ETH Price: $2,414.98 (+7.42%)

Transaction Decoder

Block:
21319335 at Dec-03-2024 03:37:11 AM +UTC
Transaction Fee:
0.001451709138515016 ETH $3.51
Gas Used:
84,008 Gas / 17.280605877 Gwei

Emitted Events:

313 SkaiToken.Transfer( from=[Receiver] PresailDeck, to=[Sender] 0x1fd4b992fff3f5058ee1860ad618bc24ba6f9809, value=6380644784175665609805 )
314 PresailDeck.TokensClaimed( distributionId=249, recipient=[Sender] 0x1fd4b992fff3f5058ee1860ad618bc24ba6f9809, amount=6380644784175665609805, token=SkaiToken, transferRecipient=[Sender] 0x1fd4b992fff3f5058ee1860ad618bc24ba6f9809 )

Account State Difference:

  Address   Before After State Difference Code
0x1fd4b992...4ba6f9809
0.11718739892643048 Eth
Nonce: 43
0.115735689787915464 Eth
Nonce: 44
0.001451709138515016
0x739B355d...9b094bBFB
(beaverbuild)
11.993319369032911253 Eth11.993404297110705365 Eth0.000084928077794112
0xCF078DA6...e457B9d49

Execution Trace

PresailDeck.claimTokens( )
  • SkaiToken.transfer( to=0x1fd4b992fFF3F5058Ee1860AD618BC24ba6f9809, amount=6380644784175665609805 ) => ( True )
    File 1 of 2: PresailDeck
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     *
     * ==== Security Considerations
     *
     * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
     * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
     * considered as an intention to spend the allowance in any specific way. The second is that because permits have
     * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
     * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
     * generally recommended is:
     *
     * ```solidity
     * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
     *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
     *     doThing(..., value);
     * }
     *
     * function doThing(..., uint256 value) public {
     *     token.safeTransferFrom(msg.sender, address(this), value);
     *     ...
     * }
     * ```
     *
     * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
     * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
     * {SafeERC20-safeTransferFrom}).
     *
     * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
     * contracts should have entry points that don't rely on permit.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         *
         * CAUTION: See Security Considerations above.
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the value of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the value of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 value) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 value) external returns (bool);
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the
         * allowance mechanism. `value` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 value) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.20;
    import {IERC20} from "../IERC20.sol";
    import {IERC20Permit} from "../extensions/IERC20Permit.sol";
    import {Address} from "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        /**
         * @dev An operation with an ERC20 token failed.
         */
        error SafeERC20FailedOperation(address token);
        /**
         * @dev Indicates a failed `decreaseAllowance` request.
         */
        error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
        /**
         * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
        }
        /**
         * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
         * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
         */
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
        }
        /**
         * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 oldAllowance = token.allowance(address(this), spender);
            forceApprove(token, spender, oldAllowance + value);
        }
        /**
         * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
         * value, non-reverting calls are assumed to be successful.
         */
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
            unchecked {
                uint256 currentAllowance = token.allowance(address(this), spender);
                if (currentAllowance < requestedDecrease) {
                    revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                }
                forceApprove(token, spender, currentAllowance - requestedDecrease);
            }
        }
        /**
         * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
         * to be set to zero before setting it to a non-zero value, such as USDT.
         */
        function forceApprove(IERC20 token, address spender, uint256 value) internal {
            bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
            if (!_callOptionalReturnBool(token, approvalCall)) {
                _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                _callOptionalReturn(token, approvalCall);
            }
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data);
            if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
                revert SafeERC20FailedOperation(address(token));
            }
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         *
         * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
         */
        function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
            // and not revert is the subcall reverts.
            (bool success, bytes memory returndata) = address(token).call(data);
            return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev The ETH balance of the account is not enough to perform the operation.
         */
        error AddressInsufficientBalance(address account);
        /**
         * @dev There's no code at `target` (it is not a contract).
         */
        error AddressEmptyCode(address target);
        /**
         * @dev A call to an address target failed. The target may have reverted.
         */
        error FailedInnerCall();
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            if (address(this).balance < amount) {
                revert AddressInsufficientBalance(address(this));
            }
            (bool success, ) = recipient.call{value: amount}("");
            if (!success) {
                revert FailedInnerCall();
            }
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason or custom error, it is bubbled
         * up by this function (like regular Solidity function calls). However, if
         * the call reverted with no returned reason, this function reverts with a
         * {FailedInnerCall} error.
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            if (address(this).balance < value) {
                revert AddressInsufficientBalance(address(this));
            }
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
         * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
         * unsuccessful call.
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata
        ) internal view returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                // only check if target is a contract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                if (returndata.length == 0 && target.code.length == 0) {
                    revert AddressEmptyCode(target);
                }
                return returndata;
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
         * revert reason or with a default {FailedInnerCall} error.
         */
        function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                return returndata;
            }
        }
        /**
         * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
         */
        function _revert(bytes memory returndata) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert FailedInnerCall();
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the Merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates Merkle trees that are safe
     * against this attack out of the box.
     */
    library MerkleProof {
        /**
         *@dev The multiproof provided is not valid.
         */
        error MerkleProofInvalidMultiproof();
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
        /**
         * @dev Calldata version of {verify}
         */
        function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProofCalldata(proof, leaf) == root;
        }
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Calldata version of {processProof}
         */
        function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProof(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Calldata version of {multiProofVerify}
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            if (leavesLen + proofLen != totalHashes + 1) {
                revert MerkleProofInvalidMultiproof();
            }
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                if (proofPos != proofLen) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        /**
         * @dev Calldata version of {processMultiProof}.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            if (leavesLen + proofLen != totalHashes + 1) {
                revert MerkleProofInvalidMultiproof();
            }
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                if (proofPos != proofLen) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        /**
         * @dev Sorts the pair (a, b) and hashes the result.
         */
        function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
            return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
        }
        /**
         * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
         */
        function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/BitMaps.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Library for managing uint256 to bool mapping in a compact and efficient way, provided the keys are sequential.
     * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
     *
     * BitMaps pack 256 booleans across each bit of a single 256-bit slot of `uint256` type.
     * Hence booleans corresponding to 256 _sequential_ indices would only consume a single slot,
     * unlike the regular `bool` which would consume an entire slot for a single value.
     *
     * This results in gas savings in two ways:
     *
     * - Setting a zero value to non-zero only once every 256 times
     * - Accessing the same warm slot for every 256 _sequential_ indices
     */
    library BitMaps {
        struct BitMap {
            mapping(uint256 bucket => uint256) _data;
        }
        /**
         * @dev Returns whether the bit at `index` is set.
         */
        function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
            uint256 bucket = index >> 8;
            uint256 mask = 1 << (index & 0xff);
            return bitmap._data[bucket] & mask != 0;
        }
        /**
         * @dev Sets the bit at `index` to the boolean `value`.
         */
        function setTo(BitMap storage bitmap, uint256 index, bool value) internal {
            if (value) {
                set(bitmap, index);
            } else {
                unset(bitmap, index);
            }
        }
        /**
         * @dev Sets the bit at `index`.
         */
        function set(BitMap storage bitmap, uint256 index) internal {
            uint256 bucket = index >> 8;
            uint256 mask = 1 << (index & 0xff);
            bitmap._data[bucket] |= mask;
        }
        /**
         * @dev Unsets the bit at `index`.
         */
        function unset(BitMap storage bitmap, uint256 index) internal {
            uint256 bucket = index >> 8;
            uint256 mask = 1 << (index & 0xff);
            bitmap._data[bucket] &= ~mask;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.22;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
    import "@openzeppelin/contracts/utils/structs/BitMaps.sol";
    import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    /**
     * @title PresailDeck
     * @dev Contract for distributing tokens using a Merkle tree.
     */
    contract PresailDeck {
        using SafeERC20 for IERC20;
        struct Distribution {
            bytes32 merkleRoot;
            uint256 lockedTokens;
            uint256 claimedTokens;
            address token;
            bool invalidated;
            address owner;
            bool markedForReplacement;
            bool replaced;
        }
        mapping(uint256 => Distribution) public distributions;
        mapping(uint256 => BitMaps.BitMap) private claimedBitmaps;
        uint256 public distributionsCount;
        event TokensLocked(uint256 indexed distributionId, address indexed owner, bytes32 indexed merkleRoot, uint256 lockedTokens, address token, bool forceExactAmountTransfer);
        event TokensClaimed(uint256 indexed distributionId, address indexed recipient, uint256 amount, address token, address indexed transferRecipient);
        event TokensReclaimed(uint256 indexed distributionId, uint256 reclaimedTokens, address token);
        event TokensDeposited(uint256 indexed distributionId, uint256 lockedTokens, uint256 depositedTokens, address token, bool forceExactAmountTransfer);
        event DistributionSetInvalidated(uint256 indexed distributionId, bool invalidated);
        event DistributionReplaced(uint256 indexed distributionReplacedId, uint256 indexed distributionId, address indexed owner);
        error UnauthorizedAccess(address caller, address owner);
        error DistributionInvalidated(uint256 distributionId);
        error DistributionNotInvalidated(uint256 distributionId);
        error TokensAlreadyClaimed(address recipient);
        error ClaimedTokensExceedLockedAmount(uint256 claimedTokens, uint256 lockedTokens);
        error InvalidMerkleProof();
        error ArraysLengthMismatch();
        error TokenMismatch();
        error DistributionMarkedForReplacement(uint256 distributionId);
        error DistributionNotMarkedForReplacement(uint256 distributionId);
        error DistributionAlreadyReplaced(uint256 distributionId);
        error NonExactAmountTransfer();
        modifier onlyOwner(uint256 _distributionId) {
            if (distributions[_distributionId].owner != msg.sender)
                revert UnauthorizedAccess(msg.sender, distributions[_distributionId].owner);
            _;
        }
        /**
         * @dev Locks tokens in the contract for distribution.
         * @param _token The address of the token contract.
         * @param _totalTokens The total number of tokens to be distributed.
         * @param _merkleRoot The Merkle root of the Merkle tree containing the token distribution.
         * @param _replacesDistribution If this new distribution replaces an existing one
         * @param _distributionToReplace If _replacesDistribution is true, this is the index of the distribution to replace
         */
        function lockTokens(
            address _token,
            uint256 _totalTokens,
            bytes32 _merkleRoot,
            bool _replacesDistribution,
            uint256 _distributionToReplace,
            bool _forceExactAmountTransfer
        ) external {
            uint256 currentDistributionId = distributionsCount;
            uint256 distributionExistingBalance = 0;
            if (_replacesDistribution) {
                Distribution storage distributionToReplace = distributions[_distributionToReplace];
                if (distributionToReplace.replaced)
                    revert DistributionAlreadyReplaced(_distributionToReplace);
                if (!distributionToReplace.markedForReplacement)
                    revert DistributionNotMarkedForReplacement(_distributionToReplace);
                if (distributionToReplace.owner != msg.sender)
                    revert UnauthorizedAccess(msg.sender, distributionToReplace.owner);
                if (distributionToReplace.token != _token)
                    revert TokenMismatch();
                distributionToReplace.replaced = true;
                distributionExistingBalance = distributionToReplace.lockedTokens - distributionToReplace.claimedTokens;
                emit DistributionReplaced(_distributionToReplace, currentDistributionId, msg.sender);
            }
            
            distributionsCount++;
            distributions[currentDistributionId].merkleRoot = _merkleRoot;
            distributions[currentDistributionId].token = _token;
            distributions[currentDistributionId].owner = msg.sender;
            uint256 balanceBefore = IERC20(_token).balanceOf(address(this));
            IERC20(_token).safeTransferFrom(msg.sender, address(this), _totalTokens);
            uint256 balanceAfter = IERC20(_token).balanceOf(address(this));
            uint256 netTransferAmount =  balanceAfter - balanceBefore;
            // If we indicated it to force exact amounts, then the total entered and what was actually transferred should be the same.
            if (_forceExactAmountTransfer && _totalTokens != netTransferAmount)
                revert NonExactAmountTransfer();
            distributions[currentDistributionId].lockedTokens = distributionExistingBalance + netTransferAmount;
            emit TokensLocked(currentDistributionId, msg.sender, _merkleRoot, netTransferAmount, _token, _forceExactAmountTransfer);
        }
        /**
         * @dev Claims tokens for a recipient based on a Merkle proof.
         * @param _distributionId The ID of the distribution.
         * @param _index The index of the leaf in the Merkle tree.
         * @param _amount The amount of tokens to claim.
         * @param _proof The Merkle proof for the claimed tokens.
         */
        function claimTokens(uint256 _distributionId, uint256 _index, uint256 _amount, bytes32[] calldata _proof) external {
            _claim(_distributionId, _index, msg.sender, _amount, _proof, msg.sender);
        }
        /**
         * @notice Claims tokens from multiple distributions in a single call.
         * @dev This function allows users to claim tokens from multiple distributions simultaneously, providing an array of distribution IDs, accounts, amounts, and proofs.
         * @param _distributionIds An array of distribution IDs from which tokens will be claimed.
         * @param _indexes An array of indexes for each distribution.
         * @param _amounts An array of amounts of tokens to claim for each distribution.
         * @param _proofs An array of Merkle proofs for each distribution claim.
         */ 
        function claimMultipleTokens(uint256[] calldata _distributionIds, uint256[] calldata _indexes, uint256[] calldata _amounts, bytes32[][] calldata _proofs) external {
            if (_distributionIds.length != _indexes.length ||
                _distributionIds.length != _amounts.length ||
                _distributionIds.length != _proofs.length) {
                revert ArraysLengthMismatch();
            }
            for (uint256 i = 0; i < _distributionIds.length; i++) {
                _claim(_distributionIds[i], _indexes[i], msg.sender, _amounts[i], _proofs[i], msg.sender);
            }
        }
        /**
         * @dev Allows the owner to clawback tokens of a recipient based on a Merkle proof.
         * @param _distributionId The ID of the distribution.
         * @param _index The index of the leaf in the Merkle tree.
         * @param _account The recipient's address to clawback from.
         * @param _amount The amount of tokens to reclaim.
         * @param _proof The Merkle proof for the reclaimed tokens.
         */
        function clawbackTokens(uint256 _distributionId, uint256 _index, address _account, uint256 _amount, bytes32[] calldata _proof) external onlyOwner(_distributionId) {
            Distribution storage distribution = distributions[_distributionId];
            _claim(_distributionId, _index, _account, _amount, _proof, distribution.owner);
        }
        /**
         * @dev Internal function to handle token claims.
         * @param _distributionId The ID of the distribution.
         * @param _index The index of the leaf in the Merkle tree.
         * @param _recipient The recipient's address.
         * @param _amount The amount of tokens to claim.
         * @param _proof The Merkle proof for the claimed tokens.
         * @param _transferRecipient The address to transfer the claimed tokens to.
         */
        function _claim(uint256 _distributionId, uint256 _index, address _recipient, uint256 _amount, bytes32[] calldata _proof, address _transferRecipient) internal {
            Distribution storage distribution = distributions[_distributionId];
            if (distribution.invalidated)
                revert DistributionInvalidated(_distributionId);
            if (isClaimed(_distributionId, _index))
                revert TokensAlreadyClaimed(_recipient);
            if (!MerkleProof.verifyCalldata(_proof, distribution.merkleRoot, _leaf(_index, _recipient, _amount)))
                revert InvalidMerkleProof();   
            BitMaps.BitMap storage claimedBitmap = claimedBitmaps[_distributionId];
            BitMaps.set(claimedBitmap, _index);
            distribution.claimedTokens = distribution.claimedTokens + _amount;
            
            if (distribution.claimedTokens > distribution.lockedTokens)
                revert ClaimedTokensExceedLockedAmount(distribution.claimedTokens, distribution.lockedTokens);
            IERC20(distribution.token).safeTransfer(_transferRecipient, _amount);
            emit TokensClaimed(_distributionId, _recipient, _amount, distribution.token, _transferRecipient);
        }
        /**
         * @dev Allows the owner to reclaim tokens and invalidates a distribution.
         * To be used in case of emergency or after some deadline if beneficiaries are not claiming anymore.
         * @param _distributionId The ID of the distribution.
         */
        function reclaimTokensAndInvalidateDistribution(uint256 _distributionId) external onlyOwner(_distributionId) {
            Distribution storage distribution = distributions[_distributionId];
            if (distribution.invalidated)
                revert DistributionInvalidated(_distributionId);
            distribution.invalidated = true;
            uint256 tokensLeft = distribution.lockedTokens - distribution.claimedTokens;
            IERC20(distribution.token).safeTransfer(distribution.owner, tokensLeft);
            emit TokensReclaimed(_distributionId, tokensLeft, distribution.token);
            emit DistributionSetInvalidated(_distributionId, true);
        }
        /**
         * @dev Allows the owner to invalidate a distribution and mark it for replacement.
         * To be used for creating a distribution that replaces another distribution.
         * Leaves the tokens still locked in the contract so they can be "transferred" to a new distribution that replaces this one.
         * @param _distributionId The ID of the distribution.
         */
        function invalidateDistributionForReplacement(uint256 _distributionId) external onlyOwner(_distributionId) {
            Distribution storage distribution = distributions[_distributionId];
            // Can only invalidate it for replacement if:
            // - it HAS NOT been invalidated AND
            // - it HAS NOT been already replaced AND
            // - it HAS NOT been marked for replacement (using invalidateDistributionForReplacement)
            if (distribution.invalidated)
                revert DistributionInvalidated(_distributionId);
            
            if (distribution.replaced)
                revert DistributionAlreadyReplaced(_distributionId);
            if (distribution.markedForReplacement)
                revert DistributionMarkedForReplacement(_distributionId);
            distribution.invalidated = true;
            distribution.markedForReplacement = true;
            emit DistributionSetInvalidated(_distributionId, true);
        }
        /**
         * @dev Allows the owner to cancel the invalidation of a distribution that has been marked for replacement.
         * @param _distributionId The ID of the distribution.
         */
        function cancelInvalidateDistributionForReplacement(uint256 _distributionId) external onlyOwner(_distributionId) {
            Distribution storage distribution = distributions[_distributionId];
            // Can only cancel it if:
            // - it HAS been invalidated AND
            // - it HAS NOT been already replaced AND
            // - it HAS been marked for replacement (using invalidateDistributionForReplacement)
            if (!distribution.invalidated)
                revert DistributionNotInvalidated(_distributionId);
            if (distribution.replaced)
                revert DistributionAlreadyReplaced(_distributionId);
            if (!distribution.markedForReplacement)
                revert DistributionNotMarkedForReplacement(_distributionId);
            distribution.invalidated = false;
            distribution.markedForReplacement = false;
            emit DistributionSetInvalidated(_distributionId, false);
        }
        /** 
         * @dev Allows owner to deposit tokens into their distribution.
         * Only to be used if for some reason they initially locked less tokens than the sum of all amounts in tree.
         * @param _distributionId The ID of the distribution.
         * @param _tokenAmount The amount of tokens to deposit.
         */
        function depositTokens(uint256 _distributionId, uint256 _tokenAmount,  bool _forceExactAmountTransfer) external onlyOwner(_distributionId) {
            Distribution storage distribution = distributions[_distributionId];
            if (distribution.invalidated)
                revert DistributionInvalidated(_distributionId);
            uint256 balanceBefore = IERC20(distribution.token).balanceOf(address(this));
            IERC20(distribution.token).safeTransferFrom(msg.sender, address(this), _tokenAmount);
            uint256 balanceAfter = IERC20(distribution.token).balanceOf(address(this));
            uint256 netTransferAmount = balanceAfter - balanceBefore;
            // If we indicated it to force exact mounts, then the total entered and what was actually transferred should be the same.
            if (_forceExactAmountTransfer && _tokenAmount != netTransferAmount)
                revert NonExactAmountTransfer();
            distribution.lockedTokens = distribution.lockedTokens + netTransferAmount;
            
            emit TokensDeposited(_distributionId, distribution.lockedTokens, netTransferAmount, distribution.token, _forceExactAmountTransfer);
        }
        /**
         * @dev Internal function to compute the leaf hash for a given index, account, and amount.
         * @param index The index of the leaf in the Merkle tree.
         * @param account The account address.
         * @param amount The token amount.
         * @return The computed leaf hash.
         */
        function _leaf(uint256 index, address account, uint256 amount) internal pure returns (bytes32) {
            return keccak256(bytes.concat(keccak256(abi.encode(index, account, amount)))); 
        }
        /**
         * @dev Checks if a recipient has already claimed tokens.
         * @param _distributionId The ID of the distribution.
         * @param _index The index of the leaf in the Merkle tree.
         * @return A boolean indicating whether the tokens are already claimed.
         */
        function isClaimed(uint256 _distributionId, uint256 _index) public view returns (bool) {
            return BitMaps.get(claimedBitmaps[_distributionId], _index);
        }
        /**
         * @dev Checks if multiple recipients have already claimed tokens.
         * @param _distributionId The ID of the distribution.
         * @param _indexes The index of the leaf in the Merkle tree.
         * @return An array of booleans indicating whether the tokens are already claimed.
         */
        function areClaimed(uint256 _distributionId, uint256[] calldata _indexes) public view returns (bool[] memory) {
            bool[] memory results = new bool[](_indexes.length);
            for (uint256 i = 0; i < _indexes.length; i++) {
                results[i] = BitMaps.get(claimedBitmaps[_distributionId], _indexes[i]);
            }
            return results;
        }
    }

    File 2 of 2: SkaiToken
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
            }
            _balances[to] += amount;
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.19;
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    contract SkaiToken is ERC20 {
        constructor(
            string memory name,
            string memory symbol,
            uint256 totalSupply_,
            address receiver
        ) ERC20(name, symbol) {
            _mint(receiver, totalSupply_);
        }
    }