ETH Price: $1,896.53 (-1.04%)

Transaction Decoder

Block:
19623078 at Apr-10-2024 05:14:59 AM +UTC
Transaction Fee:
0.001442164959025496 ETH $2.74
Gas Used:
92,524 Gas / 15.586928354 Gwei

Emitted Events:

Account State Difference:

  Address   Before After State Difference Code
0x05cc2449...256F1F188
0x3Aeb1008...536b7A471
0.005536292370482279 Eth
Nonce: 117
0.004094127411456783 Eth
Nonce: 118
0.001442164959025496
(Titan Builder)
5.73949960586467496 Eth5.739503701406318844 Eth0.000004095541643884
0x703F2490...135732507

Execution Trace

StakingRewards.CALL( )
  • TokenMintERC20Token.transfer( recipient=0x3Aeb10084529Ea5986C9E78268a080a536b7A471, amount=21544816090402914 ) => ( True )
    File 1 of 2: StakingRewards
    // SPDX-License-Identifier: MIT
    
    pragma solidity ^0.5.16;
    
    
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a >= b ? a : b;
        }
    
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
    
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow, so we distribute
            return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
        }
    }
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         *
         * _Available since v2.4.0._
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
     * the optional functions; to access them see {ERC20Detailed}.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    /**
     * @dev Optional functions from the ERC20 standard.
     */
    contract ERC20Detailed is IERC20 {
        string private _name;
        string private _symbol;
        uint8 private _decimals;
    
        /**
         * @dev Sets the values for `name`, `symbol`, and `decimals`. All three of
         * these values are immutable: they can only be set once during
         * construction.
         */
        constructor (string memory name, string memory symbol, uint8 decimals) public {
            _name = name;
            _symbol = symbol;
            _decimals = decimals;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5,05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view returns (uint8) {
            return _decimals;
        }
    }
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * This test is non-exhaustive, and there may be false-negatives: during the
         * execution of a contract's constructor, its address will be reported as
         * not containing a contract.
         *
         * IMPORTANT: It is unsafe to assume that an address for which this
         * function returns false is an externally-owned account (EOA) and not a
         * contract.
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies in extcodesize, which returns 0 for contracts in
            // construction, since the code is only stored at the end of the
            // constructor execution.
    
            // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
            // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
            // for accounts without code, i.e. `keccak256('')`
            bytes32 codehash;
            bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
            // solhint-disable-next-line no-inline-assembly
            assembly { codehash := extcodehash(account) }
            return (codehash != 0x0 && codehash != accountHash);
        }
    
        /**
         * @dev Converts an `address` into `address payable`. Note that this is
         * simply a type cast: the actual underlying value is not changed.
         *
         * _Available since v2.4.0._
         */
        function toPayable(address account) internal pure returns (address payable) {
            return address(uint160(account));
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         *
         * _Available since v2.4.0._
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            // solhint-disable-next-line avoid-call-value
            (bool success, ) = recipient.call.value(amount)("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    }
    
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using SafeMath for uint256;
        using Address for address;
    
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
    
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
    
        function safeApprove(IERC20 token, address spender, uint256 value) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            // solhint-disable-next-line max-line-length
            require((value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
    
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 newAllowance = token.allowance(address(this), spender).add(value);
            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves.
    
            // A Solidity high level call has three parts:
            //  1. The target address is checked to verify it contains contract code
            //  2. The call itself is made, and success asserted
            //  3. The return value is decoded, which in turn checks the size of the returned data.
            // solhint-disable-next-line max-line-length
            require(address(token).isContract(), "SafeERC20: call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = address(token).call(data);
            require(success, "SafeERC20: low-level call failed");
    
            if (returndata.length > 0) { // Return data is optional
                // solhint-disable-next-line max-line-length
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     */
    contract ReentrancyGuard {
        // counter to allow mutex lock with only one SSTORE operation
        uint256 private _guardCounter;
    
        constructor () internal {
            // The counter starts at one to prevent changing it from zero to a non-zero
            // value, which is a more expensive operation.
            _guardCounter = 1;
        }
    
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and make it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            _guardCounter += 1;
            uint256 localCounter = _guardCounter;
            _;
            require(localCounter == _guardCounter, "ReentrancyGuard: reentrant call");
        }
    }
    
    interface IStakingRewards {
        // Views
        function lastTimeRewardApplicable() external view returns (uint256);
    
        function rewardPerToken() external view returns (uint256);
    
        function earned(address account) external view returns (uint256);
    
        function getRewardForDuration() external view returns (uint256);
    
        function totalSupply() external view returns (uint256);
    
        function balanceOf(address account) external view returns (uint256);
    
        // Mutative
    
        function stake(uint256 amount) external;
    
        function withdraw(uint256 amount) external;
    
        function getReward() external;
    
        function exit() external;
    }
    
    // https://docs.synthetix.io/contracts/Owned
    contract Owned {
        address public owner;
        address public nominatedOwner;
    
        constructor(address _owner) public {
            require(_owner != address(0), "Owner address cannot be 0");
            owner = _owner;
            emit OwnerChanged(address(0), _owner);
        }
    
        function nominateNewOwner(address _owner) external onlyOwner {
            nominatedOwner = _owner;
            emit OwnerNominated(_owner);
        }
    
        function acceptOwnership() external {
            require(msg.sender == nominatedOwner, "You must be nominated before you can accept ownership");
            emit OwnerChanged(owner, nominatedOwner);
            owner = nominatedOwner;
            nominatedOwner = address(0);
        }
    
        modifier onlyOwner {
            require(msg.sender == owner, "Only the contract owner may perform this action");
            _;
        }
    
        event OwnerNominated(address newOwner);
        event OwnerChanged(address oldOwner, address newOwner);
    }
    
    // Inheritance
    // https://docs.synthetix.io/contracts/RewardsDistributionRecipient
    contract RewardsDistributionRecipient is Owned {
        address public rewardsDistribution;
    
        function notifyRewardAmount(uint256 reward) external;
    
        modifier onlyRewardsDistribution() {
            require(msg.sender == rewardsDistribution, "Caller is not RewardsDistribution contract");
            _;
        }
    
        function setRewardsDistribution(address _rewardsDistribution) external onlyOwner {
            rewardsDistribution = _rewardsDistribution;
        }
    }
    
    // Inheritance
    // https://docs.synthetix.io/contracts/Pausable
    contract Pausable is Owned {
        uint public lastPauseTime;
        bool public paused;
    
        constructor() internal {
            // This contract is abstract, and thus cannot be instantiated directly
            require(owner != address(0), "Owner must be set");
            // Paused will be false, and lastPauseTime will be 0 upon initialisation
        }
    
        /**
         * @notice Change the paused state of the contract
         * @dev Only the contract owner may call this.
         */
        function setPaused(bool _paused) external onlyOwner {
            // Ensure we're actually changing the state before we do anything
            if (_paused == paused) {
                return;
            }
    
            // Set our paused state.
            paused = _paused;
    
            // If applicable, set the last pause time.
            if (paused) {
                lastPauseTime = now;
            }
    
            // Let everyone know that our pause state has changed.
            emit PauseChanged(paused);
        }
    
        event PauseChanged(bool isPaused);
    
        modifier notPaused {
            require(!paused, "This action cannot be performed while the contract is paused");
            _;
        }
    }
    
    // Inheritance
    contract StakingRewards is IStakingRewards, RewardsDistributionRecipient, ReentrancyGuard, Pausable {
        using SafeMath for uint256;
        using SafeERC20 for IERC20;
    
        /* ========== STATE VARIABLES ========== */
    
        IERC20 public rewardsToken;
        IERC20 public stakingToken;
        uint256 public periodFinish = 0;
        uint256 public rewardRate = 0;
        uint256 public rewardsDuration = 7776000;
        uint256 public lastUpdateTime;
        uint256 public rewardPerTokenStored;
    
        mapping(address => uint256) public userRewardPerTokenPaid;
        mapping(address => uint256) public rewards;
    
        uint256 private _totalSupply;
        mapping(address => uint256) private _balances;
    
        /* ========== CONSTRUCTOR ========== */
    
        constructor(
            address _owner,
            address _rewardsDistribution,
            address _rewardsToken,
            address _stakingToken
        ) public Owned(_owner) {
            rewardsToken = IERC20(_rewardsToken);
            stakingToken = IERC20(_stakingToken);
            rewardsDistribution = _rewardsDistribution;
        }
    
        /* ========== VIEWS ========== */
    
        function totalSupply() external view returns (uint256) {
            return _totalSupply;
        }
    
        function balanceOf(address account) external view returns (uint256) {
            return _balances[account];
        }
    
        function lastTimeRewardApplicable() public view returns (uint256) {
            return Math.min(block.timestamp, periodFinish);
        }
    
        function rewardPerToken() public view returns (uint256) {
            if (_totalSupply == 0) {
                return rewardPerTokenStored;
            }
            return
                rewardPerTokenStored.add(
                    lastTimeRewardApplicable().sub(lastUpdateTime).mul(rewardRate).mul(1e18).div(_totalSupply)
                );
        }
    
        function earned(address account) public view returns (uint256) {
            return _balances[account].mul(rewardPerToken().sub(userRewardPerTokenPaid[account])).div(1e18).add(rewards[account]);
        }
    
        function getRewardForDuration() external view returns (uint256) {
            return rewardRate.mul(rewardsDuration);
        }
    
        /* ========== MUTATIVE FUNCTIONS ========== */
    
        function stake(uint256 amount) external nonReentrant notPaused updateReward(msg.sender) {
            require(amount > 0, "Cannot stake 0");
            _totalSupply = _totalSupply.add(amount);
            _balances[msg.sender] = _balances[msg.sender].add(amount);
            stakingToken.safeTransferFrom(msg.sender, address(this), amount);
            emit Staked(msg.sender, amount);
        }
    
        function withdraw(uint256 amount) public nonReentrant updateReward(msg.sender) {
            require(amount > 0, "Cannot withdraw 0");
            require(block.timestamp >= periodFinish, "Locked");
            _totalSupply = _totalSupply.sub(amount);
            _balances[msg.sender] = _balances[msg.sender].sub(amount);
            stakingToken.safeTransfer(msg.sender, amount);
            emit Withdrawn(msg.sender, amount);
        }
    
        function getReward() public nonReentrant updateReward(msg.sender) {
            uint256 reward = rewards[msg.sender];
            if (reward > 0) {
                rewards[msg.sender] = 0;
                rewardsToken.safeTransfer(msg.sender, reward);
                emit RewardPaid(msg.sender, reward);
            }
        }
    
        function exit() external {
            withdraw(_balances[msg.sender]);
            getReward();
        }
    
        /* ========== RESTRICTED FUNCTIONS ========== */
    
        function notifyRewardAmount(uint256 reward) external onlyRewardsDistribution updateReward(address(0)) {
            if (block.timestamp >= periodFinish) {
                rewardRate = reward.div(rewardsDuration);
            } else {
                uint256 remaining = periodFinish.sub(block.timestamp);
                uint256 leftover = remaining.mul(rewardRate);
                rewardRate = reward.add(leftover).div(rewardsDuration);
            }
    
            // Ensure the provided reward amount is not more than the balance in the contract.
            // This keeps the reward rate in the right range, preventing overflows due to
            // very high values of rewardRate in the earned and rewardsPerToken functions;
            // Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.
            uint balance = rewardsToken.balanceOf(address(this));
            require(rewardRate <= balance.div(rewardsDuration), "Provided reward too high");
    
            lastUpdateTime = block.timestamp;
            periodFinish = block.timestamp.add(rewardsDuration);
            emit RewardAdded(reward);
        }
    
        // Added to support recovering tokens from other systems to be distributed to holders
        function recoverERC20(address tokenAddress, uint256 tokenAmount) external onlyOwner {
            // Cannot recover the staking token
            require(
                tokenAddress != address(stakingToken),
                "Cannot withdraw the staking token"
            );
            IERC20(tokenAddress).safeTransfer(owner, tokenAmount);
            emit Recovered(tokenAddress, tokenAmount);
        }
    
        function setRewardsDuration(uint256 _rewardsDuration) external onlyOwner {
            require(
                periodFinish == 0 || block.timestamp > periodFinish,
                "Previous rewards period must be complete before changing the duration for the new period"
            );
            rewardsDuration = _rewardsDuration;
            emit RewardsDurationUpdated(rewardsDuration);
        }
    
        /* ========== MODIFIERS ========== */
    
        modifier updateReward(address account) {
            rewardPerTokenStored = rewardPerToken();
            lastUpdateTime = lastTimeRewardApplicable();
            if (account != address(0)) {
                rewards[account] = earned(account);
                userRewardPerTokenPaid[account] = rewardPerTokenStored;
            }
            _;
        }
    
        /* ========== EVENTS ========== */
    
        event RewardAdded(uint256 reward);
        event Staked(address indexed user, uint256 amount);
        event Withdrawn(address indexed user, uint256 amount);
        event RewardPaid(address indexed user, uint256 reward);
        event RewardsDurationUpdated(uint256 newDuration);
        event Recovered(address token, uint256 amount);
    }

    File 2 of 2: TokenMintERC20Token
    /**
     *Submitted for verification at Etherscan.io on 2021-02-26
    */
    
    /**
     *Submitted for verification at Etherscan.io on 2019-08-02
    */
    
    // File: contracts\open-zeppelin-contracts\token\ERC20\IERC20.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
     * the optional functions; to access them see `ERC20Detailed`.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a `Transfer` event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through `transferFrom`. This is
         * zero by default.
         *
         * This value changes when `approve` or `transferFrom` are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * > Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an `Approval` event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a `Transfer` event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to `approve`. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: contracts\open-zeppelin-contracts\math\SafeMath.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b <= a, "SafeMath: subtraction overflow");
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, "SafeMath: division by zero");
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b != 0, "SafeMath: modulo by zero");
            return a % b;
        }
    }
    
    // File: contracts\open-zeppelin-contracts\token\ERC20\ERC20.sol
    
    pragma solidity ^0.5.0;
    
    
    
    /**
     * @dev Implementation of the `IERC20` interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using `_mint`.
     * For a generic mechanism see `ERC20Mintable`.
     *
     * *For a detailed writeup see our guide [How to implement supply
     * mechanisms](https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226).*
     *
     * We have followed general OpenZeppelin guidelines: functions revert instead
     * of returning `false` on failure. This behavior is nonetheless conventional
     * and does not conflict with the expectations of ERC20 applications.
     *
     * Additionally, an `Approval` event is emitted on calls to `transferFrom`.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard `decreaseAllowance` and `increaseAllowance`
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See `IERC20.approve`.
     */
    contract ERC20 is IERC20 {
        using SafeMath for uint256;
    
        mapping (address => uint256) private _balances;
    
        mapping (address => mapping (address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        /**
         * @dev See `IERC20.totalSupply`.
         */
        function totalSupply() public view returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See `IERC20.balanceOf`.
         */
        function balanceOf(address account) public view returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See `IERC20.transfer`.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public returns (bool) {
            _transfer(msg.sender, recipient, amount);
            return true;
        }
    
        /**
         * @dev See `IERC20.allowance`.
         */
        function allowance(address owner, address spender) public view returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See `IERC20.approve`.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 value) public returns (bool) {
            _approve(msg.sender, spender, value);
            return true;
        }
    
        /**
         * @dev See `IERC20.transferFrom`.
         *
         * Emits an `Approval` event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of `ERC20`;
         *
         * Requirements:
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `value`.
         * - the caller must have allowance for `sender`'s tokens of at least
         * `amount`.
         */
        function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
            _transfer(sender, recipient, amount);
            _approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount));
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to `approve` that can be used as a mitigation for
         * problems described in `IERC20.approve`.
         *
         * Emits an `Approval` event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
            _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to `approve` that can be used as a mitigation for
         * problems described in `IERC20.approve`.
         *
         * Emits an `Approval` event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
            _approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue));
            return true;
        }
    
        /**
         * @dev Moves tokens `amount` from `sender` to `recipient`.
         *
         * This is internal function is equivalent to `transfer`, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a `Transfer` event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(address sender, address recipient, uint256 amount) internal {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _balances[sender] = _balances[sender].sub(amount);
            _balances[recipient] = _balances[recipient].add(amount);
            emit Transfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a `Transfer` event with `from` set to the zero address.
         *
         * Requirements
         *
         * - `to` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _totalSupply = _totalSupply.add(amount);
            _balances[account] = _balances[account].add(amount);
            emit Transfer(address(0), account, amount);
        }
    
         /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a `Transfer` event with `to` set to the zero address.
         *
         * Requirements
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 value) internal {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _totalSupply = _totalSupply.sub(value);
            _balances[account] = _balances[account].sub(value);
            emit Transfer(account, address(0), value);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
         *
         * This is internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an `Approval` event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 value) internal {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = value;
            emit Approval(owner, spender, value);
        }
    
        /**
         * @dev Destoys `amount` tokens from `account`.`amount` is then deducted
         * from the caller's allowance.
         *
         * See `_burn` and `_approve`.
         */
        function _burnFrom(address account, uint256 amount) internal {
            _burn(account, amount);
            _approve(account, msg.sender, _allowances[account][msg.sender].sub(amount));
        }
    }
    
    // File: contracts\ERC20\TokenMintERC20Token.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @title TokenMintERC20Token
     * @author TokenMint (visit https://tokenmint.io)
     *
     * @dev Standard ERC20 token with burning and optional functions implemented.
     * For full specification of ERC-20 standard see:
     * https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
     */
    contract TokenMintERC20Token is ERC20 {
    
        string private _name;
        string private _symbol;
        uint8 private _decimals;
    
        /**
         * @dev Constructor.
         * @param name name of the token
         * @param symbol symbol of the token, 3-4 chars is recommended
         * @param decimals number of decimal places of one token unit, 18 is widely used
         * @param totalSupply total supply of tokens in lowest units (depending on decimals)
         * @param tokenOwnerAddress address that gets 100% of token supply
         */
        constructor(string memory name, string memory symbol, uint8 decimals, uint256 totalSupply, address payable feeReceiver, address tokenOwnerAddress) public payable {
          _name = name;
          _symbol = symbol;
          _decimals = decimals;
    
          // set tokenOwnerAddress as owner of all tokens
          _mint(tokenOwnerAddress, totalSupply);
    
          // pay the service fee for contract deployment
          feeReceiver.transfer(msg.value);
        }
    
        /**
         * @dev Burns a specific amount of tokens.
         * @param value The amount of lowest token units to be burned.
         */
        function burn(uint256 value) public {
          _burn(msg.sender, value);
        }
    
        // optional functions from ERC20 stardard
    
        /**
         * @return the name of the token.
         */
        function name() public view returns (string memory) {
          return _name;
        }
    
        /**
         * @return the symbol of the token.
         */
        function symbol() public view returns (string memory) {
          return _symbol;
        }
    
        /**
         * @return the number of decimals of the token.
         */
        function decimals() public view returns (uint8) {
          return _decimals;
        }
    }