Transaction Hash:
Block:
12630194 at Jun-14-2021 03:30:32 AM +UTC
Transaction Fee:
0.003130182 ETH
$7.79
Gas Used:
284,562 Gas / 11 Gwei
Emitted Events:
330 |
XYZToken.Transfer( from=CommunityVault, to=Rewards, value=205026455026450000000 )
|
331 |
XYZToken.Approval( owner=CommunityVault, spender=Rewards, value=48979113756613776800000000 )
|
332 |
XYZToken.Transfer( from=[Sender] 0xa1c6bf9a94e603c0c7e0559a9bbe6329137239f7, to=[Receiver] Supernova, value=423604832178128368130 )
|
333 |
XYZToken.Approval( owner=[Sender] 0xa1c6bf9a94e603c0c7e0559a9bbe6329137239f7, spender=[Receiver] Supernova, value=115792089237316195423570985008687907853269984665640564039033979175735001271805 )
|
334 |
Supernova.0x90890809c654f11d6e72a28fa60149770a0d11ec6c92319d6ceb2bb0a4ea1a15( 0x90890809c654f11d6e72a28fa60149770a0d11ec6c92319d6ceb2bb0a4ea1a15, 0x000000000000000000000000a1c6bf9a94e603c0c7e0559a9bbe6329137239f7, 000000000000000000000000000000000000000000000016f6b2ae82ec4d3202, 000000000000000000000000000000000000000000000016f6b2ae82ec4d3202 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x45a36a8e...e579E11E2
Miner
| (AntPool 2) | 1,801.679525192633979003 Eth | 1,801.682655374633979003 Eth | 0.003130182 | |
0x618679dF...Eacfa2883 | |||||
0x7b866002...Eb6872962 | |||||
0xa1C6bf9a...9137239f7 |
2.015578807846571699 Eth
Nonce: 2936
|
2.012448625846571699 Eth
Nonce: 2937
| 0.003130182 | ||
0xF306Ad6a...1d9c31205 |
Execution Trace
Supernova.b6b55f25( )
0x8aa4387412f18543b8d4cf16ef60e868a74f1f0d.b6b55f25( )
-
XYZToken.allowance( owner=0xa1C6bf9a94E603c0C7e0559A9BBe6329137239f7, spender=0x7b86600211e62B597E7CEA03476b9EFEb6872962 ) => ( 115792089237316195423570985008687907853269984665640564039457584007913129639935 )
Rewards.registerUserAction( user=0xa1C6bf9a94E603c0C7e0559A9BBe6329137239f7 )
-
XYZToken.transferFrom( sender=0xc6f269bcdE85CBA7C9d91aE5fB91f5612ff9bd8e, recipient=0xF306Ad6a3E2aBd5CFD6687A2C86998f1d9c31205, amount=205026455026450000000 ) => ( True )
-
XYZToken.balanceOf( account=0xF306Ad6a3E2aBd5CFD6687A2C86998f1d9c31205 ) => ( 221821230947801711291967 )
Supernova.STATICCALL( )
-
0x8aa4387412f18543b8d4cf16ef60e868a74f1f0d.DELEGATECALL( )
-
Supernova.70a08231( )
-
0x8aa4387412f18543b8d4cf16ef60e868a74f1f0d.70a08231( )
-
-
-
XYZToken.transferFrom( sender=0xa1C6bf9a94E603c0C7e0559A9BBe6329137239f7, recipient=0x7b86600211e62B597E7CEA03476b9EFEb6872962, amount=423604832178128368130 ) => ( True )
-
File 1 of 4: Supernova
File 2 of 4: CommunityVault
File 3 of 4: Rewards
File 4 of 4: XYZToken
// SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "./interfaces/IDiamondCut.sol"; import "./interfaces/IDiamondLoupe.sol"; import "./libraries/LibDiamond.sol"; import "./libraries/LibOwnership.sol"; import "./libraries/LibDiamondStorage.sol"; import "./interfaces/IERC165.sol"; import "./interfaces/IERC173.sol"; contract Supernova { constructor(IDiamondCut.FacetCut[] memory _diamondCut, address _owner) payable { require(_owner != address(0), "owner must not be 0x0"); LibDiamond.diamondCut(_diamondCut, address(0), new bytes(0)); LibOwnership.setContractOwner(_owner); LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); // adding ERC165 data ds.supportedInterfaces[type(IERC165).interfaceId] = true; ds.supportedInterfaces[type(IDiamondCut).interfaceId] = true; ds.supportedInterfaces[type(IDiamondLoupe).interfaceId] = true; ds.supportedInterfaces[type(IERC173).interfaceId] = true; } // Find facet for function that is called and execute the // function if a facet is found and return any value. fallback() external payable { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); address facet = address(bytes20(ds.facets[msg.sig].facetAddress)); require(facet != address(0), "Diamond: Function does not exist"); assembly { calldatacopy(0, 0, calldatasize()) let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0) returndatacopy(0, 0, returndatasize()) switch result case 0 { revert(0, returndatasize()) } default { return (0, returndatasize()) } } } receive() external payable {} } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; interface IDiamondCut { enum FacetCutAction {Add, Replace, Remove} // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external; event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; // A loupe is a small magnifying glass used to look at diamonds. // These functions look at diamonds interface IDiamondLoupe { /// These functions are expected to be called frequently /// by tools. struct Facet { address facetAddress; bytes4[] functionSelectors; } /// @notice Gets all facet addresses and their four byte function selectors. /// @return facets_ Facet function facets() external view returns (Facet[] memory facets_); /// @notice Gets all the function selectors supported by a specific facet. /// @param _facet The facet address. /// @return facetFunctionSelectors_ function facetFunctionSelectors(address _facet) external view returns (bytes4[] memory facetFunctionSelectors_); /// @notice Get all the facet addresses used by a diamond. /// @return facetAddresses_ function facetAddresses() external view returns (address[] memory facetAddresses_); /// @notice Gets the facet that supports the given selector. /// @dev If facet is not found return address(0). /// @param _functionSelector The function selector. /// @return facetAddress_ The facet address. function facetAddress(bytes4 _functionSelector) external view returns (address facetAddress_); } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "../interfaces/IDiamondCut.sol"; import "./LibDiamondStorage.sol"; library LibDiamond { event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata); // Internal function version of diamondCut // This code is almost the same as the external diamondCut, // except it is using 'Facet[] memory _diamondCut' instead of // 'Facet[] calldata _diamondCut'. // The code is duplicated to prevent copying calldata to memory which // causes an error for a two dimensional array. function diamondCut( IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata ) internal { uint256 selectorCount = LibDiamondStorage.diamondStorage().selectors.length; for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++) { selectorCount = executeDiamondCut(selectorCount, _diamondCut[facetIndex]); } emit DiamondCut(_diamondCut, _init, _calldata); initializeDiamondCut(_init, _calldata); } // executeDiamondCut takes one single FacetCut action and executes it // if FacetCutAction can't be identified, it reverts function executeDiamondCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) { require(cut.functionSelectors.length > 0, "LibDiamond: No selectors in facet to cut"); if (cut.action == IDiamondCut.FacetCutAction.Add) { require(cut.facetAddress != address(0), "LibDiamond: add facet address can't be address(0)"); enforceHasContractCode(cut.facetAddress, "LibDiamond: add facet must have code"); return _handleAddCut(selectorCount, cut); } if (cut.action == IDiamondCut.FacetCutAction.Replace) { require(cut.facetAddress != address(0), "LibDiamond: remove facet address can't be address(0)"); enforceHasContractCode(cut.facetAddress, "LibDiamond: remove facet must have code"); return _handleReplaceCut(selectorCount, cut); } if (cut.action == IDiamondCut.FacetCutAction.Remove) { require(cut.facetAddress == address(0), "LibDiamond: remove facet address must be address(0)"); return _handleRemoveCut(selectorCount, cut); } revert("LibDiamondCut: Incorrect FacetCutAction"); } // _handleAddCut executes a cut with the type Add // it reverts if the selector already exists function _handleAddCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); for (uint256 selectorIndex; selectorIndex < cut.functionSelectors.length; selectorIndex++) { bytes4 selector = cut.functionSelectors[selectorIndex]; address oldFacetAddress = ds.facets[selector].facetAddress; require(oldFacetAddress == address(0), "LibDiamondCut: Can't add function that already exists"); ds.facets[selector] = LibDiamondStorage.Facet( cut.facetAddress, uint16(selectorCount) ); ds.selectors.push(selector); selectorCount++; } return selectorCount; } // _handleReplaceCut executes a cut with the type Replace // it does not allow replacing immutable functions // it does not allow replacing with the same function // it does not allow replacing a function that does not exist function _handleReplaceCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); for (uint256 selectorIndex; selectorIndex < cut.functionSelectors.length; selectorIndex++) { bytes4 selector = cut.functionSelectors[selectorIndex]; address oldFacetAddress = ds.facets[selector].facetAddress; // only useful if immutable functions exist require(oldFacetAddress != address(this), "LibDiamondCut: Can't replace immutable function"); require(oldFacetAddress != cut.facetAddress, "LibDiamondCut: Can't replace function with same function"); require(oldFacetAddress != address(0), "LibDiamondCut: Can't replace function that doesn't exist"); // replace old facet address ds.facets[selector].facetAddress = cut.facetAddress; } return selectorCount; } // _handleRemoveCut executes a cut with the type Remove // for efficiency, the selector to be deleted is replaced with the last one and then the last one is popped // it reverts if the function doesn't exist or it's immutable function _handleRemoveCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); for (uint256 selectorIndex; selectorIndex < cut.functionSelectors.length; selectorIndex++) { bytes4 selector = cut.functionSelectors[selectorIndex]; LibDiamondStorage.Facet memory oldFacet = ds.facets[selector]; require(oldFacet.facetAddress != address(0), "LibDiamondCut: Can't remove function that doesn't exist"); require(oldFacet.facetAddress != address(this), "LibDiamondCut: Can't remove immutable function."); // replace selector with last selector if (oldFacet.selectorPosition != selectorCount - 1) { bytes4 lastSelector = ds.selectors[selectorCount - 1]; ds.selectors[oldFacet.selectorPosition] = lastSelector; ds.facets[lastSelector].selectorPosition = oldFacet.selectorPosition; } // delete last selector ds.selectors.pop(); delete ds.facets[selector]; selectorCount--; } return selectorCount; } function initializeDiamondCut(address _init, bytes memory _calldata) internal { if (_init == address(0)) { require(_calldata.length == 0, "LibDiamondCut: _init is address(0) but _calldata is not empty"); return; } require(_calldata.length > 0, "LibDiamondCut: _calldata is empty but _init is not address(0)"); if (_init != address(this)) { enforceHasContractCode(_init, "LibDiamondCut: _init address has no code"); } (bool success, bytes memory error) = _init.delegatecall(_calldata); if (!success) { if (error.length > 0) { // bubble up the error revert(string(error)); } else { revert("LibDiamondCut: _init function reverted"); } } } function enforceHasContractCode(address _contract, string memory _errorMessage) internal view { uint256 contractSize; assembly { contractSize := extcodesize(_contract) } require(contractSize > 0, _errorMessage); } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "./LibDiamondStorage.sol"; library LibOwnership { event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function setContractOwner(address _newOwner) internal { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); address previousOwner = ds.contractOwner; require(previousOwner != _newOwner, "Previous owner and new owner must be different"); ds.contractOwner = _newOwner; emit OwnershipTransferred(previousOwner, _newOwner); } function contractOwner() internal view returns (address contractOwner_) { contractOwner_ = LibDiamondStorage.diamondStorage().contractOwner; } function enforceIsContractOwner() view internal { require(msg.sender == LibDiamondStorage.diamondStorage().contractOwner, "Must be contract owner"); } modifier onlyOwner { require(msg.sender == LibDiamondStorage.diamondStorage().contractOwner, "Must be contract owner"); _; } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; library LibDiamondStorage { bytes32 constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage"); struct Facet { address facetAddress; uint16 selectorPosition; } struct DiamondStorage { // function selector => facet address and selector position in selectors array mapping(bytes4 => Facet) facets; bytes4[] selectors; // ERC165 mapping(bytes4 => bool) supportedInterfaces; // owner of the contract address contractOwner; } function diamondStorage() internal pure returns (DiamondStorage storage ds) { bytes32 position = DIAMOND_STORAGE_POSITION; assembly { ds.slot := position } } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; interface IERC165 { /// @notice Query if a contract implements an interface /// @param interfaceId The interface identifier, as specified in ERC-165 /// @dev Interface identification is specified in ERC-165. This function /// uses less than 30,000 gas. /// @return `true` if the contract implements `interfaceID` and /// `interfaceID` is not 0xffffffff, `false` otherwise function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; /// @title ERC-173 Contract Ownership Standard /// Note: the ERC-165 identifier for this interface is 0x7f5828d0 /* is ERC165 */ interface IERC173 { /// @dev This emits when ownership of a contract changes. event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /// @notice Get the address of the owner /// @return owner_ The address of the owner. function owner() external view returns (address owner_); /// @notice Set the address of the new owner of the contract /// @dev Set _newOwner to address(0) to renounce any ownership. /// @param _newOwner The address of the new owner of the contract function transferOwnership(address _newOwner) external; }
File 2 of 4: CommunityVault
pragma solidity ^0.6.0; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; contract CommunityVault is Ownable { IERC20 private _xyz; constructor (address xyz) public { _xyz = IERC20(xyz); } event SetAllowance(address indexed caller, address indexed spender, uint256 amount); function setAllowance(address spender, uint amount) public onlyOwner { _xyz.approve(spender, amount); emit SetAllowance(msg.sender, spender, amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../GSN/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
File 3 of 4: Rewards
// SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./interfaces/ISupernova.sol"; contract Rewards is Ownable { using SafeMath for uint256; uint256 constant decimals = 10 ** 18; struct Pull { address source; uint256 startTs; uint256 endTs; uint256 totalDuration; uint256 totalAmount; } Pull public pullFeature; bool public disabled; uint256 public lastPullTs; uint256 public balanceBefore; uint256 public currentMultiplier; mapping(address => uint256) public userMultiplier; mapping(address => uint256) public owed; ISupernova public supernova; IERC20 public rewardToken; event Claim(address indexed user, uint256 amount); constructor(address _owner, address _token, address _supernova) { require(_token != address(0), "reward token must not be 0x0"); require(_supernova != address(0), "supernova address must not be 0x0"); transferOwnership(_owner); rewardToken = IERC20(_token); supernova = ISupernova(_supernova); } // registerUserAction is called by the Supernova every time the user does a deposit or withdrawal in order to // account for the changes in reward that the user should get // it updates the amount owed to the user without transferring the funds function registerUserAction(address user) public { require(msg.sender == address(supernova), 'only callable by supernova'); _calculateOwed(user); } // claim calculates the currently owed reward and transfers the funds to the user function claim() public returns (uint256){ _calculateOwed(msg.sender); uint256 amount = owed[msg.sender]; require(amount > 0, "nothing to claim"); owed[msg.sender] = 0; rewardToken.transfer(msg.sender, amount); // acknowledge the amount that was transferred to the user ackFunds(); emit Claim(msg.sender, amount); return amount; } // ackFunds checks the difference between the last known balance of `token` and the current one // if it goes up, the multiplier is re-calculated // if it goes down, it only updates the known balance function ackFunds() public { uint256 balanceNow = rewardToken.balanceOf(address(this)); if (balanceNow == 0 || balanceNow <= balanceBefore) { balanceBefore = balanceNow; return; } uint256 totalStakedXyz = supernova.xyzStaked(); // if there's no xyz staked, it doesn't make sense to ackFunds because there's nobody to distribute them to // and the calculation would fail anyways due to division by 0 if (totalStakedXyz == 0) { return; } uint256 diff = balanceNow.sub(balanceBefore); uint256 multiplier = currentMultiplier.add(diff.mul(decimals).div(totalStakedXyz)); balanceBefore = balanceNow; currentMultiplier = multiplier; } // setupPullToken is used to setup the rewards system; only callable by contract owner // set source to address(0) to disable the functionality function setupPullToken(address source, uint256 startTs, uint256 endTs, uint256 amount) public { require(msg.sender == owner(), "!owner"); require(!disabled, "contract is disabled"); if (pullFeature.source != address(0)) { require(source == address(0), "contract is already set up, source must be 0x0"); disabled = true; } else { require(source != address(0), "contract is not setup, source must be != 0x0"); } if (source == address(0)) { require(startTs == 0, "disable contract: startTs must be 0"); require(endTs == 0, "disable contract: endTs must be 0"); require(amount == 0, "disable contract: amount must be 0"); } else { require(endTs > startTs, "setup contract: endTs must be greater than startTs"); require(amount > 0, "setup contract: amount must be greater than 0"); } pullFeature.source = source; pullFeature.startTs = startTs; pullFeature.endTs = endTs; pullFeature.totalDuration = endTs.sub(startTs); pullFeature.totalAmount = amount; if (lastPullTs < startTs) { lastPullTs = startTs; } } // setSupernova sets the address of the UniversXYZ Supernova into the state variable function setSupernova(address _supernova) public { require(_supernova != address(0), 'supernova address must not be 0x0'); require(msg.sender == owner(), '!owner'); supernova = ISupernova(_supernova); } // _pullToken calculates the amount based on the time passed since the last pull relative // to the total amount of time that the pull functionality is active and executes a transferFrom from the // address supplied as `pullTokenFrom`, if enabled function _pullToken() internal { if ( pullFeature.source == address(0) || block.timestamp < pullFeature.startTs ) { return; } uint256 timestampCap = pullFeature.endTs; if (block.timestamp < pullFeature.endTs) { timestampCap = block.timestamp; } if (lastPullTs >= timestampCap) { return; } uint256 timeSinceLastPull = timestampCap.sub(lastPullTs); uint256 shareToPull = timeSinceLastPull.mul(decimals).div(pullFeature.totalDuration); uint256 amountToPull = pullFeature.totalAmount.mul(shareToPull).div(decimals); lastPullTs = block.timestamp; rewardToken.transferFrom(pullFeature.source, address(this), amountToPull); } // _calculateOwed calculates and updates the total amount that is owed to an user and updates the user's multiplier // to the current value // it automatically attempts to pull the token from the source and acknowledge the funds function _calculateOwed(address user) internal { _pullToken(); ackFunds(); uint256 reward = _userPendingReward(user); owed[user] = owed[user].add(reward); userMultiplier[user] = currentMultiplier; } // _userPendingReward calculates the reward that should be based on the current multiplier / anything that's not included in the `owed[user]` value // it does not represent the entire reward that's due to the user unless added on top of `owed[user]` function _userPendingReward(address user) internal view returns (uint256) { uint256 multiplier = currentMultiplier.sub(userMultiplier[user]); return supernova.balanceOf(user).mul(multiplier).div(decimals); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "../libraries/LibSupernovaStorage.sol"; interface ISupernova { // deposit allows a user to add more xyz to his staked balance function deposit(uint256 amount) external; // withdraw allows a user to withdraw funds if the balance is not locked function withdraw(uint256 amount) external; // lock a user's currently staked balance until timestamp & add the bonus to his voting power function lock(uint256 timestamp) external; // delegate allows a user to delegate his voting power to another user function delegate(address to) external; // stopDelegate allows a user to take back the delegated voting power function stopDelegate() external; // lock the balance of a proposal creator until the voting ends; only callable by DAO function lockCreatorBalance(address user, uint256 timestamp) external; // balanceOf returns the current XYZ balance of a user (bonus not included) function balanceOf(address user) external view returns (uint256); // balanceAtTs returns the amount of XYZ that the user currently staked (bonus NOT included) function balanceAtTs(address user, uint256 timestamp) external view returns (uint256); // stakeAtTs returns the Stake object of the user that was valid at `timestamp` function stakeAtTs(address user, uint256 timestamp) external view returns (LibSupernovaStorage.Stake memory); // votingPower returns the voting power (bonus included) + delegated voting power for a user at the current block function votingPower(address user) external view returns (uint256); // votingPowerAtTs returns the voting power (bonus included) + delegated voting power for a user at a point in time function votingPowerAtTs(address user, uint256 timestamp) external view returns (uint256); // xyzStaked returns the total raw amount of XYZ staked at the current block function xyzStaked() external view returns (uint256); // xyzStakedAtTs returns the total raw amount of XYZ users have deposited into the contract // it does not include any bonus function xyzStakedAtTs(uint256 timestamp) external view returns (uint256); // delegatedPower returns the total voting power that a user received from other users function delegatedPower(address user) external view returns (uint256); // delegatedPowerAtTs returns the total voting power that a user received from other users at a point in time function delegatedPowerAtTs(address user, uint256 timestamp) external view returns (uint256); // multiplierAtTs calculates the multiplier at a given timestamp based on the user's stake a the given timestamp // it includes the decay mechanism function multiplierAtTs(address user, uint256 timestamp) external view returns (uint256); // userLockedUntil returns the timestamp until the user's balance is locked function userLockedUntil(address user) external view returns (uint256); // userDidDelegate returns the address to which a user delegated their voting power; address(0) if not delegated function userDelegatedTo(address user) external view returns (address); // xyzCirculatingSupply returns the current circulating supply of XYZ function xyzCirculatingSupply() external view returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../interfaces/IRewards.sol"; library LibSupernovaStorage { bytes32 constant STORAGE_POSITION = keccak256("com.xyzdao.supernova.storage"); struct Checkpoint { uint256 timestamp; uint256 amount; } struct Stake { uint256 timestamp; uint256 amount; uint256 expiryTimestamp; address delegatedTo; } struct Storage { bool initialized; // mapping of user address to history of Stake objects // every user action creates a new object in the history mapping(address => Stake[]) userStakeHistory; // array of xyz staked Checkpoint // deposits/withdrawals create a new object in the history (max one per block) Checkpoint[] xyzStakedHistory; // mapping of user address to history of delegated power // every delegate/stopDelegate call create a new checkpoint (max one per block) mapping(address => Checkpoint[]) delegatedPowerHistory; IERC20 xyz; IRewards rewards; } function supernovaStorage() internal pure returns (Storage storage ds) { bytes32 position = STORAGE_POSITION; assembly { ds.slot := position } } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; interface IRewards { function registerUserAction(address user) external; }
File 4 of 4: XYZToken
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.6.12; import "@openzeppelin/contracts/token/ERC20/ERC20Burnable.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; contract XYZToken is ERC20Burnable, Ownable { uint256 private constant SUPPLY = 1_000_000_000 * 10**18; constructor() public ERC20("XYZ Governance Token", "XYZ") { _mint(msg.sender, SUPPLY); } function mint(address to, uint256 amount) public virtual onlyOwner { _mint(to, amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../../GSN/Context.sol"; import "./ERC20.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20Burnable is Context, ERC20 { /** * @dev Destroys `amount` tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); } /** * @dev Destroys `amount` tokens from `account`, deducting from the caller's * allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `amount`. */ function burnFrom(address account, uint256 amount) public virtual { uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance"); _approve(account, _msgSender(), decreasedAllowance); _burn(account, amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../../GSN/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol) public { _name = name; _symbol = symbol; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../GSN/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }