Transaction Hash:
Block:
20134882 at Jun-20-2024 06:59:59 PM +UTC
Transaction Fee:
0.0007144314655802 ETH
$1.81
Gas Used:
113,650 Gas / 6.286242548 Gwei
Emitted Events:
66 |
SafeToken.Approval( owner=[Receiver] Proxy, spender=0xC92E8bdf...16BFE0110, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
|
67 |
GPv2Settlement.PreSignature( owner=[Receiver] Proxy, orderUid=0xCC8678C91471E4658F9DD5FEFD82ABB41A69C3D1E240B6040609E0AC23356BDC52B87A21A4AAA1E1FB2A1D6709FF8192137B0DFA66748230, signed=True )
|
68 |
Proxy.0x442e715f626346e8c54381002da614f62bee8d27386535b2521ec8540898556e( 0x442e715f626346e8c54381002da614f62bee8d27386535b2521ec8540898556e, 4dea4a1c97e4d485c8b67e0daeb4251c7d5a1b5c842e1e13ddfc1093f7ddf47d, 0000000000000000000000000000000000000000000000000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x52B87a21...2137b0dfA | |||||
0x5aFE3855...5e1c1eEEe | |||||
0x9008D19f...10560ab41 | (CoW Protocol: GPv2Settlement) | ||||
0xC4e1f883...9bff47DB2 |
0.077677423968466659 Eth
Nonce: 379
|
0.076962992502886459 Eth
Nonce: 380
| 0.0007144314655802 | ||
0xdf99A083...17Dc6A555
Miner
| (Flashbots: Builder 2) | 2.292357338027008709 Eth | 2.292470988027008709 Eth | 0.00011365 |
Execution Trace
Proxy.6a761202( )
GnosisSafe.execTransaction( to=0x40A2aCCbd92BCA938b02010E17A5b8929b49130D, value=0, data=0x8D80FF0A00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000192005AFE3855358E112B5647B952709E6165E1C1EEEE00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044095EA7B3000000000000000000000000C92E8BDF79F0507F65A392B0AB4667716BFE0110FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF009008D19F58AABD9ED0D60971565AA8510560AB41000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000A4EC6CB13F000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000038CC8678C91471E4658F9DD5FEFD82ABB41A69C3D1E240B6040609E0AC23356BDC52B87A21A4AAA1E1FB2A1D6709FF8192137B0DFA6674823000000000000000000000000000000000000000000000, operation=1, safeTxGas=0, baseGas=0, gasPrice=0, gasToken=0x0000000000000000000000000000000000000000, refundReceiver=0x0000000000000000000000000000000000000000, signatures=0xF775A5F74450640F10BCF7B2284956FD5092B1E246FF6AD6970CB7228B9F27467B41F56BB3045EB9CCD2704CD6027498656720E05763D12FB69AC9E74FF7B5B71B ) => ( success=True )
-
Null: 0x000...001.4dea4a1c( )
MultiSendCallOnly.multiSend( transactions=0x005AFE3855358E112B5647B952709E6165E1C1EEEE00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044095EA7B3000000000000000000000000C92E8BDF79F0507F65A392B0AB4667716BFE0110FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF009008D19F58AABD9ED0D60971565AA8510560AB41000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000A4EC6CB13F000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000038CC8678C91471E4658F9DD5FEFD82ABB41A69C3D1E240B6040609E0AC23356BDC52B87A21A4AAA1E1FB2A1D6709FF8192137B0DFA667482300000000000000000 )
-
SafeToken.approve( spender=0xC92E8bdf79f0507f65a392b0ab4667716BFE0110, amount=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
-
GPv2Settlement.setPreSignature( orderUid=0xCC8678C91471E4658F9DD5FEFD82ABB41A69C3D1E240B6040609E0AC23356BDC52B87A21A4AAA1E1FB2A1D6709FF8192137B0DFA66748230, signed=True )
-
-
File 1 of 5: Proxy
File 2 of 5: SafeToken
File 3 of 5: GPv2Settlement
File 4 of 5: GnosisSafe
File 5 of 5: MultiSendCallOnly
pragma solidity ^0.5.3; /// @title Proxy - Generic proxy contract allows to execute all transactions applying the code of a master contract. /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> contract Proxy { // masterCopy always needs to be first declared variable, to ensure that it is at the same location in the contracts to which calls are delegated. // To reduce deployment costs this variable is internal and needs to be retrieved via `getStorageAt` address internal masterCopy; /// @dev Constructor function sets address of master copy contract. /// @param _masterCopy Master copy address. constructor(address _masterCopy) public { require(_masterCopy != address(0), "Invalid master copy address provided"); masterCopy = _masterCopy; } /// @dev Fallback function forwards all transactions and returns all received return data. function () external payable { // solium-disable-next-line security/no-inline-assembly assembly { let masterCopy := and(sload(0), 0xffffffffffffffffffffffffffffffffffffffff) // 0xa619486e == keccak("masterCopy()"). The value is right padded to 32-bytes with 0s if eq(calldataload(0), 0xa619486e00000000000000000000000000000000000000000000000000000000) { mstore(0, masterCopy) return(0, 0x20) } calldatacopy(0, 0, calldatasize()) let success := delegatecall(gas, masterCopy, 0, calldatasize(), 0, 0) returndatacopy(0, 0, returndatasize()) if eq(success, 0) { revert(0, returndatasize()) } return(0, returndatasize()) } } }
File 2 of 5: SafeToken
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.8.0 <0.9.0; import "./vendor/@openzeppelin/contracts/access/Ownable.sol"; import "./vendor/@openzeppelin/contracts/security/Pausable.sol"; import "./vendor/@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "./TokenRescuer.sol"; /// @title Safe Token contract /// @author Richard Meissner - @rmeissner contract SafeToken is ERC20, Pausable, Ownable, TokenRescuer { /// @dev Will mint 1 billion tokens to the owner and pause the contract constructor(address owner) ERC20("Safe Token", "SAFE") { // Transfer ownership immediately _transferOwnership(owner); // "ether" is used here to get 18 decimals _mint(owner, 1_000_000_000 ether); // Contract is paused by default // This has to be done after _mint, else minting will fail _pause(); } /// @notice Unpauses all token transfers. /// @dev See {Pausable-_unpause} /// Requirements: caller must be the owner function unpause() public virtual onlyOwner { require(paused(), "SafeToken: token is not paused"); _unpause(); } /// @dev See {ERC20-_beforeTokenTransfer} /// Requirements: the contract must not be paused OR transfer must be initiated by owner /// @param from The account that is sending the tokens /// @param to The account that should receive the tokens /// @param amount Amount of tokens that should be transferred function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual override { super._beforeTokenTransfer(from, to, amount); require(to != address(this), "SafeToken: cannot transfer tokens to token contract"); // Token transfers are only possible if the contract is not paused // OR if triggered by the owner of the contract require(!paused() || owner() == _msgSender(), "SafeToken: token transfer while paused"); } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.8.0 <0.9.0; import "./vendor/@openzeppelin/contracts/access/Ownable.sol"; import "./vendor/@openzeppelin/contracts/token/ERC20/IERC20.sol"; /// @title Token Rescuer contract /// @author Richard Meissner - @rmeissner contract TokenRescuer is Ownable { /// @param token Token that should be rescued /// @param beneficiary The account that should receive the tokens /// @param amount Amount of tokens that should be rescued function _beforeTokenRescue( IERC20 token, address beneficiary, uint256 amount ) internal virtual {} /// @notice Transfer all tokens with address `token` owned by this contract to `beneficiary`. /// @dev This can only be called by the owner of the contract /// @param token The token that should be rescued /// @param beneficiary The account that should receive the tokens. function rescueToken(IERC20 token, address beneficiary) external onlyOwner { uint256 balanceToRescue = token.balanceOf(address(this)); require(balanceToRescue > 0, "TokenRescuer: No tokens to rescue"); _beforeTokenRescue(token, beneficiary, balanceToRescue); require(token.transfer(beneficiary, balanceToRescue), "TokenRescuer: Could not rescue token"); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, _allowances[owner][spender] + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = _allowances[owner][spender]; require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `sender` to `recipient`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; } _balances[to] += amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Spend `amount` form the allowance of `owner` toward `spender`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
File 3 of 5: GPv2Settlement
// SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "./GPv2VaultRelayer.sol"; import "./interfaces/GPv2Authentication.sol"; import "./interfaces/IERC20.sol"; import "./interfaces/IVault.sol"; import "./libraries/GPv2Interaction.sol"; import "./libraries/GPv2Order.sol"; import "./libraries/GPv2Trade.sol"; import "./libraries/GPv2Transfer.sol"; import "./libraries/SafeCast.sol"; import "./libraries/SafeMath.sol"; import "./mixins/GPv2Signing.sol"; import "./mixins/ReentrancyGuard.sol"; import "./mixins/StorageAccessible.sol"; /// @title Gnosis Protocol v2 Settlement Contract /// @author Gnosis Developers contract GPv2Settlement is GPv2Signing, ReentrancyGuard, StorageAccessible { using GPv2Order for bytes; using GPv2Transfer for IVault; using SafeCast for int256; using SafeCast for uint256; using SafeMath for uint256; /// @dev The authenticator is used to determine who can call the settle function. /// That is, only authorised solvers have the ability to invoke settlements. /// Any valid authenticator implements an isSolver method called by the onlySolver /// modifier below. GPv2Authentication public immutable authenticator; /// @dev The Balancer Vault the protocol uses for managing user funds. IVault public immutable vault; /// @dev The Balancer Vault relayer which can interact on behalf of users. /// This contract is created during deployment GPv2VaultRelayer public immutable vaultRelayer; /// @dev Map each user order by UID to the amount that has been filled so /// far. If this amount is larger than or equal to the amount traded in the /// order (amount sold for sell orders, amount bought for buy orders) then /// the order cannot be traded anymore. If the order is fill or kill, then /// this value is only used to determine whether the order has already been /// executed. mapping(bytes => uint256) public filledAmount; /// @dev Event emitted for each executed trade. event Trade( address indexed owner, IERC20 sellToken, IERC20 buyToken, uint256 sellAmount, uint256 buyAmount, uint256 feeAmount, bytes orderUid ); /// @dev Event emitted for each executed interaction. /// /// For gas effeciency, only the interaction calldata selector (first 4 /// bytes) is included in the event. For interactions without calldata or /// whose calldata is shorter than 4 bytes, the selector will be `0`. event Interaction(address indexed target, uint256 value, bytes4 selector); /// @dev Event emitted when a settlement complets event Settlement(address indexed solver); /// @dev Event emitted when an order is invalidated. event OrderInvalidated(address indexed owner, bytes orderUid); constructor(GPv2Authentication authenticator_, IVault vault_) { authenticator = authenticator_; vault = vault_; vaultRelayer = new GPv2VaultRelayer(vault_); } // solhint-disable-next-line no-empty-blocks receive() external payable { // NOTE: Include an empty receive function so that the settlement // contract can receive Ether from contract interactions. } /// @dev This modifier is called by settle function to block any non-listed /// senders from settling batches. modifier onlySolver { require(authenticator.isSolver(msg.sender), "GPv2: not a solver"); _; } /// @dev Modifier to ensure that an external function is only callable as a /// settlement interaction. modifier onlyInteraction { require(address(this) == msg.sender, "GPv2: not an interaction"); _; } /// @dev Settle the specified orders at a clearing price. Note that it is /// the responsibility of the caller to ensure that all GPv2 invariants are /// upheld for the input settlement, otherwise this call will revert. /// Namely: /// - All orders are valid and signed /// - Accounts have sufficient balance and approval. /// - Settlement contract has sufficient balance to execute trades. Note /// this implies that the accumulated fees held in the contract can also /// be used for settlement. This is OK since: /// - Solvers need to be authorized /// - Misbehaving solvers will be slashed for abusing accumulated fees for /// settlement /// - Critically, user orders are entirely protected /// /// @param tokens An array of ERC20 tokens to be traded in the settlement. /// Trades encode tokens as indices into this array. /// @param clearingPrices An array of clearing prices where the `i`-th price /// is for the `i`-th token in the [`tokens`] array. /// @param trades Trades for signed orders. /// @param interactions Smart contract interactions split into three /// separate lists to be run before the settlement, during the settlement /// and after the settlement respectively. function settle( IERC20[] calldata tokens, uint256[] calldata clearingPrices, GPv2Trade.Data[] calldata trades, GPv2Interaction.Data[][3] calldata interactions ) external nonReentrant onlySolver { executeInteractions(interactions[0]); ( GPv2Transfer.Data[] memory inTransfers, GPv2Transfer.Data[] memory outTransfers ) = computeTradeExecutions(tokens, clearingPrices, trades); vaultRelayer.transferFromAccounts(inTransfers); executeInteractions(interactions[1]); vault.transferToAccounts(outTransfers); executeInteractions(interactions[2]); emit Settlement(msg.sender); } /// @dev Settle an order directly against Balancer V2 pools. /// /// @param swaps The Balancer V2 swap steps to use for trading. /// @param tokens An array of ERC20 tokens to be traded in the settlement. /// Swaps and the trade encode tokens as indices into this array. /// @param trade The trade to match directly against Balancer liquidity. The /// order will always be fully executed, so the trade's `executedAmount` /// field is used to represent a swap limit amount. function swap( IVault.BatchSwapStep[] calldata swaps, IERC20[] calldata tokens, GPv2Trade.Data calldata trade ) external nonReentrant onlySolver { RecoveredOrder memory recoveredOrder = allocateRecoveredOrder(); GPv2Order.Data memory order = recoveredOrder.data; recoverOrderFromTrade(recoveredOrder, tokens, trade); IVault.SwapKind kind = order.kind == GPv2Order.KIND_SELL ? IVault.SwapKind.GIVEN_IN : IVault.SwapKind.GIVEN_OUT; IVault.FundManagement memory funds; funds.sender = recoveredOrder.owner; funds.fromInternalBalance = order.sellTokenBalance == GPv2Order.BALANCE_INTERNAL; funds.recipient = payable(recoveredOrder.receiver); funds.toInternalBalance = order.buyTokenBalance == GPv2Order.BALANCE_INTERNAL; int256[] memory limits = new int256[](tokens.length); uint256 limitAmount = trade.executedAmount; // NOTE: Array allocation initializes elements to 0, so we only need to // set the limits we care about. This ensures that the swap will respect // the order's limit price. if (order.kind == GPv2Order.KIND_SELL) { require(limitAmount >= order.buyAmount, "GPv2: limit too low"); limits[trade.sellTokenIndex] = order.sellAmount.toInt256(); limits[trade.buyTokenIndex] = -limitAmount.toInt256(); } else { require(limitAmount <= order.sellAmount, "GPv2: limit too high"); limits[trade.sellTokenIndex] = limitAmount.toInt256(); limits[trade.buyTokenIndex] = -order.buyAmount.toInt256(); } GPv2Transfer.Data memory feeTransfer; feeTransfer.account = recoveredOrder.owner; feeTransfer.token = order.sellToken; feeTransfer.amount = order.feeAmount; feeTransfer.balance = order.sellTokenBalance; int256[] memory tokenDeltas = vaultRelayer.batchSwapWithFee( kind, swaps, tokens, funds, limits, // NOTE: Specify a deadline to ensure that an expire order // cannot be used to trade. order.validTo, feeTransfer ); bytes memory orderUid = recoveredOrder.uid; uint256 executedSellAmount = tokenDeltas[trade.sellTokenIndex].toUint256(); uint256 executedBuyAmount = (-tokenDeltas[trade.buyTokenIndex]).toUint256(); // NOTE: Check that the orders were completely filled and update their // filled amounts to avoid replaying them. The limit price and order // validity have already been verified when executing the swap through // the `limit` and `deadline` parameters. require(filledAmount[orderUid] == 0, "GPv2: order filled"); if (order.kind == GPv2Order.KIND_SELL) { require( executedSellAmount == order.sellAmount, "GPv2: sell amount not respected" ); filledAmount[orderUid] = order.sellAmount; } else { require( executedBuyAmount == order.buyAmount, "GPv2: buy amount not respected" ); filledAmount[orderUid] = order.buyAmount; } emit Trade( recoveredOrder.owner, order.sellToken, order.buyToken, executedSellAmount, executedBuyAmount, order.feeAmount, orderUid ); emit Settlement(msg.sender); } /// @dev Invalidate onchain an order that has been signed offline. /// /// @param orderUid The unique identifier of the order that is to be made /// invalid after calling this function. The user that created the order /// must be the the sender of this message. See [`extractOrderUidParams`] /// for details on orderUid. function invalidateOrder(bytes calldata orderUid) external { (, address owner, ) = orderUid.extractOrderUidParams(); require(owner == msg.sender, "GPv2: caller does not own order"); filledAmount[orderUid] = uint256(-1); emit OrderInvalidated(owner, orderUid); } /// @dev Free storage from the filled amounts of **expired** orders to claim /// a gas refund. This method can only be called as an interaction. /// /// @param orderUids The unique identifiers of the expired order to free /// storage for. function freeFilledAmountStorage(bytes[] calldata orderUids) external onlyInteraction { freeOrderStorage(filledAmount, orderUids); } /// @dev Free storage from the pre signatures of **expired** orders to claim /// a gas refund. This method can only be called as an interaction. /// /// @param orderUids The unique identifiers of the expired order to free /// storage for. function freePreSignatureStorage(bytes[] calldata orderUids) external onlyInteraction { freeOrderStorage(preSignature, orderUids); } /// @dev Process all trades one at a time returning the computed net in and /// out transfers for the trades. /// /// This method reverts if processing of any single trade fails. See /// [`computeTradeExecution`] for more details. /// /// @param tokens An array of ERC20 tokens to be traded in the settlement. /// @param clearingPrices An array of token clearing prices. /// @param trades Trades for signed orders. /// @return inTransfers Array of in transfers of executed sell amounts. /// @return outTransfers Array of out transfers of executed buy amounts. function computeTradeExecutions( IERC20[] calldata tokens, uint256[] calldata clearingPrices, GPv2Trade.Data[] calldata trades ) internal returns ( GPv2Transfer.Data[] memory inTransfers, GPv2Transfer.Data[] memory outTransfers ) { RecoveredOrder memory recoveredOrder = allocateRecoveredOrder(); inTransfers = new GPv2Transfer.Data[](trades.length); outTransfers = new GPv2Transfer.Data[](trades.length); for (uint256 i = 0; i < trades.length; i++) { GPv2Trade.Data calldata trade = trades[i]; recoverOrderFromTrade(recoveredOrder, tokens, trade); computeTradeExecution( recoveredOrder, clearingPrices[trade.sellTokenIndex], clearingPrices[trade.buyTokenIndex], trade.executedAmount, inTransfers[i], outTransfers[i] ); } } /// @dev Compute the in and out transfer amounts for a single trade. /// This function reverts if: /// - The order has expired /// - The order's limit price is not respected /// - The order gets over-filled /// - The fee discount is larger than the executed fee /// /// @param recoveredOrder The recovered order to process. /// @param sellPrice The price of the order's sell token. /// @param buyPrice The price of the order's buy token. /// @param executedAmount The portion of the order to execute. This will be /// ignored for fill-or-kill orders. /// @param inTransfer Memory location for computed executed sell amount /// transfer. /// @param outTransfer Memory location for computed executed buy amount /// transfer. function computeTradeExecution( RecoveredOrder memory recoveredOrder, uint256 sellPrice, uint256 buyPrice, uint256 executedAmount, GPv2Transfer.Data memory inTransfer, GPv2Transfer.Data memory outTransfer ) internal { GPv2Order.Data memory order = recoveredOrder.data; bytes memory orderUid = recoveredOrder.uid; // solhint-disable-next-line not-rely-on-time require(order.validTo >= block.timestamp, "GPv2: order expired"); // NOTE: The following computation is derived from the equation: // ``` // amount_x * price_x = amount_y * price_y // ``` // Intuitively, if a chocolate bar is 0,50€ and a beer is 4€, 1 beer // is roughly worth 8 chocolate bars (`1 * 4 = 8 * 0.5`). From this // equation, we can derive: // - The limit price for selling `x` and buying `y` is respected iff // ``` // limit_x * price_x >= limit_y * price_y // ``` // - The executed amount of token `y` given some amount of `x` and // clearing prices is: // ``` // amount_y = amount_x * price_x / price_y // ``` require( order.sellAmount.mul(sellPrice) >= order.buyAmount.mul(buyPrice), "GPv2: limit price not respected" ); uint256 executedSellAmount; uint256 executedBuyAmount; uint256 executedFeeAmount; uint256 currentFilledAmount; if (order.kind == GPv2Order.KIND_SELL) { if (order.partiallyFillable) { executedSellAmount = executedAmount; executedFeeAmount = order.feeAmount.mul(executedSellAmount).div( order.sellAmount ); } else { executedSellAmount = order.sellAmount; executedFeeAmount = order.feeAmount; } executedBuyAmount = executedSellAmount.mul(sellPrice).ceilDiv( buyPrice ); currentFilledAmount = filledAmount[orderUid].add( executedSellAmount ); require( currentFilledAmount <= order.sellAmount, "GPv2: order filled" ); } else { if (order.partiallyFillable) { executedBuyAmount = executedAmount; executedFeeAmount = order.feeAmount.mul(executedBuyAmount).div( order.buyAmount ); } else { executedBuyAmount = order.buyAmount; executedFeeAmount = order.feeAmount; } executedSellAmount = executedBuyAmount.mul(buyPrice).div(sellPrice); currentFilledAmount = filledAmount[orderUid].add(executedBuyAmount); require( currentFilledAmount <= order.buyAmount, "GPv2: order filled" ); } executedSellAmount = executedSellAmount.add(executedFeeAmount); filledAmount[orderUid] = currentFilledAmount; emit Trade( recoveredOrder.owner, order.sellToken, order.buyToken, executedSellAmount, executedBuyAmount, executedFeeAmount, orderUid ); inTransfer.account = recoveredOrder.owner; inTransfer.token = order.sellToken; inTransfer.amount = executedSellAmount; inTransfer.balance = order.sellTokenBalance; outTransfer.account = recoveredOrder.receiver; outTransfer.token = order.buyToken; outTransfer.amount = executedBuyAmount; outTransfer.balance = order.buyTokenBalance; } /// @dev Execute a list of arbitrary contract calls from this contract. /// @param interactions The list of interactions to execute. function executeInteractions(GPv2Interaction.Data[] calldata interactions) internal { for (uint256 i; i < interactions.length; i++) { GPv2Interaction.Data calldata interaction = interactions[i]; // To prevent possible attack on user funds, we explicitly disable // any interactions with the vault relayer contract. require( interaction.target != address(vaultRelayer), "GPv2: forbidden interaction" ); GPv2Interaction.execute(interaction); emit Interaction( interaction.target, interaction.value, GPv2Interaction.selector(interaction) ); } } /// @dev Claims refund for the specified storage and order UIDs. /// /// This method reverts if any of the orders are still valid. /// /// @param orderUids Order refund data for freeing storage. /// @param orderStorage Order storage mapped on a UID. function freeOrderStorage( mapping(bytes => uint256) storage orderStorage, bytes[] calldata orderUids ) internal { for (uint256 i = 0; i < orderUids.length; i++) { bytes calldata orderUid = orderUids[i]; (, , uint32 validTo) = orderUid.extractOrderUidParams(); // solhint-disable-next-line not-rely-on-time require(validTo < block.timestamp, "GPv2: order still valid"); orderStorage[orderUid] = 0; } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "./interfaces/IERC20.sol"; import "./interfaces/IVault.sol"; import "./libraries/GPv2Transfer.sol"; /// @title Gnosis Protocol v2 Vault Relayer Contract /// @author Gnosis Developers contract GPv2VaultRelayer { using GPv2Transfer for IVault; /// @dev The creator of the contract which has special permissions. This /// value is set at creation time and cannot change. address private immutable creator; /// @dev The vault this relayer is for. IVault private immutable vault; constructor(IVault vault_) { creator = msg.sender; vault = vault_; } /// @dev Modifier that ensures that a function can only be called by the /// creator of this contract. modifier onlyCreator { require(msg.sender == creator, "GPv2: not creator"); _; } /// @dev Transfers all sell amounts for the executed trades from their /// owners to the caller. /// /// This function reverts if: /// - The caller is not the creator of the vault relayer /// - Any ERC20 transfer fails /// /// @param transfers The transfers to execute. function transferFromAccounts(GPv2Transfer.Data[] calldata transfers) external onlyCreator { vault.transferFromAccounts(transfers, msg.sender); } /// @dev Performs a Balancer batched swap on behalf of a user and sends a /// fee to the caller. /// /// This function reverts if: /// - The caller is not the creator of the vault relayer /// - The swap fails /// - The fee transfer fails /// /// @param kind The Balancer swap kind, this can either be `GIVEN_IN` for /// sell orders or `GIVEN_OUT` for buy orders. /// @param swaps The swaps to perform. /// @param tokens The tokens for the swaps. Swaps encode to and from tokens /// as indices into this array. /// @param funds The fund management settings, specifying the user the swap /// is being performed for as well as the recipient of the proceeds. /// @param limits Swap limits for encoding limit prices. /// @param deadline The deadline for the swap. /// @param feeTransfer The transfer data for the caller fee. /// @return tokenDeltas The executed swap amounts. function batchSwapWithFee( IVault.SwapKind kind, IVault.BatchSwapStep[] calldata swaps, IERC20[] memory tokens, IVault.FundManagement memory funds, int256[] memory limits, uint256 deadline, GPv2Transfer.Data calldata feeTransfer ) external onlyCreator returns (int256[] memory tokenDeltas) { tokenDeltas = vault.batchSwap( kind, swaps, tokens, funds, limits, deadline ); vault.fastTransferFromAccount(feeTransfer, msg.sender); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; /// @title Gnosis Protocol v2 Authentication Interface /// @author Gnosis Developers interface GPv2Authentication { /// @dev determines whether the provided address is an authenticated solver. /// @param prospectiveSolver the address of prospective solver. /// @return true when prospectiveSolver is an authenticated solver, otherwise false. function isSolver(address prospectiveSolver) external view returns (bool); } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; library GPv2EIP1271 { /// @dev Value returned by a call to `isValidSignature` if the signature /// was verified successfully. The value is defined in EIP-1271 as: /// bytes4(keccak256("isValidSignature(bytes32,bytes)")) bytes4 internal constant MAGICVALUE = 0x1626ba7e; } /// @title EIP1271 Interface /// @dev Standardized interface for an implementation of smart contract /// signatures as described in EIP-1271. The code that follows is identical to /// the code in the standard with the exception of formatting and syntax /// changes to adapt the code to our Solidity version. interface EIP1271Verifier { /// @dev Should return whether the signature provided is valid for the /// provided data /// @param _hash Hash of the data to be signed /// @param _signature Signature byte array associated with _data /// /// MUST return the bytes4 magic value 0x1626ba7e when function passes. /// MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for /// solc > 0.5) /// MUST allow external calls /// function isValidSignature(bytes32 _hash, bytes memory _signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Added `name`, `symbol` and `decimals` function declarations // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/token/ERC20/IERC20.sol> pragma solidity ^0.7.6; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the number of decimals the token uses. */ function decimals() external view returns (uint8); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval( address indexed owner, address indexed spender, uint256 value ); } // SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.6; pragma abicoder v2; import "./IERC20.sol"; /** * @dev Minimal interface for the Vault core contract only containing methods * used by Gnosis Protocol V2. Original source: * <https://github.com/balancer-labs/balancer-core-v2/blob/v1.0.0/contracts/vault/interfaces/IVault.sol> */ interface IVault { // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IERC20 asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind {GIVEN_IN, GIVEN_OUT} /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IERC20 assetIn; IERC20 assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IERC20[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; /// @title Gnosis Protocol v2 Interaction Library /// @author Gnosis Developers library GPv2Interaction { /// @dev Interaction data for performing arbitrary contract interactions. /// Submitted to [`GPv2Settlement.settle`] for code execution. struct Data { address target; uint256 value; bytes callData; } /// @dev Execute an arbitrary contract interaction. /// /// @param interaction Interaction data. function execute(Data calldata interaction) internal { address target = interaction.target; uint256 value = interaction.value; bytes calldata callData = interaction.callData; // NOTE: Use assembly to call the interaction instead of a low level // call for two reasons: // - We don't want to copy the return data, since we discard it for // interactions. // - Solidity will under certain conditions generate code to copy input // calldata twice to memory (the second being a "memcopy loop"). // <https://github.com/gnosis/gp-v2-contracts/pull/417#issuecomment-775091258> // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) calldatacopy(freeMemoryPointer, callData.offset, callData.length) if iszero( call( gas(), target, value, freeMemoryPointer, callData.length, 0, 0 ) ) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } } /// @dev Extracts the Solidity ABI selector for the specified interaction. /// /// @param interaction Interaction data. /// @return result The 4 byte function selector of the call encoded in /// this interaction. function selector(Data calldata interaction) internal pure returns (bytes4 result) { bytes calldata callData = interaction.callData; if (callData.length >= 4) { // NOTE: Read the first word of the interaction's calldata. The // value does not need to be shifted since `bytesN` values are left // aligned, and the value does not need to be masked since masking // occurs when the value is accessed and not stored: // <https://docs.soliditylang.org/en/v0.7.6/abi-spec.html#encoding-of-indexed-event-parameters> // <https://docs.soliditylang.org/en/v0.7.6/assembly.html#access-to-external-variables-functions-and-libraries> // solhint-disable-next-line no-inline-assembly assembly { result := calldataload(callData.offset) } } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/IERC20.sol"; /// @title Gnosis Protocol v2 Order Library /// @author Gnosis Developers library GPv2Order { /// @dev The complete data for a Gnosis Protocol order. This struct contains /// all order parameters that are signed for submitting to GP. struct Data { IERC20 sellToken; IERC20 buyToken; address receiver; uint256 sellAmount; uint256 buyAmount; uint32 validTo; bytes32 appData; uint256 feeAmount; bytes32 kind; bool partiallyFillable; bytes32 sellTokenBalance; bytes32 buyTokenBalance; } /// @dev The order EIP-712 type hash for the [`GPv2Order.Data`] struct. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256( /// "Order(" + /// "address sellToken," + /// "address buyToken," + /// "address receiver," + /// "uint256 sellAmount," + /// "uint256 buyAmount," + /// "uint32 validTo," + /// "bytes32 appData," + /// "uint256 feeAmount," + /// "string kind," + /// "bool partiallyFillable" + /// "string sellTokenBalance" + /// "string buyTokenBalance" + /// ")" /// ) /// ``` bytes32 internal constant TYPE_HASH = hex"d5a25ba2e97094ad7d83dc28a6572da797d6b3e7fc6663bd93efb789fc17e489"; /// @dev The marker value for a sell order for computing the order struct /// hash. This allows the EIP-712 compatible wallets to display a /// descriptive string for the order kind (instead of 0 or 1). /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("sell") /// ``` bytes32 internal constant KIND_SELL = hex"f3b277728b3fee749481eb3e0b3b48980dbbab78658fc419025cb16eee346775"; /// @dev The OrderKind marker value for a buy order for computing the order /// struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("buy") /// ``` bytes32 internal constant KIND_BUY = hex"6ed88e868af0a1983e3886d5f3e95a2fafbd6c3450bc229e27342283dc429ccc"; /// @dev The TokenBalance marker value for using direct ERC20 balances for /// computing the order struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("erc20") /// ``` bytes32 internal constant BALANCE_ERC20 = hex"5a28e9363bb942b639270062aa6bb295f434bcdfc42c97267bf003f272060dc9"; /// @dev The TokenBalance marker value for using Balancer Vault external /// balances (in order to re-use Vault ERC20 approvals) for computing the /// order struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("external") /// ``` bytes32 internal constant BALANCE_EXTERNAL = hex"abee3b73373acd583a130924aad6dc38cfdc44ba0555ba94ce2ff63980ea0632"; /// @dev The TokenBalance marker value for using Balancer Vault internal /// balances for computing the order struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("internal") /// ``` bytes32 internal constant BALANCE_INTERNAL = hex"4ac99ace14ee0a5ef932dc609df0943ab7ac16b7583634612f8dc35a4289a6ce"; /// @dev Marker address used to indicate that the receiver of the trade /// proceeds should the owner of the order. /// /// This is chosen to be `address(0)` for gas efficiency as it is expected /// to be the most common case. address internal constant RECEIVER_SAME_AS_OWNER = address(0); /// @dev The byte length of an order unique identifier. uint256 internal constant UID_LENGTH = 56; /// @dev Returns the actual receiver for an order. This function checks /// whether or not the [`receiver`] field uses the marker value to indicate /// it is the same as the order owner. /// /// @return receiver The actual receiver of trade proceeds. function actualReceiver(Data memory order, address owner) internal pure returns (address receiver) { if (order.receiver == RECEIVER_SAME_AS_OWNER) { receiver = owner; } else { receiver = order.receiver; } } /// @dev Return the EIP-712 signing hash for the specified order. /// /// @param order The order to compute the EIP-712 signing hash for. /// @param domainSeparator The EIP-712 domain separator to use. /// @return orderDigest The 32 byte EIP-712 struct hash. function hash(Data memory order, bytes32 domainSeparator) internal pure returns (bytes32 orderDigest) { bytes32 structHash; // NOTE: Compute the EIP-712 order struct hash in place. As suggested // in the EIP proposal, noting that the order struct has 10 fields, and // including the type hash `(12 + 1) * 32 = 416` bytes to hash. // <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#rationale-for-encodedata> // solhint-disable-next-line no-inline-assembly assembly { let dataStart := sub(order, 32) let temp := mload(dataStart) mstore(dataStart, TYPE_HASH) structHash := keccak256(dataStart, 416) mstore(dataStart, temp) } // NOTE: Now that we have the struct hash, compute the EIP-712 signing // hash using scratch memory past the free memory pointer. The signing // hash is computed from `"\\x19\\x01" || domainSeparator || structHash`. // <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory> // <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#specification> // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) mstore(freeMemoryPointer, "\\x19\\x01") mstore(add(freeMemoryPointer, 2), domainSeparator) mstore(add(freeMemoryPointer, 34), structHash) orderDigest := keccak256(freeMemoryPointer, 66) } } /// @dev Packs order UID parameters into the specified memory location. The /// result is equivalent to `abi.encodePacked(...)` with the difference that /// it allows re-using the memory for packing the order UID. /// /// This function reverts if the order UID buffer is not the correct size. /// /// @param orderUid The buffer pack the order UID parameters into. /// @param orderDigest The EIP-712 struct digest derived from the order /// parameters. /// @param owner The address of the user who owns this order. /// @param validTo The epoch time at which the order will stop being valid. function packOrderUidParams( bytes memory orderUid, bytes32 orderDigest, address owner, uint32 validTo ) internal pure { require(orderUid.length == UID_LENGTH, "GPv2: uid buffer overflow"); // NOTE: Write the order UID to the allocated memory buffer. The order // parameters are written to memory in **reverse order** as memory // operations write 32-bytes at a time and we want to use a packed // encoding. This means, for example, that after writing the value of // `owner` to bytes `20:52`, writing the `orderDigest` to bytes `0:32` // will **overwrite** bytes `20:32`. This is desirable as addresses are // only 20 bytes and `20:32` should be `0`s: // // | 1111111111222222222233333333334444444444555555 // byte | 01234567890123456789012345678901234567890123456789012345 // -------+--------------------------------------------------------- // field | [.........orderDigest..........][......owner.......][vT] // -------+--------------------------------------------------------- // mstore | [000000000000000000000000000.vT] // | [00000000000.......owner.......] // | [.........orderDigest..........] // // Additionally, since Solidity `bytes memory` are length prefixed, // 32 needs to be added to all the offsets. // // solhint-disable-next-line no-inline-assembly assembly { mstore(add(orderUid, 56), validTo) mstore(add(orderUid, 52), owner) mstore(add(orderUid, 32), orderDigest) } } /// @dev Extracts specific order information from the standardized unique /// order id of the protocol. /// /// @param orderUid The unique identifier used to represent an order in /// the protocol. This uid is the packed concatenation of the order digest, /// the validTo order parameter and the address of the user who created the /// order. It is used by the user to interface with the contract directly, /// and not by calls that are triggered by the solvers. /// @return orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @return owner The address of the user who owns this order. /// @return validTo The epoch time at which the order will stop being valid. function extractOrderUidParams(bytes calldata orderUid) internal pure returns ( bytes32 orderDigest, address owner, uint32 validTo ) { require(orderUid.length == UID_LENGTH, "GPv2: invalid uid"); // Use assembly to efficiently decode packed calldata. // solhint-disable-next-line no-inline-assembly assembly { orderDigest := calldataload(orderUid.offset) owner := shr(96, calldataload(add(orderUid.offset, 32))) validTo := shr(224, calldataload(add(orderUid.offset, 52))) } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/IERC20.sol"; /// @title Gnosis Protocol v2 Safe ERC20 Transfer Library /// @author Gnosis Developers /// @dev Gas-efficient version of Openzeppelin's SafeERC20 contract that notably /// does not revert when calling a non-contract. library GPv2SafeERC20 { /// @dev Wrapper around a call to the ERC20 function `transfer` that reverts /// also when the token returns `false`. function safeTransfer( IERC20 token, address to, uint256 value ) internal { bytes4 selector_ = token.transfer.selector; // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) mstore(freeMemoryPointer, selector_) mstore( add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff) ) mstore(add(freeMemoryPointer, 36), value) if iszero(call(gas(), token, 0, freeMemoryPointer, 68, 0, 0)) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } require(getLastTansferResult(token), "GPv2: failed transfer"); } /// @dev Wrapper around a call to the ERC20 function `transferFrom` that /// reverts also when the token returns `false`. function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { bytes4 selector_ = token.transferFrom.selector; // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) mstore(freeMemoryPointer, selector_) mstore( add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff) ) mstore( add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff) ) mstore(add(freeMemoryPointer, 68), value) if iszero(call(gas(), token, 0, freeMemoryPointer, 100, 0, 0)) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } require(getLastTansferResult(token), "GPv2: failed transferFrom"); } /// @dev Verifies that the last return was a successful `transfer*` call. /// This is done by checking that the return data is either empty, or /// is a valid ABI encoded boolean. function getLastTansferResult(IERC20 token) private view returns (bool success) { // NOTE: Inspecting previous return data requires assembly. Note that // we write the return data to memory 0 in the case where the return // data size is 32, this is OK since the first 64 bytes of memory are // reserved by Solidy as a scratch space that can be used within // assembly blocks. // <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html> // solhint-disable-next-line no-inline-assembly assembly { /// @dev Revert with an ABI encoded Solidity error with a message /// that fits into 32-bytes. /// /// An ABI encoded Solidity error has the following memory layout: /// /// ------------+---------------------------------- /// byte range | value /// ------------+---------------------------------- /// 0x00..0x04 | selector("Error(string)") /// 0x04..0x24 | string offset (always 0x20) /// 0x24..0x44 | string length /// 0x44..0x64 | string value, padded to 32-bytes function revertWithMessage(length, message) { mstore(0x00, "\\x08\\xc3\\x79\\xa0") mstore(0x04, 0x20) mstore(0x24, length) mstore(0x44, message) revert(0x00, 0x64) } switch returndatasize() // Non-standard ERC20 transfer without return. case 0 { // NOTE: When the return data size is 0, verify that there // is code at the address. This is done in order to maintain // compatibility with Solidity calling conventions. // <https://docs.soliditylang.org/en/v0.7.6/control-structures.html#external-function-calls> if iszero(extcodesize(token)) { revertWithMessage(20, "GPv2: not a contract") } success := 1 } // Standard ERC20 transfer returning boolean success value. case 32 { returndatacopy(0, 0, returndatasize()) // NOTE: For ABI encoding v1, any non-zero value is accepted // as `true` for a boolean. In order to stay compatible with // OpenZeppelin's `SafeERC20` library which is known to work // with the existing ERC20 implementation we care about, // make sure we return success for any non-zero return value // from the `transfer*` call. success := iszero(iszero(mload(0))) } default { revertWithMessage(31, "GPv2: malformed transfer result") } } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/IERC20.sol"; import "../mixins/GPv2Signing.sol"; import "./GPv2Order.sol"; /// @title Gnosis Protocol v2 Trade Library. /// @author Gnosis Developers library GPv2Trade { using GPv2Order for GPv2Order.Data; using GPv2Order for bytes; /// @dev A struct representing a trade to be executed as part a batch /// settlement. struct Data { uint256 sellTokenIndex; uint256 buyTokenIndex; address receiver; uint256 sellAmount; uint256 buyAmount; uint32 validTo; bytes32 appData; uint256 feeAmount; uint256 flags; uint256 executedAmount; bytes signature; } /// @dev Extracts the order data and signing scheme for the specified trade. /// /// @param trade The trade. /// @param tokens The list of tokens included in the settlement. The token /// indices in the trade parameters map to tokens in this array. /// @param order The memory location to extract the order data to. function extractOrder( Data calldata trade, IERC20[] calldata tokens, GPv2Order.Data memory order ) internal pure returns (GPv2Signing.Scheme signingScheme) { order.sellToken = tokens[trade.sellTokenIndex]; order.buyToken = tokens[trade.buyTokenIndex]; order.receiver = trade.receiver; order.sellAmount = trade.sellAmount; order.buyAmount = trade.buyAmount; order.validTo = trade.validTo; order.appData = trade.appData; order.feeAmount = trade.feeAmount; ( order.kind, order.partiallyFillable, order.sellTokenBalance, order.buyTokenBalance, signingScheme ) = extractFlags(trade.flags); } /// @dev Decodes trade flags. /// /// Trade flags are used to tightly encode information on how to decode /// an order. Examples that directly affect the structure of an order are /// the kind of order (either a sell or a buy order) as well as whether the /// order is partially fillable or if it is a "fill-or-kill" order. It also /// encodes the signature scheme used to validate the order. As the most /// likely values are fill-or-kill sell orders by an externally owned /// account, the flags are chosen such that `0x00` represents this kind of /// order. The flags byte uses the following format: /// /// ``` /// bit | 31 ... | 6 | 5 | 4 | 3 | 2 | 1 | 0 | /// ----+----------+---+---+-------+---+---+ /// | reserved | * * | * | * * | * | * | /// | | | | | | | /// | | | | | | +---- order kind bit, 0 for a sell order /// | | | | | | and 1 for a buy order /// | | | | | | /// | | | | | +-------- order fill bit, 0 for fill-or-kill /// | | | | | and 1 for a partially fillable order /// | | | | | /// | | | +---+------------ use internal sell token balance bit: /// | | | 0x: ERC20 token balance /// | | | 10: external Balancer Vault balance /// | | | 11: internal Balancer Vault balance /// | | | /// | | +-------------------- use buy token balance bit /// | | 0: ERC20 token balance /// | | 1: internal Balancer Vault balance /// | | /// +---+------------------------ signature scheme bits: /// 00: EIP-712 /// 01: eth_sign /// 10: EIP-1271 /// 11: pre_sign /// ``` function extractFlags(uint256 flags) internal pure returns ( bytes32 kind, bool partiallyFillable, bytes32 sellTokenBalance, bytes32 buyTokenBalance, GPv2Signing.Scheme signingScheme ) { if (flags & 0x01 == 0) { kind = GPv2Order.KIND_SELL; } else { kind = GPv2Order.KIND_BUY; } partiallyFillable = flags & 0x02 != 0; if (flags & 0x08 == 0) { sellTokenBalance = GPv2Order.BALANCE_ERC20; } else if (flags & 0x04 == 0) { sellTokenBalance = GPv2Order.BALANCE_EXTERNAL; } else { sellTokenBalance = GPv2Order.BALANCE_INTERNAL; } if (flags & 0x10 == 0) { buyTokenBalance = GPv2Order.BALANCE_ERC20; } else { buyTokenBalance = GPv2Order.BALANCE_INTERNAL; } // NOTE: Take advantage of the fact that Solidity will revert if the // following expression does not produce a valid enum value. This means // we check here that the leading reserved bits must be 0. signingScheme = GPv2Signing.Scheme(flags >> 5); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../interfaces/IERC20.sol"; import "../interfaces/IVault.sol"; import "./GPv2Order.sol"; import "./GPv2SafeERC20.sol"; /// @title Gnosis Protocol v2 Transfers /// @author Gnosis Developers library GPv2Transfer { using GPv2SafeERC20 for IERC20; /// @dev Transfer data. struct Data { address account; IERC20 token; uint256 amount; bytes32 balance; } /// @dev Ether marker address used to indicate an Ether transfer. address internal constant BUY_ETH_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; /// @dev Execute the specified transfer from the specified account to a /// recipient. The recipient will either receive internal Vault balances or /// ERC20 token balances depending on whether the account is using internal /// balances or not. /// /// This method is used for transferring fees to the settlement contract /// when settling a single order directly with Balancer. /// /// Note that this method is subtly different from `transferFromAccounts` /// with a single transfer with respect to how it deals with internal /// balances. Specifically, this method will perform an **internal balance /// transfer to the settlement contract instead of a withdrawal to the /// external balance of the settlement contract** for trades that specify /// trading with internal balances. This is done as a gas optimization in /// the single order "fast-path". /// /// @param vault The Balancer vault to use. /// @param transfer The transfer to perform specifying the sender account. /// @param recipient The recipient for the transfer. function fastTransferFromAccount( IVault vault, Data calldata transfer, address recipient ) internal { require( address(transfer.token) != BUY_ETH_ADDRESS, "GPv2: cannot transfer native ETH" ); if (transfer.balance == GPv2Order.BALANCE_ERC20) { transfer.token.safeTransferFrom( transfer.account, recipient, transfer.amount ); } else { IVault.UserBalanceOp[] memory balanceOps = new IVault.UserBalanceOp[](1); IVault.UserBalanceOp memory balanceOp = balanceOps[0]; balanceOp.kind = transfer.balance == GPv2Order.BALANCE_EXTERNAL ? IVault.UserBalanceOpKind.TRANSFER_EXTERNAL : IVault.UserBalanceOpKind.TRANSFER_INTERNAL; balanceOp.asset = transfer.token; balanceOp.amount = transfer.amount; balanceOp.sender = transfer.account; balanceOp.recipient = payable(recipient); vault.manageUserBalance(balanceOps); } } /// @dev Execute the specified transfers from the specified accounts to a /// single recipient. The recipient will receive all transfers as ERC20 /// token balances, regardless of whether or not the accounts are using /// internal Vault balances. /// /// This method is used for accumulating user balances into the settlement /// contract. /// /// @param vault The Balancer vault to use. /// @param transfers The batched transfers to perform specifying the /// sender accounts. /// @param recipient The single recipient for all the transfers. function transferFromAccounts( IVault vault, Data[] calldata transfers, address recipient ) internal { // NOTE: Allocate buffer of Vault balance operations large enough to // hold all GP transfers. This is done to avoid re-allocations (which // are gas inefficient) while still allowing all transfers to be batched // into a single Vault call. IVault.UserBalanceOp[] memory balanceOps = new IVault.UserBalanceOp[](transfers.length); uint256 balanceOpCount = 0; for (uint256 i = 0; i < transfers.length; i++) { Data calldata transfer = transfers[i]; require( address(transfer.token) != BUY_ETH_ADDRESS, "GPv2: cannot transfer native ETH" ); if (transfer.balance == GPv2Order.BALANCE_ERC20) { transfer.token.safeTransferFrom( transfer.account, recipient, transfer.amount ); } else { IVault.UserBalanceOp memory balanceOp = balanceOps[balanceOpCount++]; balanceOp.kind = transfer.balance == GPv2Order.BALANCE_EXTERNAL ? IVault.UserBalanceOpKind.TRANSFER_EXTERNAL : IVault.UserBalanceOpKind.WITHDRAW_INTERNAL; balanceOp.asset = transfer.token; balanceOp.amount = transfer.amount; balanceOp.sender = transfer.account; balanceOp.recipient = payable(recipient); } } if (balanceOpCount > 0) { truncateBalanceOpsArray(balanceOps, balanceOpCount); vault.manageUserBalance(balanceOps); } } /// @dev Execute the specified transfers to their respective accounts. /// /// This method is used for paying out trade proceeds from the settlement /// contract. /// /// @param vault The Balancer vault to use. /// @param transfers The batched transfers to perform. function transferToAccounts(IVault vault, Data[] memory transfers) internal { IVault.UserBalanceOp[] memory balanceOps = new IVault.UserBalanceOp[](transfers.length); uint256 balanceOpCount = 0; for (uint256 i = 0; i < transfers.length; i++) { Data memory transfer = transfers[i]; if (address(transfer.token) == BUY_ETH_ADDRESS) { require( transfer.balance != GPv2Order.BALANCE_INTERNAL, "GPv2: unsupported internal ETH" ); payable(transfer.account).transfer(transfer.amount); } else if (transfer.balance == GPv2Order.BALANCE_ERC20) { transfer.token.safeTransfer(transfer.account, transfer.amount); } else { IVault.UserBalanceOp memory balanceOp = balanceOps[balanceOpCount++]; balanceOp.kind = IVault.UserBalanceOpKind.DEPOSIT_INTERNAL; balanceOp.asset = transfer.token; balanceOp.amount = transfer.amount; balanceOp.sender = address(this); balanceOp.recipient = payable(transfer.account); } } if (balanceOpCount > 0) { truncateBalanceOpsArray(balanceOps, balanceOpCount); vault.manageUserBalance(balanceOps); } } /// @dev Truncate a Vault balance operation array to its actual size. /// /// This method **does not** check whether or not the new length is valid, /// and specifying a size that is larger than the array's actual length is /// undefined behaviour. /// /// @param balanceOps The memory array of balance operations to truncate. /// @param newLength The new length to set. function truncateBalanceOpsArray( IVault.UserBalanceOp[] memory balanceOps, uint256 newLength ) private pure { // NOTE: Truncate the vault transfers array to the specified length. // This is done by setting the array's length which occupies the first // word in memory pointed to by the `balanceOps` memory variable. // <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html> // solhint-disable-next-line no-inline-assembly assembly { mstore(balanceOps, newLength) } } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Shortened revert messages // - Removed unused methods // - Convert to `type(*).*` notation // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/utils/SafeCast.sol> pragma solidity ^0.7.6; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing * all math on `uint256` and `int256` and then downcasting. */ library SafeCast { /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: not positive"); return uint256(value); } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { require( value <= uint256(type(int256).max), "SafeCast: int256 overflow" ); return int256(value); } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Shortened some revert messages // - Removed unused methods // - Added `ceilDiv` method // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/math/SafeMath.sol> pragma solidity ^0.7.6; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: mul overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by 0"); return a / b; } /** * @dev Returns the ceiling integer division of two unsigned integers, * reverting on division by zero. The result is rounded towards up the * nearest integer, instead of truncating the fractional part. * * Requirements: * * - The divisor cannot be zero. * - The sum of the dividend and divisor cannot overflow. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: ceiling division by 0"); return a / b + (a % b == 0 ? 0 : 1); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/GPv2EIP1271.sol"; import "../libraries/GPv2Order.sol"; import "../libraries/GPv2Trade.sol"; /// @title Gnosis Protocol v2 Signing Library. /// @author Gnosis Developers abstract contract GPv2Signing { using GPv2Order for GPv2Order.Data; using GPv2Order for bytes; /// @dev Recovered trade data containing the extracted order and the /// recovered owner address. struct RecoveredOrder { GPv2Order.Data data; bytes uid; address owner; address receiver; } /// @dev Signing scheme used for recovery. enum Scheme {Eip712, EthSign, Eip1271, PreSign} /// @dev The EIP-712 domain type hash used for computing the domain /// separator. bytes32 private constant DOMAIN_TYPE_HASH = keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ); /// @dev The EIP-712 domain name used for computing the domain separator. bytes32 private constant DOMAIN_NAME = keccak256("Gnosis Protocol"); /// @dev The EIP-712 domain version used for computing the domain separator. bytes32 private constant DOMAIN_VERSION = keccak256("v2"); /// @dev Marker value indicating an order is pre-signed. uint256 private constant PRE_SIGNED = uint256(keccak256("GPv2Signing.Scheme.PreSign")); /// @dev The domain separator used for signing orders that gets mixed in /// making signatures for different domains incompatible. This domain /// separator is computed following the EIP-712 standard and has replay /// protection mixed in so that signed orders are only valid for specific /// GPv2 contracts. bytes32 public immutable domainSeparator; /// @dev Storage indicating whether or not an order has been signed by a /// particular address. mapping(bytes => uint256) public preSignature; /// @dev Event that is emitted when an account either pre-signs an order or /// revokes an existing pre-signature. event PreSignature(address indexed owner, bytes orderUid, bool signed); constructor() { // NOTE: Currently, the only way to get the chain ID in solidity is // using assembly. uint256 chainId; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } domainSeparator = keccak256( abi.encode( DOMAIN_TYPE_HASH, DOMAIN_NAME, DOMAIN_VERSION, chainId, address(this) ) ); } /// @dev Sets a presignature for the specified order UID. /// /// @param orderUid The unique identifier of the order to pre-sign. function setPreSignature(bytes calldata orderUid, bool signed) external { (, address owner, ) = orderUid.extractOrderUidParams(); require(owner == msg.sender, "GPv2: cannot presign order"); if (signed) { preSignature[orderUid] = PRE_SIGNED; } else { preSignature[orderUid] = 0; } emit PreSignature(owner, orderUid, signed); } /// @dev Returns an empty recovered order with a pre-allocated buffer for /// packing the unique identifier. /// /// @return recoveredOrder The empty recovered order data. function allocateRecoveredOrder() internal pure returns (RecoveredOrder memory recoveredOrder) { recoveredOrder.uid = new bytes(GPv2Order.UID_LENGTH); } /// @dev Extracts order data and recovers the signer from the specified /// trade. /// /// @param recoveredOrder Memory location used for writing the recovered order data. /// @param tokens The list of tokens included in the settlement. The token /// indices in the trade parameters map to tokens in this array. /// @param trade The trade data to recover the order data from. function recoverOrderFromTrade( RecoveredOrder memory recoveredOrder, IERC20[] calldata tokens, GPv2Trade.Data calldata trade ) internal view { GPv2Order.Data memory order = recoveredOrder.data; Scheme signingScheme = GPv2Trade.extractOrder(trade, tokens, order); (bytes32 orderDigest, address owner) = recoverOrderSigner(order, signingScheme, trade.signature); recoveredOrder.uid.packOrderUidParams( orderDigest, owner, order.validTo ); recoveredOrder.owner = owner; recoveredOrder.receiver = order.actualReceiver(owner); } /// @dev The length of any signature from an externally owned account. uint256 private constant ECDSA_SIGNATURE_LENGTH = 65; /// @dev Recovers an order's signer from the specified order and signature. /// /// @param order The order to recover a signature for. /// @param signingScheme The signing scheme. /// @param signature The signature bytes. /// @return orderDigest The computed order hash. /// @return owner The recovered address from the specified signature. function recoverOrderSigner( GPv2Order.Data memory order, Scheme signingScheme, bytes calldata signature ) internal view returns (bytes32 orderDigest, address owner) { orderDigest = order.hash(domainSeparator); if (signingScheme == Scheme.Eip712) { owner = recoverEip712Signer(orderDigest, signature); } else if (signingScheme == Scheme.EthSign) { owner = recoverEthsignSigner(orderDigest, signature); } else if (signingScheme == Scheme.Eip1271) { owner = recoverEip1271Signer(orderDigest, signature); } else { // signingScheme == Scheme.PreSign owner = recoverPreSigner(orderDigest, signature, order.validTo); } } /// @dev Perform an ECDSA recover for the specified message and calldata /// signature. /// /// The signature is encoded by tighyly packing the following struct: /// ``` /// struct EncodedSignature { /// bytes32 r; /// bytes32 s; /// uint8 v; /// } /// ``` /// /// @param message The signed message. /// @param encodedSignature The encoded signature. function ecdsaRecover(bytes32 message, bytes calldata encodedSignature) internal pure returns (address signer) { require( encodedSignature.length == ECDSA_SIGNATURE_LENGTH, "GPv2: malformed ecdsa signature" ); bytes32 r; bytes32 s; uint8 v; // NOTE: Use assembly to efficiently decode signature data. // solhint-disable-next-line no-inline-assembly assembly { // r = uint256(encodedSignature[0:32]) r := calldataload(encodedSignature.offset) // s = uint256(encodedSignature[32:64]) s := calldataload(add(encodedSignature.offset, 32)) // v = uint8(encodedSignature[64]) v := shr(248, calldataload(add(encodedSignature.offset, 64))) } signer = ecrecover(message, v, r, s); require(signer != address(0), "GPv2: invalid ecdsa signature"); } /// @dev Decodes signature bytes originating from an EIP-712-encoded /// signature. /// /// EIP-712 signs typed data. The specifications are described in the /// related EIP (<https://eips.ethereum.org/EIPS/eip-712>). /// /// EIP-712 signatures are encoded as standard ECDSA signatures as described /// in the corresponding decoding function [`ecdsaRecover`]. /// /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @param encodedSignature Calldata pointing to tightly packed signature /// bytes. /// @return owner The address of the signer. function recoverEip712Signer( bytes32 orderDigest, bytes calldata encodedSignature ) internal pure returns (address owner) { owner = ecdsaRecover(orderDigest, encodedSignature); } /// @dev Decodes signature bytes originating from the output of the eth_sign /// RPC call. /// /// The specifications are described in the Ethereum documentation /// (<https://eth.wiki/json-rpc/API#eth_sign>). /// /// eth_sign signatures are encoded as standard ECDSA signatures as /// described in the corresponding decoding function /// [`ecdsaRecover`]. /// /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @param encodedSignature Calldata pointing to tightly packed signature /// bytes. /// @return owner The address of the signer. function recoverEthsignSigner( bytes32 orderDigest, bytes calldata encodedSignature ) internal pure returns (address owner) { // The signed message is encoded as: // `"\\x19Ethereum Signed Message:\ " || length || data`, where // the length is a constant (32 bytes) and the data is defined as: // `orderDigest`. bytes32 ethsignDigest = keccak256( abi.encodePacked( "\\x19Ethereum Signed Message:\ 32", orderDigest ) ); owner = ecdsaRecover(ethsignDigest, encodedSignature); } /// @dev Verifies the input calldata as an EIP-1271 contract signature and /// returns the address of the signer. /// /// The encoded signature tightly packs the following struct: /// /// ``` /// struct EncodedEip1271Signature { /// address owner; /// bytes signature; /// } /// ``` /// /// This function enforces that the encoded data stores enough bytes to /// cover the full length of the decoded signature. /// /// @param encodedSignature The encoded EIP-1271 signature. /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @return owner The address of the signer. function recoverEip1271Signer( bytes32 orderDigest, bytes calldata encodedSignature ) internal view returns (address owner) { // NOTE: Use assembly to read the verifier address from the encoded // signature bytes. // solhint-disable-next-line no-inline-assembly assembly { // owner = address(encodedSignature[0:20]) owner := shr(96, calldataload(encodedSignature.offset)) } // NOTE: Configure prettier to ignore the following line as it causes // a panic in the Solidity plugin. // prettier-ignore bytes calldata signature = encodedSignature[20:]; require( EIP1271Verifier(owner).isValidSignature(orderDigest, signature) == GPv2EIP1271.MAGICVALUE, "GPv2: invalid eip1271 signature" ); } /// @dev Verifies the order has been pre-signed. The signature is the /// address of the signer of the order. /// /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @param encodedSignature The pre-sign signature reprenting the order UID. /// @param validTo The order expiry timestamp. /// @return owner The address of the signer. function recoverPreSigner( bytes32 orderDigest, bytes calldata encodedSignature, uint32 validTo ) internal view returns (address owner) { require(encodedSignature.length == 20, "GPv2: malformed presignature"); // NOTE: Use assembly to read the owner address from the encoded // signature bytes. // solhint-disable-next-line no-inline-assembly assembly { // owner = address(encodedSignature[0:20]) owner := shr(96, calldataload(encodedSignature.offset)) } bytes memory orderUid = new bytes(GPv2Order.UID_LENGTH); orderUid.packOrderUidParams(orderDigest, owner, validTo); require( preSignature[orderUid] == PRE_SIGNED, "GPv2: order not presigned" ); } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/utils/ReentrancyGuard.sol> pragma solidity ^0.7.6; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: LGPL-3.0-only // Vendored from Gnosis utility contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Added linter directives to ignore low level call and assembly warnings // <https://github.com/gnosis/util-contracts/blob/v3.1.0-solc-7/contracts/StorageAccessible.sol> pragma solidity ^0.7.6; /// @title ViewStorageAccessible - Interface on top of StorageAccessible base class to allow simulations from view functions interface ViewStorageAccessible { /** * @dev Same as `simulateDelegatecall` on StorageAccessible. Marked as view so that it can be called from external contracts * that want to run simulations from within view functions. Will revert if the invoked simulation attempts to change state. */ function simulateDelegatecall( address targetContract, bytes memory calldataPayload ) external view returns (bytes memory); /** * @dev Same as `getStorageAt` on StorageAccessible. This method allows reading aribtrary ranges of storage. */ function getStorageAt(uint256 offset, uint256 length) external view returns (bytes memory); } /// @title StorageAccessible - generic base contract that allows callers to access all internal storage. contract StorageAccessible { /** * @dev Reads `length` bytes of storage in the currents contract * @param offset - the offset in the current contract's storage in words to start reading from * @param length - the number of words (32 bytes) of data to read * @return the bytes that were read. */ function getStorageAt(uint256 offset, uint256 length) external view returns (bytes memory) { bytes memory result = new bytes(length * 32); for (uint256 index = 0; index < length; index++) { // solhint-disable-next-line no-inline-assembly assembly { let word := sload(add(offset, index)) mstore(add(add(result, 0x20), mul(index, 0x20)), word) } } return result; } /** * @dev Performs a delegetecall on a targetContract in the context of self. * Internally reverts execution to avoid side effects (making it static). Catches revert and returns encoded result as bytes. * @param targetContract Address of the contract containing the code to execute. * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments). */ function simulateDelegatecall( address targetContract, bytes memory calldataPayload ) public returns (bytes memory response) { bytes memory innerCall = abi.encodeWithSelector( this.simulateDelegatecallInternal.selector, targetContract, calldataPayload ); // solhint-disable-next-line avoid-low-level-calls (, response) = address(this).call(innerCall); bool innerSuccess = response[response.length - 1] == 0x01; setLength(response, response.length - 1); if (innerSuccess) { return response; } else { revertWith(response); } } /** * @dev Performs a delegetecall on a targetContract in the context of self. * Internally reverts execution to avoid side effects (making it static). Returns encoded result as revert message * concatenated with the success flag of the inner call as a last byte. * @param targetContract Address of the contract containing the code to execute. * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments). */ function simulateDelegatecallInternal( address targetContract, bytes memory calldataPayload ) external returns (bytes memory response) { bool success; // solhint-disable-next-line avoid-low-level-calls (success, response) = targetContract.delegatecall(calldataPayload); revertWith(abi.encodePacked(response, success)); } function revertWith(bytes memory response) internal pure { // solhint-disable-next-line no-inline-assembly assembly { revert(add(response, 0x20), mload(response)) } } function setLength(bytes memory buffer, uint256 length) internal pure { // solhint-disable-next-line no-inline-assembly assembly { mstore(buffer, length) } } }
File 4 of 5: GnosisSafe
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; import "./base/ModuleManager.sol"; import "./base/OwnerManager.sol"; import "./base/FallbackManager.sol"; import "./base/GuardManager.sol"; import "./common/EtherPaymentFallback.sol"; import "./common/Singleton.sol"; import "./common/SignatureDecoder.sol"; import "./common/SecuredTokenTransfer.sol"; import "./common/StorageAccessible.sol"; import "./interfaces/ISignatureValidator.sol"; import "./external/GnosisSafeMath.sol"; /// @title Gnosis Safe - A multisignature wallet with support for confirmations using signed messages based on ERC191. /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> contract GnosisSafe is EtherPaymentFallback, Singleton, ModuleManager, OwnerManager, SignatureDecoder, SecuredTokenTransfer, ISignatureValidatorConstants, FallbackManager, StorageAccessible, GuardManager { using GnosisSafeMath for uint256; string public constant VERSION = "1.3.0"; // keccak256( // "EIP712Domain(uint256 chainId,address verifyingContract)" // ); bytes32 private constant DOMAIN_SEPARATOR_TYPEHASH = 0x47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a79469218; // keccak256( // "SafeTx(address to,uint256 value,bytes data,uint8 operation,uint256 safeTxGas,uint256 baseGas,uint256 gasPrice,address gasToken,address refundReceiver,uint256 nonce)" // ); bytes32 private constant SAFE_TX_TYPEHASH = 0xbb8310d486368db6bd6f849402fdd73ad53d316b5a4b2644ad6efe0f941286d8; event SafeSetup(address indexed initiator, address[] owners, uint256 threshold, address initializer, address fallbackHandler); event ApproveHash(bytes32 indexed approvedHash, address indexed owner); event SignMsg(bytes32 indexed msgHash); event ExecutionFailure(bytes32 txHash, uint256 payment); event ExecutionSuccess(bytes32 txHash, uint256 payment); uint256 public nonce; bytes32 private _deprecatedDomainSeparator; // Mapping to keep track of all message hashes that have been approve by ALL REQUIRED owners mapping(bytes32 => uint256) public signedMessages; // Mapping to keep track of all hashes (message or transaction) that have been approve by ANY owners mapping(address => mapping(bytes32 => uint256)) public approvedHashes; // This constructor ensures that this contract can only be used as a master copy for Proxy contracts constructor() { // By setting the threshold it is not possible to call setup anymore, // so we create a Safe with 0 owners and threshold 1. // This is an unusable Safe, perfect for the singleton threshold = 1; } /// @dev Setup function sets initial storage of contract. /// @param _owners List of Safe owners. /// @param _threshold Number of required confirmations for a Safe transaction. /// @param to Contract address for optional delegate call. /// @param data Data payload for optional delegate call. /// @param fallbackHandler Handler for fallback calls to this contract /// @param paymentToken Token that should be used for the payment (0 is ETH) /// @param payment Value that should be paid /// @param paymentReceiver Adddress that should receive the payment (or 0 if tx.origin) function setup( address[] calldata _owners, uint256 _threshold, address to, bytes calldata data, address fallbackHandler, address paymentToken, uint256 payment, address payable paymentReceiver ) external { // setupOwners checks if the Threshold is already set, therefore preventing that this method is called twice setupOwners(_owners, _threshold); if (fallbackHandler != address(0)) internalSetFallbackHandler(fallbackHandler); // As setupOwners can only be called if the contract has not been initialized we don't need a check for setupModules setupModules(to, data); if (payment > 0) { // To avoid running into issues with EIP-170 we reuse the handlePayment function (to avoid adjusting code of that has been verified we do not adjust the method itself) // baseGas = 0, gasPrice = 1 and gas = payment => amount = (payment + 0) * 1 = payment handlePayment(payment, 0, 1, paymentToken, paymentReceiver); } emit SafeSetup(msg.sender, _owners, _threshold, to, fallbackHandler); } /// @dev Allows to execute a Safe transaction confirmed by required number of owners and then pays the account that submitted the transaction. /// Note: The fees are always transferred, even if the user transaction fails. /// @param to Destination address of Safe transaction. /// @param value Ether value of Safe transaction. /// @param data Data payload of Safe transaction. /// @param operation Operation type of Safe transaction. /// @param safeTxGas Gas that should be used for the Safe transaction. /// @param baseGas Gas costs that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund) /// @param gasPrice Gas price that should be used for the payment calculation. /// @param gasToken Token address (or 0 if ETH) that is used for the payment. /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin). /// @param signatures Packed signature data ({bytes32 r}{bytes32 s}{uint8 v}) function execTransaction( address to, uint256 value, bytes calldata data, Enum.Operation operation, uint256 safeTxGas, uint256 baseGas, uint256 gasPrice, address gasToken, address payable refundReceiver, bytes memory signatures ) public payable virtual returns (bool success) { bytes32 txHash; // Use scope here to limit variable lifetime and prevent `stack too deep` errors { bytes memory txHashData = encodeTransactionData( // Transaction info to, value, data, operation, safeTxGas, // Payment info baseGas, gasPrice, gasToken, refundReceiver, // Signature info nonce ); // Increase nonce and execute transaction. nonce++; txHash = keccak256(txHashData); checkSignatures(txHash, txHashData, signatures); } address guard = getGuard(); { if (guard != address(0)) { Guard(guard).checkTransaction( // Transaction info to, value, data, operation, safeTxGas, // Payment info baseGas, gasPrice, gasToken, refundReceiver, // Signature info signatures, msg.sender ); } } // We require some gas to emit the events (at least 2500) after the execution and some to perform code until the execution (500) // We also include the 1/64 in the check that is not send along with a call to counteract potential shortings because of EIP-150 require(gasleft() >= ((safeTxGas * 64) / 63).max(safeTxGas + 2500) + 500, "GS010"); // Use scope here to limit variable lifetime and prevent `stack too deep` errors { uint256 gasUsed = gasleft(); // If the gasPrice is 0 we assume that nearly all available gas can be used (it is always more than safeTxGas) // We only substract 2500 (compared to the 3000 before) to ensure that the amount passed is still higher than safeTxGas success = execute(to, value, data, operation, gasPrice == 0 ? (gasleft() - 2500) : safeTxGas); gasUsed = gasUsed.sub(gasleft()); // If no safeTxGas and no gasPrice was set (e.g. both are 0), then the internal tx is required to be successful // This makes it possible to use `estimateGas` without issues, as it searches for the minimum gas where the tx doesn't revert require(success || safeTxGas != 0 || gasPrice != 0, "GS013"); // We transfer the calculated tx costs to the tx.origin to avoid sending it to intermediate contracts that have made calls uint256 payment = 0; if (gasPrice > 0) { payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken, refundReceiver); } if (success) emit ExecutionSuccess(txHash, payment); else emit ExecutionFailure(txHash, payment); } { if (guard != address(0)) { Guard(guard).checkAfterExecution(txHash, success); } } } function handlePayment( uint256 gasUsed, uint256 baseGas, uint256 gasPrice, address gasToken, address payable refundReceiver ) private returns (uint256 payment) { // solhint-disable-next-line avoid-tx-origin address payable receiver = refundReceiver == address(0) ? payable(tx.origin) : refundReceiver; if (gasToken == address(0)) { // For ETH we will only adjust the gas price to not be higher than the actual used gas price payment = gasUsed.add(baseGas).mul(gasPrice < tx.gasprice ? gasPrice : tx.gasprice); require(receiver.send(payment), "GS011"); } else { payment = gasUsed.add(baseGas).mul(gasPrice); require(transferToken(gasToken, receiver, payment), "GS012"); } } /** * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise. * @param dataHash Hash of the data (could be either a message hash or transaction hash) * @param data That should be signed (this is passed to an external validator contract) * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash. */ function checkSignatures( bytes32 dataHash, bytes memory data, bytes memory signatures ) public view { // Load threshold to avoid multiple storage loads uint256 _threshold = threshold; // Check that a threshold is set require(_threshold > 0, "GS001"); checkNSignatures(dataHash, data, signatures, _threshold); } /** * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise. * @param dataHash Hash of the data (could be either a message hash or transaction hash) * @param data That should be signed (this is passed to an external validator contract) * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash. * @param requiredSignatures Amount of required valid signatures. */ function checkNSignatures( bytes32 dataHash, bytes memory data, bytes memory signatures, uint256 requiredSignatures ) public view { // Check that the provided signature data is not too short require(signatures.length >= requiredSignatures.mul(65), "GS020"); // There cannot be an owner with address 0. address lastOwner = address(0); address currentOwner; uint8 v; bytes32 r; bytes32 s; uint256 i; for (i = 0; i < requiredSignatures; i++) { (v, r, s) = signatureSplit(signatures, i); if (v == 0) { // If v is 0 then it is a contract signature // When handling contract signatures the address of the contract is encoded into r currentOwner = address(uint160(uint256(r))); // Check that signature data pointer (s) is not pointing inside the static part of the signatures bytes // This check is not completely accurate, since it is possible that more signatures than the threshold are send. // Here we only check that the pointer is not pointing inside the part that is being processed require(uint256(s) >= requiredSignatures.mul(65), "GS021"); // Check that signature data pointer (s) is in bounds (points to the length of data -> 32 bytes) require(uint256(s).add(32) <= signatures.length, "GS022"); // Check if the contract signature is in bounds: start of data is s + 32 and end is start + signature length uint256 contractSignatureLen; // solhint-disable-next-line no-inline-assembly assembly { contractSignatureLen := mload(add(add(signatures, s), 0x20)) } require(uint256(s).add(32).add(contractSignatureLen) <= signatures.length, "GS023"); // Check signature bytes memory contractSignature; // solhint-disable-next-line no-inline-assembly assembly { // The signature data for contract signatures is appended to the concatenated signatures and the offset is stored in s contractSignature := add(add(signatures, s), 0x20) } require(ISignatureValidator(currentOwner).isValidSignature(data, contractSignature) == EIP1271_MAGIC_VALUE, "GS024"); } else if (v == 1) { // If v is 1 then it is an approved hash // When handling approved hashes the address of the approver is encoded into r currentOwner = address(uint160(uint256(r))); // Hashes are automatically approved by the sender of the message or when they have been pre-approved via a separate transaction require(msg.sender == currentOwner || approvedHashes[currentOwner][dataHash] != 0, "GS025"); } else if (v > 30) { // If v > 30 then default va (27,28) has been adjusted for eth_sign flow // To support eth_sign and similar we adjust v and hash the messageHash with the Ethereum message prefix before applying ecrecover currentOwner = ecrecover(keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ 32", dataHash)), v - 4, r, s); } else { // Default is the ecrecover flow with the provided data hash // Use ecrecover with the messageHash for EOA signatures currentOwner = ecrecover(dataHash, v, r, s); } require(currentOwner > lastOwner && owners[currentOwner] != address(0) && currentOwner != SENTINEL_OWNERS, "GS026"); lastOwner = currentOwner; } } /// @dev Allows to estimate a Safe transaction. /// This method is only meant for estimation purpose, therefore the call will always revert and encode the result in the revert data. /// Since the `estimateGas` function includes refunds, call this method to get an estimated of the costs that are deducted from the safe with `execTransaction` /// @param to Destination address of Safe transaction. /// @param value Ether value of Safe transaction. /// @param data Data payload of Safe transaction. /// @param operation Operation type of Safe transaction. /// @return Estimate without refunds and overhead fees (base transaction and payload data gas costs). /// @notice Deprecated in favor of common/StorageAccessible.sol and will be removed in next version. function requiredTxGas( address to, uint256 value, bytes calldata data, Enum.Operation operation ) external returns (uint256) { uint256 startGas = gasleft(); // We don't provide an error message here, as we use it to return the estimate require(execute(to, value, data, operation, gasleft())); uint256 requiredGas = startGas - gasleft(); // Convert response to string and return via error message revert(string(abi.encodePacked(requiredGas))); } /** * @dev Marks a hash as approved. This can be used to validate a hash that is used by a signature. * @param hashToApprove The hash that should be marked as approved for signatures that are verified by this contract. */ function approveHash(bytes32 hashToApprove) external { require(owners[msg.sender] != address(0), "GS030"); approvedHashes[msg.sender][hashToApprove] = 1; emit ApproveHash(hashToApprove, msg.sender); } /// @dev Returns the chain id used by this contract. function getChainId() public view returns (uint256) { uint256 id; // solhint-disable-next-line no-inline-assembly assembly { id := chainid() } return id; } function domainSeparator() public view returns (bytes32) { return keccak256(abi.encode(DOMAIN_SEPARATOR_TYPEHASH, getChainId(), this)); } /// @dev Returns the bytes that are hashed to be signed by owners. /// @param to Destination address. /// @param value Ether value. /// @param data Data payload. /// @param operation Operation type. /// @param safeTxGas Gas that should be used for the safe transaction. /// @param baseGas Gas costs for that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund) /// @param gasPrice Maximum gas price that should be used for this transaction. /// @param gasToken Token address (or 0 if ETH) that is used for the payment. /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin). /// @param _nonce Transaction nonce. /// @return Transaction hash bytes. function encodeTransactionData( address to, uint256 value, bytes calldata data, Enum.Operation operation, uint256 safeTxGas, uint256 baseGas, uint256 gasPrice, address gasToken, address refundReceiver, uint256 _nonce ) public view returns (bytes memory) { bytes32 safeTxHash = keccak256( abi.encode( SAFE_TX_TYPEHASH, to, value, keccak256(data), operation, safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, _nonce ) ); return abi.encodePacked(bytes1(0x19), bytes1(0x01), domainSeparator(), safeTxHash); } /// @dev Returns hash to be signed by owners. /// @param to Destination address. /// @param value Ether value. /// @param data Data payload. /// @param operation Operation type. /// @param safeTxGas Fas that should be used for the safe transaction. /// @param baseGas Gas costs for data used to trigger the safe transaction. /// @param gasPrice Maximum gas price that should be used for this transaction. /// @param gasToken Token address (or 0 if ETH) that is used for the payment. /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin). /// @param _nonce Transaction nonce. /// @return Transaction hash. function getTransactionHash( address to, uint256 value, bytes calldata data, Enum.Operation operation, uint256 safeTxGas, uint256 baseGas, uint256 gasPrice, address gasToken, address refundReceiver, uint256 _nonce ) public view returns (bytes32) { return keccak256(encodeTransactionData(to, value, data, operation, safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, _nonce)); } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; import "../common/Enum.sol"; /// @title Executor - A contract that can execute transactions /// @author Richard Meissner - <[email protected]> contract Executor { function execute( address to, uint256 value, bytes memory data, Enum.Operation operation, uint256 txGas ) internal returns (bool success) { if (operation == Enum.Operation.DelegateCall) { // solhint-disable-next-line no-inline-assembly assembly { success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0) } } else { // solhint-disable-next-line no-inline-assembly assembly { success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0) } } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; import "../common/SelfAuthorized.sol"; /// @title Fallback Manager - A contract that manages fallback calls made to this contract /// @author Richard Meissner - <[email protected]> contract FallbackManager is SelfAuthorized { event ChangedFallbackHandler(address handler); // keccak256("fallback_manager.handler.address") bytes32 internal constant FALLBACK_HANDLER_STORAGE_SLOT = 0x6c9a6c4a39284e37ed1cf53d337577d14212a4870fb976a4366c693b939918d5; function internalSetFallbackHandler(address handler) internal { bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT; // solhint-disable-next-line no-inline-assembly assembly { sstore(slot, handler) } } /// @dev Allows to add a contract to handle fallback calls. /// Only fallback calls without value and with data will be forwarded. /// This can only be done via a Safe transaction. /// @param handler contract to handle fallbacks calls. function setFallbackHandler(address handler) public authorized { internalSetFallbackHandler(handler); emit ChangedFallbackHandler(handler); } // solhint-disable-next-line payable-fallback,no-complex-fallback fallback() external { bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT; // solhint-disable-next-line no-inline-assembly assembly { let handler := sload(slot) if iszero(handler) { return(0, 0) } calldatacopy(0, 0, calldatasize()) // The msg.sender address is shifted to the left by 12 bytes to remove the padding // Then the address without padding is stored right after the calldata mstore(calldatasize(), shl(96, caller())) // Add 20 bytes for the address appended add the end let success := call(gas(), handler, 0, 0, add(calldatasize(), 20), 0, 0) returndatacopy(0, 0, returndatasize()) if iszero(success) { revert(0, returndatasize()) } return(0, returndatasize()) } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; import "../common/Enum.sol"; import "../common/SelfAuthorized.sol"; interface Guard { function checkTransaction( address to, uint256 value, bytes memory data, Enum.Operation operation, uint256 safeTxGas, uint256 baseGas, uint256 gasPrice, address gasToken, address payable refundReceiver, bytes memory signatures, address msgSender ) external; function checkAfterExecution(bytes32 txHash, bool success) external; } /// @title Fallback Manager - A contract that manages fallback calls made to this contract /// @author Richard Meissner - <[email protected]> contract GuardManager is SelfAuthorized { event ChangedGuard(address guard); // keccak256("guard_manager.guard.address") bytes32 internal constant GUARD_STORAGE_SLOT = 0x4a204f620c8c5ccdca3fd54d003badd85ba500436a431f0cbda4f558c93c34c8; /// @dev Set a guard that checks transactions before execution /// @param guard The address of the guard to be used or the 0 address to disable the guard function setGuard(address guard) external authorized { bytes32 slot = GUARD_STORAGE_SLOT; // solhint-disable-next-line no-inline-assembly assembly { sstore(slot, guard) } emit ChangedGuard(guard); } function getGuard() internal view returns (address guard) { bytes32 slot = GUARD_STORAGE_SLOT; // solhint-disable-next-line no-inline-assembly assembly { guard := sload(slot) } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; import "../common/Enum.sol"; import "../common/SelfAuthorized.sol"; import "./Executor.sol"; /// @title Module Manager - A contract that manages modules that can execute transactions via this contract /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> contract ModuleManager is SelfAuthorized, Executor { event EnabledModule(address module); event DisabledModule(address module); event ExecutionFromModuleSuccess(address indexed module); event ExecutionFromModuleFailure(address indexed module); address internal constant SENTINEL_MODULES = address(0x1); mapping(address => address) internal modules; function setupModules(address to, bytes memory data) internal { require(modules[SENTINEL_MODULES] == address(0), "GS100"); modules[SENTINEL_MODULES] = SENTINEL_MODULES; if (to != address(0)) // Setup has to complete successfully or transaction fails. require(execute(to, 0, data, Enum.Operation.DelegateCall, gasleft()), "GS000"); } /// @dev Allows to add a module to the whitelist. /// This can only be done via a Safe transaction. /// @notice Enables the module `module` for the Safe. /// @param module Module to be whitelisted. function enableModule(address module) public authorized { // Module address cannot be null or sentinel. require(module != address(0) && module != SENTINEL_MODULES, "GS101"); // Module cannot be added twice. require(modules[module] == address(0), "GS102"); modules[module] = modules[SENTINEL_MODULES]; modules[SENTINEL_MODULES] = module; emit EnabledModule(module); } /// @dev Allows to remove a module from the whitelist. /// This can only be done via a Safe transaction. /// @notice Disables the module `module` for the Safe. /// @param prevModule Module that pointed to the module to be removed in the linked list /// @param module Module to be removed. function disableModule(address prevModule, address module) public authorized { // Validate module address and check that it corresponds to module index. require(module != address(0) && module != SENTINEL_MODULES, "GS101"); require(modules[prevModule] == module, "GS103"); modules[prevModule] = modules[module]; modules[module] = address(0); emit DisabledModule(module); } /// @dev Allows a Module to execute a Safe transaction without any further confirmations. /// @param to Destination address of module transaction. /// @param value Ether value of module transaction. /// @param data Data payload of module transaction. /// @param operation Operation type of module transaction. function execTransactionFromModule( address to, uint256 value, bytes memory data, Enum.Operation operation ) public virtual returns (bool success) { // Only whitelisted modules are allowed. require(msg.sender != SENTINEL_MODULES && modules[msg.sender] != address(0), "GS104"); // Execute transaction without further confirmations. success = execute(to, value, data, operation, gasleft()); if (success) emit ExecutionFromModuleSuccess(msg.sender); else emit ExecutionFromModuleFailure(msg.sender); } /// @dev Allows a Module to execute a Safe transaction without any further confirmations and return data /// @param to Destination address of module transaction. /// @param value Ether value of module transaction. /// @param data Data payload of module transaction. /// @param operation Operation type of module transaction. function execTransactionFromModuleReturnData( address to, uint256 value, bytes memory data, Enum.Operation operation ) public returns (bool success, bytes memory returnData) { success = execTransactionFromModule(to, value, data, operation); // solhint-disable-next-line no-inline-assembly assembly { // Load free memory location let ptr := mload(0x40) // We allocate memory for the return data by setting the free memory location to // current free memory location + data size + 32 bytes for data size value mstore(0x40, add(ptr, add(returndatasize(), 0x20))) // Store the size mstore(ptr, returndatasize()) // Store the data returndatacopy(add(ptr, 0x20), 0, returndatasize()) // Point the return data to the correct memory location returnData := ptr } } /// @dev Returns if an module is enabled /// @return True if the module is enabled function isModuleEnabled(address module) public view returns (bool) { return SENTINEL_MODULES != module && modules[module] != address(0); } /// @dev Returns array of modules. /// @param start Start of the page. /// @param pageSize Maximum number of modules that should be returned. /// @return array Array of modules. /// @return next Start of the next page. function getModulesPaginated(address start, uint256 pageSize) external view returns (address[] memory array, address next) { // Init array with max page size array = new address[](pageSize); // Populate return array uint256 moduleCount = 0; address currentModule = modules[start]; while (currentModule != address(0x0) && currentModule != SENTINEL_MODULES && moduleCount < pageSize) { array[moduleCount] = currentModule; currentModule = modules[currentModule]; moduleCount++; } next = currentModule; // Set correct size of returned array // solhint-disable-next-line no-inline-assembly assembly { mstore(array, moduleCount) } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; import "../common/SelfAuthorized.sol"; /// @title OwnerManager - Manages a set of owners and a threshold to perform actions. /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> contract OwnerManager is SelfAuthorized { event AddedOwner(address owner); event RemovedOwner(address owner); event ChangedThreshold(uint256 threshold); address internal constant SENTINEL_OWNERS = address(0x1); mapping(address => address) internal owners; uint256 internal ownerCount; uint256 internal threshold; /// @dev Setup function sets initial storage of contract. /// @param _owners List of Safe owners. /// @param _threshold Number of required confirmations for a Safe transaction. function setupOwners(address[] memory _owners, uint256 _threshold) internal { // Threshold can only be 0 at initialization. // Check ensures that setup function can only be called once. require(threshold == 0, "GS200"); // Validate that threshold is smaller than number of added owners. require(_threshold <= _owners.length, "GS201"); // There has to be at least one Safe owner. require(_threshold >= 1, "GS202"); // Initializing Safe owners. address currentOwner = SENTINEL_OWNERS; for (uint256 i = 0; i < _owners.length; i++) { // Owner address cannot be null. address owner = _owners[i]; require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this) && currentOwner != owner, "GS203"); // No duplicate owners allowed. require(owners[owner] == address(0), "GS204"); owners[currentOwner] = owner; currentOwner = owner; } owners[currentOwner] = SENTINEL_OWNERS; ownerCount = _owners.length; threshold = _threshold; } /// @dev Allows to add a new owner to the Safe and update the threshold at the same time. /// This can only be done via a Safe transaction. /// @notice Adds the owner `owner` to the Safe and updates the threshold to `_threshold`. /// @param owner New owner address. /// @param _threshold New threshold. function addOwnerWithThreshold(address owner, uint256 _threshold) public authorized { // Owner address cannot be null, the sentinel or the Safe itself. require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this), "GS203"); // No duplicate owners allowed. require(owners[owner] == address(0), "GS204"); owners[owner] = owners[SENTINEL_OWNERS]; owners[SENTINEL_OWNERS] = owner; ownerCount++; emit AddedOwner(owner); // Change threshold if threshold was changed. if (threshold != _threshold) changeThreshold(_threshold); } /// @dev Allows to remove an owner from the Safe and update the threshold at the same time. /// This can only be done via a Safe transaction. /// @notice Removes the owner `owner` from the Safe and updates the threshold to `_threshold`. /// @param prevOwner Owner that pointed to the owner to be removed in the linked list /// @param owner Owner address to be removed. /// @param _threshold New threshold. function removeOwner( address prevOwner, address owner, uint256 _threshold ) public authorized { // Only allow to remove an owner, if threshold can still be reached. require(ownerCount - 1 >= _threshold, "GS201"); // Validate owner address and check that it corresponds to owner index. require(owner != address(0) && owner != SENTINEL_OWNERS, "GS203"); require(owners[prevOwner] == owner, "GS205"); owners[prevOwner] = owners[owner]; owners[owner] = address(0); ownerCount--; emit RemovedOwner(owner); // Change threshold if threshold was changed. if (threshold != _threshold) changeThreshold(_threshold); } /// @dev Allows to swap/replace an owner from the Safe with another address. /// This can only be done via a Safe transaction. /// @notice Replaces the owner `oldOwner` in the Safe with `newOwner`. /// @param prevOwner Owner that pointed to the owner to be replaced in the linked list /// @param oldOwner Owner address to be replaced. /// @param newOwner New owner address. function swapOwner( address prevOwner, address oldOwner, address newOwner ) public authorized { // Owner address cannot be null, the sentinel or the Safe itself. require(newOwner != address(0) && newOwner != SENTINEL_OWNERS && newOwner != address(this), "GS203"); // No duplicate owners allowed. require(owners[newOwner] == address(0), "GS204"); // Validate oldOwner address and check that it corresponds to owner index. require(oldOwner != address(0) && oldOwner != SENTINEL_OWNERS, "GS203"); require(owners[prevOwner] == oldOwner, "GS205"); owners[newOwner] = owners[oldOwner]; owners[prevOwner] = newOwner; owners[oldOwner] = address(0); emit RemovedOwner(oldOwner); emit AddedOwner(newOwner); } /// @dev Allows to update the number of required confirmations by Safe owners. /// This can only be done via a Safe transaction. /// @notice Changes the threshold of the Safe to `_threshold`. /// @param _threshold New threshold. function changeThreshold(uint256 _threshold) public authorized { // Validate that threshold is smaller than number of owners. require(_threshold <= ownerCount, "GS201"); // There has to be at least one Safe owner. require(_threshold >= 1, "GS202"); threshold = _threshold; emit ChangedThreshold(threshold); } function getThreshold() public view returns (uint256) { return threshold; } function isOwner(address owner) public view returns (bool) { return owner != SENTINEL_OWNERS && owners[owner] != address(0); } /// @dev Returns array of owners. /// @return Array of Safe owners. function getOwners() public view returns (address[] memory) { address[] memory array = new address[](ownerCount); // populate return array uint256 index = 0; address currentOwner = owners[SENTINEL_OWNERS]; while (currentOwner != SENTINEL_OWNERS) { array[index] = currentOwner; currentOwner = owners[currentOwner]; index++; } return array; } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; /// @title Enum - Collection of enums /// @author Richard Meissner - <[email protected]> contract Enum { enum Operation {Call, DelegateCall} } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; /// @title EtherPaymentFallback - A contract that has a fallback to accept ether payments /// @author Richard Meissner - <[email protected]> contract EtherPaymentFallback { event SafeReceived(address indexed sender, uint256 value); /// @dev Fallback function accepts Ether transactions. receive() external payable { emit SafeReceived(msg.sender, msg.value); } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; /// @title SecuredTokenTransfer - Secure token transfer /// @author Richard Meissner - <[email protected]> contract SecuredTokenTransfer { /// @dev Transfers a token and returns if it was a success /// @param token Token that should be transferred /// @param receiver Receiver to whom the token should be transferred /// @param amount The amount of tokens that should be transferred function transferToken( address token, address receiver, uint256 amount ) internal returns (bool transferred) { // 0xa9059cbb - keccack("transfer(address,uint256)") bytes memory data = abi.encodeWithSelector(0xa9059cbb, receiver, amount); // solhint-disable-next-line no-inline-assembly assembly { // We write the return value to scratch space. // See https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory let success := call(sub(gas(), 10000), token, 0, add(data, 0x20), mload(data), 0, 0x20) switch returndatasize() case 0 { transferred := success } case 0x20 { transferred := iszero(or(iszero(success), iszero(mload(0)))) } default { transferred := 0 } } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; /// @title SelfAuthorized - authorizes current contract to perform actions /// @author Richard Meissner - <[email protected]> contract SelfAuthorized { function requireSelfCall() private view { require(msg.sender == address(this), "GS031"); } modifier authorized() { // This is a function call as it minimized the bytecode size requireSelfCall(); _; } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; /// @title SignatureDecoder - Decodes signatures that a encoded as bytes /// @author Richard Meissner - <[email protected]> contract SignatureDecoder { /// @dev divides bytes signature into `uint8 v, bytes32 r, bytes32 s`. /// @notice Make sure to peform a bounds check for @param pos, to avoid out of bounds access on @param signatures /// @param pos which signature to read. A prior bounds check of this parameter should be performed, to avoid out of bounds access /// @param signatures concatenated rsv signatures function signatureSplit(bytes memory signatures, uint256 pos) internal pure returns ( uint8 v, bytes32 r, bytes32 s ) { // The signature format is a compact form of: // {bytes32 r}{bytes32 s}{uint8 v} // Compact means, uint8 is not padded to 32 bytes. // solhint-disable-next-line no-inline-assembly assembly { let signaturePos := mul(0x41, pos) r := mload(add(signatures, add(signaturePos, 0x20))) s := mload(add(signatures, add(signaturePos, 0x40))) // Here we are loading the last 32 bytes, including 31 bytes // of 's'. There is no 'mload8' to do this. // // 'byte' is not working due to the Solidity parser, so lets // use the second best option, 'and' v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff) } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; /// @title Singleton - Base for singleton contracts (should always be first super contract) /// This contract is tightly coupled to our proxy contract (see `proxies/GnosisSafeProxy.sol`) /// @author Richard Meissner - <[email protected]> contract Singleton { // singleton always needs to be first declared variable, to ensure that it is at the same location as in the Proxy contract. // It should also always be ensured that the address is stored alone (uses a full word) address private singleton; } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; /// @title StorageAccessible - generic base contract that allows callers to access all internal storage. /// @notice See https://github.com/gnosis/util-contracts/blob/bb5fe5fb5df6d8400998094fb1b32a178a47c3a1/contracts/StorageAccessible.sol contract StorageAccessible { /** * @dev Reads `length` bytes of storage in the currents contract * @param offset - the offset in the current contract's storage in words to start reading from * @param length - the number of words (32 bytes) of data to read * @return the bytes that were read. */ function getStorageAt(uint256 offset, uint256 length) public view returns (bytes memory) { bytes memory result = new bytes(length * 32); for (uint256 index = 0; index < length; index++) { // solhint-disable-next-line no-inline-assembly assembly { let word := sload(add(offset, index)) mstore(add(add(result, 0x20), mul(index, 0x20)), word) } } return result; } /** * @dev Performs a delegetecall on a targetContract in the context of self. * Internally reverts execution to avoid side effects (making it static). * * This method reverts with data equal to `abi.encode(bool(success), bytes(response))`. * Specifically, the `returndata` after a call to this method will be: * `success:bool || response.length:uint256 || response:bytes`. * * @param targetContract Address of the contract containing the code to execute. * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments). */ function simulateAndRevert(address targetContract, bytes memory calldataPayload) external { // solhint-disable-next-line no-inline-assembly assembly { let success := delegatecall(gas(), targetContract, add(calldataPayload, 0x20), mload(calldataPayload), 0, 0) mstore(0x00, success) mstore(0x20, returndatasize()) returndatacopy(0x40, 0, returndatasize()) revert(0, add(returndatasize(), 0x40)) } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; /** * @title GnosisSafeMath * @dev Math operations with safety checks that revert on error * Renamed from SafeMath to GnosisSafeMath to avoid conflicts * TODO: remove once open zeppelin update to solc 0.5.0 */ library GnosisSafeMath { /** * @dev Multiplies two numbers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two numbers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; contract ISignatureValidatorConstants { // bytes4(keccak256("isValidSignature(bytes,bytes)") bytes4 internal constant EIP1271_MAGIC_VALUE = 0x20c13b0b; } abstract contract ISignatureValidator is ISignatureValidatorConstants { /** * @dev Should return whether the signature provided is valid for the provided data * @param _data Arbitrary length data signed on the behalf of address(this) * @param _signature Signature byte array associated with _data * * MUST return the bytes4 magic value 0x20c13b0b when function passes. * MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5) * MUST allow external calls */ function isValidSignature(bytes memory _data, bytes memory _signature) public view virtual returns (bytes4); }
File 5 of 5: MultiSendCallOnly
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity >=0.7.0 <0.9.0; /// @title Multi Send Call Only - Allows to batch multiple transactions into one, but only calls /// @author Stefan George - <[email protected]> /// @author Richard Meissner - <[email protected]> /// @notice The guard logic is not required here as this contract doesn't support nested delegate calls contract MultiSendCallOnly { /// @dev Sends multiple transactions and reverts all if one fails. /// @param transactions Encoded transactions. Each transaction is encoded as a packed bytes of /// operation has to be uint8(0) in this version (=> 1 byte), /// to as a address (=> 20 bytes), /// value as a uint256 (=> 32 bytes), /// data length as a uint256 (=> 32 bytes), /// data as bytes. /// see abi.encodePacked for more information on packed encoding /// @notice The code is for most part the same as the normal MultiSend (to keep compatibility), /// but reverts if a transaction tries to use a delegatecall. /// @notice This method is payable as delegatecalls keep the msg.value from the previous call /// If the calling method (e.g. execTransaction) received ETH this would revert otherwise function multiSend(bytes memory transactions) public payable { // solhint-disable-next-line no-inline-assembly assembly { let length := mload(transactions) let i := 0x20 for { // Pre block is not used in "while mode" } lt(i, length) { // Post block is not used in "while mode" } { // First byte of the data is the operation. // We shift by 248 bits (256 - 8 [operation byte]) it right since mload will always load 32 bytes (a word). // This will also zero out unused data. let operation := shr(0xf8, mload(add(transactions, i))) // We offset the load address by 1 byte (operation byte) // We shift it right by 96 bits (256 - 160 [20 address bytes]) to right-align the data and zero out unused data. let to := shr(0x60, mload(add(transactions, add(i, 0x01)))) // We offset the load address by 21 byte (operation byte + 20 address bytes) let value := mload(add(transactions, add(i, 0x15))) // We offset the load address by 53 byte (operation byte + 20 address bytes + 32 value bytes) let dataLength := mload(add(transactions, add(i, 0x35))) // We offset the load address by 85 byte (operation byte + 20 address bytes + 32 value bytes + 32 data length bytes) let data := add(transactions, add(i, 0x55)) let success := 0 switch operation case 0 { success := call(gas(), to, value, data, dataLength, 0, 0) } // This version does not allow delegatecalls case 1 { revert(0, 0) } if eq(success, 0) { revert(0, 0) } // Next entry starts at 85 byte + data length i := add(i, add(0x55, dataLength)) } } } }