ETH Price: $2,260.94 (-6.71%)

Transaction Decoder

Block:
17103666 at Apr-22-2023 06:27:35 PM +UTC
Transaction Fee:
0.003462355499888363 ETH $7.83
Gas Used:
99,203 Gas / 34.901721721 Gwei

Account State Difference:

  Address   Before After State Difference Code
4.131790613854946271 Eth4.131797046947182348 Eth0.000006433092236077
0x262aB0A8...5a05BEccD
0xa03f6833...9Af72F892
0.005113530866036 Eth
Nonce: 10
0.001651175366147637 Eth
Nonce: 11
0.003462355499888363
0xe418fa7A...3d9F5b709

Execution Trace

MerkleDistributor1155.claim( )
  • Super1155.mint( recipient=0xa03f6833D7947c275299A801236fcf49Af72F892, amount=69 )
    File 1 of 2: MerkleDistributor1155
    // SPDX-License-Identifier: GPL-3.0
    pragma solidity 0.8.19;
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@openzeppelin/contracts/security/Pausable.sol";
    import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
    import "./IMerkleDistributor.sol";
    import "./ISuper1155.sol";
    contract MerkleDistributor1155 is IMerkleDistributor, Ownable, Pausable {
        address public immutable override token;
        bytes32 public merkleRoot;
        mapping(address => uint256) private claimed;
        constructor(address _token) {
            token = _token;
        }
        function setMerkleRoot(bytes32 _merkleRoot) external onlyOwner {
            merkleRoot = _merkleRoot;
        }
        function claimedAmount(
            address user
        ) public view override returns (uint256) {
            return claimed[user];
        }
        function claim(
            uint256 amount,
            bytes32[] calldata merkleProof
        ) external override whenNotPaused {
            require(
                claimed[msg.sender] < amount,
                "MerkleDistributor: Drop already claimed."
            );
            bytes32 leaf = keccak256(abi.encode(msg.sender, amount));
            // Check the merkle proof
            require(
                MerkleProof.verify(merkleProof, merkleRoot, leaf),
                "MerkleDistributor: Invalid proof."
            );
            uint256 claimingAmount = amount - claimed[msg.sender];
            claimed[msg.sender] = amount;
            // Mark it claimed and send the token.
            ISuper1155(token).mint(msg.sender, claimingAmount);
            emit Claimed(msg.sender, claimingAmount);
        }
        function pause() external onlyOwner {
            _pause();
        }
        function unpause() external onlyOwner {
            _unpause();
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which allows children to implement an emergency stop
     * mechanism that can be triggered by an authorized account.
     *
     * This module is used through inheritance. It will make available the
     * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
     * the functions of your contract. Note that they will not be pausable by
     * simply including this module, only once the modifiers are put in place.
     */
    abstract contract Pausable is Context {
        /**
         * @dev Emitted when the pause is triggered by `account`.
         */
        event Paused(address account);
        /**
         * @dev Emitted when the pause is lifted by `account`.
         */
        event Unpaused(address account);
        bool private _paused;
        /**
         * @dev Initializes the contract in unpaused state.
         */
        constructor() {
            _paused = false;
        }
        /**
         * @dev Modifier to make a function callable only when the contract is not paused.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        modifier whenNotPaused() {
            _requireNotPaused();
            _;
        }
        /**
         * @dev Modifier to make a function callable only when the contract is paused.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        modifier whenPaused() {
            _requirePaused();
            _;
        }
        /**
         * @dev Returns true if the contract is paused, and false otherwise.
         */
        function paused() public view virtual returns (bool) {
            return _paused;
        }
        /**
         * @dev Throws if the contract is paused.
         */
        function _requireNotPaused() internal view virtual {
            require(!paused(), "Pausable: paused");
        }
        /**
         * @dev Throws if the contract is not paused.
         */
        function _requirePaused() internal view virtual {
            require(paused(), "Pausable: not paused");
        }
        /**
         * @dev Triggers stopped state.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        function _pause() internal virtual whenNotPaused {
            _paused = true;
            emit Paused(_msgSender());
        }
        /**
         * @dev Returns to normal state.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        function _unpause() internal virtual whenPaused {
            _paused = false;
            emit Unpaused(_msgSender());
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates merkle trees that are safe
     * against this attack out of the box.
     */
    library MerkleProof {
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(
            bytes32[] memory proof,
            bytes32 root,
            bytes32 leaf
        ) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
        /**
         * @dev Calldata version of {verify}
         *
         * _Available since v4.7._
         */
        function verifyCalldata(
            bytes32[] calldata proof,
            bytes32 root,
            bytes32 leaf
        ) internal pure returns (bool) {
            return processProofCalldata(proof, leaf) == root;
        }
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         *
         * _Available since v4.4._
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Calldata version of {processProof}
         *
         * _Available since v4.7._
         */
        function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProof(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Calldata version of {multiProofVerify}
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         *
         * _Available since v4.7._
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                return hashes[totalHashes - 1];
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        /**
         * @dev Calldata version of {processMultiProof}.
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                return hashes[totalHashes - 1];
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
            return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
        }
        function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }
    // SPDX-License-Identifier: UNLICENSED
    pragma solidity 0.8.19;
    // Allows anyone to claim a token if they exist in a merkle root.
    interface IMerkleDistributor {
        // Returns the address of the token distributed by this contract.
        function token() external view returns (address);
        // Returns claimed amount if the address has been marked claimed.
        function claimedAmount(address user) external view returns (uint256);
        // Claim the given amount of the token to the given address. Reverts if the inputs are invalid.
        function claim(uint256 amount, bytes32[] calldata merkleProof) external;
        // This event is triggered whenever a call to #claim succeeds.
        event Claimed(address user, uint256 amount);
    }
    // SPDX-License-Identifier: GPL-3.0
    pragma solidity 0.8.19;
    interface ISuper1155 {
        function mint(address recipient, uint256 amount) external;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    

    File 2 of 2: Super1155
    // SPDX-License-Identifier: GPL-3.0
    pragma solidity 0.8.19;
    import "@openzeppelin/contracts/token/ERC1155/ERC1155.sol";
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@openzeppelin/contracts/token/common/ERC2981.sol";
    import "operator-filter-registry/src/DefaultOperatorFilterer.sol";
    contract Super1155 is ERC1155, ERC2981, DefaultOperatorFilterer, Ownable {
        address public minter;
        uint256 public totalSupply;
        string public constant name = "POINTS";
        string public constant symbol = "PNT";
        constructor(string memory _uri) ERC1155(_uri) {}
        function setMinter(address _minter) external onlyOwner {
            minter = _minter;
        }
        function setURI(string memory _uri) external onlyOwner {
            super._setURI(_uri);
        }
        function setTokenRoyalty(
            address receiver,
            uint96 feeNumerator
        ) external onlyOwner {
            super._setTokenRoyalty(0, receiver, feeNumerator);
        }
        function mint(address recipient, uint256 amount) external {
            require(msg.sender == minter, "Unauthorized!");
            super._mint(recipient, 0, amount, "");
            totalSupply += amount;
        }
        function burn(uint256 amount) external {
            super._burn(msg.sender, 0, amount);
            totalSupply -= amount;
        }
        function setApprovalForAll(
            address operator,
            bool approved
        ) public override onlyAllowedOperatorApproval(operator) {
            super.setApprovalForAll(operator, approved);
        }
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId,
            uint256 amount,
            bytes memory data
        ) public override onlyAllowedOperator(from) {
            super.safeTransferFrom(from, to, tokenId, amount, data);
        }
        function safeBatchTransferFrom(
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) public virtual override onlyAllowedOperator(from) {
            super.safeBatchTransferFrom(from, to, ids, amounts, data);
        }
        function supportsInterface(
            bytes4 interfaceId
        ) public view virtual override(ERC1155, ERC2981) returns (bool) {
            return super.supportsInterface(interfaceId);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC1155/ERC1155.sol)
    pragma solidity ^0.8.0;
    import "./IERC1155.sol";
    import "./IERC1155Receiver.sol";
    import "./extensions/IERC1155MetadataURI.sol";
    import "../../utils/Address.sol";
    import "../../utils/Context.sol";
    import "../../utils/introspection/ERC165.sol";
    /**
     * @dev Implementation of the basic standard multi-token.
     * See https://eips.ethereum.org/EIPS/eip-1155
     * Originally based on code by Enjin: https://github.com/enjin/erc-1155
     *
     * _Available since v3.1._
     */
    contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI {
        using Address for address;
        // Mapping from token ID to account balances
        mapping(uint256 => mapping(address => uint256)) private _balances;
        // Mapping from account to operator approvals
        mapping(address => mapping(address => bool)) private _operatorApprovals;
        // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
        string private _uri;
        /**
         * @dev See {_setURI}.
         */
        constructor(string memory uri_) {
            _setURI(uri_);
        }
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
            return
                interfaceId == type(IERC1155).interfaceId ||
                interfaceId == type(IERC1155MetadataURI).interfaceId ||
                super.supportsInterface(interfaceId);
        }
        /**
         * @dev See {IERC1155MetadataURI-uri}.
         *
         * This implementation returns the same URI for *all* token types. It relies
         * on the token type ID substitution mechanism
         * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
         *
         * Clients calling this function must replace the `\\{id\\}` substring with the
         * actual token type ID.
         */
        function uri(uint256) public view virtual override returns (string memory) {
            return _uri;
        }
        /**
         * @dev See {IERC1155-balanceOf}.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function balanceOf(address account, uint256 id) public view virtual override returns (uint256) {
            require(account != address(0), "ERC1155: address zero is not a valid owner");
            return _balances[id][account];
        }
        /**
         * @dev See {IERC1155-balanceOfBatch}.
         *
         * Requirements:
         *
         * - `accounts` and `ids` must have the same length.
         */
        function balanceOfBatch(address[] memory accounts, uint256[] memory ids)
            public
            view
            virtual
            override
            returns (uint256[] memory)
        {
            require(accounts.length == ids.length, "ERC1155: accounts and ids length mismatch");
            uint256[] memory batchBalances = new uint256[](accounts.length);
            for (uint256 i = 0; i < accounts.length; ++i) {
                batchBalances[i] = balanceOf(accounts[i], ids[i]);
            }
            return batchBalances;
        }
        /**
         * @dev See {IERC1155-setApprovalForAll}.
         */
        function setApprovalForAll(address operator, bool approved) public virtual override {
            _setApprovalForAll(_msgSender(), operator, approved);
        }
        /**
         * @dev See {IERC1155-isApprovedForAll}.
         */
        function isApprovedForAll(address account, address operator) public view virtual override returns (bool) {
            return _operatorApprovals[account][operator];
        }
        /**
         * @dev See {IERC1155-safeTransferFrom}.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 id,
            uint256 amount,
            bytes memory data
        ) public virtual override {
            require(
                from == _msgSender() || isApprovedForAll(from, _msgSender()),
                "ERC1155: caller is not token owner or approved"
            );
            _safeTransferFrom(from, to, id, amount, data);
        }
        /**
         * @dev See {IERC1155-safeBatchTransferFrom}.
         */
        function safeBatchTransferFrom(
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) public virtual override {
            require(
                from == _msgSender() || isApprovedForAll(from, _msgSender()),
                "ERC1155: caller is not token owner or approved"
            );
            _safeBatchTransferFrom(from, to, ids, amounts, data);
        }
        /**
         * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `from` must have a balance of tokens of type `id` of at least `amount`.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
         * acceptance magic value.
         */
        function _safeTransferFrom(
            address from,
            address to,
            uint256 id,
            uint256 amount,
            bytes memory data
        ) internal virtual {
            require(to != address(0), "ERC1155: transfer to the zero address");
            address operator = _msgSender();
            uint256[] memory ids = _asSingletonArray(id);
            uint256[] memory amounts = _asSingletonArray(amount);
            _beforeTokenTransfer(operator, from, to, ids, amounts, data);
            uint256 fromBalance = _balances[id][from];
            require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
            unchecked {
                _balances[id][from] = fromBalance - amount;
            }
            _balances[id][to] += amount;
            emit TransferSingle(operator, from, to, id, amount);
            _afterTokenTransfer(operator, from, to, ids, amounts, data);
            _doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data);
        }
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
         * acceptance magic value.
         */
        function _safeBatchTransferFrom(
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) internal virtual {
            require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
            require(to != address(0), "ERC1155: transfer to the zero address");
            address operator = _msgSender();
            _beforeTokenTransfer(operator, from, to, ids, amounts, data);
            for (uint256 i = 0; i < ids.length; ++i) {
                uint256 id = ids[i];
                uint256 amount = amounts[i];
                uint256 fromBalance = _balances[id][from];
                require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
                unchecked {
                    _balances[id][from] = fromBalance - amount;
                }
                _balances[id][to] += amount;
            }
            emit TransferBatch(operator, from, to, ids, amounts);
            _afterTokenTransfer(operator, from, to, ids, amounts, data);
            _doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data);
        }
        /**
         * @dev Sets a new URI for all token types, by relying on the token type ID
         * substitution mechanism
         * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
         *
         * By this mechanism, any occurrence of the `\\{id\\}` substring in either the
         * URI or any of the amounts in the JSON file at said URI will be replaced by
         * clients with the token type ID.
         *
         * For example, the `https://token-cdn-domain/\\{id\\}.json` URI would be
         * interpreted by clients as
         * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
         * for token type ID 0x4cce0.
         *
         * See {uri}.
         *
         * Because these URIs cannot be meaningfully represented by the {URI} event,
         * this function emits no events.
         */
        function _setURI(string memory newuri) internal virtual {
            _uri = newuri;
        }
        /**
         * @dev Creates `amount` tokens of token type `id`, and assigns them to `to`.
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
         * acceptance magic value.
         */
        function _mint(
            address to,
            uint256 id,
            uint256 amount,
            bytes memory data
        ) internal virtual {
            require(to != address(0), "ERC1155: mint to the zero address");
            address operator = _msgSender();
            uint256[] memory ids = _asSingletonArray(id);
            uint256[] memory amounts = _asSingletonArray(amount);
            _beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
            _balances[id][to] += amount;
            emit TransferSingle(operator, address(0), to, id, amount);
            _afterTokenTransfer(operator, address(0), to, ids, amounts, data);
            _doSafeTransferAcceptanceCheck(operator, address(0), to, id, amount, data);
        }
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - `ids` and `amounts` must have the same length.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
         * acceptance magic value.
         */
        function _mintBatch(
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) internal virtual {
            require(to != address(0), "ERC1155: mint to the zero address");
            require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
            address operator = _msgSender();
            _beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
            for (uint256 i = 0; i < ids.length; i++) {
                _balances[ids[i]][to] += amounts[i];
            }
            emit TransferBatch(operator, address(0), to, ids, amounts);
            _afterTokenTransfer(operator, address(0), to, ids, amounts, data);
            _doSafeBatchTransferAcceptanceCheck(operator, address(0), to, ids, amounts, data);
        }
        /**
         * @dev Destroys `amount` tokens of token type `id` from `from`
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `from` must have at least `amount` tokens of token type `id`.
         */
        function _burn(
            address from,
            uint256 id,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC1155: burn from the zero address");
            address operator = _msgSender();
            uint256[] memory ids = _asSingletonArray(id);
            uint256[] memory amounts = _asSingletonArray(amount);
            _beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
            uint256 fromBalance = _balances[id][from];
            require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
            unchecked {
                _balances[id][from] = fromBalance - amount;
            }
            emit TransferSingle(operator, from, address(0), id, amount);
            _afterTokenTransfer(operator, from, address(0), ids, amounts, "");
        }
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - `ids` and `amounts` must have the same length.
         */
        function _burnBatch(
            address from,
            uint256[] memory ids,
            uint256[] memory amounts
        ) internal virtual {
            require(from != address(0), "ERC1155: burn from the zero address");
            require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
            address operator = _msgSender();
            _beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
            for (uint256 i = 0; i < ids.length; i++) {
                uint256 id = ids[i];
                uint256 amount = amounts[i];
                uint256 fromBalance = _balances[id][from];
                require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
                unchecked {
                    _balances[id][from] = fromBalance - amount;
                }
            }
            emit TransferBatch(operator, from, address(0), ids, amounts);
            _afterTokenTransfer(operator, from, address(0), ids, amounts, "");
        }
        /**
         * @dev Approve `operator` to operate on all of `owner` tokens
         *
         * Emits an {ApprovalForAll} event.
         */
        function _setApprovalForAll(
            address owner,
            address operator,
            bool approved
        ) internal virtual {
            require(owner != operator, "ERC1155: setting approval status for self");
            _operatorApprovals[owner][operator] = approved;
            emit ApprovalForAll(owner, operator, approved);
        }
        /**
         * @dev Hook that is called before any token transfer. This includes minting
         * and burning, as well as batched variants.
         *
         * The same hook is called on both single and batched variants. For single
         * transfers, the length of the `ids` and `amounts` arrays will be 1.
         *
         * Calling conditions (for each `id` and `amount` pair):
         *
         * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * of token type `id` will be  transferred to `to`.
         * - When `from` is zero, `amount` tokens of token type `id` will be minted
         * for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
         * will be burned.
         * - `from` and `to` are never both zero.
         * - `ids` and `amounts` have the same, non-zero length.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address operator,
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) internal virtual {}
        /**
         * @dev Hook that is called after any token transfer. This includes minting
         * and burning, as well as batched variants.
         *
         * The same hook is called on both single and batched variants. For single
         * transfers, the length of the `id` and `amount` arrays will be 1.
         *
         * Calling conditions (for each `id` and `amount` pair):
         *
         * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * of token type `id` will be  transferred to `to`.
         * - When `from` is zero, `amount` tokens of token type `id` will be minted
         * for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
         * will be burned.
         * - `from` and `to` are never both zero.
         * - `ids` and `amounts` have the same, non-zero length.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address operator,
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) internal virtual {}
        function _doSafeTransferAcceptanceCheck(
            address operator,
            address from,
            address to,
            uint256 id,
            uint256 amount,
            bytes memory data
        ) private {
            if (to.isContract()) {
                try IERC1155Receiver(to).onERC1155Received(operator, from, id, amount, data) returns (bytes4 response) {
                    if (response != IERC1155Receiver.onERC1155Received.selector) {
                        revert("ERC1155: ERC1155Receiver rejected tokens");
                    }
                } catch Error(string memory reason) {
                    revert(reason);
                } catch {
                    revert("ERC1155: transfer to non-ERC1155Receiver implementer");
                }
            }
        }
        function _doSafeBatchTransferAcceptanceCheck(
            address operator,
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) private {
            if (to.isContract()) {
                try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, amounts, data) returns (
                    bytes4 response
                ) {
                    if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
                        revert("ERC1155: ERC1155Receiver rejected tokens");
                    }
                } catch Error(string memory reason) {
                    revert(reason);
                } catch {
                    revert("ERC1155: transfer to non-ERC1155Receiver implementer");
                }
            }
        }
        function _asSingletonArray(uint256 element) private pure returns (uint256[] memory) {
            uint256[] memory array = new uint256[](1);
            array[0] = element;
            return array;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (token/common/ERC2981.sol)
    pragma solidity ^0.8.0;
    import "../../interfaces/IERC2981.sol";
    import "../../utils/introspection/ERC165.sol";
    /**
     * @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
     *
     * Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
     * specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
     *
     * Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
     * fee is specified in basis points by default.
     *
     * IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
     * https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
     * voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
     *
     * _Available since v4.5._
     */
    abstract contract ERC2981 is IERC2981, ERC165 {
        struct RoyaltyInfo {
            address receiver;
            uint96 royaltyFraction;
        }
        RoyaltyInfo private _defaultRoyaltyInfo;
        mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo;
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
            return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
        }
        /**
         * @inheritdoc IERC2981
         */
        function royaltyInfo(uint256 _tokenId, uint256 _salePrice) public view virtual override returns (address, uint256) {
            RoyaltyInfo memory royalty = _tokenRoyaltyInfo[_tokenId];
            if (royalty.receiver == address(0)) {
                royalty = _defaultRoyaltyInfo;
            }
            uint256 royaltyAmount = (_salePrice * royalty.royaltyFraction) / _feeDenominator();
            return (royalty.receiver, royaltyAmount);
        }
        /**
         * @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
         * fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
         * override.
         */
        function _feeDenominator() internal pure virtual returns (uint96) {
            return 10000;
        }
        /**
         * @dev Sets the royalty information that all ids in this contract will default to.
         *
         * Requirements:
         *
         * - `receiver` cannot be the zero address.
         * - `feeNumerator` cannot be greater than the fee denominator.
         */
        function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
            require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
            require(receiver != address(0), "ERC2981: invalid receiver");
            _defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
        }
        /**
         * @dev Removes default royalty information.
         */
        function _deleteDefaultRoyalty() internal virtual {
            delete _defaultRoyaltyInfo;
        }
        /**
         * @dev Sets the royalty information for a specific token id, overriding the global default.
         *
         * Requirements:
         *
         * - `receiver` cannot be the zero address.
         * - `feeNumerator` cannot be greater than the fee denominator.
         */
        function _setTokenRoyalty(
            uint256 tokenId,
            address receiver,
            uint96 feeNumerator
        ) internal virtual {
            require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
            require(receiver != address(0), "ERC2981: Invalid parameters");
            _tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
        }
        /**
         * @dev Resets royalty information for the token id back to the global default.
         */
        function _resetTokenRoyalty(uint256 tokenId) internal virtual {
            delete _tokenRoyaltyInfo[tokenId];
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.13;
    import {OperatorFilterer} from "./OperatorFilterer.sol";
    import {CANONICAL_CORI_SUBSCRIPTION} from "./lib/Constants.sol";
    /**
     * @title  DefaultOperatorFilterer
     * @notice Inherits from OperatorFilterer and automatically subscribes to the default OpenSea subscription.
     * @dev    Please note that if your token contract does not provide an owner with EIP-173, it must provide
     *         administration methods on the contract itself to interact with the registry otherwise the subscription
     *         will be locked to the options set during construction.
     */
    abstract contract DefaultOperatorFilterer is OperatorFilterer {
        /// @dev The constructor that is called when the contract is being deployed.
        constructor() OperatorFilterer(CANONICAL_CORI_SUBSCRIPTION, true) {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC1155/IERC1155.sol)
    pragma solidity ^0.8.0;
    import "../../utils/introspection/IERC165.sol";
    /**
     * @dev Required interface of an ERC1155 compliant contract, as defined in the
     * https://eips.ethereum.org/EIPS/eip-1155[EIP].
     *
     * _Available since v3.1._
     */
    interface IERC1155 is IERC165 {
        /**
         * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
         */
        event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
        /**
         * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
         * transfers.
         */
        event TransferBatch(
            address indexed operator,
            address indexed from,
            address indexed to,
            uint256[] ids,
            uint256[] values
        );
        /**
         * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
         * `approved`.
         */
        event ApprovalForAll(address indexed account, address indexed operator, bool approved);
        /**
         * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
         *
         * If an {URI} event was emitted for `id`, the standard
         * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
         * returned by {IERC1155MetadataURI-uri}.
         */
        event URI(string value, uint256 indexed id);
        /**
         * @dev Returns the amount of tokens of token type `id` owned by `account`.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function balanceOf(address account, uint256 id) external view returns (uint256);
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
         *
         * Requirements:
         *
         * - `accounts` and `ids` must have the same length.
         */
        function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids)
            external
            view
            returns (uint256[] memory);
        /**
         * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
         *
         * Emits an {ApprovalForAll} event.
         *
         * Requirements:
         *
         * - `operator` cannot be the caller.
         */
        function setApprovalForAll(address operator, bool approved) external;
        /**
         * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
         *
         * See {setApprovalForAll}.
         */
        function isApprovedForAll(address account, address operator) external view returns (bool);
        /**
         * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
         * - `from` must have a balance of tokens of type `id` of at least `amount`.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
         * acceptance magic value.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 id,
            uint256 amount,
            bytes calldata data
        ) external;
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - `ids` and `amounts` must have the same length.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
         * acceptance magic value.
         */
        function safeBatchTransferFrom(
            address from,
            address to,
            uint256[] calldata ids,
            uint256[] calldata amounts,
            bytes calldata data
        ) external;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol)
    pragma solidity ^0.8.0;
    import "../../utils/introspection/IERC165.sol";
    /**
     * @dev _Available since v3.1._
     */
    interface IERC1155Receiver is IERC165 {
        /**
         * @dev Handles the receipt of a single ERC1155 token type. This function is
         * called at the end of a `safeTransferFrom` after the balance has been updated.
         *
         * NOTE: To accept the transfer, this must return
         * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
         * (i.e. 0xf23a6e61, or its own function selector).
         *
         * @param operator The address which initiated the transfer (i.e. msg.sender)
         * @param from The address which previously owned the token
         * @param id The ID of the token being transferred
         * @param value The amount of tokens being transferred
         * @param data Additional data with no specified format
         * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
         */
        function onERC1155Received(
            address operator,
            address from,
            uint256 id,
            uint256 value,
            bytes calldata data
        ) external returns (bytes4);
        /**
         * @dev Handles the receipt of a multiple ERC1155 token types. This function
         * is called at the end of a `safeBatchTransferFrom` after the balances have
         * been updated.
         *
         * NOTE: To accept the transfer(s), this must return
         * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
         * (i.e. 0xbc197c81, or its own function selector).
         *
         * @param operator The address which initiated the batch transfer (i.e. msg.sender)
         * @param from The address which previously owned the token
         * @param ids An array containing ids of each token being transferred (order and length must match values array)
         * @param values An array containing amounts of each token being transferred (order and length must match ids array)
         * @param data Additional data with no specified format
         * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
         */
        function onERC1155BatchReceived(
            address operator,
            address from,
            uint256[] calldata ids,
            uint256[] calldata values,
            bytes calldata data
        ) external returns (bytes4);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC1155/extensions/IERC1155MetadataURI.sol)
    pragma solidity ^0.8.0;
    import "../IERC1155.sol";
    /**
     * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
     * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP].
     *
     * _Available since v3.1._
     */
    interface IERC1155MetadataURI is IERC1155 {
        /**
         * @dev Returns the URI for token type `id`.
         *
         * If the `\\{id\\}` substring is present in the URI, it must be replaced by
         * clients with the actual token type ID.
         */
        function uri(uint256 id) external view returns (string memory);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
    pragma solidity ^0.8.0;
    import "./IERC165.sol";
    /**
     * @dev Implementation of the {IERC165} interface.
     *
     * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
     * for the additional interface id that will be supported. For example:
     *
     * ```solidity
     * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
     *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
     * }
     * ```
     *
     * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
     */
    abstract contract ERC165 is IERC165 {
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            return interfaceId == type(IERC165).interfaceId;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)
    pragma solidity ^0.8.0;
    import "../utils/introspection/IERC165.sol";
    /**
     * @dev Interface for the NFT Royalty Standard.
     *
     * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
     * support for royalty payments across all NFT marketplaces and ecosystem participants.
     *
     * _Available since v4.5._
     */
    interface IERC2981 is IERC165 {
        /**
         * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
         * exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
         */
        function royaltyInfo(uint256 tokenId, uint256 salePrice)
            external
            view
            returns (address receiver, uint256 royaltyAmount);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.13;
    import {IOperatorFilterRegistry} from "./IOperatorFilterRegistry.sol";
    import {CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS} from "./lib/Constants.sol";
    /**
     * @title  OperatorFilterer
     * @notice Abstract contract whose constructor automatically registers and optionally subscribes to or copies another
     *         registrant's entries in the OperatorFilterRegistry.
     * @dev    This smart contract is meant to be inherited by token contracts so they can use the following:
     *         - `onlyAllowedOperator` modifier for `transferFrom` and `safeTransferFrom` methods.
     *         - `onlyAllowedOperatorApproval` modifier for `approve` and `setApprovalForAll` methods.
     *         Please note that if your token contract does not provide an owner with EIP-173, it must provide
     *         administration methods on the contract itself to interact with the registry otherwise the subscription
     *         will be locked to the options set during construction.
     */
    abstract contract OperatorFilterer {
        /// @dev Emitted when an operator is not allowed.
        error OperatorNotAllowed(address operator);
        IOperatorFilterRegistry public constant OPERATOR_FILTER_REGISTRY =
            IOperatorFilterRegistry(CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS);
        /// @dev The constructor that is called when the contract is being deployed.
        constructor(address subscriptionOrRegistrantToCopy, bool subscribe) {
            // If an inheriting token contract is deployed to a network without the registry deployed, the modifier
            // will not revert, but the contract will need to be registered with the registry once it is deployed in
            // order for the modifier to filter addresses.
            if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
                if (subscribe) {
                    OPERATOR_FILTER_REGISTRY.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy);
                } else {
                    if (subscriptionOrRegistrantToCopy != address(0)) {
                        OPERATOR_FILTER_REGISTRY.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy);
                    } else {
                        OPERATOR_FILTER_REGISTRY.register(address(this));
                    }
                }
            }
        }
        /**
         * @dev A helper function to check if an operator is allowed.
         */
        modifier onlyAllowedOperator(address from) virtual {
            // Allow spending tokens from addresses with balance
            // Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred
            // from an EOA.
            if (from != msg.sender) {
                _checkFilterOperator(msg.sender);
            }
            _;
        }
        /**
         * @dev A helper function to check if an operator approval is allowed.
         */
        modifier onlyAllowedOperatorApproval(address operator) virtual {
            _checkFilterOperator(operator);
            _;
        }
        /**
         * @dev A helper function to check if an operator is allowed.
         */
        function _checkFilterOperator(address operator) internal view virtual {
            // Check registry code length to facilitate testing in environments without a deployed registry.
            if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
                // under normal circumstances, this function will revert rather than return false, but inheriting contracts
                // may specify their own OperatorFilterRegistry implementations, which may behave differently
                if (!OPERATOR_FILTER_REGISTRY.isOperatorAllowed(address(this), operator)) {
                    revert OperatorNotAllowed(operator);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.13;
    address constant CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS = 0x000000000000AAeB6D7670E522A718067333cd4E;
    address constant CANONICAL_CORI_SUBSCRIPTION = 0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6;
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.13;
    interface IOperatorFilterRegistry {
        /**
         * @notice Returns true if operator is not filtered for a given token, either by address or codeHash. Also returns
         *         true if supplied registrant address is not registered.
         */
        function isOperatorAllowed(address registrant, address operator) external view returns (bool);
        /**
         * @notice Registers an address with the registry. May be called by address itself or by EIP-173 owner.
         */
        function register(address registrant) external;
        /**
         * @notice Registers an address with the registry and "subscribes" to another address's filtered operators and codeHashes.
         */
        function registerAndSubscribe(address registrant, address subscription) external;
        /**
         * @notice Registers an address with the registry and copies the filtered operators and codeHashes from another
         *         address without subscribing.
         */
        function registerAndCopyEntries(address registrant, address registrantToCopy) external;
        /**
         * @notice Unregisters an address with the registry and removes its subscription. May be called by address itself or by EIP-173 owner.
         *         Note that this does not remove any filtered addresses or codeHashes.
         *         Also note that any subscriptions to this registrant will still be active and follow the existing filtered addresses and codehashes.
         */
        function unregister(address addr) external;
        /**
         * @notice Update an operator address for a registered address - when filtered is true, the operator is filtered.
         */
        function updateOperator(address registrant, address operator, bool filtered) external;
        /**
         * @notice Update multiple operators for a registered address - when filtered is true, the operators will be filtered. Reverts on duplicates.
         */
        function updateOperators(address registrant, address[] calldata operators, bool filtered) external;
        /**
         * @notice Update a codeHash for a registered address - when filtered is true, the codeHash is filtered.
         */
        function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external;
        /**
         * @notice Update multiple codeHashes for a registered address - when filtered is true, the codeHashes will be filtered. Reverts on duplicates.
         */
        function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external;
        /**
         * @notice Subscribe an address to another registrant's filtered operators and codeHashes. Will remove previous
         *         subscription if present.
         *         Note that accounts with subscriptions may go on to subscribe to other accounts - in this case,
         *         subscriptions will not be forwarded. Instead the former subscription's existing entries will still be
         *         used.
         */
        function subscribe(address registrant, address registrantToSubscribe) external;
        /**
         * @notice Unsubscribe an address from its current subscribed registrant, and optionally copy its filtered operators and codeHashes.
         */
        function unsubscribe(address registrant, bool copyExistingEntries) external;
        /**
         * @notice Get the subscription address of a given registrant, if any.
         */
        function subscriptionOf(address addr) external returns (address registrant);
        /**
         * @notice Get the set of addresses subscribed to a given registrant.
         *         Note that order is not guaranteed as updates are made.
         */
        function subscribers(address registrant) external returns (address[] memory);
        /**
         * @notice Get the subscriber at a given index in the set of addresses subscribed to a given registrant.
         *         Note that order is not guaranteed as updates are made.
         */
        function subscriberAt(address registrant, uint256 index) external returns (address);
        /**
         * @notice Copy filtered operators and codeHashes from a different registrantToCopy to addr.
         */
        function copyEntriesOf(address registrant, address registrantToCopy) external;
        /**
         * @notice Returns true if operator is filtered by a given address or its subscription.
         */
        function isOperatorFiltered(address registrant, address operator) external returns (bool);
        /**
         * @notice Returns true if the hash of an address's code is filtered by a given address or its subscription.
         */
        function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool);
        /**
         * @notice Returns true if a codeHash is filtered by a given address or its subscription.
         */
        function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool);
        /**
         * @notice Returns a list of filtered operators for a given address or its subscription.
         */
        function filteredOperators(address addr) external returns (address[] memory);
        /**
         * @notice Returns the set of filtered codeHashes for a given address or its subscription.
         *         Note that order is not guaranteed as updates are made.
         */
        function filteredCodeHashes(address addr) external returns (bytes32[] memory);
        /**
         * @notice Returns the filtered operator at the given index of the set of filtered operators for a given address or
         *         its subscription.
         *         Note that order is not guaranteed as updates are made.
         */
        function filteredOperatorAt(address registrant, uint256 index) external returns (address);
        /**
         * @notice Returns the filtered codeHash at the given index of the list of filtered codeHashes for a given address or
         *         its subscription.
         *         Note that order is not guaranteed as updates are made.
         */
        function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32);
        /**
         * @notice Returns true if an address has registered
         */
        function isRegistered(address addr) external returns (bool);
        /**
         * @dev Convenience method to compute the code hash of an arbitrary contract
         */
        function codeHashOf(address addr) external returns (bytes32);
    }