              /**
               * Smart contract library of mathematical functions operating with signed
               * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
               * basically a simple fraction whose numerator is signed 128-bit integer and
               * denominator is 2^64.  As long as denominator is always the same, there is no
               * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
               * represented by int128 type holding only the numerator.
               */
              library ABDKMath64x64 {
                /*
                 * Minimum value signed 64.64-bit fixed point number may have. 
                 */
                int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;
                /*
                 * Maximum value signed 64.64-bit fixed point number may have. 
                 */
                int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                /**
                 * Convert signed 256-bit integer number into signed 64.64-bit fixed point
                 * number.  Revert on overflow.
                 *
                 * @param x signed 256-bit integer number
                 * @return signed 64.64-bit fixed point number
                 */
                function fromInt (int256 x) internal pure returns (int128) {
                  unchecked {
                    require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
                    return int128 (x << 64);
                  }
                }
                /**
                 * Convert signed 64.64 fixed point number into signed 64-bit integer number
                 * rounding down.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64-bit integer number
                 */
                function toInt (int128 x) internal pure returns (int64) {
                  unchecked {
                    return int64 (x >> 64);
                  }
                }
                /**
                 * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
                 * number.  Revert on overflow.
                 *
                 * @param x unsigned 256-bit integer number
                 * @return signed 64.64-bit fixed point number
                 */
                function fromUInt (uint256 x) internal pure returns (int128) {
                  unchecked {
                    require (x <= 0x7FFFFFFFFFFFFFFF);
                    return int128 (int256 (x << 64));
                  }
                }
                /**
                 * Convert signed 64.64 fixed point number into unsigned 64-bit integer
                 * number rounding down.  Revert on underflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return unsigned 64-bit integer number
                 */
                function toUInt (int128 x) internal pure returns (uint64) {
                  unchecked {
                    require (x >= 0);
                    return uint64 (uint128 (x >> 64));
                  }
                }
                /**
                 * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
                 * number rounding down.  Revert on overflow.
                 *
                 * @param x signed 128.128-bin fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function from128x128 (int256 x) internal pure returns (int128) {
                  unchecked {
                    int256 result = x >> 64;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Convert signed 64.64 fixed point number into signed 128.128 fixed point
                 * number.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 128.128 fixed point number
                 */
                function to128x128 (int128 x) internal pure returns (int256) {
                  unchecked {
                    return int256 (x) << 64;
                  }
                }
                /**
                 * Calculate x + y.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function add (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    int256 result = int256(x) + y;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate x - y.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function sub (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    int256 result = int256(x) - y;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate x * y rounding down.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function mul (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    int256 result = int256(x) * y >> 64;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
                 * number and y is signed 256-bit integer number.  Revert on overflow.
                 *
                 * @param x signed 64.64 fixed point number
                 * @param y signed 256-bit integer number
                 * @return signed 256-bit integer number
                 */
                function muli (int128 x, int256 y) internal pure returns (int256) {
                  unchecked {
                    if (x == MIN_64x64) {
                      require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
                        y <= 0x1000000000000000000000000000000000000000000000000);
                      return -y << 63;
                    } else {
                      bool negativeResult = false;
                      if (x < 0) {
                        x = -x;
                        negativeResult = true;
                      }
                      if (y < 0) {
                        y = -y; // We rely on overflow behavior here
                        negativeResult = !negativeResult;
                      }
                      uint256 absoluteResult = mulu (x, uint256 (y));
                      if (negativeResult) {
                        require (absoluteResult <=
                          0x8000000000000000000000000000000000000000000000000000000000000000);
                        return -int256 (absoluteResult); // We rely on overflow behavior here
                      } else {
                        require (absoluteResult <=
                          0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                        return int256 (absoluteResult);
                      }
                    }
                  }
                }
                /**
                 * Calculate x * y rounding down, where x is signed 64.64 fixed point number
                 * and y is unsigned 256-bit integer number.  Revert on overflow.
                 *
                 * @param x signed 64.64 fixed point number
                 * @param y unsigned 256-bit integer number
                 * @return unsigned 256-bit integer number
                 */
                function mulu (int128 x, uint256 y) internal pure returns (uint256) {
                  unchecked {
                    if (y == 0) return 0;
                    require (x >= 0);
                    uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
                    uint256 hi = uint256 (int256 (x)) * (y >> 128);
                    require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    hi <<= 64;
                    require (hi <=
                      0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
                    return hi + lo;
                  }
                }
                /**
                 * Calculate x / y rounding towards zero.  Revert on overflow or when y is
                 * zero.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function div (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    require (y != 0);
                    int256 result = (int256 (x) << 64) / y;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate x / y rounding towards zero, where x and y are signed 256-bit
                 * integer numbers.  Revert on overflow or when y is zero.
                 *
                 * @param x signed 256-bit integer number
                 * @param y signed 256-bit integer number
                 * @return signed 64.64-bit fixed point number
                 */
                function divi (int256 x, int256 y) internal pure returns (int128) {
                  unchecked {
                    require (y != 0);
                    bool negativeResult = false;
                    if (x < 0) {
                      x = -x; // We rely on overflow behavior here
                      negativeResult = true;
                    }
                    if (y < 0) {
                      y = -y; // We rely on overflow behavior here
                      negativeResult = !negativeResult;
                    }
                    uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
                    if (negativeResult) {
                      require (absoluteResult <= 0x80000000000000000000000000000000);
                      return -int128 (absoluteResult); // We rely on overflow behavior here
                    } else {
                      require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                      return int128 (absoluteResult); // We rely on overflow behavior here
                    }
                  }
                }
                /**
                 * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
                 * integer numbers.  Revert on overflow or when y is zero.
