Transaction Hash:
Block:
21647212 at Jan-17-2025 10:30:47 PM +UTC
Transaction Fee:
0.000313263390016599 ETH
$0.76
Gas Used:
46,127 Gas / 6.791323737 Gwei
Emitted Events:
360 |
BuildrBuild.ApprovalForAll( owner=[Sender] 0xf09e3475d3d76556052ff309cddcdbe1ec5d70bf, operator=0x1E004978...d54003c71, approved=True )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 9.81110323358957975 Eth | 9.81110358046461975 Eth | 0.00000034687504 | |
0xD8d21E5f...e3D6aC0DE | |||||
0xF09e3475...1eC5d70bF |
0.003388385652406801 Eth
Nonce: 69
|
0.003075122262390202 Eth
Nonce: 70
| 0.000313263390016599 |
Execution Trace
BuildrBuild.setApprovalForAll( operator=0x1E0049783F008A0085193E00003D00cd54003c71, approved=True )
setApprovalForAll[ERC721 (ln:358)]
ApprovalForAll[ERC721 (ln:360)]
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.20; import "../lib/solmate/src/tokens/ERC721.sol"; import "../lib/openzeppelin-contracts/contracts/utils/Strings.sol"; error FixTokenId(); error NotEOA(); error TransferFailed(); error NotTokenOwner(); error NotTheBuildr(); /// @title buildr contract /// @author 2bb.dev /// @notice this contract spawns buildrs contract BuildrBuild is ERC721 { using Strings for uint256; enum Web3District { Nomads, ContentMaestros, Founders, Investors, Devs } struct Outputs { uint256 tokenId; uint256 balance; Web3District district; uint256 order; } mapping(uint256 => uint256) private map; mapping(uint256 => Web3District) private buildrDistrict; mapping(uint256 => string) private buildrInfo; mapping(uint256 => mapping(Web3District => uint256)) private buildrBalance; Outputs[] public outputs; string public baseURI; uint256 private constant TOTAL_SUPPLY = 4024; uint256 private constant INFRA_COST = 0.005 ether; address private buildr; event Received( address indexed caller, uint256 indexed amount, string indexed message ); event MapChange( uint256 indexed mapToken1, uint256 indexed mapToken2, uint256 indexed token2 ); modifier onlyEOA() { if (msg.sender != tx.origin) { revert NotEOA(); } _; } constructor( string memory _name, string memory _symbol, string memory _baseURI ) ERC721(_name, _symbol) { baseURI = _baseURI; buildr = msg.sender; } receive() external payable { emit Received(msg.sender, msg.value, "Kudos"); } fallback() external payable { emit Received(msg.sender, msg.value, "Fallback was called"); } function mintBuildr(uint256 _tokenId) external payable onlyEOA { if (msg.value < INFRA_COST) { revert TransferFailed(); } if (_tokenId > TOTAL_SUPPLY || _tokenId < 1) { revert FixTokenId(); } _mint(msg.sender, _tokenId); } /// @notice destination token is burned /// _token1 -> _token2 => _token2 is burned afterwards function mapChange(uint256 _token1, uint256 _token2) external { if ( ownerOf(_token1) != ownerOf(_token2) || ownerOf(_token2) != msg.sender ) { revert NotTokenOwner(); } uint256 tmp_token1 = mapView(_token1); uint256 tmp_token2 = mapView(_token2); resetBuildrInfo(_token2); _burn(_token2); map[_token1] = tmp_token2; map[_token2] = tmp_token1; emit MapChange(map[_token1], map[_token2], _token2); } function fundBuildr( uint256 _tokenId, Web3District _district ) external payable { if (_tokenId > TOTAL_SUPPLY || _tokenId < 1) { revert FixTokenId(); } buildrBalance[_tokenId][_district] += msg.value; } function withdrawETH() external { uint256 balance = address(this).balance; (bool transferTx /*memory data*/, ) = buildr.call{value: balance}(""); if (!transferTx) { revert TransferFailed(); } } function editAllDetails_v2( Web3District _district, uint256 _tokenId, string calldata _ipfsCID ) external { if (ownerOf(_tokenId) != msg.sender) { revert NotTokenOwner(); } editDistrict(_district, _tokenId); editBuildrDetail(_ipfsCID, _tokenId); } function editBuildrDistrict( Web3District _district, uint256 _tokenId ) external { if (ownerOf(_tokenId) != msg.sender) { revert NotTokenOwner(); } editDistrict(_district, _tokenId); } function editBuildrInfo( string calldata _ipfsCID, uint256 _tokenId ) external { if (ownerOf(_tokenId) != msg.sender) { revert NotTokenOwner(); } editBuildrDetail(_ipfsCID, _tokenId); } function changeBuildr(address _buildr) external { if (msg.sender != buildr) { revert NotTheBuildr(); } buildr = _buildr; } function transferFrom( address from, address to, uint256 id ) public override { super.transferFrom(from, to, id); resetBuildrInfo(id); } function tokenURI( uint256 tokenId ) public view override returns (string memory) { return string(abi.encodePacked(baseURI, tokenId.toString(), ".json")); } function getBuildrInfo( uint256 _tokenId ) public view returns (string memory) { if (_tokenId > TOTAL_SUPPLY || _tokenId < 1) { revert FixTokenId(); } return buildrInfo[_tokenId]; } function getInfraCosts() public pure returns (uint256) { return INFRA_COST; } function getTokenMap(uint256 _tokenId) public view returns (uint256) { if (_tokenId > TOTAL_SUPPLY || _tokenId < 1) { revert FixTokenId(); } return mapView(_tokenId); } function getFullMap( uint256 _start, uint256 _limit ) public view returns (Outputs[] memory) { if (_start < 1) { revert FixTokenId(); } Outputs[] memory mapOutput = new Outputs[](_limit); for (uint256 i = 0; i < _limit; i++) { uint256 id = _start + i; if (id <= 4024) { mapOutput[i].tokenId = id; mapOutput[i].balance = getBuildrTotalBalance(id); mapOutput[i].district = buildrDistrict[id]; mapOutput[i].order = mapView(id); } } return mapOutput; } function getFullMap_v2( uint256 _start, uint256 _limit ) public view returns (Outputs[] memory) { if (_start < 1) { revert FixTokenId(); } Outputs[] memory mapOutput = new Outputs[](_limit); for (uint256 i = 0; i < _limit; i++) { uint256 id = _start + i; if (id <= 4024) { mapOutput[i].district = buildrDistrict[id]; mapOutput[i].balance = getBuildrDistrictBalance( _start + i, buildrDistrict[id] ); mapOutput[i].tokenId = id; } } return mapOutput; } function getDistrictMap_v2( Web3District _district, uint256 _start, uint256 _limit ) public view returns (Outputs[] memory) { if (_start < 1) { revert FixTokenId(); } Outputs[] memory mapOutput = new Outputs[](_limit); uint256 temp; for (uint256 i = 0; i < _limit; i++) { uint256 id = _start + i; if ( (buildrDistrict[id] == _district) && (_ownerOf[id] != address(0)) ) { mapOutput[temp].tokenId = id; mapOutput[temp].balance = getBuildrDistrictBalance( id, _district ); mapOutput[temp].district = buildrDistrict[id]; temp++; } } return mapOutput; } function getUnassignedBuildrs( uint256 _start, uint256 _limit ) public view returns (Outputs[] memory) { if (_start < 1) { revert FixTokenId(); } Outputs[] memory mapOutput = new Outputs[](_limit); uint256 temp; for (uint256 i = 0; i < _limit; i++) { uint256 id = _start + i; if ( (buildrDistrict[id] == Web3District(0)) && (_ownerOf[id] == address(0) && (id <= 4024)) ) { mapOutput[temp].tokenId = id; mapOutput[temp].balance = getBuildrTotalBalance(id); temp++; } } return mapOutput; } function getDistrict(uint256 _tokenId) public view returns (Web3District) { if (_tokenId > TOTAL_SUPPLY || _tokenId < 1) { revert FixTokenId(); } return buildrDistrict[_tokenId]; } function getBuildrDistrictBalance( uint256 _tokenId, Web3District _district ) public view returns (uint256) { return buildrBalance[_tokenId][_district]; } function getBuildrTotalBalance( uint256 _tokenId ) public view returns (uint256) { uint256 balance; for (uint256 i = 0; i < 5; i++) { Web3District district = Web3District(i); balance += buildrBalance[_tokenId][district]; } return balance; } function totalSupply() public pure returns (uint256) { return TOTAL_SUPPLY; } function getBuildr() public view returns (address) { return buildr; } function resetBuildrInfo(uint256 _tokenId) private { delete buildrInfo[_tokenId]; buildrDistrict[_tokenId] = Web3District.Nomads; } function editDistrict(Web3District _district, uint256 _tokenId) private { buildrDistrict[_tokenId] = _district; } function editBuildrDetail( string calldata _ipfsCID, uint256 _tokenId ) private { buildrInfo[_tokenId] = _ipfsCID; } function mapView(uint256 _tokenId) private view returns (uint256) { return map[_tokenId] == 0 ? _tokenId : map[_tokenId]; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern, minimalist, and gas efficient ERC-721 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 indexed id); event Approval(address indexed owner, address indexed spender, uint256 indexed id); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /*////////////////////////////////////////////////////////////// METADATA STORAGE/LOGIC //////////////////////////////////////////////////////////////*/ string public name; string public symbol; function tokenURI(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC721 BALANCE/OWNER STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) internal _ownerOf; mapping(address => uint256) internal _balanceOf; function ownerOf(uint256 id) public view virtual returns (address owner) { require((owner = _ownerOf[id]) != address(0), "NOT_MINTED"); } function balanceOf(address owner) public view virtual returns (uint256) { require(owner != address(0), "ZERO_ADDRESS"); return _balanceOf[owner]; } /*////////////////////////////////////////////////////////////// ERC721 APPROVAL STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) public getApproved; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(string memory _name, string memory _symbol) { name = _name; symbol = _symbol; } /*////////////////////////////////////////////////////////////// ERC721 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 id) public virtual { address owner = _ownerOf[id]; require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED"); getApproved[id] = spender; emit Approval(owner, spender, id); } function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function transferFrom( address from, address to, uint256 id ) public virtual { require(from == _ownerOf[id], "WRONG_FROM"); require(to != address(0), "INVALID_RECIPIENT"); require( msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id], "NOT_AUTHORIZED" ); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. unchecked { _balanceOf[from]--; _balanceOf[to]++; } _ownerOf[id] = to; delete getApproved[id]; emit Transfer(from, to, id); } function safeTransferFrom( address from, address to, uint256 id ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function safeTransferFrom( address from, address to, uint256 id, bytes calldata data ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721 interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 id) internal virtual { require(to != address(0), "INVALID_RECIPIENT"); require(_ownerOf[id] == address(0), "ALREADY_MINTED"); // Counter overflow is incredibly unrealistic. unchecked { _balanceOf[to]++; } _ownerOf[id] = to; emit Transfer(address(0), to, id); } function _burn(uint256 id) internal virtual { address owner = _ownerOf[id]; require(owner != address(0), "NOT_MINTED"); // Ownership check above ensures no underflow. unchecked { _balanceOf[owner]--; } delete _ownerOf[id]; delete getApproved[id]; emit Transfer(owner, address(0), id); } /*////////////////////////////////////////////////////////////// INTERNAL SAFE MINT LOGIC //////////////////////////////////////////////////////////////*/ function _safeMint(address to, uint256 id) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function _safeMint( address to, uint256 id, bytes memory data ) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } } /// @notice A generic interface for a contract which properly accepts ERC721 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721TokenReceiver { function onERC721Received( address, address, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC721TokenReceiver.onERC721Received.selector; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }