Transaction Hash:
Block:
18635189 at Nov-23-2023 03:00:35 PM +UTC
Transaction Fee:
0.00481157100123098 ETH
$11.59
Gas Used:
105,890 Gas / 45.439333282 Gwei
Emitted Events:
233 |
Infiltration.ConsecutiveTransfer( fromTokenId=4317, toTokenId=4318, from=0x00000000...000000000, to=[Sender] 0x33352d8d29e293f4b379e28411337d9f80963574 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x00000000...85b7db719 | 215.8 Eth | 215.9 Eth | 0.1 | ||
0x33352D8D...F80963574 |
0.166874801346075955 Eth
Nonce: 981
|
0.062063230344844975 Eth
Nonce: 982
| 0.10481157100123098 | ||
0x77777A6C...0F660eC94
Miner
| (MEV Builder: 0x777...C94) | 2.466480230769935445 Eth | 2.466490819769935445 Eth | 0.000010589 |
Execution Trace
ETH 0.1
Infiltration.mint( quantity=2 )
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import {IInfiltration} from "./interfaces/IInfiltration.sol"; import {OwnableTwoSteps} from "@looksrare/contracts-libs/contracts/OwnableTwoSteps.sol"; import {IERC20} from "@looksrare/contracts-libs/contracts/interfaces/generic/IERC20.sol"; import {ProtocolFee} from "@looksrare/contracts-libs/contracts/ProtocolFee.sol"; import {PackableReentrancyGuard} from "@looksrare/contracts-libs/contracts/PackableReentrancyGuard.sol"; import {LowLevelERC20Transfer} from "@looksrare/contracts-libs/contracts/lowLevelCallers/LowLevelERC20Transfer.sol"; import {LowLevelWETH} from "@looksrare/contracts-libs/contracts/lowLevelCallers/LowLevelWETH.sol"; import {ITransferManager} from "@looksrare/contracts-transfer-manager/contracts/interfaces/ITransferManager.sol"; import {VRFCoordinatorV2Interface} from "@chainlink/contracts/src/v0.8/interfaces/VRFCoordinatorV2Interface.sol"; import {VRFConsumerBaseV2} from "@chainlink/contracts/src/v0.8/VRFConsumerBaseV2.sol"; import "erc721a/contracts/ERC721A.sol"; import {UnsafeMathUint256} from "./libraries/UnsafeMathUint256.sol"; // .:^^^^^^:::::::::::::::::::::::::::::::::::::::::::::. // :~7777!!!77?JJ??????!?YYYYYYYYJ?7~~!!!!!!!!!7???7~~~!~~^:. // :~!!!~~77JYYYJJYJJJJJ7J5PPPPP55?!!!!!!!7!!~~~~~~!77??7?!7!!~^. // .^~!!!7JYYYYYYJJJJJJJJJ7Y5PPPY?!!!!!!~~~~~~!7!!~~~~~~!????J??7!!^. // .:^!!?JYYYYYYYYJJJJJJJYJJ!J55YJ?!!!!!~~~~~~~~~~~!!7!!!!!7!!!!!77?JJ?!~:. // .:^~?YYYYYYYYYJJJJJJJJJJJJ??YYJ?!!!77!!!!!!!!!!!!!!~~!!!77!!!!!!!!!!!7?J7~:. // .^~~!~JYYYYYYYYYJJJJJJJJ???~^??7^.........:::::::^^^^!!!!!77!!!!!!!!!!~~!!7?7!^. // :^!!!!!~~JYYYYYYJJJJJJJ7!~^:::!????~.... ...:::::::::::^^~77!!!!!!!!!~~~!!!77!!^. // :~77~!7!!~!JYJJJJJJJJJ!^^^^^^^:^JJ???7!^^::::::::..::::::::::::.:~!!!!!~7?!~~~~!!!!~~!^. // :!?7!!!77!~~JJJJJJJJ?!^^^^^^^^^::J???5PPG##GPPP5555?77!::::::::.....::^!!!J5Y?!~~~~!77~~~!~: // .:7J?!~!77!~~~!JJJJJ?~^^^^^^^^^^^::~?5##&@@@@@&BGBGPPPP555YJ!^::......:::...^?55YJ?!~~!!!!~~!!!~: // .^7J?7!!!!!!~~~~JJJJ7~^^^^^^^^^^^^:^J##@@@@@@@@@@@&#GGPPP555PPP55?:...::::::.. :!?JJJJ7!~~!77!~!!~!~:. // .:!?77!!!!!!~~~~~7JJ7~^^^^^^^^^^^^::~J#@@@@@@@@@@@@@@@#BGP55PPPPPGGGJ^......:::. ^~:^7???7!!!!!!~~!!!~!~:. // .:!7!~~!!!!!!!~~~~!J7~^^^^^^^^^^^^^::7PB&@@@@@@@@&&B55555YGGPPPPPPGGBBBG7......:::..:^::^!7777!!!!!~~!!!!~!~^. // .:^~!?J!~!7!!!!!~~~!~~^^~^^^^^:::::::.7PGB&&&&@@@&G?~~~!!!!~~~75GBBBBBBBB#B? ...... .... :~!7!!!!~~!!!!!7!~7?~. // .:^~!?5PPJ!~!!!!!~!!^::!~!!!^:....... .^JPB&&&&&&&G?~~!!7?JJ7!~^:^!5###&#####P~ :^^: .^!!~~!7777!!!!~7Y5J!. // .:^~!JY5PPPPY!~~~~!!^. .:^!!^. ::YBB####&&&P~^~!~~~^^^^:::::.^P&&&&&#&&&5 .:!????7!^::. .^!!77777777!~!J5PPY!: // .:~~~?Y5555PP5Y?~~!!^. .^:..^^^!77?!5BB######B~:^^^::::::::......^#&&&&&&&&5 .:!???????????7!!^::~7?7?77777777?Y555J~. // .:^~!!7?J??????7!!!7~. .......:^77?JJ!5BBBBBBB#B^:::::....::::::::.~&@@@@&&&&5...^^^^^^^^^^^~^^^^^^:.~7!!~~~~~!!!!!77?7~:. // .:^~!~!77!!!!!~~~!!!^:..... .::~~:....:^^:?GBBBGPPP5~.....:::::::::::.:7&&&&&&&&&P:::^:^^^^^:. .:. .^~~~~~~~~~~~~~!77!~:. // .:^~!!!77!!!~~~~~~!!^. .::!77~^:......!Y555555555!:..::::::::::..:?#&&&&&&@@&5!7???????!. :~:.. .^!!~~~~~~~~~~~!!7!~:. // ..:^~!!7?!!~~~~~~~~!!~:.:^!7!^.:^: .....755PPPPPPGG57:..::::::..:7P#&&&&&&@@@P!7????JJJ!. :^::.:~!!~~~~~~~~!!!!!7!~:.. // .....:^~!!77!~~~~~~~!!!!!^!7!:....^^ .. :?PPGGGGGBBBBPYJ^^^^^^JYG####&&&#&@@G?7????JJJ~. :^:.:!777!!!!!!!!!!!!7!~:..... // .........:^~!!77!~~~~~~!??JY?!:... .^^ .. :?PGBBBB####&@&######&&&#######&&#P?7????JJ7~. :^:^!?77777777777!!!7!^:......... // ..........:::^~!!77!!~~~~!JJ5J7!:. .^^. ....~PBB#####&&@@@@@@@@&&########&#J77????J?7: :^^!?77777777??7!!!7!^:::........... // ..........:::::::^~~!7?7~~~~~7JY7!~~^. .^^. . ^7?G###&&&@@@@@@@@&&######GJY?77????J?7: :!!!J?777777??7!!!!~^:::::::.......... // ..........::::::::^^^^~~?J7!~~~~~??7^757^^. .^^. :7?PBB#&&&&&&&&&&#BBP?7^!777????J?7..~~?5?!????????7!!!!~^^^^::::::::.......... // ..........:::::::^^^^^^^^^!???!~~~~!?77J?:~~^^:^: . .::!JJJJJJJJJJ!^^^:..777??????!~^7J!JY77JJJJ??7!!!!~^^^^^^^^:::::::.......... // .........:::::::^^^^^^~~~~^^^!7J?!!~~~77!^:~~!~~~~:... . .. .::::::::::::::.^777?77??7~~7J5!!7?JJJJ?7!!!!~^^~~~~^^^^^^:::::::......... // .........:::::::^^^^^~~~~~~!~~^^!JJ?7!~!!!~^^^~~~~!??!^~^.... .. .:::::::::::::::77???Y5Y7~~?Y5YJJJJJJ??7~!!~~~!!~~~~~~^^^^^:::::::......... // ........::::::^^^^^^~~~~~!!!!!!!~~!??77!!!~~~~:^~~~!?J???7777~^~^~~~~!!~~~~~~~!7JYYP5PG57^!?Y55YYYJJJJ7!!!~~!!!!!!!~~~~~^^^^^^::::::........ // ......:::::::^^^^^~~~~~~!!!!!7777!~~!??7777!~!~^^~!^!??J??????????555PP5555555J?55P5PP57^!?Y55P5YYYJ?!!!~~!7777!!!!!~~~~~~^^^^^:::::::...... // .....:::::::^^^^^~~~~~!!!!!!77777??7~~!???7?777!^~!!7???77???????JY55GG555555Y??5555PY?77JY55PPP5Y?!!!~!7??777777!!!!!~~~~~^^^^^^::::::..... // ....::::::^^^^^^~~~~~!!!!!77777??????!^^!?YY??!!!^~!777!^!??7!!!!!7Y5PP5YYYYJ7~Y5P55?7?JJY5555PPY7!!^^!??????77777!!!!!~~~~~^^^^^^::::::.... // ...::::::^^^^^~~~~~!!!!!!77777??77!~~~~^:~7JP5J7^~~!!!7!7??!7777?JJ5YYYYPPP5J77555PJ77?JY555PP5J?7~^^~~~~!77??77777!!!!!!~~~~~^^^^^::::::... // ..::::::^^^^^~~~~~!!!!!777777!!~~~~~!!!!!~^~?5PY7~~!77!!?7!!7????JJ55555555Y?7JP5YJ?7JJY55555Y?7~^~!!!!!~~~~~!!777777!!!!!~~~~~^^^^^::::::.. // ..::::::^^^^~~~~~!!!!!77!!~~~~~~~~7?JJJ?77!^:~?Y5Y!~!7!^7J7~~!7777?YYYYYYYYJ7?55J7JJ7J55555Y?!^:^!77?JJJ?7~~~~~~~~!!77!!!!!~~~~~^^^^^:::::.. // .::::::^^^^^~~~~!!!!!!!^^^^^^~!!7777JJY?77!!~^.^7YY?~^!!^?J7~^^!77?YYYYYYYY7~75Y7JJ?JY555Y?!^:^~!!77?YJJ7777!!~^^^^^^!!!!!!!~~~~^^^^^::::::. // ::::::^^^^^~~~~~!!!!7!:!!^:^~~!!!7!777?JJ?77!~.::^7JJ7^^~~~????77?Y5PP5P55Y7?5Y?J???Y55Y?!^:::~!77?JJ?777!7!!!~~^:^!!^!7!!!!~~~~~^^^^^:::::: // :::::^^^^^~~~~~!!!!77!:J?!^^^~~~!!!!!777??777~.^^::^7YJ!^^!!77!!7JJY555555J7!!77J??JYY?!^::^^:!777??777!!!!!~~~^^^!?J^!77!!!!~~~~~^^^^^::::: // :::::^^^^^~~~~!!!!!777~^!???7~^~~~!!!!!777777!.^~~~^^~?J!~^~~~!7??JJ55555Y?77!!???J?~^^:^~~~^:!777777!!!!!~~~^~7???!^~777!!!!!~~~~^^^^^::::: // ::::^^^^^~~~~~!!!!77777~^^~!??7~^~~~~~!!!!!777!.^!!~!!^^!?7!77!~!?JJ5555YJ7~^7JJJ!~:.:!!~!!^:!777!!!!!~~~~~^~7??!~^^~77777!!!!~~~~~^^^^^:::: // ::::^^^^^~~~~!!!!!7777??7!^^^!??7~^~~~~~~!!!!!!.^~!!7??^.^!????????YPPPPJ~^~7JJ?!^:.^??7!!~^:!!!!!!~~~~~~^~7??!^^^!7??7777!!!!!~~~~^^^^^:::: // ::::^^^^~~~~~!!!!77777777??~^^^~7?7~^~^~~~~!~!~.:!!7!75J::::!7????7?PPP5!^~7777~::::J57!7!!^:!!~!~~~~^~^~7?7~^^^~??77777777!!!!~~~~~^^^^:::: // :::^^^^^~~~~!!!!!~~~^:::^^~7^:^^^~7?7!^^^^~~~~~..!!!77?5J:^^::~7?J?7JPPJ:~77!^::^^:J5?77!!!..~~~~~^^^^!7?7~^^^^~7~^^:::^~~~!!!!!~~~~^^^^^::: // ::::^^^^~~~~!!!~^^^^~^^^^:.::::^~^:~7??!^::^^^: :~!!!77?5J:^~~::~?JJ?P5~!??~::~~^:J5?77!!!~: :^^^::^!??7~:^~^::::.:^^^^~^^^^~!!!~~~~^^^^:::: // ::::::^^~~~~!!~^^^~~~~^^^^:.::::^~^::~7??!^::::.::!7!!!7?5J^^~!!~^~?YPP?7~^~!!~^^J5?7!!!7!::.::::^!??7~::^~^::::.:^^^^~~~~^^^~!!~~~~^^:::::: // ^^^^~~^^^^~~!~:^^~~!~~~^^^^:.::^~~^^:::^!??!:~!~::^!!!!!7?5J^^~!77~^~??~^~77!~^^J5?7!!!!!^::~!~:!??!^:::^^~~^::.:^^^^~~~!~~^^:~!~~^^^^~~^^^^ // ^^^~~^:^^^^^~:^^~~!!!!!!!~~~^::~^^^^^^:::!J?!^!7!^::~!!!!7?5Y!^~!!7!~^^~!7!!~^!Y5?7!!!!~::^!7!^!?J!:::^^^^^^~::^~~~!!!!!!!~~^^:~^^^^::^~~^^^ // !!~!7^.::^^::.^~~!!!!!77?JJJJ?!~^::^^^^^^~7?~:!!77!^^~~!!!7?J5Y7~^^~!~~!~^^~7Y5J?7!!!~~^^!77!!:~?7~^^^^^^::^~!?JJJJ?77!!!!!~~^.::^^::.^7!~!! // 777J?:.:^^^...:^~!!!7Y??7?777???!.:^~^^^~!~~!!!!!!7?7~^^^~~!77?JJ??~~~~~~??JJ?77!~~^^^~7?7!!!!!!~~!~^^^~^:.!??7777?7??Y7!!!~^:...^^^:.:?J777 // !!7Y?::!77~:^^:.:^~7J??!!!7^~!!77~.:~7~~~~^^?J?!^^~~!7??!~^^^~~!!7????????7!!~~^^^~!??7!~~^^!?J?^^~~~~7~:.~777~^~~7!!??J7~^:.:^^:~77!::?Y7!! // !!7Y?::!!~:~?7~^:::^~~7!!7!^~~~7!!~.:~!!~~~^^^~: .:^^^^~~!7!~~~^:^^^^^^^^^^:^~~~!7!~~^^^^:. :~^^^~~~!!~:.~!!7!^~!~~7!7~~^:::^~7?~:~!!::?Y7!! // ?77?Y7^:^:~!??J?7!^::^~!!!~~~~!!!!~^.:^7?!~~^^^^::.:^^~!!~~~~~~^^^^^^^^^^^^^^~~~~~~!!~^^:.::^^^^~~!?7^:.^~!!!!~~~~!!!~^::^!7?J??!~:^:^7Y?77? // ??!7YJ^.:^!7???YYJ?7~~^^~~7!!!~~~~~~^::^~7??777!~!^^^^:::^~~~!!!!!!!!!!!!!!!!!!~~~^:::^^^^!~!777??7~^::^~~~~~~!!!7~~^^~~7?JYY???7!^:.^JY7!?? // ??77YJ~.^~!77?JJJYYYYJ7!^^^~!777!!~~~~^::^^~!77????77?7!!~~~~^::::::::::::::::^~~~~!!7?77????77!~^^::^~~~~!!777!~^^^!7JYYYYJJJ?77!~^.~JY77?? // J??77YJ~.^!!!JJ??777??YYJJ7!~^^~!77!~~~~~~~^^^^^~~!7777??????777777777777777777??????7777!~~^^^^^~~~~~~~!77!~^^~!7JJYY??777??JJ!!!^.~JY77??J // YY?77JY!:^!!!YJ?7!!!~~!!??JYJJ7!~^~~!!!~!!!!7777~~~~^^^~~~~~!777777777777777777!~~~~~^^^~~~~7777!!!!~!!!~~^~!7JJYJ??!!~~!!!7?JY!!!^:!YJ77?YY // YYJ?77JY!:~!!?Y?7!!!~~~~~~!!7?JYJ?7~^^~~!!!!7????????777777~~~~~~~~~~~~~~~~~~~~~~777777????????7!!!!~~^^~7?JYJ?7!!~~~~~~!!!7?Y?!!~:!YJ77?JYY // YJYJJ?7?J?^:!!?J?!!!~~~~~~~~~~~!7JJYY?~^^~!!77!7777?????????JJJJJJJJJJJJJJJJJJJJ?????????7777!77!!~^^~?YYJJ7!~~~~~~~~~~~!!!?J?!!:^?J?7?JJYJY contract Infiltration is IInfiltration, OwnableTwoSteps, ERC721A, VRFConsumerBaseV2, LowLevelERC20Transfer, LowLevelWETH, ProtocolFee, PackableReentrancyGuard { using UnsafeMathUint256 for uint256; /** * @notice When the frontrun lock is unlocked, agents can escape or heal. */ uint8 private constant FRONTRUN_LOCK__UNLOCKED = 1; /** * @notice When the frontrun lock is locked, agents cannot escape or heal. */ uint8 private constant FRONTRUN_LOCK__LOCKED = 2; /** * @notice When VRF is being requested, agents cannot escape or heal. It unlocks when the randomness is fulfilled. * @dev frontrunLock is initially set as locked so that agents cannot escape or heal before the game starts. * It is unlocked when the first round's randomness is fulfilled. */ uint8 private frontrunLock = FRONTRUN_LOCK__LOCKED; /** * @notice 100% in basis points. */ uint256 private constant ONE_HUNDRED_PERCENT_IN_BASIS_POINTS = 10_000; /** * @notice 100% in basis points squared. */ uint256 private constant ONE_HUNDRED_PERCENT_IN_BASIS_POINTS_SQUARED = 10_000 ** 2; /** * @notice The number of secondary prize pool winners. Their entitled shares are based on their placements. * When the number of active agents is less than or equal to this number, 1 agent is instantly killed * in each round. */ uint256 private constant NUMBER_OF_SECONDARY_PRIZE_POOL_WINNERS = 50; uint256 private constant PROBABILITY_PRECISION = 100_000_000; /** * @notice Max agent supply. */ uint256 public immutable MAX_SUPPLY; /** * @notice Max mint per address. */ uint256 public immutable MAX_MINT_PER_ADDRESS; /** * @notice The price of minting 1 agent. */ uint256 public immutable PRICE; /** * @notice The number of blocks per round. */ uint256 public immutable BLOCKS_PER_ROUND; /** * @notice The percentage of agents to wound per round in basis points. */ uint256 public immutable AGENTS_TO_WOUND_PER_ROUND_IN_BASIS_POINTS; /** * @notice The number of rounds for agents to be wounded before getting killed. */ uint256 public immutable ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD; /** * @notice This value is used as the denominator in healProbability. */ uint256 private immutable ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD_MINUS_ONE; /** * @notice This value is used as the minuend in healProbability. */ uint256 private immutable HEAL_PROBABILITY_MINUEND; /** * @notice The base cost of healing an agent. The cost increases for each successful heal. */ uint256 public immutable HEAL_BASE_COST; /** * @notice WETH address. */ address private immutable WETH; /** * @notice LOOKS address. */ address private immutable LOOKS; /** * @notice Chainlink VRF key hash. */ bytes32 private immutable KEY_HASH; /** * @notice Chainlink VRF coordinator. */ VRFCoordinatorV2Interface private immutable VRF_COORDINATOR; /** * @notice Chainlink VRF subscription ID. */ uint64 private immutable SUBSCRIPTION_ID; /** * @notice The transfer manager contract that manages LOOKS approvals. */ ITransferManager private immutable TRANSFER_MANAGER; /** * @notice The timestamp at which the mint period starts. */ uint40 public mintStart; /** * @notice The timestamp at which the mint period ends. */ uint40 public mintEnd; /** * @notice The bitmap of the placements of the secondary prize pool winners. * @dev Only bit 1 to 50 are used. Bit 0 is not used. */ uint56 private prizesClaimedBitmap; /** * @notice The base URI of the collection. */ string private baseURI; /** * @notice Amount of agents minted per address. */ mapping(address minter => uint256 amount) public amountMintedPerAddress; /** * @notice Chainlink randomness requests. */ mapping(uint256 requestId => RandomnessRequest) public randomnessRequests; /** * @notice The mapping agents acts as an "array". In the beginning of the game, the "length" of the "array" * is the total supply. As the game progresses, the "length" of the "array" decreases * as agents are killed. The function agentsAlive() returns the "length" of the "array". * * When an Agent struct has 0 value for every field with its index within the total supply, * it means that the agent is active. * * Index 0 is not used as agent ID starts from 1. */ mapping(uint256 index => Agent) private agents; /** * @notice It is used to find the index of an agent in the agents mapping given its agent ID. * If the index is 0, it means the agent's index is the same as its agent ID as no swaps * have been made. */ mapping(uint256 agentId => uint256 index) private agentIdToIndex; /** * @notice The maximum healing or wounded agents allowed per round. */ uint256 private constant MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND = 30; /** * @notice The maximum healing or wounded agents allowed per round + 1 for storing the array length. */ uint256 private constant MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND_AND_LENGTH = 31; /** * @notice The first element of the array is the length of the array. */ mapping(uint256 roundId => uint16[MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND_AND_LENGTH] agentIds) private woundedAgentIdsPerRound; /** * @notice The first element of the array is the length of the array. */ mapping(uint256 roundId => uint16[MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND_AND_LENGTH] agentIds) private healingAgentIdsPerRound; /** * @notice Game information. */ GameInfo public gameInfo; /** * @dev Agent struct status offset for bitwise operations. */ uint256 private constant AGENT__STATUS_OFFSET = 16; /** * @dev Agent struct wounded at offset for bitwise operations. */ uint256 private constant AGENT__WOUNDED_AT_OFFSET = 24; /** * @dev Agent struct heal count offset for bitwise operations. */ uint256 private constant AGENT__HEAL_COUNT_OFFSET = 64; /** * @dev GameInfo struct wounded agents offset for bitwise operations. */ uint256 private constant GAME_INFO__WOUNDED_AGENTS_OFFSET = 16; /** * @dev GameInfo struct healing agents offset for bitwise operations. */ uint256 private constant GAME_INFO__HEALING_AGENTS_OFFSET = 32; /** * @dev GameInfo struct dead agents offset for bitwise operations. */ uint256 private constant GAME_INFO__DEAD_AGENTS_OFFSET = 48; /** * @dev GameInfo struct escaped agents offset for bitwise operations. */ uint256 private constant GAME_INFO__ESCAPED_AGENTS_OFFSET = 64; /** * @dev GameInfo struct current round ID offset for bitwise operations. */ uint256 private constant GAME_INFO__CURRENT_ROUND_ID_OFFSET = 80; /** * @dev GameInfo struct current round block number offset for bitwise operations. */ uint256 private constant GAME_INFO__CURRENT_ROUND_BLOCK_NUMBER_OFFSET = 120; /** * @dev RandomnessRequest struct exists offset for bitwise operations. */ uint256 private constant RANDOMNESS_REQUESTS__EXISTS_OFFSET = 8; /** * @dev 2 bytes bitmask. */ uint256 private constant TWO_BYTES_BITMASK = 0xffff; /** * @dev 5 bytes bitmask. */ uint256 private constant FIVE_BYTES_BITMASK = 0xffffffffff; /** * @param constructorCalldata Constructor calldata. See IInfiltration.ConstructorCalldata for its key values. */ constructor( ConstructorCalldata memory constructorCalldata ) OwnableTwoSteps(constructorCalldata.owner) ERC721A(constructorCalldata.name, constructorCalldata.symbol) VRFConsumerBaseV2(constructorCalldata.vrfCoordinator) { if ( constructorCalldata.maxSupply <= NUMBER_OF_SECONDARY_PRIZE_POOL_WINNERS || constructorCalldata.maxSupply > type(uint16).max ) { revert InvalidMaxSupply(); } if ( (constructorCalldata.maxSupply * constructorCalldata.agentsToWoundPerRoundInBasisPoints) > MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND * ONE_HUNDRED_PERCENT_IN_BASIS_POINTS ) { revert WoundedAgentIdsPerRoundExceeded(); } if (constructorCalldata.roundsToBeWoundedBeforeDead < 3) { revert RoundsToBeWoundedBeforeDeadTooLow(); } PRICE = constructorCalldata.price; MAX_SUPPLY = constructorCalldata.maxSupply; MAX_MINT_PER_ADDRESS = constructorCalldata.maxMintPerAddress; BLOCKS_PER_ROUND = constructorCalldata.blocksPerRound; AGENTS_TO_WOUND_PER_ROUND_IN_BASIS_POINTS = constructorCalldata.agentsToWoundPerRoundInBasisPoints; ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD = constructorCalldata.roundsToBeWoundedBeforeDead; // The next 2 values are used in healProbability ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD_MINUS_ONE = ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD.unsafeSubtract(1); HEAL_PROBABILITY_MINUEND = ((ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD * 99 - 80) * PROBABILITY_PRECISION) / ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD_MINUS_ONE; LOOKS = constructorCalldata.looks; HEAL_BASE_COST = constructorCalldata.healBaseCost; KEY_HASH = constructorCalldata.keyHash; VRF_COORDINATOR = VRFCoordinatorV2Interface(constructorCalldata.vrfCoordinator); SUBSCRIPTION_ID = constructorCalldata.subscriptionId; TRANSFER_MANAGER = ITransferManager(constructorCalldata.transferManager); WETH = constructorCalldata.weth; baseURI = constructorCalldata.baseURI; _updateProtocolFeeRecipient(constructorCalldata.protocolFeeRecipient); _updateProtocolFeeBp(constructorCalldata.protocolFeeBp); } /** * @dev updateProtocolFeeBp is not implemented in this contract. */ function updateProtocolFeeBp(uint16) external pure override { revert Immutable(); } /** * @dev updateProtocolFeeRecipient is not implemented in this contract. */ function updateProtocolFeeRecipient(address) external pure override { revert Immutable(); } /** * @inheritdoc IInfiltration */ function setMintPeriod(uint40 newMintStart, uint40 newMintEnd) external onlyOwner { if (newMintStart >= newMintEnd) { revert InvalidMintPeriod(); } if (newMintStart != 0) { if (block.timestamp > newMintStart) { revert MintStartIsInThePast(); } uint256 currentMintStart = mintStart; if (currentMintStart != 0) { if (block.timestamp >= currentMintStart) { revert MintAlreadyStarted(); } } mintStart = newMintStart; } if (block.timestamp > newMintEnd || newMintEnd < mintEnd) { revert MintCanOnlyBeExtended(); } mintEnd = newMintEnd; emit MintPeriodUpdated(newMintStart == 0 ? mintStart : newMintStart, newMintEnd); } /** * @inheritdoc IInfiltration * @notice As long as the game has not started (after mint end), the owner can still mint. */ function premint(address to, uint256 quantity) external payable onlyOwner { _assertExactNativeTokensSupplied(quantity); _assertTotalSupplyNotBreached(quantity); _assertGameNotYetBegun(); _mintERC2309(to, quantity); } /** * @inheritdoc IInfiltration */ function mint(uint256 quantity) external payable nonReentrant { if (block.timestamp < mintStart || block.timestamp > mintEnd) { revert NotInMintPeriod(); } _assertGameNotYetBegun(); uint256 amountMinted = amountMintedPerAddress[msg.sender] + quantity; if (amountMinted > MAX_MINT_PER_ADDRESS) { revert TooManyMinted(); } _assertExactNativeTokensSupplied(quantity); _assertTotalSupplyNotBreached(quantity); amountMintedPerAddress[msg.sender] = amountMinted; _mintERC2309(msg.sender, quantity); } /** * @inheritdoc IInfiltration * @dev If Chainlink randomness callback does not come back after 1 day, we can call * startNewRound to trigger a new randomness request. */ function startGame() external onlyOwner { uint256 numberOfAgents = totalSupply(); if (numberOfAgents < MAX_SUPPLY) { if (block.timestamp < mintEnd) { revert StillMinting(); } } if (numberOfAgents < NUMBER_OF_SECONDARY_PRIZE_POOL_WINNERS) { revert NotEnoughMinted(); } _assertGameNotYetBegun(); gameInfo.currentRoundId = 1; gameInfo.activeAgents = uint16(numberOfAgents); uint256 balance = address(this).balance; uint256 protocolFee = balance.unsafeMultiply(protocolFeeBp).unsafeDivide(ONE_HUNDRED_PERCENT_IN_BASIS_POINTS); unchecked { gameInfo.prizePool = balance - protocolFee; } emit RoundStarted(1); _transferETHAndWrapIfFailWithGasLimit(WETH, protocolFeeRecipient, protocolFee, gasleft()); _requestForRandomness(); } /** * @inheritdoc IInfiltration */ function emergencyWithdraw() external onlyOwner { uint256 activeAgents; uint256 woundedAgents; uint256 healingAgents; uint256 escapedAgents; uint256 deadAgents; uint256 currentRoundId; uint256 currentRoundBlockNumber; assembly { let gameInfoSlot0Value := sload(gameInfo.slot) activeAgents := and(gameInfoSlot0Value, TWO_BYTES_BITMASK) woundedAgents := and(shr(GAME_INFO__WOUNDED_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK) healingAgents := and(shr(GAME_INFO__HEALING_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK) escapedAgents := and(shr(GAME_INFO__ESCAPED_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK) deadAgents := and(shr(GAME_INFO__DEAD_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK) currentRoundId := and(shr(GAME_INFO__CURRENT_ROUND_ID_OFFSET, gameInfoSlot0Value), FIVE_BYTES_BITMASK) currentRoundBlockNumber := and( shr(GAME_INFO__CURRENT_ROUND_BLOCK_NUMBER_OFFSET, gameInfoSlot0Value), FIVE_BYTES_BITMASK ) } bool conditionOne = currentRoundId != 0 && activeAgents + woundedAgents + healingAgents + escapedAgents + deadAgents != totalSupply(); // 50 blocks per round * 216 = 10,800 blocks which is roughly 36 hours // Prefer not to hard code this number as BLOCKS_PER_ROUND is not always 50 bool conditionTwo = currentRoundId != 0 && activeAgents > 1 && block.number > currentRoundBlockNumber + BLOCKS_PER_ROUND * 216; // Just in case startGame reverts, we can withdraw the ETH balance and redistribute to addresses that participated in the mint. bool conditionThree = currentRoundId == 0 && block.timestamp > uint256(mintEnd).unsafeAdd(36 hours); if (conditionOne || conditionTwo || conditionThree) { uint256 ethBalance = address(this).balance; _transferETHAndWrapIfFailWithGasLimit(WETH, msg.sender, ethBalance, gasleft()); uint256 looksBalance = IERC20(LOOKS).balanceOf(address(this)); _executeERC20DirectTransfer(LOOKS, msg.sender, looksBalance); emit EmergencyWithdrawal(ethBalance, looksBalance); } } /** * @inheritdoc IInfiltration * @dev If Chainlink randomness callback does not come back after 1 day, we can try by calling * startNewRound again. */ function startNewRound() external nonReentrant { uint256 currentRoundId = gameInfo.currentRoundId; if (currentRoundId == 0) { revert GameNotYetBegun(); } if (block.number < uint256(gameInfo.currentRoundBlockNumber).unsafeAdd(BLOCKS_PER_ROUND)) { revert TooEarlyToStartNewRound(); } if (block.timestamp < uint256(gameInfo.randomnessLastRequestedAt).unsafeAdd(1 days)) { revert TooEarlyToRetryRandomnessRequest(); } uint256 agentsRemaining = agentsAlive(); uint256 activeAgents = gameInfo.activeAgents; if (agentsRemaining == 1) { if (activeAgents == 1) { revert GameOver(); } } if (activeAgents <= NUMBER_OF_SECONDARY_PRIZE_POOL_WINNERS) { uint256 woundedAgents = gameInfo.woundedAgents; if (woundedAgents != 0) { uint256 killRoundId = currentRoundId > ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD ? currentRoundId.unsafeSubtract(ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD) : 1; uint256 totalDeadAgentsFromKilling; while (woundedAgentIdsPerRound[killRoundId][0] != 0) { uint256 deadAgentsFromKilling = _killWoundedAgents({ currentRoundId: currentRoundId, roundId: killRoundId, currentRoundAgentsAlive: agentsRemaining }); unchecked { totalDeadAgentsFromKilling += deadAgentsFromKilling; agentsRemaining -= deadAgentsFromKilling; ++killRoundId; } } // This is equivalent to // unchecked { // gameInfo.deadAgents += uint16(totalDeadAgentsFromKilling); // } // gameInfo.woundedAgents = 0; assembly { let gameInfoSlot0Value := sload(gameInfo.slot) let deadAgents := and(shr(GAME_INFO__DEAD_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK) gameInfoSlot0Value := and( gameInfoSlot0Value, // This is equivalent to // not( // or( // shl(GAME_INFO__WOUNDED_AGENTS_OFFSET, TWO_BYTES_BITMASK), // shl(GAME_INFO__DEAD_AGENTS_OFFSET, TWO_BYTES_BITMASK) // ) // ) 0xffffffffffffffffffffffffffffffffffffffffffffffff0000ffff0000ffff ) gameInfoSlot0Value := or( gameInfoSlot0Value, shl(GAME_INFO__DEAD_AGENTS_OFFSET, add(deadAgents, totalDeadAgentsFromKilling)) ) sstore(gameInfo.slot, gameInfoSlot0Value) } } if (agentsRemaining > 1) { _requestForRandomness(); } else { _emitWonEventIfOnlyOneAgentRemaining(agentsRemaining, activeAgents); } } else { _requestForRandomness(); } } /** * @inheritdoc IInfiltration */ function claimGrandPrize() external nonReentrant { _assertGameOver(); uint256 agentId = _agentIndexToId(agents[1], 1); _assertAgentOwnership(agentId); uint256 prizePool = gameInfo.prizePool; if (prizePool == 0) { revert NothingToClaim(); } gameInfo.prizePool = 0; _transferETHAndWrapIfFailWithGasLimit(WETH, msg.sender, prizePool, gasleft()); emit PrizeClaimed(agentId, address(0), prizePool); } /** * @inheritdoc IInfiltration */ function claimSecondaryPrizes(uint256 agentId) external nonReentrant { _assertGameOver(); _assertAgentOwnership(agentId); uint256 placement = agentIndex(agentId); _assertValidPlacement(placement); uint56 _prizesClaimedBitmap = prizesClaimedBitmap; if ((_prizesClaimedBitmap >> placement) & 1 != 0) { revert NothingToClaim(); } prizesClaimedBitmap = _prizesClaimedBitmap | uint56(1 << placement); uint256 ethAmount = secondaryPrizePoolShareAmount(gameInfo.secondaryPrizePool, placement); if (ethAmount != 0) { _transferETHAndWrapIfFailWithGasLimit(WETH, msg.sender, ethAmount, gasleft()); emit PrizeClaimed(agentId, address(0), ethAmount); } uint256 secondaryLooksPrizePool = gameInfo.secondaryLooksPrizePool; if (secondaryLooksPrizePool == 0) { secondaryLooksPrizePool = IERC20(LOOKS).balanceOf(address(this)); if (secondaryLooksPrizePool == 0) { return; } gameInfo.secondaryLooksPrizePool = secondaryLooksPrizePool; } uint256 looksAmount = secondaryPrizePoolShareAmount(secondaryLooksPrizePool, placement); if (looksAmount != 0) { _executeERC20DirectTransfer(LOOKS, msg.sender, looksAmount); emit PrizeClaimed(agentId, LOOKS, looksAmount); } } /** * @inheritdoc IInfiltration */ function escape(uint256[] calldata agentIds) external nonReentrant { _assertFrontrunLockIsOff(); uint256 agentIdsCount = agentIds.length; _assertNotEmptyAgentIdsArrayProvided(agentIdsCount); uint256 activeAgents = gameInfo.activeAgents; uint256 activeAgentsAfterEscape = activeAgents - agentIdsCount; _assertGameIsNotOverAfterEscape(activeAgentsAfterEscape); uint256 currentRoundAgentsAlive = agentsAlive(); uint256 prizePool = gameInfo.prizePool; uint256 secondaryPrizePool = gameInfo.secondaryPrizePool; uint256 reward; uint256[] memory rewards = new uint256[](agentIdsCount); for (uint256 i; i < agentIdsCount; ) { uint256 agentId = agentIds[i]; _assertAgentOwnership(agentId); uint256 index = agentIndex(agentId); _assertAgentStatus(agents[index], agentId, AgentStatus.Active); uint256 totalEscapeValue = prizePool / currentRoundAgentsAlive; uint256 rewardForPlayer = (totalEscapeValue * _escapeMultiplier(currentRoundAgentsAlive)) / ONE_HUNDRED_PERCENT_IN_BASIS_POINTS; rewards[i] = rewardForPlayer; reward += rewardForPlayer; uint256 rewardToSecondaryPrizePool = (totalEscapeValue.unsafeSubtract(rewardForPlayer) * _escapeRewardSplitForSecondaryPrizePool(currentRoundAgentsAlive)) / ONE_HUNDRED_PERCENT_IN_BASIS_POINTS; unchecked { prizePool = prizePool - rewardForPlayer - rewardToSecondaryPrizePool; } secondaryPrizePool += rewardToSecondaryPrizePool; _swap({ currentAgentIndex: index, lastAgentIndex: currentRoundAgentsAlive, agentId: agentId, newStatus: AgentStatus.Escaped }); unchecked { --currentRoundAgentsAlive; ++i; } } // This is equivalent to // unchecked { // gameInfo.activeAgents = uint16(activeAgentsAfterEscape); // gameInfo.escapedAgents += uint16(agentIdsCount); // } assembly { let gameInfoSlot0Value := sload(gameInfo.slot) let escapedAgents := add( and(shr(GAME_INFO__ESCAPED_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK), agentIdsCount ) gameInfoSlot0Value := and( gameInfoSlot0Value, // This is the equivalent of not(or(TWO_BYTES_BITMASK, shl(GAME_INFO__ESCAPED_AGENTS_OFFSET, TWO_BYTES_BITMASK))) 0xffffffffffffffffffffffffffffffffffffffffffff0000ffffffffffff0000 ) gameInfoSlot0Value := or(gameInfoSlot0Value, activeAgentsAfterEscape) gameInfoSlot0Value := or(gameInfoSlot0Value, shl(GAME_INFO__ESCAPED_AGENTS_OFFSET, escapedAgents)) sstore(gameInfo.slot, gameInfoSlot0Value) } gameInfo.prizePool = prizePool; gameInfo.secondaryPrizePool = secondaryPrizePool; _transferETHAndWrapIfFailWithGasLimit(WETH, msg.sender, reward, gasleft()); emit Escaped(gameInfo.currentRoundId, agentIds, rewards); _emitWonEventIfOnlyOneAgentRemaining(currentRoundAgentsAlive, activeAgentsAfterEscape); } /** * @inheritdoc IInfiltration */ function heal(uint256[] calldata agentIds) external nonReentrant { _assertFrontrunLockIsOff(); if (gameInfo.activeAgents <= NUMBER_OF_SECONDARY_PRIZE_POOL_WINNERS) { revert HealingDisabled(); } uint256 agentIdsCount = agentIds.length; _assertNotEmptyAgentIdsArrayProvided(agentIdsCount); uint256 currentRoundId = gameInfo.currentRoundId; uint16[MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND_AND_LENGTH] storage healingAgentIds = healingAgentIdsPerRound[currentRoundId]; uint256 currentHealingAgentIdsCount = healingAgentIds[0]; uint256 newHealingAgentIdsCount = currentHealingAgentIdsCount.unsafeAdd(agentIdsCount); if (newHealingAgentIdsCount > MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND) { revert MaximumHealingRequestPerRoundExceeded(); } uint256 cost; uint256[] memory costs = new uint256[](agentIdsCount); for (uint256 i; i < agentIdsCount; ) { uint256 agentId = agentIds[i]; uint256 index = agentIndex(agentId); _assertAgentStatus(agents[index], agentId, AgentStatus.Wounded); bytes32 agentSlot = _getAgentStorageSlot(index); uint256 agentSlotValue; uint256 woundedAt; // This is equivalent to // uint256 woundedAt = agent.woundedAt; assembly { agentSlotValue := sload(agentSlot) woundedAt := and(shr(AGENT__WOUNDED_AT_OFFSET, agentSlotValue), FIVE_BYTES_BITMASK) } // This is equivalent to // healCount = agent.healCount; // agent.status = AgentStatus.Healing; uint256 healCount; assembly { healCount := and(shr(AGENT__HEAL_COUNT_OFFSET, agentSlotValue), TWO_BYTES_BITMASK) agentSlotValue := and( agentSlotValue, // This is the equivalent of not(shl(AGENT__STATUS_OFFSET, 0xff)) 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffff ) agentSlotValue := or( agentSlotValue, // AgentStatus.Healing is 2 // This is equivalent to shl(AGENT__STATUS_OFFSET, 2) 0x20000 ) sstore(agentSlot, agentSlotValue) } costs[i] = _costToHeal(healCount); cost += costs[i]; unchecked { ++i; healingAgentIds[currentHealingAgentIdsCount + i] = uint16(agentId); } } healingAgentIds[0] = uint16(newHealingAgentIdsCount); // This is equivalent to // unchecked { // gameInfo.healingAgents += uint16(agentIdsCount); // gameInfo.woundedAgents -= uint16(agentIdsCount); // } assembly { let gameInfoSlot0Value := sload(gameInfo.slot) let healingAgents := add( and(shr(GAME_INFO__HEALING_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK), agentIdsCount ) let woundedAgents := sub( and(shr(GAME_INFO__WOUNDED_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK), agentIdsCount ) gameInfoSlot0Value := and( gameInfoSlot0Value, // This is equivalent to // not( // or( // shl(GAME_INFO__HEALING_AGENTS_OFFSET, TWO_BYTES_BITMASK), // shl(GAME_INFO__WOUNDED_AGENTS_OFFSET, TWO_BYTES_BITMASK) // ) // ) 0xffffffffffffffffffffffffffffffffffffffffffffffffffff00000000ffff ) gameInfoSlot0Value := or(gameInfoSlot0Value, shl(GAME_INFO__HEALING_AGENTS_OFFSET, healingAgents)) gameInfoSlot0Value := or(gameInfoSlot0Value, shl(GAME_INFO__WOUNDED_AGENTS_OFFSET, woundedAgents)) sstore(gameInfo.slot, gameInfoSlot0Value) } TRANSFER_MANAGER.transferERC20(LOOKS, msg.sender, address(this), cost); _executeERC20DirectTransfer(LOOKS, 0x000000000000000000000000000000000000dEaD, cost / 4); emit HealRequestSubmitted(currentRoundId, agentIds, costs); } /** * @notice Only active and wounded agents are allowed to be transferred or traded. * @param from The current owner of the token. * @param to The new owner of the token. * @param tokenId The token ID. */ function transferFrom(address from, address to, uint256 tokenId) public payable override { AgentStatus status = agents[agentIndex(tokenId)].status; if (status > AgentStatus.Wounded) { revert InvalidAgentStatus(tokenId, status); } super.transferFrom(from, to, tokenId); } /** * @inheritdoc IInfiltration */ function getAgent(uint256 index) external view returns (Agent memory agent) { agent = agents[index]; agent.agentId = uint16(_agentIndexToId(agents[index], index)); } /** * @inheritdoc IInfiltration * @dev Unlike the actual heal function, this function does not revert if duplicated agent IDs are provided. */ function costToHeal(uint256[] calldata agentIds) external view returns (uint256 cost) { uint256 agentIdsCount = agentIds.length; for (uint256 i; i < agentIdsCount; ) { uint256 agentId = agentIds[i]; Agent storage agent = agents[agentIndex(agentId)]; _assertAgentStatus(agent, agentId, AgentStatus.Wounded); cost += _costToHeal(agent.healCount); unchecked { ++i; } } } /** * @inheritdoc IInfiltration * @dev Unlike the actual escape function, this function does not revert if duplicated agent IDs are provided. */ function escapeReward(uint256[] calldata agentIds) external view returns (uint256 reward) { uint256 agentIdsCount = agentIds.length; _assertGameIsNotOverAfterEscape(gameInfo.activeAgents - agentIdsCount); uint256 currentRoundAgentsAlive = agentsAlive(); uint256 prizePool = gameInfo.prizePool; uint256 secondaryPrizePool = gameInfo.secondaryPrizePool; for (uint256 i; i < agentIdsCount; ) { uint256 agentId = agentIds[i]; uint256 index = agentIndex(agentId); _assertAgentStatus(agents[index], agentId, AgentStatus.Active); uint256 totalEscapeValue = prizePool / currentRoundAgentsAlive; uint256 rewardForPlayer = (totalEscapeValue * _escapeMultiplier(currentRoundAgentsAlive)) / ONE_HUNDRED_PERCENT_IN_BASIS_POINTS; reward += rewardForPlayer; uint256 rewardToSecondaryPrizePool = (totalEscapeValue.unsafeSubtract(rewardForPlayer) * _escapeRewardSplitForSecondaryPrizePool(currentRoundAgentsAlive)) / ONE_HUNDRED_PERCENT_IN_BASIS_POINTS; secondaryPrizePool += rewardToSecondaryPrizePool; unchecked { prizePool = prizePool - rewardForPlayer - rewardToSecondaryPrizePool; --currentRoundAgentsAlive; ++i; } } } /** * @notice * * Variables: * Attempted_Heal_Round - the round at which a user attempts to heal - this is x * Heal_Rounds_Maximum - the maximum number of rounds after a user is wounded in which they can heal (ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD) - this is x2 * Heal_Rounds_Minimum - the minimum number of rounds after a user is wounded until they can heal (a user cannot heal the same round as wound, so we select one round after wound hence 1) - this is x1 * Maximum_Heal_Percentage - the maximum % chance a user can heal for, this will be if they heal in Heal_Rounds_Minimum (we have set this to 99% of a successful healing) - this is y1 * Minimum_Heal_Percentage - the minimum % chance a user can heal for, this will be if they heal in Heal_Rounds_Maximum (we have set this to 80% of a successful healing) - this is y2 * * Equation: * If you substitute all of these into the following equation: * y = (( x * (y2-y1)) / (x2-x1)) + ((x2 * y1 - x1 * y2) / (x2 - x1)) * You will get an equation for y which is the PercentageChanceToHealSuccessfully given an Attempted_Heal_Round number. * Explanation: * i.e if a user is wounded in round 2, and they try to heal in round 4, their Attempted_Heal_Round relative to themselves is 2, hence by subsituting 2 into the place of x in the above equation, their PercentageChanceToHealSuccessfully will be 98.59574468%. * * @param healingRoundsDelay The number of rounds elapsed since the agent was wounded. */ function healProbability(uint256 healingRoundsDelay) public view returns (uint256 y) { if (healingRoundsDelay == 0 || healingRoundsDelay > ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD) { revert InvalidHealingRoundsDelay(); } y = HEAL_PROBABILITY_MINUEND - ((healingRoundsDelay * 19) * PROBABILITY_PRECISION) / ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD_MINUS_ONE; } /** * @notice The formula is 80 - 50 * PercentageOfAgentsRemaining ** 2. */ function escapeMultiplier() public view returns (uint256 multiplier) { multiplier = _escapeMultiplier(agentsAlive()); } /** * @notice The formula is the lesser of (9,980 / 99) - (UsersRemaining / TotalUsers) * (8,000 / 99) and 100. */ function escapeRewardSplitForSecondaryPrizePool() public view returns (uint256 split) { split = _escapeRewardSplitForSecondaryPrizePool(agentsAlive()); } /** * @notice An agent's secondary prize pool share amount. The formula is 1.31487 * 995 / (placement * 49) - 15 / 49. * @param secondaryPrizePoolAmount The secondary prize pool amount. * @param placement The agent's rank in the leaderboard. This is not meant to be called with placement that is not between 1 and NUMBER_OF_SECONDARY_PRIZE_POOL_WINNERS. */ function secondaryPrizePoolShareAmount( uint256 secondaryPrizePoolAmount, uint256 placement ) public pure returns (uint256 shareAmount) { shareAmount = (secondaryPrizePoolAmount * secondaryPrizePoolShareBp(placement)) / ONE_HUNDRED_PERCENT_IN_BASIS_POINTS; } /** * @notice An agent's secondary prize pool share in basis points. The formula is 1.31817 * 995 / (placement * 49) - 15 / 49. * @param placement The agent's rank in the leaderboard. This is not meant to be called with placement that is not between 1 and NUMBER_OF_SECONDARY_PRIZE_POOL_WINNERS. */ function secondaryPrizePoolShareBp(uint256 placement) public pure returns (uint256 share) { share = (1_31817 * (995_000_000 / (placement * 49) - uint256(15_000_000) / 49)) / 1_000_000_000; } /** * @inheritdoc IInfiltration */ function agentsAlive() public view returns (uint256) { return totalSupply() - gameInfo.deadAgents - gameInfo.escapedAgents; } /** * @inheritdoc IInfiltration */ function agentIndex(uint256 agentId) public view returns (uint256 index) { index = agentIdToIndex[agentId]; if (index == 0) { index = agentId; } } /** * @inheritdoc IInfiltration */ function getRoundInfo( uint256 roundId ) external view returns (uint256[] memory woundedAgentIds, uint256[] memory healingAgentIds) { woundedAgentIds = _buildAgentIdsPerRoundArray(woundedAgentIdsPerRound[roundId]); healingAgentIds = _buildAgentIdsPerRoundArray(healingAgentIdsPerRound[roundId]); } /** * @param requestId The VRF request ID. * @param randomWords The random words returned from Chainlink. We only request 1 random word. */ function fulfillRandomWords(uint256 requestId, uint256[] memory randomWords) internal override { RandomnessRequest storage randomnessRequest = randomnessRequests[requestId]; uint256 currentRoundId = gameInfo.currentRoundId; uint256 randomnessRequestRoundId = randomnessRequest.roundId; if ( randomnessRequestRoundId != currentRoundId || randomnessRequest.status != RandomnessRequestStatus.Requested ) { emit InvalidRandomnessFulfillment(requestId, randomnessRequestRoundId, currentRoundId); return; } randomnessRequest.randomWord = randomWords[0]; randomnessRequest.status = RandomnessRequestStatus.Fulfilled; emit RandomnessFulfilled(randomnessRequest.roundId, requestId); } /** * @inheritdoc IInfiltration */ function closeRound(uint256 requestId) external { uint256 currentRoundId = gameInfo.currentRoundId; RandomnessRequest storage randomnessRequest = randomnessRequests[requestId]; if ( randomnessRequest.roundId != currentRoundId || randomnessRequest.status != RandomnessRequestStatus.Fulfilled ) { revert InvalidRandomnessRequestId(); } uint256 currentRandomWord = randomnessRequest.randomWord; uint256 currentRoundAgentsAlive = agentsAlive(); uint256 activeAgents = gameInfo.activeAgents; uint256 healingAgents = gameInfo.healingAgents; uint256 deadAgentsFromHealing; if (healingAgents != 0) { uint256 healedAgents; (healedAgents, deadAgentsFromHealing, currentRandomWord) = _healRequestFulfilled( currentRoundId, currentRoundAgentsAlive, currentRandomWord ); unchecked { currentRoundAgentsAlive -= deadAgentsFromHealing; activeAgents += healedAgents; gameInfo.healingAgents = uint16(healingAgents - healedAgents - deadAgentsFromHealing); } } if (activeAgents > NUMBER_OF_SECONDARY_PRIZE_POOL_WINNERS) { uint256 woundedAgents = _woundRequestFulfilled( currentRoundId, currentRoundAgentsAlive, activeAgents, currentRandomWord ); uint256 deadAgentsFromKilling; if (currentRoundId > ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD) { deadAgentsFromKilling = _killWoundedAgents({ currentRoundId: currentRoundId, roundId: currentRoundId.unsafeSubtract(ROUNDS_TO_BE_WOUNDED_BEFORE_DEAD), currentRoundAgentsAlive: currentRoundAgentsAlive }); } // We only need to deduct wounded agents from active agents, dead agents from killing are already inactive. // This is equivalent to // unchecked { // gameInfo.activeAgents = activeAgents - woundedAgents; // gameInfo.woundedAgents = gameInfo.woundedAgents + woundedAgents - deadAgentsFromKilling; // gameInfo.deadAgents += (deadAgentsFromHealing + deadAgentsFromKilling); // } // SSTORE is called in _incrementRound uint256 gameInfoSlot0Value; assembly { gameInfoSlot0Value := sload(gameInfo.slot) let currentWoundedAgents := and( shr(GAME_INFO__WOUNDED_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK ) let currentDeadAgents := and(shr(GAME_INFO__DEAD_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK) gameInfoSlot0Value := and( gameInfoSlot0Value, // This is equivalent to // not( // or( // TWO_BYTES_BITMASK, // or( // shl(GAME_INFO__WOUNDED_AGENTS_OFFSET, TWO_BYTES_BITMASK), // shl(GAME_INFO__DEAD_AGENTS_OFFSET, TWO_BYTES_BITMASK) // ) // ) // ) 0xffffffffffffffffffffffffffffffffffffffffffffffff0000ffff00000000 ) gameInfoSlot0Value := or(gameInfoSlot0Value, sub(activeAgents, woundedAgents)) gameInfoSlot0Value := or( gameInfoSlot0Value, shl( GAME_INFO__WOUNDED_AGENTS_OFFSET, sub(add(currentWoundedAgents, woundedAgents), deadAgentsFromKilling) ) ) gameInfoSlot0Value := or( gameInfoSlot0Value, shl( GAME_INFO__DEAD_AGENTS_OFFSET, add(currentDeadAgents, add(deadAgentsFromHealing, deadAgentsFromKilling)) ) ) } _incrementRound(currentRoundId, gameInfoSlot0Value); } else { bool shouldKillOneAgent = activeAgents > 1; if (shouldKillOneAgent) { uint256 killedAgentIndex = (currentRandomWord % activeAgents).unsafeAdd(1); Agent storage agentToKill = agents[killedAgentIndex]; uint256 agentId = _agentIndexToId(agentToKill, killedAgentIndex); _swap({ currentAgentIndex: killedAgentIndex, lastAgentIndex: currentRoundAgentsAlive, agentId: agentId, newStatus: AgentStatus.Dead }); uint256[] memory killedAgentId = new uint256[](1); killedAgentId[0] = agentId; emit Killed(currentRoundId, killedAgentId); unchecked { --activeAgents; --currentRoundAgentsAlive; } } // This is equivalent to // unchecked { // gameInfo.activeAgents = activeAgents; // gameInfo.deadAgents = gameInfo.deadAgents + deadAgentsFromHealing + 1; // } // SSTORE is called in _incrementRound uint256 gameInfoSlot0Value; assembly { gameInfoSlot0Value := sload(gameInfo.slot) let deadAgents := and(shr(GAME_INFO__DEAD_AGENTS_OFFSET, gameInfoSlot0Value), TWO_BYTES_BITMASK) gameInfoSlot0Value := and( gameInfoSlot0Value, // This is equivalent to not(or(TWO_BYTES_BITMASK, shl(GAME_INFO__DEAD_AGENTS_OFFSET, TWO_BYTES_BITMASK))) 0xffffffffffffffffffffffffffffffffffffffffffffffff0000ffffffff0000 ) gameInfoSlot0Value := or(gameInfoSlot0Value, activeAgents) // If shouldKillOneAgent is true, then add 1. If false, then add 0. gameInfoSlot0Value := or( gameInfoSlot0Value, shl(GAME_INFO__DEAD_AGENTS_OFFSET, add(add(deadAgents, deadAgentsFromHealing), shouldKillOneAgent)) ) } _emitWonEventIfOnlyOneAgentRemaining(currentRoundAgentsAlive, activeAgents); _incrementRound(currentRoundId, gameInfoSlot0Value); } frontrunLock = FRONTRUN_LOCK__UNLOCKED; unchecked { emit RoundStarted(currentRoundId + 1); } } /** * @dev This function doesn't check currentRoundId to be <= type(uint40).max but it's fine as * it's practically impossible to reach this number of rounds. * @param currentRoundId The current round ID. * @param gameInfoSlot0Value The value of gameInfo.slot. */ function _incrementRound(uint256 currentRoundId, uint256 gameInfoSlot0Value) private { // This is equivalent to // unchecked { // uint256 newRoundId = currentRoundId + 1; // gameInfo.currentRoundId = newRoundId; // gameInfo.currentRoundBlockNumber = uint40(block.number); // gameInfo.randomnessLastRequestedAt = 0; // } assembly { gameInfoSlot0Value := and( gameInfoSlot0Value, // This is equivalent to // let gameInfoRandomnessLastRequestedAtOffset := 160 // not( // or( // or( // shl(GAME_INFO__CURRENT_ROUND_ID_OFFSET, FIVE_BYTES_BITMASK), // shl(GAME_INFO__CURRENT_ROUND_BLOCK_NUMBER_OFFSET, FIVE_BYTES_BITMASK) // ), // shl(gameInfoRandomnessLastRequestedAtOffset, FIVE_BYTES_BITMASK) // ) // ) 0xffffffffffffff000000000000000000000000000000ffffffffffffffffffff ) gameInfoSlot0Value := or( gameInfoSlot0Value, shl(GAME_INFO__CURRENT_ROUND_ID_OFFSET, add(currentRoundId, 1)) ) gameInfoSlot0Value := or(gameInfoSlot0Value, shl(GAME_INFO__CURRENT_ROUND_BLOCK_NUMBER_OFFSET, number())) sstore(gameInfo.slot, gameInfoSlot0Value) } } /** * @dev This function requests for a random word from Chainlink VRF for wounding and healing. */ function _requestForRandomness() private { uint256 requestId = VRF_COORDINATOR.requestRandomWords({ keyHash: KEY_HASH, subId: SUBSCRIPTION_ID, minimumRequestConfirmations: uint16(3), callbackGasLimit: uint32(2_500_000), numWords: uint32(1) }); if (randomnessRequests[requestId].status != RandomnessRequestStatus.None) { revert RandomnessRequestAlreadyExists(); } uint40 currentRoundId = gameInfo.currentRoundId; gameInfo.randomnessLastRequestedAt = uint40(block.timestamp); // This is equivalent to // randomnessRequests[requestId].status = RandomnessRequestStatus.Requested; // randomnessRequests[requestId].roundId = currentRoundId; assembly { // 1 is RandomnessRequestStatus.Requested let randomnessRequest := or(1, shl(RANDOMNESS_REQUESTS__EXISTS_OFFSET, currentRoundId)) mstore(0x00, requestId) mstore(0x20, randomnessRequests.slot) let randomnessRequestStoragSlot := keccak256(0x00, 0x40) sstore(randomnessRequestStoragSlot, randomnessRequest) } frontrunLock = FRONTRUN_LOCK__LOCKED; emit RandomnessRequested(currentRoundId, requestId); } /** * @param roundId The current round ID. * @param currentRoundAgentsAlive The number of agents alive currently. * @param randomWord The random word returned from Chainlink. * @return healedAgentsCount The number of agents that were healed. * @return deadAgentsCount The number of agents that were killed. * @return currentRandomWord The current random word after running the function. */ function _healRequestFulfilled( uint256 roundId, uint256 currentRoundAgentsAlive, uint256 randomWord ) private returns (uint256 healedAgentsCount, uint256 deadAgentsCount, uint256 currentRandomWord) { uint16[MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND_AND_LENGTH] storage healingAgentIds = healingAgentIdsPerRound[roundId]; uint256 healingAgentIdsCount = healingAgentIds[0]; if (healingAgentIdsCount != 0) { HealResult[] memory healResults = new HealResult[](healingAgentIdsCount); for (uint256 i; i < healingAgentIdsCount; ) { uint256 healingAgentId = healingAgentIds[i.unsafeAdd(1)]; uint256 index = agentIndex(healingAgentId); Agent storage agent = agents[index]; healResults[i].agentId = healingAgentId; // 1. An agent's "healing at" round ID is always equal to the current round ID // as it immediately settles upon randomness fulfillment. // // 2. 10_000_000_000 == 100 * PROBABILITY_PRECISION if (randomWord % 10_000_000_000 <= healProbability(roundId.unsafeSubtract(agent.woundedAt))) { // This line is not needed as HealOutcome.Healed is 0. It is here for clarity. // healResults[i].outcome = HealOutcome.Healed; _healAgent(agent); } else { healResults[i].outcome = HealOutcome.Killed; _swap({ currentAgentIndex: index, lastAgentIndex: currentRoundAgentsAlive - deadAgentsCount, agentId: healingAgentId, newStatus: AgentStatus.Dead }); unchecked { ++deadAgentsCount; } } randomWord = _nextRandomWord(randomWord); unchecked { ++i; } } unchecked { healedAgentsCount = healingAgentIdsCount - deadAgentsCount; } emit HealRequestFulfilled(roundId, healResults); } currentRandomWord = randomWord; } /** * @param roundId The current round ID. * @param currentRoundAgentsAlive The number of agents alive currently. * @param activeAgents The number of currently active agents. * @param randomWord The random word returned from Chainlink. * @return woundedAgentsCount The number of agents that were wounded. */ function _woundRequestFulfilled( uint256 roundId, uint256 currentRoundAgentsAlive, uint256 activeAgents, uint256 randomWord ) private returns (uint256 woundedAgentsCount) { woundedAgentsCount = (activeAgents * AGENTS_TO_WOUND_PER_ROUND_IN_BASIS_POINTS) / ONE_HUNDRED_PERCENT_IN_BASIS_POINTS; // At some point the number of agents to wound will be 0 due to round down, so we set it to 1. if (woundedAgentsCount == 0) { woundedAgentsCount = 1; } uint256[] memory woundedAgentIds = new uint256[](woundedAgentsCount); uint16[MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND_AND_LENGTH] storage currentRoundWoundedAgentIds = woundedAgentIdsPerRound[roundId]; for (uint256 i; i < woundedAgentsCount; ) { uint256 woundedAgentIndex = (randomWord % currentRoundAgentsAlive).unsafeAdd(1); Agent storage agentToWound = agents[woundedAgentIndex]; if (agentToWound.status == AgentStatus.Active) { // This is equivalent to // agentToWound.status = AgentStatus.Wounded; // agentToWound.woundedAt = roundId; assembly { let agentSlotValue := sload(agentToWound.slot) agentSlotValue := and( agentSlotValue, // This is equivalent to // or( // TWO_BYTES_BITMASK, // shl(64, TWO_BYTES_BITMASK) // ) 0x00000000000000000000000000000000000000000000ffff000000000000ffff ) // AgentStatus.Wounded is 1 agentSlotValue := or(agentSlotValue, shl(AGENT__STATUS_OFFSET, 1)) agentSlotValue := or(agentSlotValue, shl(AGENT__WOUNDED_AT_OFFSET, roundId)) sstore(agentToWound.slot, agentSlotValue) } uint256 woundedAgentId = _agentIndexToId(agentToWound, woundedAgentIndex); woundedAgentIds[i] = woundedAgentId; unchecked { ++i; currentRoundWoundedAgentIds[i] = uint16(woundedAgentId); } } randomWord = _nextRandomWord(randomWord); } currentRoundWoundedAgentIds[0] = uint16(woundedAgentsCount); emit Wounded(roundId, woundedAgentIds); } /** * @dev This function emits the Killed event but some agent IDs in the array can be 0 because * they might have been healed or are dead already. * @param currentRoundId The current round ID. * @param roundId The round ID in which the wounded agents should be killed. * @param currentRoundAgentsAlive The number of agents alive currently. * @return deadAgentsCount The number of agents that were killed. */ function _killWoundedAgents( uint256 currentRoundId, uint256 roundId, uint256 currentRoundAgentsAlive ) private returns (uint256 deadAgentsCount) { uint16[MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND_AND_LENGTH] storage woundedAgentIdsInRound = woundedAgentIdsPerRound[roundId]; uint256 woundedAgentIdsCount = woundedAgentIdsInRound[0]; uint256[] memory woundedAgentIds = new uint256[](woundedAgentIdsCount); for (uint256 i; i < woundedAgentIdsCount; ) { uint256 woundedAgentId = woundedAgentIdsInRound[i.unsafeAdd(1)]; uint256 index = agentIndex(woundedAgentId); Agent storage agent = agents[index]; if (agent.status == AgentStatus.Wounded) { if (agent.woundedAt == roundId) { woundedAgentIds[i] = woundedAgentId; _swap({ currentAgentIndex: index, lastAgentIndex: currentRoundAgentsAlive - deadAgentsCount, agentId: woundedAgentId, newStatus: AgentStatus.Dead }); unchecked { ++deadAgentsCount; } } } unchecked { ++i; } } emit Killed(currentRoundId, woundedAgentIds); } /** * @param agent The agent to check. * @param index The agent's index in the agents mapping. * @return agentId The agent's ID. */ function _agentIndexToId(Agent storage agent, uint256 index) private view returns (uint256 agentId) { agentId = agent.agentId; agentId = agentId == 0 ? index : agentId; } /** * @param healCount The number of times the agent has been successfully healed. * @return cost The cost to heal the agent based on the agent's successful heal count. */ function _costToHeal(uint256 healCount) private view returns (uint256 cost) { cost = HEAL_BASE_COST * (2 ** healCount); } /** * @param agent The agent to heal. */ function _healAgent(Agent storage agent) private { // This is equivalent to // agent.status = AgentStatus.Active; // agent.woundedAt = 0; // lastHealCount = agent.healCount; // ++agent.healCount; assembly { let agentSlotValue := sload(agent.slot) let lastHealCount := and(shr(AGENT__HEAL_COUNT_OFFSET, agentSlotValue), TWO_BYTES_BITMASK) agentSlotValue := and(agentSlotValue, TWO_BYTES_BITMASK) agentSlotValue := or(agentSlotValue, shl(AGENT__HEAL_COUNT_OFFSET, add(lastHealCount, 1))) sstore(agent.slot, agentSlotValue) } } /** * @notice An agent is killed by swapping it with the last agent in the agents mapping and decrementing `agentsAlive` * by adding 1 to `gameInfo.deadAgents`. * @notice An agent escapes by swapping it with the last agent in the agents mapping and decrementing `agentsAlive` * by adding 1 to `gameInfo.escapedAgents`. * @param currentAgentIndex The agent (whose status is being updated)'s index in the agents mapping. * @param lastAgentIndex Last agent's index in the agents mapping. * @param agentId The agent (whose status is being updated) 's ID. * @param newStatus The new status of the agent. */ function _swap(uint256 currentAgentIndex, uint256 lastAgentIndex, uint256 agentId, AgentStatus newStatus) private { Agent storage lastAgent = agents[lastAgentIndex]; uint256 lastAgentId = _agentIndexToId(lastAgent, lastAgentIndex); agentIdToIndex[agentId] = lastAgentIndex; agentIdToIndex[lastAgentId] = currentAgentIndex; /** * If last agent's agent ID is 0 that means it was never touched and is active. * * This is equivalent to * * agent.agentId = uint16(lastAgentId); * agent.status = lastAgent.status; * agent.woundedAt = lastAgent.woundedAt; * agent.healCount = lastAgent.healCount; * lastAgent.agentId = uint16(agentId); * lastAgent.status = newStatus; * lastAgent.woundedAt = 0; * lastAgent.healCount = 0; */ bytes32 currentAgentSlot = _getAgentStorageSlot(currentAgentIndex); bytes32 lastAgentSlot = _getAgentStorageSlot(lastAgentIndex); assembly { let lastAgentCurrentValue := sload(lastAgentSlot) // The last agent's ID is either 0 or lastAgentId, so we do not need to clear the last 16 bits // as it can only be or(0, lastAgentId) or or(lastAgentId, lastAgentId) which both ends up being lastAgentId. lastAgentCurrentValue := or(lastAgentCurrentValue, lastAgentId) sstore(currentAgentSlot, lastAgentCurrentValue) let lastAgentNewValue := agentId lastAgentNewValue := or(lastAgentNewValue, shl(AGENT__STATUS_OFFSET, newStatus)) sstore(lastAgentSlot, lastAgentNewValue) } } /** * @notice Returns the next random word by hashing. * @param randomWord The current random word. * @return nextRandomWord The next random word. */ function _nextRandomWord(uint256 randomWord) private pure returns (uint256 nextRandomWord) { // This is equivalent to // randomWord = uint256(keccak256(abi.encode(randomWord))); assembly { mstore(0x00, randomWord) nextRandomWord := keccak256(0x00, 0x20) } } /** * @param index The agent's index in the agents mapping. * @return agentStorageSlot The agent's storage slot. */ function _getAgentStorageSlot(uint256 index) private pure returns (bytes32 agentStorageSlot) { assembly { mstore(0x00, index) mstore(0x20, agents.slot) agentStorageSlot := keccak256(0x00, 0x40) } } /** * @dev ONE_HUNDRED_PERCENT_IN_BASIS_POINTS is used as an amplifier to prevent a loss of precision. * @param agentsRemaining The number of agents remaining including wounded and healing agents. * @return multiplier The escape multiplier in basis points. This portion of the reward goes to the owner of the escaping agent. */ function _escapeMultiplier(uint256 agentsRemaining) private view returns (uint256 multiplier) { multiplier = ((80 * ONE_HUNDRED_PERCENT_IN_BASIS_POINTS_SQUARED - 50 * (((agentsRemaining * ONE_HUNDRED_PERCENT_IN_BASIS_POINTS) / totalSupply()) ** 2)) * 100) / ONE_HUNDRED_PERCENT_IN_BASIS_POINTS_SQUARED; } /** * @dev ONE_HUNDRED_PERCENT_IN_BASIS_POINTS is used as an amplifier to prevent a loss of precision. * @param agentsRemaining The number of agents remaining including wounded and healing agents. * @return split The split of the remaining escape reward between the the secondary prize pool and the main prize pool in basis points. */ function _escapeRewardSplitForSecondaryPrizePool(uint256 agentsRemaining) private view returns (uint256 split) { split = ((9_980 * ONE_HUNDRED_PERCENT_IN_BASIS_POINTS) / 99 - (((agentsRemaining * ONE_HUNDRED_PERCENT_IN_BASIS_POINTS) / totalSupply()) * uint256(8_000)) / 99) / 100; if (split > ONE_HUNDRED_PERCENT_IN_BASIS_POINTS) { split = ONE_HUNDRED_PERCENT_IN_BASIS_POINTS; } } /** * @dev Emit the Won event if there is only 1 active agent remaining in the game. * @param agentsRemaining The number of alive agents. * @param activeAgentsRemaining The number of active agents remaining. */ function _emitWonEventIfOnlyOneAgentRemaining(uint256 agentsRemaining, uint256 activeAgentsRemaining) private { if (agentsRemaining == 1) { if (activeAgentsRemaining == 1) { emit Won(gameInfo.currentRoundId, _agentIndexToId(agents[1], 1)); } } } /** * @notice Validate max supply is not breached after minting "quantity" amount of agents * @param quantity The quantity of agents to mint. */ function _assertTotalSupplyNotBreached(uint256 quantity) private view { if (totalSupply() + quantity > MAX_SUPPLY) { revert ExceededTotalSupply(); } } /** * @notice Validate the game has not begun. */ function _assertGameNotYetBegun() private view { if (gameInfo.currentRoundId != 0) { revert GameAlreadyBegun(); } } /** * @notice Validate exact ETH amount has been paid for the mint. * @param quantity The quantity of agents to mint. */ function _assertExactNativeTokensSupplied(uint256 quantity) private view { if (quantity * PRICE != msg.value) { revert InexactNativeTokensSupplied(); } } /** * @notice Validate the msg.sender is the owner of the agent ID. * @param agentId The agent ID to validate. */ function _assertAgentOwnership(uint256 agentId) private view { if (ownerOf(agentId) != msg.sender) { revert NotAgentOwner(); } } /** * @notice Validate the agent's status is the expected status. * @param agent The agent to validate. * @param agentId The agent's ID. * @param status The expected status. */ function _assertAgentStatus(Agent storage agent, uint256 agentId, AgentStatus status) private view { if (agent.status != status) { revert InvalidAgentStatus(agentId, status); } } /** * @notice Validate the placement is between 1 and 50. * @param placement The placement to validate. */ function _assertValidPlacement(uint256 placement) private pure { if (placement == 0 || placement > NUMBER_OF_SECONDARY_PRIZE_POOL_WINNERS) { revert InvalidPlacement(); } } /** * @notice Validate the game is over by checking there is only 1 active agent and 0 wounded/healing agents. */ function _assertGameOver() private view { if (gameInfo.activeAgents != 1 || gameInfo.woundedAgents != 0 || gameInfo.healingAgents != 0) { revert GameIsStillRunning(); } } /** * @notice Validate the frontrun lock is off. */ function _assertFrontrunLockIsOff() private view { if (frontrunLock == FRONTRUN_LOCK__LOCKED) { revert FrontrunLockIsOn(); } } /** * @notice Validate the agent IDs array is not empty. */ function _assertNotEmptyAgentIdsArrayProvided(uint256 agentIdsCount) private pure { if (agentIdsCount == 0) { revert NoAgentsProvided(); } } /** * @notice Validate the game's active agents to be greater than 0 after escape. */ function _assertGameIsNotOverAfterEscape(uint256 activeAgentsAfterEscape) private pure { if (activeAgentsAfterEscape < 1) { revert NoAgentsLeft(); } } /** * @notice The starting token ID is 1. */ function _startTokenId() internal pure override returns (uint256) { return 1; } /** * @notice The base URI of the collection. */ function _baseURI() internal view override returns (string memory) { return baseURI; } /** * @param agentIdsPerRound The storage pointer to either a round's woundedAgentIdsPerRound or healingAgentIdsPerRound. * @return agentIds The agent IDs (now dynamically sized) in the round with the length removed. */ function _buildAgentIdsPerRoundArray( uint16[MAXIMUM_HEALING_OR_WOUNDED_AGENTS_PER_ROUND_AND_LENGTH] storage agentIdsPerRound ) private view returns (uint256[] memory agentIds) { uint256 count = agentIdsPerRound[0]; agentIds = new uint256[](count); for (uint256 i; i < count; ) { unchecked { agentIds[i] = agentIdsPerRound[i + 1]; ++i; } } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.20; interface IInfiltration { /** * @notice Agent statuses. * 1. Active: The agent is active. * 2. Wounded: The agent is wounded. The agent can be healed for a number of blocks. * 3. Healing: The agent is healing. The outcome of the healing is not yet known. * 4. Escaped: The agent escaped from the game and took some rewards with him. * 5. Dead: The agent is dead. It can be due to the agent being wounded for too long or a failed healing. */ enum AgentStatus { Active, Wounded, Healing, Escaped, Dead } /** * @notice Heal outcomes. The agent can either be healed or killed. */ enum HealOutcome { Healed, Killed } /** * @notice Randomness request statuses. */ enum RandomnessRequestStatus { None, Requested, Fulfilled } /** * @notice An agent. * @dev The storage layout of an agent is as follows: * |---------------------------------------------------------------------------------------------------| * | empty (176 bits) | healCount (16 bits) | woundedAt (40 bits) | status (8 bits) | agentId (16 bits)| * |---------------------------------------------------------------------------------------------------| * @param agentId The ID of the agent. * @param status The status of the agent. * @param woundedAt The round number when the agent was wounded. * @param healCount The number of times the agent has been successfully healed. */ struct Agent { uint16 agentId; AgentStatus status; uint40 woundedAt; uint16 healCount; } /** * @notice The constructor calldata. * @param owner The owner of the contract. * @param name The name of the collection. * @param symbol The symbol of the collection. * @param price The mint price. * @param maxSupply The maximum supply of the collection. * @param maxMintPerAddress The maximum number of agents that can be minted per address. * @param blocksPerRound The number of blocks per round. * @param agentsToWoundPerRoundInBasisPoints The number of agents to wound per round in basis points. * @param roundsToBeWoundedBeforeDead The number of rounds for an agent to be wounded before getting killed. * @param looks The LOOKS token address. * @param vrfCoordinator The VRF coordinator address. * @param keyHash The VRF key hash. * @param subscriptionId The VRF subscription ID. * @param transferManager The transfer manager address. * @param healBaseCost The base cost to heal an agent. * @param protocolFeeRecipient The protocol fee recipient. * @param protocolFeeBp The protocol fee basis points. * @param weth The WETH address. * @param baseURI The base URI of the collection. */ struct ConstructorCalldata { address owner; string name; string symbol; uint256 price; uint256 maxSupply; uint256 maxMintPerAddress; uint256 blocksPerRound; uint256 agentsToWoundPerRoundInBasisPoints; uint256 roundsToBeWoundedBeforeDead; address looks; address vrfCoordinator; bytes32 keyHash; uint64 subscriptionId; address transferManager; uint256 healBaseCost; address protocolFeeRecipient; uint16 protocolFeeBp; address weth; string baseURI; } /** * @notice Game info. * @dev The storage layout of game info is as follows: * |-------------------------------------------------------------------------------------------------------------------------------| * | empty (56 bits) | randomnessLastRequestedAt (40 bits) | currentRoundBlockNumber (40 bits) | currentRoundId (40 bits) | * | escapedAgents (16 bits) | deadAgents (16 bits) | healingAgents (16 bits) | woundedAgents (16 bits) | activeAgents (16 bits) | * |-------------------------------------------------------------------------------------------------------------------------------| * | prizePool (256 bits) | * |-------------------------------------------------------------------------------------------------------------------------------| * | secondaryPrizePool (256 bits) | * |-------------------------------------------------------------------------------------------------------------------------------| * | secondaryLooksPrizePool (256 bits) | * |-------------------------------------------------------------------------------------------------------------------------------| * @param activeAgents The number of active agents. * @param woundedAgents The number of wounded agents. * @param healingAgents The number of healing agents. * @param deadAgents The number of dead agents. * @param escapedAgents The number of escaped agents. * @param currentRoundId The current round ID. * @param currentRoundBlockNumber The current round block number. * @param randomnessLastRequestedAt The timestamp when the randomness was last requested. * @param prizePool The ETH prize pool for the final winner. * @param secondaryPrizePool The secondary ETH prize pool for the top X winners. * @param secondaryLooksPrizePool The secondary LOOKS prize pool for the top X winners. */ struct GameInfo { uint16 activeAgents; uint16 woundedAgents; uint16 healingAgents; uint16 deadAgents; uint16 escapedAgents; uint40 currentRoundId; uint40 currentRoundBlockNumber; uint40 randomnessLastRequestedAt; uint256 prizePool; uint256 secondaryPrizePool; uint256 secondaryLooksPrizePool; } /** * @notice A Chainlink randomness request. * @param status The status of the randomness request. * @param roundId The round ID when the randomness request occurred. * @param randomWord The returned random word. */ struct RandomnessRequest { RandomnessRequestStatus status; uint40 roundId; uint256 randomWord; } /** * @notice A heal result that is used to emit events. * @param agentId The agent ID. * @param outcome The outcome of the healing. */ struct HealResult { uint256 agentId; HealOutcome outcome; } event EmergencyWithdrawal(uint256 ethAmount, uint256 looksAmount); event MintPeriodUpdated(uint256 mintStart, uint256 mintEnd); event HealRequestSubmitted(uint256 roundId, uint256[] agentIds, uint256[] costs); event HealRequestFulfilled(uint256 roundId, HealResult[] healResults); event RandomnessRequested(uint256 roundId, uint256 requestId); event RandomnessFulfilled(uint256 roundId, uint256 requestId); event InvalidRandomnessFulfillment(uint256 requestId, uint256 randomnessRequestRoundId, uint256 currentRoundId); event RoundStarted(uint256 roundId); event Escaped(uint256 roundId, uint256[] agentIds, uint256[] rewards); event PrizeClaimed(uint256 agentId, address currency, uint256 amount); event Wounded(uint256 roundId, uint256[] agentIds); event Killed(uint256 roundId, uint256[] agentIds); event Won(uint256 roundId, uint256 agentId); error ExceededTotalSupply(); error FrontrunLockIsOn(); error GameAlreadyBegun(); error GameNotYetBegun(); error GameIsStillRunning(); error GameOver(); error HealingDisabled(); error InexactNativeTokensSupplied(); error InvalidAgentStatus(uint256 agentId, AgentStatus expectedStatus); error InvalidHealingRoundsDelay(); error InvalidMaxSupply(); error InvalidMintPeriod(); error InvalidPlacement(); error MaximumHealingRequestPerRoundExceeded(); error MintAlreadyStarted(); error MintCanOnlyBeExtended(); error MintStartIsInThePast(); error NoAgentsLeft(); error NoAgentsProvided(); error NotEnoughMinted(); error NothingToClaim(); error NotInMintPeriod(); error NotAgentOwner(); error Immutable(); error RandomnessRequestAlreadyExists(); error InvalidRandomnessRequestId(); error RoundsToBeWoundedBeforeDeadTooLow(); error StillMinting(); error TooEarlyToStartNewRound(); error TooEarlyToRetryRandomnessRequest(); error TooManyMinted(); error WoundedAgentIdsPerRoundExceeded(); /** * @notice Sets the mint period. * @dev If _mintStart is 0, the function call is just a mint end extension. * @param _mintStart The starting timestamp of the mint period. * @param _mintEnd The ending timestamp of the mint period. */ function setMintPeriod(uint40 _mintStart, uint40 _mintEnd) external; /** * @notice Mints a number of agents. * @param to The recipient * @param quantity The number of agents to mint. */ function premint(address to, uint256 quantity) external payable; /** * @notice Mints a number of agents. * @param quantity The number of agents to mint. */ function mint(uint256 quantity) external payable; /** * @notice This function is here in case the game's invariant condition does not hold or the game is stuck. * Only callable by the contract owner. */ function emergencyWithdraw() external; /** * @notice Starts the game. * @dev Starting the game sets the current round ID to 1. */ function startGame() external; /** * @notice Starts a new round. */ function startNewRound() external; /** * @notice Close a round after randomness is fullfilled by Chainlink. * @param requestId The Chainlink request ID. */ function closeRound(uint256 requestId) external; /** * @notice Claims the grand prize. Only callable by the winner. */ function claimGrandPrize() external; /** * @notice Claims the secondary prizes. Only callable by top 50 agents. * @param agentId The agent ID. */ function claimSecondaryPrizes(uint256 agentId) external; /** * @notice Escape from the game and take some rewards. 80% of the prize pool is distributed to * the escaped agents and the rest to the secondary prize pool. * @param agentIds The agent IDs to escape. */ function escape(uint256[] calldata agentIds) external; /** * @notice Submits a heal request for the specified agent IDs. * @param agentIds The agent IDs to heal. */ function heal(uint256[] calldata agentIds) external; /** * @notice Get the agent at the specified index. * @return agent The agent at the specified index. */ function getAgent(uint256 index) external view returns (Agent memory agent); /** * @notice Returns the cost to heal the specified agents * @dev The cost doubles for each time the agent is healed. * @param agentIds The agent IDs to heal. * @return cost The cost to heal the specified agents. */ function costToHeal(uint256[] calldata agentIds) external view returns (uint256 cost); /** * @notice Returns the reward for escaping the game. * @param agentIds The agent IDs to escape. * @return reward The reward for escaping the game. */ function escapeReward(uint256[] calldata agentIds) external view returns (uint256 reward); /** * @notice Returns the total number of agents alive. */ function agentsAlive() external view returns (uint256); /** * @notice Returns the index of a specific agent ID inside the agents mapping. * @param agentId The agent ID. * @return index The index of the agent ID. */ function agentIndex(uint256 agentId) external view returns (uint256 index); /** * @notice Returns a specific round's information. * @param roundId The round ID. * @return woundedAgentIds The agent IDs of the wounded agents in the specified round. * @return healingAgentIds The agent IDs of the healing agents in the specified round. */ function getRoundInfo( uint256 roundId ) external view returns (uint256[] memory woundedAgentIds, uint256[] memory healingAgentIds); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; // Interfaces import {IOwnableTwoSteps} from "./interfaces/IOwnableTwoSteps.sol"; /** * @title OwnableTwoSteps * @notice This contract offers transfer of ownership in two steps with potential owner * having to confirm the transaction to become the owner. * Renouncement of the ownership is also a two-step process since the next potential owner is the address(0). * @author LooksRare protocol team (👀,💎) */ abstract contract OwnableTwoSteps is IOwnableTwoSteps { /** * @notice Address of the current owner. */ address public owner; /** * @notice Address of the potential owner. */ address public potentialOwner; /** * @notice Ownership status. */ Status public ownershipStatus; /** * @notice Modifier to wrap functions for contracts that inherit this contract. */ modifier onlyOwner() { _onlyOwner(); _; } /** * @notice Constructor * @param _owner The contract's owner */ constructor(address _owner) { owner = _owner; emit NewOwner(_owner); } /** * @notice This function is used to cancel the ownership transfer. * @dev This function can be used for both cancelling a transfer to a new owner and * cancelling the renouncement of the ownership. */ function cancelOwnershipTransfer() external onlyOwner { Status _ownershipStatus = ownershipStatus; if (_ownershipStatus == Status.NoOngoingTransfer) { revert NoOngoingTransferInProgress(); } if (_ownershipStatus == Status.TransferInProgress) { delete potentialOwner; } delete ownershipStatus; emit CancelOwnershipTransfer(); } /** * @notice This function is used to confirm the ownership renouncement. */ function confirmOwnershipRenouncement() external onlyOwner { if (ownershipStatus != Status.RenouncementInProgress) { revert RenouncementNotInProgress(); } delete owner; delete ownershipStatus; emit NewOwner(address(0)); } /** * @notice This function is used to confirm the ownership transfer. * @dev This function can only be called by the current potential owner. */ function confirmOwnershipTransfer() external { if (ownershipStatus != Status.TransferInProgress) { revert TransferNotInProgress(); } if (msg.sender != potentialOwner) { revert WrongPotentialOwner(); } owner = msg.sender; delete ownershipStatus; delete potentialOwner; emit NewOwner(msg.sender); } /** * @notice This function is used to initiate the transfer of ownership to a new owner. * @param newPotentialOwner New potential owner address */ function initiateOwnershipTransfer(address newPotentialOwner) external onlyOwner { if (ownershipStatus != Status.NoOngoingTransfer) { revert TransferAlreadyInProgress(); } ownershipStatus = Status.TransferInProgress; potentialOwner = newPotentialOwner; /** * @dev This function can only be called by the owner, so msg.sender is the owner. * We don't have to SLOAD the owner again. */ emit InitiateOwnershipTransfer(msg.sender, newPotentialOwner); } /** * @notice This function is used to initiate the ownership renouncement. */ function initiateOwnershipRenouncement() external onlyOwner { if (ownershipStatus != Status.NoOngoingTransfer) { revert TransferAlreadyInProgress(); } ownershipStatus = Status.RenouncementInProgress; emit InitiateOwnershipRenouncement(); } function _onlyOwner() private view { if (msg.sender != owner) revert NotOwner(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; interface IERC20 { event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); function totalSupply() external view returns (uint256); function balanceOf(address account) external view returns (uint256); function transfer(address to, uint256 amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom(address from, address to, uint256 amount) external returns (bool); function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /** * @title ProtocolFee * @notice This contract makes it possible for a contract to charge a protocol fee. * @author LooksRare protocol team (👀,💎) */ abstract contract ProtocolFee { /** * @dev Emitted when the protocol fee basis points is updated. */ event ProtocolFeeBpUpdated(uint16 protocolFeeBp); /** * @dev Emitted when the protocol fee recipient is updated. */ event ProtocolFeeRecipientUpdated(address protocolFeeRecipient); /** * @dev This error is used when the protocol fee basis points is too high * or when the protocol fee recipient is a zero address. */ error ProtocolFee__InvalidValue(); /** * @notice The maximum protocol fee in basis points, which is 25%. */ uint16 public constant MAXIMUM_PROTOCOL_FEE_BP = 2_500; /** * @notice The address of the protocol fee recipient. */ address public protocolFeeRecipient; /** * @notice The protocol fee basis points. */ uint16 public protocolFeeBp; /** * @dev This function is used to update the protocol fee recipient. It should be overridden * by the contract that inherits from this contract. The function should be guarded * by an access control mechanism to prevent unauthorized users from calling it. * @param _protocolFeeRecipient The address of the protocol fee recipient */ function updateProtocolFeeRecipient(address _protocolFeeRecipient) external virtual; /** * @dev This function is used to update the protocol fee basis points. It should be overridden * by the contract that inherits from this contract. The function should be guarded * by an access control mechanism to prevent unauthorized users from calling it. * @param _protocolFeeBp The protocol fee basis points */ function updateProtocolFeeBp(uint16 _protocolFeeBp) external virtual; /** * @param _protocolFeeRecipient The new protocol fee recipient address */ function _updateProtocolFeeRecipient(address _protocolFeeRecipient) internal { if (_protocolFeeRecipient == address(0)) { revert ProtocolFee__InvalidValue(); } protocolFeeRecipient = _protocolFeeRecipient; emit ProtocolFeeRecipientUpdated(_protocolFeeRecipient); } /** * @param _protocolFeeBp The new protocol fee in basis points */ function _updateProtocolFeeBp(uint16 _protocolFeeBp) internal { if (_protocolFeeBp > MAXIMUM_PROTOCOL_FEE_BP) { revert ProtocolFee__InvalidValue(); } protocolFeeBp = _protocolFeeBp; emit ProtocolFeeBpUpdated(_protocolFeeBp); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; // Interfaces import {IReentrancyGuard} from "./interfaces/IReentrancyGuard.sol"; /** * @title PackableReentrancyGuard * @notice This contract protects against reentrancy attacks. * It is adjusted from OpenZeppelin. * The only difference between this contract and ReentrancyGuard * is that _status is uint8 instead of uint256 so that it can be * packed with other contracts' storage variables. * @author LooksRare protocol team (👀,💎) */ abstract contract PackableReentrancyGuard is IReentrancyGuard { uint8 private _status; /** * @notice Modifier to wrap functions to prevent reentrancy calls. */ modifier nonReentrant() { if (_status == 2) { revert ReentrancyFail(); } _status = 2; _; _status = 1; } constructor() { _status = 1; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; // Interfaces import {IERC20} from "../interfaces/generic/IERC20.sol"; // Errors import {ERC20TransferFail, ERC20TransferFromFail} from "../errors/LowLevelErrors.sol"; import {NotAContract} from "../errors/GenericErrors.sol"; /** * @title LowLevelERC20Transfer * @notice This contract contains low-level calls to transfer ERC20 tokens. * @author LooksRare protocol team (👀,💎) */ contract LowLevelERC20Transfer { /** * @notice Execute ERC20 transferFrom * @param currency Currency address * @param from Sender address * @param to Recipient address * @param amount Amount to transfer */ function _executeERC20TransferFrom(address currency, address from, address to, uint256 amount) internal { if (currency.code.length == 0) { revert NotAContract(); } (bool status, bytes memory data) = currency.call(abi.encodeCall(IERC20.transferFrom, (from, to, amount))); if (!status) { revert ERC20TransferFromFail(); } if (data.length > 0) { if (!abi.decode(data, (bool))) { revert ERC20TransferFromFail(); } } } /** * @notice Execute ERC20 (direct) transfer * @param currency Currency address * @param to Recipient address * @param amount Amount to transfer */ function _executeERC20DirectTransfer(address currency, address to, uint256 amount) internal { if (currency.code.length == 0) { revert NotAContract(); } (bool status, bytes memory data) = currency.call(abi.encodeCall(IERC20.transfer, (to, amount))); if (!status) { revert ERC20TransferFail(); } if (data.length > 0) { if (!abi.decode(data, (bool))) { revert ERC20TransferFail(); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; // Interfaces import {IWETH} from "../interfaces/generic/IWETH.sol"; /** * @title LowLevelWETH * @notice This contract contains a function to transfer ETH with an option to wrap to WETH. * If the ETH transfer fails within a gas limit, the amount in ETH is wrapped to WETH and then transferred. * @author LooksRare protocol team (👀,💎) */ contract LowLevelWETH { /** * @notice It transfers ETH to a recipient with a specified gas limit. * If the original transfers fails, it wraps to WETH and transfers the WETH to recipient. * @param _WETH WETH address * @param _to Recipient address * @param _amount Amount to transfer * @param _gasLimit Gas limit to perform the ETH transfer */ function _transferETHAndWrapIfFailWithGasLimit( address _WETH, address _to, uint256 _amount, uint256 _gasLimit ) internal { bool status; assembly { status := call(_gasLimit, _to, _amount, 0, 0, 0, 0) } if (!status) { IWETH(_WETH).deposit{value: _amount}(); IWETH(_WETH).transfer(_to, _amount); } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.20; // Enums import {TokenType} from "../enums/TokenType.sol"; /** * @title ITransferManager * @author LooksRare protocol team (👀,💎) */ interface ITransferManager { /** * @notice This struct is only used for transferBatchItemsAcrossCollections. * @param tokenAddress Token address * @param tokenType 0 for ERC721, 1 for ERC1155 * @param itemIds Array of item ids to transfer * @param amounts Array of amounts to transfer */ struct BatchTransferItem { address tokenAddress; TokenType tokenType; uint256[] itemIds; uint256[] amounts; } /** * @notice It is emitted if operators' approvals to transfer NFTs are granted by a user. * @param user Address of the user * @param operators Array of operator addresses */ event ApprovalsGranted(address user, address[] operators); /** * @notice It is emitted if operators' approvals to transfer NFTs are revoked by a user. * @param user Address of the user * @param operators Array of operator addresses */ event ApprovalsRemoved(address user, address[] operators); /** * @notice It is emitted if a new operator is added to the global allowlist. * @param operator Operator address */ event OperatorAllowed(address operator); /** * @notice It is emitted if an operator is removed from the global allowlist. * @param operator Operator address */ event OperatorRemoved(address operator); /** * @notice It is returned if the operator to approve has already been approved by the user. */ error OperatorAlreadyApprovedByUser(); /** * @notice It is returned if the operator to revoke has not been previously approved by the user. */ error OperatorNotApprovedByUser(); /** * @notice It is returned if the transfer caller is already allowed by the owner. * @dev This error can only be returned for owner operations. */ error OperatorAlreadyAllowed(); /** * @notice It is returned if the operator to approve is not in the global allowlist defined by the owner. * @dev This error can be returned if the user tries to grant approval to an operator address not in the * allowlist or if the owner tries to remove the operator from the global allowlist. */ error OperatorNotAllowed(); /** * @notice It is returned if the transfer caller is invalid. * For a transfer called to be valid, the operator must be in the global allowlist and * approved by the 'from' user. */ error TransferCallerInvalid(); /** * @notice This function transfers ERC20 tokens. * @param tokenAddress Token address * @param from Sender address * @param to Recipient address * @param amount amount */ function transferERC20( address tokenAddress, address from, address to, uint256 amount ) external; /** * @notice This function transfers a single item for a single ERC721 collection. * @param tokenAddress Token address * @param from Sender address * @param to Recipient address * @param itemId Item ID */ function transferItemERC721( address tokenAddress, address from, address to, uint256 itemId ) external; /** * @notice This function transfers items for a single ERC721 collection. * @param tokenAddress Token address * @param from Sender address * @param to Recipient address * @param itemIds Array of itemIds * @param amounts Array of amounts */ function transferItemsERC721( address tokenAddress, address from, address to, uint256[] calldata itemIds, uint256[] calldata amounts ) external; /** * @notice This function transfers a single item for a single ERC1155 collection. * @param tokenAddress Token address * @param from Sender address * @param to Recipient address * @param itemId Item ID * @param amount Amount */ function transferItemERC1155( address tokenAddress, address from, address to, uint256 itemId, uint256 amount ) external; /** * @notice This function transfers items for a single ERC1155 collection. * @param tokenAddress Token address * @param from Sender address * @param to Recipient address * @param itemIds Array of itemIds * @param amounts Array of amounts * @dev It does not allow batch transferring if from = msg.sender since native function should be used. */ function transferItemsERC1155( address tokenAddress, address from, address to, uint256[] calldata itemIds, uint256[] calldata amounts ) external; /** * @notice This function transfers items across an array of tokens that can be ERC20, ERC721 and ERC1155. * @param items Array of BatchTransferItem * @param from Sender address * @param to Recipient address */ function transferBatchItemsAcrossCollections( BatchTransferItem[] calldata items, address from, address to ) external; /** * @notice This function allows a user to grant approvals for an array of operators. * Users cannot grant approvals if the operator is not allowed by this contract's owner. * @param operators Array of operator addresses * @dev Each operator address must be globally allowed to be approved. */ function grantApprovals(address[] calldata operators) external; /** * @notice This function allows a user to revoke existing approvals for an array of operators. * @param operators Array of operator addresses * @dev Each operator address must be approved at the user level to be revoked. */ function revokeApprovals(address[] calldata operators) external; /** * @notice This function allows an operator to be added for the shared transfer system. * Once the operator is allowed, users can grant NFT approvals to this operator. * @param operator Operator address to allow * @dev Only callable by owner. */ function allowOperator(address operator) external; /** * @notice This function allows the user to remove an operator for the shared transfer system. * @param operator Operator address to remove * @dev Only callable by owner. */ function removeOperator(address operator) external; /** * @notice This returns whether the user has approved the operator address. * The first address is the user and the second address is the operator. */ function hasUserApprovedOperator(address user, address operator) external view returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface VRFCoordinatorV2Interface { /** * @notice Get configuration relevant for making requests * @return minimumRequestConfirmations global min for request confirmations * @return maxGasLimit global max for request gas limit * @return s_provingKeyHashes list of registered key hashes */ function getRequestConfig() external view returns ( uint16, uint32, bytes32[] memory ); /** * @notice Request a set of random words. * @param keyHash - Corresponds to a particular oracle job which uses * that key for generating the VRF proof. Different keyHash's have different gas price * ceilings, so you can select a specific one to bound your maximum per request cost. * @param subId - The ID of the VRF subscription. Must be funded * with the minimum subscription balance required for the selected keyHash. * @param minimumRequestConfirmations - How many blocks you'd like the * oracle to wait before responding to the request. See SECURITY CONSIDERATIONS * for why you may want to request more. The acceptable range is * [minimumRequestBlockConfirmations, 200]. * @param callbackGasLimit - How much gas you'd like to receive in your * fulfillRandomWords callback. Note that gasleft() inside fulfillRandomWords * may be slightly less than this amount because of gas used calling the function * (argument decoding etc.), so you may need to request slightly more than you expect * to have inside fulfillRandomWords. The acceptable range is * [0, maxGasLimit] * @param numWords - The number of uint256 random values you'd like to receive * in your fulfillRandomWords callback. Note these numbers are expanded in a * secure way by the VRFCoordinator from a single random value supplied by the oracle. * @return requestId - A unique identifier of the request. Can be used to match * a request to a response in fulfillRandomWords. */ function requestRandomWords( bytes32 keyHash, uint64 subId, uint16 minimumRequestConfirmations, uint32 callbackGasLimit, uint32 numWords ) external returns (uint256 requestId); /** * @notice Create a VRF subscription. * @return subId - A unique subscription id. * @dev You can manage the consumer set dynamically with addConsumer/removeConsumer. * @dev Note to fund the subscription, use transferAndCall. For example * @dev LINKTOKEN.transferAndCall( * @dev address(COORDINATOR), * @dev amount, * @dev abi.encode(subId)); */ function createSubscription() external returns (uint64 subId); /** * @notice Get a VRF subscription. * @param subId - ID of the subscription * @return balance - LINK balance of the subscription in juels. * @return reqCount - number of requests for this subscription, determines fee tier. * @return owner - owner of the subscription. * @return consumers - list of consumer address which are able to use this subscription. */ function getSubscription(uint64 subId) external view returns ( uint96 balance, uint64 reqCount, address owner, address[] memory consumers ); /** * @notice Request subscription owner transfer. * @param subId - ID of the subscription * @param newOwner - proposed new owner of the subscription */ function requestSubscriptionOwnerTransfer(uint64 subId, address newOwner) external; /** * @notice Request subscription owner transfer. * @param subId - ID of the subscription * @dev will revert if original owner of subId has * not requested that msg.sender become the new owner. */ function acceptSubscriptionOwnerTransfer(uint64 subId) external; /** * @notice Add a consumer to a VRF subscription. * @param subId - ID of the subscription * @param consumer - New consumer which can use the subscription */ function addConsumer(uint64 subId, address consumer) external; /** * @notice Remove a consumer from a VRF subscription. * @param subId - ID of the subscription * @param consumer - Consumer to remove from the subscription */ function removeConsumer(uint64 subId, address consumer) external; /** * @notice Cancel a subscription * @param subId - ID of the subscription * @param to - Where to send the remaining LINK to */ function cancelSubscription(uint64 subId, address to) external; /* * @notice Check to see if there exists a request commitment consumers * for all consumers and keyhashes for a given sub. * @param subId - ID of the subscription * @return true if there exists at least one unfulfilled request for the subscription, false * otherwise. */ function pendingRequestExists(uint64 subId) external view returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** **************************************************************************** * @notice Interface for contracts using VRF randomness * ***************************************************************************** * @dev PURPOSE * * @dev Reggie the Random Oracle (not his real job) wants to provide randomness * @dev to Vera the verifier in such a way that Vera can be sure he's not * @dev making his output up to suit himself. Reggie provides Vera a public key * @dev to which he knows the secret key. Each time Vera provides a seed to * @dev Reggie, he gives back a value which is computed completely * @dev deterministically from the seed and the secret key. * * @dev Reggie provides a proof by which Vera can verify that the output was * @dev correctly computed once Reggie tells it to her, but without that proof, * @dev the output is indistinguishable to her from a uniform random sample * @dev from the output space. * * @dev The purpose of this contract is to make it easy for unrelated contracts * @dev to talk to Vera the verifier about the work Reggie is doing, to provide * @dev simple access to a verifiable source of randomness. It ensures 2 things: * @dev 1. The fulfillment came from the VRFCoordinator * @dev 2. The consumer contract implements fulfillRandomWords. * ***************************************************************************** * @dev USAGE * * @dev Calling contracts must inherit from VRFConsumerBase, and can * @dev initialize VRFConsumerBase's attributes in their constructor as * @dev shown: * * @dev contract VRFConsumer { * @dev constructor(<other arguments>, address _vrfCoordinator, address _link) * @dev VRFConsumerBase(_vrfCoordinator) public { * @dev <initialization with other arguments goes here> * @dev } * @dev } * * @dev The oracle will have given you an ID for the VRF keypair they have * @dev committed to (let's call it keyHash). Create subscription, fund it * @dev and your consumer contract as a consumer of it (see VRFCoordinatorInterface * @dev subscription management functions). * @dev Call requestRandomWords(keyHash, subId, minimumRequestConfirmations, * @dev callbackGasLimit, numWords), * @dev see (VRFCoordinatorInterface for a description of the arguments). * * @dev Once the VRFCoordinator has received and validated the oracle's response * @dev to your request, it will call your contract's fulfillRandomWords method. * * @dev The randomness argument to fulfillRandomWords is a set of random words * @dev generated from your requestId and the blockHash of the request. * * @dev If your contract could have concurrent requests open, you can use the * @dev requestId returned from requestRandomWords to track which response is associated * @dev with which randomness request. * @dev See "SECURITY CONSIDERATIONS" for principles to keep in mind, * @dev if your contract could have multiple requests in flight simultaneously. * * @dev Colliding `requestId`s are cryptographically impossible as long as seeds * @dev differ. * * ***************************************************************************** * @dev SECURITY CONSIDERATIONS * * @dev A method with the ability to call your fulfillRandomness method directly * @dev could spoof a VRF response with any random value, so it's critical that * @dev it cannot be directly called by anything other than this base contract * @dev (specifically, by the VRFConsumerBase.rawFulfillRandomness method). * * @dev For your users to trust that your contract's random behavior is free * @dev from malicious interference, it's best if you can write it so that all * @dev behaviors implied by a VRF response are executed *during* your * @dev fulfillRandomness method. If your contract must store the response (or * @dev anything derived from it) and use it later, you must ensure that any * @dev user-significant behavior which depends on that stored value cannot be * @dev manipulated by a subsequent VRF request. * * @dev Similarly, both miners and the VRF oracle itself have some influence * @dev over the order in which VRF responses appear on the blockchain, so if * @dev your contract could have multiple VRF requests in flight simultaneously, * @dev you must ensure that the order in which the VRF responses arrive cannot * @dev be used to manipulate your contract's user-significant behavior. * * @dev Since the block hash of the block which contains the requestRandomness * @dev call is mixed into the input to the VRF *last*, a sufficiently powerful * @dev miner could, in principle, fork the blockchain to evict the block * @dev containing the request, forcing the request to be included in a * @dev different block with a different hash, and therefore a different input * @dev to the VRF. However, such an attack would incur a substantial economic * @dev cost. This cost scales with the number of blocks the VRF oracle waits * @dev until it calls responds to a request. It is for this reason that * @dev that you can signal to an oracle you'd like them to wait longer before * @dev responding to the request (however this is not enforced in the contract * @dev and so remains effective only in the case of unmodified oracle software). */ abstract contract VRFConsumerBaseV2 { error OnlyCoordinatorCanFulfill(address have, address want); address private immutable vrfCoordinator; /** * @param _vrfCoordinator address of VRFCoordinator contract */ constructor(address _vrfCoordinator) { vrfCoordinator = _vrfCoordinator; } /** * @notice fulfillRandomness handles the VRF response. Your contract must * @notice implement it. See "SECURITY CONSIDERATIONS" above for important * @notice principles to keep in mind when implementing your fulfillRandomness * @notice method. * * @dev VRFConsumerBaseV2 expects its subcontracts to have a method with this * @dev signature, and will call it once it has verified the proof * @dev associated with the randomness. (It is triggered via a call to * @dev rawFulfillRandomness, below.) * * @param requestId The Id initially returned by requestRandomness * @param randomWords the VRF output expanded to the requested number of words */ function fulfillRandomWords(uint256 requestId, uint256[] memory randomWords) internal virtual; // rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF // proof. rawFulfillRandomness then calls fulfillRandomness, after validating // the origin of the call function rawFulfillRandomWords(uint256 requestId, uint256[] memory randomWords) external { if (msg.sender != vrfCoordinator) { revert OnlyCoordinatorCanFulfill(msg.sender, vrfCoordinator); } fulfillRandomWords(requestId, randomWords); } } // SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; import './IERC721A.sol'; /** * @dev Interface of ERC721 token receiver. */ interface ERC721A__IERC721Receiver { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } /** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is IERC721A { // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). struct TokenApprovalRef { address value; } // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 private _currentIndex; // The number of tokens burned. uint256 private _burnCounter; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) private _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) private _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => TokenApprovalRef) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // ============================================================= // CONSTRUCTOR // ============================================================= constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _currentIndex = _startTokenId(); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID. * To change the starting token ID, please override this function. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return _currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256) { // Counter underflow is impossible as _burnCounter cannot be incremented // more than `_currentIndex - _startTokenId()` times. unchecked { return _currentIndex - _burnCounter - _startTokenId(); } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { return _currentIndex - _startTokenId(); } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return _burnCounter; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) revert BalanceQueryForZeroAddress(); return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(_packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = _packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); _packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnerships[index]); } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (_packedOwnerships[index] == 0) { _packedOwnerships[index] = _packedOwnershipOf(index); } } /** * Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) { uint256 curr = tokenId; unchecked { if (_startTokenId() <= curr) if (curr < _currentIndex) { uint256 packed = _packedOwnerships[curr]; // If not burned. if (packed & _BITMASK_BURNED == 0) { // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `curr` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. while (packed == 0) { packed = _packedOwnerships[--curr]; } return packed; } } } revert OwnerQueryForNonexistentToken(); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) public payable virtual override { address owner = ownerOf(tokenId); if (_msgSenderERC721A() != owner) if (!isApprovedForAll(owner, _msgSenderERC721A())) { revert ApprovalCallerNotOwnerNorApproved(); } _tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); return _tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { _operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _startTokenId() <= tokenId && tokenId < _currentIndex && // If within bounds, _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned. } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner( address approvedAddress, address owner, address msgSender ) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) public payable virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner(); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); if (to == address(0)) revert TransferToZeroAddress(); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --_packedAddressData[from]; // Updates: `balance -= 1`. ++_packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, to, tokenId); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public payable virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public payable virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns ( bytes4 retval ) { return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert TransferToNonERC721ReceiverImplementer(); } else { assembly { revert(add(32, reason), mload(reason)) } } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (quantity == 0) revert MintZeroQuantity(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); uint256 toMasked; uint256 end = startTokenId + quantity; // Use assembly to loop and emit the `Transfer` event for gas savings. // The duplicated `log4` removes an extra check and reduces stack juggling. // The assembly, together with the surrounding Solidity code, have been // delicately arranged to nudge the compiler into producing optimized opcodes. assembly { // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. toMasked := and(to, _BITMASK_ADDRESS) // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. startTokenId // `tokenId`. ) // The `iszero(eq(,))` check ensures that large values of `quantity` // that overflows uint256 will make the loop run out of gas. // The compiler will optimize the `iszero` away for performance. for { let tokenId := add(startTokenId, 1) } iszero(eq(tokenId, end)) { tokenId := add(tokenId, 1) } { // Emit the `Transfer` event. Similar to above. log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId) } } if (toMasked == 0) revert MintToZeroAddress(); _currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (to == address(0)) revert MintToZeroAddress(); if (quantity == 0) revert MintZeroQuantity(); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); _currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = _currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } while (index < end); // Reentrancy protection. if (_currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ''); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. unchecked { _burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = _packedOwnerships[index]; if (packed == 0) revert OwnershipNotInitializedForExtraData(); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); _packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData( address from, address to, uint24 previousExtraData ) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData( address from, address to, uint256 prevOwnershipPacked ) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.20; library UnsafeMathUint256 { function unsafeAdd(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return a + b; } } function unsafeSubtract(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return a - b; } } function unsafeMultiply(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return a * b; } } function unsafeDivide(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return a / b; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /** * @title IOwnableTwoSteps * @author LooksRare protocol team (👀,💎) */ interface IOwnableTwoSteps { /** * @notice This enum keeps track of the ownership status. * @param NoOngoingTransfer The default status when the owner is set * @param TransferInProgress The status when a transfer to a new owner is initialized * @param RenouncementInProgress The status when a transfer to address(0) is initialized */ enum Status { NoOngoingTransfer, TransferInProgress, RenouncementInProgress } /** * @notice This is returned when there is no transfer of ownership in progress. */ error NoOngoingTransferInProgress(); /** * @notice This is returned when the caller is not the owner. */ error NotOwner(); /** * @notice This is returned when there is no renouncement in progress but * the owner tries to validate the ownership renouncement. */ error RenouncementNotInProgress(); /** * @notice This is returned when the transfer is already in progress but the owner tries * initiate a new ownership transfer. */ error TransferAlreadyInProgress(); /** * @notice This is returned when there is no ownership transfer in progress but the * ownership change tries to be approved. */ error TransferNotInProgress(); /** * @notice This is returned when the ownership transfer is attempted to be validated by the * a caller that is not the potential owner. */ error WrongPotentialOwner(); /** * @notice This is emitted if the ownership transfer is cancelled. */ event CancelOwnershipTransfer(); /** * @notice This is emitted if the ownership renouncement is initiated. */ event InitiateOwnershipRenouncement(); /** * @notice This is emitted if the ownership transfer is initiated. * @param previousOwner Previous/current owner * @param potentialOwner Potential/future owner */ event InitiateOwnershipTransfer(address previousOwner, address potentialOwner); /** * @notice This is emitted when there is a new owner. */ event NewOwner(address newOwner); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /** * @title IReentrancyGuard * @author LooksRare protocol team (👀,💎) */ interface IReentrancyGuard { /** * @notice This is returned when there is a reentrant call. */ error ReentrancyFail(); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /** * @notice It is emitted if the ETH transfer fails. */ error ETHTransferFail(); /** * @notice It is emitted if the ERC20 approval fails. */ error ERC20ApprovalFail(); /** * @notice It is emitted if the ERC20 transfer fails. */ error ERC20TransferFail(); /** * @notice It is emitted if the ERC20 transferFrom fails. */ error ERC20TransferFromFail(); /** * @notice It is emitted if the ERC721 transferFrom fails. */ error ERC721TransferFromFail(); /** * @notice It is emitted if the ERC1155 safeTransferFrom fails. */ error ERC1155SafeTransferFromFail(); /** * @notice It is emitted if the ERC1155 safeBatchTransferFrom fails. */ error ERC1155SafeBatchTransferFromFail(); // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /** * @notice It is emitted if the call recipient is not a contract. */ error NotAContract(); // SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface IWETH { function deposit() external payable; function transfer(address dst, uint256 wad) external returns (bool); function withdraw(uint256 wad) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.20; enum TokenType { ERC20, ERC721, ERC1155 } // SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721A. */ interface IERC721A { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external payable; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external payable; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); }