                 *
                 * @param x unsigned 256-bit integer number
                 * @param y unsigned 256-bit integer number
                 * @return signed 64.64-bit fixed point number
                 */
                function divu (uint256 x, uint256 y) internal pure returns (int128) {
                  unchecked {
                    require (y != 0);
                    uint128 result = divuu (x, y);
                    require (result <= uint128 (MAX_64x64));
                    return int128 (result);
                  }
                }
                /**
                 * Calculate -x.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function neg (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x != MIN_64x64);
                    return -x;
                  }
                }
                /**
                 * Calculate |x|.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function abs (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x != MIN_64x64);
                    return x < 0 ? -x : x;
                  }
                }
                /**
                 * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
                 * zero.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function inv (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x != 0);
                    int256 result = int256 (0x100000000000000000000000000000000) / x;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function avg (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    return int128 ((int256 (x) + int256 (y)) >> 1);
                  }
                }
                /**
                 * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
                 * Revert on overflow or in case x * y is negative.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function gavg (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    int256 m = int256 (x) * int256 (y);
                    require (m >= 0);
                    require (m <
                        0x4000000000000000000000000000000000000000000000000000000000000000);
                    return int128 (sqrtu (uint256 (m)));
                  }
                }
                /**
                 * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
                 * and y is unsigned 256-bit integer number.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y uint256 value
                 * @return signed 64.64-bit fixed point number
                 */
                function pow (int128 x, uint256 y) internal pure returns (int128) {
                  unchecked {
                    bool negative = x < 0 && y & 1 == 1;
                    uint256 absX = uint128 (x < 0 ? -x : x);
                    uint256 absResult;
                    absResult = 0x100000000000000000000000000000000;
                    if (absX <= 0x10000000000000000) {
                      absX <<= 63;
                      while (y != 0) {
                        if (y & 0x1 != 0) {
                          absResult = absResult * absX >> 127;
                        }
                        absX = absX * absX >> 127;
                        if (y & 0x2 != 0) {
                          absResult = absResult * absX >> 127;
                        }
                        absX = absX * absX >> 127;
                        if (y & 0x4 != 0) {
                          absResult = absResult * absX >> 127;
                        }
                        absX = absX * absX >> 127;
                        if (y & 0x8 != 0) {
                          absResult = absResult * absX >> 127;
                        }
                        absX = absX * absX >> 127;
                        y >>= 4;
                      }
                      absResult >>= 64;
                    } else {
                      uint256 absXShift = 63;
                      if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
                      if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
                      if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
                      if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
                      if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
                      if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }
                      uint256 resultShift = 0;
                      while (y != 0) {
                        require (absXShift < 64);
                        if (y & 0x1 != 0) {
                          absResult = absResult * absX >> 127;
                          resultShift += absXShift;
                          if (absResult > 0x100000000000000000000000000000000) {
                            absResult >>= 1;
                            resultShift += 1;
                          }
                        }
                        absX = absX * absX >> 127;
                        absXShift <<= 1;
                        if (absX >= 0x100000000000000000000000000000000) {
                            absX >>= 1;
                            absXShift += 1;
                        }
                        y >>= 1;
                      }
                      require (resultShift < 64);
                      absResult >>= 64 - resultShift;
                    }
                    int256 result = negative ? -int256 (absResult) : int256 (absResult);
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate sqrt (x) rounding down.  Revert if x < 0.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function sqrt (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x >= 0);
                    return int128 (sqrtu (uint256 (int256 (x)) << 64));
                  }
                }
                /**
                 * Calculate binary logarithm of x.  Revert if x <= 0.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function log_2 (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x > 0);
                    int256 msb = 0;
                    int256 xc = x;
                    if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
                    if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
                    if (xc >= 0x10000) { xc >>= 16; msb += 16; }
                    if (xc >= 0x100) { xc >>= 8; msb += 8; }
                    if (xc >= 0x10) { xc >>= 4; msb += 4; }
                    if (xc >= 0x4) { xc >>= 2; msb += 2; }
                    if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
                    int256 result = msb - 64 << 64;
                    uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
                    for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
                      ux *= ux;
                      uint256 b = ux >> 255;
                      ux >>= 127 + b;
                      result += bit * int256 (b);
                    }
                    return int128 (result);
                  }
                }
                /**
                 * Calculate natural logarithm of x.  Revert if x <= 0.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function ln (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x > 0);
                    return int128 (int256 (
                        uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
                  }
                }
                /**
                 * Calculate binary exponent of x.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function exp_2 (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x < 0x400000000000000000); // Overflow
                    if (x < -0x400000000000000000) return 0; // Underflow
                    uint256 result = 0x80000000000000000000000000000000;
                    if (x & 0x8000000000000000 > 0)
                      result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
                    if (x & 0x4000000000000000 > 0)
                      result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
                    if (x & 0x2000000000000000 > 0)
                      result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
                    if (x & 0x1000000000000000 > 0)
                      result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
                    if (x & 0x800000000000000 > 0)
                      result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
                    if (x & 0x400000000000000 > 0)
                      result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
                    if (x & 0x200000000000000 > 0)
                      result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
                    if (x & 0x100000000000000 > 0)
                      result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
                    if (x & 0x80000000000000 > 0)
                      result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
                    if (x & 0x40000000000000 > 0)
                      result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
                    if (x & 0x20000000000000 > 0)
                      result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
                    if (x & 0x10000000000000 > 0)
                      result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
                    if (x & 0x8000000000000 > 0)
                      result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
                    if (x & 0x4000000000000 > 0)
                      result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
                    if (x & 0x2000000000000 > 0)
                      result = result * 0x1000162E525EE054754457D5995292026 >> 128;
                    if (x & 0x1000000000000 > 0)
                      result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
                    if (x & 0x800000000000 > 0)
                      result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
                    if (x & 0x400000000000 > 0)
                      result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
                    if (x & 0x200000000000 > 0)
                      result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
                    if (x & 0x100000000000 > 0)
                      result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
                    if (x & 0x80000000000 > 0)
                      result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
                    if (x & 0x40000000000 > 0)
                      result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
                    if (x & 0x20000000000 > 0)
                      result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
                    if (x & 0x10000000000 > 0)
                      result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
                    if (x & 0x8000000000 > 0)
                      result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
                    if (x & 0x4000000000 > 0)
                      result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
                    if (x & 0x2000000000 > 0)
                      result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
                    if (x & 0x1000000000 > 0)
                      result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
                    if (x & 0x800000000 > 0)
                      result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
                    if (x & 0x400000000 > 0)
                      result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
                    if (x & 0x200000000 > 0)
                      result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
                    if (x & 0x100000000 > 0)
                      result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
                    if (x & 0x80000000 > 0)
                      result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
                    if (x & 0x40000000 > 0)
                      result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
                    if (x & 0x20000000 > 0)
                      result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
                    if (x & 0x10000000 > 0)
                      result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
                    if (x & 0x8000000 > 0)
                      result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
                    if (x & 0x4000000 > 0)
                      result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
                    if (x & 0x2000000 > 0)
                      result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
                    if (x & 0x1000000 > 0)
                      result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
                    if (x & 0x800000 > 0)
                      result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
                    if (x & 0x400000 > 0)
                      result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
                    if (x & 0x200000 > 0)
                      result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
                    if (x & 0x100000 > 0)
                      result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
                    if (x & 0x80000 > 0)
                      result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
                    if (x & 0x40000 > 0)
                      result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
                    if (x & 0x20000 > 0)
                      result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
                    if (x & 0x10000 > 0)
                      result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
                    if (x & 0x8000 > 0)
                      result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
                    if (x & 0x4000 > 0)
                      result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
                    if (x & 0x2000 > 0)
                      result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
                    if (x & 0x1000 > 0)
                      result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
                    if (x & 0x800 > 0)
                      result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
                    if (x & 0x400 > 0)
                      result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
                    if (x & 0x200 > 0)
                      result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
                    if (x & 0x100 > 0)
                      result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
                    if (x & 0x80 > 0)
                      result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
                    if (x & 0x40 > 0)
                      result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
                    if (x & 0x20 > 0)
                      result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
                    if (x & 0x10 > 0)
                      result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
                    if (x & 0x8 > 0)
                      result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
                    if (x & 0x4 > 0)
                      result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
                    if (x & 0x2 > 0)
                      result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
                    if (x & 0x1 > 0)
                      result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;
                    result >>= uint256 (int256 (63 - (x >> 64)));
                    require (result <= uint256 (int256 (MAX_64x64)));
                    return int128 (int256 (result));
                  }
                }
                /**
                 * Calculate natural exponent of x.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function exp (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x < 0x400000000000000000); // Overflow
                    if (x < -0x400000000000000000) return 0; // Underflow
                    return exp_2 (
                        int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
                  }
                }
                /**
                 * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
                 * integer numbers.  Revert on overflow or when y is zero.
                 *
                 * @param x unsigned 256-bit integer number
                 * @param y unsigned 256-bit integer number
                 * @return unsigned 64.64-bit fixed point number
                 */
                function divuu (uint256 x, uint256 y) private pure returns (uint128) {
                  unchecked {
                    require (y != 0);
                    uint256 result;
                    if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                      result = (x << 64) / y;
                    else {
                      uint256 msb = 192;
                      uint256 xc = x >> 192;
                      if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
                      if (xc >= 0x10000) { xc >>= 16; msb += 16; }
                      if (xc >= 0x100) { xc >>= 8; msb += 8; }
                      if (xc >= 0x10) { xc >>= 4; msb += 4; }
                      if (xc >= 0x4) { xc >>= 2; msb += 2; }
                      if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
                      result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
                      require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                      uint256 hi = result * (y >> 128);
                      uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                      uint256 xh = x >> 192;
                      uint256 xl = x << 64;
                      if (xl < lo) xh -= 1;
                      xl -= lo; // We rely on overflow behavior here
                      lo = hi << 128;
                      if (xl < lo) xh -= 1;
                      xl -= lo; // We rely on overflow behavior here
                      assert (xh == hi >> 128);
                      result += xl / y;
                    }
                    require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    return uint128 (result);
                  }
                }
                /**
                 * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
                 * number.
                 *
                 * @param x unsigned 256-bit integer number
                 * @return unsigned 128-bit integer number
                 */
                function sqrtu (uint256 x) private pure returns (uint128) {
                  unchecked {
                    if (x == 0) return 0;
                    else {
                      uint256 xx = x;
                      uint256 r = 1;
                      if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
                      if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
                      if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
                      if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
                      if (xx >= 0x100) { xx >>= 8; r <<= 4; }
                      if (xx >= 0x10) { xx >>= 4; r <<= 2; }
                      if (xx >= 0x8) { r <<= 1; }
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1; // Seven iterations should be enough
                      uint256 r1 = x / r;
                      return uint128 (r < r1 ? r : r1);
                    }
                  }
                }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC165 standard, as defined in the
               * https://eips.ethereum.org/EIPS/eip-165[EIP].
               *
               * Implementers can declare support of contract interfaces, which can then be
               * queried by others ({ERC165Checker}).
               *
               * For an implementation, see {ERC165}.
               */
              interface IERC165 {
                  /**
                   * @dev Returns true if this contract implements the interface defined by
                   * `interfaceId`. See the corresponding
                   * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
                   * to learn more about how these ids are created.
                   *
                   * This function call must use less than 30 000 gas.
                   */
                  function supportsInterface(bytes4 interfaceId) external view returns (bool);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              /**
               * @dev Interface for the optional metadata functions from the ERC20 standard.
               *
               * _Available since v4.1._
               */
              interface IERC20Metadata is IERC20 {
                  /**
                   * @dev Returns the name of the token.
                   */
                  function name() external view returns (string memory);
                  /**
                   * @dev Returns the symbol of the token.
                   */
                  function symbol() external view returns (string memory);
                  /**
                   * @dev Returns the decimals places of the token.
                   */
                  function decimals() external view returns (uint8);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) external returns (bool);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
              pragma solidity ^0.8.0;
              import "./IERC20.sol";
              import "./extensions/IERC20Metadata.sol";
              import "../../utils/Context.sol";
              /**
               * @dev Implementation of the {IERC20} interface.
               *
               * This implementation is agnostic to the way tokens are created. This means
               * that a supply mechanism has to be added in a derived contract using {_mint}.
               * For a generic mechanism see {ERC20PresetMinterPauser}.
               *
               * TIP: For a detailed writeup see our guide
               * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
               * to implement supply mechanisms].
               *
               * We have followed general OpenZeppelin Contracts guidelines: functions revert
               * instead returning `false` on failure. This behavior is nonetheless
               * conventional and does not conflict with the expectations of ERC20
               * applications.
               *
               * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
               * This allows applications to reconstruct the allowance for all accounts just
               * by listening to said events. Other implementations of the EIP may not emit
               * these events, as it isn't required by the specification.
               *
               * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
               * functions have been added to mitigate the well-known issues around setting
               * allowances. See {IERC20-approve}.
               */
              contract ERC20 is Context, IERC20, IERC20Metadata {
                  mapping(address => uint256) private _balances;
                  mapping(address => mapping(address => uint256)) private _allowances;
                  uint256 private _totalSupply;
                  string private _name;
                  string private _symbol;
                  /**
                   * @dev Sets the values for {name} and {symbol}.
                   *
                   * The default value of {decimals} is 18. To select a different value for
                   * {decimals} you should overload it.
                   *
                   * All two of these values are immutable: they can only be set once during
                   * construction.
                   */
                  constructor(string memory name_, string memory symbol_) {
                      _name = name_;
                      _symbol = symbol_;
                  }
                  /**
                   * @dev Returns the name of the token.
                   */
                  function name() public view virtual override returns (string memory) {
                      return _name;
                  }
                  /**
                   * @dev Returns the symbol of the token, usually a shorter version of the
                   * name.
                   */
                  function symbol() public view virtual override returns (string memory) {
                      return _symbol;
                  }
                  /**
                   * @dev Returns the number of decimals used to get its user representation.
                   * For example, if `decimals` equals `2`, a balance of `505` tokens should
                   * be displayed to a user as `5.05` (`505 / 10 ** 2`).
                   *
                   * Tokens usually opt for a value of 18, imitating the relationship between
                   * Ether and Wei. This is the value {ERC20} uses, unless this function is
                   * overridden;
                   *
                   * NOTE: This information is only used for _display_ purposes: it in
                   * no way affects any of the arithmetic of the contract, including
                   * {IERC20-balanceOf} and {IERC20-transfer}.
                   */
                  function decimals() public view virtual override returns (uint8) {
                      return 18;
                  }
                  /**
                   * @dev See {IERC20-totalSupply}.
                   */
                  function totalSupply() public view virtual override returns (uint256) {
                      return _totalSupply;
                  }
                  /**
                   * @dev See {IERC20-balanceOf}.
                   */
                  function balanceOf(address account) public view virtual override returns (uint256) {
                      return _balances[account];
                  }
                  /**
                   * @dev See {IERC20-transfer}.
                   *
                   * Requirements:
                   *
                   * - `to` cannot be the zero address.
                   * - the caller must have a balance of at least `amount`.
                   */
                  function transfer(address to, uint256 amount) public virtual override returns (bool) {
                      address owner = _msgSender();
                      _transfer(owner, to, amount);
                      return true;
                  }
                  /**
                   * @dev See {IERC20-allowance}.
                   */
                  function allowance(address owner, address spender) public view virtual override returns (uint256) {
                      return _allowances[owner][spender];
                  }
                  /**
                   * @dev See {IERC20-approve}.
                   *
                   * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
                   * `transferFrom`. This is semantically equivalent to an infinite approval.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   */
                  function approve(address spender, uint256 amount) public virtual override returns (bool) {
                      address owner = _msgSender();
                      _approve(owner, spender, amount);
                      return true;
                  }
                  /**
                   * @dev See {IERC20-transferFrom}.
                   *
                   * Emits an {Approval} event indicating the updated allowance. This is not
                   * required by the EIP. See the note at the beginning of {ERC20}.
                   *
                   * NOTE: Does not update the allowance if the current allowance
                   * is the maximum `uint256`.
                   *
                   * Requirements:
                   *
                   * - `from` and `to` cannot be the zero address.
                   * - `from` must have a balance of at least `amount`.
                   * - the caller must have allowance for ``from``'s tokens of at least
                   * `amount`.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) public virtual override returns (bool) {
                      address spender = _msgSender();
                      _spendAllowance(from, spender, amount);
                      _transfer(from, to, amount);
                      return true;
                  }
                  /**
                   * @dev Atomically increases the allowance granted to `spender` by the caller.
                   *
                   * This is an alternative to {approve} that can be used as a mitigation for
                   * problems described in {IERC20-approve}.
                   *
                   * Emits an {Approval} event indicating the updated allowance.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   */
                  function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                      address owner = _msgSender();
                      _approve(owner, spender, allowance(owner, spender) + addedValue);
                      return true;
                  }
                  /**
                   * @dev Atomically decreases the allowance granted to `spender` by the caller.
                   *
                   * This is an alternative to {approve} that can be used as a mitigation for
                   * problems described in {IERC20-approve}.
                   *
                   * Emits an {Approval} event indicating the updated allowance.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `spender` must have allowance for the caller of at least
                   * `subtractedValue`.
                   */
                  function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                      address owner = _msgSender();
                      uint256 currentAllowance = allowance(owner, spender);
                      require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                      unchecked {
                          _approve(owner, spender, currentAllowance - subtractedValue);
                      }
                      return true;
                  }
                  /**
                   * @dev Moves `amount` of tokens from `from` to `to`.
                   *
                   * This internal function is equivalent to {transfer}, and can be used to
                   * e.g. implement automatic token fees, slashing mechanisms, etc.
                   *
                   * Emits a {Transfer} event.
                   *
                   * Requirements:
                   *
                   * - `from` cannot be the zero address.
                   * - `to` cannot be the zero address.
                   * - `from` must have a balance of at least `amount`.
                   */
                  function _transfer(
                      address from,
                      address to,
                      uint256 amount
                  ) internal virtual {
                      require(from != address(0), "ERC20: transfer from the zero address");
                      require(to != address(0), "ERC20: transfer to the zero address");
                      _beforeTokenTransfer(from, to, amount);
                      uint256 fromBalance = _balances[from];
                      require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                      unchecked {
                          _balances[from] = fromBalance - amount;
                      }
                      _balances[to] += amount;
                      emit Transfer(from, to, amount);
                      _afterTokenTransfer(from, to, amount);
                  }
                  /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                   * the total supply.
                   *
                   * Emits a {Transfer} event with `from` set to the zero address.
                   *
                   * Requirements:
                   *
                   * - `account` cannot be the zero address.
                   */
                  function _mint(address account, uint256 amount) internal virtual {
                      require(account != address(0), "ERC20: mint to the zero address");
                      _beforeTokenTransfer(address(0), account, amount);
                      _totalSupply += amount;
                      _balances[account] += amount;
                      emit Transfer(address(0), account, amount);
                      _afterTokenTransfer(address(0), account, amount);
                  }
                  /**
                   * @dev Destroys `amount` tokens from `account`, reducing the
                   * total supply.
                   *
                   * Emits a {Transfer} event with `to` set to the zero address.
                   *
                   * Requirements:
                   *
                   * - `account` cannot be the zero address.
                   * - `account` must have at least `amount` tokens.
                   */
                  function _burn(address account, uint256 amount) internal virtual {
                      require(account != address(0), "ERC20: burn from the zero address");
                      _beforeTokenTransfer(account, address(0), amount);
                      uint256 accountBalance = _balances[account];
                      require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                      unchecked {
                          _balances[account] = accountBalance - amount;
                      }
                      _totalSupply -= amount;
                      emit Transfer(account, address(0), amount);
                      _afterTokenTransfer(account, address(0), amount);
                  }
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
                   *
                   * This internal function is equivalent to `approve`, and can be used to
                   * e.g. set automatic allowances for certain subsystems, etc.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `owner` cannot be the zero address.
                   * - `spender` cannot be the zero address.
                   */
                  function _approve(
                      address owner,
                      address spender,
                      uint256 amount
                  ) internal virtual {
                      require(owner != address(0), "ERC20: approve from the zero address");
                      require(spender != address(0), "ERC20: approve to the zero address");
                      _allowances[owner][spender] = amount;
                      emit Approval(owner, spender, amount);
                  }
                  /**
                   * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
                   *
                   * Does not update the allowance amount in case of infinite allowance.
                   * Revert if not enough allowance is available.
                   *
                   * Might emit an {Approval} event.
                   */
                  function _spendAllowance(
                      address owner,
                      address spender,
                      uint256 amount
                  ) internal virtual {
                      uint256 currentAllowance = allowance(owner, spender);
                      if (currentAllowance != type(uint256).max) {
                          require(currentAllowance >= amount, "ERC20: insufficient allowance");
                          unchecked {
                              _approve(owner, spender, currentAllowance - amount);
                          }
                      }
                  }
                  /**
                   * @dev Hook that is called before any transfer of tokens. This includes
                   * minting and burning.
                   *
                   * Calling conditions:
                   *
                   * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                   * will be transferred to `to`.
                   * - when `from` is zero, `amount` tokens will be minted for `to`.
                   * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                   * - `from` and `to` are never both zero.
                   *
                   * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                   */
                  function _beforeTokenTransfer(
                      address from,
                      address to,
                      uint256 amount
                  ) internal virtual {}
                  /**
                   * @dev Hook that is called after any transfer of tokens. This includes
                   * minting and burning.
                   *
                   * Calling conditions:
                   *
                   * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                   * has been transferred to `to`.
                   * - when `from` is zero, `amount` tokens have been minted for `to`.
                   * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
                   * - `from` and `to` are never both zero.
                   *
                   * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                   */
                  function _afterTokenTransfer(
                      address from,
                      address to,
                      uint256 amount
                  ) internal virtual {}
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol)
              pragma solidity ^0.8.0;
              import "../utils/introspection/IERC165.sol";
              

              File 2 of 3: MintInfo
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.10;
              // mapping: NFT tokenId => MintInfo (used in tokenURI generation)
              // MintInfo encoded as:
              //      term (uint16)
              //      | maturityTs (uint64)
              //      | rank (uint128)
              //      | amp (uint16)
              //      | eaa (uint16)
              //      | class (uint8):
              //          [7] isApex
              //          [6] isLimited
              //          [0-5] powerGroupIdx
              //      | redeemed (uint8)
              library MintInfo {
                  /**
                      @dev helper to convert Bool to U256 type and make compiler happy
                   */
                  function toU256(bool x) internal pure returns (uint256 r) {
                      assembly {
                          r := x
                      }
                  }
                  /**
                      @dev encodes MintInfo record from its props
                   */
                  function encodeMintInfo(
                      uint256 term,
                      uint256 maturityTs,
                      uint256 rank,
                      uint256 amp,
                      uint256 eaa,
                      uint256 class_,
                      bool redeemed
                  ) public pure returns (uint256 info) {
                      info = info | (toU256(redeemed) & 0xFF);
                      info = info | ((class_ & 0xFF) << 8);
                      info = info | ((eaa & 0xFFFF) << 16);
                      info = info | ((amp & 0xFFFF) << 32);
                      info = info | ((rank & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) << 48);
                      info = info | ((maturityTs & 0xFFFFFFFFFFFFFFFF) << 176);
                      info = info | ((term & 0xFFFF) << 240);
                  }
                  /**
                      @dev decodes MintInfo record and extracts all of its props
                   */
                  function decodeMintInfo(uint256 info)
                      public
                      pure
                      returns (
                          uint256 term,
                          uint256 maturityTs,
                          uint256 rank,
                          uint256 amp,
                          uint256 eaa,
                          uint256 class,
                          bool apex,
                          bool limited,
                          bool redeemed
                      )
                  {
                      term = uint16(info >> 240);
                      maturityTs = uint64(info >> 176);
                      rank = uint128(info >> 48);
                      amp = uint16(info >> 32);
                      eaa = uint16(info >> 16);
                      class = uint8(info >> 8) & 0x3F;
                      apex = (uint8(info >> 8) & 0x80) > 0;
                      limited = (uint8(info >> 8) & 0x40) > 0;
                      redeemed = uint8(info) == 1;
                  }
                  /**
                      @dev extracts `term` prop from encoded MintInfo
                   */
                  function getTerm(uint256 info) public pure returns (uint256 term) {
                      (term, , , , , , , , ) = decodeMintInfo(info);
                  }
                  /**
                      @dev extracts `maturityTs` prop from encoded MintInfo
                   */
                  function getMaturityTs(uint256 info) public pure returns (uint256 maturityTs) {
                      (, maturityTs, , , , , , , ) = decodeMintInfo(info);
                  }
                  /**
                      @dev extracts `rank` prop from encoded MintInfo
                   */
                  function getRank(uint256 info) public pure returns (uint256 rank) {
                      (, , rank, , , , , , ) = decodeMintInfo(info);
                  }
                  /**
                      @dev extracts `AMP` prop from encoded MintInfo
                   */
                  function getAMP(uint256 info) public pure returns (uint256 amp) {
                      (, , , amp, , , , , ) = decodeMintInfo(info);
                  }
                  /**
                      @dev extracts `EAA` prop from encoded MintInfo
                   */
                  function getEAA(uint256 info) public pure returns (uint256 eaa) {
                      (, , , , eaa, , , , ) = decodeMintInfo(info);
                  }
                  /**
                      @dev extracts `redeemed` prop from encoded MintInfo
                   */
                  function getClass(uint256 info)
                      public
                      pure
                      returns (
                          uint256 class_,
                          bool apex,
                          bool limited
                      )
                  {
                      (, , , , , class_, apex, limited, ) = decodeMintInfo(info);
                  }
                  /**
                      @dev extracts `redeemed` prop from encoded MintInfo
                   */
                  function getRedeemed(uint256 info) public pure returns (bool redeemed) {
                      (, , , , , , , , redeemed) = decodeMintInfo(info);
                  }
              }
              

              File 3 of 3: Math
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.10;
              import "abdk-libraries-solidity/ABDKMath64x64.sol";
              library Math {
                  function min(uint256 a, uint256 b) external pure returns (uint256) {
                      if (a > b) return b;
                      return a;
                  }
                  function max(uint256 a, uint256 b) external pure returns (uint256) {
                      if (a > b) return a;
                      return b;
                  }
                  function logX64(uint256 x) external pure returns (int128) {
                      return ABDKMath64x64.log_2(ABDKMath64x64.fromUInt(x));
                  }
              }
              // SPDX-License-Identifier: BSD-4-Clause
              /*
               * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
               * Author: Mikhail Vladimirov <[email protected]>
               */
              pragma solidity ^0.8.0;
              /**
               * Smart contract library of mathematical functions operating with signed
               * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
               * basically a simple fraction whose numerator is signed 128-bit integer and
               * denominator is 2^64.  As long as denominator is always the same, there is no
               * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
               * represented by int128 type holding only the numerator.
               */
              library ABDKMath64x64 {
                /*
                 * Minimum value signed 64.64-bit fixed point number may have. 
                 */
                int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;
                /*
                 * Maximum value signed 64.64-bit fixed point number may have. 
                 */
                int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                /**
                 * Convert signed 256-bit integer number into signed 64.64-bit fixed point
                 * number.  Revert on overflow.
                 *
                 * @param x signed 256-bit integer number
                 * @return signed 64.64-bit fixed point number
                 */
                function fromInt (int256 x) internal pure returns (int128) {
                  unchecked {
                    require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
                    return int128 (x << 64);
                  }
                }
                /**
                 * Convert signed 64.64 fixed point number into signed 64-bit integer number
                 * rounding down.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64-bit integer number
                 */
                function toInt (int128 x) internal pure returns (int64) {
                  unchecked {
                    return int64 (x >> 64);
                  }
                }
                /**
                 * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
                 * number.  Revert on overflow.
                 *
                 * @param x unsigned 256-bit integer number
                 * @return signed 64.64-bit fixed point number
                 */
                function fromUInt (uint256 x) internal pure returns (int128) {
                  unchecked {
                    require (x <= 0x7FFFFFFFFFFFFFFF);
                    return int128 (int256 (x << 64));
                  }
                }
                /**
                 * Convert signed 64.64 fixed point number into unsigned 64-bit integer
                 * number rounding down.  Revert on underflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return unsigned 64-bit integer number
                 */
                function toUInt (int128 x) internal pure returns (uint64) {
                  unchecked {
                    require (x >= 0);
                    return uint64 (uint128 (x >> 64));
                  }
                }
                /**
                 * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
                 * number rounding down.  Revert on overflow.
                 *
                 * @param x signed 128.128-bin fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function from128x128 (int256 x) internal pure returns (int128) {
                  unchecked {
                    int256 result = x >> 64;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Convert signed 64.64 fixed point number into signed 128.128 fixed point
                 * number.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 128.128 fixed point number
                 */
                function to128x128 (int128 x) internal pure returns (int256) {
                  unchecked {
                    return int256 (x) << 64;
                  }
                }
                /**
                 * Calculate x + y.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function add (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    int256 result = int256(x) + y;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate x - y.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function sub (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    int256 result = int256(x) - y;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate x * y rounding down.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function mul (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    int256 result = int256(x) * y >> 64;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
                 * number and y is signed 256-bit integer number.  Revert on overflow.
                 *
                 * @param x signed 64.64 fixed point number
                 * @param y signed 256-bit integer number
                 * @return signed 256-bit integer number
                 */
                function muli (int128 x, int256 y) internal pure returns (int256) {
                  unchecked {
                    if (x == MIN_64x64) {
                      require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
                        y <= 0x1000000000000000000000000000000000000000000000000);
                      return -y << 63;
                    } else {
                      bool negativeResult = false;
                      if (x < 0) {
                        x = -x;
                        negativeResult = true;
                      }
                      if (y < 0) {
                        y = -y; // We rely on overflow behavior here
                        negativeResult = !negativeResult;
                      }
                      uint256 absoluteResult = mulu (x, uint256 (y));
                      if (negativeResult) {
                        require (absoluteResult <=
                          0x8000000000000000000000000000000000000000000000000000000000000000);
                        return -int256 (absoluteResult); // We rely on overflow behavior here
                      } else {
                        require (absoluteResult <=
                          0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                        return int256 (absoluteResult);
                      }
                    }
                  }
                }
                /**
                 * Calculate x * y rounding down, where x is signed 64.64 fixed point number
                 * and y is unsigned 256-bit integer number.  Revert on overflow.
                 *
                 * @param x signed 64.64 fixed point number
                 * @param y unsigned 256-bit integer number
                 * @return unsigned 256-bit integer number
                 */
                function mulu (int128 x, uint256 y) internal pure returns (uint256) {
                  unchecked {
                    if (y == 0) return 0;
                    require (x >= 0);
                    uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
                    uint256 hi = uint256 (int256 (x)) * (y >> 128);
                    require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    hi <<= 64;
                    require (hi <=
                      0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
                    return hi + lo;
                  }
                }
                /**
                 * Calculate x / y rounding towards zero.  Revert on overflow or when y is
                 * zero.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function div (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    require (y != 0);
                    int256 result = (int256 (x) << 64) / y;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate x / y rounding towards zero, where x and y are signed 256-bit
                 * integer numbers.  Revert on overflow or when y is zero.
                 *
                 * @param x signed 256-bit integer number
                 * @param y signed 256-bit integer number
                 * @return signed 64.64-bit fixed point number
                 */
                function divi (int256 x, int256 y) internal pure returns (int128) {
                  unchecked {
                    require (y != 0);
                    bool negativeResult = false;
                    if (x < 0) {
                      x = -x; // We rely on overflow behavior here
                      negativeResult = true;
                    }
                    if (y < 0) {
                      y = -y; // We rely on overflow behavior here
                      negativeResult = !negativeResult;
                    }
                    uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
                    if (negativeResult) {
                      require (absoluteResult <= 0x80000000000000000000000000000000);
                      return -int128 (absoluteResult); // We rely on overflow behavior here
                    } else {
                      require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                      return int128 (absoluteResult); // We rely on overflow behavior here
                    }
                  }
                }
                /**
                 * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
                 * integer numbers.  Revert on overflow or when y is zero.
                 *
                 * @param x unsigned 256-bit integer number
                 * @param y unsigned 256-bit integer number
                 * @return signed 64.64-bit fixed point number
                 */
                function divu (uint256 x, uint256 y) internal pure returns (int128) {
                  unchecked {
                    require (y != 0);
                    uint128 result = divuu (x, y);
                    require (result <= uint128 (MAX_64x64));
                    return int128 (result);
                  }
                }
                /**
                 * Calculate -x.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function neg (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x != MIN_64x64);
                    return -x;
                  }
                }
                /**
                 * Calculate |x|.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function abs (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x != MIN_64x64);
                    return x < 0 ? -x : x;
                  }
                }
                /**
                 * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
                 * zero.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function inv (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x != 0);
                    int256 result = int256 (0x100000000000000000000000000000000) / x;
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function avg (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    return int128 ((int256 (x) + int256 (y)) >> 1);
                  }
                }
                /**
                 * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
                 * Revert on overflow or in case x * y is negative.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function gavg (int128 x, int128 y) internal pure returns (int128) {
                  unchecked {
                    int256 m = int256 (x) * int256 (y);
                    require (m >= 0);
                    require (m <
                        0x4000000000000000000000000000000000000000000000000000000000000000);
                    return int128 (sqrtu (uint256 (m)));
                  }
                }
                /**
                 * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
                 * and y is unsigned 256-bit integer number.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @param y uint256 value
                 * @return signed 64.64-bit fixed point number
                 */
                function pow (int128 x, uint256 y) internal pure returns (int128) {
                  unchecked {
                    bool negative = x < 0 && y & 1 == 1;
                    uint256 absX = uint128 (x < 0 ? -x : x);
                    uint256 absResult;
                    absResult = 0x100000000000000000000000000000000;
                    if (absX <= 0x10000000000000000) {
                      absX <<= 63;
                      while (y != 0) {
                        if (y & 0x1 != 0) {
                          absResult = absResult * absX >> 127;
                        }
                        absX = absX * absX >> 127;
                        if (y & 0x2 != 0) {
                          absResult = absResult * absX >> 127;
                        }
                        absX = absX * absX >> 127;
                        if (y & 0x4 != 0) {
                          absResult = absResult * absX >> 127;
                        }
                        absX = absX * absX >> 127;
                        if (y & 0x8 != 0) {
                          absResult = absResult * absX >> 127;
                        }
                        absX = absX * absX >> 127;
                        y >>= 4;
                      }
                      absResult >>= 64;
                    } else {
                      uint256 absXShift = 63;
                      if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
                      if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
                      if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
                      if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
                      if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
                      if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }
                      uint256 resultShift = 0;
                      while (y != 0) {
                        require (absXShift < 64);
                        if (y & 0x1 != 0) {
                          absResult = absResult * absX >> 127;
                          resultShift += absXShift;
                          if (absResult > 0x100000000000000000000000000000000) {
                            absResult >>= 1;
                            resultShift += 1;
                          }
                        }
                        absX = absX * absX >> 127;
                        absXShift <<= 1;
                        if (absX >= 0x100000000000000000000000000000000) {
                            absX >>= 1;
                            absXShift += 1;
                        }
                        y >>= 1;
                      }
                      require (resultShift < 64);
                      absResult >>= 64 - resultShift;
                    }
                    int256 result = negative ? -int256 (absResult) : int256 (absResult);
                    require (result >= MIN_64x64 && result <= MAX_64x64);
                    return int128 (result);
                  }
                }
                /**
                 * Calculate sqrt (x) rounding down.  Revert if x < 0.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function sqrt (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x >= 0);
                    return int128 (sqrtu (uint256 (int256 (x)) << 64));
                  }
                }
                /**
                 * Calculate binary logarithm of x.  Revert if x <= 0.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function log_2 (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x > 0);
                    int256 msb = 0;
                    int256 xc = x;
                    if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
                    if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
                    if (xc >= 0x10000) { xc >>= 16; msb += 16; }
                    if (xc >= 0x100) { xc >>= 8; msb += 8; }
                    if (xc >= 0x10) { xc >>= 4; msb += 4; }
                    if (xc >= 0x4) { xc >>= 2; msb += 2; }
                    if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
                    int256 result = msb - 64 << 64;
                    uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
                    for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
                      ux *= ux;
                      uint256 b = ux >> 255;
                      ux >>= 127 + b;
                      result += bit * int256 (b);
                    }
                    return int128 (result);
                  }
                }
                /**
                 * Calculate natural logarithm of x.  Revert if x <= 0.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function ln (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x > 0);
                    return int128 (int256 (
                        uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
                  }
                }
                /**
                 * Calculate binary exponent of x.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function exp_2 (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x < 0x400000000000000000); // Overflow
                    if (x < -0x400000000000000000) return 0; // Underflow
                    uint256 result = 0x80000000000000000000000000000000;
                    if (x & 0x8000000000000000 > 0)
                      result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
                    if (x & 0x4000000000000000 > 0)
                      result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
                    if (x & 0x2000000000000000 > 0)
                      result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
                    if (x & 0x1000000000000000 > 0)
                      result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
                    if (x & 0x800000000000000 > 0)
                      result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
                    if (x & 0x400000000000000 > 0)
                      result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
                    if (x & 0x200000000000000 > 0)
                      result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
                    if (x & 0x100000000000000 > 0)
                      result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
                    if (x & 0x80000000000000 > 0)
                      result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
                    if (x & 0x40000000000000 > 0)
                      result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
                    if (x & 0x20000000000000 > 0)
                      result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
                    if (x & 0x10000000000000 > 0)
                      result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
                    if (x & 0x8000000000000 > 0)
                      result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
                    if (x & 0x4000000000000 > 0)
                      result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
                    if (x & 0x2000000000000 > 0)
                      result = result * 0x1000162E525EE054754457D5995292026 >> 128;
                    if (x & 0x1000000000000 > 0)
                      result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
                    if (x & 0x800000000000 > 0)
                      result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
                    if (x & 0x400000000000 > 0)
                      result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
                    if (x & 0x200000000000 > 0)
                      result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
                    if (x & 0x100000000000 > 0)
                      result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
                    if (x & 0x80000000000 > 0)
                      result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
                    if (x & 0x40000000000 > 0)
                      result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
                    if (x & 0x20000000000 > 0)
                      result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
                    if (x & 0x10000000000 > 0)
                      result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
                    if (x & 0x8000000000 > 0)
                      result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
                    if (x & 0x4000000000 > 0)
                      result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
                    if (x & 0x2000000000 > 0)
                      result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
                    if (x & 0x1000000000 > 0)
                      result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
                    if (x & 0x800000000 > 0)
                      result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
                    if (x & 0x400000000 > 0)
                      result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
                    if (x & 0x200000000 > 0)
                      result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
                    if (x & 0x100000000 > 0)
                      result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
                    if (x & 0x80000000 > 0)
                      result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
                    if (x & 0x40000000 > 0)
                      result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
                    if (x & 0x20000000 > 0)
                      result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
                    if (x & 0x10000000 > 0)
                      result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
                    if (x & 0x8000000 > 0)
                      result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
                    if (x & 0x4000000 > 0)
                      result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
                    if (x & 0x2000000 > 0)
                      result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
                    if (x & 0x1000000 > 0)
                      result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
                    if (x & 0x800000 > 0)
                      result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
                    if (x & 0x400000 > 0)
                      result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
                    if (x & 0x200000 > 0)
                      result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
                    if (x & 0x100000 > 0)
                      result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
                    if (x & 0x80000 > 0)
                      result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
                    if (x & 0x40000 > 0)
                      result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
                    if (x & 0x20000 > 0)
                      result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
                    if (x & 0x10000 > 0)
                      result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
                    if (x & 0x8000 > 0)
                      result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
                    if (x & 0x4000 > 0)
                      result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
                    if (x & 0x2000 > 0)
                      result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
                    if (x & 0x1000 > 0)
                      result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
                    if (x & 0x800 > 0)
                      result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
                    if (x & 0x400 > 0)
                      result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
                    if (x & 0x200 > 0)
                      result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
                    if (x & 0x100 > 0)
                      result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
                    if (x & 0x80 > 0)
                      result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
                    if (x & 0x40 > 0)
                      result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
                    if (x & 0x20 > 0)
                      result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
                    if (x & 0x10 > 0)
                      result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
                    if (x & 0x8 > 0)
                      result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
                    if (x & 0x4 > 0)
                      result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
                    if (x & 0x2 > 0)
                      result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
                    if (x & 0x1 > 0)
                      result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;
                    result >>= uint256 (int256 (63 - (x >> 64)));
                    require (result <= uint256 (int256 (MAX_64x64)));
                    return int128 (int256 (result));
                  }
                }
                /**
                 * Calculate natural exponent of x.  Revert on overflow.
                 *
                 * @param x signed 64.64-bit fixed point number
                 * @return signed 64.64-bit fixed point number
                 */
                function exp (int128 x) internal pure returns (int128) {
                  unchecked {
                    require (x < 0x400000000000000000); // Overflow
                    if (x < -0x400000000000000000) return 0; // Underflow
                    return exp_2 (
                        int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
                  }
                }
                /**
                 * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
                 * integer numbers.  Revert on overflow or when y is zero.
                 *
                 * @param x unsigned 256-bit integer number
                 * @param y unsigned 256-bit integer number
                 * @return unsigned 64.64-bit fixed point number
                 */
                function divuu (uint256 x, uint256 y) private pure returns (uint128) {
                  unchecked {
                    require (y != 0);
                    uint256 result;
                    if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                      result = (x << 64) / y;
                    else {
                      uint256 msb = 192;
                      uint256 xc = x >> 192;
                      if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
                      if (xc >= 0x10000) { xc >>= 16; msb += 16; }
                      if (xc >= 0x100) { xc >>= 8; msb += 8; }
                      if (xc >= 0x10) { xc >>= 4; msb += 4; }
                      if (xc >= 0x4) { xc >>= 2; msb += 2; }
                      if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
                      result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
                      require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                      uint256 hi = result * (y >> 128);
                      uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                      uint256 xh = x >> 192;
                      uint256 xl = x << 64;
                      if (xl < lo) xh -= 1;
                      xl -= lo; // We rely on overflow behavior here
                      lo = hi << 128;
                      if (xl < lo) xh -= 1;
                      xl -= lo; // We rely on overflow behavior here
                      assert (xh == hi >> 128);
                      result += xl / y;
                    }
                    require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    return uint128 (result);
                  }
                }
                /**
                 * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
                 * number.
                 *
                 * @param x unsigned 256-bit integer number
                 * @return unsigned 128-bit integer number
                 */
                function sqrtu (uint256 x) private pure returns (uint128) {
                  unchecked {
                    if (x == 0) return 0;
                    else {
                      uint256 xx = x;
                      uint256 r = 1;
                      if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
                      if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
                      if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
                      if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
                      if (xx >= 0x100) { xx >>= 8; r <<= 4; }
                      if (xx >= 0x10) { xx >>= 4; r <<= 2; }
                      if (xx >= 0x8) { r <<= 1; }
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1;
                      r = (r + x / r) >> 1; // Seven iterations should be enough
                      uint256 r1 = x / r;
                      return uint128 (r < r1 ? r : r1);
                    }
                  }
                }
              }