ETH Price: $2,396.41 (+6.04%)

Transaction Decoder

Block:
15733519 at Oct-12-2022 05:28:11 PM +UTC
Transaction Fee:
0.010149753674464218 ETH $24.32
Gas Used:
430,242 Gas / 23.590801629 Gwei

Emitted Events:

28 XENCrypto.RankClaimed( user=0x5a452736a23c7884c27365e0acaddc49ee0cdcb4, term=1, rank=759204 )
29 XENCrypto.RankClaimed( user=0x0190fc9ac00732186f37102a39cd8f8509fcc89b, term=1, rank=759205 )

Account State Difference:

  Address   Before After State Difference Code
0x06450dEe...5599a6Fb8
0x7BC6867D...08E4D38Ce 0.156874938510739 Eth0.160443758510739 Eth0.00356882
0xb69d4dE5...06f0AF19e
0xC098B2a3...Ef5cd3A94
(FTX 2)
201,017.193816958784067535 Eth
Nonce: 2786530
201,017.180098385109603317 Eth
Nonce: 2786531
0.013718573674464218
471.171608169717594306 Eth471.173514141777594306 Eth0.00190597206

Execution Trace

ETH 0.00356882 0xb69d4de5991fa3ded39c27ed88934a106f0af19e.CALL( )
  • 0x5a452736a23c7884c27365e0acaddc49ee0cdcb4.60806040( )
    • XENCrypto.userMints( 0x5a452736A23c7884C27365E0ACaDdC49ee0CdCB4 ) => ( user=0x0000000000000000000000000000000000000000, term=0, maturityTs=0, rank=0, amplifier=0, eaaRate=0 )
    • 0xb69d4de5991fa3ded39c27ed88934a106f0af19e.STATICCALL( )
    • XENCrypto.claimRank( term=1 )
      • Math.min( a=33955200, b=86400000 ) => ( 33955200 )
      • Math.max( a=2997, b=1 ) => ( 2997 )
      • 0xb69d4de5991fa3ded39c27ed88934a106f0af19e.SELFDESTRUCT( )
      • 0x0190fc9ac00732186f37102a39cd8f8509fcc89b.60806040( )
        • XENCrypto.userMints( 0x0190fC9aC00732186f37102a39cd8F8509Fcc89b ) => ( user=0x0000000000000000000000000000000000000000, term=0, maturityTs=0, rank=0, amplifier=0, eaaRate=0 )
        • 0xb69d4de5991fa3ded39c27ed88934a106f0af19e.STATICCALL( )
        • XENCrypto.claimRank( term=1 )
          • Math.min( a=33955200, b=86400000 ) => ( 33955200 )
          • Math.max( a=2997, b=1 ) => ( 2997 )
          • 0xb69d4de5991fa3ded39c27ed88934a106f0af19e.SELFDESTRUCT( )
          • ETH 0.00356882 0x7bc6867d0e2a0b9bd6e3c8c11c315b708e4d38ce.CALL( )
            File 1 of 2: XENCrypto
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.10;
            import "./Math.sol";
            import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
            import "@openzeppelin/contracts/interfaces/IERC165.sol";
            import "abdk-libraries-solidity/ABDKMath64x64.sol";
            import "./interfaces/IStakingToken.sol";
            import "./interfaces/IRankedMintingToken.sol";
            import "./interfaces/IBurnableToken.sol";
            import "./interfaces/IBurnRedeemable.sol";
            contract XENCrypto is Context, IRankedMintingToken, IStakingToken, IBurnableToken, ERC20("XEN Crypto", "XEN") {
                using Math for uint256;
                using ABDKMath64x64 for int128;
                using ABDKMath64x64 for uint256;
                // INTERNAL TYPE TO DESCRIBE A XEN MINT INFO
                struct MintInfo {
                    address user;
                    uint256 term;
                    uint256 maturityTs;
                    uint256 rank;
                    uint256 amplifier;
                    uint256 eaaRate;
                }
                // INTERNAL TYPE TO DESCRIBE A XEN STAKE
                struct StakeInfo {
                    uint256 term;
                    uint256 maturityTs;
                    uint256 amount;
                    uint256 apy;
                }
                // PUBLIC CONSTANTS
                uint256 public constant SECONDS_IN_DAY = 3_600 * 24;
                uint256 public constant DAYS_IN_YEAR = 365;
                uint256 public constant GENESIS_RANK = 1;
                uint256 public constant MIN_TERM = 1 * SECONDS_IN_DAY - 1;
                uint256 public constant MAX_TERM_START = 100 * SECONDS_IN_DAY;
                uint256 public constant MAX_TERM_END = 1_000 * SECONDS_IN_DAY;
                uint256 public constant TERM_AMPLIFIER = 15;
                uint256 public constant TERM_AMPLIFIER_THRESHOLD = 5_000;
                uint256 public constant REWARD_AMPLIFIER_START = 3_000;
                uint256 public constant REWARD_AMPLIFIER_END = 1;
                uint256 public constant EAA_PM_START = 100;
                uint256 public constant EAA_PM_STEP = 1;
                uint256 public constant EAA_RANK_STEP = 100_000;
                uint256 public constant WITHDRAWAL_WINDOW_DAYS = 7;
                uint256 public constant MAX_PENALTY_PCT = 99;
                uint256 public constant XEN_MIN_STAKE = 0;
                uint256 public constant XEN_MIN_BURN = 0;
                uint256 public constant XEN_APY_START = 20;
                uint256 public constant XEN_APY_DAYS_STEP = 90;
                uint256 public constant XEN_APY_END = 2;
                string public constant AUTHORS = "@MrJackLevin @lbelyaev faircrypto.org";
                // PUBLIC STATE, READABLE VIA NAMESAKE GETTERS
                uint256 public immutable genesisTs;
                uint256 public globalRank = GENESIS_RANK;
                uint256 public activeMinters;
                uint256 public activeStakes;
                uint256 public totalXenStaked;
                // user address => XEN mint info
                mapping(address => MintInfo) public userMints;
                // user address => XEN stake info
                mapping(address => StakeInfo) public userStakes;
                // user address => XEN burn amount
                mapping(address => uint256) public userBurns;
                // CONSTRUCTOR
                constructor() {
                    genesisTs = block.timestamp;
                }
                // PRIVATE METHODS
                /**
                 * @dev calculates current MaxTerm based on Global Rank
                 *      (if Global Rank crosses over TERM_AMPLIFIER_THRESHOLD)
                 */
                function _calculateMaxTerm() private view returns (uint256) {
                    if (globalRank > TERM_AMPLIFIER_THRESHOLD) {
                        uint256 delta = globalRank.fromUInt().log_2().mul(TERM_AMPLIFIER.fromUInt()).toUInt();
                        uint256 newMax = MAX_TERM_START + delta * SECONDS_IN_DAY;
                        return Math.min(newMax, MAX_TERM_END);
                    }
                    return MAX_TERM_START;
                }
                /**
                 * @dev calculates Withdrawal Penalty depending on lateness
                 */
                function _penalty(uint256 secsLate) private pure returns (uint256) {
                    // =MIN(2^(daysLate+3)/window-1,99)
                    uint256 daysLate = secsLate / SECONDS_IN_DAY;
                    if (daysLate > WITHDRAWAL_WINDOW_DAYS - 1) return MAX_PENALTY_PCT;
                    uint256 penalty = (uint256(1) << (daysLate + 3)) / WITHDRAWAL_WINDOW_DAYS - 1;
                    return Math.min(penalty, MAX_PENALTY_PCT);
                }
                /**
                 * @dev calculates net Mint Reward (adjusted for Penalty)
                 */
                function _calculateMintReward(
                    uint256 cRank,
                    uint256 term,
                    uint256 maturityTs,
                    uint256 amplifier,
                    uint256 eeaRate
                ) private view returns (uint256) {
                    uint256 secsLate = block.timestamp - maturityTs;
                    uint256 penalty = _penalty(secsLate);
                    uint256 rankDelta = Math.max(globalRank - cRank, 2);
                    uint256 EAA = (1_000 + eeaRate);
                    uint256 reward = getGrossReward(rankDelta, amplifier, term, EAA);
                    return (reward * (100 - penalty)) / 100;
                }
                /**
                 * @dev cleans up User Mint storage (gets some Gas credit;))
                 */
                function _cleanUpUserMint() private {
                    delete userMints[_msgSender()];
                    activeMinters--;
                }
                /**
                 * @dev calculates XEN Stake Reward
                 */
                function _calculateStakeReward(
                    uint256 amount,
                    uint256 term,
                    uint256 maturityTs,
                    uint256 apy
                ) private view returns (uint256) {
                    if (block.timestamp > maturityTs) {
                        uint256 rate = (apy * term * 1_000_000) / DAYS_IN_YEAR;
                        return (amount * rate) / 100_000_000;
                    }
                    return 0;
                }
                /**
                 * @dev calculates Reward Amplifier
                 */
                function _calculateRewardAmplifier() private view returns (uint256) {
                    uint256 amplifierDecrease = (block.timestamp - genesisTs) / SECONDS_IN_DAY;
                    if (amplifierDecrease < REWARD_AMPLIFIER_START) {
                        return Math.max(REWARD_AMPLIFIER_START - amplifierDecrease, REWARD_AMPLIFIER_END);
                    } else {
                        return REWARD_AMPLIFIER_END;
                    }
                }
                /**
                 * @dev calculates Early Adopter Amplifier Rate (in 1/000ths)
                 *      actual EAA is (1_000 + EAAR) / 1_000
                 */
                function _calculateEAARate() private view returns (uint256) {
                    uint256 decrease = (EAA_PM_STEP * globalRank) / EAA_RANK_STEP;
                    if (decrease > EAA_PM_START) return 0;
                    return EAA_PM_START - decrease;
                }
                /**
                 * @dev calculates APY (in %)
                 */
                function _calculateAPY() private view returns (uint256) {
                    uint256 decrease = (block.timestamp - genesisTs) / (SECONDS_IN_DAY * XEN_APY_DAYS_STEP);
                    if (XEN_APY_START - XEN_APY_END < decrease) return XEN_APY_END;
                    return XEN_APY_START - decrease;
                }
                /**
                 * @dev creates User Stake
                 */
                function _createStake(uint256 amount, uint256 term) private {
                    userStakes[_msgSender()] = StakeInfo({
                        term: term,
                        maturityTs: block.timestamp + term * SECONDS_IN_DAY,
                        amount: amount,
                        apy: _calculateAPY()
                    });
                    activeStakes++;
                    totalXenStaked += amount;
                }
                // PUBLIC CONVENIENCE GETTERS
                /**
                 * @dev calculates gross Mint Reward
                 */
                function getGrossReward(
                    uint256 rankDelta,
                    uint256 amplifier,
                    uint256 term,
                    uint256 eaa
                ) public pure returns (uint256) {
                    int128 log128 = rankDelta.fromUInt().log_2();
                    int128 reward128 = log128.mul(amplifier.fromUInt()).mul(term.fromUInt()).mul(eaa.fromUInt());
                    return reward128.div(uint256(1_000).fromUInt()).toUInt();
                }
                /**
                 * @dev returns User Mint object associated with User account address
                 */
                function getUserMint() external view returns (MintInfo memory) {
                    return userMints[_msgSender()];
                }
                /**
                 * @dev returns XEN Stake object associated with User account address
                 */
                function getUserStake() external view returns (StakeInfo memory) {
                    return userStakes[_msgSender()];
                }
                /**
                 * @dev returns current AMP
                 */
                function getCurrentAMP() external view returns (uint256) {
                    return _calculateRewardAmplifier();
                }
                /**
                 * @dev returns current EAA Rate
                 */
                function getCurrentEAAR() external view returns (uint256) {
                    return _calculateEAARate();
                }
                /**
                 * @dev returns current APY
                 */
                function getCurrentAPY() external view returns (uint256) {
                    return _calculateAPY();
                }
                /**
                 * @dev returns current MaxTerm
                 */
                function getCurrentMaxTerm() external view returns (uint256) {
                    return _calculateMaxTerm();
                }
                // PUBLIC STATE-CHANGING METHODS
                /**
                 * @dev accepts User cRank claim provided all checks pass (incl. no current claim exists)
                 */
                function claimRank(uint256 term) external {
                    uint256 termSec = term * SECONDS_IN_DAY;
                    require(termSec > MIN_TERM, "CRank: Term less than min");
                    require(termSec < _calculateMaxTerm() + 1, "CRank: Term more than current max term");
                    require(userMints[_msgSender()].rank == 0, "CRank: Mint already in progress");
                    // create and store new MintInfo
                    MintInfo memory mintInfo = MintInfo({
                        user: _msgSender(),
                        term: term,
                        maturityTs: block.timestamp + termSec,
                        rank: globalRank,
                        amplifier: _calculateRewardAmplifier(),
                        eaaRate: _calculateEAARate()
                    });
                    userMints[_msgSender()] = mintInfo;
                    activeMinters++;
                    emit RankClaimed(_msgSender(), term, globalRank++);
                }
                /**
                 * @dev ends minting upon maturity (and within permitted Withdrawal Time Window), gets minted XEN
                 */
                function claimMintReward() external {
                    MintInfo memory mintInfo = userMints[_msgSender()];
                    require(mintInfo.rank > 0, "CRank: No mint exists");
                    require(block.timestamp > mintInfo.maturityTs, "CRank: Mint maturity not reached");
                    // calculate reward and mint tokens
                    uint256 rewardAmount = _calculateMintReward(
                        mintInfo.rank,
                        mintInfo.term,
                        mintInfo.maturityTs,
                        mintInfo.amplifier,
                        mintInfo.eaaRate
                    ) * 1 ether;
                    _mint(_msgSender(), rewardAmount);
                    _cleanUpUserMint();
                    emit MintClaimed(_msgSender(), rewardAmount);
                }
                /**
                 * @dev  ends minting upon maturity (and within permitted Withdrawal time Window)
                 *       mints XEN coins and splits them between User and designated other address
                 */
                function claimMintRewardAndShare(address other, uint256 pct) external {
                    MintInfo memory mintInfo = userMints[_msgSender()];
                    require(other != address(0), "CRank: Cannot share with zero address");
                    require(pct > 0, "CRank: Cannot share zero percent");
                    require(pct < 101, "CRank: Cannot share 100+ percent");
                    require(mintInfo.rank > 0, "CRank: No mint exists");
                    require(block.timestamp > mintInfo.maturityTs, "CRank: Mint maturity not reached");
                    // calculate reward
                    uint256 rewardAmount = _calculateMintReward(
                        mintInfo.rank,
                        mintInfo.term,
                        mintInfo.maturityTs,
                        mintInfo.amplifier,
                        mintInfo.eaaRate
                    ) * 1 ether;
                    uint256 sharedReward = (rewardAmount * pct) / 100;
                    uint256 ownReward = rewardAmount - sharedReward;
                    // mint reward tokens
                    _mint(_msgSender(), ownReward);
                    _mint(other, sharedReward);
                    _cleanUpUserMint();
                    emit MintClaimed(_msgSender(), rewardAmount);
                }
                /**
                 * @dev  ends minting upon maturity (and within permitted Withdrawal time Window)
                 *       mints XEN coins and stakes 'pct' of it for 'term'
                 */
                function claimMintRewardAndStake(uint256 pct, uint256 term) external {
                    MintInfo memory mintInfo = userMints[_msgSender()];
                    // require(pct > 0, "CRank: Cannot share zero percent");
                    require(pct < 101, "CRank: Cannot share >100 percent");
                    require(mintInfo.rank > 0, "CRank: No mint exists");
                    require(block.timestamp > mintInfo.maturityTs, "CRank: Mint maturity not reached");
                    // calculate reward
                    uint256 rewardAmount = _calculateMintReward(
                        mintInfo.rank,
                        mintInfo.term,
                        mintInfo.maturityTs,
                        mintInfo.amplifier,
                        mintInfo.eaaRate
                    ) * 1 ether;
                    uint256 stakedReward = (rewardAmount * pct) / 100;
                    uint256 ownReward = rewardAmount - stakedReward;
                    // mint reward tokens part
                    _mint(_msgSender(), ownReward);
                    _cleanUpUserMint();
                    emit MintClaimed(_msgSender(), rewardAmount);
                    // nothing to burn since we haven't minted this part yet
                    // stake extra tokens part
                    require(stakedReward > XEN_MIN_STAKE, "XEN: Below min stake");
                    require(term * SECONDS_IN_DAY > MIN_TERM, "XEN: Below min stake term");
                    require(term * SECONDS_IN_DAY < MAX_TERM_END + 1, "XEN: Above max stake term");
                    require(userStakes[_msgSender()].amount == 0, "XEN: stake exists");
                    _createStake(stakedReward, term);
                    emit Staked(_msgSender(), stakedReward, term);
                }
                /**
                 * @dev initiates XEN Stake in amount for a term (days)
                 */
                function stake(uint256 amount, uint256 term) external {
                    require(balanceOf(_msgSender()) >= amount, "XEN: not enough balance");
                    require(amount > XEN_MIN_STAKE, "XEN: Below min stake");
                    require(term * SECONDS_IN_DAY > MIN_TERM, "XEN: Below min stake term");
                    require(term * SECONDS_IN_DAY < MAX_TERM_END + 1, "XEN: Above max stake term");
                    require(userStakes[_msgSender()].amount == 0, "XEN: stake exists");
                    // burn staked XEN
                    _burn(_msgSender(), amount);
                    // create XEN Stake
                    _createStake(amount, term);
                    emit Staked(_msgSender(), amount, term);
                }
                /**
                 * @dev ends XEN Stake and gets reward if the Stake is mature
                 */
                function withdraw() external {
                    StakeInfo memory userStake = userStakes[_msgSender()];
                    require(userStake.amount > 0, "XEN: no stake exists");
                    uint256 xenReward = _calculateStakeReward(
                        userStake.amount,
                        userStake.term,
                        userStake.maturityTs,
                        userStake.apy
                    );
                    activeStakes--;
                    totalXenStaked -= userStake.amount;
                    // mint staked XEN (+ reward)
                    _mint(_msgSender(), userStake.amount + xenReward);
                    emit Withdrawn(_msgSender(), userStake.amount, xenReward);
                    delete userStakes[_msgSender()];
                }
                /**
                 * @dev burns XEN tokens and creates Proof-Of-Burn record to be used by connected DeFi services
                 */
                function burn(address user, uint256 amount) public {
                    require(amount > XEN_MIN_BURN, "Burn: Below min limit");
                    require(
                        IERC165(_msgSender()).supportsInterface(type(IBurnRedeemable).interfaceId),
                        "Burn: not a supported contract"
                    );
                    _spendAllowance(user, _msgSender(), amount);
                    _burn(user, amount);
                    userBurns[user] += amount;
                    IBurnRedeemable(_msgSender()).onTokenBurned(user, amount);
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.10;
            interface IStakingToken {
                event Staked(address indexed user, uint256 amount, uint256 term);
                event Withdrawn(address indexed user, uint256 amount, uint256 reward);
                function stake(uint256 amount, uint256 term) external;
                function withdraw() external;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.10;
            interface IRankedMintingToken {
                event RankClaimed(address indexed user, uint256 term, uint256 rank);
                event MintClaimed(address indexed user, uint256 rewardAmount);
                function claimRank(uint256 term) external;
                function claimMintReward() external;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.10;
            interface IBurnableToken {
                function burn(address user, uint256 amount) external;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.10;
            interface IBurnRedeemable {
                event Redeemed(
                    address indexed user,
                    address indexed xenContract,
                    address indexed tokenContract,
                    uint256 xenAmount,
                    uint256 tokenAmount
                );
                function onTokenBurned(address user, uint256 amount) external;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.10;
            import "abdk-libraries-solidity/ABDKMath64x64.sol";
            library Math {
                function min(uint256 a, uint256 b) external pure returns (uint256) {
                    if (a > b) return b;
                    return a;
                }
                function max(uint256 a, uint256 b) external pure returns (uint256) {
                    if (a > b) return a;
                    return b;
                }
                function logX64(uint256 x) external pure returns (int128) {
                    return ABDKMath64x64.log_2(ABDKMath64x64.fromUInt(x));
                }
            }
            // SPDX-License-Identifier: BSD-4-Clause
            /*
             * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
             * Author: Mikhail Vladimirov <[email protected]>
             */
            pragma solidity ^0.8.0;
            /**
             * Smart contract library of mathematical functions operating with signed
             * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
             * basically a simple fraction whose numerator is signed 128-bit integer and
             * denominator is 2^64.  As long as denominator is always the same, there is no
             * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
             * represented by int128 type holding only the numerator.
             */
            library ABDKMath64x64 {
              /*
               * Minimum value signed 64.64-bit fixed point number may have. 
               */
              int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;
              /*
               * Maximum value signed 64.64-bit fixed point number may have. 
               */
              int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              /**
               * Convert signed 256-bit integer number into signed 64.64-bit fixed point
               * number.  Revert on overflow.
               *
               * @param x signed 256-bit integer number
               * @return signed 64.64-bit fixed point number
               */
              function fromInt (int256 x) internal pure returns (int128) {
                unchecked {
                  require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
                  return int128 (x << 64);
                }
              }
              /**
               * Convert signed 64.64 fixed point number into signed 64-bit integer number
               * rounding down.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64-bit integer number
               */
              function toInt (int128 x) internal pure returns (int64) {
                unchecked {
                  return int64 (x >> 64);
                }
              }
              /**
               * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
               * number.  Revert on overflow.
               *
               * @param x unsigned 256-bit integer number
               * @return signed 64.64-bit fixed point number
               */
              function fromUInt (uint256 x) internal pure returns (int128) {
                unchecked {
                  require (x <= 0x7FFFFFFFFFFFFFFF);
                  return int128 (int256 (x << 64));
                }
              }
              /**
               * Convert signed 64.64 fixed point number into unsigned 64-bit integer
               * number rounding down.  Revert on underflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @return unsigned 64-bit integer number
               */
              function toUInt (int128 x) internal pure returns (uint64) {
                unchecked {
                  require (x >= 0);
                  return uint64 (uint128 (x >> 64));
                }
              }
              /**
               * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
               * number rounding down.  Revert on overflow.
               *
               * @param x signed 128.128-bin fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function from128x128 (int256 x) internal pure returns (int128) {
                unchecked {
                  int256 result = x >> 64;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Convert signed 64.64 fixed point number into signed 128.128 fixed point
               * number.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 128.128 fixed point number
               */
              function to128x128 (int128 x) internal pure returns (int256) {
                unchecked {
                  return int256 (x) << 64;
                }
              }
              /**
               * Calculate x + y.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function add (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  int256 result = int256(x) + y;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate x - y.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function sub (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  int256 result = int256(x) - y;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate x * y rounding down.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function mul (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  int256 result = int256(x) * y >> 64;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
               * number and y is signed 256-bit integer number.  Revert on overflow.
               *
               * @param x signed 64.64 fixed point number
               * @param y signed 256-bit integer number
               * @return signed 256-bit integer number
               */
              function muli (int128 x, int256 y) internal pure returns (int256) {
                unchecked {
                  if (x == MIN_64x64) {
                    require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
                      y <= 0x1000000000000000000000000000000000000000000000000);
                    return -y << 63;
                  } else {
                    bool negativeResult = false;
                    if (x < 0) {
                      x = -x;
                      negativeResult = true;
                    }
                    if (y < 0) {
                      y = -y; // We rely on overflow behavior here
                      negativeResult = !negativeResult;
                    }
                    uint256 absoluteResult = mulu (x, uint256 (y));
                    if (negativeResult) {
                      require (absoluteResult <=
                        0x8000000000000000000000000000000000000000000000000000000000000000);
                      return -int256 (absoluteResult); // We rely on overflow behavior here
                    } else {
                      require (absoluteResult <=
                        0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                      return int256 (absoluteResult);
                    }
                  }
                }
              }
              /**
               * Calculate x * y rounding down, where x is signed 64.64 fixed point number
               * and y is unsigned 256-bit integer number.  Revert on overflow.
               *
               * @param x signed 64.64 fixed point number
               * @param y unsigned 256-bit integer number
               * @return unsigned 256-bit integer number
               */
              function mulu (int128 x, uint256 y) internal pure returns (uint256) {
                unchecked {
                  if (y == 0) return 0;
                  require (x >= 0);
                  uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
                  uint256 hi = uint256 (int256 (x)) * (y >> 128);
                  require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                  hi <<= 64;
                  require (hi <=
                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
                  return hi + lo;
                }
              }
              /**
               * Calculate x / y rounding towards zero.  Revert on overflow or when y is
               * zero.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function div (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  require (y != 0);
                  int256 result = (int256 (x) << 64) / y;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate x / y rounding towards zero, where x and y are signed 256-bit
               * integer numbers.  Revert on overflow or when y is zero.
               *
               * @param x signed 256-bit integer number
               * @param y signed 256-bit integer number
               * @return signed 64.64-bit fixed point number
               */
              function divi (int256 x, int256 y) internal pure returns (int128) {
                unchecked {
                  require (y != 0);
                  bool negativeResult = false;
                  if (x < 0) {
                    x = -x; // We rely on overflow behavior here
                    negativeResult = true;
                  }
                  if (y < 0) {
                    y = -y; // We rely on overflow behavior here
                    negativeResult = !negativeResult;
                  }
                  uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
                  if (negativeResult) {
                    require (absoluteResult <= 0x80000000000000000000000000000000);
                    return -int128 (absoluteResult); // We rely on overflow behavior here
                  } else {
                    require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    return int128 (absoluteResult); // We rely on overflow behavior here
                  }
                }
              }
              /**
               * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
               * integer numbers.  Revert on overflow or when y is zero.
               *
               * @param x unsigned 256-bit integer number
               * @param y unsigned 256-bit integer number
               * @return signed 64.64-bit fixed point number
               */
              function divu (uint256 x, uint256 y) internal pure returns (int128) {
                unchecked {
                  require (y != 0);
                  uint128 result = divuu (x, y);
                  require (result <= uint128 (MAX_64x64));
                  return int128 (result);
                }
              }
              /**
               * Calculate -x.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function neg (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x != MIN_64x64);
                  return -x;
                }
              }
              /**
               * Calculate |x|.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function abs (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x != MIN_64x64);
                  return x < 0 ? -x : x;
                }
              }
              /**
               * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
               * zero.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function inv (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x != 0);
                  int256 result = int256 (0x100000000000000000000000000000000) / x;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function avg (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  return int128 ((int256 (x) + int256 (y)) >> 1);
                }
              }
              /**
               * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
               * Revert on overflow or in case x * y is negative.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function gavg (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  int256 m = int256 (x) * int256 (y);
                  require (m >= 0);
                  require (m <
                      0x4000000000000000000000000000000000000000000000000000000000000000);
                  return int128 (sqrtu (uint256 (m)));
                }
              }
              /**
               * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
               * and y is unsigned 256-bit integer number.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y uint256 value
               * @return signed 64.64-bit fixed point number
               */
              function pow (int128 x, uint256 y) internal pure returns (int128) {
                unchecked {
                  bool negative = x < 0 && y & 1 == 1;
                  uint256 absX = uint128 (x < 0 ? -x : x);
                  uint256 absResult;
                  absResult = 0x100000000000000000000000000000000;
                  if (absX <= 0x10000000000000000) {
                    absX <<= 63;
                    while (y != 0) {
                      if (y & 0x1 != 0) {
                        absResult = absResult * absX >> 127;
                      }
                      absX = absX * absX >> 127;
                      if (y & 0x2 != 0) {
                        absResult = absResult * absX >> 127;
                      }
                      absX = absX * absX >> 127;
                      if (y & 0x4 != 0) {
                        absResult = absResult * absX >> 127;
                      }
                      absX = absX * absX >> 127;
                      if (y & 0x8 != 0) {
                        absResult = absResult * absX >> 127;
                      }
                      absX = absX * absX >> 127;
                      y >>= 4;
                    }
                    absResult >>= 64;
                  } else {
                    uint256 absXShift = 63;
                    if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
                    if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
                    if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
                    if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
                    if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
                    if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }
                    uint256 resultShift = 0;
                    while (y != 0) {
                      require (absXShift < 64);
                      if (y & 0x1 != 0) {
                        absResult = absResult * absX >> 127;
                        resultShift += absXShift;
                        if (absResult > 0x100000000000000000000000000000000) {
                          absResult >>= 1;
                          resultShift += 1;
                        }
                      }
                      absX = absX * absX >> 127;
                      absXShift <<= 1;
                      if (absX >= 0x100000000000000000000000000000000) {
                          absX >>= 1;
                          absXShift += 1;
                      }
                      y >>= 1;
                    }
                    require (resultShift < 64);
                    absResult >>= 64 - resultShift;
                  }
                  int256 result = negative ? -int256 (absResult) : int256 (absResult);
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate sqrt (x) rounding down.  Revert if x < 0.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function sqrt (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x >= 0);
                  return int128 (sqrtu (uint256 (int256 (x)) << 64));
                }
              }
              /**
               * Calculate binary logarithm of x.  Revert if x <= 0.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function log_2 (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x > 0);
                  int256 msb = 0;
                  int256 xc = x;
                  if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
                  if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
                  if (xc >= 0x10000) { xc >>= 16; msb += 16; }
                  if (xc >= 0x100) { xc >>= 8; msb += 8; }
                  if (xc >= 0x10) { xc >>= 4; msb += 4; }
                  if (xc >= 0x4) { xc >>= 2; msb += 2; }
                  if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
                  int256 result = msb - 64 << 64;
                  uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
                  for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
                    ux *= ux;
                    uint256 b = ux >> 255;
                    ux >>= 127 + b;
                    result += bit * int256 (b);
                  }
                  return int128 (result);
                }
              }
              /**
               * Calculate natural logarithm of x.  Revert if x <= 0.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function ln (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x > 0);
                  return int128 (int256 (
                      uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
                }
              }
              /**
               * Calculate binary exponent of x.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function exp_2 (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x < 0x400000000000000000); // Overflow
                  if (x < -0x400000000000000000) return 0; // Underflow
                  uint256 result = 0x80000000000000000000000000000000;
                  if (x & 0x8000000000000000 > 0)
                    result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
                  if (x & 0x4000000000000000 > 0)
                    result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
                  if (x & 0x2000000000000000 > 0)
                    result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
                  if (x & 0x1000000000000000 > 0)
                    result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
                  if (x & 0x800000000000000 > 0)
                    result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
                  if (x & 0x400000000000000 > 0)
                    result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
                  if (x & 0x200000000000000 > 0)
                    result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
                  if (x & 0x100000000000000 > 0)
                    result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
                  if (x & 0x80000000000000 > 0)
                    result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
                  if (x & 0x40000000000000 > 0)
                    result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
                  if (x & 0x20000000000000 > 0)
                    result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
                  if (x & 0x10000000000000 > 0)
                    result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
                  if (x & 0x8000000000000 > 0)
                    result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
                  if (x & 0x4000000000000 > 0)
                    result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
                  if (x & 0x2000000000000 > 0)
                    result = result * 0x1000162E525EE054754457D5995292026 >> 128;
                  if (x & 0x1000000000000 > 0)
                    result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
                  if (x & 0x800000000000 > 0)
                    result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
                  if (x & 0x400000000000 > 0)
                    result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
                  if (x & 0x200000000000 > 0)
                    result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
                  if (x & 0x100000000000 > 0)
                    result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
                  if (x & 0x80000000000 > 0)
                    result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
                  if (x & 0x40000000000 > 0)
                    result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
                  if (x & 0x20000000000 > 0)
                    result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
                  if (x & 0x10000000000 > 0)
                    result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
                  if (x & 0x8000000000 > 0)
                    result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
                  if (x & 0x4000000000 > 0)
                    result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
                  if (x & 0x2000000000 > 0)
                    result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
                  if (x & 0x1000000000 > 0)
                    result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
                  if (x & 0x800000000 > 0)
                    result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
                  if (x & 0x400000000 > 0)
                    result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
                  if (x & 0x200000000 > 0)
                    result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
                  if (x & 0x100000000 > 0)
                    result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
                  if (x & 0x80000000 > 0)
                    result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
                  if (x & 0x40000000 > 0)
                    result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
                  if (x & 0x20000000 > 0)
                    result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
                  if (x & 0x10000000 > 0)
                    result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
                  if (x & 0x8000000 > 0)
                    result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
                  if (x & 0x4000000 > 0)
                    result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
                  if (x & 0x2000000 > 0)
                    result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
                  if (x & 0x1000000 > 0)
                    result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
                  if (x & 0x800000 > 0)
                    result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
                  if (x & 0x400000 > 0)
                    result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
                  if (x & 0x200000 > 0)
                    result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
                  if (x & 0x100000 > 0)
                    result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
                  if (x & 0x80000 > 0)
                    result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
                  if (x & 0x40000 > 0)
                    result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
                  if (x & 0x20000 > 0)
                    result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
                  if (x & 0x10000 > 0)
                    result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
                  if (x & 0x8000 > 0)
                    result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
                  if (x & 0x4000 > 0)
                    result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
                  if (x & 0x2000 > 0)
                    result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
                  if (x & 0x1000 > 0)
                    result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
                  if (x & 0x800 > 0)
                    result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
                  if (x & 0x400 > 0)
                    result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
                  if (x & 0x200 > 0)
                    result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
                  if (x & 0x100 > 0)
                    result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
                  if (x & 0x80 > 0)
                    result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
                  if (x & 0x40 > 0)
                    result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
                  if (x & 0x20 > 0)
                    result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
                  if (x & 0x10 > 0)
                    result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
                  if (x & 0x8 > 0)
                    result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
                  if (x & 0x4 > 0)
                    result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
                  if (x & 0x2 > 0)
                    result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
                  if (x & 0x1 > 0)
                    result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;
                  result >>= uint256 (int256 (63 - (x >> 64)));
                  require (result <= uint256 (int256 (MAX_64x64)));
                  return int128 (int256 (result));
                }
              }
              /**
               * Calculate natural exponent of x.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function exp (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x < 0x400000000000000000); // Overflow
                  if (x < -0x400000000000000000) return 0; // Underflow
                  return exp_2 (
                      int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
                }
              }
              /**
               * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
               * integer numbers.  Revert on overflow or when y is zero.
               *
               * @param x unsigned 256-bit integer number
               * @param y unsigned 256-bit integer number
               * @return unsigned 64.64-bit fixed point number
               */
              function divuu (uint256 x, uint256 y) private pure returns (uint128) {
                unchecked {
                  require (y != 0);
                  uint256 result;
                  if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                    result = (x << 64) / y;
                  else {
                    uint256 msb = 192;
                    uint256 xc = x >> 192;
                    if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
                    if (xc >= 0x10000) { xc >>= 16; msb += 16; }
                    if (xc >= 0x100) { xc >>= 8; msb += 8; }
                    if (xc >= 0x10) { xc >>= 4; msb += 4; }
                    if (xc >= 0x4) { xc >>= 2; msb += 2; }
                    if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
                    result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
                    require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    uint256 hi = result * (y >> 128);
                    uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    uint256 xh = x >> 192;
                    uint256 xl = x << 64;
                    if (xl < lo) xh -= 1;
                    xl -= lo; // We rely on overflow behavior here
                    lo = hi << 128;
                    if (xl < lo) xh -= 1;
                    xl -= lo; // We rely on overflow behavior here
                    assert (xh == hi >> 128);
                    result += xl / y;
                  }
                  require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                  return uint128 (result);
                }
              }
              /**
               * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
               * number.
               *
               * @param x unsigned 256-bit integer number
               * @return unsigned 128-bit integer number
               */
              function sqrtu (uint256 x) private pure returns (uint128) {
                unchecked {
                  if (x == 0) return 0;
                  else {
                    uint256 xx = x;
                    uint256 r = 1;
                    if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
                    if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
                    if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
                    if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
                    if (xx >= 0x100) { xx >>= 8; r <<= 4; }
                    if (xx >= 0x10) { xx >>= 4; r <<= 2; }
                    if (xx >= 0x8) { r <<= 1; }
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1; // Seven iterations should be enough
                    uint256 r1 = x / r;
                    return uint128 (r < r1 ? r : r1);
                  }
                }
              }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Interface of the ERC165 standard, as defined in the
             * https://eips.ethereum.org/EIPS/eip-165[EIP].
             *
             * Implementers can declare support of contract interfaces, which can then be
             * queried by others ({ERC165Checker}).
             *
             * For an implementation, see {ERC165}.
             */
            interface IERC165 {
                /**
                 * @dev Returns true if this contract implements the interface defined by
                 * `interfaceId`. See the corresponding
                 * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
                 * to learn more about how these ids are created.
                 *
                 * This function call must use less than 30 000 gas.
                 */
                function supportsInterface(bytes4 interfaceId) external view returns (bool);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Provides information about the current execution context, including the
             * sender of the transaction and its data. While these are generally available
             * via msg.sender and msg.data, they should not be accessed in such a direct
             * manner, since when dealing with meta-transactions the account sending and
             * paying for execution may not be the actual sender (as far as an application
             * is concerned).
             *
             * This contract is only required for intermediate, library-like contracts.
             */
            abstract contract Context {
                function _msgSender() internal view virtual returns (address) {
                    return msg.sender;
                }
                function _msgData() internal view virtual returns (bytes calldata) {
                    return msg.data;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
            pragma solidity ^0.8.0;
            import "../IERC20.sol";
            /**
             * @dev Interface for the optional metadata functions from the ERC20 standard.
             *
             * _Available since v4.1._
             */
            interface IERC20Metadata is IERC20 {
                /**
                 * @dev Returns the name of the token.
                 */
                function name() external view returns (string memory);
                /**
                 * @dev Returns the symbol of the token.
                 */
                function symbol() external view returns (string memory);
                /**
                 * @dev Returns the decimals places of the token.
                 */
                function decimals() external view returns (uint8);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Interface of the ERC20 standard as defined in the EIP.
             */
            interface IERC20 {
                /**
                 * @dev Emitted when `value` tokens are moved from one account (`from`) to
                 * another (`to`).
                 *
                 * Note that `value` may be zero.
                 */
                event Transfer(address indexed from, address indexed to, uint256 value);
                /**
                 * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                 * a call to {approve}. `value` is the new allowance.
                 */
                event Approval(address indexed owner, address indexed spender, uint256 value);
                /**
                 * @dev Returns the amount of tokens in existence.
                 */
                function totalSupply() external view returns (uint256);
                /**
                 * @dev Returns the amount of tokens owned by `account`.
                 */
                function balanceOf(address account) external view returns (uint256);
                /**
                 * @dev Moves `amount` tokens from the caller's account to `to`.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transfer(address to, uint256 amount) external returns (bool);
                /**
                 * @dev Returns the remaining number of tokens that `spender` will be
                 * allowed to spend on behalf of `owner` through {transferFrom}. This is
                 * zero by default.
                 *
                 * This value changes when {approve} or {transferFrom} are called.
                 */
                function allowance(address owner, address spender) external view returns (uint256);
                /**
                 * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * IMPORTANT: Beware that changing an allowance with this method brings the risk
                 * that someone may use both the old and the new allowance by unfortunate
                 * transaction ordering. One possible solution to mitigate this race
                 * condition is to first reduce the spender's allowance to 0 and set the
                 * desired value afterwards:
                 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                 *
                 * Emits an {Approval} event.
                 */
                function approve(address spender, uint256 amount) external returns (bool);
                /**
                 * @dev Moves `amount` tokens from `from` to `to` using the
                 * allowance mechanism. `amount` is then deducted from the caller's
                 * allowance.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transferFrom(
                    address from,
                    address to,
                    uint256 amount
                ) external returns (bool);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
            pragma solidity ^0.8.0;
            import "./IERC20.sol";
            import "./extensions/IERC20Metadata.sol";
            import "../../utils/Context.sol";
            /**
             * @dev Implementation of the {IERC20} interface.
             *
             * This implementation is agnostic to the way tokens are created. This means
             * that a supply mechanism has to be added in a derived contract using {_mint}.
             * For a generic mechanism see {ERC20PresetMinterPauser}.
             *
             * TIP: For a detailed writeup see our guide
             * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
             * to implement supply mechanisms].
             *
             * We have followed general OpenZeppelin Contracts guidelines: functions revert
             * instead returning `false` on failure. This behavior is nonetheless
             * conventional and does not conflict with the expectations of ERC20
             * applications.
             *
             * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
             * This allows applications to reconstruct the allowance for all accounts just
             * by listening to said events. Other implementations of the EIP may not emit
             * these events, as it isn't required by the specification.
             *
             * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
             * functions have been added to mitigate the well-known issues around setting
             * allowances. See {IERC20-approve}.
             */
            contract ERC20 is Context, IERC20, IERC20Metadata {
                mapping(address => uint256) private _balances;
                mapping(address => mapping(address => uint256)) private _allowances;
                uint256 private _totalSupply;
                string private _name;
                string private _symbol;
                /**
                 * @dev Sets the values for {name} and {symbol}.
                 *
                 * The default value of {decimals} is 18. To select a different value for
                 * {decimals} you should overload it.
                 *
                 * All two of these values are immutable: they can only be set once during
                 * construction.
                 */
                constructor(string memory name_, string memory symbol_) {
                    _name = name_;
                    _symbol = symbol_;
                }
                /**
                 * @dev Returns the name of the token.
                 */
                function name() public view virtual override returns (string memory) {
                    return _name;
                }
                /**
                 * @dev Returns the symbol of the token, usually a shorter version of the
                 * name.
                 */
                function symbol() public view virtual override returns (string memory) {
                    return _symbol;
                }
                /**
                 * @dev Returns the number of decimals used to get its user representation.
                 * For example, if `decimals` equals `2`, a balance of `505` tokens should
                 * be displayed to a user as `5.05` (`505 / 10 ** 2`).
                 *
                 * Tokens usually opt for a value of 18, imitating the relationship between
                 * Ether and Wei. This is the value {ERC20} uses, unless this function is
                 * overridden;
                 *
                 * NOTE: This information is only used for _display_ purposes: it in
                 * no way affects any of the arithmetic of the contract, including
                 * {IERC20-balanceOf} and {IERC20-transfer}.
                 */
                function decimals() public view virtual override returns (uint8) {
                    return 18;
                }
                /**
                 * @dev See {IERC20-totalSupply}.
                 */
                function totalSupply() public view virtual override returns (uint256) {
                    return _totalSupply;
                }
                /**
                 * @dev See {IERC20-balanceOf}.
                 */
                function balanceOf(address account) public view virtual override returns (uint256) {
                    return _balances[account];
                }
                /**
                 * @dev See {IERC20-transfer}.
                 *
                 * Requirements:
                 *
                 * - `to` cannot be the zero address.
                 * - the caller must have a balance of at least `amount`.
                 */
                function transfer(address to, uint256 amount) public virtual override returns (bool) {
                    address owner = _msgSender();
                    _transfer(owner, to, amount);
                    return true;
                }
                /**
                 * @dev See {IERC20-allowance}.
                 */
                function allowance(address owner, address spender) public view virtual override returns (uint256) {
                    return _allowances[owner][spender];
                }
                /**
                 * @dev See {IERC20-approve}.
                 *
                 * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
                 * `transferFrom`. This is semantically equivalent to an infinite approval.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 */
                function approve(address spender, uint256 amount) public virtual override returns (bool) {
                    address owner = _msgSender();
                    _approve(owner, spender, amount);
                    return true;
                }
                /**
                 * @dev See {IERC20-transferFrom}.
                 *
                 * Emits an {Approval} event indicating the updated allowance. This is not
                 * required by the EIP. See the note at the beginning of {ERC20}.
                 *
                 * NOTE: Does not update the allowance if the current allowance
                 * is the maximum `uint256`.
                 *
                 * Requirements:
                 *
                 * - `from` and `to` cannot be the zero address.
                 * - `from` must have a balance of at least `amount`.
                 * - the caller must have allowance for ``from``'s tokens of at least
                 * `amount`.
                 */
                function transferFrom(
                    address from,
                    address to,
                    uint256 amount
                ) public virtual override returns (bool) {
                    address spender = _msgSender();
                    _spendAllowance(from, spender, amount);
                    _transfer(from, to, amount);
                    return true;
                }
                /**
                 * @dev Atomically increases the allowance granted to `spender` by the caller.
                 *
                 * This is an alternative to {approve} that can be used as a mitigation for
                 * problems described in {IERC20-approve}.
                 *
                 * Emits an {Approval} event indicating the updated allowance.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 */
                function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                    address owner = _msgSender();
                    _approve(owner, spender, allowance(owner, spender) + addedValue);
                    return true;
                }
                /**
                 * @dev Atomically decreases the allowance granted to `spender` by the caller.
                 *
                 * This is an alternative to {approve} that can be used as a mitigation for
                 * problems described in {IERC20-approve}.
                 *
                 * Emits an {Approval} event indicating the updated allowance.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 * - `spender` must have allowance for the caller of at least
                 * `subtractedValue`.
                 */
                function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                    address owner = _msgSender();
                    uint256 currentAllowance = allowance(owner, spender);
                    require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                    unchecked {
                        _approve(owner, spender, currentAllowance - subtractedValue);
                    }
                    return true;
                }
                /**
                 * @dev Moves `amount` of tokens from `from` to `to`.
                 *
                 * This internal function is equivalent to {transfer}, and can be used to
                 * e.g. implement automatic token fees, slashing mechanisms, etc.
                 *
                 * Emits a {Transfer} event.
                 *
                 * Requirements:
                 *
                 * - `from` cannot be the zero address.
                 * - `to` cannot be the zero address.
                 * - `from` must have a balance of at least `amount`.
                 */
                function _transfer(
                    address from,
                    address to,
                    uint256 amount
                ) internal virtual {
                    require(from != address(0), "ERC20: transfer from the zero address");
                    require(to != address(0), "ERC20: transfer to the zero address");
                    _beforeTokenTransfer(from, to, amount);
                    uint256 fromBalance = _balances[from];
                    require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                    unchecked {
                        _balances[from] = fromBalance - amount;
                    }
                    _balances[to] += amount;
                    emit Transfer(from, to, amount);
                    _afterTokenTransfer(from, to, amount);
                }
                /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                 * the total supply.
                 *
                 * Emits a {Transfer} event with `from` set to the zero address.
                 *
                 * Requirements:
                 *
                 * - `account` cannot be the zero address.
                 */
                function _mint(address account, uint256 amount) internal virtual {
                    require(account != address(0), "ERC20: mint to the zero address");
                    _beforeTokenTransfer(address(0), account, amount);
                    _totalSupply += amount;
                    _balances[account] += amount;
                    emit Transfer(address(0), account, amount);
                    _afterTokenTransfer(address(0), account, amount);
                }
                /**
                 * @dev Destroys `amount` tokens from `account`, reducing the
                 * total supply.
                 *
                 * Emits a {Transfer} event with `to` set to the zero address.
                 *
                 * Requirements:
                 *
                 * - `account` cannot be the zero address.
                 * - `account` must have at least `amount` tokens.
                 */
                function _burn(address account, uint256 amount) internal virtual {
                    require(account != address(0), "ERC20: burn from the zero address");
                    _beforeTokenTransfer(account, address(0), amount);
                    uint256 accountBalance = _balances[account];
                    require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                    unchecked {
                        _balances[account] = accountBalance - amount;
                    }
                    _totalSupply -= amount;
                    emit Transfer(account, address(0), amount);
                    _afterTokenTransfer(account, address(0), amount);
                }
                /**
                 * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
                 *
                 * This internal function is equivalent to `approve`, and can be used to
                 * e.g. set automatic allowances for certain subsystems, etc.
                 *
                 * Emits an {Approval} event.
                 *
                 * Requirements:
                 *
                 * - `owner` cannot be the zero address.
                 * - `spender` cannot be the zero address.
                 */
                function _approve(
                    address owner,
                    address spender,
                    uint256 amount
                ) internal virtual {
                    require(owner != address(0), "ERC20: approve from the zero address");
                    require(spender != address(0), "ERC20: approve to the zero address");
                    _allowances[owner][spender] = amount;
                    emit Approval(owner, spender, amount);
                }
                /**
                 * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
                 *
                 * Does not update the allowance amount in case of infinite allowance.
                 * Revert if not enough allowance is available.
                 *
                 * Might emit an {Approval} event.
                 */
                function _spendAllowance(
                    address owner,
                    address spender,
                    uint256 amount
                ) internal virtual {
                    uint256 currentAllowance = allowance(owner, spender);
                    if (currentAllowance != type(uint256).max) {
                        require(currentAllowance >= amount, "ERC20: insufficient allowance");
                        unchecked {
                            _approve(owner, spender, currentAllowance - amount);
                        }
                    }
                }
                /**
                 * @dev Hook that is called before any transfer of tokens. This includes
                 * minting and burning.
                 *
                 * Calling conditions:
                 *
                 * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                 * will be transferred to `to`.
                 * - when `from` is zero, `amount` tokens will be minted for `to`.
                 * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                 * - `from` and `to` are never both zero.
                 *
                 * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                 */
                function _beforeTokenTransfer(
                    address from,
                    address to,
                    uint256 amount
                ) internal virtual {}
                /**
                 * @dev Hook that is called after any transfer of tokens. This includes
                 * minting and burning.
                 *
                 * Calling conditions:
                 *
                 * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                 * has been transferred to `to`.
                 * - when `from` is zero, `amount` tokens have been minted for `to`.
                 * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
                 * - `from` and `to` are never both zero.
                 *
                 * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                 */
                function _afterTokenTransfer(
                    address from,
                    address to,
                    uint256 amount
                ) internal virtual {}
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol)
            pragma solidity ^0.8.0;
            import "../utils/introspection/IERC165.sol";
            

            File 2 of 2: Math
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.10;
            import "abdk-libraries-solidity/ABDKMath64x64.sol";
            library Math {
                function min(uint256 a, uint256 b) external pure returns (uint256) {
                    if (a > b) return b;
                    return a;
                }
                function max(uint256 a, uint256 b) external pure returns (uint256) {
                    if (a > b) return a;
                    return b;
                }
                function logX64(uint256 x) external pure returns (int128) {
                    return ABDKMath64x64.log_2(ABDKMath64x64.fromUInt(x));
                }
            }
            // SPDX-License-Identifier: BSD-4-Clause
            /*
             * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
             * Author: Mikhail Vladimirov <[email protected]>
             */
            pragma solidity ^0.8.0;
            /**
             * Smart contract library of mathematical functions operating with signed
             * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
             * basically a simple fraction whose numerator is signed 128-bit integer and
             * denominator is 2^64.  As long as denominator is always the same, there is no
             * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
             * represented by int128 type holding only the numerator.
             */
            library ABDKMath64x64 {
              /*
               * Minimum value signed 64.64-bit fixed point number may have. 
               */
              int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;
              /*
               * Maximum value signed 64.64-bit fixed point number may have. 
               */
              int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              /**
               * Convert signed 256-bit integer number into signed 64.64-bit fixed point
               * number.  Revert on overflow.
               *
               * @param x signed 256-bit integer number
               * @return signed 64.64-bit fixed point number
               */
              function fromInt (int256 x) internal pure returns (int128) {
                unchecked {
                  require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
                  return int128 (x << 64);
                }
              }
              /**
               * Convert signed 64.64 fixed point number into signed 64-bit integer number
               * rounding down.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64-bit integer number
               */
              function toInt (int128 x) internal pure returns (int64) {
                unchecked {
                  return int64 (x >> 64);
                }
              }
              /**
               * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
               * number.  Revert on overflow.
               *
               * @param x unsigned 256-bit integer number
               * @return signed 64.64-bit fixed point number
               */
              function fromUInt (uint256 x) internal pure returns (int128) {
                unchecked {
                  require (x <= 0x7FFFFFFFFFFFFFFF);
                  return int128 (int256 (x << 64));
                }
              }
              /**
               * Convert signed 64.64 fixed point number into unsigned 64-bit integer
               * number rounding down.  Revert on underflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @return unsigned 64-bit integer number
               */
              function toUInt (int128 x) internal pure returns (uint64) {
                unchecked {
                  require (x >= 0);
                  return uint64 (uint128 (x >> 64));
                }
              }
              /**
               * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
               * number rounding down.  Revert on overflow.
               *
               * @param x signed 128.128-bin fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function from128x128 (int256 x) internal pure returns (int128) {
                unchecked {
                  int256 result = x >> 64;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Convert signed 64.64 fixed point number into signed 128.128 fixed point
               * number.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 128.128 fixed point number
               */
              function to128x128 (int128 x) internal pure returns (int256) {
                unchecked {
                  return int256 (x) << 64;
                }
              }
              /**
               * Calculate x + y.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function add (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  int256 result = int256(x) + y;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate x - y.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function sub (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  int256 result = int256(x) - y;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate x * y rounding down.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function mul (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  int256 result = int256(x) * y >> 64;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
               * number and y is signed 256-bit integer number.  Revert on overflow.
               *
               * @param x signed 64.64 fixed point number
               * @param y signed 256-bit integer number
               * @return signed 256-bit integer number
               */
              function muli (int128 x, int256 y) internal pure returns (int256) {
                unchecked {
                  if (x == MIN_64x64) {
                    require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
                      y <= 0x1000000000000000000000000000000000000000000000000);
                    return -y << 63;
                  } else {
                    bool negativeResult = false;
                    if (x < 0) {
                      x = -x;
                      negativeResult = true;
                    }
                    if (y < 0) {
                      y = -y; // We rely on overflow behavior here
                      negativeResult = !negativeResult;
                    }
                    uint256 absoluteResult = mulu (x, uint256 (y));
                    if (negativeResult) {
                      require (absoluteResult <=
                        0x8000000000000000000000000000000000000000000000000000000000000000);
                      return -int256 (absoluteResult); // We rely on overflow behavior here
                    } else {
                      require (absoluteResult <=
                        0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                      return int256 (absoluteResult);
                    }
                  }
                }
              }
              /**
               * Calculate x * y rounding down, where x is signed 64.64 fixed point number
               * and y is unsigned 256-bit integer number.  Revert on overflow.
               *
               * @param x signed 64.64 fixed point number
               * @param y unsigned 256-bit integer number
               * @return unsigned 256-bit integer number
               */
              function mulu (int128 x, uint256 y) internal pure returns (uint256) {
                unchecked {
                  if (y == 0) return 0;
                  require (x >= 0);
                  uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
                  uint256 hi = uint256 (int256 (x)) * (y >> 128);
                  require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                  hi <<= 64;
                  require (hi <=
                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
                  return hi + lo;
                }
              }
              /**
               * Calculate x / y rounding towards zero.  Revert on overflow or when y is
               * zero.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function div (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  require (y != 0);
                  int256 result = (int256 (x) << 64) / y;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate x / y rounding towards zero, where x and y are signed 256-bit
               * integer numbers.  Revert on overflow or when y is zero.
               *
               * @param x signed 256-bit integer number
               * @param y signed 256-bit integer number
               * @return signed 64.64-bit fixed point number
               */
              function divi (int256 x, int256 y) internal pure returns (int128) {
                unchecked {
                  require (y != 0);
                  bool negativeResult = false;
                  if (x < 0) {
                    x = -x; // We rely on overflow behavior here
                    negativeResult = true;
                  }
                  if (y < 0) {
                    y = -y; // We rely on overflow behavior here
                    negativeResult = !negativeResult;
                  }
                  uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
                  if (negativeResult) {
                    require (absoluteResult <= 0x80000000000000000000000000000000);
                    return -int128 (absoluteResult); // We rely on overflow behavior here
                  } else {
                    require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    return int128 (absoluteResult); // We rely on overflow behavior here
                  }
                }
              }
              /**
               * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
               * integer numbers.  Revert on overflow or when y is zero.
               *
               * @param x unsigned 256-bit integer number
               * @param y unsigned 256-bit integer number
               * @return signed 64.64-bit fixed point number
               */
              function divu (uint256 x, uint256 y) internal pure returns (int128) {
                unchecked {
                  require (y != 0);
                  uint128 result = divuu (x, y);
                  require (result <= uint128 (MAX_64x64));
                  return int128 (result);
                }
              }
              /**
               * Calculate -x.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function neg (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x != MIN_64x64);
                  return -x;
                }
              }
              /**
               * Calculate |x|.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function abs (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x != MIN_64x64);
                  return x < 0 ? -x : x;
                }
              }
              /**
               * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
               * zero.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function inv (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x != 0);
                  int256 result = int256 (0x100000000000000000000000000000000) / x;
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function avg (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  return int128 ((int256 (x) + int256 (y)) >> 1);
                }
              }
              /**
               * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
               * Revert on overflow or in case x * y is negative.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function gavg (int128 x, int128 y) internal pure returns (int128) {
                unchecked {
                  int256 m = int256 (x) * int256 (y);
                  require (m >= 0);
                  require (m <
                      0x4000000000000000000000000000000000000000000000000000000000000000);
                  return int128 (sqrtu (uint256 (m)));
                }
              }
              /**
               * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
               * and y is unsigned 256-bit integer number.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @param y uint256 value
               * @return signed 64.64-bit fixed point number
               */
              function pow (int128 x, uint256 y) internal pure returns (int128) {
                unchecked {
                  bool negative = x < 0 && y & 1 == 1;
                  uint256 absX = uint128 (x < 0 ? -x : x);
                  uint256 absResult;
                  absResult = 0x100000000000000000000000000000000;
                  if (absX <= 0x10000000000000000) {
                    absX <<= 63;
                    while (y != 0) {
                      if (y & 0x1 != 0) {
                        absResult = absResult * absX >> 127;
                      }
                      absX = absX * absX >> 127;
                      if (y & 0x2 != 0) {
                        absResult = absResult * absX >> 127;
                      }
                      absX = absX * absX >> 127;
                      if (y & 0x4 != 0) {
                        absResult = absResult * absX >> 127;
                      }
                      absX = absX * absX >> 127;
                      if (y & 0x8 != 0) {
                        absResult = absResult * absX >> 127;
                      }
                      absX = absX * absX >> 127;
                      y >>= 4;
                    }
                    absResult >>= 64;
                  } else {
                    uint256 absXShift = 63;
                    if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
                    if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
                    if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
                    if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
                    if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
                    if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }
                    uint256 resultShift = 0;
                    while (y != 0) {
                      require (absXShift < 64);
                      if (y & 0x1 != 0) {
                        absResult = absResult * absX >> 127;
                        resultShift += absXShift;
                        if (absResult > 0x100000000000000000000000000000000) {
                          absResult >>= 1;
                          resultShift += 1;
                        }
                      }
                      absX = absX * absX >> 127;
                      absXShift <<= 1;
                      if (absX >= 0x100000000000000000000000000000000) {
                          absX >>= 1;
                          absXShift += 1;
                      }
                      y >>= 1;
                    }
                    require (resultShift < 64);
                    absResult >>= 64 - resultShift;
                  }
                  int256 result = negative ? -int256 (absResult) : int256 (absResult);
                  require (result >= MIN_64x64 && result <= MAX_64x64);
                  return int128 (result);
                }
              }
              /**
               * Calculate sqrt (x) rounding down.  Revert if x < 0.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function sqrt (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x >= 0);
                  return int128 (sqrtu (uint256 (int256 (x)) << 64));
                }
              }
              /**
               * Calculate binary logarithm of x.  Revert if x <= 0.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function log_2 (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x > 0);
                  int256 msb = 0;
                  int256 xc = x;
                  if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
                  if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
                  if (xc >= 0x10000) { xc >>= 16; msb += 16; }
                  if (xc >= 0x100) { xc >>= 8; msb += 8; }
                  if (xc >= 0x10) { xc >>= 4; msb += 4; }
                  if (xc >= 0x4) { xc >>= 2; msb += 2; }
                  if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
                  int256 result = msb - 64 << 64;
                  uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
                  for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
                    ux *= ux;
                    uint256 b = ux >> 255;
                    ux >>= 127 + b;
                    result += bit * int256 (b);
                  }
                  return int128 (result);
                }
              }
              /**
               * Calculate natural logarithm of x.  Revert if x <= 0.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function ln (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x > 0);
                  return int128 (int256 (
                      uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
                }
              }
              /**
               * Calculate binary exponent of x.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function exp_2 (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x < 0x400000000000000000); // Overflow
                  if (x < -0x400000000000000000) return 0; // Underflow
                  uint256 result = 0x80000000000000000000000000000000;
                  if (x & 0x8000000000000000 > 0)
                    result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
                  if (x & 0x4000000000000000 > 0)
                    result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
                  if (x & 0x2000000000000000 > 0)
                    result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
                  if (x & 0x1000000000000000 > 0)
                    result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
                  if (x & 0x800000000000000 > 0)
                    result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
                  if (x & 0x400000000000000 > 0)
                    result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
                  if (x & 0x200000000000000 > 0)
                    result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
                  if (x & 0x100000000000000 > 0)
                    result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
                  if (x & 0x80000000000000 > 0)
                    result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
                  if (x & 0x40000000000000 > 0)
                    result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
                  if (x & 0x20000000000000 > 0)
                    result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
                  if (x & 0x10000000000000 > 0)
                    result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
                  if (x & 0x8000000000000 > 0)
                    result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
                  if (x & 0x4000000000000 > 0)
                    result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
                  if (x & 0x2000000000000 > 0)
                    result = result * 0x1000162E525EE054754457D5995292026 >> 128;
                  if (x & 0x1000000000000 > 0)
                    result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
                  if (x & 0x800000000000 > 0)
                    result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
                  if (x & 0x400000000000 > 0)
                    result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
                  if (x & 0x200000000000 > 0)
                    result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
                  if (x & 0x100000000000 > 0)
                    result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
                  if (x & 0x80000000000 > 0)
                    result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
                  if (x & 0x40000000000 > 0)
                    result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
                  if (x & 0x20000000000 > 0)
                    result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
                  if (x & 0x10000000000 > 0)
                    result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
                  if (x & 0x8000000000 > 0)
                    result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
                  if (x & 0x4000000000 > 0)
                    result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
                  if (x & 0x2000000000 > 0)
                    result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
                  if (x & 0x1000000000 > 0)
                    result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
                  if (x & 0x800000000 > 0)
                    result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
                  if (x & 0x400000000 > 0)
                    result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
                  if (x & 0x200000000 > 0)
                    result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
                  if (x & 0x100000000 > 0)
                    result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
                  if (x & 0x80000000 > 0)
                    result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
                  if (x & 0x40000000 > 0)
                    result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
                  if (x & 0x20000000 > 0)
                    result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
                  if (x & 0x10000000 > 0)
                    result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
                  if (x & 0x8000000 > 0)
                    result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
                  if (x & 0x4000000 > 0)
                    result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
                  if (x & 0x2000000 > 0)
                    result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
                  if (x & 0x1000000 > 0)
                    result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
                  if (x & 0x800000 > 0)
                    result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
                  if (x & 0x400000 > 0)
                    result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
                  if (x & 0x200000 > 0)
                    result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
                  if (x & 0x100000 > 0)
                    result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
                  if (x & 0x80000 > 0)
                    result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
                  if (x & 0x40000 > 0)
                    result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
                  if (x & 0x20000 > 0)
                    result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
                  if (x & 0x10000 > 0)
                    result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
                  if (x & 0x8000 > 0)
                    result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
                  if (x & 0x4000 > 0)
                    result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
                  if (x & 0x2000 > 0)
                    result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
                  if (x & 0x1000 > 0)
                    result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
                  if (x & 0x800 > 0)
                    result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
                  if (x & 0x400 > 0)
                    result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
                  if (x & 0x200 > 0)
                    result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
                  if (x & 0x100 > 0)
                    result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
                  if (x & 0x80 > 0)
                    result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
                  if (x & 0x40 > 0)
                    result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
                  if (x & 0x20 > 0)
                    result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
                  if (x & 0x10 > 0)
                    result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
                  if (x & 0x8 > 0)
                    result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
                  if (x & 0x4 > 0)
                    result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
                  if (x & 0x2 > 0)
                    result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
                  if (x & 0x1 > 0)
                    result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;
                  result >>= uint256 (int256 (63 - (x >> 64)));
                  require (result <= uint256 (int256 (MAX_64x64)));
                  return int128 (int256 (result));
                }
              }
              /**
               * Calculate natural exponent of x.  Revert on overflow.
               *
               * @param x signed 64.64-bit fixed point number
               * @return signed 64.64-bit fixed point number
               */
              function exp (int128 x) internal pure returns (int128) {
                unchecked {
                  require (x < 0x400000000000000000); // Overflow
                  if (x < -0x400000000000000000) return 0; // Underflow
                  return exp_2 (
                      int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
                }
              }
              /**
               * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
               * integer numbers.  Revert on overflow or when y is zero.
               *
               * @param x unsigned 256-bit integer number
               * @param y unsigned 256-bit integer number
               * @return unsigned 64.64-bit fixed point number
               */
              function divuu (uint256 x, uint256 y) private pure returns (uint128) {
                unchecked {
                  require (y != 0);
                  uint256 result;
                  if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                    result = (x << 64) / y;
                  else {
                    uint256 msb = 192;
                    uint256 xc = x >> 192;
                    if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
                    if (xc >= 0x10000) { xc >>= 16; msb += 16; }
                    if (xc >= 0x100) { xc >>= 8; msb += 8; }
                    if (xc >= 0x10) { xc >>= 4; msb += 4; }
                    if (xc >= 0x4) { xc >>= 2; msb += 2; }
                    if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
                    result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
                    require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    uint256 hi = result * (y >> 128);
                    uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    uint256 xh = x >> 192;
                    uint256 xl = x << 64;
                    if (xl < lo) xh -= 1;
                    xl -= lo; // We rely on overflow behavior here
                    lo = hi << 128;
                    if (xl < lo) xh -= 1;
                    xl -= lo; // We rely on overflow behavior here
                    assert (xh == hi >> 128);
                    result += xl / y;
                  }
                  require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                  return uint128 (result);
                }
              }
              /**
               * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
               * number.
               *
               * @param x unsigned 256-bit integer number
               * @return unsigned 128-bit integer number
               */
              function sqrtu (uint256 x) private pure returns (uint128) {
                unchecked {
                  if (x == 0) return 0;
                  else {
                    uint256 xx = x;
                    uint256 r = 1;
                    if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
                    if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
                    if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
                    if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
                    if (xx >= 0x100) { xx >>= 8; r <<= 4; }
                    if (xx >= 0x10) { xx >>= 4; r <<= 2; }
                    if (xx >= 0x8) { r <<= 1; }
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1;
                    r = (r + x / r) >> 1; // Seven iterations should be enough
                    uint256 r1 = x / r;
                    return uint128 (r < r1 ? r : r1);
                  }
                }
              }
            }