Transaction Hash:
Block:
13985909 at Jan-11-2022 06:32:08 PM +UTC
Transaction Fee:
0.011011285661128407 ETH
$20.67
Gas Used:
46,539 Gas / 236.603400613 Gwei
Emitted Events:
182 |
LooksRareToken.Approval( owner=[Sender] 0x415d21f2f071bee2238bec9ca14250a5ee9e897a, spender=0x68b34658...D8665Fc45, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x415D21F2...5ee9e897A |
0.128481466762572445 Eth
Nonce: 123
|
0.117470181101444038 Eth
Nonce: 124
| 0.011011285661128407 | ||
0x6EBaF477...D8C9B131a
Miner
| (Miner: 0x6eb...31a) | 319.316460624455796962 Eth | 319.316530432955796962 Eth | 0.0000698085 | |
0xf4d2888d...4c092421E |
Execution Trace
LooksRareToken.approve( spender=0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45, amount=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
approve[ERC20 (ln:263)]
_approve[ERC20 (ln:264)]
Approval[ERC20 (ln:423)]
_msgSender[ERC20 (ln:264)]
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol"; import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import {ILooksRareToken} from "../interfaces/ILooksRareToken.sol"; /** * @title LooksRareToken (LOOKS) * @notice LOOKSRARELOOKSRARELOOKSRLOOKSRARELOOKSRARELOOKSRARELOOKSRARELOOKSRLOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSRAR'''''''''''''''''''''''''''''''''''OOKSRLOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKS:. .;OOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOO,. .,KSRARELOOKSRARELOOKSR LOOKSRARELOOKSRAREL' ..',;:LOOKS::;,'.. 'RARELOOKSRARELOOKSR LOOKSRARELOOKSRAR. .,:LOOKSRARELOOKSRARELO:,. .RELOOKSRARELOOKSR LOOKSRARELOOKS:. .;RARELOOKSRARELOOKSRARELOOKSl;. .:OOKSRARELOOKSR LOOKSRARELOO;. .'OKSRARELOOKSRARELOOKSRARELOOKSRARE'. .;KSRARELOOKSR LOOKSRAREL,. .,LOOKSRARELOOK:;;:"""":;;;lELOOKSRARELO,. .,RARELOOKSR LOOKSRAR. .;okLOOKSRAREx:. .;OOKSRARELOOK;. .RELOOKSR LOOKS:. .:dOOOLOOKSRARE' .''''.. .OKSRARELOOKSR:. .LOOKSR LOx;. .cKSRARELOOKSRAR' 'LOOKSRAR' .KSRARELOOKSRARc.. .OKSR L;. .cxOKSRARELOOKSRAR. .LOOKS.RARE' ;kRARELOOKSRARExc. .;R LO' .;oOKSRARELOOKSRAl. .LOOKS.RARE. :kRARELOOKSRAREo;. 'SR LOOK;. .,KSRARELOOKSRAx, .;LOOKSR;. .oSRARELOOKSRAo,. .;OKSR LOOKSk:. .'RARELOOKSRARd;. .... 'oOOOOOOOOOOxc'. .:LOOKSR LOOKSRARc. .:dLOOKSRAREko;. .,lxOOOOOOOOOd:. .ARELOOKSR LOOKSRARELo' .;oOKSRARELOOxoc;,....,;:ldkOOOOOOOOkd;. 'SRARELOOKSR LOOKSRARELOOd,. .,lSRARELOOKSRARELOOKSRARELOOKSRkl,. .,OKSRARELOOKSR LOOKSRARELOOKSx;. ..;oxELOOKSRARELOOKSRARELOkxl:.. .:LOOKSRARELOOKSR LOOKSRARELOOKSRARc. .':cOKSRARELOOKSRALOc;'. .ARELOOKSRARELOOKSR LOOKSRARELOOKSRARELl' ...'',,,,''... 'SRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOo,. .,OKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSx;. .;xOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSRLO:. .:SRLOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSRLOOKl. .lOKSRLOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSRLOOKSRo'. .'oLOOKSRLOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSRLOOKSRARd;. .;xRELOOKSRLOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSRLOOKSRARELO:. .:kRARELOOKSRLOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSRLOOKSRARELOOKl. .cOKSRARELOOKSRLOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSRLOOKSRARELOOKSRo' 'oLOOKSRARELOOKSRLOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSRLOOKSRARELOOKSRARE,. .,dRELOOKSRARELOOKSRLOOKSRARELOOKSRARELOOKSR LOOKSRARELOOKSRARELOOKSRLOOKSRARELOOKSRARELOOKSRARELOOKSRARELOOKSRLOOKSRARELOOKSRARELOOKSR */ contract LooksRareToken is ERC20, Ownable, ILooksRareToken { uint256 private immutable _SUPPLY_CAP; /** * @notice Constructor * @param _premintReceiver address that receives the premint * @param _premintAmount amount to premint * @param _cap supply cap (to prevent abusive mint) */ constructor( address _premintReceiver, uint256 _premintAmount, uint256 _cap ) ERC20("LooksRare Token", "LOOKS") { require(_cap > _premintAmount, "LOOKS: Premint amount is greater than cap"); // Transfer the sum of the premint to address _mint(_premintReceiver, _premintAmount); _SUPPLY_CAP = _cap; } /** * @notice Mint LOOKS tokens * @param account address to receive tokens * @param amount amount to mint * @return status true if mint is successful, false if not */ function mint(address account, uint256 amount) external override onlyOwner returns (bool status) { if (totalSupply() + amount <= _SUPPLY_CAP) { _mint(account, amount); return true; } return false; } /** * @notice View supply cap */ function SUPPLY_CAP() external view override returns (uint256) { return _SUPPLY_CAP; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance"); unchecked { _approve(sender, _msgSender(), currentAllowance - amount); } return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][spender]; require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(_msgSender(), spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `sender` to `recipient`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); uint256 senderBalance = _balances[sender]; require(senderBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[sender] = senderBalance - amount; } _balances[recipient] += amount; emit Transfer(sender, recipient, amount); _afterTokenTransfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface ILooksRareToken is IERC20 { function SUPPLY_CAP() external view returns (uint256); function mint(address account, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }