Transaction Hash:
Block:
20200115 at Jun-29-2024 09:46:11 PM +UTC
Transaction Fee:
0.000307470148999832 ETH
$0.78
Gas Used:
130,312 Gas / 2.359492211 Gwei
Emitted Events:
268 |
Indelible.Transfer( from=0xe46a5dfd891bc7a83115f8ed5c1dee7bd86459d8, to=[Sender] 0xebe71b162c4fd6be6f07bf11b17d271c1087bd8b, tokenId=7125 )
|
269 |
ERC1967Proxy.0x1d5e12b51dee5e4d34434576c3fb99714a85f57b0fd546ada4b0bddd736d12b2( 0x1d5e12b51dee5e4d34434576c3fb99714a85f57b0fd546ada4b0bddd736d12b2, 49891324ed93ed69ccf222d35d06c383106def174381a1a80c6934d7f0710fe0, 0000000000000000001bd500e46a5dfd891bc7a83115f8ed5c1dee7bd86459d8, 00000000005e23ca654220009251dec8df720c2adf3b6f46d968107cbbadf4d4 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 10.057429551023054355 Eth | 10.057487233161382715 Eth | 0.00005768213832836 | |
0x9251dEC8...cbBADf4d4 | |||||
0xb2ecfE4E...e2410CEA5 | (Blur.io: Marketplace 3) | ||||
0xE46A5DfD...bD86459d8 | 0.099954239918185838 Eth | 0.126452239918185838 Eth | 0.026498 | ||
0xeBE71b16...C1087bD8b |
0.209677830233442806 Eth
Nonce: 1227
|
0.182872360084442974 Eth
Nonce: 1228
| 0.026805470148999832 |
Execution Trace
ETH 0.026498
ERC1967Proxy.70bce2d6( )
ETH 0.026498
BlurExchangeV2.takeAskSingle( )
-
Null: 0x000...001.2229cf77( )
-
Null: 0x000...001.2866570c( )
Delegate.transfer( taker=0xeBE71b162C4FD6bE6f07bf11B17D271C1087bD8b, orderType=0, transfers=, length=1 ) => ( successful=[true] )
-
Indelible.safeTransferFrom( from=0xE46A5DfD891bC7A83115F8Ed5C1dEe7bD86459d8, to=0xeBE71b162C4FD6bE6f07bf11B17D271C1087bD8b, tokenId=7125 )
-
- ETH 0.026498
0xe46a5dfd891bc7a83115f8ed5c1dee7bd86459d8.CALL( )
-
takeAskSingle[BlurExchangeV2 (ln:155)]
_takeAskSingle[BlurExchangeV2 (ln:164)]
Fees[BlurExchangeV2 (ln:232)]
_validateOrderAndListing[BlurExchangeV2 (ln:236)]
InvalidOrder[BlurExchangeV2 (ln:237)]
_initializeSingleExecution[BlurExchangeV2 (ln:240)]
_insertNonfungibleTransfer[BlurExchangeV2 (ln:544)]
_executeNonfungibleTransfers[BlurExchangeV2 (ln:253)]
TokenTransferFailed[BlurExchangeV2 (ln:255)]
_computeFees[BlurExchangeV2 (ln:263)]
InsufficientFunds[BlurExchangeV2 (ln:267)]
_transferETH[BlurExchangeV2 (ln:271)]
_transferETH[BlurExchangeV2 (ln:272)]
_transferETH[BlurExchangeV2 (ln:273)]
_transferETH[BlurExchangeV2 (ln:275)]
_emitExecutionEvent[BlurExchangeV2 (ln:277)]
_transferETH[BlurExchangeV2 (ln:279)]
_hashCalldata[BlurExchangeV2 (ln:162)]
File 1 of 4: ERC1967Proxy
File 2 of 4: Indelible
File 3 of 4: BlurExchangeV2
File 4 of 4: Delegate
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity 0.8.17; import "lib/openzeppelin-contracts/contracts/proxy/Proxy.sol"; import "lib/openzeppelin-contracts/contracts/proxy/ERC1967/ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol) pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overridden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol) pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../interfaces/IERC1967.sol"; import "../../interfaces/draft-IERC1822.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ */ abstract contract ERC1967Upgrade is IERC1967 { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal { // Upgrades from old implementations will perform a rollback test. This test requires the new // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing // this special case will break upgrade paths from old UUPS implementation to new ones. if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) { _setImplementation(newImplementation); } else { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID"); } catch { revert("ERC1967Upgrade: new implementation is not UUPS"); } _upgradeToAndCall(newImplementation, data, forceCall); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. * * _Available since v4.8.3._ */ interface IERC1967 { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.0; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
File 2 of 4: Indelible
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import "erc721a/contracts/ERC721A.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/Base64.sol"; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import "@openzeppelin/contracts/utils/Address.sol"; import {DefaultOperatorFilterer} from "./DefaultOperatorFilterer.sol"; import "./SSTORE2.sol"; import "./DynamicBuffer.sol"; import "./HelperLib.sol"; contract Indelible is ERC721A, DefaultOperatorFilterer, ReentrancyGuard, Ownable { using HelperLib for uint; using DynamicBuffer for bytes; struct LinkedTraitDTO { uint[] traitA; uint[] traitB; } struct TraitDTO { string name; string mimetype; bytes data; bool hide; bool useExistingData; uint existingDataIndex; } struct Trait { string name; string mimetype; bool hide; } struct ContractData { string name; string description; string image; string banner; string website; uint royalties; string royaltiesRecipient; } struct WithdrawRecipient { string name; string imageUrl; address recipientAddress; uint percentage; } mapping(uint => address[]) internal _traitDataPointers; mapping(uint => mapping(uint => Trait)) internal _traitDetails; mapping(uint => bool) internal _renderTokenOffChain; mapping(uint => mapping(uint => uint[])) internal _linkedTraits; uint[15] private PRIME_NUMBERS; uint private constant DEVELOPER_FEE = 250; // of 10,000 = 2.5% uint private constant NUM_LAYERS = 6; uint private constant MAX_BATCH_MINT = 20; uint[][NUM_LAYERS] private TIERS; string[] private LAYER_NAMES = [unicode"5p3c141", unicode"0v32", unicode"3y35", unicode"und32", unicode"5ku115", unicode"84ck920und"]; bool private shouldWrapSVG = true; string private backgroundColor = "transparent"; uint private randomSeedData; WithdrawRecipient[] public withdrawRecipients; bool public isContractSealed; uint public constant maxSupply = 7331; uint public maxPerAddress = 1; uint public publicMintPrice = 0.000 ether; string public baseURI = ""; bool public isPublicMintActive; bytes32 private merkleRoot = 0; uint public allowListPrice = 0.0 ether; uint public maxPerAllowList = 1; bool public isAllowListActive; ContractData public contractData = ContractData(unicode"1337 skulls", unicode"1337 skulls is a collection of 7,331 pixel art skulls, deployed fully on-chain with a public domain license. 600+ traits created from new, original art and referencing 30+ existing cc0 NFT projects. Free mint. 0% royalties. No roadmap. Just 1337.", "https://indeliblelabs-prod.s3.us-east-2.amazonaws.com/profile/30dc49b9-cc55-4643-8443-b3d038532d2a", "https://indeliblelabs-prod.s3.us-east-2.amazonaws.com/banner/30dc49b9-cc55-4643-8443-b3d038532d2a", "https://1337skulls.xyz/", 0, "0x8b3F6F5c62Ff1D8b66Dc04bA3CC309E260Bc4693"); constructor() ERC721A(unicode"1337 skulls", unicode"1337skulls") { TIERS[0] = [4,4,4,5,6,7,8,8,8,8,9,9,9,9,9,10,11,12,13,13,14,15,16,17,18,19,20,20,21,21,22,25,29,33,36,36,37,38,42,52,54,55,64,65,69,69,91,94,104,126,131,143,5569]; TIERS[1] = [3,3,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,13,14,14,14,14,15,15,15,15,15,16,16,16,17,17,17,17,17,17,17,18,18,18,18,19,19,19,20,20,20,21,21,21,21,22,22,22,23,23,24,24,24,24,24,25,25,25,26,26,27,27,27,27,28,29,29,30,30,31,32,32,33,33,33,34,34,34,35,35,35,36,36,36,37,37,38,38,39,40,40,42,43,43,44,45,47,49,49,50,50,51,52,53,54,55,56,56,59,61,62,63,64,65,66,67,69,70,70,71,72,73,73,74,77,79,89,90,92,93,95,99,102,103,105,108,109,110,115,119,120,121,125,126,127,127,128,129,469]; TIERS[2] = [3,3,3,4,4,4,4,5,5,6,6,7,7,7,8,8,9,9,10,11,11,12,13,13,14,14,15,16,16,16,17,17,17,18,19,19,20,20,21,22,23,24,25,26,27,28,29,29,31,31,32,32,33,33,35,35,36,36,37,37,38,40,41,42,42,43,43,44,44,47,48,48,50,51,52,52,54,54,55,56,57,58,61,61,62,62,64,65,66,67,68,69,69,70,71,71,77,78,78,81,82,85,85,86,87,105,109,111,145,153,199,207,209,213,219,220,222,225,229,969]; TIERS[3] = [3,4,4,4,4,4,4,4,5,5,6,6,6,7,7,8,8,9,9,9,10,10,10,11,11,11,12,12,13,14,14,15,15,16,17,17,18,19,20,20,20,21,23,24,24,25,27,28,28,29,31,31,33,34,34,37,37,39,41,42,43,43,44,48,51,52,53,66,67,68,69,69,75,84,89,95,96,107,115,119,4869]; TIERS[4] = [6,8,8,9,11,11,16,17,18,19,20,30,31,32,35,36,36,40,45,52,55,55,56,56,58,59,63,71,77,79,80,82,86,88,88,91,92,95,99,101,105,107,108,111,117,119,136,139,149,151,161,163,181,184,187,189,199,202,212,219,224,228,232,235,240,244,248,264,266]; TIERS[5] = [3,3,3,3,3,4,4,4,5,6,6,7,8,8,9,9,10,10,11,12,12,13,13,14,15,15,15,16,19,20,20,20,21,21,23,23,25,26,26,26,27,28,28,29,31,32,32,36,38,39,40,41,43,44,45,45,46,47,48,49,49,49,49,49,49,50,50,52,53,54,55,55,56,57,57,58,59,59,60,60,60,61,61,62,62,63,63,64,64,65,66,67,67,68,68,69,70,71,72,72,73,73,74,74,75,75,77,77,78,79,79,82,83,83,84,85,86,86,88,96,97,98,99,105,106,107,109,110,111,114,117,119,121,122,126,128,129,132]; PRIME_NUMBERS = [ 669537310232575125291855927056732103107921011363770145177603, 795524184772701992168701409728225618620809563704319825349899, 668657002110143242634345628894400250523693660459153690697319, 691768493742031397614199039242108474419560046070176392220443, 192516593828483755313857340433869706973450072701701194101197, 342061385297261922397185896125371403723499926331827547869699 ]; randomSeedData = uint( keccak256( abi.encodePacked( tx.gasprice, block.number, block.timestamp, block.difficulty, blockhash(block.number - 1), msg.sender ) ) ); } modifier whenMintActive() { require(isMintActive(), "Minting is not active"); _; } modifier whenUnsealed() { require(!isContractSealed, "Contract is sealed"); _; } receive() external payable { require(isPublicMintActive, "Public minting is not active"); handleMint(msg.value / publicMintPrice, msg.sender); } function rarityGen(uint randinput, uint rarityTier) internal view returns (uint) { uint currentLowerBound = 0; for (uint i = 0; i < TIERS[rarityTier].length; i++) { uint thisPercentage = TIERS[rarityTier][i]; if ( randinput >= currentLowerBound && randinput < currentLowerBound + thisPercentage ) return i; currentLowerBound = currentLowerBound + thisPercentage; } revert(); } function entropyForExtraData() internal view returns (uint24) { uint randomNumber = uint( keccak256( abi.encodePacked( tx.gasprice, block.number, block.timestamp, block.difficulty, blockhash(block.number - 1), msg.sender ) ) ); return uint24(randomNumber); } function stringCompare(string memory a, string memory b) internal pure returns (bool) { return keccak256(abi.encodePacked(a)) == keccak256(abi.encodePacked(b)); } function tokensAreDuplicates(uint tokenIdA, uint tokenIdB) public view returns (bool) { return stringCompare( tokenIdToHash(tokenIdA), tokenIdToHash(tokenIdB) ); } function reRollDuplicate( uint tokenIdA, uint tokenIdB ) public whenUnsealed { require(tokensAreDuplicates(tokenIdA, tokenIdB), "All tokens must be duplicates"); uint largerTokenId = tokenIdA > tokenIdB ? tokenIdA : tokenIdB; if (msg.sender != owner()) { require(msg.sender == ownerOf(largerTokenId), "Only the token owner or contract owner can re-roll"); } _initializeOwnershipAt(largerTokenId); if (_exists(largerTokenId + 1)) { _initializeOwnershipAt(largerTokenId + 1); } _setExtraDataAt(largerTokenId, entropyForExtraData()); } function _extraData( address from, address, uint24 previousExtraData ) internal view virtual override returns (uint24) { return from == address(0) ? 0 : previousExtraData; } function getTokenSeed(uint tokenId) internal view returns (uint24) { return _ownershipOf(tokenId).extraData; } function tokenIdToHash( uint tokenId ) public view returns (string memory) { require(_exists(tokenId), "Invalid token"); // This will generate a NUM_LAYERS * 3 character string. bytes memory hashBytes = DynamicBuffer.allocate(NUM_LAYERS * 4); uint[] memory hash = new uint[](NUM_LAYERS); bool[] memory modifiedLayers = new bool[](NUM_LAYERS); uint traitSeed = randomSeedData % maxSupply; for (uint i = 0; i < NUM_LAYERS; i++) { uint traitIndex = hash[i]; if (modifiedLayers[i] == false) { uint tokenExtraData = getTokenSeed(tokenId); uint traitRangePosition; if (tokenExtraData == 0) { traitRangePosition = ((tokenId + i + traitSeed) * PRIME_NUMBERS[i]) % maxSupply; } else { traitRangePosition = uint( keccak256( abi.encodePacked( tokenExtraData, tokenId, tokenId + i ) ) ) % maxSupply; } traitIndex = rarityGen(traitRangePosition, i); hash[i] = traitIndex; } if (_linkedTraits[i][traitIndex].length > 0) { hash[_linkedTraits[i][traitIndex][0]] = _linkedTraits[i][traitIndex][1]; modifiedLayers[_linkedTraits[i][traitIndex][0]] = true; } } for (uint i = 0; i < hash.length; i++) { if (hash[i] < 10) { hashBytes.appendSafe("00"); } else if (hash[i] < 100) { hashBytes.appendSafe("0"); } if (hash[i] > 999) { hashBytes.appendSafe("999"); } else { hashBytes.appendSafe(bytes(_toString(hash[i]))); } } return string(hashBytes); } function handleMint(uint256 count, address recipient) internal whenMintActive returns (uint256) { uint256 totalMinted = _totalMinted(); require(count > 0, "Invalid token count"); require(totalMinted + count <= maxSupply, "All tokens are gone"); if (isPublicMintActive) { if (msg.sender != owner()) { require(_numberMinted(msg.sender) + count <= maxPerAddress, "Exceeded max mints allowed"); require(count * publicMintPrice == msg.value, "Incorrect amount of ether sent"); } require(msg.sender == tx.origin, "EOAs only"); } uint256 batchCount = count / MAX_BATCH_MINT; uint256 remainder = count % MAX_BATCH_MINT; for (uint256 i = 0; i < batchCount; i++) { _mint(recipient, MAX_BATCH_MINT); } if (remainder > 0) { _mint(recipient, remainder); } return totalMinted; } function mint(uint256 count, bytes32[] calldata merkleProof) external payable nonReentrant whenMintActive returns (uint) { if (!isPublicMintActive && msg.sender != owner()) { require(onAllowList(msg.sender, merkleProof), "Not on allow list"); require(_numberMinted(msg.sender) + count <= maxPerAllowList, "Exceeded max mints allowed"); require(count * allowListPrice == msg.value, "Incorrect amount of ether sent"); } return handleMint(count, msg.sender); } function airdrop(uint256 count, address recipient) external payable nonReentrant whenMintActive returns (uint) { require(isPublicMintActive || msg.sender == owner(), "Public minting is not active"); return handleMint(count, recipient); } function isMintActive() public view returns (bool) { return _totalMinted() < maxSupply && (isPublicMintActive || isAllowListActive || msg.sender == owner()); } function hashToSVG(string memory _hash) public view returns (string memory) { uint thisTraitIndex; bytes memory svgBytes = DynamicBuffer.allocate(1024 * 128); svgBytes.appendSafe('<svg width="1200" height="1200" viewBox="0 0 1200 1200" version="1.2" xmlns="http://www.w3.org/2000/svg" style="background-color:'); svgBytes.appendSafe( abi.encodePacked( backgroundColor, ";background-image:url(" ) ); for (uint i = 0; i < NUM_LAYERS - 1; i++) { thisTraitIndex = HelperLib.parseInt( HelperLib._substring(_hash, (i * 3), (i * 3) + 3) ); svgBytes.appendSafe( abi.encodePacked( "data:", _traitDetails[i][thisTraitIndex].mimetype, ";base64,", Base64.encode(SSTORE2.read(_traitDataPointers[i][thisTraitIndex])), "),url(" ) ); } thisTraitIndex = HelperLib.parseInt( HelperLib._substring(_hash, (NUM_LAYERS * 3) - 3, NUM_LAYERS * 3) ); svgBytes.appendSafe( abi.encodePacked( "data:", _traitDetails[NUM_LAYERS - 1][thisTraitIndex].mimetype, ";base64,", Base64.encode(SSTORE2.read(_traitDataPointers[NUM_LAYERS - 1][thisTraitIndex])), ');background-repeat:no-repeat;background-size:contain;background-position:center;image-rendering:-webkit-optimize-contrast;-ms-interpolation-mode:nearest-neighbor;image-rendering:-moz-crisp-edges;image-rendering:pixelated;"></svg>' ) ); return string( abi.encodePacked( "data:image/svg+xml;base64,", Base64.encode(svgBytes) ) ); } function hashToMetadata(string memory _hash) public view returns (string memory) { bytes memory metadataBytes = DynamicBuffer.allocate(1024 * 128); metadataBytes.appendSafe("["); bool afterFirstTrait; for (uint i = 0; i < NUM_LAYERS; i++) { uint thisTraitIndex = HelperLib.parseInt( HelperLib._substring(_hash, (i * 3), (i * 3) + 3) ); if (_traitDetails[i][thisTraitIndex].hide == false) { if (afterFirstTrait) { metadataBytes.appendSafe(","); } metadataBytes.appendSafe( abi.encodePacked( '{"trait_type":"', LAYER_NAMES[i], '","value":"', _traitDetails[i][thisTraitIndex].name, '"}' ) ); if (afterFirstTrait == false) { afterFirstTrait = true; } } if (i == NUM_LAYERS - 1) { metadataBytes.appendSafe("]"); } } return string(metadataBytes); } function onAllowList(address addr, bytes32[] calldata merkleProof) public view returns (bool) { return MerkleProof.verify(merkleProof, merkleRoot, keccak256(abi.encodePacked(addr))); } function tokenURI(uint tokenId) public view override returns (string memory) { require(_exists(tokenId), "Invalid token"); require(_traitDataPointers[0].length > 0, "Traits have not been added"); string memory tokenHash = tokenIdToHash(tokenId); bytes memory jsonBytes = DynamicBuffer.allocate(1024 * 128); jsonBytes.appendSafe(unicode"{\\"name\\":\\"1337 skulls #"); jsonBytes.appendSafe( abi.encodePacked( _toString(tokenId), "\\",\\"description\\":\\"", contractData.description, "\\"," ) ); if (bytes(baseURI).length > 0 && _renderTokenOffChain[tokenId]) { jsonBytes.appendSafe( abi.encodePacked( '"image":"', baseURI, _toString(tokenId), "?dna=", tokenHash, '&network=mainnet",' ) ); } else { string memory svgCode = ""; if (shouldWrapSVG) { string memory svgString = hashToSVG(tokenHash); svgCode = string( abi.encodePacked( "data:image/svg+xml;base64,", Base64.encode( abi.encodePacked( '<svg width="100%" height="100%" viewBox="0 0 1200 1200" version="1.2" xmlns="http://www.w3.org/2000/svg"><image width="1200" height="1200" href="', svgString, '"></image></svg>' ) ) ) ); jsonBytes.appendSafe( abi.encodePacked( '"svg_image_data":"', svgString, '",' ) ); } else { svgCode = hashToSVG(tokenHash); } jsonBytes.appendSafe( abi.encodePacked( '"image_data":"', svgCode, '",' ) ); } jsonBytes.appendSafe( abi.encodePacked( '"attributes":', hashToMetadata(tokenHash), "}" ) ); return string( abi.encodePacked( "data:application/json;base64,", Base64.encode(jsonBytes) ) ); } function contractURI() public view returns (string memory) { return string( abi.encodePacked( "data:application/json;base64,", Base64.encode( abi.encodePacked( '{"name":"', contractData.name, '","description":"', contractData.description, '","image":"', contractData.image, '","banner":"', contractData.banner, '","external_link":"', contractData.website, '","seller_fee_basis_points":', _toString(contractData.royalties), ',"fee_recipient":"', contractData.royaltiesRecipient, '"}' ) ) ) ); } function tokenIdToSVG(uint tokenId) public view returns (string memory) { return hashToSVG(tokenIdToHash(tokenId)); } function traitDetails(uint layerIndex, uint traitIndex) public view returns (Trait memory) { return _traitDetails[layerIndex][traitIndex]; } function traitData(uint layerIndex, uint traitIndex) public view returns (string memory) { return string(SSTORE2.read(_traitDataPointers[layerIndex][traitIndex])); } function getLinkedTraits(uint layerIndex, uint traitIndex) public view returns (uint[] memory) { return _linkedTraits[layerIndex][traitIndex]; } function addLayer(uint layerIndex, TraitDTO[] memory traits) public onlyOwner whenUnsealed { require(TIERS[layerIndex].length == traits.length, "Traits size does not match tiers for this index"); address[] memory dataPointers = new address[](traits.length); for (uint i = 0; i < traits.length; i++) { if (traits[i].useExistingData) { dataPointers[i] = dataPointers[traits[i].existingDataIndex]; } else { dataPointers[i] = SSTORE2.write(traits[i].data); } _traitDetails[layerIndex][i] = Trait(traits[i].name, traits[i].mimetype, traits[i].hide); } _traitDataPointers[layerIndex] = dataPointers; return; } function addTrait(uint layerIndex, uint traitIndex, TraitDTO memory trait) public onlyOwner whenUnsealed { _traitDetails[layerIndex][traitIndex] = Trait(trait.name, trait.mimetype, trait.hide); address[] memory dataPointers = _traitDataPointers[layerIndex]; if (trait.useExistingData) { dataPointers[traitIndex] = dataPointers[trait.existingDataIndex]; } else { dataPointers[traitIndex] = SSTORE2.write(trait.data); } _traitDataPointers[layerIndex] = dataPointers; return; } function setLinkedTraits(LinkedTraitDTO[] memory linkedTraits) public onlyOwner whenUnsealed { for (uint i = 0; i < linkedTraits.length; i++) { _linkedTraits[linkedTraits[i].traitA[0]][linkedTraits[i].traitA[1]] = [linkedTraits[i].traitB[0],linkedTraits[i].traitB[1]]; } } function setContractData(ContractData memory data) external onlyOwner whenUnsealed { contractData = data; } function setMaxPerAddress(uint max) external onlyOwner { maxPerAddress = max; } function setBaseURI(string memory uri) external onlyOwner { baseURI = uri; } function setBackgroundColor(string memory color) external onlyOwner whenUnsealed { backgroundColor = color; } function setRenderOfTokenId(uint tokenId, bool renderOffChain) external { require(msg.sender == ownerOf(tokenId), "Only the token owner can set the render method"); _renderTokenOffChain[tokenId] = renderOffChain; } function setMerkleRoot(bytes32 newMerkleRoot) external onlyOwner { merkleRoot = newMerkleRoot; } function setMaxPerAllowList(uint max) external onlyOwner { maxPerAllowList = max; } function setAllowListPrice(uint price) external onlyOwner { allowListPrice = price; } function toggleAllowListMint() external onlyOwner { isAllowListActive = !isAllowListActive; } function toggleOperatorFilter() external onlyOwner { isOperatorFilterEnabled = !isOperatorFilterEnabled; } function toggleWrapSVG() external onlyOwner { shouldWrapSVG = !shouldWrapSVG; } function togglePublicMint() external onlyOwner { isPublicMintActive = !isPublicMintActive; } function sealContract() external whenUnsealed onlyOwner { isContractSealed = true; } function withdraw() external onlyOwner nonReentrant { uint balance = address(this).balance; uint amount = (balance * (10000 - DEVELOPER_FEE)) / 10000; uint distAmount = 0; uint totalDistributionPercentage = 0; address payable receiver = payable(owner()); address payable dev = payable(0xEA208Da933C43857683C04BC76e3FD331D7bfdf7); Address.sendValue(dev, balance - amount); if (withdrawRecipients.length > 0) { for (uint i = 0; i < withdrawRecipients.length; i++) { totalDistributionPercentage = totalDistributionPercentage + withdrawRecipients[i].percentage; address payable currRecepient = payable(withdrawRecipients[i].recipientAddress); distAmount = (amount * (10000 - withdrawRecipients[i].percentage)) / 10000; Address.sendValue(currRecepient, amount - distAmount); } } balance = address(this).balance; Address.sendValue(receiver, balance); } function transferFrom(address from, address to, uint256 tokenId) public payable override onlyAllowedOperator(from) { super.transferFrom(from, to, tokenId); } function safeTransferFrom(address from, address to, uint256 tokenId) public payable override onlyAllowedOperator(from) { super.safeTransferFrom(from, to, tokenId); } function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public payable override onlyAllowedOperator(from) { super.safeTransferFrom(from, to, tokenId, data); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import {OperatorFilterer} from "./OperatorFilterer.sol"; abstract contract DefaultOperatorFilterer is OperatorFilterer { address constant DEFAULT_SUBSCRIPTION = address(0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6); constructor() OperatorFilterer(DEFAULT_SUBSCRIPTION, true) {} }// SPDX-License-Identifier: MIT // Copyright (c) 2021 the ethier authors (github.com/divergencetech/ethier) pragma solidity >=0.8.0; /// @title DynamicBuffer /// @author David Huber (@cxkoda) and Simon Fremaux (@dievardump). See also /// https://raw.githubusercontent.com/dievardump/solidity-dynamic-buffer /// @notice This library is used to allocate a big amount of container memory // which will be subsequently filled without needing to reallocate /// memory. /// @dev First, allocate memory. /// Then use `buffer.appendUnchecked(theBytes)` or `appendSafe()` if /// bounds checking is required. library DynamicBuffer { /// @notice Allocates container space for the DynamicBuffer /// @param capacity The intended max amount of bytes in the buffer /// @return buffer The memory location of the buffer /// @dev Allocates `capacity + 0x60` bytes of space /// The buffer array starts at the first container data position, /// (i.e. `buffer = container + 0x20`) function allocate(uint256 capacity) internal pure returns (bytes memory buffer) { assembly { // Get next-free memory address let container := mload(0x40) // Allocate memory by setting a new next-free address { // Add 2 x 32 bytes in size for the two length fields // Add 32 bytes safety space for 32B chunked copy let size := add(capacity, 0x60) let newNextFree := add(container, size) mstore(0x40, newNextFree) } // Set the correct container length { let length := add(capacity, 0x40) mstore(container, length) } // The buffer starts at idx 1 in the container (0 is length) buffer := add(container, 0x20) // Init content with length 0 mstore(buffer, 0) } return buffer; } /// @notice Appends data to buffer, and update buffer length /// @param buffer the buffer to append the data to /// @param data the data to append /// @dev Does not perform out-of-bound checks (container capacity) /// for efficiency. function appendUnchecked(bytes memory buffer, bytes memory data) internal pure { assembly { let length := mload(data) for { data := add(data, 0x20) let dataEnd := add(data, length) let copyTo := add(buffer, add(mload(buffer), 0x20)) } lt(data, dataEnd) { data := add(data, 0x20) copyTo := add(copyTo, 0x20) } { // Copy 32B chunks from data to buffer. // This may read over data array boundaries and copy invalid // bytes, which doesn't matter in the end since we will // later set the correct buffer length, and have allocated an // additional word to avoid buffer overflow. mstore(copyTo, mload(data)) } // Update buffer length mstore(buffer, add(mload(buffer), length)) } } /// @notice Appends data to buffer, and update buffer length /// @param buffer the buffer to append the data to /// @param data the data to append /// @dev Performs out-of-bound checks and calls `appendUnchecked`. function appendSafe(bytes memory buffer, bytes memory data) internal pure { uint256 capacity; uint256 length; assembly { capacity := sub(mload(sub(buffer, 0x20)), 0x40) length := mload(buffer) } require( length + data.length <= capacity, "DynamicBuffer: Appending out of bounds." ); appendUnchecked(buffer, data); } }// SPDX-License-Identifier: MIT pragma solidity ^0.8.14; library HelperLib { function parseInt(string memory _a) internal pure returns (uint8 _parsedInt) { bytes memory bresult = bytes(_a); uint8 mint = 0; for (uint8 i = 0; i < bresult.length; i++) { if ( (uint8(uint8(bresult[i])) >= 48) && (uint8(uint8(bresult[i])) <= 57) ) { mint *= 10; mint += uint8(bresult[i]) - 48; } } return mint; } function _substring( string memory str, uint256 startIndex, uint256 endIndex ) internal pure returns (string memory) { bytes memory strBytes = bytes(str); bytes memory result = new bytes(endIndex - startIndex); for (uint256 i = startIndex; i < endIndex; i++) { result[i - startIndex] = strBytes[i]; } return string(result); } }// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; interface IOperatorFilterRegistry { function isOperatorAllowed(address registrant, address operator) external view returns (bool); function register(address registrant) external; function registerAndSubscribe(address registrant, address subscription) external; function registerAndCopyEntries(address registrant, address registrantToCopy) external; function updateOperator(address registrant, address operator, bool filtered) external; function updateOperators(address registrant, address[] calldata operators, bool filtered) external; function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external; function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external; function subscribe(address registrant, address registrantToSubscribe) external; function unsubscribe(address registrant, bool copyExistingEntries) external; function subscriptionOf(address addr) external returns (address registrant); function subscribers(address registrant) external returns (address[] memory); function subscriberAt(address registrant, uint256 index) external returns (address); function copyEntriesOf(address registrant, address registrantToCopy) external; function isOperatorFiltered(address registrant, address operator) external returns (bool); function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool); function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool); function filteredOperators(address addr) external returns (address[] memory); function filteredCodeHashes(address addr) external returns (bytes32[] memory); function filteredOperatorAt(address registrant, uint256 index) external returns (address); function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32); function isRegistered(address addr) external returns (bool); function codeHashOf(address addr) external returns (bytes32); }// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import {IOperatorFilterRegistry} from "./IOperatorFilterRegistry.sol"; abstract contract OperatorFilterer { error OperatorNotAllowed(address operator); bool public isOperatorFilterEnabled = true; IOperatorFilterRegistry constant operatorFilterRegistry = IOperatorFilterRegistry(0x000000000000AAeB6D7670E522A718067333cd4E); constructor(address subscriptionOrRegistrantToCopy, bool subscribe) { // If an inheriting token contract is deployed to a network without the registry deployed, the modifier // will not revert, but the contract will need to be registered with the registry once it is deployed in // order for the modifier to filter addresses. if (address(operatorFilterRegistry).code.length > 0) { if (subscribe) { operatorFilterRegistry.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy); } else { if (subscriptionOrRegistrantToCopy != address(0)) { operatorFilterRegistry.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy); } else { operatorFilterRegistry.register(address(this)); } } } } modifier onlyAllowedOperator(address from) virtual { // Check if filter operator is enabled if (!isOperatorFilterEnabled) { _; return; } // Check registry code length to facilitate testing in environments without a deployed registry. if (address(operatorFilterRegistry).code.length > 0) { // Allow spending tokens from addresses with balance // Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred // from an EOA. if (from == msg.sender) { _; return; } if ( !( operatorFilterRegistry.isOperatorAllowed(address(this), msg.sender) && operatorFilterRegistry.isOperatorAllowed(address(this), from) ) ) { revert OperatorNotAllowed(msg.sender); } } _; } }// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./utils/Bytecode.sol"; /** @title A key-value storage with auto-generated keys for storing chunks of data with a lower write & read cost. @author Agustin Aguilar <[email protected]> Readme: https://github.com/0xsequence/sstore2#readme */ library SSTORE2 { error WriteError(); /** @notice Stores `_data` and returns `pointer` as key for later retrieval @dev The pointer is a contract address with `_data` as code @param _data to be written @return pointer Pointer to the written `_data` */ function write(bytes memory _data) internal returns (address pointer) { // Append 00 to _data so contract can't be called // Build init code bytes memory code = Bytecode.creationCodeFor( abi.encodePacked( hex'00', _data ) ); // Deploy contract using create assembly { pointer := create(0, add(code, 32), mload(code)) } // Address MUST be non-zero if (pointer == address(0)) revert WriteError(); } /** @notice Reads the contents of the `_pointer` code as data, skips the first byte @dev The function is intended for reading pointers generated by `write` @param _pointer to be read @return data read from `_pointer` contract */ function read(address _pointer) internal view returns (bytes memory) { return Bytecode.codeAt(_pointer, 1, type(uint256).max); } /** @notice Reads the contents of the `_pointer` code as data, skips the first byte @dev The function is intended for reading pointers generated by `write` @param _pointer to be read @param _start number of bytes to skip @return data read from `_pointer` contract */ function read(address _pointer, uint256 _start) internal view returns (bytes memory) { return Bytecode.codeAt(_pointer, _start + 1, type(uint256).max); } /** @notice Reads the contents of the `_pointer` code as data, skips the first byte @dev The function is intended for reading pointers generated by `write` @param _pointer to be read @param _start number of bytes to skip @param _end index before which to end extraction @return data read from `_pointer` contract */ function read(address _pointer, uint256 _start, uint256 _end) internal view returns (bytes memory) { return Bytecode.codeAt(_pointer, _start + 1, _end + 1); } }// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; library Bytecode { error InvalidCodeAtRange(uint256 _size, uint256 _start, uint256 _end); /** @notice Generate a creation code that results on a contract with `_code` as bytecode @param _code The returning value of the resulting `creationCode` @return creationCode (constructor) for new contract */ function creationCodeFor(bytes memory _code) internal pure returns (bytes memory) { /* 0x00 0x63 0x63XXXXXX PUSH4 _code.length size 0x01 0x80 0x80 DUP1 size size 0x02 0x60 0x600e PUSH1 14 14 size size 0x03 0x60 0x6000 PUSH1 00 0 14 size size 0x04 0x39 0x39 CODECOPY size 0x05 0x60 0x6000 PUSH1 00 0 size 0x06 0xf3 0xf3 RETURN <CODE> */ return abi.encodePacked( hex"63", uint32(_code.length), hex"80_60_0E_60_00_39_60_00_F3", _code ); } /** @notice Returns the size of the code on a given address @param _addr Address that may or may not contain code @return size of the code on the given `_addr` */ function codeSize(address _addr) internal view returns (uint256 size) { assembly { size := extcodesize(_addr) } } /** @notice Returns the code of a given address @dev It will fail if `_end < _start` @param _addr Address that may or may not contain code @param _start number of bytes of code to skip on read @param _end index before which to end extraction @return oCode read from `_addr` deployed bytecode Forked from: https://gist.github.com/KardanovIR/fe98661df9338c842b4a30306d507fbd */ function codeAt(address _addr, uint256 _start, uint256 _end) internal view returns (bytes memory oCode) { uint256 csize = codeSize(_addr); if (csize == 0) return bytes(""); if (_start > csize) return bytes(""); if (_end < _start) revert InvalidCodeAtRange(csize, _start, _end); unchecked { uint256 reqSize = _end - _start; uint256 maxSize = csize - _start; uint256 size = maxSize < reqSize ? maxSize : reqSize; assembly { // allocate output byte array - this could also be done without assembly // by using o_code = new bytes(size) oCode := mload(0x40) // new "memory end" including padding mstore(0x40, add(oCode, and(add(add(size, 0x20), 0x1f), not(0x1f)))) // store length in memory mstore(oCode, size) // actually retrieve the code, this needs assembly extcodecopy(_addr, add(oCode, 0x20), _start, size) } } } }// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol) pragma solidity ^0.8.0; /** * @dev Provides a set of functions to operate with Base64 strings. * * _Available since v4.5._ */ library Base64 { /** * @dev Base64 Encoding/Decoding Table */ string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; /** * @dev Converts a `bytes` to its Bytes64 `string` representation. */ function encode(bytes memory data) internal pure returns (string memory) { /** * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol */ if (data.length == 0) return ""; // Loads the table into memory string memory table = _TABLE; // Encoding takes 3 bytes chunks of binary data from `bytes` data parameter // and split into 4 numbers of 6 bits. // The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up // - `data.length + 2` -> Round up // - `/ 3` -> Number of 3-bytes chunks // - `4 *` -> 4 characters for each chunk string memory result = new string(4 * ((data.length + 2) / 3)); /// @solidity memory-safe-assembly assembly { // Prepare the lookup table (skip the first "length" byte) let tablePtr := add(table, 1) // Prepare result pointer, jump over length let resultPtr := add(result, 32) // Run over the input, 3 bytes at a time for { let dataPtr := data let endPtr := add(data, mload(data)) } lt(dataPtr, endPtr) { } { // Advance 3 bytes dataPtr := add(dataPtr, 3) let input := mload(dataPtr) // To write each character, shift the 3 bytes (18 bits) chunk // 4 times in blocks of 6 bits for each character (18, 12, 6, 0) // and apply logical AND with 0x3F which is the number of // the previous character in the ASCII table prior to the Base64 Table // The result is then added to the table to get the character to write, // and finally write it in the result pointer but with a left shift // of 256 (1 byte) - 8 (1 ASCII char) = 248 bits mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F)))) resultPtr := add(resultPtr, 1) // Advance } // When data `bytes` is not exactly 3 bytes long // it is padded with `=` characters at the end switch mod(mload(data), 3) case 1 { mstore8(sub(resultPtr, 1), 0x3d) mstore8(sub(resultPtr, 2), 0x3d) } case 2 { mstore8(sub(resultPtr, 1), 0x3d) } } return result; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } // SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; import './IERC721A.sol'; /** * @dev Interface of ERC721 token receiver. */ interface ERC721A__IERC721Receiver { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } /** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is IERC721A { // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). struct TokenApprovalRef { address value; } // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 private _currentIndex; // The number of tokens burned. uint256 private _burnCounter; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) private _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) private _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => TokenApprovalRef) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // ============================================================= // CONSTRUCTOR // ============================================================= constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _currentIndex = _startTokenId(); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID. * To change the starting token ID, please override this function. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return _currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256) { // Counter underflow is impossible as _burnCounter cannot be incremented // more than `_currentIndex - _startTokenId()` times. unchecked { return _currentIndex - _burnCounter - _startTokenId(); } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { return _currentIndex - _startTokenId(); } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return _burnCounter; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) revert BalanceQueryForZeroAddress(); return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(_packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = _packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); _packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnerships[index]); } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (_packedOwnerships[index] == 0) { _packedOwnerships[index] = _packedOwnershipOf(index); } } /** * Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) { uint256 curr = tokenId; unchecked { if (_startTokenId() <= curr) if (curr < _currentIndex) { uint256 packed = _packedOwnerships[curr]; // If not burned. if (packed & _BITMASK_BURNED == 0) { // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `curr` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. while (packed == 0) { packed = _packedOwnerships[--curr]; } return packed; } } } revert OwnerQueryForNonexistentToken(); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) public payable virtual override { address owner = ownerOf(tokenId); if (_msgSenderERC721A() != owner) if (!isApprovedForAll(owner, _msgSenderERC721A())) { revert ApprovalCallerNotOwnerNorApproved(); } _tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); return _tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { _operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _startTokenId() <= tokenId && tokenId < _currentIndex && // If within bounds, _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned. } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner( address approvedAddress, address owner, address msgSender ) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) public payable virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner(); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); if (to == address(0)) revert TransferToZeroAddress(); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --_packedAddressData[from]; // Updates: `balance -= 1`. ++_packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, to, tokenId); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public payable virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public payable virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns ( bytes4 retval ) { return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert TransferToNonERC721ReceiverImplementer(); } else { assembly { revert(add(32, reason), mload(reason)) } } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (quantity == 0) revert MintZeroQuantity(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); uint256 toMasked; uint256 end = startTokenId + quantity; // Use assembly to loop and emit the `Transfer` event for gas savings. // The duplicated `log4` removes an extra check and reduces stack juggling. // The assembly, together with the surrounding Solidity code, have been // delicately arranged to nudge the compiler into producing optimized opcodes. assembly { // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. toMasked := and(to, _BITMASK_ADDRESS) // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. startTokenId // `tokenId`. ) // The `iszero(eq(,))` check ensures that large values of `quantity` // that overflows uint256 will make the loop run out of gas. // The compiler will optimize the `iszero` away for performance. for { let tokenId := add(startTokenId, 1) } iszero(eq(tokenId, end)) { tokenId := add(tokenId, 1) } { // Emit the `Transfer` event. Similar to above. log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId) } } if (toMasked == 0) revert MintToZeroAddress(); _currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (to == address(0)) revert MintToZeroAddress(); if (quantity == 0) revert MintZeroQuantity(); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); _currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = _currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } while (index < end); // Reentrancy protection. if (_currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ''); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. unchecked { _burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = _packedOwnerships[index]; if (packed == 0) revert OwnershipNotInitializedForExtraData(); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); _packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData( address from, address to, uint24 previousExtraData ) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData( address from, address to, uint256 prevOwnershipPacked ) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } } // SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721A. */ interface IERC721A { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external payable; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external payable; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); }
File 3 of 4: BlurExchangeV2
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { Ownable2StepUpgradeable } from "lib/openzeppelin-contracts-upgradeable/contracts/access/Ownable2StepUpgradeable.sol"; import { UUPSUpgradeable } from "lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol"; import { Executor } from "./Executor.sol"; import "./lib/Constants.sol"; import { TakeAsk, TakeBid, TakeAskSingle, TakeBidSingle, Order, Exchange, Fees, FeeRate, AssetType, OrderType, Transfer, FungibleTransfers, StateUpdate, AtomicExecution, Cancel, Listing } from "./lib/Structs.sol"; import { IBlurExchangeV2 } from "./interfaces/IBlurExchangeV2.sol"; import { ReentrancyGuardUpgradeable } from "./lib/ReentrancyGuardUpgradeable.sol"; contract BlurExchangeV2 is IBlurExchangeV2, Ownable2StepUpgradeable, UUPSUpgradeable, ReentrancyGuardUpgradeable, Executor { address public governor; // required by the OZ UUPS module function _authorizeUpgrade(address) internal override onlyOwner {} constructor(address delegate, address pool, address proxy) Executor(delegate, pool, proxy) { _disableInitializers(); } function initialize() external initializer { __UUPSUpgradeable_init(); __Ownable_init(); __Reentrancy_init(); verifyDomain(); } modifier onlyGovernor() { if (msg.sender != governor) { revert Unauthorized(); } _; } /** * @notice Governor only function to set the protocol fee rate and recipient * @param recipient Protocol fee recipient * @param rate Protocol fee rate */ function setProtocolFee(address recipient, uint16 rate) external onlyGovernor { if (rate > _MAX_PROTOCOL_FEE_RATE) { revert ProtocolFeeTooHigh(); } protocolFee = FeeRate(recipient, rate); emit NewProtocolFee(recipient, rate); } /** * @notice Admin only function to set the governor of the exchange * @param _governor Address of governor to set */ function setGovernor(address _governor) external onlyOwner { governor = _governor; emit NewGovernor(_governor); } /** * @notice Admin only function to grant or revoke the approval of an oracle * @param oracle Address to set approval of * @param approved If the oracle should be approved or not */ function setOracle(address oracle, bool approved) external onlyOwner { if (approved) { oracles[oracle] = 1; } else { oracles[oracle] = 0; } emit SetOracle(oracle, approved); } /** * @notice Admin only function to set the block range * @param _blockRange Block range that oracle signatures are valid for */ function setBlockRange(uint256 _blockRange) external onlyOwner { blockRange = _blockRange; emit NewBlockRange(_blockRange); } /** * @notice Cancel listings by recording their fulfillment * @param cancels List of cancels to execute */ function cancelTrades(Cancel[] memory cancels) external { uint256 cancelsLength = cancels.length; for (uint256 i; i < cancelsLength; ) { Cancel memory cancel = cancels[i]; amountTaken[msg.sender][cancel.hash][cancel.index] += cancel.amount; emit CancelTrade(msg.sender, cancel.hash, cancel.index, cancel.amount); unchecked { ++i; } } } /** * @notice Cancels all orders by incrementing caller nonce */ function incrementNonce() external { emit NonceIncremented(msg.sender, ++nonces[msg.sender]); } /*////////////////////////////////////////////////////////////// EXECUTION WRAPPERS //////////////////////////////////////////////////////////////*/ /** * @notice Wrapper of _takeAsk that verifies an oracle signature of the calldata before executing * @param inputs Inputs for _takeAsk * @param oracleSignature Oracle signature of inputs */ function takeAsk( TakeAsk memory inputs, bytes calldata oracleSignature ) public payable nonReentrant verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature) { _takeAsk( inputs.orders, inputs.exchanges, inputs.takerFee, inputs.signatures, inputs.tokenRecipient ); } /** * @notice Wrapper of _takeBid that verifies an oracle signature of the calldata before executing * @param inputs Inputs for _takeBid * @param oracleSignature Oracle signature of inputs */ function takeBid( TakeBid memory inputs, bytes calldata oracleSignature ) public verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature) { _takeBid(inputs.orders, inputs.exchanges, inputs.takerFee, inputs.signatures); } /** * @notice Wrapper of _takeAskSingle that verifies an oracle signature of the calldata before executing * @param inputs Inputs for _takeAskSingle * @param oracleSignature Oracle signature of inputs */ function takeAskSingle( TakeAskSingle memory inputs, bytes calldata oracleSignature ) public payable nonReentrant verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature) { _takeAskSingle( inputs.order, inputs.exchange, inputs.takerFee, inputs.signature, inputs.tokenRecipient ); } /** * @notice Wrapper of _takeBidSingle that verifies an oracle signature of the calldata before executing * @param inputs Inputs for _takeBidSingle * @param oracleSignature Oracle signature of inputs */ function takeBidSingle( TakeBidSingle memory inputs, bytes calldata oracleSignature ) external verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature) { _takeBidSingle(inputs.order, inputs.exchange, inputs.takerFee, inputs.signature); } /*////////////////////////////////////////////////////////////// EXECUTION POOL WRAPPERS //////////////////////////////////////////////////////////////*/ /** * @notice Wrapper of takeAskSingle that withdraws ETH from the caller's pool balance prior to executing * @param inputs Inputs for takeAskSingle * @param oracleSignature Oracle signature of inputs * @param amountToWithdraw Amount of ETH to withdraw from the pool */ function takeAskSinglePool( TakeAskSingle memory inputs, bytes calldata oracleSignature, uint256 amountToWithdraw ) external payable { _withdrawFromPool(msg.sender, amountToWithdraw); takeAskSingle(inputs, oracleSignature); } /** * @notice Wrapper of takeAsk that withdraws ETH from the caller's pool balance prior to executing * @param inputs Inputs for takeAsk * @param oracleSignature Oracle signature of inputs * @param amountToWithdraw Amount of ETH to withdraw from the pool */ function takeAskPool( TakeAsk memory inputs, bytes calldata oracleSignature, uint256 amountToWithdraw ) external payable { _withdrawFromPool(msg.sender, amountToWithdraw); takeAsk(inputs, oracleSignature); } /*////////////////////////////////////////////////////////////// EXECUTION FUNCTIONS //////////////////////////////////////////////////////////////*/ /** * @notice Take a single ask * @param order Order of listing to fulfill * @param exchange Exchange struct indicating the listing to take and the parameters to match it with * @param takerFee Taker fee to be taken * @param signature Order signature * @param tokenRecipient Address to receive the token transfer */ function _takeAskSingle( Order memory order, Exchange memory exchange, FeeRate memory takerFee, bytes memory signature, address tokenRecipient ) internal { Fees memory fees = Fees(protocolFee, takerFee); Listing memory listing = exchange.listing; uint256 takerAmount = exchange.taker.amount; /* Validate the order and listing, revert if not. */ if (!_validateOrderAndListing(order, OrderType.ASK, exchange, signature, fees)) { revert InvalidOrder(); } /* Create single execution batch and insert the transfer. */ bytes memory executionBatch = _initializeSingleExecution( order, OrderType.ASK, listing.tokenId, takerAmount, tokenRecipient ); /* Set the fulfillment of the order. */ unchecked { amountTaken[order.trader][bytes32(order.salt)][listing.index] += takerAmount; } /* Execute the token transfers, revert if not successful. */ { bool[] memory successfulTransfers = _executeNonfungibleTransfers(executionBatch, 1); if (!successfulTransfers[0]) { revert TokenTransferFailed(); } } ( uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount ) = _computeFees(listing.price, takerAmount, order.makerFee, fees); /* If there are insufficient funds to cover the price with the fees, revert. */ unchecked { if (address(this).balance < totalPrice + takerFeeAmount) { revert InsufficientFunds(); } } /* Execute ETH transfers. */ _transferETH(fees.protocolFee.recipient, protocolFeeAmount); _transferETH(fees.takerFee.recipient, takerFeeAmount); _transferETH(order.makerFee.recipient, makerFeeAmount); unchecked { _transferETH(order.trader, totalPrice - makerFeeAmount - protocolFeeAmount); } _emitExecutionEvent(executionBatch, order, listing.index, totalPrice, fees, OrderType.ASK); /* Return dust. */ _transferETH(msg.sender, address(this).balance); } /** * @notice Take a single bid * @param order Order of listing to fulfill * @param exchange Exchange struct indicating the listing to take and the parameters to match it with * @param takerFee Taker fee to be taken * @param signature Order signature */ function _takeBidSingle( Order memory order, Exchange memory exchange, FeeRate memory takerFee, bytes memory signature ) internal { Fees memory fees = Fees(protocolFee, takerFee); Listing memory listing = exchange.listing; uint256 takerAmount = exchange.taker.amount; /* Validate the order and listing, revert if not. */ if (!_validateOrderAndListing(order, OrderType.BID, exchange, signature, fees)) { revert InvalidOrder(); } /* Create single execution batch and insert the transfer. */ bytes memory executionBatch = _initializeSingleExecution( order, OrderType.BID, exchange.taker.tokenId, takerAmount, msg.sender ); /* Execute the token transfers, revert if not successful. */ { bool[] memory successfulTransfers = _executeNonfungibleTransfers(executionBatch, 1); if (!successfulTransfers[0]) { revert TokenTransferFailed(); } } ( uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount ) = _computeFees(listing.price, takerAmount, order.makerFee, fees); /* Execute pool transfers and set the fulfillment of the order. */ address trader = order.trader; _transferPool(trader, order.makerFee.recipient, makerFeeAmount); _transferPool(trader, fees.takerFee.recipient, takerFeeAmount); _transferPool(trader, fees.protocolFee.recipient, protocolFeeAmount); unchecked { _transferPool(trader, msg.sender, totalPrice - takerFeeAmount - protocolFeeAmount); amountTaken[trader][bytes32(order.salt)][listing.index] += exchange.taker.amount; } _emitExecutionEvent(executionBatch, order, listing.index, totalPrice, fees, OrderType.BID); } /** * @notice Take multiple asks; efficiently verifying and executing the transfers in bulk * @param orders List of orders * @param exchanges List of exchanges indicating the listing to take and the parameters to match it with * @param takerFee Taker fee to be taken on each exchange * @param signatures Bytes array of order signatures * @param tokenRecipient Address to receive the tokens purchased */ function _takeAsk( Order[] memory orders, Exchange[] memory exchanges, FeeRate memory takerFee, bytes memory signatures, address tokenRecipient ) internal { Fees memory fees = Fees(protocolFee, takerFee); /** * Validate all the orders potentially used in the execution and * initialize the arrays for pending fulfillments. */ (bool[] memory validOrders, uint256[][] memory pendingAmountTaken) = _validateOrders( orders, OrderType.ASK, signatures, fees ); uint256 exchangesLength = exchanges.length; /* Initialize the execution batch structs. */ ( bytes memory executionBatch, FungibleTransfers memory fungibleTransfers ) = _initializeBatch(exchangesLength, OrderType.ASK, tokenRecipient); Order memory order; Exchange memory exchange; uint256 remainingETH = address(this).balance; for (uint256 i; i < exchangesLength; ) { exchange = exchanges[i]; order = orders[exchange.index]; /* Check the listing and exchange is valid and its parent order has already been validated. */ if ( _validateListingFromBatch( order, OrderType.ASK, exchange, validOrders, pendingAmountTaken ) ) { /* Insert the transfers into the batch. */ bool inserted; (remainingETH, inserted) = _insertExecutionAsk( executionBatch, fungibleTransfers, order, exchange, fees, remainingETH ); if (inserted) { unchecked { pendingAmountTaken[exchange.index][exchange.listing.index] += exchange .taker .amount; } } } unchecked { ++i; } } /* Execute all transfers. */ _executeBatchTransfer(executionBatch, fungibleTransfers, fees, OrderType.ASK); /* Return dust. */ _transferETH(msg.sender, address(this).balance); } /** * @notice Take multiple bids; efficiently verifying and executing the transfers in bulk * @param orders List of orders * @param exchanges List of exchanges indicating the listing to take and the parameters to match it with * @param takerFee Taker fee to be taken on each exchange * @param signatures Bytes array of order signatures */ function _takeBid( Order[] memory orders, Exchange[] memory exchanges, FeeRate memory takerFee, bytes memory signatures ) internal { Fees memory fees = Fees(protocolFee, takerFee); /** * Validate all the orders potentially used in the execution and * initialize the arrays for pending fulfillments. */ (bool[] memory validOrders, uint256[][] memory pendingAmountTaken) = _validateOrders( orders, OrderType.BID, signatures, fees ); uint256 exchangesLength = exchanges.length; /* Initialize the execution batch structs. */ ( bytes memory executionBatch, FungibleTransfers memory fungibleTransfers ) = _initializeBatch(exchangesLength, OrderType.BID, msg.sender); Order memory order; Exchange memory exchange; for (uint256 i; i < exchangesLength; ) { exchange = exchanges[i]; order = orders[exchange.index]; /* Check the listing and exchange is valid and its parent order has already been validated. */ if ( _validateListingFromBatch( order, OrderType.BID, exchange, validOrders, pendingAmountTaken ) ) { /* Insert the transfers into the batch. */ _insertExecutionBid(executionBatch, fungibleTransfers, order, exchange, fees); /* Record the pending fulfillment. */ unchecked { pendingAmountTaken[exchange.index][exchange.listing.index] += exchange .taker .amount; } } unchecked { ++i; } } /* Execute all transfers. */ _executeBatchTransfer(executionBatch, fungibleTransfers, fees, OrderType.BID); } /*////////////////////////////////////////////////////////////// EXECUTION HELPERS //////////////////////////////////////////////////////////////*/ /** * @notice Initialize the ExecutionBatch and FungibleTransfers objects for bulk execution * @param exchangesLength Number of exchanges * @param orderType Order type * @param taker Order taker address */ function _initializeBatch( uint256 exchangesLength, OrderType orderType, address taker ) internal pure returns (bytes memory executionBatch, FungibleTransfers memory fungibleTransfers) { /* Initialize the batch. Constructing it manually in calldata packing allows for cheaper delegate execution. */ uint256 arrayLength = Transfer_size * exchangesLength + One_word; uint256 executionBatchLength = ExecutionBatch_base_size + arrayLength; executionBatch = new bytes(executionBatchLength); assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) mstore(add(calldataPointer, ExecutionBatch_taker_offset), taker) mstore(add(calldataPointer, ExecutionBatch_orderType_offset), orderType) mstore(add(calldataPointer, ExecutionBatch_transfers_pointer_offset), ExecutionBatch_transfers_offset) // set the transfers pointer mstore(add(calldataPointer, ExecutionBatch_transfers_offset), exchangesLength) // set the length of the transfers array } /* Initialize the fungible transfers object. */ AtomicExecution[] memory executions = new AtomicExecution[](exchangesLength); address[] memory feeRecipients = new address[](exchangesLength); address[] memory makers = new address[](exchangesLength); uint256[] memory makerTransfers = new uint256[](exchangesLength); uint256[] memory feeTransfers = new uint256[](exchangesLength); fungibleTransfers = FungibleTransfers({ totalProtocolFee: 0, totalSellerTransfer: 0, totalTakerFee: 0, feeRecipientId: 0, feeRecipients: feeRecipients, makerId: 0, makers: makers, feeTransfers: feeTransfers, makerTransfers: makerTransfers, executions: executions }); } /** * @notice Initialize the ExecutionBatch object for a single execution * @param order Order to take a Listing from * @param orderType Order type * @param tokenId Token id * @param amount ERC721/ERC1155 amount * @param taker Order taker address */ function _initializeSingleExecution( Order memory order, OrderType orderType, uint256 tokenId, uint256 amount, address taker ) internal pure returns (bytes memory executionBatch) { /* Initialize the batch. Constructing it manually in calldata packing allows for cheaper delegate execution. */ uint256 arrayLength = Transfer_size + One_word; uint256 executionBatchLength = ExecutionBatch_base_size + arrayLength; executionBatch = new bytes(executionBatchLength); assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) mstore(add(calldataPointer, ExecutionBatch_taker_offset), taker) mstore(add(calldataPointer, ExecutionBatch_orderType_offset), orderType) mstore(add(calldataPointer, ExecutionBatch_transfers_pointer_offset), ExecutionBatch_transfers_offset) // set the transfers pointer mstore(add(calldataPointer, ExecutionBatch_transfers_offset), 1) // set the length of the transfers array } /* Insert the transfer into the batch. */ _insertNonfungibleTransfer(executionBatch, order, tokenId, amount); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (access/Ownable2Step.sol) pragma solidity ^0.8.0; import "./OwnableUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable { function __Ownable2Step_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable2Step_init_unchained() internal onlyInitializing { } address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() external { address sender = _msgSender(); require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner"); _transferOwnership(sender); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.0; import "../../interfaces/draft-IERC1822Upgradeable.sol"; import "../ERC1967/ERC1967UpgradeUpgradeable.sol"; import "./Initializable.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. * * _Available since v4.1._ */ abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable { function __UUPSUpgradeable_init() internal onlyInitializing { } function __UUPSUpgradeable_init_unchained() internal onlyInitializing { } /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment address private immutable __self = address(this); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { require(address(this) != __self, "Function must be called through delegatecall"); require(_getImplementation() == __self, "Function must be called through active proxy"); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall"); _; } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual override notDelegated returns (bytes32) { return _IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. */ function upgradeTo(address newImplementation) external virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, new bytes(0), false); } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data, true); } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeTo} and {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal override onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { Validation } from "./Validation.sol"; import "./lib/Constants.sol"; import { Order, Exchange, FungibleTransfers, StateUpdate, AtomicExecution, AssetType, Fees, FeeRate, Listing, Taker, Transfer, OrderType } from "./lib/Structs.sol"; import { IDelegate } from "./interfaces/IDelegate.sol"; import { IExecutor } from "./interfaces/IExecutor.sol"; abstract contract Executor is IExecutor, Validation { address private immutable _DELEGATE; address private immutable _POOL; constructor(address delegate, address pool, address proxy) Validation(proxy) { _DELEGATE = delegate; _POOL = pool; } receive() external payable { if (msg.sender != _POOL) { revert Unauthorized(); } } /** * @notice Insert a validated ask listing into the batch if there's sufficient ETH to fulfill * @param executionBatch Execution batch * @param fungibleTransfers Fungible transfers * @param order Order of the listing to insert * @param exchange Exchange containing the listing to insert * @param fees Protocol and taker fees * @param remainingETH Available ETH remaining * @return Available ETH remaining after insertion; if the listing was inserted in the batch */ function _insertExecutionAsk( bytes memory executionBatch, FungibleTransfers memory fungibleTransfers, Order memory order, Exchange memory exchange, Fees memory fees, uint256 remainingETH ) internal pure returns (uint256, bool) { uint256 takerAmount = exchange.taker.amount; ( uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount ) = _computeFees(exchange.listing.price, takerAmount, order.makerFee, fees); /* Only insert the executions if there are sufficient funds to execute. */ if (remainingETH >= totalPrice + takerFeeAmount) { unchecked { remainingETH = remainingETH - totalPrice - takerFeeAmount; } _setAddresses(fungibleTransfers, order); uint256 index = _insertNonfungibleTransfer( executionBatch, order, exchange.listing.tokenId, takerAmount ); _insertFungibleTransfers( fungibleTransfers, takerAmount, exchange.listing, bytes32(order.salt), index, totalPrice, protocolFeeAmount, makerFeeAmount, takerFeeAmount, true ); return (remainingETH, true); } else { return (remainingETH, false); } } /** * @notice Insert a validated bid listing into the batch * @param executionBatch Execution batch * @param fungibleTransfers Fungible transfers * @param order Order of the listing to insert * @param exchange Exchange containing listing to insert * @param fees Protocol and taker fees */ function _insertExecutionBid( bytes memory executionBatch, FungibleTransfers memory fungibleTransfers, Order memory order, Exchange memory exchange, Fees memory fees ) internal pure { uint256 takerAmount = exchange.taker.amount; ( uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount ) = _computeFees(exchange.listing.price, takerAmount, order.makerFee, fees); _setAddresses(fungibleTransfers, order); uint256 index = _insertNonfungibleTransfer( executionBatch, order, exchange.taker.tokenId, takerAmount ); _insertFungibleTransfers( fungibleTransfers, takerAmount, exchange.listing, bytes32(order.salt), index, totalPrice, protocolFeeAmount, makerFeeAmount, takerFeeAmount, false ); } /** * @notice Insert the nonfungible transfer into the batch * @param executionBatch Execution batch * @param order Order * @param tokenId Token id * @param amount Number of token units * @return transferIndex Index of the transfer */ function _insertNonfungibleTransfer( bytes memory executionBatch, Order memory order, uint256 tokenId, uint256 amount ) internal pure returns (uint256 transferIndex) { assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) transferIndex := mload(add(calldataPointer, ExecutionBatch_length_offset)) let transfersOffset := mload(add(calldataPointer, ExecutionBatch_transfers_pointer_offset)) let transferPointer := add( add(calldataPointer, add(transfersOffset, One_word)), mul(transferIndex, Transfer_size) ) mstore( add(transferPointer, Transfer_trader_offset), mload(add(order, Order_trader_offset)) ) // set the trader mstore(add(transferPointer, Transfer_id_offset), tokenId) // set the token id mstore( add(transferPointer, Transfer_collection_offset), mload(add(order, Order_collection_offset)) ) // set the collection mstore( add(transferPointer, Transfer_assetType_offset), mload(add(order, Order_assetType_offset)) ) // set the asset type mstore(add(calldataPointer, ExecutionBatch_length_offset), add(transferIndex, 1)) // increment the batch length if eq(mload(add(order, Order_assetType_offset)), AssetType_ERC1155) { mstore(add(transferPointer, Transfer_amount_offset), amount) // set the amount (don't need to set for ERC721's) } } } /** * @notice Insert the fungible transfers that need to be executed atomically * @param fungibleTransfers Fungible transfers struct * @param takerAmount Amount of the listing being taken * @param listing Listing to execute * @param orderHash Order hash * @param index Execution index * @param totalPrice Total price of the purchased tokens * @param protocolFeeAmount Computed protocol fee * @param makerFeeAmount Computed maker fee * @param takerFeeAmount Computed taker fee * @param makerIsSeller Is the order maker the seller */ function _insertFungibleTransfers( FungibleTransfers memory fungibleTransfers, uint256 takerAmount, Listing memory listing, bytes32 orderHash, uint256 index, uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount, bool makerIsSeller ) internal pure { uint256 makerId = fungibleTransfers.makerId; fungibleTransfers.executions[index].makerId = makerId; fungibleTransfers.executions[index].makerFeeRecipientId = fungibleTransfers.feeRecipientId; fungibleTransfers.executions[index].stateUpdate = StateUpdate({ trader: fungibleTransfers.makers[makerId], hash: orderHash, index: listing.index, value: takerAmount, maxAmount: listing.amount }); if (makerIsSeller) { unchecked { fungibleTransfers.executions[index].sellerAmount = totalPrice - protocolFeeAmount - makerFeeAmount; } } else { unchecked { fungibleTransfers.executions[index].sellerAmount = totalPrice - protocolFeeAmount - takerFeeAmount; } } fungibleTransfers.executions[index].makerFeeAmount = makerFeeAmount; fungibleTransfers.executions[index].takerFeeAmount = takerFeeAmount; fungibleTransfers.executions[index].protocolFeeAmount = protocolFeeAmount; } /** * @notice Set the addresses of the maker fee recipient and order maker if different than currently being batched * @param fungibleTransfers Fungible transfers struct * @param order Parent order of listing being added to the batch */ function _setAddresses( FungibleTransfers memory fungibleTransfers, Order memory order ) internal pure { address feeRecipient = order.makerFee.recipient; uint256 feeRecipientId = fungibleTransfers.feeRecipientId; address currentFeeRecipient = fungibleTransfers.feeRecipients[feeRecipientId]; if (feeRecipient != currentFeeRecipient) { if (currentFeeRecipient == address(0)) { fungibleTransfers.feeRecipients[feeRecipientId] = feeRecipient; } else { unchecked { fungibleTransfers.feeRecipients[++feeRecipientId] = feeRecipient; } fungibleTransfers.feeRecipientId = feeRecipientId; } } address trader = order.trader; uint256 makerId = fungibleTransfers.makerId; address currentTrader = fungibleTransfers.makers[makerId]; if (trader != currentTrader) { if (currentTrader == address(0)) { fungibleTransfers.makers[makerId] = trader; } else { unchecked { fungibleTransfers.makers[++makerId] = trader; } fungibleTransfers.makerId = makerId; } } } /** * @notice Compute all necessary fees to be taken * @param pricePerToken Price per token unit * @param takerAmount Number of token units taken (should only be greater than 1 for ERC1155) * @param fees Protocol and taker fee set by the transaction */ function _computeFees( uint256 pricePerToken, uint256 takerAmount, FeeRate memory makerFee, Fees memory fees ) internal pure returns ( uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount ) { totalPrice = pricePerToken * takerAmount; makerFeeAmount = (totalPrice * makerFee.rate) / _BASIS_POINTS; takerFeeAmount = (totalPrice * fees.takerFee.rate) / _BASIS_POINTS; protocolFeeAmount = (totalPrice * fees.protocolFee.rate) / _BASIS_POINTS; } /*////////////////////////////////////////////////////////////// EXECUTION FUNCTIONS //////////////////////////////////////////////////////////////*/ /** * @notice Execute the transfers by first attempting the nonfungible transfers, for the successful transfers sum the fungible transfers by the recipients and execute * @param executionBatch Execution batch struct * @param fungibleTransfers Fungible transfers struct * @param fees Protocol, maker, taker fees (note: makerFee will be inaccurate at this point in execution) * @param orderType Order type */ function _executeBatchTransfer( bytes memory executionBatch, FungibleTransfers memory fungibleTransfers, Fees memory fees, OrderType orderType ) internal { uint256 batchLength; assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) batchLength := mload(add(calldataPointer, ExecutionBatch_length_offset)) } if (batchLength > 0) { bool[] memory successfulTransfers = _executeNonfungibleTransfers( executionBatch, batchLength ); uint256 transfersLength = successfulTransfers.length; for (uint256 i; i < transfersLength; ) { if (successfulTransfers[i]) { AtomicExecution memory execution = fungibleTransfers.executions[i]; FeeRate memory makerFee; uint256 price; unchecked { if (orderType == OrderType.ASK) { fungibleTransfers.makerTransfers[execution.makerId] += execution .sellerAmount; // amount that needs to be sent *to* the order maker price = execution.sellerAmount + execution.protocolFeeAmount + execution.makerFeeAmount; } else { fungibleTransfers.makerTransfers[execution.makerId] += execution.protocolFeeAmount + execution.makerFeeAmount + execution.takerFeeAmount + execution.sellerAmount; // amount that needs to be taken *from* the order maker price = execution.sellerAmount + execution.protocolFeeAmount + execution.takerFeeAmount; } fungibleTransfers.totalSellerTransfer += execution.sellerAmount; // only for bids fungibleTransfers.totalProtocolFee += execution.protocolFeeAmount; fungibleTransfers.totalTakerFee += execution.takerFeeAmount; fungibleTransfers.feeTransfers[execution.makerFeeRecipientId] += execution .makerFeeAmount; makerFee = FeeRate( fungibleTransfers.feeRecipients[execution.makerFeeRecipientId], uint16((execution.makerFeeAmount * _BASIS_POINTS) / price) ); } /* Commit state updates. */ StateUpdate memory stateUpdate = fungibleTransfers.executions[i].stateUpdate; { address trader = stateUpdate.trader; bytes32 hash = stateUpdate.hash; uint256 index = stateUpdate.index; uint256 _amountTaken = amountTaken[trader][hash][index]; uint256 newAmountTaken = _amountTaken + stateUpdate.value; /* Overfulfilled Listings should be caught prior to inserting into the batch, but this check prevents any misuse. */ if (newAmountTaken <= stateUpdate.maxAmount) { amountTaken[trader][hash][index] = newAmountTaken; } else { revert OrderFulfilled(); } } _emitExecutionEventFromBatch( executionBatch, price, makerFee, fees, stateUpdate, orderType, i ); } unchecked { ++i; } } if (orderType == OrderType.ASK) { /* Transfer the payments to the sellers. */ uint256 makersLength = fungibleTransfers.makerId + 1; for (uint256 i; i < makersLength; ) { _transferETH(fungibleTransfers.makers[i], fungibleTransfers.makerTransfers[i]); unchecked { ++i; } } /* Transfer the fees to the fee recipients. */ uint256 feesLength = fungibleTransfers.feeRecipientId + 1; for (uint256 i; i < feesLength; ) { _transferETH( fungibleTransfers.feeRecipients[i], fungibleTransfers.feeTransfers[i] ); unchecked { ++i; } } /* Transfer the protocol fees. */ _transferETH(fees.protocolFee.recipient, fungibleTransfers.totalProtocolFee); /* Transfer the taker fees. */ _transferETH(fees.takerFee.recipient, fungibleTransfers.totalTakerFee); } else { /* Take the pool funds from the buyers. */ uint256 makersLength = fungibleTransfers.makerId + 1; for (uint256 i; i < makersLength; ) { _transferPool( fungibleTransfers.makers[i], address(this), fungibleTransfers.makerTransfers[i] ); unchecked { ++i; } } /* Transfer the payment to the seller. */ _transferPool(address(this), msg.sender, fungibleTransfers.totalSellerTransfer); /* Transfer the fees to the fee recipients. */ uint256 feesLength = fungibleTransfers.feeRecipientId + 1; for (uint256 i; i < feesLength; ) { _transferPool( address(this), fungibleTransfers.feeRecipients[i], fungibleTransfers.feeTransfers[i] ); unchecked { ++i; } } /* Transfer the protocol fees. */ _transferPool( address(this), fees.protocolFee.recipient, fungibleTransfers.totalProtocolFee ); /* Transfer the taker fees. */ _transferPool( address(this), fees.takerFee.recipient, fungibleTransfers.totalTakerFee ); } } } /** * @notice Attempt to execute a series of nonfungible transfers through the delegate; reverts will be skipped * @param executionBatch Execution batch struct * @param batchIndex Current available transfer slot in the batch * @return Array indicating which transfers were successful */ function _executeNonfungibleTransfers( bytes memory executionBatch, uint256 batchIndex ) internal returns (bool[] memory) { address delegate = _DELEGATE; /* Initialize the memory space for the successful transfers array returned from the Delegate call. */ uint256 successfulTransfersPointer; assembly { successfulTransfersPointer := mload(Memory_pointer) /* Need to shift the free memory pointer ahead one word to account for the array pointer returned from the call. */ mstore(Memory_pointer, add(successfulTransfersPointer, One_word)) } bool[] memory successfulTransfers = new bool[](batchIndex); assembly { let size := mload(executionBatch) let selectorPointer := add(executionBatch, ExecutionBatch_selector_offset) mstore(selectorPointer, shr(Bytes4_shift, Delegate_transfer_selector)) let success := call( gas(), delegate, 0, add(selectorPointer, Delegate_transfer_calldata_offset), sub(size, Delegate_transfer_calldata_offset), successfulTransfersPointer, add(0x40, mul(batchIndex, One_word)) ) } return successfulTransfers; } /*////////////////////////////////////////////////////////////// TRANSFER FUNCTIONS //////////////////////////////////////////////////////////////*/ /** * @notice Transfer ETH * @param to Recipient address * @param amount Amount of ETH to send */ function _transferETH(address to, uint256 amount) internal { if (amount > 0) { bool success; assembly { success := call(gas(), to, amount, 0, 0, 0, 0) } if (!success) { revert ETHTransferFailed(); } } } /** * @notice Transfer pool funds on behalf of a user * @param from Sender address * @param to Recipient address * @param amount Amount to send */ function _transferPool(address from, address to, uint256 amount) internal { if (amount > 0) { bool success; address pool = _POOL; assembly { let x := mload(Memory_pointer) mstore(x, ERC20_transferFrom_selector) mstore(add(x, ERC20_transferFrom_from_offset), from) mstore(add(x, ERC20_transferFrom_to_offset), to) mstore(add(x, ERC20_transferFrom_amount_offset), amount) success := call(gas(), pool, 0, x, ERC20_transferFrom_size, 0, 0) } if (!success) { revert PoolTransferFailed(); } } } /** * @notice Deposit ETH to user's pool funds * @param to Recipient address * @param amount Amount of ETH to deposit */ function _depositPool(address to, uint256 amount) internal { bool success; address pool = _POOL; assembly { let x := mload(Memory_pointer) mstore(x, Pool_deposit_selector) mstore(add(x, Pool_deposit_user_offset), to) success := call(gas(), pool, amount, x, Pool_deposit_size, 0, 0) } if (!success) { revert PoolDepositFailed(); } } /** * @notice Withdraw ETH from user's pool funds * @param from Address to withdraw from * @param amount Amount of ETH to withdraw */ function _withdrawFromPool(address from, uint256 amount) internal { bool success; address pool = _POOL; assembly { let x := mload(Memory_pointer) mstore(x, Pool_withdrawFrom_selector) mstore(add(x, Pool_withdrawFrom_from_offset), from) mstore(add(x, Pool_withdrawFrom_to_offset), address()) mstore(add(x, Pool_withdrawFrom_amount_offset), amount) success := call(gas(), pool, 0, x, Pool_withdrawFrom_size, 0, 0) } if (!success) { revert PoolWithdrawFromFailed(); } } /*////////////////////////////////////////////////////////////// EVENT EMITTERS //////////////////////////////////////////////////////////////*/ /** * @notice Emit Execution event from a single execution * @param executionBatch Execution batch struct * @param price Price of the token purchased * @param fees Protocol, maker, and taker fees taken * @param stateUpdate Fulfillment to be recorded with a successful execution * @param orderType Order type * @param transferIndex Index of the transfer corresponding to the execution */ function _emitExecutionEventFromBatch( bytes memory executionBatch, uint256 price, FeeRate memory makerFee, Fees memory fees, StateUpdate memory stateUpdate, OrderType orderType, uint256 transferIndex ) internal { Transfer memory transfer; assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) let transfersOffset := mload(add(calldataPointer, ExecutionBatch_transfers_pointer_offset)) transfer := add( add(calldataPointer, add(transfersOffset, One_word)), mul(transferIndex, Transfer_size) ) } _emitOptimalExecutionEvent( transfer, stateUpdate.hash, stateUpdate.index, price, makerFee, fees, orderType ); } /** * @notice Emit the Execution event that minimizes the number of bytes in the log * @param transfer The nft transfer * @param orderHash Order hash * @param listingIndex Index of the listing being fulfilled within the order * @param price Price of the token purchased * @param makerFee Maker fees taken * @param fees Protocol, and taker fees taken * @param orderType Order type */ function _emitOptimalExecutionEvent( Transfer memory transfer, bytes32 orderHash, uint256 listingIndex, uint256 price, FeeRate memory makerFee, Fees memory fees, OrderType orderType ) internal { if ( // see _insertNonfungibleTransfer; ERC721 transfers don't set the transfer amount, // so we can assume the transfer amount and not check it transfer.assetType == AssetType.ERC721 && fees.protocolFee.rate == 0 && transfer.id < 1 << (11 * 8) && listingIndex < 1 << (1 * 8) && price < 1 << (11 * 8) ) { if (makerFee.rate == 0 && fees.takerFee.rate == 0) { emit Execution721Packed( orderHash, packTokenIdListingIndexTrader(transfer.id, listingIndex, transfer.trader), packTypePriceCollection(orderType, price, transfer.collection) ); return; } else if (makerFee.rate == 0) { emit Execution721TakerFeePacked( orderHash, packTokenIdListingIndexTrader(transfer.id, listingIndex, transfer.trader), packTypePriceCollection(orderType, price, transfer.collection), packFee(fees.takerFee) ); return; } else if (fees.takerFee.rate == 0) { emit Execution721MakerFeePacked( orderHash, packTokenIdListingIndexTrader(transfer.id, listingIndex, transfer.trader), packTypePriceCollection(orderType, price, transfer.collection), packFee(makerFee) ); return; } } emit Execution({ transfer: transfer, orderHash: orderHash, listingIndex: listingIndex, price: price, makerFee: makerFee, fees: fees, orderType: orderType }); } /** * @notice Emit Execution event from a single execution * @param executionBatch Execution batch struct * @param order Order being fulfilled * @param listingIndex Index of the listing being fulfilled within the order * @param price Price of the token purchased * @param fees Protocol, and taker fees taken * @param orderType Order type */ function _emitExecutionEvent( bytes memory executionBatch, Order memory order, uint256 listingIndex, uint256 price, Fees memory fees, OrderType orderType ) internal { Transfer memory transfer; assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) let transfersOffset := mload(add(calldataPointer, ExecutionBatch_transfers_pointer_offset)) transfer := add(calldataPointer, add(transfersOffset, One_word)) } _emitOptimalExecutionEvent( transfer, bytes32(order.salt), listingIndex, price, order.makerFee, fees, orderType ); } function packTokenIdListingIndexTrader( uint256 tokenId, uint256 listingIndex, address trader ) private pure returns (uint256) { return (tokenId << (21 * 8)) | (listingIndex << (20 * 8)) | uint160(trader); } function packTypePriceCollection( OrderType orderType, uint256 price, address collection ) private pure returns (uint256) { return (uint256(orderType) << (31 * 8)) | (price << (20 * 8)) | uint160(collection); } function packFee(FeeRate memory fee) private pure returns (uint256) { return (uint256(fee.rate) << (20 * 8)) | uint160(fee.recipient); } uint256[50] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; uint256 constant Bytes1_shift = 0xf8; uint256 constant Bytes4_shift = 0xe0; uint256 constant Bytes20_shift = 0x60; uint256 constant One_word = 0x20; uint256 constant Memory_pointer = 0x40; uint256 constant AssetType_ERC721 = 0; uint256 constant AssetType_ERC1155 = 1; uint256 constant OrderType_ASK = 0; uint256 constant OrderType_BID = 1; uint256 constant Pool_withdrawFrom_selector = 0x9555a94200000000000000000000000000000000000000000000000000000000; uint256 constant Pool_withdrawFrom_from_offset = 0x04; uint256 constant Pool_withdrawFrom_to_offset = 0x24; uint256 constant Pool_withdrawFrom_amount_offset = 0x44; uint256 constant Pool_withdrawFrom_size = 0x64; uint256 constant Pool_deposit_selector = 0xf340fa0100000000000000000000000000000000000000000000000000000000; uint256 constant Pool_deposit_user_offset = 0x04; uint256 constant Pool_deposit_size = 0x24; uint256 constant ERC20_transferFrom_selector = 0x23b872dd00000000000000000000000000000000000000000000000000000000; uint256 constant ERC721_safeTransferFrom_selector = 0x42842e0e00000000000000000000000000000000000000000000000000000000; uint256 constant ERC1155_safeTransferFrom_selector = 0xf242432a00000000000000000000000000000000000000000000000000000000; uint256 constant ERC20_transferFrom_size = 0x64; uint256 constant ERC721_safeTransferFrom_size = 0x64; uint256 constant ERC1155_safeTransferFrom_size = 0xc4; uint256 constant OracleSignatures_size = 0x59; uint256 constant OracleSignatures_s_offset = 0x20; uint256 constant OracleSignatures_v_offset = 0x40; uint256 constant OracleSignatures_blockNumber_offset = 0x41; uint256 constant OracleSignatures_oracle_offset = 0x45; uint256 constant Signatures_size = 0x41; uint256 constant Signatures_s_offset = 0x20; uint256 constant Signatures_v_offset = 0x40; uint256 constant ERC20_transferFrom_from_offset = 0x4; uint256 constant ERC20_transferFrom_to_offset = 0x24; uint256 constant ERC20_transferFrom_amount_offset = 0x44; uint256 constant ERC721_safeTransferFrom_from_offset = 0x4; uint256 constant ERC721_safeTransferFrom_to_offset = 0x24; uint256 constant ERC721_safeTransferFrom_id_offset = 0x44; uint256 constant ERC1155_safeTransferFrom_from_offset = 0x4; uint256 constant ERC1155_safeTransferFrom_to_offset = 0x24; uint256 constant ERC1155_safeTransferFrom_id_offset = 0x44; uint256 constant ERC1155_safeTransferFrom_amount_offset = 0x64; uint256 constant ERC1155_safeTransferFrom_data_pointer_offset = 0x84; uint256 constant ERC1155_safeTransferFrom_data_offset = 0xa4; uint256 constant Delegate_transfer_selector = 0xa1ccb98e00000000000000000000000000000000000000000000000000000000; uint256 constant Delegate_transfer_calldata_offset = 0x1c; uint256 constant Order_size = 0x100; uint256 constant Order_trader_offset = 0x00; uint256 constant Order_collection_offset = 0x20; uint256 constant Order_listingsRoot_offset = 0x40; uint256 constant Order_numberOfListings_offset = 0x60; uint256 constant Order_expirationTime_offset = 0x80; uint256 constant Order_assetType_offset = 0xa0; uint256 constant Order_makerFee_offset = 0xc0; uint256 constant Order_salt_offset = 0xe0; uint256 constant Exchange_size = 0x80; uint256 constant Exchange_askIndex_offset = 0x00; uint256 constant Exchange_proof_offset = 0x20; uint256 constant Exchange_maker_offset = 0x40; uint256 constant Exchange_taker_offset = 0x60; uint256 constant BidExchange_size = 0x80; uint256 constant BidExchange_askIndex_offset = 0x00; uint256 constant BidExchange_proof_offset = 0x20; uint256 constant BidExchange_maker_offset = 0x40; uint256 constant BidExchange_taker_offset = 0x60; uint256 constant Listing_size = 0x80; uint256 constant Listing_index_offset = 0x00; uint256 constant Listing_tokenId_offset = 0x20; uint256 constant Listing_amount_offset = 0x40; uint256 constant Listing_price_offset = 0x60; uint256 constant Taker_size = 0x40; uint256 constant Taker_tokenId_offset = 0x00; uint256 constant Taker_amount_offset = 0x20; uint256 constant StateUpdate_size = 0x80; uint256 constant StateUpdate_salt_offset = 0x20; uint256 constant StateUpdate_leaf_offset = 0x40; uint256 constant StateUpdate_value_offset = 0x60; uint256 constant Transfer_size = 0xa0; uint256 constant Transfer_trader_offset = 0x00; uint256 constant Transfer_id_offset = 0x20; uint256 constant Transfer_amount_offset = 0x40; uint256 constant Transfer_collection_offset = 0x60; uint256 constant Transfer_assetType_offset = 0x80; uint256 constant ExecutionBatch_selector_offset = 0x20; uint256 constant ExecutionBatch_calldata_offset = 0x40; uint256 constant ExecutionBatch_base_size = 0xa0; // size of the executionBatch without the flattened dynamic elements uint256 constant ExecutionBatch_taker_offset = 0x00; uint256 constant ExecutionBatch_orderType_offset = 0x20; uint256 constant ExecutionBatch_transfers_pointer_offset = 0x40; uint256 constant ExecutionBatch_length_offset = 0x60; uint256 constant ExecutionBatch_transfers_offset = 0x80; // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; struct TakeAsk { Order[] orders; Exchange[] exchanges; FeeRate takerFee; bytes signatures; address tokenRecipient; } struct TakeAskSingle { Order order; Exchange exchange; FeeRate takerFee; bytes signature; address tokenRecipient; } struct TakeBid { Order[] orders; Exchange[] exchanges; FeeRate takerFee; bytes signatures; } struct TakeBidSingle { Order order; Exchange exchange; FeeRate takerFee; bytes signature; } enum AssetType { ERC721, ERC1155 } enum OrderType { ASK, BID } struct Exchange { // Size: 0x80 uint256 index; // 0x00 bytes32[] proof; // 0x20 Listing listing; // 0x40 Taker taker; // 0x60 } struct Listing { // Size: 0x80 uint256 index; // 0x00 uint256 tokenId; // 0x20 uint256 amount; // 0x40 uint256 price; // 0x60 } struct Taker { // Size: 0x40 uint256 tokenId; // 0x00 uint256 amount; // 0x20 } struct Order { // Size: 0x100 address trader; // 0x00 address collection; // 0x20 bytes32 listingsRoot; // 0x40 uint256 numberOfListings; // 0x60 uint256 expirationTime; // 0x80 AssetType assetType; // 0xa0 FeeRate makerFee; // 0xc0 uint256 salt; // 0xe0 } /* Reference only; struct is composed manually using calldata formatting in execution struct ExecutionBatch { // Size: 0x80 address taker; // 0x00 OrderType orderType; // 0x20 Transfer[] transfers; // 0x40 uint256 length; // 0x60 } */ struct Transfer { // Size: 0xa0 address trader; // 0x00 uint256 id; // 0x20 uint256 amount; // 0x40 address collection; // 0x60 AssetType assetType; // 0x80 } struct FungibleTransfers { uint256 totalProtocolFee; uint256 totalSellerTransfer; uint256 totalTakerFee; uint256 feeRecipientId; uint256 makerId; address[] feeRecipients; address[] makers; uint256[] makerTransfers; uint256[] feeTransfers; AtomicExecution[] executions; } struct AtomicExecution { // Size: 0xe0 uint256 makerId; // 0x00 uint256 sellerAmount; // 0x20 uint256 makerFeeRecipientId; // 0x40 uint256 makerFeeAmount; // 0x60 uint256 takerFeeAmount; // 0x80 uint256 protocolFeeAmount; // 0xa0 StateUpdate stateUpdate; // 0xc0 } struct StateUpdate { // Size: 0xa0 address trader; // 0x00 bytes32 hash; // 0x20 uint256 index; // 0x40 uint256 value; // 0x60 uint256 maxAmount; // 0x80 } struct Fees { // Size: 0x40 FeeRate protocolFee; // 0x00 FeeRate takerFee; // 0x20 } struct FeeRate { // Size: 0x40 address recipient; // 0x00 uint16 rate; // 0x20 } struct Cancel { bytes32 hash; uint256 index; uint256 amount; } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { TakeAsk, TakeBid, TakeAskSingle, TakeBidSingle, Order, Exchange, Fees, FeeRate, AssetType, OrderType, Transfer, FungibleTransfers, StateUpdate, Cancel, Listing } from "../lib/Structs.sol"; interface IBlurExchangeV2 { error InsufficientFunds(); error TokenTransferFailed(); error InvalidOrder(); error ProtocolFeeTooHigh(); event NewProtocolFee(address indexed recipient, uint16 indexed rate); event NewGovernor(address indexed governor); event NewBlockRange(uint256 blockRange); event CancelTrade(address indexed user, bytes32 hash, uint256 index, uint256 amount); event NonceIncremented(address indexed user, uint256 newNonce); event SetOracle(address indexed user, bool approved); function initialize() external; function setProtocolFee(address recipient, uint16 rate) external; function setGovernor(address _governor) external; function setOracle(address oracle, bool approved) external; function setBlockRange(uint256 _blockRange) external; function cancelTrades(Cancel[] memory cancels) external; function incrementNonce() external; /*////////////////////////////////////////////////////////////// EXECUTION WRAPPERS //////////////////////////////////////////////////////////////*/ function takeAsk(TakeAsk memory inputs, bytes calldata oracleSignature) external payable; function takeBid(TakeBid memory inputs, bytes calldata oracleSignature) external; function takeAskSingle(TakeAskSingle memory inputs, bytes calldata oracleSignature) external payable; function takeBidSingle(TakeBidSingle memory inputs, bytes calldata oracleSignature) external; /*////////////////////////////////////////////////////////////// EXECUTION POOL WRAPPERS //////////////////////////////////////////////////////////////*/ function takeAskSinglePool( TakeAskSingle memory inputs, bytes calldata oracleSignature, uint256 amountToWithdraw ) external payable; function takeAskPool( TakeAsk memory inputs, bytes calldata oracleSignature, uint256 amountToWithdraw ) external payable; } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity 0.8.17; /// @notice Upgradeable gas optimized reentrancy protection for smart contracts. /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ReentrancyGuard.sol) abstract contract ReentrancyGuardUpgradeable { uint256 private locked; function __Reentrancy_init() internal { locked = 1; } modifier nonReentrant() virtual { require(locked == 1, "REENTRANCY"); locked = 2; _; locked = 1; } uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.0; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822ProxiableUpgradeable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol) pragma solidity ^0.8.2; import "../beacon/IBeaconUpgradeable.sol"; import "../../interfaces/IERC1967Upgradeable.sol"; import "../../interfaces/draft-IERC1822Upgradeable.sol"; import "../../utils/AddressUpgradeable.sol"; import "../../utils/StorageSlotUpgradeable.sol"; import "../utils/Initializable.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable { function __ERC1967Upgrade_init() internal onlyInitializing { } function __ERC1967Upgrade_init_unchained() internal onlyInitializing { } // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { _functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallUUPS( address newImplementation, bytes memory data, bool forceCall ) internal { // Upgrades from old implementations will perform a rollback test. This test requires the new // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing // this special case will break upgrade paths from old UUPS implementation to new ones. if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) { _setImplementation(newImplementation); } else { try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) { require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID"); } catch { revert("ERC1967Upgrade: new implementation is not UUPS"); } _upgradeToAndCall(newImplementation, data, forceCall); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall( address newBeacon, bytes memory data, bool forceCall ) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { _functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data); } } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) { require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed"); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeaconUpgradeable { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol) pragma solidity ^0.8.0; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. * * _Available since v4.9._ */ interface IERC1967Upgradeable { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol) pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlotUpgradeable { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { MerkleProof } from "lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol"; import { Signatures } from "./Signatures.sol"; import { AssetType, Order, Exchange, Listing, OrderType, FeeRate, Fees, Taker } from "./lib/Structs.sol"; import { IValidation } from "./interfaces/IValidation.sol"; abstract contract Validation is IValidation, Signatures { uint256 internal constant _BASIS_POINTS = 10_000; uint256 internal constant _MAX_PROTOCOL_FEE_RATE = 250; FeeRate public protocolFee; /* amountTaken[user][orderHash][listingIndex] */ mapping(address => mapping(bytes32 => mapping(uint256 => uint256))) public amountTaken; constructor(address proxy) Signatures(proxy) {} /** * @notice Check if an order has expired * @param order Order to check liveness * @return Order is live */ function _checkLiveness(Order memory order) private view returns (bool) { return (order.expirationTime > block.timestamp); } /** * @notice Check that the fees to be taken will not overflow the purchase price * @param makerFee Maker fee amount * @param fees Protocol and taker fee rates * @return Fees are valid */ function _checkFee(FeeRate memory makerFee, Fees memory fees) private pure returns (bool) { return makerFee.rate + fees.takerFee.rate + fees.protocolFee.rate <= _BASIS_POINTS; } /** * @notice Validate a list of orders and prepare arrays for recording pending fulfillments * @param orders List of orders * @param orderType Order type for all orders * @param signatures Bytes array of the order signatures * @param fees Protocol and taker fee rates */ function _validateOrders( Order[] memory orders, OrderType orderType, bytes memory signatures, Fees memory fees ) internal view returns (bool[] memory validOrders, uint256[][] memory pendingAmountTaken) { uint256 ordersLength = orders.length; validOrders = new bool[](ordersLength); pendingAmountTaken = new uint256[][](ordersLength); for (uint256 i; i < ordersLength; ) { pendingAmountTaken[i] = new uint256[](orders[i].numberOfListings); validOrders[i] = _validateOrder(orders[i], orderType, signatures, fees, i); unchecked { ++i; } } } /** * @notice Validate an order * @param order Order to validate * @param orderType Order type * @param signatures Bytes array of order signatures * @param fees Protocol and taker fee rates * @param signatureIndex Index of the order signature * @return Validity of the order */ function _validateOrder( Order memory order, OrderType orderType, bytes memory signatures, Fees memory fees, uint256 signatureIndex ) internal view returns (bool) { bytes32 orderHash = hashOrder(order, orderType); /* After hashing, the salt is no longer needed so we can store the order hash here. */ order.salt = uint256(orderHash); return _verifyAuthorization( order.trader, orderHash, signatures, signatureIndex ) && _checkLiveness(order) && _checkFee(order.makerFee, fees); } /** * @notice Validate a listing (only valid if the order has be prevalidated) * @dev Validation can be manipulated by inputting the same order twice in the orders array, * which will effectively bypass the `pendingAmountTaken` check. There is a safety check at the * execution phase that will revert the transaction if this manipulation overdraws an order. * @param order Order of the listing * @param orderType Order type * @param exchange Exchange containing the listing * @param validOrders List indicated which orders were validated * @param pendingAmountTaken Pending fulfillments from the current batch * @return validListing Validity of the listing */ function _validateListingFromBatch( Order memory order, OrderType orderType, Exchange memory exchange, bool[] memory validOrders, uint256[][] memory pendingAmountTaken ) internal view returns (bool validListing) { Listing memory listing = exchange.listing; uint256 listingIndex = listing.index; uint256 amountTaken = amountTaken[order.trader][bytes32(order.salt)][listingIndex]; uint256 pendingAmountTaken = pendingAmountTaken[exchange.index][listingIndex]; uint256 takerAmount = exchange.taker.amount; unchecked { validListing = validOrders[exchange.index] && _validateListing(order, orderType, exchange) && pendingAmountTaken + takerAmount <= type(uint256).max - amountTaken && amountTaken + pendingAmountTaken + takerAmount <= listing.amount; } } /** * @notice Validate a listing and its proposed exchange * @param order Order of the listing * @param orderType Order type * @param exchange Exchange containing the listing * @return validListing Validity of the listing and its proposed exchange */ function _validateListing( Order memory order, OrderType orderType, Exchange memory exchange ) private pure returns (bool validListing) { Listing memory listing = exchange.listing; validListing = MerkleProof.verify(exchange.proof, order.listingsRoot, hashListing(listing)); Taker memory taker = exchange.taker; if (orderType == OrderType.ASK) { if (order.assetType == AssetType.ERC721) { validListing = validListing && taker.amount == 1 && listing.amount == 1; } validListing = validListing && listing.tokenId == taker.tokenId; } else { if (order.assetType == AssetType.ERC721) { validListing = validListing && taker.amount == 1; } else { validListing = validListing && listing.tokenId == taker.tokenId; } } } /** * @notice Validate both the listing and it's parent order (only for single executions) * @param order Order of the listing * @param orderType Order type * @param exchange Exchange containing the listing * @param signature Order signature * @param fees Protocol and taker fee rates * @return Validity of the order and listing */ function _validateOrderAndListing( Order memory order, OrderType orderType, Exchange memory exchange, bytes memory signature, Fees memory fees ) internal view returns (bool) { Listing memory listing = exchange.listing; uint256 listingIndex = listing.index; return _validateOrder(order, orderType, signature, fees, 0) && _validateListing(order, orderType, exchange) && amountTaken[order.trader][bytes32(order.salt)][listingIndex] + exchange.taker.amount <= listing.amount; } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { AssetType, OrderType, Transfer } from "../lib/Structs.sol"; interface IDelegate { function transfer( address caller, OrderType orderType, Transfer[] calldata transfers, uint256 length ) external returns (bool[] memory successful); } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { Fees, FeeRate, Transfer, OrderType } from "../lib/Structs.sol"; interface IExecutor { error ETHTransferFailed(); error PoolTransferFailed(); error PoolWithdrawFromFailed(); error PoolDepositFailed(); error OrderFulfilled(); event Execution( Transfer transfer, bytes32 orderHash, uint256 listingIndex, uint256 price, FeeRate makerFee, Fees fees, OrderType orderType ); event Execution721Packed( bytes32 orderHash, uint256 tokenIdListingIndexTrader, uint256 collectionPriceSide ); event Execution721TakerFeePacked( bytes32 orderHash, uint256 tokenIdListingIndexTrader, uint256 collectionPriceSide, uint256 takerFeeRecipientRate ); event Execution721MakerFeePacked( bytes32 orderHash, uint256 tokenIdListingIndexTrader, uint256 collectionPriceSide, uint256 makerFeeRecipientRate ); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import "./lib/Constants.sol"; import { TakeAsk, TakeBid, TakeAskSingle, TakeBidSingle, FeeRate, Order, OrderType, AssetType, Listing } from "./lib/Structs.sol"; import { ISignatures } from "./interfaces/ISignatures.sol"; abstract contract Signatures is ISignatures { string private constant _NAME = "Blur Exchange"; string private constant _VERSION = "1.0"; bytes32 private immutable _FEE_RATE_TYPEHASH; bytes32 private immutable _ORDER_TYPEHASH; bytes32 private immutable _DOMAIN_SEPARATOR; mapping(address => uint256) public oracles; mapping(address => uint256) public nonces; uint256 public blockRange; constructor(address proxy) { (_FEE_RATE_TYPEHASH, _ORDER_TYPEHASH, _DOMAIN_SEPARATOR) = _createTypehashes(proxy); } /** * @notice Verify the domain separator produced during deployment of the implementation matches that of the proxy */ function verifyDomain() public view { bytes32 eip712DomainTypehash = keccak256( bytes.concat( "EIP712Domain(", "string name,", "string version,", "uint256 chainId,", "address verifyingContract", ")" ) ); bytes32 domainSeparator = _hashDomain( eip712DomainTypehash, keccak256(bytes(_NAME)), keccak256(bytes(_VERSION)), address(this) ); if (_DOMAIN_SEPARATOR != domainSeparator) { revert InvalidDomain(); } } /** * @notice Return version and domain separator */ function information() external view returns (string memory version, bytes32 domainSeparator) { version = _VERSION; domainSeparator = _DOMAIN_SEPARATOR; } /** * @notice Create a hash of TakeAsk calldata with an approved caller * @param inputs TakeAsk inputs * @param _caller Address approved to execute the calldata * @return Calldata hash */ function hashTakeAsk(TakeAsk memory inputs, address _caller) external pure returns (bytes32) { return _hashCalldata(_caller); } /** * @notice Create a hash of TakeBid calldata with an approved caller * @param inputs TakeBid inputs * @param _caller Address approved to execute the calldata * @return Calldata hash */ function hashTakeBid(TakeBid memory inputs, address _caller) external pure returns (bytes32) { return _hashCalldata(_caller); } /** * @notice Create a hash of TakeAskSingle calldata with an approved caller * @param inputs TakeAskSingle inputs * @param _caller Address approved to execute the calldata * @return Calldata hash */ function hashTakeAskSingle( TakeAskSingle memory inputs, address _caller ) external pure returns (bytes32) { return _hashCalldata(_caller); } /** * @notice Create a hash of TakeBidSingle calldata with an approved caller * @param inputs TakeBidSingle inputs * @param _caller Address approved to execute the calldata * @return Calldata hash */ function hashTakeBidSingle( TakeBidSingle memory inputs, address _caller ) external pure returns (bytes32) { return _hashCalldata(_caller); } /** * @notice Create an EIP712 hash of an Order * @dev Includes two additional parameters not in the struct (orderType, nonce) * @param order Order to hash * @param orderType OrderType of the Order * @return Order EIP712 hash */ function hashOrder(Order memory order, OrderType orderType) public view returns (bytes32) { return keccak256( abi.encode( _ORDER_TYPEHASH, order.trader, order.collection, order.listingsRoot, order.numberOfListings, order.expirationTime, order.assetType, _hashFeeRate(order.makerFee), order.salt, orderType, nonces[order.trader] ) ); } /** * @notice Create a hash of a Listing struct * @param listing Listing to hash * @return Listing hash */ function hashListing(Listing memory listing) public pure returns (bytes32) { return keccak256(abi.encode(listing.index, listing.tokenId, listing.amount, listing.price)); } /** * @notice Create a hash of calldata with an approved caller * @param _caller Address approved to execute the calldata * @return hash Calldata hash */ function _hashCalldata(address _caller) internal pure returns (bytes32 hash) { assembly { let nextPointer := mload(0x40) let size := add(sub(nextPointer, 0x80), 0x20) mstore(nextPointer, _caller) hash := keccak256(0x80, size) } } /** * @notice Create an EIP712 hash of a FeeRate struct * @param feeRate FeeRate to hash * @return FeeRate EIP712 hash */ function _hashFeeRate(FeeRate memory feeRate) private view returns (bytes32) { return keccak256(abi.encode(_FEE_RATE_TYPEHASH, feeRate.recipient, feeRate.rate)); } /** * @notice Create an EIP712 hash to sign * @param hash Primary EIP712 object hash * @return EIP712 hash */ function _hashToSign(bytes32 hash) private view returns (bytes32) { return keccak256(bytes.concat(bytes2(0x1901), _DOMAIN_SEPARATOR, hash)); } /** * @notice Generate all EIP712 Typehashes */ function _createTypehashes( address proxy ) private view returns (bytes32 feeRateTypehash, bytes32 orderTypehash, bytes32 domainSeparator) { bytes32 eip712DomainTypehash = keccak256( bytes.concat( "EIP712Domain(", "string name,", "string version,", "uint256 chainId,", "address verifyingContract", ")" ) ); bytes memory feeRateTypestring = "FeeRate(address recipient,uint16 rate)"; orderTypehash = keccak256( bytes.concat( "Order(", "address trader,", "address collection,", "bytes32 listingsRoot,", "uint256 numberOfListings,", "uint256 expirationTime,", "uint8 assetType,", "FeeRate makerFee,", "uint256 salt,", "uint8 orderType,", "uint256 nonce", ")", feeRateTypestring ) ); feeRateTypehash = keccak256(feeRateTypestring); domainSeparator = _hashDomain( eip712DomainTypehash, keccak256(bytes(_NAME)), keccak256(bytes(_VERSION)), proxy ); } /** * @notice Create an EIP712 domain separator * @param eip712DomainTypehash Typehash of the EIP712Domain struct * @param nameHash Hash of the contract name * @param versionHash Hash of the version string * @param proxy Address of the proxy this implementation will be behind * @return EIP712Domain hash */ function _hashDomain( bytes32 eip712DomainTypehash, bytes32 nameHash, bytes32 versionHash, address proxy ) private view returns (bytes32) { return keccak256( abi.encode(eip712DomainTypehash, nameHash, versionHash, block.chainid, proxy) ); } /** * @notice Verify EIP712 signature * @param signer Address of the alleged signer * @param hash EIP712 hash * @param signatures Packed bytes array of order signatures * @param index Index of the signature to verify * @return authorized Validity of the signature */ function _verifyAuthorization( address signer, bytes32 hash, bytes memory signatures, uint256 index ) internal view returns (bool authorized) { bytes32 hashToSign = _hashToSign(hash); bytes32 r; bytes32 s; uint8 v; assembly { let signatureOffset := add(add(signatures, One_word), mul(Signatures_size, index)) r := mload(signatureOffset) s := mload(add(signatureOffset, Signatures_s_offset)) v := shr(Bytes1_shift, mload(add(signatureOffset, Signatures_v_offset))) } authorized = _verify(signer, hashToSign, v, r, s); } modifier verifyOracleSignature(bytes32 hash, bytes calldata oracleSignature) { bytes32 r; bytes32 s; uint8 v; uint32 blockNumber; address oracle; assembly { let signatureOffset := oracleSignature.offset r := calldataload(signatureOffset) s := calldataload(add(signatureOffset, OracleSignatures_s_offset)) v := shr(Bytes1_shift, calldataload(add(signatureOffset, OracleSignatures_v_offset))) blockNumber := shr( Bytes4_shift, calldataload(add(signatureOffset, OracleSignatures_blockNumber_offset)) ) oracle := shr( Bytes20_shift, calldataload(add(signatureOffset, OracleSignatures_oracle_offset)) ) } if (blockNumber + blockRange < block.number) { revert ExpiredOracleSignature(); } if (oracles[oracle] == 0) { revert UnauthorizedOracle(); } if (!_verify(oracle, keccak256(abi.encodePacked(hash, blockNumber)), v, r, s)) { revert InvalidOracleSignature(); } _; } /** * @notice Verify signature of digest * @param signer Address of expected signer * @param digest Signature digest * @param v v parameter * @param r r parameter * @param s s parameter */ function _verify( address signer, bytes32 digest, uint8 v, bytes32 r, bytes32 s ) private pure returns (bool valid) { address recoveredSigner = ecrecover(digest, v, r, s); if (recoveredSigner != address(0) && recoveredSigner == signer) { valid = true; } } uint256[47] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { FeeRate } from "../lib/Structs.sol"; interface IValidation { function protocolFee() external view returns (address, uint16); function amountTaken(address user, bytes32 hash, uint256 listingIndex) external view returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { TakeAsk, TakeBid, TakeAskSingle, TakeBidSingle, Order, OrderType, Listing } from "../lib/Structs.sol"; interface ISignatures { error Unauthorized(); error ExpiredOracleSignature(); error UnauthorizedOracle(); error InvalidOracleSignature(); error InvalidDomain(); function oracles(address oracle) external view returns (uint256); function nonces(address user) external view returns (uint256); function blockRange() external view returns (uint256); function verifyDomain() external view; function information() external view returns (string memory version, bytes32 domainSeparator); function hashListing(Listing memory listing) external pure returns (bytes32); function hashOrder(Order memory order, OrderType orderType) external view returns (bytes32); function hashTakeAsk(TakeAsk memory inputs, address _caller) external pure returns (bytes32); function hashTakeBid(TakeBid memory inputs, address _caller) external pure returns (bytes32); function hashTakeAskSingle(TakeAskSingle memory inputs, address _caller) external pure returns (bytes32); function hashTakeBidSingle(TakeBidSingle memory inputs, address _caller) external pure returns (bytes32); }
File 4 of 4: Delegate
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { ERC721 } from "lib/solmate/src/tokens/ERC721.sol"; import { ERC1155 } from "lib/solmate/src/tokens/ERC1155.sol"; import { ERC20 } from "lib/solmate/src/tokens/ERC20.sol"; import "./lib/Constants.sol"; import { AssetType, OrderType, Transfer } from "./lib/Structs.sol"; contract Delegate { error Unauthorized(); error InvalidLength(); address private immutable _EXCHANGE; constructor(address exchange) { _EXCHANGE = exchange; } modifier onlyApproved() { if (msg.sender != _EXCHANGE) { revert Unauthorized(); } _; } function transfer( address taker, OrderType orderType, Transfer[] calldata transfers, uint256 length ) external onlyApproved returns (bool[] memory successful) { if (transfers.length < length) { revert InvalidLength(); } successful = new bool[](length); for (uint256 i; i < length; ) { assembly { let calldataPointer := mload(0x40) let transfersPointer := add(transfers.offset, mul(Transfer_size, i)) let assetType := calldataload(add(transfersPointer, Transfer_assetType_offset)) switch assetType case 0 { // AssetType_ERC721 mstore(calldataPointer, ERC721_safeTransferFrom_selector) switch orderType case 0 { // OrderType_ASK; taker is recipient mstore(add(calldataPointer, ERC721_safeTransferFrom_to_offset), taker) mstore( add(calldataPointer, ERC721_safeTransferFrom_from_offset), calldataload(add(transfersPointer, Transfer_trader_offset)) ) } case 1 { // OrderType_BID; taker is sender mstore(add(calldataPointer, ERC721_safeTransferFrom_from_offset), taker) mstore( add(calldataPointer, ERC721_safeTransferFrom_to_offset), calldataload(add(transfersPointer, Transfer_trader_offset)) ) } default { revert(0, 0) } mstore( add(calldataPointer, ERC721_safeTransferFrom_id_offset), calldataload(add(transfersPointer, Transfer_id_offset)) ) let collection := calldataload( add(transfersPointer, Transfer_collection_offset) ) let success := call( gas(), collection, 0, calldataPointer, ERC721_safeTransferFrom_size, 0, 0 ) mstore(add(add(successful, 0x20), mul(0x20, i)), success) } case 1 { // AssetType_ERC1155 mstore(calldataPointer, ERC1155_safeTransferFrom_selector) switch orderType case 0 { // OrderType_ASK; taker is recipient mstore( add(calldataPointer, ERC1155_safeTransferFrom_from_offset), calldataload( add( transfersPointer, Transfer_trader_offset ) ) ) mstore(add(calldataPointer, ERC1155_safeTransferFrom_to_offset), taker) } case 1 { // OrderType_BID; taker is sender mstore( add(calldataPointer, ERC1155_safeTransferFrom_to_offset), calldataload( add( transfersPointer, Transfer_trader_offset ) ) ) mstore(add(calldataPointer, ERC1155_safeTransferFrom_from_offset), taker) } default { revert(0, 0) } mstore(add(calldataPointer, ERC1155_safeTransferFrom_data_pointer_offset), 0xa0) mstore(add(calldataPointer, ERC1155_safeTransferFrom_data_offset), 0) mstore( add(calldataPointer, ERC1155_safeTransferFrom_id_offset), calldataload( add(transfersPointer, Transfer_id_offset) ) ) mstore( add(calldataPointer, ERC1155_safeTransferFrom_amount_offset), calldataload( add( transfersPointer, Transfer_amount_offset ) ) ) let collection := calldataload( add( transfersPointer, Transfer_collection_offset ) ) let success := call( gas(), collection, 0, calldataPointer, ERC1155_safeTransferFrom_size, 0, 0 ) mstore(add(add(successful, 0x20), mul(0x20, i)), success) } default { revert(0, 0) } } unchecked { ++i; } } } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern, minimalist, and gas efficient ERC-721 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 indexed id); event Approval(address indexed owner, address indexed spender, uint256 indexed id); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /*////////////////////////////////////////////////////////////// METADATA STORAGE/LOGIC //////////////////////////////////////////////////////////////*/ string public name; string public symbol; function tokenURI(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC721 BALANCE/OWNER STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) internal _ownerOf; mapping(address => uint256) internal _balanceOf; function ownerOf(uint256 id) public view virtual returns (address owner) { require((owner = _ownerOf[id]) != address(0), "NOT_MINTED"); } function balanceOf(address owner) public view virtual returns (uint256) { require(owner != address(0), "ZERO_ADDRESS"); return _balanceOf[owner]; } /*////////////////////////////////////////////////////////////// ERC721 APPROVAL STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) public getApproved; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(string memory _name, string memory _symbol) { name = _name; symbol = _symbol; } /*////////////////////////////////////////////////////////////// ERC721 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 id) public virtual { address owner = _ownerOf[id]; require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED"); getApproved[id] = spender; emit Approval(owner, spender, id); } function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function transferFrom( address from, address to, uint256 id ) public virtual { require(from == _ownerOf[id], "WRONG_FROM"); require(to != address(0), "INVALID_RECIPIENT"); require( msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id], "NOT_AUTHORIZED" ); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. unchecked { _balanceOf[from]--; _balanceOf[to]++; } _ownerOf[id] = to; delete getApproved[id]; emit Transfer(from, to, id); } function safeTransferFrom( address from, address to, uint256 id ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function safeTransferFrom( address from, address to, uint256 id, bytes calldata data ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721 interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 id) internal virtual { require(to != address(0), "INVALID_RECIPIENT"); require(_ownerOf[id] == address(0), "ALREADY_MINTED"); // Counter overflow is incredibly unrealistic. unchecked { _balanceOf[to]++; } _ownerOf[id] = to; emit Transfer(address(0), to, id); } function _burn(uint256 id) internal virtual { address owner = _ownerOf[id]; require(owner != address(0), "NOT_MINTED"); // Ownership check above ensures no underflow. unchecked { _balanceOf[owner]--; } delete _ownerOf[id]; delete getApproved[id]; emit Transfer(owner, address(0), id); } /*////////////////////////////////////////////////////////////// INTERNAL SAFE MINT LOGIC //////////////////////////////////////////////////////////////*/ function _safeMint(address to, uint256 id) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function _safeMint( address to, uint256 id, bytes memory data ) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } } /// @notice A generic interface for a contract which properly accepts ERC721 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721TokenReceiver { function onERC721Received( address, address, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC721TokenReceiver.onERC721Received.selector; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Minimalist and gas efficient standard ERC1155 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol) abstract contract ERC1155 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event TransferSingle( address indexed operator, address indexed from, address indexed to, uint256 id, uint256 amount ); event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] amounts ); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); event URI(string value, uint256 indexed id); /*////////////////////////////////////////////////////////////// ERC1155 STORAGE //////////////////////////////////////////////////////////////*/ mapping(address => mapping(uint256 => uint256)) public balanceOf; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// METADATA LOGIC //////////////////////////////////////////////////////////////*/ function uri(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC1155 LOGIC //////////////////////////////////////////////////////////////*/ function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) public virtual { require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED"); balanceOf[from][id] -= amount; balanceOf[to][id] += amount; emit TransferSingle(msg.sender, from, to, id, amount); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155Received(msg.sender, from, id, amount, data) == ERC1155TokenReceiver.onERC1155Received.selector, "UNSAFE_RECIPIENT" ); } function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) public virtual { require(ids.length == amounts.length, "LENGTH_MISMATCH"); require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED"); // Storing these outside the loop saves ~15 gas per iteration. uint256 id; uint256 amount; for (uint256 i = 0; i < ids.length; ) { id = ids[i]; amount = amounts[i]; balanceOf[from][id] -= amount; balanceOf[to][id] += amount; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, from, to, ids, amounts); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, from, ids, amounts, data) == ERC1155TokenReceiver.onERC1155BatchReceived.selector, "UNSAFE_RECIPIENT" ); } function balanceOfBatch(address[] calldata owners, uint256[] calldata ids) public view virtual returns (uint256[] memory balances) { require(owners.length == ids.length, "LENGTH_MISMATCH"); balances = new uint256[](owners.length); // Unchecked because the only math done is incrementing // the array index counter which cannot possibly overflow. unchecked { for (uint256 i = 0; i < owners.length; ++i) { balances[i] = balanceOf[owners[i]][ids[i]]; } } } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0xd9b67a26 || // ERC165 Interface ID for ERC1155 interfaceId == 0x0e89341c; // ERC165 Interface ID for ERC1155MetadataURI } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint( address to, uint256 id, uint256 amount, bytes memory data ) internal virtual { balanceOf[to][id] += amount; emit TransferSingle(msg.sender, address(0), to, id, amount); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155Received(msg.sender, address(0), id, amount, data) == ERC1155TokenReceiver.onERC1155Received.selector, "UNSAFE_RECIPIENT" ); } function _batchMint( address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { uint256 idsLength = ids.length; // Saves MLOADs. require(idsLength == amounts.length, "LENGTH_MISMATCH"); for (uint256 i = 0; i < idsLength; ) { balanceOf[to][ids[i]] += amounts[i]; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, address(0), to, ids, amounts); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, address(0), ids, amounts, data) == ERC1155TokenReceiver.onERC1155BatchReceived.selector, "UNSAFE_RECIPIENT" ); } function _batchBurn( address from, uint256[] memory ids, uint256[] memory amounts ) internal virtual { uint256 idsLength = ids.length; // Saves MLOADs. require(idsLength == amounts.length, "LENGTH_MISMATCH"); for (uint256 i = 0; i < idsLength; ) { balanceOf[from][ids[i]] -= amounts[i]; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, from, address(0), ids, amounts); } function _burn( address from, uint256 id, uint256 amount ) internal virtual { balanceOf[from][id] -= amount; emit TransferSingle(msg.sender, from, address(0), id, amount); } } /// @notice A generic interface for a contract which properly accepts ERC1155 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol) abstract contract ERC1155TokenReceiver { function onERC1155Received( address, address, uint256, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC1155TokenReceiver.onERC1155Received.selector; } function onERC1155BatchReceived( address, address, uint256[] calldata, uint256[] calldata, bytes calldata ) external virtual returns (bytes4) { return ERC1155TokenReceiver.onERC1155BatchReceived.selector; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; uint256 constant Bytes1_shift = 0xf8; uint256 constant Bytes4_shift = 0xe0; uint256 constant Bytes20_shift = 0x60; uint256 constant One_word = 0x20; uint256 constant Memory_pointer = 0x40; uint256 constant AssetType_ERC721 = 0; uint256 constant AssetType_ERC1155 = 1; uint256 constant OrderType_ASK = 0; uint256 constant OrderType_BID = 1; uint256 constant Pool_withdrawFrom_selector = 0x9555a94200000000000000000000000000000000000000000000000000000000; uint256 constant Pool_withdrawFrom_from_offset = 0x04; uint256 constant Pool_withdrawFrom_to_offset = 0x24; uint256 constant Pool_withdrawFrom_amount_offset = 0x44; uint256 constant Pool_withdrawFrom_size = 0x64; uint256 constant Pool_deposit_selector = 0xf340fa0100000000000000000000000000000000000000000000000000000000; uint256 constant Pool_deposit_user_offset = 0x04; uint256 constant Pool_deposit_size = 0x24; uint256 constant ERC20_transferFrom_selector = 0x23b872dd00000000000000000000000000000000000000000000000000000000; uint256 constant ERC721_safeTransferFrom_selector = 0x42842e0e00000000000000000000000000000000000000000000000000000000; uint256 constant ERC1155_safeTransferFrom_selector = 0xf242432a00000000000000000000000000000000000000000000000000000000; uint256 constant ERC20_transferFrom_size = 0x64; uint256 constant ERC721_safeTransferFrom_size = 0x64; uint256 constant ERC1155_safeTransferFrom_size = 0xc4; uint256 constant OracleSignatures_size = 0x59; uint256 constant OracleSignatures_s_offset = 0x20; uint256 constant OracleSignatures_v_offset = 0x40; uint256 constant OracleSignatures_blockNumber_offset = 0x41; uint256 constant OracleSignatures_oracle_offset = 0x45; uint256 constant Signatures_size = 0x41; uint256 constant Signatures_s_offset = 0x20; uint256 constant Signatures_v_offset = 0x40; uint256 constant ERC20_transferFrom_from_offset = 0x4; uint256 constant ERC20_transferFrom_to_offset = 0x24; uint256 constant ERC20_transferFrom_amount_offset = 0x44; uint256 constant ERC721_safeTransferFrom_from_offset = 0x4; uint256 constant ERC721_safeTransferFrom_to_offset = 0x24; uint256 constant ERC721_safeTransferFrom_id_offset = 0x44; uint256 constant ERC1155_safeTransferFrom_from_offset = 0x4; uint256 constant ERC1155_safeTransferFrom_to_offset = 0x24; uint256 constant ERC1155_safeTransferFrom_id_offset = 0x44; uint256 constant ERC1155_safeTransferFrom_amount_offset = 0x64; uint256 constant ERC1155_safeTransferFrom_data_pointer_offset = 0x84; uint256 constant ERC1155_safeTransferFrom_data_offset = 0xa4; uint256 constant Delegate_transfer_selector = 0xa1ccb98e00000000000000000000000000000000000000000000000000000000; uint256 constant Delegate_transfer_calldata_offset = 0x1c; uint256 constant Order_size = 0x100; uint256 constant Order_trader_offset = 0x00; uint256 constant Order_collection_offset = 0x20; uint256 constant Order_listingsRoot_offset = 0x40; uint256 constant Order_numberOfListings_offset = 0x60; uint256 constant Order_expirationTime_offset = 0x80; uint256 constant Order_assetType_offset = 0xa0; uint256 constant Order_makerFee_offset = 0xc0; uint256 constant Order_salt_offset = 0xe0; uint256 constant Exchange_size = 0x80; uint256 constant Exchange_askIndex_offset = 0x00; uint256 constant Exchange_proof_offset = 0x20; uint256 constant Exchange_maker_offset = 0x40; uint256 constant Exchange_taker_offset = 0x60; uint256 constant BidExchange_size = 0x80; uint256 constant BidExchange_askIndex_offset = 0x00; uint256 constant BidExchange_proof_offset = 0x20; uint256 constant BidExchange_maker_offset = 0x40; uint256 constant BidExchange_taker_offset = 0x60; uint256 constant Listing_size = 0x80; uint256 constant Listing_index_offset = 0x00; uint256 constant Listing_tokenId_offset = 0x20; uint256 constant Listing_amount_offset = 0x40; uint256 constant Listing_price_offset = 0x60; uint256 constant Taker_size = 0x40; uint256 constant Taker_tokenId_offset = 0x00; uint256 constant Taker_amount_offset = 0x20; uint256 constant StateUpdate_size = 0x80; uint256 constant StateUpdate_salt_offset = 0x20; uint256 constant StateUpdate_leaf_offset = 0x40; uint256 constant StateUpdate_value_offset = 0x60; uint256 constant Transfer_size = 0xa0; uint256 constant Transfer_trader_offset = 0x00; uint256 constant Transfer_id_offset = 0x20; uint256 constant Transfer_amount_offset = 0x40; uint256 constant Transfer_collection_offset = 0x60; uint256 constant Transfer_assetType_offset = 0x80; uint256 constant ExecutionBatch_selector_offset = 0x20; uint256 constant ExecutionBatch_calldata_offset = 0x40; uint256 constant ExecutionBatch_base_size = 0xa0; // size of the executionBatch without the flattened dynamic elements uint256 constant ExecutionBatch_taker_offset = 0x00; uint256 constant ExecutionBatch_orderType_offset = 0x20; uint256 constant ExecutionBatch_transfers_pointer_offset = 0x40; uint256 constant ExecutionBatch_length_offset = 0x60; uint256 constant ExecutionBatch_transfers_offset = 0x80; // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; struct TakeAsk { Order[] orders; Exchange[] exchanges; FeeRate takerFee; bytes signatures; address tokenRecipient; } struct TakeAskSingle { Order order; Exchange exchange; FeeRate takerFee; bytes signature; address tokenRecipient; } struct TakeBid { Order[] orders; Exchange[] exchanges; FeeRate takerFee; bytes signatures; } struct TakeBidSingle { Order order; Exchange exchange; FeeRate takerFee; bytes signature; } enum AssetType { ERC721, ERC1155 } enum OrderType { ASK, BID } struct Exchange { // Size: 0x80 uint256 index; // 0x00 bytes32[] proof; // 0x20 Listing listing; // 0x40 Taker taker; // 0x60 } struct Listing { // Size: 0x80 uint256 index; // 0x00 uint256 tokenId; // 0x20 uint256 amount; // 0x40 uint256 price; // 0x60 } struct Taker { // Size: 0x40 uint256 tokenId; // 0x00 uint256 amount; // 0x20 } struct Order { // Size: 0x100 address trader; // 0x00 address collection; // 0x20 bytes32 listingsRoot; // 0x40 uint256 numberOfListings; // 0x60 uint256 expirationTime; // 0x80 AssetType assetType; // 0xa0 FeeRate makerFee; // 0xc0 uint256 salt; // 0xe0 } /* Reference only; struct is composed manually using calldata formatting in execution struct ExecutionBatch { // Size: 0x80 address taker; // 0x00 OrderType orderType; // 0x20 Transfer[] transfers; // 0x40 uint256 length; // 0x60 } */ struct Transfer { // Size: 0xa0 address trader; // 0x00 uint256 id; // 0x20 uint256 amount; // 0x40 address collection; // 0x60 AssetType assetType; // 0x80 } struct FungibleTransfers { uint256 totalProtocolFee; uint256 totalSellerTransfer; uint256 totalTakerFee; uint256 feeRecipientId; uint256 makerId; address[] feeRecipients; address[] makers; uint256[] makerTransfers; uint256[] feeTransfers; AtomicExecution[] executions; } struct AtomicExecution { // Size: 0xe0 uint256 makerId; // 0x00 uint256 sellerAmount; // 0x20 uint256 makerFeeRecipientId; // 0x40 uint256 makerFeeAmount; // 0x60 uint256 takerFeeAmount; // 0x80 uint256 protocolFeeAmount; // 0xa0 StateUpdate stateUpdate; // 0xc0 } struct StateUpdate { // Size: 0xa0 address trader; // 0x00 bytes32 hash; // 0x20 uint256 index; // 0x40 uint256 value; // 0x60 uint256 maxAmount; // 0x80 } struct Fees { // Size: 0x40 FeeRate protocolFee; // 0x00 FeeRate takerFee; // 0x20 } struct FeeRate { // Size: 0x40 address recipient; // 0x00 uint16 rate; // 0x20 } struct Cancel { bytes32 hash; uint256 index; uint256 amount; }