ETH Price: $2,427.72 (+7.43%)

Transaction Decoder

Block:
21669042 at Jan-20-2025 11:38:47 PM +UTC
Transaction Fee:
0.000781700746267031 ETH $1.90
Gas Used:
54,491 Gas / 14.345501941 Gwei

Emitted Events:

278 BeaconProxy.0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925( 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925, 0x000000000000000000000000e457134db87f4246865882a7e3835aa84c4b8d6e, 0x0000000000000000000000000d89f4583a6b5eceb76551d573ad49cd435f6064, 0000000000000000000000000000000000000000000002ddd7ea8eace07e6c9a )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
12.884529560988038368 Eth12.884593649215413368 Eth0.000064088227375
0xD0097149...7dC32C1E9
0xE457134d...84C4b8D6e
0.191765139916098173 Eth
Nonce: 576
0.190983439169831142 Eth
Nonce: 577
0.000781700746267031

Execution Trace

BeaconProxy.095ea7b3( )
  • AMBeacon.STATICCALL( )
  • PrincipalToken.approve( spender=0x0d89f4583a6b5eceb76551d573ad49cD435f6064, value=13537021810764958035098 ) => ( True )
    File 1 of 3: BeaconProxy
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/BeaconProxy.sol)
    pragma solidity ^0.8.20;
    import {IBeacon} from "./IBeacon.sol";
    import {Proxy} from "../Proxy.sol";
    import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
    /**
     * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
     *
     * The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an
     * immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by
     * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] so that it can be accessed externally.
     *
     * CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust
     * the beacon to not upgrade the implementation maliciously.
     *
     * IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in
     * an inconsistent state where the beacon storage slot does not match the beacon address.
     */
    contract BeaconProxy is Proxy {
        // An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call.
        address private immutable _beacon;
        /**
         * @dev Initializes the proxy with `beacon`.
         *
         * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
         * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
         * constructor.
         *
         * Requirements:
         *
         * - `beacon` must be a contract with the interface {IBeacon}.
         * - If `data` is empty, `msg.value` must be zero.
         */
        constructor(address beacon, bytes memory data) payable {
            ERC1967Utils.upgradeBeaconToAndCall(beacon, data);
            _beacon = beacon;
        }
        /**
         * @dev Returns the current implementation address of the associated beacon.
         */
        function _implementation() internal view virtual override returns (address) {
            return IBeacon(_getBeacon()).implementation();
        }
        /**
         * @dev Returns the beacon.
         */
        function _getBeacon() internal view virtual returns (address) {
            return _beacon;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev This is the interface that {BeaconProxy} expects of its beacon.
     */
    interface IBeacon {
        /**
         * @dev Must return an address that can be used as a delegate call target.
         *
         * {UpgradeableBeacon} will check that this address is a contract.
         */
        function implementation() external view returns (address);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
     * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
     * be specified by overriding the virtual {_implementation} function.
     *
     * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
     * different contract through the {_delegate} function.
     *
     * The success and return data of the delegated call will be returned back to the caller of the proxy.
     */
    abstract contract Proxy {
        /**
         * @dev Delegates the current call to `implementation`.
         *
         * This function does not return to its internal call site, it will return directly to the external caller.
         */
        function _delegate(address implementation) internal virtual {
            assembly {
                // Copy msg.data. We take full control of memory in this inline assembly
                // block because it will not return to Solidity code. We overwrite the
                // Solidity scratch pad at memory position 0.
                calldatacopy(0, 0, calldatasize())
                // Call the implementation.
                // out and outsize are 0 because we don't know the size yet.
                let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                // Copy the returned data.
                returndatacopy(0, 0, returndatasize())
                switch result
                // delegatecall returns 0 on error.
                case 0 {
                    revert(0, returndatasize())
                }
                default {
                    return(0, returndatasize())
                }
            }
        }
        /**
         * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
         * function and {_fallback} should delegate.
         */
        function _implementation() internal view virtual returns (address);
        /**
         * @dev Delegates the current call to the address returned by `_implementation()`.
         *
         * This function does not return to its internal call site, it will return directly to the external caller.
         */
        function _fallback() internal virtual {
            _delegate(_implementation());
        }
        /**
         * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
         * function in the contract matches the call data.
         */
        fallback() external payable virtual {
            _fallback();
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)
    pragma solidity ^0.8.20;
    import {IBeacon} from "../beacon/IBeacon.sol";
    import {Address} from "../../utils/Address.sol";
    import {StorageSlot} from "../../utils/StorageSlot.sol";
    /**
     * @dev This abstract contract provides getters and event emitting update functions for
     * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
     */
    library ERC1967Utils {
        // We re-declare ERC-1967 events here because they can't be used directly from IERC1967.
        // This will be fixed in Solidity 0.8.21. At that point we should remove these events.
        /**
         * @dev Emitted when the implementation is upgraded.
         */
        event Upgraded(address indexed implementation);
        /**
         * @dev Emitted when the admin account has changed.
         */
        event AdminChanged(address previousAdmin, address newAdmin);
        /**
         * @dev Emitted when the beacon is changed.
         */
        event BeaconUpgraded(address indexed beacon);
        /**
         * @dev Storage slot with the address of the current implementation.
         * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /**
         * @dev The `implementation` of the proxy is invalid.
         */
        error ERC1967InvalidImplementation(address implementation);
        /**
         * @dev The `admin` of the proxy is invalid.
         */
        error ERC1967InvalidAdmin(address admin);
        /**
         * @dev The `beacon` of the proxy is invalid.
         */
        error ERC1967InvalidBeacon(address beacon);
        /**
         * @dev An upgrade function sees `msg.value > 0` that may be lost.
         */
        error ERC1967NonPayable();
        /**
         * @dev Returns the current implementation address.
         */
        function getImplementation() internal view returns (address) {
            return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
        }
        /**
         * @dev Stores a new address in the EIP1967 implementation slot.
         */
        function _setImplementation(address newImplementation) private {
            if (newImplementation.code.length == 0) {
                revert ERC1967InvalidImplementation(newImplementation);
            }
            StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
        }
        /**
         * @dev Performs implementation upgrade with additional setup call if data is nonempty.
         * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
         * to avoid stuck value in the contract.
         *
         * Emits an {IERC1967-Upgraded} event.
         */
        function upgradeToAndCall(address newImplementation, bytes memory data) internal {
            _setImplementation(newImplementation);
            emit Upgraded(newImplementation);
            if (data.length > 0) {
                Address.functionDelegateCall(newImplementation, data);
            } else {
                _checkNonPayable();
            }
        }
        /**
         * @dev Storage slot with the admin of the contract.
         * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /**
         * @dev Returns the current admin.
         *
         * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
         * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
         * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
         */
        function getAdmin() internal view returns (address) {
            return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
        }
        /**
         * @dev Stores a new address in the EIP1967 admin slot.
         */
        function _setAdmin(address newAdmin) private {
            if (newAdmin == address(0)) {
                revert ERC1967InvalidAdmin(address(0));
            }
            StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
        }
        /**
         * @dev Changes the admin of the proxy.
         *
         * Emits an {IERC1967-AdminChanged} event.
         */
        function changeAdmin(address newAdmin) internal {
            emit AdminChanged(getAdmin(), newAdmin);
            _setAdmin(newAdmin);
        }
        /**
         * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
         * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
        /**
         * @dev Returns the current beacon.
         */
        function getBeacon() internal view returns (address) {
            return StorageSlot.getAddressSlot(BEACON_SLOT).value;
        }
        /**
         * @dev Stores a new beacon in the EIP1967 beacon slot.
         */
        function _setBeacon(address newBeacon) private {
            if (newBeacon.code.length == 0) {
                revert ERC1967InvalidBeacon(newBeacon);
            }
            StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
            address beaconImplementation = IBeacon(newBeacon).implementation();
            if (beaconImplementation.code.length == 0) {
                revert ERC1967InvalidImplementation(beaconImplementation);
            }
        }
        /**
         * @dev Change the beacon and trigger a setup call if data is nonempty.
         * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
         * to avoid stuck value in the contract.
         *
         * Emits an {IERC1967-BeaconUpgraded} event.
         *
         * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
         * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
         * efficiency.
         */
        function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
            _setBeacon(newBeacon);
            emit BeaconUpgraded(newBeacon);
            if (data.length > 0) {
                Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
            } else {
                _checkNonPayable();
            }
        }
        /**
         * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
         * if an upgrade doesn't perform an initialization call.
         */
        function _checkNonPayable() private {
            if (msg.value > 0) {
                revert ERC1967NonPayable();
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev The ETH balance of the account is not enough to perform the operation.
         */
        error AddressInsufficientBalance(address account);
        /**
         * @dev There's no code at `target` (it is not a contract).
         */
        error AddressEmptyCode(address target);
        /**
         * @dev A call to an address target failed. The target may have reverted.
         */
        error FailedInnerCall();
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            if (address(this).balance < amount) {
                revert AddressInsufficientBalance(address(this));
            }
            (bool success, ) = recipient.call{value: amount}("");
            if (!success) {
                revert FailedInnerCall();
            }
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason or custom error, it is bubbled
         * up by this function (like regular Solidity function calls). However, if
         * the call reverted with no returned reason, this function reverts with a
         * {FailedInnerCall} error.
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            if (address(this).balance < value) {
                revert AddressInsufficientBalance(address(this));
            }
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
         * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
         * unsuccessful call.
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata
        ) internal view returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                // only check if target is a contract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                if (returndata.length == 0 && target.code.length == 0) {
                    revert AddressEmptyCode(target);
                }
                return returndata;
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
         * revert reason or with a default {FailedInnerCall} error.
         */
        function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                return returndata;
            }
        }
        /**
         * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
         */
        function _revert(bytes memory returndata) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert FailedInnerCall();
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
    // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
    pragma solidity ^0.8.20;
    /**
     * @dev Library for reading and writing primitive types to specific storage slots.
     *
     * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
     * This library helps with reading and writing to such slots without the need for inline assembly.
     *
     * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
     *
     * Example usage to set ERC1967 implementation slot:
     * ```solidity
     * contract ERC1967 {
     *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
     *
     *     function _getImplementation() internal view returns (address) {
     *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
     *     }
     *
     *     function _setImplementation(address newImplementation) internal {
     *         require(newImplementation.code.length > 0);
     *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
     *     }
     * }
     * ```
     */
    library StorageSlot {
        struct AddressSlot {
            address value;
        }
        struct BooleanSlot {
            bool value;
        }
        struct Bytes32Slot {
            bytes32 value;
        }
        struct Uint256Slot {
            uint256 value;
        }
        struct StringSlot {
            string value;
        }
        struct BytesSlot {
            bytes value;
        }
        /**
         * @dev Returns an `AddressSlot` with member `value` located at `slot`.
         */
        function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
         */
        function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
         */
        function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
         */
        function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `StringSlot` with member `value` located at `slot`.
         */
        function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
         */
        function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := store.slot
            }
        }
        /**
         * @dev Returns an `BytesSlot` with member `value` located at `slot`.
         */
        function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
         */
        function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := store.slot
            }
        }
    }
    

    File 2 of 3: AMBeacon
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/UpgradeableBeacon.sol)
    // Modified by Spectra to use AccessManager instead of Ownable for access control
    pragma solidity 0.8.20;
    import {IBeacon} from "openzeppelin-contracts/proxy/beacon/IBeacon.sol";
    import "openzeppelin-contracts/access/manager/AccessManaged.sol";
    /**
     * @title AMBeacon
     * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
     * implementation contract, which is where they will delegate all function calls.
     *
     * Previously, the contract relied on the Ownable pattern from OpenZeppelin.
     * It has been modified by Spectra to use the AccessManaged for access control instead.
     *
     * The authority can change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
     */
    contract AMBeacon is IBeacon, AccessManaged {
        address private _implementation;
        /**
         * @dev The `implementation` of the beacon is invalid.
         */
        error BeaconInvalidImplementation(address implementation);
        /**
         * @dev Emitted when the implementation returned by the beacon is changed.
         */
        event Upgraded(address indexed implementation);
        /**
         * @dev Initializes the contract setting the address of the initial implementation and the initial authority (Access Manager contract).
         *
         * @param implementation_ Address of the initial implementation.
         * @param initialAuthority Address of the initial authority (Access Manager contract).
         */
        constructor(address implementation_, address initialAuthority) AccessManaged(initialAuthority) {
            _setImplementation(implementation_);
        }
        /**
         * @dev Returns the current implementation address.
         */
        function implementation() public view virtual returns (address) {
            return _implementation;
        }
        /**
         * @dev Upgrades the beacon to a new implementation.
         *
         * Emits an {Upgraded} event.
         *
         * Requirements:
         *
         * - msg.sender must have the appropriate role in the authority.
         *   By default it is the ADMIN_ROLE of the AccessManager contract.
         *   Other roles can be used see setTargetFunctionRole(target, selectors, roleId)
         *   in AccessManager.sol (OpenZeppelin 5.0)
         * - `newImplementation` must be a contract.
         */
        function upgradeTo(address newImplementation) public virtual restricted {
            _setImplementation(newImplementation);
        }
        /**
         * @dev Sets the implementation contract address for this beacon
         *
         * Requirements:
         *
         * - `newImplementation` must be a contract.
         *
         */
        function _setImplementation(address newImplementation) private {
            if (newImplementation.code.length == 0) {
                revert BeaconInvalidImplementation(newImplementation);
            }
            _implementation = newImplementation;
            emit Upgraded(newImplementation);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev This is the interface that {BeaconProxy} expects of its beacon.
     */
    interface IBeacon {
        /**
         * @dev Must return an address that can be used as a delegate call target.
         *
         * {UpgradeableBeacon} will check that this address is a contract.
         */
        function implementation() external view returns (address);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AccessManaged.sol)
    pragma solidity ^0.8.20;
    import {IAuthority} from "./IAuthority.sol";
    import {AuthorityUtils} from "./AuthorityUtils.sol";
    import {IAccessManager} from "./IAccessManager.sol";
    import {IAccessManaged} from "./IAccessManaged.sol";
    import {Context} from "../../utils/Context.sol";
    /**
     * @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
     * permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
     * implementing a policy that allows certain callers to access certain functions.
     *
     * IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
     * functions, and ideally only used in `external` functions. See {restricted}.
     */
    abstract contract AccessManaged is Context, IAccessManaged {
        address private _authority;
        bool private _consumingSchedule;
        /**
         * @dev Initializes the contract connected to an initial authority.
         */
        constructor(address initialAuthority) {
            _setAuthority(initialAuthority);
        }
        /**
         * @dev Restricts access to a function as defined by the connected Authority for this contract and the
         * caller and selector of the function that entered the contract.
         *
         * [IMPORTANT]
         * ====
         * In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
         * functions that are used as external entry points and are not called internally. Unless you know what you're
         * doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
         * implications! This is because the permissions are determined by the function that entered the contract, i.e. the
         * function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
         * ====
         *
         * [WARNING]
         * ====
         * Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
         * function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
         * functions are the only execution paths where a function selector cannot be unambiguosly determined from the calldata
         * since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
         * if no calldata is provided. (See {_checkCanCall}).
         *
         * The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
         * ====
         */
        modifier restricted() {
            _checkCanCall(_msgSender(), _msgData());
            _;
        }
        /// @inheritdoc IAccessManaged
        function authority() public view virtual returns (address) {
            return _authority;
        }
        /// @inheritdoc IAccessManaged
        function setAuthority(address newAuthority) public virtual {
            address caller = _msgSender();
            if (caller != authority()) {
                revert AccessManagedUnauthorized(caller);
            }
            if (newAuthority.code.length == 0) {
                revert AccessManagedInvalidAuthority(newAuthority);
            }
            _setAuthority(newAuthority);
        }
        /// @inheritdoc IAccessManaged
        function isConsumingScheduledOp() public view returns (bytes4) {
            return _consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
        }
        /**
         * @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
         * permissions set by the current authority.
         */
        function _setAuthority(address newAuthority) internal virtual {
            _authority = newAuthority;
            emit AuthorityUpdated(newAuthority);
        }
        /**
         * @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
         * is less than 4 bytes long.
         */
        function _checkCanCall(address caller, bytes calldata data) internal virtual {
            (bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
                authority(),
                caller,
                address(this),
                bytes4(data[0:4])
            );
            if (!immediate) {
                if (delay > 0) {
                    _consumingSchedule = true;
                    IAccessManager(authority()).consumeScheduledOp(caller, data);
                    _consumingSchedule = false;
                } else {
                    revert AccessManagedUnauthorized(caller);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAuthority.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Standard interface for permissioning originally defined in Dappsys.
     */
    interface IAuthority {
        /**
         * @dev Returns true if the caller can invoke on a target the function identified by a function selector.
         */
        function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AuthorityUtils.sol)
    pragma solidity ^0.8.20;
    import {IAuthority} from "./IAuthority.sol";
    library AuthorityUtils {
        /**
         * @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility
         * for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data.
         * This helper function takes care of invoking `canCall` in a backwards compatible way without reverting.
         */
        function canCallWithDelay(
            address authority,
            address caller,
            address target,
            bytes4 selector
        ) internal view returns (bool immediate, uint32 delay) {
            (bool success, bytes memory data) = authority.staticcall(
                abi.encodeCall(IAuthority.canCall, (caller, target, selector))
            );
            if (success) {
                if (data.length >= 0x40) {
                    (immediate, delay) = abi.decode(data, (bool, uint32));
                } else if (data.length >= 0x20) {
                    immediate = abi.decode(data, (bool));
                }
            }
            return (immediate, delay);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManager.sol)
    pragma solidity ^0.8.20;
    import {IAccessManaged} from "./IAccessManaged.sol";
    import {Time} from "../../utils/types/Time.sol";
    interface IAccessManager {
        /**
         * @dev A delayed operation was scheduled.
         */
        event OperationScheduled(
            bytes32 indexed operationId,
            uint32 indexed nonce,
            uint48 schedule,
            address caller,
            address target,
            bytes data
        );
        /**
         * @dev A scheduled operation was executed.
         */
        event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce);
        /**
         * @dev A scheduled operation was canceled.
         */
        event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);
        /**
         * @dev Informational labelling for a roleId.
         */
        event RoleLabel(uint64 indexed roleId, string label);
        /**
         * @dev Emitted when `account` is granted `roleId`.
         *
         * NOTE: The meaning of the `since` argument depends on the `newMember` argument.
         * If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role,
         * otherwise it indicates the execution delay for this account and roleId is updated.
         */
        event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);
        /**
         * @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
         */
        event RoleRevoked(uint64 indexed roleId, address indexed account);
        /**
         * @dev Role acting as admin over a given `roleId` is updated.
         */
        event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);
        /**
         * @dev Role acting as guardian over a given `roleId` is updated.
         */
        event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);
        /**
         * @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
         */
        event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);
        /**
         * @dev Target mode is updated (true = closed, false = open).
         */
        event TargetClosed(address indexed target, bool closed);
        /**
         * @dev Role required to invoke `selector` on `target` is updated to `roleId`.
         */
        event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);
        /**
         * @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
         */
        event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);
        error AccessManagerAlreadyScheduled(bytes32 operationId);
        error AccessManagerNotScheduled(bytes32 operationId);
        error AccessManagerNotReady(bytes32 operationId);
        error AccessManagerExpired(bytes32 operationId);
        error AccessManagerLockedAccount(address account);
        error AccessManagerLockedRole(uint64 roleId);
        error AccessManagerBadConfirmation();
        error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId);
        error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector);
        error AccessManagerUnauthorizedConsume(address target);
        error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
        error AccessManagerInvalidInitialAdmin(address initialAdmin);
        /**
         * @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
         * no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
         * & {execute} workflow.
         *
         * This function is usually called by the targeted contract to control immediate execution of restricted functions.
         * Therefore we only return true if the call can be performed without any delay. If the call is subject to a
         * previously set delay (not zero), then the function should return false and the caller should schedule the operation
         * for future execution.
         *
         * If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
         * the operation can be executed if and only if delay is greater than 0.
         *
         * NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
         * is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
         * to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
         *
         * NOTE: This function does not report the permissions of this manager itself. These are defined by the
         * {_canCallSelf} function instead.
         */
        function canCall(
            address caller,
            address target,
            bytes4 selector
        ) external view returns (bool allowed, uint32 delay);
        /**
         * @dev Expiration delay for scheduled proposals. Defaults to 1 week.
         *
         * IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
         * disabling any scheduling usage.
         */
        function expiration() external view returns (uint32);
        /**
         * @dev Minimum setback for all delay updates, with the exception of execution delays. It
         * can be increased without setback (and reset via {revokeRole} in the case event of an
         * accidental increase). Defaults to 5 days.
         */
        function minSetback() external view returns (uint32);
        /**
         * @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
         */
        function isTargetClosed(address target) external view returns (bool);
        /**
         * @dev Get the role required to call a function.
         */
        function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);
        /**
         * @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
         */
        function getTargetAdminDelay(address target) external view returns (uint32);
        /**
         * @dev Get the id of the role that acts as an admin for the given role.
         *
         * The admin permission is required to grant the role, revoke the role and update the execution delay to execute
         * an operation that is restricted to this role.
         */
        function getRoleAdmin(uint64 roleId) external view returns (uint64);
        /**
         * @dev Get the role that acts as a guardian for a given role.
         *
         * The guardian permission allows canceling operations that have been scheduled under the role.
         */
        function getRoleGuardian(uint64 roleId) external view returns (uint64);
        /**
         * @dev Get the role current grant delay.
         *
         * Its value may change at any point without an event emitted following a call to {setGrantDelay}.
         * Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
         */
        function getRoleGrantDelay(uint64 roleId) external view returns (uint32);
        /**
         * @dev Get the access details for a given account for a given role. These details include the timepoint at which
         * membership becomes active, and the delay applied to all operation by this user that requires this permission
         * level.
         *
         * Returns:
         * [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
         * [1] Current execution delay for the account.
         * [2] Pending execution delay for the account.
         * [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
         */
        function getAccess(uint64 roleId, address account) external view returns (uint48, uint32, uint32, uint48);
        /**
         * @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
         * permission might be associated with an execution delay. {getAccess} can provide more details.
         */
        function hasRole(uint64 roleId, address account) external view returns (bool, uint32);
        /**
         * @dev Give a label to a role, for improved role discoverability by UIs.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {RoleLabel} event.
         */
        function labelRole(uint64 roleId, string calldata label) external;
        /**
         * @dev Add `account` to `roleId`, or change its execution delay.
         *
         * This gives the account the authorization to call any function that is restricted to this role. An optional
         * execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
         * that is restricted to members of this role. The user will only be able to execute the operation after the delay has
         * passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
         *
         * If the account has already been granted this role, the execution delay will be updated. This update is not
         * immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
         * called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
         * operation executed in the 3 hours that follows this update was indeed scheduled before this update.
         *
         * Requirements:
         *
         * - the caller must be an admin for the role (see {getRoleAdmin})
         * - granted role must not be the `PUBLIC_ROLE`
         *
         * Emits a {RoleGranted} event.
         */
        function grantRole(uint64 roleId, address account, uint32 executionDelay) external;
        /**
         * @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
         * no effect.
         *
         * Requirements:
         *
         * - the caller must be an admin for the role (see {getRoleAdmin})
         * - revoked role must not be the `PUBLIC_ROLE`
         *
         * Emits a {RoleRevoked} event if the account had the role.
         */
        function revokeRole(uint64 roleId, address account) external;
        /**
         * @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
         * the role this call has no effect.
         *
         * Requirements:
         *
         * - the caller must be `callerConfirmation`.
         *
         * Emits a {RoleRevoked} event if the account had the role.
         */
        function renounceRole(uint64 roleId, address callerConfirmation) external;
        /**
         * @dev Change admin role for a given role.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {RoleAdminChanged} event
         */
        function setRoleAdmin(uint64 roleId, uint64 admin) external;
        /**
         * @dev Change guardian role for a given role.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {RoleGuardianChanged} event
         */
        function setRoleGuardian(uint64 roleId, uint64 guardian) external;
        /**
         * @dev Update the delay for granting a `roleId`.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {RoleGrantDelayChanged} event.
         */
        function setGrantDelay(uint64 roleId, uint32 newDelay) external;
        /**
         * @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {TargetFunctionRoleUpdated} event per selector.
         */
        function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;
        /**
         * @dev Set the delay for changing the configuration of a given target contract.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {TargetAdminDelayUpdated} event.
         */
        function setTargetAdminDelay(address target, uint32 newDelay) external;
        /**
         * @dev Set the closed flag for a contract.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {TargetClosed} event.
         */
        function setTargetClosed(address target, bool closed) external;
        /**
         * @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
         * operation is not yet scheduled, has expired, was executed, or was canceled.
         */
        function getSchedule(bytes32 id) external view returns (uint48);
        /**
         * @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
         * been scheduled.
         */
        function getNonce(bytes32 id) external view returns (uint32);
        /**
         * @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
         * choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
         * required for the caller. The special value zero will automatically set the earliest possible time.
         *
         * Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
         * the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
         * scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
         *
         * Emits a {OperationScheduled} event.
         *
         * NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
         * this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
         * contract if it is using standard Solidity ABI encoding.
         */
        function schedule(address target, bytes calldata data, uint48 when) external returns (bytes32, uint32);
        /**
         * @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
         * execution delay is 0.
         *
         * Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
         * operation wasn't previously scheduled (if the caller doesn't have an execution delay).
         *
         * Emits an {OperationExecuted} event only if the call was scheduled and delayed.
         */
        function execute(address target, bytes calldata data) external payable returns (uint32);
        /**
         * @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
         * operation that is cancelled.
         *
         * Requirements:
         *
         * - the caller must be the proposer, a guardian of the targeted function, or a global admin
         *
         * Emits a {OperationCanceled} event.
         */
        function cancel(address caller, address target, bytes calldata data) external returns (uint32);
        /**
         * @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
         * (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
         *
         * This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
         * with all the verifications that it implies.
         *
         * Emit a {OperationExecuted} event.
         */
        function consumeScheduledOp(address caller, bytes calldata data) external;
        /**
         * @dev Hashing function for delayed operations.
         */
        function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);
        /**
         * @dev Changes the authority of a target managed by this manager instance.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         */
        function updateAuthority(address target, address newAuthority) external;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol)
    pragma solidity ^0.8.20;
    interface IAccessManaged {
        /**
         * @dev Authority that manages this contract was updated.
         */
        event AuthorityUpdated(address authority);
        error AccessManagedUnauthorized(address caller);
        error AccessManagedRequiredDelay(address caller, uint32 delay);
        error AccessManagedInvalidAuthority(address authority);
        /**
         * @dev Returns the current authority.
         */
        function authority() external view returns (address);
        /**
         * @dev Transfers control to a new authority. The caller must be the current authority.
         */
        function setAuthority(address) external;
        /**
         * @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
         * being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
         * attacker controlled calls.
         */
        function isConsumingScheduledOp() external view returns (bytes4);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)
    pragma solidity ^0.8.20;
    import {Math} from "../math/Math.sol";
    import {SafeCast} from "../math/SafeCast.sol";
    /**
     * @dev This library provides helpers for manipulating time-related objects.
     *
     * It uses the following types:
     * - `uint48` for timepoints
     * - `uint32` for durations
     *
     * While the library doesn't provide specific types for timepoints and duration, it does provide:
     * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
     * - additional helper functions
     */
    library Time {
        using Time for *;
        /**
         * @dev Get the block timestamp as a Timepoint.
         */
        function timestamp() internal view returns (uint48) {
            return SafeCast.toUint48(block.timestamp);
        }
        /**
         * @dev Get the block number as a Timepoint.
         */
        function blockNumber() internal view returns (uint48) {
            return SafeCast.toUint48(block.number);
        }
        // ==================================================== Delay =====================================================
        /**
         * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
         * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
         * This allows updating the delay applied to some operation while keeping some guarantees.
         *
         * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
         * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
         * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
         * still apply for some time.
         *
         *
         * The `Delay` type is 112 bits long, and packs the following:
         *
         * ```
         *   | [uint48]: effect date (timepoint)
         *   |           | [uint32]: value before (duration)
         *   ↓           ↓       ↓ [uint32]: value after (duration)
         * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
         * ```
         *
         * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
         * supported.
         */
        type Delay is uint112;
        /**
         * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
         */
        function toDelay(uint32 duration) internal pure returns (Delay) {
            return Delay.wrap(duration);
        }
        /**
         * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
         * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
         */
        function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
            (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
            return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
        }
        /**
         * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
         * effect timepoint is 0, then the pending value should not be considered.
         */
        function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
            return _getFullAt(self, timestamp());
        }
        /**
         * @dev Get the current value.
         */
        function get(Delay self) internal view returns (uint32) {
            (uint32 delay, , ) = self.getFull();
            return delay;
        }
        /**
         * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
         * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
         * new delay becomes effective.
         */
        function withUpdate(
            Delay self,
            uint32 newValue,
            uint32 minSetback
        ) internal view returns (Delay updatedDelay, uint48 effect) {
            uint32 value = self.get();
            uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
            effect = timestamp() + setback;
            return (pack(value, newValue, effect), effect);
        }
        /**
         * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
         */
        function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
            uint112 raw = Delay.unwrap(self);
            valueAfter = uint32(raw);
            valueBefore = uint32(raw >> 32);
            effect = uint48(raw >> 64);
            return (valueBefore, valueAfter, effect);
        }
        /**
         * @dev pack the components into a Delay object.
         */
        function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
            return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        /**
         * @dev Muldiv operation overflow.
         */
        error MathOverflowedMulDiv();
        enum Rounding {
            Floor, // Toward negative infinity
            Ceil, // Toward positive infinity
            Trunc, // Toward zero
            Expand // Away from zero
        }
        /**
         * @dev Returns the addition of two unsigned integers, with an overflow flag.
         */
        function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                uint256 c = a + b;
                if (c < a) return (false, 0);
                return (true, c);
            }
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
         */
        function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b > a) return (false, 0);
                return (true, a - b);
            }
        }
        /**
         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
         */
        function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) return (true, 0);
                uint256 c = a * b;
                if (c / a != b) return (false, 0);
                return (true, c);
            }
        }
        /**
         * @dev Returns the division of two unsigned integers, with a division by zero flag.
         */
        function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a / b);
            }
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
         */
        function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a % b);
            }
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds towards infinity instead
         * of rounding towards zero.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            if (b == 0) {
                // Guarantee the same behavior as in a regular Solidity division.
                return a / b;
            }
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
         * denominator == 0.
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
         * Uniswap Labs also under MIT license.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0 = x * y; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                    // The surrounding unchecked block does not change this fact.
                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                if (denominator <= prod1) {
                    revert MathOverflowedMulDiv();
                }
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                uint256 twos = denominator & (0 - denominator);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                // works in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
         * towards zero.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10 ** 64) {
                    value /= 10 ** 64;
                    result += 64;
                }
                if (value >= 10 ** 32) {
                    value /= 10 ** 32;
                    result += 32;
                }
                if (value >= 10 ** 16) {
                    value /= 10 ** 16;
                    result += 16;
                }
                if (value >= 10 ** 8) {
                    value /= 10 ** 8;
                    result += 8;
                }
                if (value >= 10 ** 4) {
                    value /= 10 ** 4;
                    result += 4;
                }
                if (value >= 10 ** 2) {
                    value /= 10 ** 2;
                    result += 2;
                }
                if (value >= 10 ** 1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
            }
        }
        /**
         * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
         */
        function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
            return uint8(rounding) % 2 == 1;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
    // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
    pragma solidity ^0.8.20;
    /**
     * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
     * checks.
     *
     * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
     * easily result in undesired exploitation or bugs, since developers usually
     * assume that overflows raise errors. `SafeCast` restores this intuition by
     * reverting the transaction when such an operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeCast {
        /**
         * @dev Value doesn't fit in an uint of `bits` size.
         */
        error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
        /**
         * @dev An int value doesn't fit in an uint of `bits` size.
         */
        error SafeCastOverflowedIntToUint(int256 value);
        /**
         * @dev Value doesn't fit in an int of `bits` size.
         */
        error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
        /**
         * @dev An uint value doesn't fit in an int of `bits` size.
         */
        error SafeCastOverflowedUintToInt(uint256 value);
        /**
         * @dev Returns the downcasted uint248 from uint256, reverting on
         * overflow (when the input is greater than largest uint248).
         *
         * Counterpart to Solidity's `uint248` operator.
         *
         * Requirements:
         *
         * - input must fit into 248 bits
         */
        function toUint248(uint256 value) internal pure returns (uint248) {
            if (value > type(uint248).max) {
                revert SafeCastOverflowedUintDowncast(248, value);
            }
            return uint248(value);
        }
        /**
         * @dev Returns the downcasted uint240 from uint256, reverting on
         * overflow (when the input is greater than largest uint240).
         *
         * Counterpart to Solidity's `uint240` operator.
         *
         * Requirements:
         *
         * - input must fit into 240 bits
         */
        function toUint240(uint256 value) internal pure returns (uint240) {
            if (value > type(uint240).max) {
                revert SafeCastOverflowedUintDowncast(240, value);
            }
            return uint240(value);
        }
        /**
         * @dev Returns the downcasted uint232 from uint256, reverting on
         * overflow (when the input is greater than largest uint232).
         *
         * Counterpart to Solidity's `uint232` operator.
         *
         * Requirements:
         *
         * - input must fit into 232 bits
         */
        function toUint232(uint256 value) internal pure returns (uint232) {
            if (value > type(uint232).max) {
                revert SafeCastOverflowedUintDowncast(232, value);
            }
            return uint232(value);
        }
        /**
         * @dev Returns the downcasted uint224 from uint256, reverting on
         * overflow (when the input is greater than largest uint224).
         *
         * Counterpart to Solidity's `uint224` operator.
         *
         * Requirements:
         *
         * - input must fit into 224 bits
         */
        function toUint224(uint256 value) internal pure returns (uint224) {
            if (value > type(uint224).max) {
                revert SafeCastOverflowedUintDowncast(224, value);
            }
            return uint224(value);
        }
        /**
         * @dev Returns the downcasted uint216 from uint256, reverting on
         * overflow (when the input is greater than largest uint216).
         *
         * Counterpart to Solidity's `uint216` operator.
         *
         * Requirements:
         *
         * - input must fit into 216 bits
         */
        function toUint216(uint256 value) internal pure returns (uint216) {
            if (value > type(uint216).max) {
                revert SafeCastOverflowedUintDowncast(216, value);
            }
            return uint216(value);
        }
        /**
         * @dev Returns the downcasted uint208 from uint256, reverting on
         * overflow (when the input is greater than largest uint208).
         *
         * Counterpart to Solidity's `uint208` operator.
         *
         * Requirements:
         *
         * - input must fit into 208 bits
         */
        function toUint208(uint256 value) internal pure returns (uint208) {
            if (value > type(uint208).max) {
                revert SafeCastOverflowedUintDowncast(208, value);
            }
            return uint208(value);
        }
        /**
         * @dev Returns the downcasted uint200 from uint256, reverting on
         * overflow (when the input is greater than largest uint200).
         *
         * Counterpart to Solidity's `uint200` operator.
         *
         * Requirements:
         *
         * - input must fit into 200 bits
         */
        function toUint200(uint256 value) internal pure returns (uint200) {
            if (value > type(uint200).max) {
                revert SafeCastOverflowedUintDowncast(200, value);
            }
            return uint200(value);
        }
        /**
         * @dev Returns the downcasted uint192 from uint256, reverting on
         * overflow (when the input is greater than largest uint192).
         *
         * Counterpart to Solidity's `uint192` operator.
         *
         * Requirements:
         *
         * - input must fit into 192 bits
         */
        function toUint192(uint256 value) internal pure returns (uint192) {
            if (value > type(uint192).max) {
                revert SafeCastOverflowedUintDowncast(192, value);
            }
            return uint192(value);
        }
        /**
         * @dev Returns the downcasted uint184 from uint256, reverting on
         * overflow (when the input is greater than largest uint184).
         *
         * Counterpart to Solidity's `uint184` operator.
         *
         * Requirements:
         *
         * - input must fit into 184 bits
         */
        function toUint184(uint256 value) internal pure returns (uint184) {
            if (value > type(uint184).max) {
                revert SafeCastOverflowedUintDowncast(184, value);
            }
            return uint184(value);
        }
        /**
         * @dev Returns the downcasted uint176 from uint256, reverting on
         * overflow (when the input is greater than largest uint176).
         *
         * Counterpart to Solidity's `uint176` operator.
         *
         * Requirements:
         *
         * - input must fit into 176 bits
         */
        function toUint176(uint256 value) internal pure returns (uint176) {
            if (value > type(uint176).max) {
                revert SafeCastOverflowedUintDowncast(176, value);
            }
            return uint176(value);
        }
        /**
         * @dev Returns the downcasted uint168 from uint256, reverting on
         * overflow (when the input is greater than largest uint168).
         *
         * Counterpart to Solidity's `uint168` operator.
         *
         * Requirements:
         *
         * - input must fit into 168 bits
         */
        function toUint168(uint256 value) internal pure returns (uint168) {
            if (value > type(uint168).max) {
                revert SafeCastOverflowedUintDowncast(168, value);
            }
            return uint168(value);
        }
        /**
         * @dev Returns the downcasted uint160 from uint256, reverting on
         * overflow (when the input is greater than largest uint160).
         *
         * Counterpart to Solidity's `uint160` operator.
         *
         * Requirements:
         *
         * - input must fit into 160 bits
         */
        function toUint160(uint256 value) internal pure returns (uint160) {
            if (value > type(uint160).max) {
                revert SafeCastOverflowedUintDowncast(160, value);
            }
            return uint160(value);
        }
        /**
         * @dev Returns the downcasted uint152 from uint256, reverting on
         * overflow (when the input is greater than largest uint152).
         *
         * Counterpart to Solidity's `uint152` operator.
         *
         * Requirements:
         *
         * - input must fit into 152 bits
         */
        function toUint152(uint256 value) internal pure returns (uint152) {
            if (value > type(uint152).max) {
                revert SafeCastOverflowedUintDowncast(152, value);
            }
            return uint152(value);
        }
        /**
         * @dev Returns the downcasted uint144 from uint256, reverting on
         * overflow (when the input is greater than largest uint144).
         *
         * Counterpart to Solidity's `uint144` operator.
         *
         * Requirements:
         *
         * - input must fit into 144 bits
         */
        function toUint144(uint256 value) internal pure returns (uint144) {
            if (value > type(uint144).max) {
                revert SafeCastOverflowedUintDowncast(144, value);
            }
            return uint144(value);
        }
        /**
         * @dev Returns the downcasted uint136 from uint256, reverting on
         * overflow (when the input is greater than largest uint136).
         *
         * Counterpart to Solidity's `uint136` operator.
         *
         * Requirements:
         *
         * - input must fit into 136 bits
         */
        function toUint136(uint256 value) internal pure returns (uint136) {
            if (value > type(uint136).max) {
                revert SafeCastOverflowedUintDowncast(136, value);
            }
            return uint136(value);
        }
        /**
         * @dev Returns the downcasted uint128 from uint256, reverting on
         * overflow (when the input is greater than largest uint128).
         *
         * Counterpart to Solidity's `uint128` operator.
         *
         * Requirements:
         *
         * - input must fit into 128 bits
         */
        function toUint128(uint256 value) internal pure returns (uint128) {
            if (value > type(uint128).max) {
                revert SafeCastOverflowedUintDowncast(128, value);
            }
            return uint128(value);
        }
        /**
         * @dev Returns the downcasted uint120 from uint256, reverting on
         * overflow (when the input is greater than largest uint120).
         *
         * Counterpart to Solidity's `uint120` operator.
         *
         * Requirements:
         *
         * - input must fit into 120 bits
         */
        function toUint120(uint256 value) internal pure returns (uint120) {
            if (value > type(uint120).max) {
                revert SafeCastOverflowedUintDowncast(120, value);
            }
            return uint120(value);
        }
        /**
         * @dev Returns the downcasted uint112 from uint256, reverting on
         * overflow (when the input is greater than largest uint112).
         *
         * Counterpart to Solidity's `uint112` operator.
         *
         * Requirements:
         *
         * - input must fit into 112 bits
         */
        function toUint112(uint256 value) internal pure returns (uint112) {
            if (value > type(uint112).max) {
                revert SafeCastOverflowedUintDowncast(112, value);
            }
            return uint112(value);
        }
        /**
         * @dev Returns the downcasted uint104 from uint256, reverting on
         * overflow (when the input is greater than largest uint104).
         *
         * Counterpart to Solidity's `uint104` operator.
         *
         * Requirements:
         *
         * - input must fit into 104 bits
         */
        function toUint104(uint256 value) internal pure returns (uint104) {
            if (value > type(uint104).max) {
                revert SafeCastOverflowedUintDowncast(104, value);
            }
            return uint104(value);
        }
        /**
         * @dev Returns the downcasted uint96 from uint256, reverting on
         * overflow (when the input is greater than largest uint96).
         *
         * Counterpart to Solidity's `uint96` operator.
         *
         * Requirements:
         *
         * - input must fit into 96 bits
         */
        function toUint96(uint256 value) internal pure returns (uint96) {
            if (value > type(uint96).max) {
                revert SafeCastOverflowedUintDowncast(96, value);
            }
            return uint96(value);
        }
        /**
         * @dev Returns the downcasted uint88 from uint256, reverting on
         * overflow (when the input is greater than largest uint88).
         *
         * Counterpart to Solidity's `uint88` operator.
         *
         * Requirements:
         *
         * - input must fit into 88 bits
         */
        function toUint88(uint256 value) internal pure returns (uint88) {
            if (value > type(uint88).max) {
                revert SafeCastOverflowedUintDowncast(88, value);
            }
            return uint88(value);
        }
        /**
         * @dev Returns the downcasted uint80 from uint256, reverting on
         * overflow (when the input is greater than largest uint80).
         *
         * Counterpart to Solidity's `uint80` operator.
         *
         * Requirements:
         *
         * - input must fit into 80 bits
         */
        function toUint80(uint256 value) internal pure returns (uint80) {
            if (value > type(uint80).max) {
                revert SafeCastOverflowedUintDowncast(80, value);
            }
            return uint80(value);
        }
        /**
         * @dev Returns the downcasted uint72 from uint256, reverting on
         * overflow (when the input is greater than largest uint72).
         *
         * Counterpart to Solidity's `uint72` operator.
         *
         * Requirements:
         *
         * - input must fit into 72 bits
         */
        function toUint72(uint256 value) internal pure returns (uint72) {
            if (value > type(uint72).max) {
                revert SafeCastOverflowedUintDowncast(72, value);
            }
            return uint72(value);
        }
        /**
         * @dev Returns the downcasted uint64 from uint256, reverting on
         * overflow (when the input is greater than largest uint64).
         *
         * Counterpart to Solidity's `uint64` operator.
         *
         * Requirements:
         *
         * - input must fit into 64 bits
         */
        function toUint64(uint256 value) internal pure returns (uint64) {
            if (value > type(uint64).max) {
                revert SafeCastOverflowedUintDowncast(64, value);
            }
            return uint64(value);
        }
        /**
         * @dev Returns the downcasted uint56 from uint256, reverting on
         * overflow (when the input is greater than largest uint56).
         *
         * Counterpart to Solidity's `uint56` operator.
         *
         * Requirements:
         *
         * - input must fit into 56 bits
         */
        function toUint56(uint256 value) internal pure returns (uint56) {
            if (value > type(uint56).max) {
                revert SafeCastOverflowedUintDowncast(56, value);
            }
            return uint56(value);
        }
        /**
         * @dev Returns the downcasted uint48 from uint256, reverting on
         * overflow (when the input is greater than largest uint48).
         *
         * Counterpart to Solidity's `uint48` operator.
         *
         * Requirements:
         *
         * - input must fit into 48 bits
         */
        function toUint48(uint256 value) internal pure returns (uint48) {
            if (value > type(uint48).max) {
                revert SafeCastOverflowedUintDowncast(48, value);
            }
            return uint48(value);
        }
        /**
         * @dev Returns the downcasted uint40 from uint256, reverting on
         * overflow (when the input is greater than largest uint40).
         *
         * Counterpart to Solidity's `uint40` operator.
         *
         * Requirements:
         *
         * - input must fit into 40 bits
         */
        function toUint40(uint256 value) internal pure returns (uint40) {
            if (value > type(uint40).max) {
                revert SafeCastOverflowedUintDowncast(40, value);
            }
            return uint40(value);
        }
        /**
         * @dev Returns the downcasted uint32 from uint256, reverting on
         * overflow (when the input is greater than largest uint32).
         *
         * Counterpart to Solidity's `uint32` operator.
         *
         * Requirements:
         *
         * - input must fit into 32 bits
         */
        function toUint32(uint256 value) internal pure returns (uint32) {
            if (value > type(uint32).max) {
                revert SafeCastOverflowedUintDowncast(32, value);
            }
            return uint32(value);
        }
        /**
         * @dev Returns the downcasted uint24 from uint256, reverting on
         * overflow (when the input is greater than largest uint24).
         *
         * Counterpart to Solidity's `uint24` operator.
         *
         * Requirements:
         *
         * - input must fit into 24 bits
         */
        function toUint24(uint256 value) internal pure returns (uint24) {
            if (value > type(uint24).max) {
                revert SafeCastOverflowedUintDowncast(24, value);
            }
            return uint24(value);
        }
        /**
         * @dev Returns the downcasted uint16 from uint256, reverting on
         * overflow (when the input is greater than largest uint16).
         *
         * Counterpart to Solidity's `uint16` operator.
         *
         * Requirements:
         *
         * - input must fit into 16 bits
         */
        function toUint16(uint256 value) internal pure returns (uint16) {
            if (value > type(uint16).max) {
                revert SafeCastOverflowedUintDowncast(16, value);
            }
            return uint16(value);
        }
        /**
         * @dev Returns the downcasted uint8 from uint256, reverting on
         * overflow (when the input is greater than largest uint8).
         *
         * Counterpart to Solidity's `uint8` operator.
         *
         * Requirements:
         *
         * - input must fit into 8 bits
         */
        function toUint8(uint256 value) internal pure returns (uint8) {
            if (value > type(uint8).max) {
                revert SafeCastOverflowedUintDowncast(8, value);
            }
            return uint8(value);
        }
        /**
         * @dev Converts a signed int256 into an unsigned uint256.
         *
         * Requirements:
         *
         * - input must be greater than or equal to 0.
         */
        function toUint256(int256 value) internal pure returns (uint256) {
            if (value < 0) {
                revert SafeCastOverflowedIntToUint(value);
            }
            return uint256(value);
        }
        /**
         * @dev Returns the downcasted int248 from int256, reverting on
         * overflow (when the input is less than smallest int248 or
         * greater than largest int248).
         *
         * Counterpart to Solidity's `int248` operator.
         *
         * Requirements:
         *
         * - input must fit into 248 bits
         */
        function toInt248(int256 value) internal pure returns (int248 downcasted) {
            downcasted = int248(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(248, value);
            }
        }
        /**
         * @dev Returns the downcasted int240 from int256, reverting on
         * overflow (when the input is less than smallest int240 or
         * greater than largest int240).
         *
         * Counterpart to Solidity's `int240` operator.
         *
         * Requirements:
         *
         * - input must fit into 240 bits
         */
        function toInt240(int256 value) internal pure returns (int240 downcasted) {
            downcasted = int240(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(240, value);
            }
        }
        /**
         * @dev Returns the downcasted int232 from int256, reverting on
         * overflow (when the input is less than smallest int232 or
         * greater than largest int232).
         *
         * Counterpart to Solidity's `int232` operator.
         *
         * Requirements:
         *
         * - input must fit into 232 bits
         */
        function toInt232(int256 value) internal pure returns (int232 downcasted) {
            downcasted = int232(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(232, value);
            }
        }
        /**
         * @dev Returns the downcasted int224 from int256, reverting on
         * overflow (when the input is less than smallest int224 or
         * greater than largest int224).
         *
         * Counterpart to Solidity's `int224` operator.
         *
         * Requirements:
         *
         * - input must fit into 224 bits
         */
        function toInt224(int256 value) internal pure returns (int224 downcasted) {
            downcasted = int224(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(224, value);
            }
        }
        /**
         * @dev Returns the downcasted int216 from int256, reverting on
         * overflow (when the input is less than smallest int216 or
         * greater than largest int216).
         *
         * Counterpart to Solidity's `int216` operator.
         *
         * Requirements:
         *
         * - input must fit into 216 bits
         */
        function toInt216(int256 value) internal pure returns (int216 downcasted) {
            downcasted = int216(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(216, value);
            }
        }
        /**
         * @dev Returns the downcasted int208 from int256, reverting on
         * overflow (when the input is less than smallest int208 or
         * greater than largest int208).
         *
         * Counterpart to Solidity's `int208` operator.
         *
         * Requirements:
         *
         * - input must fit into 208 bits
         */
        function toInt208(int256 value) internal pure returns (int208 downcasted) {
            downcasted = int208(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(208, value);
            }
        }
        /**
         * @dev Returns the downcasted int200 from int256, reverting on
         * overflow (when the input is less than smallest int200 or
         * greater than largest int200).
         *
         * Counterpart to Solidity's `int200` operator.
         *
         * Requirements:
         *
         * - input must fit into 200 bits
         */
        function toInt200(int256 value) internal pure returns (int200 downcasted) {
            downcasted = int200(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(200, value);
            }
        }
        /**
         * @dev Returns the downcasted int192 from int256, reverting on
         * overflow (when the input is less than smallest int192 or
         * greater than largest int192).
         *
         * Counterpart to Solidity's `int192` operator.
         *
         * Requirements:
         *
         * - input must fit into 192 bits
         */
        function toInt192(int256 value) internal pure returns (int192 downcasted) {
            downcasted = int192(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(192, value);
            }
        }
        /**
         * @dev Returns the downcasted int184 from int256, reverting on
         * overflow (when the input is less than smallest int184 or
         * greater than largest int184).
         *
         * Counterpart to Solidity's `int184` operator.
         *
         * Requirements:
         *
         * - input must fit into 184 bits
         */
        function toInt184(int256 value) internal pure returns (int184 downcasted) {
            downcasted = int184(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(184, value);
            }
        }
        /**
         * @dev Returns the downcasted int176 from int256, reverting on
         * overflow (when the input is less than smallest int176 or
         * greater than largest int176).
         *
         * Counterpart to Solidity's `int176` operator.
         *
         * Requirements:
         *
         * - input must fit into 176 bits
         */
        function toInt176(int256 value) internal pure returns (int176 downcasted) {
            downcasted = int176(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(176, value);
            }
        }
        /**
         * @dev Returns the downcasted int168 from int256, reverting on
         * overflow (when the input is less than smallest int168 or
         * greater than largest int168).
         *
         * Counterpart to Solidity's `int168` operator.
         *
         * Requirements:
         *
         * - input must fit into 168 bits
         */
        function toInt168(int256 value) internal pure returns (int168 downcasted) {
            downcasted = int168(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(168, value);
            }
        }
        /**
         * @dev Returns the downcasted int160 from int256, reverting on
         * overflow (when the input is less than smallest int160 or
         * greater than largest int160).
         *
         * Counterpart to Solidity's `int160` operator.
         *
         * Requirements:
         *
         * - input must fit into 160 bits
         */
        function toInt160(int256 value) internal pure returns (int160 downcasted) {
            downcasted = int160(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(160, value);
            }
        }
        /**
         * @dev Returns the downcasted int152 from int256, reverting on
         * overflow (when the input is less than smallest int152 or
         * greater than largest int152).
         *
         * Counterpart to Solidity's `int152` operator.
         *
         * Requirements:
         *
         * - input must fit into 152 bits
         */
        function toInt152(int256 value) internal pure returns (int152 downcasted) {
            downcasted = int152(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(152, value);
            }
        }
        /**
         * @dev Returns the downcasted int144 from int256, reverting on
         * overflow (when the input is less than smallest int144 or
         * greater than largest int144).
         *
         * Counterpart to Solidity's `int144` operator.
         *
         * Requirements:
         *
         * - input must fit into 144 bits
         */
        function toInt144(int256 value) internal pure returns (int144 downcasted) {
            downcasted = int144(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(144, value);
            }
        }
        /**
         * @dev Returns the downcasted int136 from int256, reverting on
         * overflow (when the input is less than smallest int136 or
         * greater than largest int136).
         *
         * Counterpart to Solidity's `int136` operator.
         *
         * Requirements:
         *
         * - input must fit into 136 bits
         */
        function toInt136(int256 value) internal pure returns (int136 downcasted) {
            downcasted = int136(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(136, value);
            }
        }
        /**
         * @dev Returns the downcasted int128 from int256, reverting on
         * overflow (when the input is less than smallest int128 or
         * greater than largest int128).
         *
         * Counterpart to Solidity's `int128` operator.
         *
         * Requirements:
         *
         * - input must fit into 128 bits
         */
        function toInt128(int256 value) internal pure returns (int128 downcasted) {
            downcasted = int128(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(128, value);
            }
        }
        /**
         * @dev Returns the downcasted int120 from int256, reverting on
         * overflow (when the input is less than smallest int120 or
         * greater than largest int120).
         *
         * Counterpart to Solidity's `int120` operator.
         *
         * Requirements:
         *
         * - input must fit into 120 bits
         */
        function toInt120(int256 value) internal pure returns (int120 downcasted) {
            downcasted = int120(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(120, value);
            }
        }
        /**
         * @dev Returns the downcasted int112 from int256, reverting on
         * overflow (when the input is less than smallest int112 or
         * greater than largest int112).
         *
         * Counterpart to Solidity's `int112` operator.
         *
         * Requirements:
         *
         * - input must fit into 112 bits
         */
        function toInt112(int256 value) internal pure returns (int112 downcasted) {
            downcasted = int112(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(112, value);
            }
        }
        /**
         * @dev Returns the downcasted int104 from int256, reverting on
         * overflow (when the input is less than smallest int104 or
         * greater than largest int104).
         *
         * Counterpart to Solidity's `int104` operator.
         *
         * Requirements:
         *
         * - input must fit into 104 bits
         */
        function toInt104(int256 value) internal pure returns (int104 downcasted) {
            downcasted = int104(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(104, value);
            }
        }
        /**
         * @dev Returns the downcasted int96 from int256, reverting on
         * overflow (when the input is less than smallest int96 or
         * greater than largest int96).
         *
         * Counterpart to Solidity's `int96` operator.
         *
         * Requirements:
         *
         * - input must fit into 96 bits
         */
        function toInt96(int256 value) internal pure returns (int96 downcasted) {
            downcasted = int96(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(96, value);
            }
        }
        /**
         * @dev Returns the downcasted int88 from int256, reverting on
         * overflow (when the input is less than smallest int88 or
         * greater than largest int88).
         *
         * Counterpart to Solidity's `int88` operator.
         *
         * Requirements:
         *
         * - input must fit into 88 bits
         */
        function toInt88(int256 value) internal pure returns (int88 downcasted) {
            downcasted = int88(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(88, value);
            }
        }
        /**
         * @dev Returns the downcasted int80 from int256, reverting on
         * overflow (when the input is less than smallest int80 or
         * greater than largest int80).
         *
         * Counterpart to Solidity's `int80` operator.
         *
         * Requirements:
         *
         * - input must fit into 80 bits
         */
        function toInt80(int256 value) internal pure returns (int80 downcasted) {
            downcasted = int80(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(80, value);
            }
        }
        /**
         * @dev Returns the downcasted int72 from int256, reverting on
         * overflow (when the input is less than smallest int72 or
         * greater than largest int72).
         *
         * Counterpart to Solidity's `int72` operator.
         *
         * Requirements:
         *
         * - input must fit into 72 bits
         */
        function toInt72(int256 value) internal pure returns (int72 downcasted) {
            downcasted = int72(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(72, value);
            }
        }
        /**
         * @dev Returns the downcasted int64 from int256, reverting on
         * overflow (when the input is less than smallest int64 or
         * greater than largest int64).
         *
         * Counterpart to Solidity's `int64` operator.
         *
         * Requirements:
         *
         * - input must fit into 64 bits
         */
        function toInt64(int256 value) internal pure returns (int64 downcasted) {
            downcasted = int64(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(64, value);
            }
        }
        /**
         * @dev Returns the downcasted int56 from int256, reverting on
         * overflow (when the input is less than smallest int56 or
         * greater than largest int56).
         *
         * Counterpart to Solidity's `int56` operator.
         *
         * Requirements:
         *
         * - input must fit into 56 bits
         */
        function toInt56(int256 value) internal pure returns (int56 downcasted) {
            downcasted = int56(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(56, value);
            }
        }
        /**
         * @dev Returns the downcasted int48 from int256, reverting on
         * overflow (when the input is less than smallest int48 or
         * greater than largest int48).
         *
         * Counterpart to Solidity's `int48` operator.
         *
         * Requirements:
         *
         * - input must fit into 48 bits
         */
        function toInt48(int256 value) internal pure returns (int48 downcasted) {
            downcasted = int48(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(48, value);
            }
        }
        /**
         * @dev Returns the downcasted int40 from int256, reverting on
         * overflow (when the input is less than smallest int40 or
         * greater than largest int40).
         *
         * Counterpart to Solidity's `int40` operator.
         *
         * Requirements:
         *
         * - input must fit into 40 bits
         */
        function toInt40(int256 value) internal pure returns (int40 downcasted) {
            downcasted = int40(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(40, value);
            }
        }
        /**
         * @dev Returns the downcasted int32 from int256, reverting on
         * overflow (when the input is less than smallest int32 or
         * greater than largest int32).
         *
         * Counterpart to Solidity's `int32` operator.
         *
         * Requirements:
         *
         * - input must fit into 32 bits
         */
        function toInt32(int256 value) internal pure returns (int32 downcasted) {
            downcasted = int32(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(32, value);
            }
        }
        /**
         * @dev Returns the downcasted int24 from int256, reverting on
         * overflow (when the input is less than smallest int24 or
         * greater than largest int24).
         *
         * Counterpart to Solidity's `int24` operator.
         *
         * Requirements:
         *
         * - input must fit into 24 bits
         */
        function toInt24(int256 value) internal pure returns (int24 downcasted) {
            downcasted = int24(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(24, value);
            }
        }
        /**
         * @dev Returns the downcasted int16 from int256, reverting on
         * overflow (when the input is less than smallest int16 or
         * greater than largest int16).
         *
         * Counterpart to Solidity's `int16` operator.
         *
         * Requirements:
         *
         * - input must fit into 16 bits
         */
        function toInt16(int256 value) internal pure returns (int16 downcasted) {
            downcasted = int16(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(16, value);
            }
        }
        /**
         * @dev Returns the downcasted int8 from int256, reverting on
         * overflow (when the input is less than smallest int8 or
         * greater than largest int8).
         *
         * Counterpart to Solidity's `int8` operator.
         *
         * Requirements:
         *
         * - input must fit into 8 bits
         */
        function toInt8(int256 value) internal pure returns (int8 downcasted) {
            downcasted = int8(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(8, value);
            }
        }
        /**
         * @dev Converts an unsigned uint256 into a signed int256.
         *
         * Requirements:
         *
         * - input must be less than or equal to maxInt256.
         */
        function toInt256(uint256 value) internal pure returns (int256) {
            // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
            if (value > uint256(type(int256).max)) {
                revert SafeCastOverflowedUintToInt(value);
            }
            return int256(value);
        }
    }
    

    File 3 of 3: PrincipalToken
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity 0.8.20;
    import "openzeppelin-contracts/token/ERC20/utils/SafeERC20.sol";
    import "openzeppelin-contracts-upgradeable/access/manager/AccessManagedUpgradeable.sol";
    import "openzeppelin-contracts-upgradeable/utils/PausableUpgradeable.sol";
    import "openzeppelin-contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
    import "openzeppelin-math/Math.sol";
    import "openzeppelin-erc20-extensions/ERC20PermitUpgradeable.sol";
    import "openzeppelin-contracts/proxy/beacon/BeaconProxy.sol";
    import "openzeppelin-contracts/interfaces/IERC3156FlashBorrower.sol";
    import "openzeppelin-contracts/interfaces/IERC4626.sol";
    import "../libraries/PrincipalTokenUtil.sol";
    import "../libraries/NamingUtil.sol";
    import "../libraries/RayMath.sol";
    import "../interfaces/IRegistry.sol";
    import "../interfaces/IPrincipalToken.sol";
    import "../interfaces/IYieldToken.sol";
    import "../interfaces/IRewardsProxy.sol";
    /**
     * @title PrincipalToken contract
     * @author Spectra Finance
     * @notice A PrincipalToken (PT) is an ERC5095 vault that allows user to tokenize their yield in a permissionless manner.
     * The shares of the vaults are composed by PT/YT pairs. These are always minted at same times and amounts upon deposits.
     * Until expiry burning shares necessitates to burn both tokens. At expiry, burning PTs is sufficient.
     */
    contract PrincipalToken is
        ERC20PermitUpgradeable,
        AccessManagedUpgradeable,
        ReentrancyGuardUpgradeable,
        PausableUpgradeable,
        IPrincipalToken
    {
        using SafeERC20 for IERC20;
        using PrincipalTokenUtil for address;
        using PrincipalTokenUtil for uint256;
        using RayMath for uint256;
        using Math for uint256;
        /** @dev minimum allowed decimals for underlying and IBT */
        uint256 private constant MIN_DECIMALS = 6;
        /** @dev maximum allowed decimals for underlying and IBT */
        uint256 private constant MAX_DECIMALS = 18;
        /** @dev Rates At Expiry not stored */
        uint256 private constant RAE_NOT_STORED = 0;
        /** @dev Rates At Expiry stored */
        uint256 private constant RAE_STORED = 1;
        /** @dev expected return value from borrowers onFlashLoan function */
        bytes32 private constant ON_FLASH_LOAN = keccak256("ERC3156FlashBorrower.onFlashLoan");
        /** @notice registry of the protocol */
        address private immutable registry;
        /** @notice rewards proxy for this specific instance of PT */
        address private rewardsProxy;
        /** @dev decimals of the IBT */
        uint8 private ibtDecimals;
        /** @dev decimals of the underlying asset */
        uint8 private underlyingDecimals;
        /** @notice Interest Bearing Token 4626 held by this PT vault */
        address private ibt;
        /** @notice underlying asset of this PT vault (which is also the underlying of the IBT 4626) */
        address private underlying_;
        /** @notice YT corresponding to this PT, deployed at initialization */
        address private yt;
        /** @dev represents one unit of the IBT held by this PT vault (10^decimals) */
        uint256 private ibtUnit;
        /** @dev PT price in asset (in Ray) */
        uint256 private ptRate;
        /** @dev IBT price in asset (in Ray) */
        uint256 private ibtRate;
        /** @dev unclaimed fees */
        uint256 private unclaimedFeesInIBT;
        /** @dev total fees */
        uint256 private totalFeesInIBT;
        /** @dev date of maturity (set at initialization) */
        uint256 private expiry;
        /** @dev duration to maturity */
        uint256 private duration;
        /** @dev uint256 flag acting as a boolean to track whether PT and IBT rates have been stored after expiry */
        uint256 private ratesAtExpiryStored;
        /** @dev stores each user's IBT rate (in Ray) */
        mapping(address user => uint256 lastIBTRate) private ibtRateOfUser;
        /** @dev stores each user's PT rate (in Ray) */
        mapping(address user => uint256 lastPTRate) private ptRateOfUser;
        /** @dev stores each user's yield generated from YTs */
        mapping(address user => uint256 yieldInIBT) private yieldOfUserInIBT;
        /* EVENTS
         *****************************************************************************************************************/
        event Redeem(address indexed from, address indexed to, uint256 amount);
        event Mint(address indexed from, address indexed to, uint256 amount);
        event YTDeployed(address indexed yt);
        event YieldUpdated(address indexed user, uint256 indexed yieldInIBT);
        event YieldClaimed(address indexed owner, address indexed receiver, uint256 indexed yieldInIBT);
        event FeeClaimed(
            address indexed user,
            uint256 indexed redeemedIbts,
            uint256 indexed receivedAssets
        );
        event RatesStoredAtExpiry(uint256 indexed ibtRate, uint256 indexed ptRate);
        event RewardsProxyChange(address indexed oldRewardsProxy, address indexed newRewardsProxy);
        /* MODIFIERS
         *****************************************************************************************************************/
        /** @notice Ensures the current block timestamp is before expiry */
        modifier notExpired() virtual {
            if (block.timestamp >= expiry) {
                revert PTExpired();
            }
            _;
        }
        /** @notice Ensures the current block timestamp is at or after expiry */
        modifier afterExpiry() virtual {
            if (block.timestamp < expiry) {
                revert PTNotExpired();
            }
            _;
        }
        /* CONSTRUCTOR
         *****************************************************************************************************************/
        constructor(address _registry) {
            if (_registry == address(0)) {
                revert AddressError();
            }
            registry = _registry;
            _disableInitializers(); // using this so that the deployed logic contract cannot later be initialized
        }
        /* INITIALIZER
         *****************************************************************************************************************/
        /**
         * @dev First function called after deployment of the contract
         * it deploys yt and initializes values of required variables
         * @param _ibt The token which PT contract holds
         * @param _duration The duration (in s) to expiry/maturity of the PT contract
         * @param _initialAuthority The initial authority of the PT contract
         */
        function initialize(
            address _ibt,
            uint256 _duration,
            address _initialAuthority
        ) external initializer {
            if (_ibt == address(0) || _initialAuthority == address(0)) {
                revert AddressError();
            }
            if (IERC4626(_ibt).totalAssets() == 0) {
                revert RateError();
            }
            duration = _duration;
            uint256 _expiry = _duration + block.timestamp;
            expiry = _expiry;
            string memory _ibtSymbol = IERC4626(_ibt).symbol();
            string memory _name = NamingUtil.genPTName(_ibtSymbol, _expiry);
            __ERC20_init(_name, NamingUtil.genPTSymbol(_ibtSymbol, _expiry));
            __ERC20Permit_init(_name);
            __Pausable_init();
            __ReentrancyGuard_init();
            __AccessManaged_init(_initialAuthority);
            underlying_ = IERC4626(_ibt).asset();
            uint8 _underlyingDecimals = underlying_.tryGetTokenDecimals();
            uint8 _ibtDecimals = IERC4626(_ibt).decimals();
            if (
                _underlyingDecimals < MIN_DECIMALS ||
                _underlyingDecimals > _ibtDecimals ||
                _ibtDecimals > MAX_DECIMALS
            ) {
                revert InvalidDecimals();
            }
            underlyingDecimals = _underlyingDecimals;
            ibtDecimals = _ibtDecimals;
            ibt = _ibt;
            ibtUnit = 10 ** _ibtDecimals;
            ibtRate = IERC4626(_ibt).previewRedeem(ibtUnit).toRay(_underlyingDecimals);
            ptRate = RayMath.RAY_UNIT;
            yt = _deployYT(
                NamingUtil.genYTName(_ibtSymbol, _expiry),
                NamingUtil.genYTSymbol(_ibtSymbol, _expiry)
            );
        }
        /** @dev See {PausableUpgradeable-_pause}. */
        function pause() external override restricted {
            _pause();
        }
        /** @dev See {PausableUpgradeable-_unPause}. */
        function unPause() external override restricted {
            _unpause();
        }
        /** @dev See {IPrincipalToken-deposit}. */
        function deposit(uint256 assets, address receiver) external override returns (uint256 shares) {
            shares = deposit(assets, receiver, receiver);
        }
        /** @dev See {IPrincipalToken-deposit}. */
        function deposit(
            uint256 assets,
            address ptReceiver,
            address ytReceiver
        ) public override nonReentrant returns (uint256 shares) {
            address _ibt = ibt;
            address _underlying = underlying_;
            IERC20(_underlying).safeTransferFrom(msg.sender, address(this), assets);
            IERC20(_underlying).safeIncreaseAllowance(_ibt, assets);
            uint256 ibts = IERC4626(_ibt).deposit(assets, address(this));
            shares = _depositIBT(ibts, ptReceiver, ytReceiver);
        }
        /** @dev See {IPrincipalToken-deposit}. */
        function deposit(
            uint256 assets,
            address ptReceiver,
            address ytReceiver,
            uint256 minShares
        ) external override returns (uint256 shares) {
            shares = deposit(assets, ptReceiver, ytReceiver);
            if (shares < minShares) {
                revert ERC5143SlippageProtectionFailed();
            }
        }
        /** @dev See {IPrincipalToken-depositIBT}. */
        function depositIBT(uint256 ibts, address receiver) external override returns (uint256 shares) {
            shares = depositIBT(ibts, receiver, receiver);
        }
        /** @dev See {IPrincipalToken-depositIBT}. */
        function depositIBT(
            uint256 ibts,
            address ptReceiver,
            address ytReceiver
        ) public override nonReentrant returns (uint256 shares) {
            IERC20(ibt).safeTransferFrom(msg.sender, address(this), ibts);
            shares = _depositIBT(ibts, ptReceiver, ytReceiver);
        }
        /** @dev See {IPrincipalToken-depositIBT}. */
        function depositIBT(
            uint256 ibts,
            address ptReceiver,
            address ytReceiver,
            uint256 minShares
        ) external override returns (uint256 shares) {
            shares = depositIBT(ibts, ptReceiver, ytReceiver);
            if (shares < minShares) {
                revert ERC5143SlippageProtectionFailed();
            }
        }
        /** @dev See {IPrincipalToken-redeem}. */
        function redeem(
            uint256 shares,
            address receiver,
            address owner
        ) public override nonReentrant returns (uint256 assets) {
            _beforeRedeem(shares, owner);
            emit Redeem(owner, receiver, shares);
            assets = IERC4626(ibt).redeem(_convertSharesToIBTs(shares, false), receiver, address(this));
        }
        /** @dev See {IPrincipalToken-redeem}. */
        function redeem(
            uint256 shares,
            address receiver,
            address owner,
            uint256 minAssets
        ) external override returns (uint256 assets) {
            assets = redeem(shares, receiver, owner);
            if (assets < minAssets) {
                revert ERC5143SlippageProtectionFailed();
            }
        }
        /** @dev See {IPrincipalToken-redeemForIBT}. */
        function redeemForIBT(
            uint256 shares,
            address receiver,
            address owner
        ) public override nonReentrant returns (uint256 ibts) {
            _beforeRedeem(shares, owner);
            ibts = _convertSharesToIBTs(shares, false);
            emit Redeem(owner, receiver, shares);
            if (ibts != 0) {
                IERC20(ibt).safeTransfer(receiver, ibts);
            }
        }
        /** @dev See {IPrincipalToken-redeemForIBT}. */
        function redeemForIBT(
            uint256 shares,
            address receiver,
            address owner,
            uint256 minIbts
        ) external override returns (uint256 ibts) {
            ibts = redeemForIBT(shares, receiver, owner);
            if (ibts < minIbts) {
                revert ERC5143SlippageProtectionFailed();
            }
        }
        /** @dev See {IPrincipalToken-withdraw}. */
        function withdraw(
            uint256 assets,
            address receiver,
            address owner
        ) public override nonReentrant returns (uint256 shares) {
            _beforeWithdraw(assets, owner);
            (uint256 _ptRate, uint256 _ibtRate) = _getPTandIBTRates(false);
            uint256 ibts = IERC4626(ibt).withdraw(assets, receiver, address(this));
            shares = _burnSharesForWithdraw(ibts, receiver, owner, _ptRate, _ibtRate);
        }
        /** @dev See {IPrincipalToken-withdraw}. */
        function withdraw(
            uint256 assets,
            address receiver,
            address owner,
            uint256 maxShares
        ) external override returns (uint256 shares) {
            shares = withdraw(assets, receiver, owner);
            if (shares > maxShares) {
                revert ERC5143SlippageProtectionFailed();
            }
        }
        /** @dev See {IPrincipalToken-withdrawIBT}. */
        function withdrawIBT(
            uint256 ibts,
            address receiver,
            address owner
        ) public override nonReentrant returns (uint256 shares) {
            address _ibt = ibt;
            _beforeWithdraw(IERC4626(_ibt).previewRedeem(ibts), owner);
            (uint256 _ptRate, uint256 _ibtRate) = _getPTandIBTRates(false);
            shares = _burnSharesForWithdraw(ibts, receiver, owner, _ptRate, _ibtRate);
            // send IBTs from this contract to receiver
            IERC20(_ibt).safeTransfer(receiver, ibts);
        }
        /** @dev See {IPrincipalToken-withdrawIBT}. */
        function withdrawIBT(
            uint256 ibts,
            address receiver,
            address owner,
            uint256 maxShares
        ) external override returns (uint256 shares) {
            shares = withdrawIBT(ibts, receiver, owner);
            if (shares > maxShares) {
                revert ERC5143SlippageProtectionFailed();
            }
        }
        /** @dev See {IPrincipalToken-claimFees}. */
        function claimFees(
            uint256 _minAssets
        ) external override whenNotPaused returns (uint256 assets) {
            if (msg.sender != IRegistry(registry).getFeeCollector()) {
                revert UnauthorizedCaller();
            }
            uint256 ibts = unclaimedFeesInIBT;
            unclaimedFeesInIBT = 0;
            emit FeeClaimed(msg.sender, ibts, assets);
            assets = IERC4626(ibt).redeem(ibts, msg.sender, address(this));
            if (_minAssets > assets) {
                revert ERC5143SlippageProtectionFailed();
            }
        }
        /** @dev See {IPrincipalToken-updateYield}. */
        function updateYield(
            address _user
        ) public override whenNotPaused returns (uint256 updatedUserYieldInIBT) {
            (uint256 _ptRate, uint256 _ibtRate) = _updatePTandIBTRates();
            uint256 _oldIBTRateUser = ibtRateOfUser[_user];
            if (_oldIBTRateUser != _ibtRate) {
                ibtRateOfUser[_user] = _ibtRate;
            }
            uint256 _oldPTRateUser = ptRateOfUser[_user];
            if (_oldPTRateUser != _ptRate) {
                ptRateOfUser[_user] = _ptRate;
            }
            // Check for skipping yield update when the user deposits for the first time or rates decreased to 0.
            if (_oldIBTRateUser != 0) {
                updatedUserYieldInIBT = _user.computeYield(
                    yieldOfUserInIBT[_user],
                    _oldIBTRateUser,
                    _ibtRate,
                    _oldPTRateUser,
                    _ptRate,
                    yt
                );
                yieldOfUserInIBT[_user] = updatedUserYieldInIBT;
                emit YieldUpdated(_user, updatedUserYieldInIBT);
            }
        }
        /** @dev See {IPrincipalToken-claimYield}. */
        function claimYield(
            address _receiver,
            uint256 _minAssets
        ) public override returns (uint256 yieldInAsset) {
            uint256 yieldInIBT = _claimYield();
            emit YieldClaimed(msg.sender, _receiver, yieldInIBT);
            if (yieldInIBT != 0) {
                yieldInAsset = IERC4626(ibt).redeem(yieldInIBT, _receiver, address(this));
            }
            if (_minAssets > yieldInAsset) {
                revert ERC5143SlippageProtectionFailed();
            }
        }
        /** @dev See {IPrincipalToken-claimYieldInIBT}. */
        function claimYieldInIBT(
            address _receiver,
            uint256 _minIBT
        ) public override returns (uint256 yieldInIBT) {
            yieldInIBT = _claimYield();
            if (_minIBT > yieldInIBT) {
                revert ERC5143SlippageProtectionFailed();
            }
            emit YieldClaimed(msg.sender, _receiver, yieldInIBT);
            if (yieldInIBT != 0) {
                IERC20(ibt).safeTransfer(_receiver, yieldInIBT);
            }
        }
        /** @dev See {IPrincipalToken-beforeYtTransfer}. */
        function beforeYtTransfer(address _from, address _to) external override {
            if (msg.sender != yt) {
                revert UnauthorizedCaller();
            }
            updateYield(_from);
            updateYield(_to);
        }
        /** @dev See {IPrincipalToken-claimRewards}. */
        function claimRewards(bytes memory _data) external restricted whenNotPaused {
            address _rewardsProxy = rewardsProxy;
            if (_rewardsProxy == address(0) || _rewardsProxy.code.length == 0) {
                revert NoRewardsProxy();
            }
            bytes memory _data2 = abi.encodeCall(IRewardsProxy(address(0)).claimRewards, (_data));
            (bool success, ) = _rewardsProxy.delegatecall(_data2);
            if (!success) {
                revert ClaimRewardsFailed();
            }
        }
        /** @dev See {IERC3156FlashLender-flashLoan}. */
        function flashLoan(
            IERC3156FlashBorrower _receiver,
            address _token,
            uint256 _amount,
            bytes calldata _data
        ) external override whenNotPaused returns (bool) {
            if (_amount > maxFlashLoan(_token)) revert FlashLoanExceedsMaxAmount();
            uint256 fee = flashFee(_token, _amount);
            _updateFees(fee);
            // Initiate the flash loan by lending the requested IBT amount
            address _ibt = ibt;
            IERC20(_ibt).safeTransfer(address(_receiver), _amount);
            // Execute the flash loan
            if (_receiver.onFlashLoan(msg.sender, _token, _amount, fee, _data) != ON_FLASH_LOAN)
                revert FlashLoanCallbackFailed();
            // Repay the debt + fee
            IERC20(_ibt).safeTransferFrom(address(_receiver), address(this), _amount + fee);
            return true;
        }
        /* SETTERS
         *****************************************************************************************************************/
        /** @dev See {IPrincipalToken-storeRatesAtExpiry}. */
        function storeRatesAtExpiry() public override afterExpiry whenNotPaused {
            if (ratesAtExpiryStored == RAE_STORED) {
                revert RatesAtExpiryAlreadyStored();
            }
            ratesAtExpiryStored = RAE_STORED;
            // PT rate not rounded up here
            (uint256 _ptRate, uint256 _ibtRate) = _getCurrentPTandIBTRates(false);
            ptRate = _ptRate;
            ibtRate = _ibtRate;
            emit RatesStoredAtExpiry(_ibtRate, _ptRate);
        }
        /** @dev See {IPrincipalToken-setRewardsProxy}. */
        function setRewardsProxy(address _rewardsProxy) external restricted {
            // Note: address zero is allowed in order to disable the claim proxy
            emit RewardsProxyChange(rewardsProxy, _rewardsProxy);
            rewardsProxy = _rewardsProxy;
        }
        /* GETTERS
         *****************************************************************************************************************/
        /** @dev See {IPrincipalToken-previewDeposit}. */
        function previewDeposit(uint256 assets) external view override returns (uint256) {
            uint256 ibts = IERC4626(ibt).previewDeposit(assets);
            return previewDepositIBT(ibts);
        }
        /** @dev See {IPrincipalToken-previewDepositIBT}. */
        function previewDepositIBT(
            uint256 ibts
        ) public view override notExpired whenNotPaused returns (uint256) {
            uint256 tokenizationFee = ibts._computeTokenizationFee(address(this), registry);
            return _convertIBTsToSharesPreview(ibts - tokenizationFee);
        }
        /** @dev See {IPrincipalToken-maxDeposit}. */
        function maxDeposit(address /* receiver */) external view override returns (uint256) {
            return paused() || (block.timestamp >= expiry) ? 0 : type(uint256).max;
        }
        /** @dev See {IPrincipalToken-previewWithdraw}. */
        function previewWithdraw(uint256 assets) external view override returns (uint256) {
            uint256 ibts = IERC4626(ibt).previewWithdraw(assets);
            return previewWithdrawIBT(ibts);
        }
        /** @dev See {IPrincipalToken-previewWithdrawIBT}. */
        function previewWithdrawIBT(uint256 ibts) public view override whenNotPaused returns (uint256) {
            return _convertIBTsToShares(ibts, true);
        }
        /** @dev See {IPrincipalToken-maxWithdraw}.
         */
        function maxWithdraw(address owner) public view override returns (uint256) {
            return paused() ? 0 : convertToUnderlying(_maxBurnable(owner));
        }
        /** @dev See {IPrincipalToken-maxWithdrawIBT}.
         */
        function maxWithdrawIBT(address owner) public view override returns (uint256) {
            return paused() ? 0 : _convertSharesToIBTs(_maxBurnable(owner), false);
        }
        /** @dev See {IPrincipalToken-previewRedeem}. */
        function previewRedeem(uint256 shares) external view override returns (uint256) {
            return IERC4626(ibt).previewRedeem(previewRedeemForIBT(shares));
        }
        /** @dev See {IPrincipalToken-previewRedeemForIBT}. */
        function previewRedeemForIBT(
            uint256 shares
        ) public view override whenNotPaused returns (uint256) {
            return _convertSharesToIBTs(shares, false);
        }
        /** @dev See {IPrincipalToken-maxRedeem}. */
        function maxRedeem(address owner) public view override returns (uint256) {
            return paused() ? 0 : _maxBurnable(owner);
        }
        /** @dev See {IPrincipalToken-convertToPrincipal}. */
        function convertToPrincipal(uint256 underlyingAmount) external view override returns (uint256) {
            return _convertIBTsToShares(IERC4626(ibt).previewDeposit(underlyingAmount), false);
        }
        /** @dev See {IPrincipalToken-convertToUnderlying}. */
        function convertToUnderlying(uint256 principalAmount) public view override returns (uint256) {
            return IERC4626(ibt).previewRedeem(_convertSharesToIBTs(principalAmount, false));
        }
        /** @dev See {IPrincipalToken-totalAssets}. */
        function totalAssets() public view override returns (uint256) {
            address _ibt = ibt;
            return IERC4626(_ibt).previewRedeem(IERC4626(_ibt).balanceOf(address(this)));
        }
        /** @dev See {IERC20Metadata-decimals} */
        function decimals() public view override(IERC20Metadata, ERC20Upgradeable) returns (uint8) {
            return ibtDecimals;
        }
        /** @dev See {IPrincipalToken-paused}. */
        function paused() public view override(IPrincipalToken, PausableUpgradeable) returns (bool) {
            return super.paused();
        }
        /** @dev See {IPrincipalToken-maturity}. */
        function maturity() external view override returns (uint256) {
            return expiry;
        }
        /** @dev See {IPrincipalToken-getDuration}. */
        function getDuration() external view override returns (uint256) {
            return duration;
        }
        /** @dev See {IPrincipalToken-underlying}. */
        function underlying() external view override returns (address) {
            return underlying_;
        }
        /** @dev See {IPrincipalToken-getIBT}. */
        function getIBT() external view override returns (address) {
            return ibt;
        }
        /** @dev See {IPrincipalToken-getYT}. */
        function getYT() external view override returns (address) {
            return yt;
        }
        /** @dev See {IPrincipalToken-getIBTRate}. */
        function getIBTRate() external view override returns (uint256) {
            (, uint256 _ibtRate) = _getPTandIBTRates(false);
            return _ibtRate;
        }
        /** @dev See {IPrincipalToken-getPTRate}. */
        function getPTRate() external view override returns (uint256) {
            (uint256 _ptRate, ) = _getPTandIBTRates(false);
            return _ptRate;
        }
        /** @dev See {IPrincipalToken-getIBTUnit}. */
        function getIBTUnit() external view override returns (uint256) {
            return ibtUnit;
        }
        /** @dev See {IPrincipalToken-getUnclaimedFeesInIBT}. */
        function getUnclaimedFeesInIBT() external view override returns (uint256) {
            return unclaimedFeesInIBT;
        }
        /** @dev See {IPrincipalToken-getTotalFeesInIBT}. */
        function getTotalFeesInIBT() external view override returns (uint256) {
            return totalFeesInIBT;
        }
        /** @dev See {IPrincipalToken-getCurrentYieldOfUserInIBT}. */
        function getCurrentYieldOfUserInIBT(
            address _user
        ) external view override returns (uint256 _yieldOfUserInIBT) {
            uint256 _oldIBTRate = ibtRateOfUser[_user];
            if (_oldIBTRate != 0) {
                (uint256 _ptRate, uint256 _ibtRate) = _getPTandIBTRates(false);
                uint256 _oldPTRate = ptRateOfUser[_user];
                _yieldOfUserInIBT = _user.computeYield(
                    yieldOfUserInIBT[_user],
                    _oldIBTRate,
                    _ibtRate,
                    _oldPTRate,
                    _ptRate,
                    yt
                );
                _yieldOfUserInIBT = _yieldOfUserInIBT - _yieldOfUserInIBT._computeYieldFee(registry);
            }
        }
        /** @dev See {IERC3156FlashLender-maxFlashLoan}. */
        function maxFlashLoan(address _token) public view override returns (uint256) {
            address _ibt = ibt;
            if (_token != _ibt) {
                return 0;
            }
            // Entire IBT balance of the contract can be borrowed
            return IERC4626(_ibt).balanceOf(address(this));
        }
        /** @dev See {IERC3156FlashLender-flashFee}. */
        function flashFee(address _token, uint256 _amount) public view override returns (uint256) {
            if (_token != ibt) revert AddressError();
            return _amount._computeFlashloanFee(registry);
        }
        /** @dev See {IPrincipalToken-tokenizationFee}. */
        function getTokenizationFee() public view override returns (uint256) {
            return IRegistry(registry).getTokenizationFee();
        }
        /* INTERNAL FUNCTIONS
         *****************************************************************************************************************/
        /**
         * @dev See {ERC20Upgradeable-_update}.
         * @dev The contract must not be paused.
         */
        function _update(
            address from,
            address to,
            uint256 value
        ) internal virtual override whenNotPaused {
            super._update(from, to, value);
        }
        /**
         * @dev Converts amount of PT shares to amount of IBT with current rates
         * @param _shares amount of shares to convert to IBTs
         * @param _roundUp true if result should be rounded up
         * @return ibts resulting amount of IBT
         */
        function _convertSharesToIBTs(
            uint256 _shares,
            bool _roundUp
        ) internal view returns (uint256 ibts) {
            (uint256 _ptRate, uint256 _ibtRate) = _getPTandIBTRates(false);
            if (_ibtRate == 0) {
                revert RateError();
            }
            ibts = _shares.mulDiv(
                _ptRate,
                _ibtRate,
                _roundUp ? Math.Rounding.Ceil : Math.Rounding.Floor
            );
        }
        /**
         * @dev Converts amount of IBT to amount of PT shares with current rates
         * @param _ibts amount of IBT to convert to shares
         * @param _roundUp true if result should be rounded up
         * @return shares resulting amount of shares
         */
        function _convertIBTsToShares(
            uint256 _ibts,
            bool _roundUp
        ) internal view returns (uint256 shares) {
            (uint256 _ptRate, uint256 _ibtRate) = _getPTandIBTRates(false);
            if (_ptRate == 0) {
                revert RateError();
            }
            shares = _ibts.mulDiv(
                _ibtRate,
                _ptRate,
                _roundUp ? Math.Rounding.Ceil : Math.Rounding.Floor
            );
        }
        /**
         * @dev Converts amount of IBT to amount of PT shares with current rates.
         * This method also rounds the result of the new PTRate computation in case of negative rate
         * @param ibts amount of IBT to convert to shares
         * @return shares resulting amount of shares
         */
        function _convertIBTsToSharesPreview(uint256 ibts) internal view returns (uint256 shares) {
            // to round up the shares, the PT rate must round down
            (uint256 _ptRate, uint256 _ibtRate) = _getPTandIBTRates(true);
            if (_ptRate == 0) {
                revert RateError();
            }
            shares = ibts.mulDiv(_ibtRate, _ptRate);
        }
        /**
         * @dev Updates unclaimed fees and total fees upon tokenization and yield claiming
         * @param _feesInIBT The fees in IBT currently being paid
         */
        function _updateFees(uint256 _feesInIBT) internal {
            unclaimedFeesInIBT = unclaimedFeesInIBT + _feesInIBT;
            totalFeesInIBT = totalFeesInIBT + _feesInIBT;
        }
        /**
         * @dev Deploys a yt for this pt, called while initializing.
         * @param _name Name of the yt.
         * @param _symbol Symbol of the yt.
         * @return _yt The address of deployed yt.
         */
        function _deployYT(string memory _name, string memory _symbol) internal returns (address _yt) {
            address ytBeacon = IRegistry(registry).getYTBeacon();
            if (ytBeacon == address(0)) {
                revert BeaconNotSet();
            }
            _yt = address(
                new BeaconProxy(
                    ytBeacon,
                    abi.encodeCall(IYieldToken(address(0)).initialize, (_name, _symbol, address(this)))
                )
            );
            emit YTDeployed(_yt);
        }
        /**
         * @dev Internal function for minting pt & yt to depositing user. Also updates yield before minting.
         * @param _ibts The amount of IBT being deposited by the user
         * @param _ptReceiver The address of the PT receiver
         * @param _ytReceiver The address of the YT receiver
         * @return shares The amount of shares being minted to the receiver
         */
        function _depositIBT(
            uint256 _ibts,
            address _ptReceiver,
            address _ytReceiver
        ) internal notExpired returns (uint256 shares) {
            updateYield(_ytReceiver);
            uint256 tokenizationFee = _ibts._computeTokenizationFee(address(this), registry);
            _updateFees(tokenizationFee);
            shares = _convertIBTsToShares(_ibts - tokenizationFee, false);
            if (shares == 0) {
                revert RateError();
            }
            _mint(_ptReceiver, shares);
            emit Mint(msg.sender, _ptReceiver, shares);
            IYieldToken(yt).mint(_ytReceiver, shares);
        }
        /**
         * @dev Internal function for preparing redeem and burning PT:YT shares.
         * @param _shares The amount of shares being redeemed
         * @param _owner The address of shares' owner
         */
        function _beforeRedeem(uint256 _shares, address _owner) internal {
            if (_owner != msg.sender) {
                _spendAllowance(_owner, msg.sender, _shares);
            }
            if (_shares > _maxBurnable(_owner)) {
                revert InsufficientBalance();
            }
            if (block.timestamp >= expiry) {
                if (ratesAtExpiryStored == RAE_NOT_STORED) {
                    storeRatesAtExpiry();
                }
            } else {
                updateYield(_owner);
                IYieldToken(yt).burnWithoutYieldUpdate(_owner, msg.sender, _shares);
            }
            _burn(_owner, _shares);
        }
        /**
         * @dev Internal function for preparing withdraw.
         * @param _assets The amount of assets to withdraw
         * @param _owner The address of shares' owner
         */
        function _beforeWithdraw(uint256 _assets, address _owner) internal {
            if (block.timestamp >= expiry) {
                if (ratesAtExpiryStored == RAE_NOT_STORED) {
                    storeRatesAtExpiry();
                }
            } else {
                updateYield(_owner);
            }
            if (_assets > maxWithdraw(_owner)) {
                revert InsufficientBalance();
            }
        }
        /**
         * @dev Internal function for burning PT and YT as part of withdrawal process.
         * @param _ibts The amount of IBT that are withdrawn for burning shares
         * @param _receiver The addresss of the receiver of the assets
         * @param _owner The address of the owner of the shares
         * @param _ptRate The PT rate (expressed in Ray) to be used
         * @param _ibtRate The IBT rate (expressed in Ray) to be used
         * @return shares The amount of burnt owner's shares
         */
        function _burnSharesForWithdraw(
            uint256 _ibts,
            address _receiver,
            address _owner,
            uint256 _ptRate,
            uint256 _ibtRate
        ) internal returns (uint256 shares) {
            if (_ptRate == 0) {
                revert RateError();
            }
            // convert ibts to shares using provided rates
            shares = _ibts.mulDiv(_ibtRate, _ptRate, Math.Rounding.Ceil);
            if (_owner != msg.sender) {
                _spendAllowance(_owner, msg.sender, shares);
            }
            // burn owner's shares (YT and PT)
            if (block.timestamp < expiry) {
                IYieldToken(yt).burnWithoutYieldUpdate(_owner, msg.sender, shares);
            }
            _burn(_owner, shares);
            emit Redeem(_owner, _receiver, shares);
        }
        /**
         * @dev Internal function for handling the claims of caller's unclaimed yield
         * @return yieldInIBT The unclaimed yield in IBT that is about to be claimed
         */
        function _claimYield() internal returns (uint256 yieldInIBT) {
            yieldInIBT = updateYield(msg.sender);
            if (yieldInIBT == 0) {
                return 0;
            } else {
                yieldOfUserInIBT[msg.sender] = 0;
                uint256 yieldFeeInIBT = yieldInIBT._computeYieldFee(registry);
                _updateFees(yieldFeeInIBT);
                yieldInIBT = yieldInIBT - yieldFeeInIBT;
            }
        }
        /**
         * @dev Computes the maximum amount of burnable shares for a user
         * @param _user The address of the user
         * @return maxBurnable The maximum amount of burnable shares
         */
        function _maxBurnable(address _user) internal view returns (uint256 maxBurnable) {
            if (block.timestamp >= expiry) {
                maxBurnable = balanceOf(_user);
            } else {
                uint256 ptBalance = balanceOf(_user);
                uint256 ytBalance = IYieldToken(yt).balanceOf(_user);
                maxBurnable = (ptBalance > ytBalance) ? ytBalance : ptBalance;
            }
        }
        /**
         * @dev Internal function for updating PT and IBT rates i.e. depegging PT if negative yield happened
         * @return _ptRate The new PT rate
         * @return _ibtRate The new IBT rate
         */
        function _updatePTandIBTRates() internal returns (uint256 _ptRate, uint256 _ibtRate) {
            uint256 _expiry = expiry;
            if (block.timestamp >= _expiry) {
                if (ratesAtExpiryStored == RAE_NOT_STORED) {
                    storeRatesAtExpiry();
                }
            }
            (_ptRate, _ibtRate) = _getPTandIBTRates(false);
            if (block.timestamp < _expiry) {
                if (_ibtRate != ibtRate) {
                    ibtRate = _ibtRate;
                }
                if (_ptRate != ptRate) {
                    ptRate = _ptRate;
                }
            }
        }
        /**
         * @dev View function to get current IBT and PT rate
         * @param roundUpPTRate true if the ptRate resulting from mulDiv computation in case of negative rate should
         * be rounded up
         * @return _ptRate The new PT rate
         * @return _ibtRate The new IBT rate
         */
        function _getCurrentPTandIBTRates(
            bool roundUpPTRate
        ) internal view returns (uint256 _ptRate, uint256 _ibtRate) {
            address _ibt = ibt;
            _ibtRate = IERC4626(_ibt).previewRedeem(ibtUnit).toRay(underlyingDecimals);
            if (IERC4626(_ibt).totalAssets() == 0 && IERC4626(_ibt).totalSupply() != 0) {
                _ibtRate = 0;
            }
            _ptRate = _ibtRate < ibtRate
                ? ptRate.mulDiv(
                    _ibtRate,
                    ibtRate,
                    roundUpPTRate ? Math.Rounding.Ceil : Math.Rounding.Floor
                )
                : ptRate;
        }
        /**
         * @dev View function to get IBT and PT rates
         * @param roundUpPTRate true if the PTRate result from mulDiv computation in case of negative rate should
         * be rounded up
         * @return _ptRate The new PT rate
         * @return _ibtRate The new IBT rate
         */
        function _getPTandIBTRates(
            bool roundUpPTRate
        ) internal view returns (uint256 _ptRate, uint256 _ibtRate) {
            if (ratesAtExpiryStored == RAE_NOT_STORED) {
                (_ptRate, _ibtRate) = _getCurrentPTandIBTRates(roundUpPTRate);
            } else {
                (_ptRate, _ibtRate) = (ptRate, ibtRate);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.20;
    import {IERC20} from "../IERC20.sol";
    import {IERC20Permit} from "../extensions/IERC20Permit.sol";
    import {Address} from "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        /**
         * @dev An operation with an ERC20 token failed.
         */
        error SafeERC20FailedOperation(address token);
        /**
         * @dev Indicates a failed `decreaseAllowance` request.
         */
        error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
        /**
         * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
        }
        /**
         * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
         * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
         */
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
        }
        /**
         * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 oldAllowance = token.allowance(address(this), spender);
            forceApprove(token, spender, oldAllowance + value);
        }
        /**
         * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
         * value, non-reverting calls are assumed to be successful.
         */
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
            unchecked {
                uint256 currentAllowance = token.allowance(address(this), spender);
                if (currentAllowance < requestedDecrease) {
                    revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                }
                forceApprove(token, spender, currentAllowance - requestedDecrease);
            }
        }
        /**
         * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
         * to be set to zero before setting it to a non-zero value, such as USDT.
         */
        function forceApprove(IERC20 token, address spender, uint256 value) internal {
            bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
            if (!_callOptionalReturnBool(token, approvalCall)) {
                _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                _callOptionalReturn(token, approvalCall);
            }
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data);
            if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
                revert SafeERC20FailedOperation(address(token));
            }
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         *
         * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
         */
        function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
            // and not revert is the subcall reverts.
            (bool success, bytes memory returndata) = address(token).call(data);
            return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AccessManaged.sol)
    pragma solidity ^0.8.20;
    import {IAuthority} from "@openzeppelin/contracts/access/manager/IAuthority.sol";
    import {AuthorityUtils} from "@openzeppelin/contracts/access/manager/AuthorityUtils.sol";
    import {IAccessManager} from "@openzeppelin/contracts/access/manager/IAccessManager.sol";
    import {IAccessManaged} from "@openzeppelin/contracts/access/manager/IAccessManaged.sol";
    import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
    import {Initializable} from "../../proxy/utils/Initializable.sol";
    /**
     * @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
     * permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
     * implementing a policy that allows certain callers to access certain functions.
     *
     * IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
     * functions, and ideally only used in `external` functions. See {restricted}.
     */
    abstract contract AccessManagedUpgradeable is Initializable, ContextUpgradeable, IAccessManaged {
        /// @custom:storage-location erc7201:openzeppelin.storage.AccessManaged
        struct AccessManagedStorage {
            address _authority;
            bool _consumingSchedule;
        }
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessManaged")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant AccessManagedStorageLocation = 0xf3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00;
        function _getAccessManagedStorage() private pure returns (AccessManagedStorage storage $) {
            assembly {
                $.slot := AccessManagedStorageLocation
            }
        }
        /**
         * @dev Initializes the contract connected to an initial authority.
         */
        function __AccessManaged_init(address initialAuthority) internal onlyInitializing {
            __AccessManaged_init_unchained(initialAuthority);
        }
        function __AccessManaged_init_unchained(address initialAuthority) internal onlyInitializing {
            _setAuthority(initialAuthority);
        }
        /**
         * @dev Restricts access to a function as defined by the connected Authority for this contract and the
         * caller and selector of the function that entered the contract.
         *
         * [IMPORTANT]
         * ====
         * In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
         * functions that are used as external entry points and are not called internally. Unless you know what you're
         * doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
         * implications! This is because the permissions are determined by the function that entered the contract, i.e. the
         * function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
         * ====
         *
         * [WARNING]
         * ====
         * Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
         * function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
         * functions are the only execution paths where a function selector cannot be unambiguosly determined from the calldata
         * since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
         * if no calldata is provided. (See {_checkCanCall}).
         *
         * The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
         * ====
         */
        modifier restricted() {
            _checkCanCall(_msgSender(), _msgData());
            _;
        }
        /// @inheritdoc IAccessManaged
        function authority() public view virtual returns (address) {
            AccessManagedStorage storage $ = _getAccessManagedStorage();
            return $._authority;
        }
        /// @inheritdoc IAccessManaged
        function setAuthority(address newAuthority) public virtual {
            address caller = _msgSender();
            if (caller != authority()) {
                revert AccessManagedUnauthorized(caller);
            }
            if (newAuthority.code.length == 0) {
                revert AccessManagedInvalidAuthority(newAuthority);
            }
            _setAuthority(newAuthority);
        }
        /// @inheritdoc IAccessManaged
        function isConsumingScheduledOp() public view returns (bytes4) {
            AccessManagedStorage storage $ = _getAccessManagedStorage();
            return $._consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
        }
        /**
         * @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
         * permissions set by the current authority.
         */
        function _setAuthority(address newAuthority) internal virtual {
            AccessManagedStorage storage $ = _getAccessManagedStorage();
            $._authority = newAuthority;
            emit AuthorityUpdated(newAuthority);
        }
        /**
         * @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
         * is less than 4 bytes long.
         */
        function _checkCanCall(address caller, bytes calldata data) internal virtual {
            AccessManagedStorage storage $ = _getAccessManagedStorage();
            (bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
                authority(),
                caller,
                address(this),
                bytes4(data[0:4])
            );
            if (!immediate) {
                if (delay > 0) {
                    $._consumingSchedule = true;
                    IAccessManager(authority()).consumeScheduledOp(caller, data);
                    $._consumingSchedule = false;
                } else {
                    revert AccessManagedUnauthorized(caller);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
    pragma solidity ^0.8.20;
    import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
    import {Initializable} from "../proxy/utils/Initializable.sol";
    /**
     * @dev Contract module which allows children to implement an emergency stop
     * mechanism that can be triggered by an authorized account.
     *
     * This module is used through inheritance. It will make available the
     * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
     * the functions of your contract. Note that they will not be pausable by
     * simply including this module, only once the modifiers are put in place.
     */
    abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
        /// @custom:storage-location erc7201:openzeppelin.storage.Pausable
        struct PausableStorage {
            bool _paused;
        }
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;
        function _getPausableStorage() private pure returns (PausableStorage storage $) {
            assembly {
                $.slot := PausableStorageLocation
            }
        }
        /**
         * @dev Emitted when the pause is triggered by `account`.
         */
        event Paused(address account);
        /**
         * @dev Emitted when the pause is lifted by `account`.
         */
        event Unpaused(address account);
        /**
         * @dev The operation failed because the contract is paused.
         */
        error EnforcedPause();
        /**
         * @dev The operation failed because the contract is not paused.
         */
        error ExpectedPause();
        /**
         * @dev Initializes the contract in unpaused state.
         */
        function __Pausable_init() internal onlyInitializing {
            __Pausable_init_unchained();
        }
        function __Pausable_init_unchained() internal onlyInitializing {
            PausableStorage storage $ = _getPausableStorage();
            $._paused = false;
        }
        /**
         * @dev Modifier to make a function callable only when the contract is not paused.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        modifier whenNotPaused() {
            _requireNotPaused();
            _;
        }
        /**
         * @dev Modifier to make a function callable only when the contract is paused.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        modifier whenPaused() {
            _requirePaused();
            _;
        }
        /**
         * @dev Returns true if the contract is paused, and false otherwise.
         */
        function paused() public view virtual returns (bool) {
            PausableStorage storage $ = _getPausableStorage();
            return $._paused;
        }
        /**
         * @dev Throws if the contract is paused.
         */
        function _requireNotPaused() internal view virtual {
            if (paused()) {
                revert EnforcedPause();
            }
        }
        /**
         * @dev Throws if the contract is not paused.
         */
        function _requirePaused() internal view virtual {
            if (!paused()) {
                revert ExpectedPause();
            }
        }
        /**
         * @dev Triggers stopped state.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        function _pause() internal virtual whenNotPaused {
            PausableStorage storage $ = _getPausableStorage();
            $._paused = true;
            emit Paused(_msgSender());
        }
        /**
         * @dev Returns to normal state.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        function _unpause() internal virtual whenPaused {
            PausableStorage storage $ = _getPausableStorage();
            $._paused = false;
            emit Unpaused(_msgSender());
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
    pragma solidity ^0.8.20;
    import {Initializable} from "../proxy/utils/Initializable.sol";
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuardUpgradeable is Initializable {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant NOT_ENTERED = 1;
        uint256 private constant ENTERED = 2;
        /// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
        struct ReentrancyGuardStorage {
            uint256 _status;
        }
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;
        function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
            assembly {
                $.slot := ReentrancyGuardStorageLocation
            }
        }
        /**
         * @dev Unauthorized reentrant call.
         */
        error ReentrancyGuardReentrantCall();
        function __ReentrancyGuard_init() internal onlyInitializing {
            __ReentrancyGuard_init_unchained();
        }
        function __ReentrancyGuard_init_unchained() internal onlyInitializing {
            ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
            $._status = NOT_ENTERED;
        }
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            _nonReentrantBefore();
            _;
            _nonReentrantAfter();
        }
        function _nonReentrantBefore() private {
            ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
            // On the first call to nonReentrant, _status will be NOT_ENTERED
            if ($._status == ENTERED) {
                revert ReentrancyGuardReentrantCall();
            }
            // Any calls to nonReentrant after this point will fail
            $._status = ENTERED;
        }
        function _nonReentrantAfter() private {
            ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            $._status = NOT_ENTERED;
        }
        /**
         * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
         * `nonReentrant` function in the call stack.
         */
        function _reentrancyGuardEntered() internal view returns (bool) {
            ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
            return $._status == ENTERED;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        /**
         * @dev Muldiv operation overflow.
         */
        error MathOverflowedMulDiv();
        enum Rounding {
            Floor, // Toward negative infinity
            Ceil, // Toward positive infinity
            Trunc, // Toward zero
            Expand // Away from zero
        }
        /**
         * @dev Returns the addition of two unsigned integers, with an overflow flag.
         */
        function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                uint256 c = a + b;
                if (c < a) return (false, 0);
                return (true, c);
            }
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
         */
        function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b > a) return (false, 0);
                return (true, a - b);
            }
        }
        /**
         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
         */
        function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) return (true, 0);
                uint256 c = a * b;
                if (c / a != b) return (false, 0);
                return (true, c);
            }
        }
        /**
         * @dev Returns the division of two unsigned integers, with a division by zero flag.
         */
        function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a / b);
            }
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
         */
        function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a % b);
            }
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds towards infinity instead
         * of rounding towards zero.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            if (b == 0) {
                // Guarantee the same behavior as in a regular Solidity division.
                return a / b;
            }
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
         * denominator == 0.
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
         * Uniswap Labs also under MIT license.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0 = x * y; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                    // The surrounding unchecked block does not change this fact.
                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                if (denominator <= prod1) {
                    revert MathOverflowedMulDiv();
                }
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                uint256 twos = denominator & (0 - denominator);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                // works in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
         * towards zero.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10 ** 64) {
                    value /= 10 ** 64;
                    result += 64;
                }
                if (value >= 10 ** 32) {
                    value /= 10 ** 32;
                    result += 32;
                }
                if (value >= 10 ** 16) {
                    value /= 10 ** 16;
                    result += 16;
                }
                if (value >= 10 ** 8) {
                    value /= 10 ** 8;
                    result += 8;
                }
                if (value >= 10 ** 4) {
                    value /= 10 ** 4;
                    result += 4;
                }
                if (value >= 10 ** 2) {
                    value /= 10 ** 2;
                    result += 2;
                }
                if (value >= 10 ** 1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
            }
        }
        /**
         * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
         */
        function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
            return uint8(rounding) % 2 == 1;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol)
    pragma solidity ^0.8.20;
    import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
    import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
    import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
    import {EIP712Upgradeable} from "../../../utils/cryptography/EIP712Upgradeable.sol";
    import {NoncesUpgradeable} from "../../../utils/NoncesUpgradeable.sol";
    import {Initializable} from "../../../proxy/utils/Initializable.sol";
    /**
     * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20Permit, EIP712Upgradeable, NoncesUpgradeable {
        bytes32 private constant PERMIT_TYPEHASH =
            keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
        /**
         * @dev Permit deadline has expired.
         */
        error ERC2612ExpiredSignature(uint256 deadline);
        /**
         * @dev Mismatched signature.
         */
        error ERC2612InvalidSigner(address signer, address owner);
        /**
         * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
         *
         * It's a good idea to use the same `name` that is defined as the ERC20 token name.
         */
        function __ERC20Permit_init(string memory name) internal onlyInitializing {
            __EIP712_init_unchained(name, "1");
        }
        function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {}
        /**
         * @inheritdoc IERC20Permit
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) public virtual {
            if (block.timestamp > deadline) {
                revert ERC2612ExpiredSignature(deadline);
            }
            bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
            bytes32 hash = _hashTypedDataV4(structHash);
            address signer = ECDSA.recover(hash, v, r, s);
            if (signer != owner) {
                revert ERC2612InvalidSigner(signer, owner);
            }
            _approve(owner, spender, value);
        }
        /**
         * @inheritdoc IERC20Permit
         */
        function nonces(address owner) public view virtual override(IERC20Permit, NoncesUpgradeable) returns (uint256) {
            return super.nonces(owner);
        }
        /**
         * @inheritdoc IERC20Permit
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
            return _domainSeparatorV4();
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/BeaconProxy.sol)
    pragma solidity ^0.8.20;
    import {IBeacon} from "./IBeacon.sol";
    import {Proxy} from "../Proxy.sol";
    import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
    /**
     * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
     *
     * The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an
     * immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by
     * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] so that it can be accessed externally.
     *
     * CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust
     * the beacon to not upgrade the implementation maliciously.
     *
     * IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in
     * an inconsistent state where the beacon storage slot does not match the beacon address.
     */
    contract BeaconProxy is Proxy {
        // An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call.
        address private immutable _beacon;
        /**
         * @dev Initializes the proxy with `beacon`.
         *
         * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
         * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
         * constructor.
         *
         * Requirements:
         *
         * - `beacon` must be a contract with the interface {IBeacon}.
         * - If `data` is empty, `msg.value` must be zero.
         */
        constructor(address beacon, bytes memory data) payable {
            ERC1967Utils.upgradeBeaconToAndCall(beacon, data);
            _beacon = beacon;
        }
        /**
         * @dev Returns the current implementation address of the associated beacon.
         */
        function _implementation() internal view virtual override returns (address) {
            return IBeacon(_getBeacon()).implementation();
        }
        /**
         * @dev Returns the beacon.
         */
        function _getBeacon() internal view virtual returns (address) {
            return _beacon;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashBorrower.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Interface of the ERC3156 FlashBorrower, as defined in
     * https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
     */
    interface IERC3156FlashBorrower {
        /**
         * @dev Receive a flash loan.
         * @param initiator The initiator of the loan.
         * @param token The loan currency.
         * @param amount The amount of tokens lent.
         * @param fee The additional amount of tokens to repay.
         * @param data Arbitrary data structure, intended to contain user-defined parameters.
         * @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
         */
        function onFlashLoan(
            address initiator,
            address token,
            uint256 amount,
            uint256 fee,
            bytes calldata data
        ) external returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)
    pragma solidity ^0.8.20;
    import {IERC20} from "../token/ERC20/IERC20.sol";
    import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
    /**
     * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
     * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
     */
    interface IERC4626 is IERC20, IERC20Metadata {
        event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
        event Withdraw(
            address indexed sender,
            address indexed receiver,
            address indexed owner,
            uint256 assets,
            uint256 shares
        );
        /**
         * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
         *
         * - MUST be an ERC-20 token contract.
         * - MUST NOT revert.
         */
        function asset() external view returns (address assetTokenAddress);
        /**
         * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
         *
         * - SHOULD include any compounding that occurs from yield.
         * - MUST be inclusive of any fees that are charged against assets in the Vault.
         * - MUST NOT revert.
         */
        function totalAssets() external view returns (uint256 totalManagedAssets);
        /**
         * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
         * scenario where all the conditions are met.
         *
         * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
         * - MUST NOT show any variations depending on the caller.
         * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
         * - MUST NOT revert.
         *
         * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
         * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
         * from.
         */
        function convertToShares(uint256 assets) external view returns (uint256 shares);
        /**
         * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
         * scenario where all the conditions are met.
         *
         * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
         * - MUST NOT show any variations depending on the caller.
         * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
         * - MUST NOT revert.
         *
         * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
         * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
         * from.
         */
        function convertToAssets(uint256 shares) external view returns (uint256 assets);
        /**
         * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
         * through a deposit call.
         *
         * - MUST return a limited value if receiver is subject to some deposit limit.
         * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
         * - MUST NOT revert.
         */
        function maxDeposit(address receiver) external view returns (uint256 maxAssets);
        /**
         * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
         * current on-chain conditions.
         *
         * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
         *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
         *   in the same transaction.
         * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
         *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
         * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
         * - MUST NOT revert.
         *
         * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
         * share price or some other type of condition, meaning the depositor will lose assets by depositing.
         */
        function previewDeposit(uint256 assets) external view returns (uint256 shares);
        /**
         * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
         *
         * - MUST emit the Deposit event.
         * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
         *   deposit execution, and are accounted for during deposit.
         * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
         *   approving enough underlying tokens to the Vault contract, etc).
         *
         * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
         */
        function deposit(uint256 assets, address receiver) external returns (uint256 shares);
        /**
         * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
         * - MUST return a limited value if receiver is subject to some mint limit.
         * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
         * - MUST NOT revert.
         */
        function maxMint(address receiver) external view returns (uint256 maxShares);
        /**
         * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
         * current on-chain conditions.
         *
         * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
         *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
         *   same transaction.
         * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
         *   would be accepted, regardless if the user has enough tokens approved, etc.
         * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
         * - MUST NOT revert.
         *
         * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
         * share price or some other type of condition, meaning the depositor will lose assets by minting.
         */
        function previewMint(uint256 shares) external view returns (uint256 assets);
        /**
         * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
         *
         * - MUST emit the Deposit event.
         * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
         *   execution, and are accounted for during mint.
         * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
         *   approving enough underlying tokens to the Vault contract, etc).
         *
         * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
         */
        function mint(uint256 shares, address receiver) external returns (uint256 assets);
        /**
         * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
         * Vault, through a withdraw call.
         *
         * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
         * - MUST NOT revert.
         */
        function maxWithdraw(address owner) external view returns (uint256 maxAssets);
        /**
         * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
         * given current on-chain conditions.
         *
         * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
         *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
         *   called
         *   in the same transaction.
         * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
         *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
         * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
         * - MUST NOT revert.
         *
         * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
         * share price or some other type of condition, meaning the depositor will lose assets by depositing.
         */
        function previewWithdraw(uint256 assets) external view returns (uint256 shares);
        /**
         * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
         *
         * - MUST emit the Withdraw event.
         * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
         *   withdraw execution, and are accounted for during withdraw.
         * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
         *   not having enough shares, etc).
         *
         * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
         * Those methods should be performed separately.
         */
        function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
        /**
         * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
         * through a redeem call.
         *
         * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
         * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
         * - MUST NOT revert.
         */
        function maxRedeem(address owner) external view returns (uint256 maxShares);
        /**
         * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
         * given current on-chain conditions.
         *
         * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
         *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
         *   same transaction.
         * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
         *   redemption would be accepted, regardless if the user has enough shares, etc.
         * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
         * - MUST NOT revert.
         *
         * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
         * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
         */
        function previewRedeem(uint256 shares) external view returns (uint256 assets);
        /**
         * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
         *
         * - MUST emit the Withdraw event.
         * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
         *   redeem execution, and are accounted for during redeem.
         * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
         *   not having enough shares, etc).
         *
         * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
         * Those methods should be performed separately.
         */
        function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity 0.8.20;
    import "../interfaces/IYieldToken.sol";
    import "../interfaces/IPrincipalToken.sol";
    import "../interfaces/IRegistry.sol";
    import "openzeppelin-contracts/interfaces/IERC4626.sol";
    import "openzeppelin-math/Math.sol";
    import "../libraries/RayMath.sol";
    /**
     * @title PrincipalTokenUtil library
     * @author Spectra Finance
     * @notice Provides miscellaneous utils for computations in PrincipalToken.sol.
     */
    library PrincipalTokenUtil {
        using Math for uint256;
        using RayMath for uint256;
        error AssetDoesNotImplementMetadata();
        uint256 private constant SAFETY_BOUND = 100; // used to favour the protocol in case of approximations
        uint256 private constant FEE_DIVISOR = 1e18; // equivalent to 100% fees
        uint256 private constant MIN_LENGTH = 32; // minimum length the encoded decimals should have
        /**
         * @dev Computes the yield for a specified user since the last update.
         * @param _user The address for which the yield is to be calculated.
         * @param _currentYieldInIBT the current yield of user in IBT
         * @param _oldIBTRate the previous deposit IBT rate of user (in Ray)
         * @param _ibtRate the current IBT rate (in Ray)
         * @param _oldPTRate the previous deposit pt rate of user (in Ray)
         * @param _ptRate the current PT rate (in Ray)
         * @param _yt the address of YT
         * @return updatedYieldInIBT the calculated yield in IBT of user
         */
        function computeYield(
            address _user,
            uint256 _currentYieldInIBT,
            uint256 _oldIBTRate,
            uint256 _ibtRate,
            uint256 _oldPTRate,
            uint256 _ptRate,
            address _yt
        ) external view returns (uint256 updatedYieldInIBT) {
            if (_oldPTRate == _ptRate && _ibtRate == _oldIBTRate) {
                return _currentYieldInIBT;
            }
            uint8 ytDecimals = IERC20Metadata(_yt).decimals();
            uint256 newYieldInIBTRay;
            uint256 userYTBalanceInRay = IYieldToken(_yt).actualBalanceOf(_user).toRay(ytDecimals);
            // ibtOfPT is the yield generated by each PT corresponding to the YTs that the user holds
            uint256 ibtOfPTInRay = userYTBalanceInRay.mulDiv(_oldPTRate, _oldIBTRate);
            if (_oldPTRate == _ptRate && _ibtRate > _oldIBTRate) {
                // only positive yield happened
                newYieldInIBTRay = ibtOfPTInRay.mulDiv(_ibtRate - _oldIBTRate, _ibtRate);
            } else {
                if (_oldPTRate > _ptRate) {
                    // PT depeg happened
                    uint256 yieldInAssetRay;
                    uint256 actualNegativeYieldInAssetRay = _convertToAssetsWithRate(
                        userYTBalanceInRay,
                        _oldPTRate - _ptRate,
                        Math.Rounding.Floor
                    );
                    if (_ibtRate >= _oldIBTRate) {
                        // both negative and positive yield happened, more positive
                        yieldInAssetRay =
                            actualNegativeYieldInAssetRay +
                            _convertToAssetsWithRate(
                                ibtOfPTInRay,
                                _ibtRate - _oldIBTRate,
                                Math.Rounding.Floor
                            );
                    } else {
                        // either both negative and positive yield happened, more negative
                        // or only negative yield happened
                        uint256 expectedNegativeYieldInAssetRay = _convertToAssetsWithRate(
                            ibtOfPTInRay,
                            (_oldIBTRate - _ibtRate),
                            Math.Rounding.Ceil
                        );
                        yieldInAssetRay = expectedNegativeYieldInAssetRay >
                            actualNegativeYieldInAssetRay
                            ? 0
                            : actualNegativeYieldInAssetRay - expectedNegativeYieldInAssetRay;
                        yieldInAssetRay = yieldInAssetRay.fromRay(
                            IERC20Metadata(IPrincipalToken(IYieldToken(_yt).getPT()).underlying())
                                .decimals()
                        ) < SAFETY_BOUND
                            ? 0
                            : yieldInAssetRay;
                    }
                    newYieldInIBTRay = _convertToSharesWithRate(
                        yieldInAssetRay,
                        _ibtRate,
                        Math.Rounding.Floor
                    );
                } else {
                    // PT rate increased or did not depeg on IBT rate decrease
                    revert IPrincipalToken.RateError();
                }
            }
            updatedYieldInIBT = _currentYieldInIBT + newYieldInIBTRay.fromRay(ytDecimals);
        }
        /**
         * @dev Attempts to fetch the token decimals. Reverts if the attempt failed in some way.
         * @param _token The token address
         * @return The ERC20 token decimals
         */
        function tryGetTokenDecimals(address _token) external view returns (uint8) {
            (bool success, bytes memory encodedDecimals) = _token.staticcall(
                abi.encodeCall(IERC20Metadata.decimals, ())
            );
            if (success && encodedDecimals.length >= MIN_LENGTH) {
                uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
                if (returnedDecimals <= type(uint8).max) {
                    return uint8(returnedDecimals);
                }
            }
            revert AssetDoesNotImplementMetadata();
        }
        /**
         * @dev Convert underlying amount to share, with the given rate
         * @param _assetsInRay The amount of underlying (in Ray)
         * @param _rate The share price in underlying (in Ray)
         * @param _rounding The rounding type to be used in the computation
         * @return sharesInRay The amount of share (in Ray)
         */
        function _convertToSharesWithRate(
            uint256 _assetsInRay,
            uint256 _rate,
            Math.Rounding _rounding
        ) internal pure returns (uint256 sharesInRay) {
            if (_rate == 0) {
                revert IPrincipalToken.RateError();
            }
            sharesInRay = _assetsInRay.mulDiv(RayMath.RAY_UNIT, _rate, _rounding);
        }
        /**
         * @dev Convert share amount to underlying, with the given rate
         * @param _sharesInRay The amount of share (in Ray)
         * @param _rate The share price in underlying (in Ray)
         * @param _rounding The rounding type to be used in the computation
         * @return assetsInRay The amount of underlying (in Ray)
         */
        function _convertToAssetsWithRate(
            uint256 _sharesInRay,
            uint256 _rate,
            Math.Rounding _rounding
        ) internal pure returns (uint256 assetsInRay) {
            assetsInRay = _sharesInRay.mulDiv(_rate, RayMath.RAY_UNIT, _rounding);
        }
        /**
         * @dev Compute tokenization fee for a given amount
         * @param _amount The amount to tokenize
         * @param _pt The address of the pt on which the fee is being paid
         * @param _registry The address of registry that stores fee rate
         * @return returns The calculated tokenization fee
         */
        function _computeTokenizationFee(
            uint256 _amount,
            address _pt,
            address _registry
        ) internal view returns (uint256) {
            return
                _amount
                    .mulDiv(IRegistry(_registry).getTokenizationFee(), FEE_DIVISOR, Math.Rounding.Ceil)
                    .mulDiv(
                        FEE_DIVISOR - IRegistry(_registry).getFeeReduction(_pt, msg.sender),
                        FEE_DIVISOR,
                        Math.Rounding.Ceil
                    );
        }
        /**
         * @dev Compute yield fee for a given amount
         * @param _amount the amount of yield
         * @param _registry the address of registry that stores fee rate
         * @return returns the calculated yield fee
         */
        function _computeYieldFee(uint256 _amount, address _registry) internal view returns (uint256) {
            return _amount.mulDiv(IRegistry(_registry).getYieldFee(), FEE_DIVISOR, Math.Rounding.Ceil);
        }
        /**
         * @dev Compute flashloan fee for a given amount
         * @param _amount the amount to flashloan
         * @param _registry the address of registry that stores fee rate
         * @return returns the calculated flashloan fee
         */
        function _computeFlashloanFee(
            uint256 _amount,
            address _registry
        ) internal view returns (uint256) {
            return
                _amount.mulDiv(
                    IRegistry(_registry).getPTFlashLoanFee(),
                    FEE_DIVISOR,
                    Math.Rounding.Ceil
                );
        }
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity 0.8.20;
    /**
     * @title NamingUtil library
     * @author Spectra Finance
     * @notice Provides miscellaneous utils for token naming.
     */
    library NamingUtil {
        function genYTSymbol(
            string memory _ibtSymbol,
            uint256 _dateOfExpiry
        ) internal pure returns (string memory) {
            string memory date = uintToString(_dateOfExpiry);
            string memory symbol = concatenate(_ibtSymbol, "-");
            return concatenate(concatenate("YT-", symbol), date);
        }
        function genYTName(
            string memory _ibtSymbol,
            uint256 _dateOfExpiry
        ) internal pure returns (string memory) {
            string memory date = uintToString(_dateOfExpiry);
            string memory symbol = concatenate(_ibtSymbol, "-");
            return concatenate(concatenate("Yield Token: ", symbol), date);
        }
        function genPTSymbol(
            string memory _ibtSymbol,
            uint256 _dateOfExpiry
        ) internal pure returns (string memory) {
            string memory date = uintToString(_dateOfExpiry);
            string memory symbol = concatenate(_ibtSymbol, "-");
            return concatenate(concatenate("PT-", symbol), date);
        }
        function genPTName(
            string memory _ibtSymbol,
            uint256 _dateOfExpiry
        ) internal pure returns (string memory) {
            string memory date = uintToString(_dateOfExpiry);
            string memory symbol = concatenate(_ibtSymbol, "-");
            return concatenate(concatenate("Principal Token: ", symbol), date);
        }
        function concatenate(string memory a, string memory b) internal pure returns (string memory) {
            return string(abi.encodePacked(a, b));
        }
        function uintToString(uint256 _i) internal pure returns (string memory) {
            if (_i == 0) {
                return "0";
            }
            uint256 j = _i;
            uint256 len;
            while (j != 0) {
                len++;
                j /= 10;
            }
            bytes memory bstr = new bytes(len);
            uint256 k = len;
            while (_i != 0) {
                k = k - 1;
                uint8 temp = (48 + uint8(_i - (_i / 10) * 10));
                bytes1 b1 = bytes1(temp);
                bstr[k] = b1;
                _i /= 10;
            }
            return string(bstr);
        }
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity 0.8.20;
    /**
     * @title RayMath library
     * @author Spectra Finance
     * @notice Provides conversions for/to any decimal tokens to/from ray.
     * @dev Conversions from Ray are rounded down.
     */
    library RayMath {
        /// @dev 27 decimal unit
        uint256 public constant RAY_UNIT = 1e27;
        uint256 public constant RAY_DECIMALS = 27;
        /**
         * @dev Converts a value from Ray (27-decimal precision) to a representation with a specified number of decimals.
         * @param _a The amount in Ray to be converted. Ray is a fixed-point representation with 27 decimals.
         * @param _decimals The target decimal precision for the converted amount.
         * @return b The amount converted from Ray to the specified decimal precision.
         */
        function fromRay(uint256 _a, uint256 _decimals) internal pure returns (uint256 b) {
            uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals);
            assembly {
                b := div(_a, decimals_ratio)
            }
        }
        /**
         * @dev Converts a value from Ray (27-decimal precision) to a representation with a specified number of decimals.
         * @param _a The amount in Ray to be converted. Ray is a fixed-point representation with 27 decimals.
         * @param _decimals The target decimal precision for the converted amount.
         * @param _roundUp If true, the function rounds up the result to the nearest integer value.
         *                If false, it truncates (rounds down) to the nearest integer.
         * @return b The amount converted from Ray to the specified decimal precision, rounded as specified.
         */
        function fromRay(
            uint256 _a,
            uint256 _decimals,
            bool _roundUp
        ) internal pure returns (uint256 b) {
            uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals);
            assembly {
                b := div(_a, decimals_ratio)
                if and(eq(_roundUp, 1), gt(mod(_a, decimals_ratio), 0)) {
                    b := add(b, 1)
                }
            }
        }
        /**
         * @dev Converts a value with a specified number of decimals to Ray (27-decimal precision).
         * @param _a The amount to be converted, specified in a decimal format.
         * @param _decimals The number of decimals in the representation of 'a'.
         * @return b The amount in Ray, converted from the specified decimal precision.
         *           Ensures that the conversion maintains the value's integrity (no overflow).
         */
        function toRay(uint256 _a, uint256 _decimals) internal pure returns (uint256 b) {
            uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals);
            // to avoid overflow, b/decimals_ratio == _a
            assembly {
                b := mul(_a, decimals_ratio)
                if iszero(eq(div(b, decimals_ratio), _a)) {
                    revert(0, 0)
                }
            }
        }
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity ^0.8.20;
    interface IRegistry {
        /* Errors
         *****************************************************************************************************************/
        error FeeGreaterThanMaxValue();
        error PTListUpdateFailed();
        error ReductionTooBig();
        error AddressError();
        /* GETTERS
         *****************************************************************************************************************/
        /**
         * @notice Getter for the factory address
         * @return The address of token factory
         */
        function getFactory() external view returns (address);
        /**
         * @notice Get the address of the router
         * @return The address of the router
         */
        function getRouter() external view returns (address);
        /**
         * @notice Get the address of the routerUtil
         * @return The address of the routerUtil
         */
        function getRouterUtil() external view returns (address);
        /**
         * @notice Get the address of the pt beacon
         * @return The address of PT beacon
         */
        function getPTBeacon() external view returns (address);
        /**
         * @notice Get the address of the yt beacon
         * @return The address of yt beacon
         */
        function getYTBeacon() external view returns (address);
        /**
         * @notice Get the value of tokenization fee
         * @return The value of tokenization fee
         */
        function getTokenizationFee() external view returns (uint256);
        /**
         * @notice Get the value of yield fee
         * @return The value of yield fee
         */
        function getYieldFee() external view returns (uint256);
        /**
         * @notice Get the value of PT flash loan fee
         * @return The value of PT flash loan fee
         */
        function getPTFlashLoanFee() external view returns (uint256);
        /**
         * @notice Get the address of the fee collector
         * @return The address of fee collector
         */
        function getFeeCollector() external view returns (address);
        /**
         * @notice Get the fee reduction of the given user for the given pt
         * @param _pt The address of the pt
         * @param _user The address of the user
         * @return The fee reduction of the given user for the given pt
         */
        function getFeeReduction(address _pt, address _user) external view returns (uint256);
        /**
         * @notice Getter to check if a pt is registered
         * @param _pt the address of the pt to check the registration of
         * @return true if it is, false otherwise
         */
        function isRegisteredPT(address _pt) external view returns (bool);
        /**
         * @notice Getter for the pt registered at an index
         * @param _index the index of the pt to return
         * @return The address of the corresponding pt
         */
        function getPTAt(uint256 _index) external view returns (address);
        /**
         * @notice Getter for number of PT registered
         * @return The number of PT registered
         */
        function pTCount() external view returns (uint256);
        /* SETTERS
         *****************************************************************************************************************/
        /**
         * @notice Setter for the tokens factory address
         * @param _newFactory The address of the new factory
         */
        function setFactory(address _newFactory) external;
        /**
         * @notice set the router
         * @param _router The address of the router
         */
        function setRouter(address _router) external;
        /**
         * @notice set the routerUtil
         * @param _routerUtil The address of the routerUtil
         */
        function setRouterUtil(address _routerUtil) external;
        /**
         * @notice set the tokenization fee
         * @param _tokenizationFee The value of tokenization fee
         */
        function setTokenizationFee(uint256 _tokenizationFee) external;
        /**
         * @notice set the yield fee
         * @param _yieldFee The value of yield fee
         */
        function setYieldFee(uint256 _yieldFee) external;
        /**
         * @notice set the PT flash loan fee
         * @param _ptFlashLoanFee The value of PT flash loan fee
         */
        function setPTFlashLoanFee(uint256 _ptFlashLoanFee) external;
        /**
         * @notice set the fee collector
         * @param _feeCollector The address of fee collector
         */
        function setFeeCollector(address _feeCollector) external;
        /**
         * @notice Set the fee reduction of the given pt for the given user
         * @param _pt The address of the pt
         * @param _user The address of the user
         * @param _reduction The fee reduction
         */
        function reduceFee(address _pt, address _user, uint256 _reduction) external;
        /**
         * @notice set the pt beacon
         * @param _ptBeacon The address of PT beacon
         */
        function setPTBeacon(address _ptBeacon) external;
        /**
         * @notice set the yt beacon
         * @param _ytBeacon The address of yt beacon
         */
        function setYTBeacon(address _ytBeacon) external;
        /**
         * @notice Add a pt to the registry
         * @param _pt The address of the pt to add to the registry
         */
        function addPT(address _pt) external;
        /**
         * @notice Remove a pt from the registry
         * @param _pt The address of the pt to remove from the registry
         */
        function removePT(address _pt) external;
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity ^0.8.20;
    import "openzeppelin-contracts/interfaces/IERC20.sol";
    import "openzeppelin-contracts/interfaces/IERC20Metadata.sol";
    import "openzeppelin-contracts/interfaces/IERC3156FlashLender.sol";
    interface IPrincipalToken is IERC20, IERC20Metadata, IERC3156FlashLender {
        /* ERRORS
         *****************************************************************************************************************/
        error InvalidDecimals();
        error BeaconNotSet();
        error PTExpired();
        error PTNotExpired();
        error RateError();
        error AddressError();
        error UnauthorizedCaller();
        error RatesAtExpiryAlreadyStored();
        error ERC5143SlippageProtectionFailed();
        error InsufficientBalance();
        error FlashLoanExceedsMaxAmount();
        error FlashLoanCallbackFailed();
        error NoRewardsProxy();
        error ClaimRewardsFailed();
        /* Functions
         *****************************************************************************************************************/
        function initialize(address _ibt, uint256 _duration, address initialAuthority) external;
        /**
         * @notice Toggle Pause
         * @dev Should only be called in extraordinary situations by the admin of the contract
         */
        function pause() external;
        /**
         * @notice Toggle UnPause
         * @dev Should only be called in extraordinary situations by the admin of the contract
         */
        function unPause() external;
        /**
         * @notice Deposits amount of assets in the PT vault
         * @param assets The amount of assets being deposited
         * @param receiver The receiver address of the shares
         * @return shares The amount of shares minted (same amount for PT & yt)
         */
        function deposit(uint256 assets, address receiver) external returns (uint256 shares);
        /**
         * @notice Deposits amount of assets in the PT vault
         * @param assets The amount of assets being deposited
         * @param ptReceiver The receiver address of the PTs
         * @param ytReceiver the receiver address of the YTs
         * @return shares The amount of shares minted (same amount for PT & yt)
         */
        function deposit(
            uint256 assets,
            address ptReceiver,
            address ytReceiver
        ) external returns (uint256 shares);
        /**
         * @notice Deposits amount of assets with a lower bound on shares received
         * @param assets The amount of assets being deposited
         * @param ptReceiver The receiver address of the PTs
         * @param ytReceiver The receiver address of the YTs
         * @param minShares The minimum allowed shares from this deposit
         * @return shares The amount of shares actually minted to the receiver
         */
        function deposit(
            uint256 assets,
            address ptReceiver,
            address ytReceiver,
            uint256 minShares
        ) external returns (uint256 shares);
        /**
         * @notice Same as normal deposit but with IBTs
         * @param ibts The amount of IBT being deposited
         * @param receiver The receiver address of the shares
         * @return shares The amount of shares minted to the receiver
         */
        function depositIBT(uint256 ibts, address receiver) external returns (uint256 shares);
        /**
         * @notice Same as normal deposit but with IBTs
         * @param ibts The amount of IBT being deposited
         * @param ptReceiver The receiver address of the PTs
         * @param ytReceiver the receiver address of the YTs
         * @return shares The amount of shares minted to the receiver
         */
        function depositIBT(
            uint256 ibts,
            address ptReceiver,
            address ytReceiver
        ) external returns (uint256 shares);
        /**
         * @notice Same as normal deposit but with IBTs
         * @param ibts The amount of IBT being deposited
         * @param ptReceiver The receiver address of the PTs
         * @param ytReceiver The receiver address of the YTs
         * @param minShares The minimum allowed shares from this deposit
         * @return shares The amount of shares minted to the receiver
         */
        function depositIBT(
            uint256 ibts,
            address ptReceiver,
            address ytReceiver,
            uint256 minShares
        ) external returns (uint256 shares);
        /**
         * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
         * and sends assets to receiver
         * @param shares The amount of shares to burn
         * @param receiver The address that will receive the assets
         * @param owner The owner of the shares
         * @return assets The actual amount of assets received for burning the shares
         */
        function redeem(
            uint256 shares,
            address receiver,
            address owner
        ) external returns (uint256 assets);
        /**
         * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
         * and sends assets to receiver
         * @param shares The amount of shares to burn
         * @param receiver The address that will receive the assets
         * @param owner The owner of the shares
         * @param minAssets The minimum assets that should be returned to user
         * @return assets The actual amount of assets received for burning the shares
         */
        function redeem(
            uint256 shares,
            address receiver,
            address owner,
            uint256 minAssets
        ) external returns (uint256 assets);
        /**
         * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
         * and sends IBTs to receiver
         * @param shares The amount of shares to burn
         * @param receiver The address that will receive the IBTs
         * @param owner The owner of the shares
         * @return ibts The actual amount of IBT received for burning the shares
         */
        function redeemForIBT(
            uint256 shares,
            address receiver,
            address owner
        ) external returns (uint256 ibts);
        /**
         * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
         * and sends IBTs to receiver
         * @param shares The amount of shares to burn
         * @param receiver The address that will receive the IBTs
         * @param owner The owner of the shares
         * @param minIbts The minimum IBTs that should be returned to user
         * @return ibts The actual amount of IBT received for burning the shares
         */
        function redeemForIBT(
            uint256 shares,
            address receiver,
            address owner,
            uint256 minIbts
        ) external returns (uint256 ibts);
        /**
         * @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver
         * @param assets The amount of assets to be received
         * @param receiver The address that will receive the assets
         * @param owner The owner of the shares (PTs and YTs)
         * @return shares The actual amount of shares burnt for receiving the assets
         */
        function withdraw(
            uint256 assets,
            address receiver,
            address owner
        ) external returns (uint256 shares);
        /**
         * @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver
         * @param assets The amount of assets to be received
         * @param receiver The address that will receive the assets
         * @param owner The owner of the shares (PTs and YTs)
         * @param maxShares The maximum shares allowed to be burnt
         * @return shares The actual amount of shares burnt for receiving the assets
         */
        function withdraw(
            uint256 assets,
            address receiver,
            address owner,
            uint256 maxShares
        ) external returns (uint256 shares);
        /**
         * @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver
         * @param ibts The amount of IBT to be received
         * @param receiver The address that will receive the IBTs
         * @param owner The owner of the shares (PTs and YTs)
         * @return shares The actual amount of shares burnt for receiving the IBTs
         */
        function withdrawIBT(
            uint256 ibts,
            address receiver,
            address owner
        ) external returns (uint256 shares);
        /**
         * @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver
         * @param ibts The amount of IBT to be received
         * @param receiver The address that will receive the IBTs
         * @param owner The owner of the shares (PTs and YTs)
         * @param maxShares The maximum shares allowed to be burnt
         * @return shares The actual amount of shares burnt for receiving the IBTs
         */
        function withdrawIBT(
            uint256 ibts,
            address receiver,
            address owner,
            uint256 maxShares
        ) external returns (uint256 shares);
        /**
         * @notice Updates _user's yield since last update
         * @param _user The user whose yield will be updated
         * @return updatedUserYieldInIBT The unclaimed yield of the user in IBT (not just the updated yield)
         */
        function updateYield(address _user) external returns (uint256 updatedUserYieldInIBT);
        /**
         * @notice Claims caller's unclaimed yield in asset
         * @param _receiver The receiver of yield
         * @param _minAssets The minimum amount of assets that should be received
         * @return yieldInAsset The amount of yield claimed in asset
         */
        function claimYield(
            address _receiver,
            uint256 _minAssets
        ) external returns (uint256 yieldInAsset);
        /**
         * @notice Claims caller's unclaimed yield in IBT
         * @param _receiver The receiver of yield
         * @param _minIBT The minimum amount of IBT that should be received
         * @return yieldInIBT The amount of yield claimed in IBT
         */
        function claimYieldInIBT(
            address _receiver,
            uint256 _minIBT
        ) external returns (uint256 yieldInIBT);
        /**
         * @notice Claims the collected ibt fees and redeems them to the fee collector
         * @param _minAssets The minimum amount of assets that should be received
         * @return assets The amount of assets sent to the fee collector
         */
        function claimFees(uint256 _minAssets) external returns (uint256 assets);
        /**
         * @notice Updates yield of both sender and receiver of YTs
         * @param _from the sender of YTs
         * @param _to the receiver of YTs
         */
        function beforeYtTransfer(address _from, address _to) external;
        /**
         * Call the claimRewards function of the rewards contract
         * @param data The optional data to be passed to the rewards contract
         */
        function claimRewards(bytes memory data) external;
        /* SETTERS
         *****************************************************************************************************************/
        /**
         * @notice Stores PT and IBT rates at expiry. Ideally, it should be called the day of expiry
         */
        function storeRatesAtExpiry() external;
        /** Set a new Rewards Proxy
         * @param _rewardsProxy The address of the new reward proxy
         */
        function setRewardsProxy(address _rewardsProxy) external;
        /* GETTERS
         *****************************************************************************************************************/
        /**
         * @notice Returns the amount of shares minted for the theorical deposited amount of assets
         * @param assets The amount of assets deposited
         * @return The amount of shares minted
         */
        function previewDeposit(uint256 assets) external view returns (uint256);
        /**
         * @notice Returns the amount of shares minted for the theorical deposited amount of IBT
         * @param ibts The amount of IBT deposited
         * @return The amount of shares minted
         */
        function previewDepositIBT(uint256 ibts) external view returns (uint256);
        /**
         * @notice Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
         * through a deposit call.
         * @param receiver The receiver of the shares
         * @return The maximum amount of assets that can be deposited
         */
        function maxDeposit(address receiver) external view returns (uint256);
        /**
         * @notice Returns the theorical amount of shares that need to be burnt to receive assets of underlying
         * @param assets The amount of assets to receive
         * @return The amount of shares burnt
         */
        function previewWithdraw(uint256 assets) external view returns (uint256);
        /**
         * @notice Returns the theorical amount of shares that need to be burnt to receive amount of IBT
         * @param ibts The amount of IBT to receive
         * @return The amount of shares burnt
         */
        function previewWithdrawIBT(uint256 ibts) external view returns (uint256);
        /**
         * @notice Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
         * Vault, through a withdraw call.
         * @param owner The owner of the Vault shares
         * @return The maximum amount of assets that can be withdrawn
         */
        function maxWithdraw(address owner) external view returns (uint256);
        /**
         * @notice Returns the maximum amount of the IBT that can be withdrawn from the owner balance in the
         * Vault, through a withdraw call.
         * @param owner The owner of the Vault shares
         * @return The maximum amount of IBT that can be withdrawn
         */
        function maxWithdrawIBT(address owner) external view returns (uint256);
        /**
         * @notice Returns the amount of assets received for the theorical amount of burnt shares
         * @param shares The amount of shares to burn
         * @return The amount of assets received
         */
        function previewRedeem(uint256 shares) external view returns (uint256);
        /**
         * @notice Returns the amount of IBT received for the theorical amount of burnt shares
         * @param shares The amount of shares to burn
         * @return The amount of IBT received
         */
        function previewRedeemForIBT(uint256 shares) external view returns (uint256);
        /**
         * @notice Returns the maximum amount of Vault shares that can be redeemed by the owner
         * @notice This function behaves differently before and after expiry. Before expiry an equal amount of PT and YT
         * needs to be burnt, while after expiry only PTs are burnt.
         * @param owner The owner of the shares
         * @return The maximum amount of shares that can be redeemed
         */
        function maxRedeem(address owner) external view returns (uint256);
        /**
         * Returns the total amount of the underlying asset that is owned by the Vault in the form of IBT.
         */
        function totalAssets() external view returns (uint256);
        /**
         * @notice Converts an underlying amount in principal. Equivalent to ERC-4626's convertToShares method.
         * @param underlyingAmount The amount of underlying (or assets) to convert
         * @return The resulting amount of principal (or shares)
         */
        function convertToPrincipal(uint256 underlyingAmount) external view returns (uint256);
        /**
         * @notice Converts a principal amount in underlying. Equivalent to ERC-4626's convertToAssets method.
         * @param principalAmount The amount of principal (or shares) to convert
         * @return The resulting amount of underlying (or assets)
         */
        function convertToUnderlying(uint256 principalAmount) external view returns (uint256);
        /**
         * @notice Returns whether or not the contract is paused.
         * @return true if the contract is paused, and false otherwise
         */
        function paused() external view returns (bool);
        /**
         * @notice Returns the unix timestamp (uint256) at which the PT contract expires
         * @return The unix timestamp (uint256) when PTs become redeemable
         */
        function maturity() external view returns (uint256);
        /**
         * @notice Returns the duration of the PT contract
         * @return The duration (in s) to expiry/maturity of the PT contract
         */
        function getDuration() external view returns (uint256);
        /**
         * @notice Returns the address of the underlying token (or asset). Equivalent to ERC-4626's asset method.
         * @return The address of the underlying token (or asset)
         */
        function underlying() external view returns (address);
        /**
         * @notice Returns the IBT address of the PT contract
         * @return ibt The address of the IBT
         */
        function getIBT() external view returns (address ibt);
        /**
         * @notice Returns the yt address of the PT contract
         * @return yt The address of the yt
         */
        function getYT() external view returns (address yt);
        /**
         * @notice Returns the current ibtRate
         * @return The current ibtRate
         */
        function getIBTRate() external view returns (uint256);
        /**
         * @notice Returns the current ptRate
         * @return The current ptRate
         */
        function getPTRate() external view returns (uint256);
        /**
         * @notice Returns 1 unit of IBT
         * @return The IBT unit
         */
        function getIBTUnit() external view returns (uint256);
        /**
         * @notice Get the unclaimed fees in IBT
         * @return The unclaimed fees in IBT
         */
        function getUnclaimedFeesInIBT() external view returns (uint256);
        /**
         * @notice Get the total collected fees in IBT (claimed and unclaimed)
         * @return The total fees in IBT
         */
        function getTotalFeesInIBT() external view returns (uint256);
        /**
         * @notice Get the tokenization fee of the PT
         * @return The tokenization fee
         */
        function getTokenizationFee() external view returns (uint256);
        /**
         * @notice Get the current IBT yield of the user
         * @param _user The address of the user to get the current yield from
         * @return The yield of the user in IBT
         */
        function getCurrentYieldOfUserInIBT(address _user) external view returns (uint256);
    }
    // SPDX-License-Identifier: BUSL-1.1
    import "openzeppelin-contracts/interfaces/IERC20.sol";
    pragma solidity ^0.8.20;
    interface IYieldToken is IERC20 {
        error EnforcedPause();
        error UnauthorizedCaller();
        /**
         * @notice Initializer of the contract.
         * @param name_ The name of the yt token.
         * @param symbol_ The symbol of the yt token.
         * @param pt The address of the PT associated with this yt token.
         */
        function initialize(string calldata name_, string calldata symbol_, address pt) external;
        /**
         * @notice returns the decimals of the yt tokens.
         */
        function decimals() external view returns (uint8);
        /**
         * @dev Returns the address of PT associated with this yt.
         */
        function getPT() external view returns (address);
        /**
         * @dev Updates yield of sender and receiver in associated PT contract and
         * then calls transfer of ERC20Upgradeable.
         * See {ERC20Upgradeable-transfer}.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Updates yield of sender and receiver in associated PT contract and
         * then calls transferFrom of ERC20Upgradeable.
         * See {ERC20Upgradeable-transferFrom}.
         */
        function transferFrom(address from, address to, uint256 amount) external returns (bool);
        /**
         * @notice Burn amount of tokens using ERC20Upgradeable-_burn, in the context of PT's redeem or withdraw.
         * @dev call only be called by associated PT.
         * @dev does not update owner's yield, as opposed to burn().
         * See {ERC20Upgradeable-_burn}.
         * @param owner address from which tokens will be burnt
         * @param caller address who made the PT's redeem/withdraw call
         * @param amount to burn
         */
        function burnWithoutYieldUpdate(address owner, address caller, uint256 amount) external;
        /**
         * @notice Checks for msg.sender to be pt and then calls _mint of ERC20Upgradeable.
         * See {ERC20Upgradeable- _mint}.
         * @param to address to mint YT's to
         * @param amount to mint
         */
        function mint(address to, uint256 amount) external;
        /**
         * @notice Updates the yield of the caller and then calls _burn of ERC20Upgradeable.
         * See {ERC20Upgradeable-_burn}.
         * @param amount of YT's to burn
         */
        function burn(uint256 amount) external;
        /**
         * @dev Returns the amount of tokens in existence before expiry, and 0 after expiry
         * @notice This behaviour is for UI/UX purposes only
         * @return the value of YTs in existence, and 0 after expiry
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account` before expiry, and 0 after expiry
         * @notice This behaviour is for UI/UX purposes only
         * @param account The address of the user to get the actual balance of YT from
         * @return The users balance of YTs before expiry, and 0 after expiry
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Returns the actual amount of tokens owned by `account` at any point in time
         * @param account The address of the user to get the actual balance of YT from
         * @return The actual users balance of YTs (before and after expiry)
         */
        function actualBalanceOf(address account) external view returns (uint256);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity ^0.8.20;
    interface IRewardsProxy {
        function claimRewards(bytes memory data) external;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the value of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the value of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 value) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 value) external returns (bool);
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the
         * allowance mechanism. `value` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 value) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     *
     * ==== Security Considerations
     *
     * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
     * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
     * considered as an intention to spend the allowance in any specific way. The second is that because permits have
     * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
     * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
     * generally recommended is:
     *
     * ```solidity
     * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
     *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
     *     doThing(..., value);
     * }
     *
     * function doThing(..., uint256 value) public {
     *     token.safeTransferFrom(msg.sender, address(this), value);
     *     ...
     * }
     * ```
     *
     * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
     * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
     * {SafeERC20-safeTransferFrom}).
     *
     * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
     * contracts should have entry points that don't rely on permit.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         *
         * CAUTION: See Security Considerations above.
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev The ETH balance of the account is not enough to perform the operation.
         */
        error AddressInsufficientBalance(address account);
        /**
         * @dev There's no code at `target` (it is not a contract).
         */
        error AddressEmptyCode(address target);
        /**
         * @dev A call to an address target failed. The target may have reverted.
         */
        error FailedInnerCall();
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            if (address(this).balance < amount) {
                revert AddressInsufficientBalance(address(this));
            }
            (bool success, ) = recipient.call{value: amount}("");
            if (!success) {
                revert FailedInnerCall();
            }
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason or custom error, it is bubbled
         * up by this function (like regular Solidity function calls). However, if
         * the call reverted with no returned reason, this function reverts with a
         * {FailedInnerCall} error.
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            if (address(this).balance < value) {
                revert AddressInsufficientBalance(address(this));
            }
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
         * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
         * unsuccessful call.
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata
        ) internal view returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                // only check if target is a contract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                if (returndata.length == 0 && target.code.length == 0) {
                    revert AddressEmptyCode(target);
                }
                return returndata;
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
         * revert reason or with a default {FailedInnerCall} error.
         */
        function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                return returndata;
            }
        }
        /**
         * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
         */
        function _revert(bytes memory returndata) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert FailedInnerCall();
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAuthority.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Standard interface for permissioning originally defined in Dappsys.
     */
    interface IAuthority {
        /**
         * @dev Returns true if the caller can invoke on a target the function identified by a function selector.
         */
        function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AuthorityUtils.sol)
    pragma solidity ^0.8.20;
    import {IAuthority} from "./IAuthority.sol";
    library AuthorityUtils {
        /**
         * @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility
         * for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data.
         * This helper function takes care of invoking `canCall` in a backwards compatible way without reverting.
         */
        function canCallWithDelay(
            address authority,
            address caller,
            address target,
            bytes4 selector
        ) internal view returns (bool immediate, uint32 delay) {
            (bool success, bytes memory data) = authority.staticcall(
                abi.encodeCall(IAuthority.canCall, (caller, target, selector))
            );
            if (success) {
                if (data.length >= 0x40) {
                    (immediate, delay) = abi.decode(data, (bool, uint32));
                } else if (data.length >= 0x20) {
                    immediate = abi.decode(data, (bool));
                }
            }
            return (immediate, delay);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManager.sol)
    pragma solidity ^0.8.20;
    import {IAccessManaged} from "./IAccessManaged.sol";
    import {Time} from "../../utils/types/Time.sol";
    interface IAccessManager {
        /**
         * @dev A delayed operation was scheduled.
         */
        event OperationScheduled(
            bytes32 indexed operationId,
            uint32 indexed nonce,
            uint48 schedule,
            address caller,
            address target,
            bytes data
        );
        /**
         * @dev A scheduled operation was executed.
         */
        event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce);
        /**
         * @dev A scheduled operation was canceled.
         */
        event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);
        /**
         * @dev Informational labelling for a roleId.
         */
        event RoleLabel(uint64 indexed roleId, string label);
        /**
         * @dev Emitted when `account` is granted `roleId`.
         *
         * NOTE: The meaning of the `since` argument depends on the `newMember` argument.
         * If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role,
         * otherwise it indicates the execution delay for this account and roleId is updated.
         */
        event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);
        /**
         * @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
         */
        event RoleRevoked(uint64 indexed roleId, address indexed account);
        /**
         * @dev Role acting as admin over a given `roleId` is updated.
         */
        event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);
        /**
         * @dev Role acting as guardian over a given `roleId` is updated.
         */
        event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);
        /**
         * @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
         */
        event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);
        /**
         * @dev Target mode is updated (true = closed, false = open).
         */
        event TargetClosed(address indexed target, bool closed);
        /**
         * @dev Role required to invoke `selector` on `target` is updated to `roleId`.
         */
        event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);
        /**
         * @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
         */
        event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);
        error AccessManagerAlreadyScheduled(bytes32 operationId);
        error AccessManagerNotScheduled(bytes32 operationId);
        error AccessManagerNotReady(bytes32 operationId);
        error AccessManagerExpired(bytes32 operationId);
        error AccessManagerLockedAccount(address account);
        error AccessManagerLockedRole(uint64 roleId);
        error AccessManagerBadConfirmation();
        error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId);
        error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector);
        error AccessManagerUnauthorizedConsume(address target);
        error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
        error AccessManagerInvalidInitialAdmin(address initialAdmin);
        /**
         * @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
         * no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
         * & {execute} workflow.
         *
         * This function is usually called by the targeted contract to control immediate execution of restricted functions.
         * Therefore we only return true if the call can be performed without any delay. If the call is subject to a
         * previously set delay (not zero), then the function should return false and the caller should schedule the operation
         * for future execution.
         *
         * If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
         * the operation can be executed if and only if delay is greater than 0.
         *
         * NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
         * is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
         * to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
         *
         * NOTE: This function does not report the permissions of this manager itself. These are defined by the
         * {_canCallSelf} function instead.
         */
        function canCall(
            address caller,
            address target,
            bytes4 selector
        ) external view returns (bool allowed, uint32 delay);
        /**
         * @dev Expiration delay for scheduled proposals. Defaults to 1 week.
         *
         * IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
         * disabling any scheduling usage.
         */
        function expiration() external view returns (uint32);
        /**
         * @dev Minimum setback for all delay updates, with the exception of execution delays. It
         * can be increased without setback (and reset via {revokeRole} in the case event of an
         * accidental increase). Defaults to 5 days.
         */
        function minSetback() external view returns (uint32);
        /**
         * @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
         */
        function isTargetClosed(address target) external view returns (bool);
        /**
         * @dev Get the role required to call a function.
         */
        function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);
        /**
         * @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
         */
        function getTargetAdminDelay(address target) external view returns (uint32);
        /**
         * @dev Get the id of the role that acts as an admin for the given role.
         *
         * The admin permission is required to grant the role, revoke the role and update the execution delay to execute
         * an operation that is restricted to this role.
         */
        function getRoleAdmin(uint64 roleId) external view returns (uint64);
        /**
         * @dev Get the role that acts as a guardian for a given role.
         *
         * The guardian permission allows canceling operations that have been scheduled under the role.
         */
        function getRoleGuardian(uint64 roleId) external view returns (uint64);
        /**
         * @dev Get the role current grant delay.
         *
         * Its value may change at any point without an event emitted following a call to {setGrantDelay}.
         * Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
         */
        function getRoleGrantDelay(uint64 roleId) external view returns (uint32);
        /**
         * @dev Get the access details for a given account for a given role. These details include the timepoint at which
         * membership becomes active, and the delay applied to all operation by this user that requires this permission
         * level.
         *
         * Returns:
         * [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
         * [1] Current execution delay for the account.
         * [2] Pending execution delay for the account.
         * [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
         */
        function getAccess(uint64 roleId, address account) external view returns (uint48, uint32, uint32, uint48);
        /**
         * @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
         * permission might be associated with an execution delay. {getAccess} can provide more details.
         */
        function hasRole(uint64 roleId, address account) external view returns (bool, uint32);
        /**
         * @dev Give a label to a role, for improved role discoverability by UIs.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {RoleLabel} event.
         */
        function labelRole(uint64 roleId, string calldata label) external;
        /**
         * @dev Add `account` to `roleId`, or change its execution delay.
         *
         * This gives the account the authorization to call any function that is restricted to this role. An optional
         * execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
         * that is restricted to members of this role. The user will only be able to execute the operation after the delay has
         * passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
         *
         * If the account has already been granted this role, the execution delay will be updated. This update is not
         * immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
         * called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
         * operation executed in the 3 hours that follows this update was indeed scheduled before this update.
         *
         * Requirements:
         *
         * - the caller must be an admin for the role (see {getRoleAdmin})
         * - granted role must not be the `PUBLIC_ROLE`
         *
         * Emits a {RoleGranted} event.
         */
        function grantRole(uint64 roleId, address account, uint32 executionDelay) external;
        /**
         * @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
         * no effect.
         *
         * Requirements:
         *
         * - the caller must be an admin for the role (see {getRoleAdmin})
         * - revoked role must not be the `PUBLIC_ROLE`
         *
         * Emits a {RoleRevoked} event if the account had the role.
         */
        function revokeRole(uint64 roleId, address account) external;
        /**
         * @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
         * the role this call has no effect.
         *
         * Requirements:
         *
         * - the caller must be `callerConfirmation`.
         *
         * Emits a {RoleRevoked} event if the account had the role.
         */
        function renounceRole(uint64 roleId, address callerConfirmation) external;
        /**
         * @dev Change admin role for a given role.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {RoleAdminChanged} event
         */
        function setRoleAdmin(uint64 roleId, uint64 admin) external;
        /**
         * @dev Change guardian role for a given role.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {RoleGuardianChanged} event
         */
        function setRoleGuardian(uint64 roleId, uint64 guardian) external;
        /**
         * @dev Update the delay for granting a `roleId`.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {RoleGrantDelayChanged} event.
         */
        function setGrantDelay(uint64 roleId, uint32 newDelay) external;
        /**
         * @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {TargetFunctionRoleUpdated} event per selector.
         */
        function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;
        /**
         * @dev Set the delay for changing the configuration of a given target contract.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {TargetAdminDelayUpdated} event.
         */
        function setTargetAdminDelay(address target, uint32 newDelay) external;
        /**
         * @dev Set the closed flag for a contract.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         *
         * Emits a {TargetClosed} event.
         */
        function setTargetClosed(address target, bool closed) external;
        /**
         * @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
         * operation is not yet scheduled, has expired, was executed, or was canceled.
         */
        function getSchedule(bytes32 id) external view returns (uint48);
        /**
         * @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
         * been scheduled.
         */
        function getNonce(bytes32 id) external view returns (uint32);
        /**
         * @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
         * choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
         * required for the caller. The special value zero will automatically set the earliest possible time.
         *
         * Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
         * the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
         * scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
         *
         * Emits a {OperationScheduled} event.
         *
         * NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
         * this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
         * contract if it is using standard Solidity ABI encoding.
         */
        function schedule(address target, bytes calldata data, uint48 when) external returns (bytes32, uint32);
        /**
         * @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
         * execution delay is 0.
         *
         * Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
         * operation wasn't previously scheduled (if the caller doesn't have an execution delay).
         *
         * Emits an {OperationExecuted} event only if the call was scheduled and delayed.
         */
        function execute(address target, bytes calldata data) external payable returns (uint32);
        /**
         * @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
         * operation that is cancelled.
         *
         * Requirements:
         *
         * - the caller must be the proposer, a guardian of the targeted function, or a global admin
         *
         * Emits a {OperationCanceled} event.
         */
        function cancel(address caller, address target, bytes calldata data) external returns (uint32);
        /**
         * @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
         * (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
         *
         * This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
         * with all the verifications that it implies.
         *
         * Emit a {OperationExecuted} event.
         */
        function consumeScheduledOp(address caller, bytes calldata data) external;
        /**
         * @dev Hashing function for delayed operations.
         */
        function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);
        /**
         * @dev Changes the authority of a target managed by this manager instance.
         *
         * Requirements:
         *
         * - the caller must be a global admin
         */
        function updateAuthority(address target, address newAuthority) external;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol)
    pragma solidity ^0.8.20;
    interface IAccessManaged {
        /**
         * @dev Authority that manages this contract was updated.
         */
        event AuthorityUpdated(address authority);
        error AccessManagedUnauthorized(address caller);
        error AccessManagedRequiredDelay(address caller, uint32 delay);
        error AccessManagedInvalidAuthority(address authority);
        /**
         * @dev Returns the current authority.
         */
        function authority() external view returns (address);
        /**
         * @dev Transfers control to a new authority. The caller must be the current authority.
         */
        function setAuthority(address) external;
        /**
         * @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
         * being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
         * attacker controlled calls.
         */
        function isConsumingScheduledOp() external view returns (bytes4);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)
    pragma solidity ^0.8.20;
    import {Initializable} from "../proxy/utils/Initializable.sol";
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract ContextUpgradeable is Initializable {
        function __Context_init() internal onlyInitializing {
        }
        function __Context_init_unchained() internal onlyInitializing {
        }
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```solidity
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     *
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Storage of the initializable contract.
         *
         * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
         * when using with upgradeable contracts.
         *
         * @custom:storage-location erc7201:openzeppelin.storage.Initializable
         */
        struct InitializableStorage {
            /**
             * @dev Indicates that the contract has been initialized.
             */
            uint64 _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool _initializing;
        }
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
        /**
         * @dev The contract is already initialized.
         */
        error InvalidInitialization();
        /**
         * @dev The contract is not initializing.
         */
        error NotInitializing();
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint64 version);
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts.
         *
         * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
         * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
         * production.
         *
         * Emits an {Initialized} event.
         */
        modifier initializer() {
            // solhint-disable-next-line var-name-mixedcase
            InitializableStorage storage $ = _getInitializableStorage();
            // Cache values to avoid duplicated sloads
            bool isTopLevelCall = !$._initializing;
            uint64 initialized = $._initialized;
            // Allowed calls:
            // - initialSetup: the contract is not in the initializing state and no previous version was
            //                 initialized
            // - construction: the contract is initialized at version 1 (no reininitialization) and the
            //                 current contract is just being deployed
            bool initialSetup = initialized == 0 && isTopLevelCall;
            bool construction = initialized == 1 && address(this).code.length == 0;
            if (!initialSetup && !construction) {
                revert InvalidInitialization();
            }
            $._initialized = 1;
            if (isTopLevelCall) {
                $._initializing = true;
            }
            _;
            if (isTopLevelCall) {
                $._initializing = false;
                emit Initialized(1);
            }
        }
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * A reinitializer may be used after the original initialization step. This is essential to configure modules that
         * are added through upgrades and that require initialization.
         *
         * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
         * cannot be nested. If one is invoked in the context of another, execution will revert.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         *
         * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
         *
         * Emits an {Initialized} event.
         */
        modifier reinitializer(uint64 version) {
            // solhint-disable-next-line var-name-mixedcase
            InitializableStorage storage $ = _getInitializableStorage();
            if ($._initializing || $._initialized >= version) {
                revert InvalidInitialization();
            }
            $._initialized = version;
            $._initializing = true;
            _;
            $._initializing = false;
            emit Initialized(version);
        }
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            _checkInitializing();
            _;
        }
        /**
         * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
         */
        function _checkInitializing() internal view virtual {
            if (!_isInitializing()) {
                revert NotInitializing();
            }
        }
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         *
         * Emits an {Initialized} event the first time it is successfully executed.
         */
        function _disableInitializers() internal virtual {
            // solhint-disable-next-line var-name-mixedcase
            InitializableStorage storage $ = _getInitializableStorage();
            if ($._initializing) {
                revert InvalidInitialization();
            }
            if ($._initialized != type(uint64).max) {
                $._initialized = type(uint64).max;
                emit Initialized(type(uint64).max);
            }
        }
        /**
         * @dev Returns the highest version that has been initialized. See {reinitializer}.
         */
        function _getInitializedVersion() internal view returns (uint64) {
            return _getInitializableStorage()._initialized;
        }
        /**
         * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
         */
        function _isInitializing() internal view returns (bool) {
            return _getInitializableStorage()._initializing;
        }
        /**
         * @dev Returns a pointer to the storage namespace.
         */
        // solhint-disable-next-line var-name-mixedcase
        function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
            assembly {
                $.slot := INITIALIZABLE_STORAGE
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.20;
    import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
    import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
    import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
    import {Initializable} from "../../proxy/utils/Initializable.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * The default value of {decimals} is 18. To change this, you should override
     * this function so it returns a different value.
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     */
    abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors {
        /// @custom:storage-location erc7201:openzeppelin.storage.ERC20
        struct ERC20Storage {
            mapping(address account => uint256) _balances;
            mapping(address account => mapping(address spender => uint256)) _allowances;
            uint256 _totalSupply;
            string _name;
            string _symbol;
        }
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;
        function _getERC20Storage() private pure returns (ERC20Storage storage $) {
            assembly {
                $.slot := ERC20StorageLocation
            }
        }
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
            __ERC20_init_unchained(name_, symbol_);
        }
        function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
            ERC20Storage storage $ = _getERC20Storage();
            $._name = name_;
            $._symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual returns (string memory) {
            ERC20Storage storage $ = _getERC20Storage();
            return $._name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual returns (string memory) {
            ERC20Storage storage $ = _getERC20Storage();
            return $._symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the default value returned by this function, unless
         * it's overridden.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual returns (uint256) {
            ERC20Storage storage $ = _getERC20Storage();
            return $._totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual returns (uint256) {
            ERC20Storage storage $ = _getERC20Storage();
            return $._balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `value`.
         */
        function transfer(address to, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, value);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual returns (uint256) {
            ERC20Storage storage $ = _getERC20Storage();
            return $._allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, value);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `value`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `value`.
         */
        function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, value);
            _transfer(from, to, value);
            return true;
        }
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _transfer(address from, address to, uint256 value) internal {
            if (from == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            if (to == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(from, to, value);
        }
        /**
         * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
         * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
         * this function.
         *
         * Emits a {Transfer} event.
         */
        function _update(address from, address to, uint256 value) internal virtual {
            ERC20Storage storage $ = _getERC20Storage();
            if (from == address(0)) {
                // Overflow check required: The rest of the code assumes that totalSupply never overflows
                $._totalSupply += value;
            } else {
                uint256 fromBalance = $._balances[from];
                if (fromBalance < value) {
                    revert ERC20InsufficientBalance(from, fromBalance, value);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance <= totalSupply.
                    $._balances[from] = fromBalance - value;
                }
            }
            if (to == address(0)) {
                unchecked {
                    // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                    $._totalSupply -= value;
                }
            } else {
                unchecked {
                    // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                    $._balances[to] += value;
                }
            }
            emit Transfer(from, to, value);
        }
        /**
         * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
         * Relies on the `_update` mechanism
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _mint(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(address(0), account, value);
        }
        /**
         * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
         * Relies on the `_update` mechanism.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead
         */
        function _burn(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            _update(account, address(0), value);
        }
        /**
         * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         *
         * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
         */
        function _approve(address owner, address spender, uint256 value) internal {
            _approve(owner, spender, value, true);
        }
        /**
         * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
         *
         * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
         * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
         * `Approval` event during `transferFrom` operations.
         *
         * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
         * true using the following override:
         * ```
         * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
         *     super._approve(owner, spender, value, true);
         * }
         * ```
         *
         * Requirements are the same as {_approve}.
         */
        function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
            ERC20Storage storage $ = _getERC20Storage();
            if (owner == address(0)) {
                revert ERC20InvalidApprover(address(0));
            }
            if (spender == address(0)) {
                revert ERC20InvalidSpender(address(0));
            }
            $._allowances[owner][spender] = value;
            if (emitEvent) {
                emit Approval(owner, spender, value);
            }
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `value`.
         *
         * Does not update the allowance value in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Does not emit an {Approval} event.
         */
        function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                if (currentAllowance < value) {
                    revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                }
                unchecked {
                    _approve(owner, spender, currentAllowance - value, false);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
     *
     * These functions can be used to verify that a message was signed by the holder
     * of the private keys of a given address.
     */
    library ECDSA {
        enum RecoverError {
            NoError,
            InvalidSignature,
            InvalidSignatureLength,
            InvalidSignatureS
        }
        /**
         * @dev The signature derives the `address(0)`.
         */
        error ECDSAInvalidSignature();
        /**
         * @dev The signature has an invalid length.
         */
        error ECDSAInvalidSignatureLength(uint256 length);
        /**
         * @dev The signature has an S value that is in the upper half order.
         */
        error ECDSAInvalidSignatureS(bytes32 s);
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
         * return address(0) without also returning an error description. Errors are documented using an enum (error type)
         * and a bytes32 providing additional information about the error.
         *
         * If no error is returned, then the address can be used for verification purposes.
         *
         * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
         *
         * Documentation for signature generation:
         * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
         * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
         */
        function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
            if (signature.length == 65) {
                bytes32 r;
                bytes32 s;
                uint8 v;
                // ecrecover takes the signature parameters, and the only way to get them
                // currently is to use assembly.
                /// @solidity memory-safe-assembly
                assembly {
                    r := mload(add(signature, 0x20))
                    s := mload(add(signature, 0x40))
                    v := byte(0, mload(add(signature, 0x60)))
                }
                return tryRecover(hash, v, r, s);
            } else {
                return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature`. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
         */
        function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
            (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
            _throwError(error, errorArg);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
         *
         * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
         */
        function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
            unchecked {
                bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                // We do not check for an overflow here since the shift operation results in 0 or 1.
                uint8 v = uint8((uint256(vs) >> 255) + 27);
                return tryRecover(hash, v, r, s);
            }
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
         */
        function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
            (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
            _throwError(error, errorArg);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
         * `r` and `s` signature fields separately.
         */
        function tryRecover(
            bytes32 hash,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal pure returns (address, RecoverError, bytes32) {
            // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
            // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
            // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
            // signatures from current libraries generate a unique signature with an s-value in the lower half order.
            //
            // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
            // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
            // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
            // these malleable signatures as well.
            if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                return (address(0), RecoverError.InvalidSignatureS, s);
            }
            // If the signature is valid (and not malleable), return the signer address
            address signer = ecrecover(hash, v, r, s);
            if (signer == address(0)) {
                return (address(0), RecoverError.InvalidSignature, bytes32(0));
            }
            return (signer, RecoverError.NoError, bytes32(0));
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `v`,
         * `r` and `s` signature fields separately.
         */
        function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
            (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
            _throwError(error, errorArg);
            return recovered;
        }
        /**
         * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
         */
        function _throwError(RecoverError error, bytes32 errorArg) private pure {
            if (error == RecoverError.NoError) {
                return; // no error: do nothing
            } else if (error == RecoverError.InvalidSignature) {
                revert ECDSAInvalidSignature();
            } else if (error == RecoverError.InvalidSignatureLength) {
                revert ECDSAInvalidSignatureLength(uint256(errorArg));
            } else if (error == RecoverError.InvalidSignatureS) {
                revert ECDSAInvalidSignatureS(errorArg);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
    pragma solidity ^0.8.20;
    import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
    import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol";
    import {Initializable} from "../../proxy/utils/Initializable.sol";
    /**
     * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
     *
     * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
     * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
     * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
     * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
     *
     * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
     * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
     * ({_hashTypedDataV4}).
     *
     * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
     * the chain id to protect against replay attacks on an eventual fork of the chain.
     *
     * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
     * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
     *
     * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
     * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
     * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
     */
    abstract contract EIP712Upgradeable is Initializable, IERC5267 {
        bytes32 private constant TYPE_HASH =
            keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
        /// @custom:storage-location erc7201:openzeppelin.storage.EIP712
        struct EIP712Storage {
            /// @custom:oz-renamed-from _HASHED_NAME
            bytes32 _hashedName;
            /// @custom:oz-renamed-from _HASHED_VERSION
            bytes32 _hashedVersion;
            string _name;
            string _version;
        }
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100;
        function _getEIP712Storage() private pure returns (EIP712Storage storage $) {
            assembly {
                $.slot := EIP712StorageLocation
            }
        }
        /**
         * @dev Initializes the domain separator and parameter caches.
         *
         * The meaning of `name` and `version` is specified in
         * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
         *
         * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
         * - `version`: the current major version of the signing domain.
         *
         * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
         * contract upgrade].
         */
        function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
            __EIP712_init_unchained(name, version);
        }
        function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
            EIP712Storage storage $ = _getEIP712Storage();
            $._name = name;
            $._version = version;
            // Reset prior values in storage if upgrading
            $._hashedName = 0;
            $._hashedVersion = 0;
        }
        /**
         * @dev Returns the domain separator for the current chain.
         */
        function _domainSeparatorV4() internal view returns (bytes32) {
            return _buildDomainSeparator();
        }
        function _buildDomainSeparator() private view returns (bytes32) {
            return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
        }
        /**
         * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
         * function returns the hash of the fully encoded EIP712 message for this domain.
         *
         * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
         *
         * ```solidity
         * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
         *     keccak256("Mail(address to,string contents)"),
         *     mailTo,
         *     keccak256(bytes(mailContents))
         * )));
         * address signer = ECDSA.recover(digest, signature);
         * ```
         */
        function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
            return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
        }
        /**
         * @dev See {IERC-5267}.
         */
        function eip712Domain()
            public
            view
            virtual
            returns (
                bytes1 fields,
                string memory name,
                string memory version,
                uint256 chainId,
                address verifyingContract,
                bytes32 salt,
                uint256[] memory extensions
            )
        {
            EIP712Storage storage $ = _getEIP712Storage();
            // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
            // and the EIP712 domain is not reliable, as it will be missing name and version.
            require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized");
            return (
                hex"0f", // 01111
                _EIP712Name(),
                _EIP712Version(),
                block.chainid,
                address(this),
                bytes32(0),
                new uint256[](0)
            );
        }
        /**
         * @dev The name parameter for the EIP712 domain.
         *
         * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
         * are a concern.
         */
        function _EIP712Name() internal view virtual returns (string memory) {
            EIP712Storage storage $ = _getEIP712Storage();
            return $._name;
        }
        /**
         * @dev The version parameter for the EIP712 domain.
         *
         * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
         * are a concern.
         */
        function _EIP712Version() internal view virtual returns (string memory) {
            EIP712Storage storage $ = _getEIP712Storage();
            return $._version;
        }
        /**
         * @dev The hash of the name parameter for the EIP712 domain.
         *
         * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
         */
        function _EIP712NameHash() internal view returns (bytes32) {
            EIP712Storage storage $ = _getEIP712Storage();
            string memory name = _EIP712Name();
            if (bytes(name).length > 0) {
                return keccak256(bytes(name));
            } else {
                // If the name is empty, the contract may have been upgraded without initializing the new storage.
                // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
                bytes32 hashedName = $._hashedName;
                if (hashedName != 0) {
                    return hashedName;
                } else {
                    return keccak256("");
                }
            }
        }
        /**
         * @dev The hash of the version parameter for the EIP712 domain.
         *
         * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
         */
        function _EIP712VersionHash() internal view returns (bytes32) {
            EIP712Storage storage $ = _getEIP712Storage();
            string memory version = _EIP712Version();
            if (bytes(version).length > 0) {
                return keccak256(bytes(version));
            } else {
                // If the version is empty, the contract may have been upgraded without initializing the new storage.
                // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
                bytes32 hashedVersion = $._hashedVersion;
                if (hashedVersion != 0) {
                    return hashedVersion;
                } else {
                    return keccak256("");
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
    pragma solidity ^0.8.20;
    import {Initializable} from "../proxy/utils/Initializable.sol";
    /**
     * @dev Provides tracking nonces for addresses. Nonces will only increment.
     */
    abstract contract NoncesUpgradeable is Initializable {
        /**
         * @dev The nonce used for an `account` is not the expected current nonce.
         */
        error InvalidAccountNonce(address account, uint256 currentNonce);
        /// @custom:storage-location erc7201:openzeppelin.storage.Nonces
        struct NoncesStorage {
            mapping(address account => uint256) _nonces;
        }
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Nonces")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant NoncesStorageLocation = 0x5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00;
        function _getNoncesStorage() private pure returns (NoncesStorage storage $) {
            assembly {
                $.slot := NoncesStorageLocation
            }
        }
        function __Nonces_init() internal onlyInitializing {
        }
        function __Nonces_init_unchained() internal onlyInitializing {
        }
        /**
         * @dev Returns the next unused nonce for an address.
         */
        function nonces(address owner) public view virtual returns (uint256) {
            NoncesStorage storage $ = _getNoncesStorage();
            return $._nonces[owner];
        }
        /**
         * @dev Consumes a nonce.
         *
         * Returns the current value and increments nonce.
         */
        function _useNonce(address owner) internal virtual returns (uint256) {
            NoncesStorage storage $ = _getNoncesStorage();
            // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
            // decremented or reset. This guarantees that the nonce never overflows.
            unchecked {
                // It is important to do x++ and not ++x here.
                return $._nonces[owner]++;
            }
        }
        /**
         * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
         */
        function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
            uint256 current = _useNonce(owner);
            if (nonce != current) {
                revert InvalidAccountNonce(owner, current);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev This is the interface that {BeaconProxy} expects of its beacon.
     */
    interface IBeacon {
        /**
         * @dev Must return an address that can be used as a delegate call target.
         *
         * {UpgradeableBeacon} will check that this address is a contract.
         */
        function implementation() external view returns (address);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
     * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
     * be specified by overriding the virtual {_implementation} function.
     *
     * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
     * different contract through the {_delegate} function.
     *
     * The success and return data of the delegated call will be returned back to the caller of the proxy.
     */
    abstract contract Proxy {
        /**
         * @dev Delegates the current call to `implementation`.
         *
         * This function does not return to its internal call site, it will return directly to the external caller.
         */
        function _delegate(address implementation) internal virtual {
            assembly {
                // Copy msg.data. We take full control of memory in this inline assembly
                // block because it will not return to Solidity code. We overwrite the
                // Solidity scratch pad at memory position 0.
                calldatacopy(0, 0, calldatasize())
                // Call the implementation.
                // out and outsize are 0 because we don't know the size yet.
                let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                // Copy the returned data.
                returndatacopy(0, 0, returndatasize())
                switch result
                // delegatecall returns 0 on error.
                case 0 {
                    revert(0, returndatasize())
                }
                default {
                    return(0, returndatasize())
                }
            }
        }
        /**
         * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
         * function and {_fallback} should delegate.
         */
        function _implementation() internal view virtual returns (address);
        /**
         * @dev Delegates the current call to the address returned by `_implementation()`.
         *
         * This function does not return to its internal call site, it will return directly to the external caller.
         */
        function _fallback() internal virtual {
            _delegate(_implementation());
        }
        /**
         * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
         * function in the contract matches the call data.
         */
        fallback() external payable virtual {
            _fallback();
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)
    pragma solidity ^0.8.20;
    import {IBeacon} from "../beacon/IBeacon.sol";
    import {Address} from "../../utils/Address.sol";
    import {StorageSlot} from "../../utils/StorageSlot.sol";
    /**
     * @dev This abstract contract provides getters and event emitting update functions for
     * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
     */
    library ERC1967Utils {
        // We re-declare ERC-1967 events here because they can't be used directly from IERC1967.
        // This will be fixed in Solidity 0.8.21. At that point we should remove these events.
        /**
         * @dev Emitted when the implementation is upgraded.
         */
        event Upgraded(address indexed implementation);
        /**
         * @dev Emitted when the admin account has changed.
         */
        event AdminChanged(address previousAdmin, address newAdmin);
        /**
         * @dev Emitted when the beacon is changed.
         */
        event BeaconUpgraded(address indexed beacon);
        /**
         * @dev Storage slot with the address of the current implementation.
         * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /**
         * @dev The `implementation` of the proxy is invalid.
         */
        error ERC1967InvalidImplementation(address implementation);
        /**
         * @dev The `admin` of the proxy is invalid.
         */
        error ERC1967InvalidAdmin(address admin);
        /**
         * @dev The `beacon` of the proxy is invalid.
         */
        error ERC1967InvalidBeacon(address beacon);
        /**
         * @dev An upgrade function sees `msg.value > 0` that may be lost.
         */
        error ERC1967NonPayable();
        /**
         * @dev Returns the current implementation address.
         */
        function getImplementation() internal view returns (address) {
            return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
        }
        /**
         * @dev Stores a new address in the EIP1967 implementation slot.
         */
        function _setImplementation(address newImplementation) private {
            if (newImplementation.code.length == 0) {
                revert ERC1967InvalidImplementation(newImplementation);
            }
            StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
        }
        /**
         * @dev Performs implementation upgrade with additional setup call if data is nonempty.
         * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
         * to avoid stuck value in the contract.
         *
         * Emits an {IERC1967-Upgraded} event.
         */
        function upgradeToAndCall(address newImplementation, bytes memory data) internal {
            _setImplementation(newImplementation);
            emit Upgraded(newImplementation);
            if (data.length > 0) {
                Address.functionDelegateCall(newImplementation, data);
            } else {
                _checkNonPayable();
            }
        }
        /**
         * @dev Storage slot with the admin of the contract.
         * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /**
         * @dev Returns the current admin.
         *
         * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
         * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
         * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
         */
        function getAdmin() internal view returns (address) {
            return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
        }
        /**
         * @dev Stores a new address in the EIP1967 admin slot.
         */
        function _setAdmin(address newAdmin) private {
            if (newAdmin == address(0)) {
                revert ERC1967InvalidAdmin(address(0));
            }
            StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
        }
        /**
         * @dev Changes the admin of the proxy.
         *
         * Emits an {IERC1967-AdminChanged} event.
         */
        function changeAdmin(address newAdmin) internal {
            emit AdminChanged(getAdmin(), newAdmin);
            _setAdmin(newAdmin);
        }
        /**
         * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
         * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
        /**
         * @dev Returns the current beacon.
         */
        function getBeacon() internal view returns (address) {
            return StorageSlot.getAddressSlot(BEACON_SLOT).value;
        }
        /**
         * @dev Stores a new beacon in the EIP1967 beacon slot.
         */
        function _setBeacon(address newBeacon) private {
            if (newBeacon.code.length == 0) {
                revert ERC1967InvalidBeacon(newBeacon);
            }
            StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
            address beaconImplementation = IBeacon(newBeacon).implementation();
            if (beaconImplementation.code.length == 0) {
                revert ERC1967InvalidImplementation(beaconImplementation);
            }
        }
        /**
         * @dev Change the beacon and trigger a setup call if data is nonempty.
         * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
         * to avoid stuck value in the contract.
         *
         * Emits an {IERC1967-BeaconUpgraded} event.
         *
         * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
         * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
         * efficiency.
         */
        function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
            _setBeacon(newBeacon);
            emit BeaconUpgraded(newBeacon);
            if (data.length > 0) {
                Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
            } else {
                _checkNonPayable();
            }
        }
        /**
         * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
         * if an upgrade doesn't perform an initialization call.
         */
        function _checkNonPayable() private {
            if (msg.value > 0) {
                revert ERC1967NonPayable();
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.20;
    import {IERC20} from "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
    pragma solidity ^0.8.20;
    import {IERC20} from "../token/ERC20/IERC20.sol";
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20Metadata.sol)
    pragma solidity ^0.8.20;
    import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashLender.sol)
    pragma solidity ^0.8.20;
    import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";
    /**
     * @dev Interface of the ERC3156 FlashLender, as defined in
     * https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
     */
    interface IERC3156FlashLender {
        /**
         * @dev The amount of currency available to be lended.
         * @param token The loan currency.
         * @return The amount of `token` that can be borrowed.
         */
        function maxFlashLoan(address token) external view returns (uint256);
        /**
         * @dev The fee to be charged for a given loan.
         * @param token The loan currency.
         * @param amount The amount of tokens lent.
         * @return The amount of `token` to be charged for the loan, on top of the returned principal.
         */
        function flashFee(address token, uint256 amount) external view returns (uint256);
        /**
         * @dev Initiate a flash loan.
         * @param receiver The receiver of the tokens in the loan, and the receiver of the callback.
         * @param token The loan currency.
         * @param amount The amount of tokens lent.
         * @param data Arbitrary data structure, intended to contain user-defined parameters.
         */
        function flashLoan(
            IERC3156FlashBorrower receiver,
            address token,
            uint256 amount,
            bytes calldata data
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)
    pragma solidity ^0.8.20;
    import {Math} from "../math/Math.sol";
    import {SafeCast} from "../math/SafeCast.sol";
    /**
     * @dev This library provides helpers for manipulating time-related objects.
     *
     * It uses the following types:
     * - `uint48` for timepoints
     * - `uint32` for durations
     *
     * While the library doesn't provide specific types for timepoints and duration, it does provide:
     * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
     * - additional helper functions
     */
    library Time {
        using Time for *;
        /**
         * @dev Get the block timestamp as a Timepoint.
         */
        function timestamp() internal view returns (uint48) {
            return SafeCast.toUint48(block.timestamp);
        }
        /**
         * @dev Get the block number as a Timepoint.
         */
        function blockNumber() internal view returns (uint48) {
            return SafeCast.toUint48(block.number);
        }
        // ==================================================== Delay =====================================================
        /**
         * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
         * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
         * This allows updating the delay applied to some operation while keeping some guarantees.
         *
         * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
         * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
         * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
         * still apply for some time.
         *
         *
         * The `Delay` type is 112 bits long, and packs the following:
         *
         * ```
         *   | [uint48]: effect date (timepoint)
         *   |           | [uint32]: value before (duration)
         *   ↓           ↓       ↓ [uint32]: value after (duration)
         * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
         * ```
         *
         * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
         * supported.
         */
        type Delay is uint112;
        /**
         * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
         */
        function toDelay(uint32 duration) internal pure returns (Delay) {
            return Delay.wrap(duration);
        }
        /**
         * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
         * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
         */
        function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
            (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
            return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
        }
        /**
         * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
         * effect timepoint is 0, then the pending value should not be considered.
         */
        function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
            return _getFullAt(self, timestamp());
        }
        /**
         * @dev Get the current value.
         */
        function get(Delay self) internal view returns (uint32) {
            (uint32 delay, , ) = self.getFull();
            return delay;
        }
        /**
         * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
         * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
         * new delay becomes effective.
         */
        function withUpdate(
            Delay self,
            uint32 newValue,
            uint32 minSetback
        ) internal view returns (Delay updatedDelay, uint48 effect) {
            uint32 value = self.get();
            uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
            effect = timestamp() + setback;
            return (pack(value, newValue, effect), effect);
        }
        /**
         * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
         */
        function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
            uint112 raw = Delay.unwrap(self);
            valueAfter = uint32(raw);
            valueBefore = uint32(raw >> 32);
            effect = uint48(raw >> 64);
            return (valueBefore, valueAfter, effect);
        }
        /**
         * @dev pack the components into a Delay object.
         */
        function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
            return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Standard ERC20 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
     */
    interface IERC20Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC20InvalidSender(address sender);
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC20InvalidReceiver(address receiver);
        /**
         * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         * @param allowance Amount of tokens a `spender` is allowed to operate with.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC20InvalidApprover(address approver);
        /**
         * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC20InvalidSpender(address spender);
    }
    /**
     * @dev Standard ERC721 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
     */
    interface IERC721Errors {
        /**
         * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
         * Used in balance queries.
         * @param owner Address of the current owner of a token.
         */
        error ERC721InvalidOwner(address owner);
        /**
         * @dev Indicates a `tokenId` whose `owner` is the zero address.
         * @param tokenId Identifier number of a token.
         */
        error ERC721NonexistentToken(uint256 tokenId);
        /**
         * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param tokenId Identifier number of a token.
         * @param owner Address of the current owner of a token.
         */
        error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC721InvalidSender(address sender);
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC721InvalidReceiver(address receiver);
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param tokenId Identifier number of a token.
         */
        error ERC721InsufficientApproval(address operator, uint256 tokenId);
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC721InvalidApprover(address approver);
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC721InvalidOperator(address operator);
    }
    /**
     * @dev Standard ERC1155 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
     */
    interface IERC1155Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         * @param tokenId Identifier number of a token.
         */
        error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC1155InvalidSender(address sender);
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC1155InvalidReceiver(address receiver);
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param owner Address of the current owner of a token.
         */
        error ERC1155MissingApprovalForAll(address operator, address owner);
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC1155InvalidApprover(address approver);
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC1155InvalidOperator(address operator);
        /**
         * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
         * Used in batch transfers.
         * @param idsLength Length of the array of token identifiers
         * @param valuesLength Length of the array of token amounts
         */
        error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
    pragma solidity ^0.8.20;
    import {Strings} from "../Strings.sol";
    /**
     * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
     *
     * The library provides methods for generating a hash of a message that conforms to the
     * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
     * specifications.
     */
    library MessageHashUtils {
        /**
         * @dev Returns the keccak256 digest of an EIP-191 signed data with version
         * `0x45` (`personal_sign` messages).
         *
         * The digest is calculated by prefixing a bytes32 `messageHash` with
         * `"\\x19Ethereum Signed Message:\
    32"` and hashing the result. It corresponds with the
         * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
         *
         * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
         * keccak256, although any bytes32 value can be safely used because the final digest will
         * be re-hashed.
         *
         * See {ECDSA-recover}.
         */
        function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, "\\x19Ethereum Signed Message:\
    32") // 32 is the bytes-length of messageHash
                mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
            }
        }
        /**
         * @dev Returns the keccak256 digest of an EIP-191 signed data with version
         * `0x45` (`personal_sign` messages).
         *
         * The digest is calculated by prefixing an arbitrary `message` with
         * `"\\x19Ethereum Signed Message:\
    " + len(message)` and hashing the result. It corresponds with the
         * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
         *
         * See {ECDSA-recover}.
         */
        function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
            return
                keccak256(bytes.concat("\\x19Ethereum Signed Message:\
    ", bytes(Strings.toString(message.length)), message));
        }
        /**
         * @dev Returns the keccak256 digest of an EIP-191 signed data with version
         * `0x00` (data with intended validator).
         *
         * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
         * `validator` address. Then hashing the result.
         *
         * See {ECDSA-recover}.
         */
        function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked(hex"19_00", validator, data));
        }
        /**
         * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
         *
         * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
         * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
         * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
         *
         * See {ECDSA-recover}.
         */
        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
            /// @solidity memory-safe-assembly
            assembly {
                let ptr := mload(0x40)
                mstore(ptr, hex"19_01")
                mstore(add(ptr, 0x02), domainSeparator)
                mstore(add(ptr, 0x22), structHash)
                digest := keccak256(ptr, 0x42)
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
    pragma solidity ^0.8.20;
    interface IERC5267 {
        /**
         * @dev MAY be emitted to signal that the domain could have changed.
         */
        event EIP712DomainChanged();
        /**
         * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
         * signature.
         */
        function eip712Domain()
            external
            view
            returns (
                bytes1 fields,
                string memory name,
                string memory version,
                uint256 chainId,
                address verifyingContract,
                bytes32 salt,
                uint256[] memory extensions
            );
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
    // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
    pragma solidity ^0.8.20;
    /**
     * @dev Library for reading and writing primitive types to specific storage slots.
     *
     * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
     * This library helps with reading and writing to such slots without the need for inline assembly.
     *
     * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
     *
     * Example usage to set ERC1967 implementation slot:
     * ```solidity
     * contract ERC1967 {
     *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
     *
     *     function _getImplementation() internal view returns (address) {
     *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
     *     }
     *
     *     function _setImplementation(address newImplementation) internal {
     *         require(newImplementation.code.length > 0);
     *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
     *     }
     * }
     * ```
     */
    library StorageSlot {
        struct AddressSlot {
            address value;
        }
        struct BooleanSlot {
            bool value;
        }
        struct Bytes32Slot {
            bytes32 value;
        }
        struct Uint256Slot {
            uint256 value;
        }
        struct StringSlot {
            string value;
        }
        struct BytesSlot {
            bytes value;
        }
        /**
         * @dev Returns an `AddressSlot` with member `value` located at `slot`.
         */
        function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
         */
        function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
         */
        function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
         */
        function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `StringSlot` with member `value` located at `slot`.
         */
        function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
         */
        function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := store.slot
            }
        }
        /**
         * @dev Returns an `BytesSlot` with member `value` located at `slot`.
         */
        function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
         */
        function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := store.slot
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
    // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
    pragma solidity ^0.8.20;
    /**
     * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
     * checks.
     *
     * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
     * easily result in undesired exploitation or bugs, since developers usually
     * assume that overflows raise errors. `SafeCast` restores this intuition by
     * reverting the transaction when such an operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeCast {
        /**
         * @dev Value doesn't fit in an uint of `bits` size.
         */
        error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
        /**
         * @dev An int value doesn't fit in an uint of `bits` size.
         */
        error SafeCastOverflowedIntToUint(int256 value);
        /**
         * @dev Value doesn't fit in an int of `bits` size.
         */
        error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
        /**
         * @dev An uint value doesn't fit in an int of `bits` size.
         */
        error SafeCastOverflowedUintToInt(uint256 value);
        /**
         * @dev Returns the downcasted uint248 from uint256, reverting on
         * overflow (when the input is greater than largest uint248).
         *
         * Counterpart to Solidity's `uint248` operator.
         *
         * Requirements:
         *
         * - input must fit into 248 bits
         */
        function toUint248(uint256 value) internal pure returns (uint248) {
            if (value > type(uint248).max) {
                revert SafeCastOverflowedUintDowncast(248, value);
            }
            return uint248(value);
        }
        /**
         * @dev Returns the downcasted uint240 from uint256, reverting on
         * overflow (when the input is greater than largest uint240).
         *
         * Counterpart to Solidity's `uint240` operator.
         *
         * Requirements:
         *
         * - input must fit into 240 bits
         */
        function toUint240(uint256 value) internal pure returns (uint240) {
            if (value > type(uint240).max) {
                revert SafeCastOverflowedUintDowncast(240, value);
            }
            return uint240(value);
        }
        /**
         * @dev Returns the downcasted uint232 from uint256, reverting on
         * overflow (when the input is greater than largest uint232).
         *
         * Counterpart to Solidity's `uint232` operator.
         *
         * Requirements:
         *
         * - input must fit into 232 bits
         */
        function toUint232(uint256 value) internal pure returns (uint232) {
            if (value > type(uint232).max) {
                revert SafeCastOverflowedUintDowncast(232, value);
            }
            return uint232(value);
        }
        /**
         * @dev Returns the downcasted uint224 from uint256, reverting on
         * overflow (when the input is greater than largest uint224).
         *
         * Counterpart to Solidity's `uint224` operator.
         *
         * Requirements:
         *
         * - input must fit into 224 bits
         */
        function toUint224(uint256 value) internal pure returns (uint224) {
            if (value > type(uint224).max) {
                revert SafeCastOverflowedUintDowncast(224, value);
            }
            return uint224(value);
        }
        /**
         * @dev Returns the downcasted uint216 from uint256, reverting on
         * overflow (when the input is greater than largest uint216).
         *
         * Counterpart to Solidity's `uint216` operator.
         *
         * Requirements:
         *
         * - input must fit into 216 bits
         */
        function toUint216(uint256 value) internal pure returns (uint216) {
            if (value > type(uint216).max) {
                revert SafeCastOverflowedUintDowncast(216, value);
            }
            return uint216(value);
        }
        /**
         * @dev Returns the downcasted uint208 from uint256, reverting on
         * overflow (when the input is greater than largest uint208).
         *
         * Counterpart to Solidity's `uint208` operator.
         *
         * Requirements:
         *
         * - input must fit into 208 bits
         */
        function toUint208(uint256 value) internal pure returns (uint208) {
            if (value > type(uint208).max) {
                revert SafeCastOverflowedUintDowncast(208, value);
            }
            return uint208(value);
        }
        /**
         * @dev Returns the downcasted uint200 from uint256, reverting on
         * overflow (when the input is greater than largest uint200).
         *
         * Counterpart to Solidity's `uint200` operator.
         *
         * Requirements:
         *
         * - input must fit into 200 bits
         */
        function toUint200(uint256 value) internal pure returns (uint200) {
            if (value > type(uint200).max) {
                revert SafeCastOverflowedUintDowncast(200, value);
            }
            return uint200(value);
        }
        /**
         * @dev Returns the downcasted uint192 from uint256, reverting on
         * overflow (when the input is greater than largest uint192).
         *
         * Counterpart to Solidity's `uint192` operator.
         *
         * Requirements:
         *
         * - input must fit into 192 bits
         */
        function toUint192(uint256 value) internal pure returns (uint192) {
            if (value > type(uint192).max) {
                revert SafeCastOverflowedUintDowncast(192, value);
            }
            return uint192(value);
        }
        /**
         * @dev Returns the downcasted uint184 from uint256, reverting on
         * overflow (when the input is greater than largest uint184).
         *
         * Counterpart to Solidity's `uint184` operator.
         *
         * Requirements:
         *
         * - input must fit into 184 bits
         */
        function toUint184(uint256 value) internal pure returns (uint184) {
            if (value > type(uint184).max) {
                revert SafeCastOverflowedUintDowncast(184, value);
            }
            return uint184(value);
        }
        /**
         * @dev Returns the downcasted uint176 from uint256, reverting on
         * overflow (when the input is greater than largest uint176).
         *
         * Counterpart to Solidity's `uint176` operator.
         *
         * Requirements:
         *
         * - input must fit into 176 bits
         */
        function toUint176(uint256 value) internal pure returns (uint176) {
            if (value > type(uint176).max) {
                revert SafeCastOverflowedUintDowncast(176, value);
            }
            return uint176(value);
        }
        /**
         * @dev Returns the downcasted uint168 from uint256, reverting on
         * overflow (when the input is greater than largest uint168).
         *
         * Counterpart to Solidity's `uint168` operator.
         *
         * Requirements:
         *
         * - input must fit into 168 bits
         */
        function toUint168(uint256 value) internal pure returns (uint168) {
            if (value > type(uint168).max) {
                revert SafeCastOverflowedUintDowncast(168, value);
            }
            return uint168(value);
        }
        /**
         * @dev Returns the downcasted uint160 from uint256, reverting on
         * overflow (when the input is greater than largest uint160).
         *
         * Counterpart to Solidity's `uint160` operator.
         *
         * Requirements:
         *
         * - input must fit into 160 bits
         */
        function toUint160(uint256 value) internal pure returns (uint160) {
            if (value > type(uint160).max) {
                revert SafeCastOverflowedUintDowncast(160, value);
            }
            return uint160(value);
        }
        /**
         * @dev Returns the downcasted uint152 from uint256, reverting on
         * overflow (when the input is greater than largest uint152).
         *
         * Counterpart to Solidity's `uint152` operator.
         *
         * Requirements:
         *
         * - input must fit into 152 bits
         */
        function toUint152(uint256 value) internal pure returns (uint152) {
            if (value > type(uint152).max) {
                revert SafeCastOverflowedUintDowncast(152, value);
            }
            return uint152(value);
        }
        /**
         * @dev Returns the downcasted uint144 from uint256, reverting on
         * overflow (when the input is greater than largest uint144).
         *
         * Counterpart to Solidity's `uint144` operator.
         *
         * Requirements:
         *
         * - input must fit into 144 bits
         */
        function toUint144(uint256 value) internal pure returns (uint144) {
            if (value > type(uint144).max) {
                revert SafeCastOverflowedUintDowncast(144, value);
            }
            return uint144(value);
        }
        /**
         * @dev Returns the downcasted uint136 from uint256, reverting on
         * overflow (when the input is greater than largest uint136).
         *
         * Counterpart to Solidity's `uint136` operator.
         *
         * Requirements:
         *
         * - input must fit into 136 bits
         */
        function toUint136(uint256 value) internal pure returns (uint136) {
            if (value > type(uint136).max) {
                revert SafeCastOverflowedUintDowncast(136, value);
            }
            return uint136(value);
        }
        /**
         * @dev Returns the downcasted uint128 from uint256, reverting on
         * overflow (when the input is greater than largest uint128).
         *
         * Counterpart to Solidity's `uint128` operator.
         *
         * Requirements:
         *
         * - input must fit into 128 bits
         */
        function toUint128(uint256 value) internal pure returns (uint128) {
            if (value > type(uint128).max) {
                revert SafeCastOverflowedUintDowncast(128, value);
            }
            return uint128(value);
        }
        /**
         * @dev Returns the downcasted uint120 from uint256, reverting on
         * overflow (when the input is greater than largest uint120).
         *
         * Counterpart to Solidity's `uint120` operator.
         *
         * Requirements:
         *
         * - input must fit into 120 bits
         */
        function toUint120(uint256 value) internal pure returns (uint120) {
            if (value > type(uint120).max) {
                revert SafeCastOverflowedUintDowncast(120, value);
            }
            return uint120(value);
        }
        /**
         * @dev Returns the downcasted uint112 from uint256, reverting on
         * overflow (when the input is greater than largest uint112).
         *
         * Counterpart to Solidity's `uint112` operator.
         *
         * Requirements:
         *
         * - input must fit into 112 bits
         */
        function toUint112(uint256 value) internal pure returns (uint112) {
            if (value > type(uint112).max) {
                revert SafeCastOverflowedUintDowncast(112, value);
            }
            return uint112(value);
        }
        /**
         * @dev Returns the downcasted uint104 from uint256, reverting on
         * overflow (when the input is greater than largest uint104).
         *
         * Counterpart to Solidity's `uint104` operator.
         *
         * Requirements:
         *
         * - input must fit into 104 bits
         */
        function toUint104(uint256 value) internal pure returns (uint104) {
            if (value > type(uint104).max) {
                revert SafeCastOverflowedUintDowncast(104, value);
            }
            return uint104(value);
        }
        /**
         * @dev Returns the downcasted uint96 from uint256, reverting on
         * overflow (when the input is greater than largest uint96).
         *
         * Counterpart to Solidity's `uint96` operator.
         *
         * Requirements:
         *
         * - input must fit into 96 bits
         */
        function toUint96(uint256 value) internal pure returns (uint96) {
            if (value > type(uint96).max) {
                revert SafeCastOverflowedUintDowncast(96, value);
            }
            return uint96(value);
        }
        /**
         * @dev Returns the downcasted uint88 from uint256, reverting on
         * overflow (when the input is greater than largest uint88).
         *
         * Counterpart to Solidity's `uint88` operator.
         *
         * Requirements:
         *
         * - input must fit into 88 bits
         */
        function toUint88(uint256 value) internal pure returns (uint88) {
            if (value > type(uint88).max) {
                revert SafeCastOverflowedUintDowncast(88, value);
            }
            return uint88(value);
        }
        /**
         * @dev Returns the downcasted uint80 from uint256, reverting on
         * overflow (when the input is greater than largest uint80).
         *
         * Counterpart to Solidity's `uint80` operator.
         *
         * Requirements:
         *
         * - input must fit into 80 bits
         */
        function toUint80(uint256 value) internal pure returns (uint80) {
            if (value > type(uint80).max) {
                revert SafeCastOverflowedUintDowncast(80, value);
            }
            return uint80(value);
        }
        /**
         * @dev Returns the downcasted uint72 from uint256, reverting on
         * overflow (when the input is greater than largest uint72).
         *
         * Counterpart to Solidity's `uint72` operator.
         *
         * Requirements:
         *
         * - input must fit into 72 bits
         */
        function toUint72(uint256 value) internal pure returns (uint72) {
            if (value > type(uint72).max) {
                revert SafeCastOverflowedUintDowncast(72, value);
            }
            return uint72(value);
        }
        /**
         * @dev Returns the downcasted uint64 from uint256, reverting on
         * overflow (when the input is greater than largest uint64).
         *
         * Counterpart to Solidity's `uint64` operator.
         *
         * Requirements:
         *
         * - input must fit into 64 bits
         */
        function toUint64(uint256 value) internal pure returns (uint64) {
            if (value > type(uint64).max) {
                revert SafeCastOverflowedUintDowncast(64, value);
            }
            return uint64(value);
        }
        /**
         * @dev Returns the downcasted uint56 from uint256, reverting on
         * overflow (when the input is greater than largest uint56).
         *
         * Counterpart to Solidity's `uint56` operator.
         *
         * Requirements:
         *
         * - input must fit into 56 bits
         */
        function toUint56(uint256 value) internal pure returns (uint56) {
            if (value > type(uint56).max) {
                revert SafeCastOverflowedUintDowncast(56, value);
            }
            return uint56(value);
        }
        /**
         * @dev Returns the downcasted uint48 from uint256, reverting on
         * overflow (when the input is greater than largest uint48).
         *
         * Counterpart to Solidity's `uint48` operator.
         *
         * Requirements:
         *
         * - input must fit into 48 bits
         */
        function toUint48(uint256 value) internal pure returns (uint48) {
            if (value > type(uint48).max) {
                revert SafeCastOverflowedUintDowncast(48, value);
            }
            return uint48(value);
        }
        /**
         * @dev Returns the downcasted uint40 from uint256, reverting on
         * overflow (when the input is greater than largest uint40).
         *
         * Counterpart to Solidity's `uint40` operator.
         *
         * Requirements:
         *
         * - input must fit into 40 bits
         */
        function toUint40(uint256 value) internal pure returns (uint40) {
            if (value > type(uint40).max) {
                revert SafeCastOverflowedUintDowncast(40, value);
            }
            return uint40(value);
        }
        /**
         * @dev Returns the downcasted uint32 from uint256, reverting on
         * overflow (when the input is greater than largest uint32).
         *
         * Counterpart to Solidity's `uint32` operator.
         *
         * Requirements:
         *
         * - input must fit into 32 bits
         */
        function toUint32(uint256 value) internal pure returns (uint32) {
            if (value > type(uint32).max) {
                revert SafeCastOverflowedUintDowncast(32, value);
            }
            return uint32(value);
        }
        /**
         * @dev Returns the downcasted uint24 from uint256, reverting on
         * overflow (when the input is greater than largest uint24).
         *
         * Counterpart to Solidity's `uint24` operator.
         *
         * Requirements:
         *
         * - input must fit into 24 bits
         */
        function toUint24(uint256 value) internal pure returns (uint24) {
            if (value > type(uint24).max) {
                revert SafeCastOverflowedUintDowncast(24, value);
            }
            return uint24(value);
        }
        /**
         * @dev Returns the downcasted uint16 from uint256, reverting on
         * overflow (when the input is greater than largest uint16).
         *
         * Counterpart to Solidity's `uint16` operator.
         *
         * Requirements:
         *
         * - input must fit into 16 bits
         */
        function toUint16(uint256 value) internal pure returns (uint16) {
            if (value > type(uint16).max) {
                revert SafeCastOverflowedUintDowncast(16, value);
            }
            return uint16(value);
        }
        /**
         * @dev Returns the downcasted uint8 from uint256, reverting on
         * overflow (when the input is greater than largest uint8).
         *
         * Counterpart to Solidity's `uint8` operator.
         *
         * Requirements:
         *
         * - input must fit into 8 bits
         */
        function toUint8(uint256 value) internal pure returns (uint8) {
            if (value > type(uint8).max) {
                revert SafeCastOverflowedUintDowncast(8, value);
            }
            return uint8(value);
        }
        /**
         * @dev Converts a signed int256 into an unsigned uint256.
         *
         * Requirements:
         *
         * - input must be greater than or equal to 0.
         */
        function toUint256(int256 value) internal pure returns (uint256) {
            if (value < 0) {
                revert SafeCastOverflowedIntToUint(value);
            }
            return uint256(value);
        }
        /**
         * @dev Returns the downcasted int248 from int256, reverting on
         * overflow (when the input is less than smallest int248 or
         * greater than largest int248).
         *
         * Counterpart to Solidity's `int248` operator.
         *
         * Requirements:
         *
         * - input must fit into 248 bits
         */
        function toInt248(int256 value) internal pure returns (int248 downcasted) {
            downcasted = int248(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(248, value);
            }
        }
        /**
         * @dev Returns the downcasted int240 from int256, reverting on
         * overflow (when the input is less than smallest int240 or
         * greater than largest int240).
         *
         * Counterpart to Solidity's `int240` operator.
         *
         * Requirements:
         *
         * - input must fit into 240 bits
         */
        function toInt240(int256 value) internal pure returns (int240 downcasted) {
            downcasted = int240(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(240, value);
            }
        }
        /**
         * @dev Returns the downcasted int232 from int256, reverting on
         * overflow (when the input is less than smallest int232 or
         * greater than largest int232).
         *
         * Counterpart to Solidity's `int232` operator.
         *
         * Requirements:
         *
         * - input must fit into 232 bits
         */
        function toInt232(int256 value) internal pure returns (int232 downcasted) {
            downcasted = int232(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(232, value);
            }
        }
        /**
         * @dev Returns the downcasted int224 from int256, reverting on
         * overflow (when the input is less than smallest int224 or
         * greater than largest int224).
         *
         * Counterpart to Solidity's `int224` operator.
         *
         * Requirements:
         *
         * - input must fit into 224 bits
         */
        function toInt224(int256 value) internal pure returns (int224 downcasted) {
            downcasted = int224(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(224, value);
            }
        }
        /**
         * @dev Returns the downcasted int216 from int256, reverting on
         * overflow (when the input is less than smallest int216 or
         * greater than largest int216).
         *
         * Counterpart to Solidity's `int216` operator.
         *
         * Requirements:
         *
         * - input must fit into 216 bits
         */
        function toInt216(int256 value) internal pure returns (int216 downcasted) {
            downcasted = int216(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(216, value);
            }
        }
        /**
         * @dev Returns the downcasted int208 from int256, reverting on
         * overflow (when the input is less than smallest int208 or
         * greater than largest int208).
         *
         * Counterpart to Solidity's `int208` operator.
         *
         * Requirements:
         *
         * - input must fit into 208 bits
         */
        function toInt208(int256 value) internal pure returns (int208 downcasted) {
            downcasted = int208(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(208, value);
            }
        }
        /**
         * @dev Returns the downcasted int200 from int256, reverting on
         * overflow (when the input is less than smallest int200 or
         * greater than largest int200).
         *
         * Counterpart to Solidity's `int200` operator.
         *
         * Requirements:
         *
         * - input must fit into 200 bits
         */
        function toInt200(int256 value) internal pure returns (int200 downcasted) {
            downcasted = int200(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(200, value);
            }
        }
        /**
         * @dev Returns the downcasted int192 from int256, reverting on
         * overflow (when the input is less than smallest int192 or
         * greater than largest int192).
         *
         * Counterpart to Solidity's `int192` operator.
         *
         * Requirements:
         *
         * - input must fit into 192 bits
         */
        function toInt192(int256 value) internal pure returns (int192 downcasted) {
            downcasted = int192(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(192, value);
            }
        }
        /**
         * @dev Returns the downcasted int184 from int256, reverting on
         * overflow (when the input is less than smallest int184 or
         * greater than largest int184).
         *
         * Counterpart to Solidity's `int184` operator.
         *
         * Requirements:
         *
         * - input must fit into 184 bits
         */
        function toInt184(int256 value) internal pure returns (int184 downcasted) {
            downcasted = int184(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(184, value);
            }
        }
        /**
         * @dev Returns the downcasted int176 from int256, reverting on
         * overflow (when the input is less than smallest int176 or
         * greater than largest int176).
         *
         * Counterpart to Solidity's `int176` operator.
         *
         * Requirements:
         *
         * - input must fit into 176 bits
         */
        function toInt176(int256 value) internal pure returns (int176 downcasted) {
            downcasted = int176(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(176, value);
            }
        }
        /**
         * @dev Returns the downcasted int168 from int256, reverting on
         * overflow (when the input is less than smallest int168 or
         * greater than largest int168).
         *
         * Counterpart to Solidity's `int168` operator.
         *
         * Requirements:
         *
         * - input must fit into 168 bits
         */
        function toInt168(int256 value) internal pure returns (int168 downcasted) {
            downcasted = int168(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(168, value);
            }
        }
        /**
         * @dev Returns the downcasted int160 from int256, reverting on
         * overflow (when the input is less than smallest int160 or
         * greater than largest int160).
         *
         * Counterpart to Solidity's `int160` operator.
         *
         * Requirements:
         *
         * - input must fit into 160 bits
         */
        function toInt160(int256 value) internal pure returns (int160 downcasted) {
            downcasted = int160(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(160, value);
            }
        }
        /**
         * @dev Returns the downcasted int152 from int256, reverting on
         * overflow (when the input is less than smallest int152 or
         * greater than largest int152).
         *
         * Counterpart to Solidity's `int152` operator.
         *
         * Requirements:
         *
         * - input must fit into 152 bits
         */
        function toInt152(int256 value) internal pure returns (int152 downcasted) {
            downcasted = int152(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(152, value);
            }
        }
        /**
         * @dev Returns the downcasted int144 from int256, reverting on
         * overflow (when the input is less than smallest int144 or
         * greater than largest int144).
         *
         * Counterpart to Solidity's `int144` operator.
         *
         * Requirements:
         *
         * - input must fit into 144 bits
         */
        function toInt144(int256 value) internal pure returns (int144 downcasted) {
            downcasted = int144(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(144, value);
            }
        }
        /**
         * @dev Returns the downcasted int136 from int256, reverting on
         * overflow (when the input is less than smallest int136 or
         * greater than largest int136).
         *
         * Counterpart to Solidity's `int136` operator.
         *
         * Requirements:
         *
         * - input must fit into 136 bits
         */
        function toInt136(int256 value) internal pure returns (int136 downcasted) {
            downcasted = int136(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(136, value);
            }
        }
        /**
         * @dev Returns the downcasted int128 from int256, reverting on
         * overflow (when the input is less than smallest int128 or
         * greater than largest int128).
         *
         * Counterpart to Solidity's `int128` operator.
         *
         * Requirements:
         *
         * - input must fit into 128 bits
         */
        function toInt128(int256 value) internal pure returns (int128 downcasted) {
            downcasted = int128(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(128, value);
            }
        }
        /**
         * @dev Returns the downcasted int120 from int256, reverting on
         * overflow (when the input is less than smallest int120 or
         * greater than largest int120).
         *
         * Counterpart to Solidity's `int120` operator.
         *
         * Requirements:
         *
         * - input must fit into 120 bits
         */
        function toInt120(int256 value) internal pure returns (int120 downcasted) {
            downcasted = int120(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(120, value);
            }
        }
        /**
         * @dev Returns the downcasted int112 from int256, reverting on
         * overflow (when the input is less than smallest int112 or
         * greater than largest int112).
         *
         * Counterpart to Solidity's `int112` operator.
         *
         * Requirements:
         *
         * - input must fit into 112 bits
         */
        function toInt112(int256 value) internal pure returns (int112 downcasted) {
            downcasted = int112(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(112, value);
            }
        }
        /**
         * @dev Returns the downcasted int104 from int256, reverting on
         * overflow (when the input is less than smallest int104 or
         * greater than largest int104).
         *
         * Counterpart to Solidity's `int104` operator.
         *
         * Requirements:
         *
         * - input must fit into 104 bits
         */
        function toInt104(int256 value) internal pure returns (int104 downcasted) {
            downcasted = int104(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(104, value);
            }
        }
        /**
         * @dev Returns the downcasted int96 from int256, reverting on
         * overflow (when the input is less than smallest int96 or
         * greater than largest int96).
         *
         * Counterpart to Solidity's `int96` operator.
         *
         * Requirements:
         *
         * - input must fit into 96 bits
         */
        function toInt96(int256 value) internal pure returns (int96 downcasted) {
            downcasted = int96(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(96, value);
            }
        }
        /**
         * @dev Returns the downcasted int88 from int256, reverting on
         * overflow (when the input is less than smallest int88 or
         * greater than largest int88).
         *
         * Counterpart to Solidity's `int88` operator.
         *
         * Requirements:
         *
         * - input must fit into 88 bits
         */
        function toInt88(int256 value) internal pure returns (int88 downcasted) {
            downcasted = int88(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(88, value);
            }
        }
        /**
         * @dev Returns the downcasted int80 from int256, reverting on
         * overflow (when the input is less than smallest int80 or
         * greater than largest int80).
         *
         * Counterpart to Solidity's `int80` operator.
         *
         * Requirements:
         *
         * - input must fit into 80 bits
         */
        function toInt80(int256 value) internal pure returns (int80 downcasted) {
            downcasted = int80(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(80, value);
            }
        }
        /**
         * @dev Returns the downcasted int72 from int256, reverting on
         * overflow (when the input is less than smallest int72 or
         * greater than largest int72).
         *
         * Counterpart to Solidity's `int72` operator.
         *
         * Requirements:
         *
         * - input must fit into 72 bits
         */
        function toInt72(int256 value) internal pure returns (int72 downcasted) {
            downcasted = int72(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(72, value);
            }
        }
        /**
         * @dev Returns the downcasted int64 from int256, reverting on
         * overflow (when the input is less than smallest int64 or
         * greater than largest int64).
         *
         * Counterpart to Solidity's `int64` operator.
         *
         * Requirements:
         *
         * - input must fit into 64 bits
         */
        function toInt64(int256 value) internal pure returns (int64 downcasted) {
            downcasted = int64(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(64, value);
            }
        }
        /**
         * @dev Returns the downcasted int56 from int256, reverting on
         * overflow (when the input is less than smallest int56 or
         * greater than largest int56).
         *
         * Counterpart to Solidity's `int56` operator.
         *
         * Requirements:
         *
         * - input must fit into 56 bits
         */
        function toInt56(int256 value) internal pure returns (int56 downcasted) {
            downcasted = int56(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(56, value);
            }
        }
        /**
         * @dev Returns the downcasted int48 from int256, reverting on
         * overflow (when the input is less than smallest int48 or
         * greater than largest int48).
         *
         * Counterpart to Solidity's `int48` operator.
         *
         * Requirements:
         *
         * - input must fit into 48 bits
         */
        function toInt48(int256 value) internal pure returns (int48 downcasted) {
            downcasted = int48(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(48, value);
            }
        }
        /**
         * @dev Returns the downcasted int40 from int256, reverting on
         * overflow (when the input is less than smallest int40 or
         * greater than largest int40).
         *
         * Counterpart to Solidity's `int40` operator.
         *
         * Requirements:
         *
         * - input must fit into 40 bits
         */
        function toInt40(int256 value) internal pure returns (int40 downcasted) {
            downcasted = int40(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(40, value);
            }
        }
        /**
         * @dev Returns the downcasted int32 from int256, reverting on
         * overflow (when the input is less than smallest int32 or
         * greater than largest int32).
         *
         * Counterpart to Solidity's `int32` operator.
         *
         * Requirements:
         *
         * - input must fit into 32 bits
         */
        function toInt32(int256 value) internal pure returns (int32 downcasted) {
            downcasted = int32(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(32, value);
            }
        }
        /**
         * @dev Returns the downcasted int24 from int256, reverting on
         * overflow (when the input is less than smallest int24 or
         * greater than largest int24).
         *
         * Counterpart to Solidity's `int24` operator.
         *
         * Requirements:
         *
         * - input must fit into 24 bits
         */
        function toInt24(int256 value) internal pure returns (int24 downcasted) {
            downcasted = int24(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(24, value);
            }
        }
        /**
         * @dev Returns the downcasted int16 from int256, reverting on
         * overflow (when the input is less than smallest int16 or
         * greater than largest int16).
         *
         * Counterpart to Solidity's `int16` operator.
         *
         * Requirements:
         *
         * - input must fit into 16 bits
         */
        function toInt16(int256 value) internal pure returns (int16 downcasted) {
            downcasted = int16(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(16, value);
            }
        }
        /**
         * @dev Returns the downcasted int8 from int256, reverting on
         * overflow (when the input is less than smallest int8 or
         * greater than largest int8).
         *
         * Counterpart to Solidity's `int8` operator.
         *
         * Requirements:
         *
         * - input must fit into 8 bits
         */
        function toInt8(int256 value) internal pure returns (int8 downcasted) {
            downcasted = int8(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(8, value);
            }
        }
        /**
         * @dev Converts an unsigned uint256 into a signed int256.
         *
         * Requirements:
         *
         * - input must be less than or equal to maxInt256.
         */
        function toInt256(uint256 value) internal pure returns (int256) {
            // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
            if (value > uint256(type(int256).max)) {
                revert SafeCastOverflowedUintToInt(value);
            }
            return int256(value);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
    pragma solidity ^0.8.20;
    import {Math} from "./math/Math.sol";
    import {SignedMath} from "./math/SignedMath.sol";
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant HEX_DIGITS = "0123456789abcdef";
        uint8 private constant ADDRESS_LENGTH = 20;
        /**
         * @dev The `value` string doesn't fit in the specified `length`.
         */
        error StringsInsufficientHexLength(uint256 value, uint256 length);
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = Math.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
        /**
         * @dev Converts a `int256` to its ASCII `string` decimal representation.
         */
        function toStringSigned(int256 value) internal pure returns (string memory) {
            return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, Math.log256(value) + 1);
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            uint256 localValue = value;
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = HEX_DIGITS[localValue & 0xf];
                localValue >>= 4;
            }
            if (localValue != 0) {
                revert StringsInsufficientHexLength(value, length);
            }
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
         * representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
        }
        /**
         * @dev Returns true if the two strings are equal.
         */
        function equal(string memory a, string memory b) internal pure returns (bool) {
            return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
    pragma solidity ^0.8.20;
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMath {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }