ETH Price: $1,868.08 (-0.53%)

Transaction Decoder

Block:
20971307 at Oct-15-2024 01:37:23 PM +UTC
Transaction Fee:
0.003122027237574448 ETH $5.83
Gas Used:
104,944 Gas / 29.749459117 Gwei

Emitted Events:

85 BurnableTeamToken.Transfer( from=0xC5287CCAdA6038B2511C87aF070399a977d12202, to=[Sender] 0xec04fb5cbed3af9d53fc26eaef28934e73192817, value=1100000000000000000 )
86 0xf041690d9cbe398d3d51f25c87902c1403affe66.0xc9be8eec210704f9f243820ea9a936c5356f240b4552c6c240496b8a86149ed7( 0xc9be8eec210704f9f243820ea9a936c5356f240b4552c6c240496b8a86149ed7, 0x000000000000000000000000c5287ccada6038b2511c87af070399a977d12202, 0x000000000000000000000000ec04fb5cbed3af9d53fc26eaef28934e73192817, 0000000000000000000000000000000000000000000000000f43fc2c04ee0000, 0000000000000000000000000000000000000000000000000186cc6acd4b0000 )

Account State Difference:

  Address   Before After State Difference Code
3.13671413420189459 Eth3.13691772556189459 Eth0.00020359136
0x79878fa4...976E1E185
0xEc04Fb5c...e73192817
0.17517283764438272 Eth
Nonce: 1
0.172050810406808272 Eth
Nonce: 2
0.003122027237574448
0xF041690D...403AffE66

Execution Trace

0xf041690d9cbe398d3d51f25c87902c1403affe66.1e83409a( )
  • 0xd22b11874b6822d75f9cff4b08e9992fa3cdc6e8.1e83409a( )
    • 0xc5287ccada6038b2511c87af070399a977d12202.69328dec( )
      • 0xd29bb41f2f507638f6d42805268ba7c7f8c0ecb3.69328dec( )
        • BurnableTeamToken.balanceOf( account=0xC5287CCAdA6038B2511C87aF070399a977d12202 ) => ( 4551277346045956310 )
        • BurnableTeamToken.transfer( recipient=0xEc04Fb5cBED3AF9d53fc26eAEF28934e73192817, amount=1100000000000000000 ) => ( True )
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.6.2 <0.8.0;
          import "./TeamToken.sol";
          import "./BurnableToken.sol";
          contract BurnableTeamToken is TeamToken, ERC20Burnable {
              constructor(
                  string memory name,
                  string memory symbol,
                  uint8 decimals,
                  uint256 supply,
                  address owner,
                  address feeWallet
              ) 
              public
              TeamToken(name, symbol, decimals, supply, owner, feeWallet) 
              {
              }
          }// SPDX-License-Identifier: MIT
          pragma solidity >=0.6.2 <0.8.0;
          import "./ERC20.sol";
          contract TeamToken is ERC20 {
              event TeamFinanceTokenMint(address owner);
              modifier checkIsAddressValid(address ethAddress)
              {
                  require(ethAddress != address(0), "[Validation] invalid address");
                  require(ethAddress == address(ethAddress), "[Validation] invalid address");
                  _;
              }
              constructor(
                  string memory name,
                  string memory symbol,
                  uint8 decimals,
                  uint256 supply,
                  address owner,
                  address feeWallet
              ) public checkIsAddressValid(owner) checkIsAddressValid(feeWallet) ERC20(name, symbol) {
                  require(decimals >=8 && decimals <= 18, "[Validation] Not valid decimals");
                  require(supply > 0, "[Validation] inital supply should be greater than 0");
                  _setupDecimals(decimals);
                  _mint(owner, supply);
                  emit TeamFinanceTokenMint(owner);
              }
          }// SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          import "./Context.sol";
          import "./ERC20.sol";
          /**
           * @dev Extension of {ERC20} that allows token holders to destroy both their own
           * tokens and those that they have an allowance for, in a way that can be
           * recognized off-chain (via event analysis).
           */
          abstract contract ERC20Burnable is Context, ERC20 {
              using SafeMath for uint256;
              /**
               * @dev Destroys `amount` tokens from the caller.
               *
               * See {ERC20-_burn}.
               */
              function burn(uint256 amount) public virtual {
                  _burn(_msgSender(), amount);
              }
              /**
               * @dev Destroys `amount` tokens from `account`, deducting from the caller's
               * allowance.
               *
               * See {ERC20-_burn} and {ERC20-allowance}.
               *
               * Requirements:
               *
               * - the caller must have allowance for ``accounts``'s tokens of at least
               * `amount`.
               */
              function burnFrom(address account, uint256 amount) public virtual {
                  uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");
                  _approve(account, _msgSender(), decreasedAllowance);
                  _burn(account, amount);
              }
          }// SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          import "./Context.sol";
          import "./IERC20.sol";
          import "./SafeMath.sol";
          /**
           * @dev Implementation of the {IERC20} interface.
           *
           * This implementation is agnostic to the way tokens are created. This means
           * that a supply mechanism has to be added in a derived contract using {_mint}.
           * For a generic mechanism see {ERC20PresetMinterPauser}.
           *
           * TIP: For a detailed writeup see our guide
           * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
           * to implement supply mechanisms].
           *
           * We have followed general OpenZeppelin guidelines: functions revert instead
           * of returning `false` on failure. This behavior is nonetheless conventional
           * and does not conflict with the expectations of ERC20 applications.
           *
           * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
           * This allows applications to reconstruct the allowance for all accounts just
           * by listening to said events. Other implementations of the EIP may not emit
           * these events, as it isn't required by the specification.
           *
           * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
           * functions have been added to mitigate the well-known issues around setting
           * allowances. See {IERC20-approve}.
           */
          contract ERC20 is Context, IERC20 {
              using SafeMath for uint256;
              mapping (address => uint256) private _balances;
              mapping (address => mapping (address => uint256)) private _allowances;
              uint256 private _totalSupply;
              string private _name;
              string private _symbol;
              uint8 private _decimals;
              /**
               * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
               * a default value of 18.
               *
               * To select a different value for {decimals}, use {_setupDecimals}.
               *
               * All three of these values are immutable: they can only be set once during
               * construction.
               */
              constructor (string memory name_, string memory symbol_) public {
                  _name = name_;
                  _symbol = symbol_;
                  _decimals = 18;
              }
              /**
               * @dev Returns the name of the token.
               */
              function name() public view virtual returns (string memory) {
                  return _name;
              }
              /**
               * @dev Returns the symbol of the token, usually a shorter version of the
               * name.
               */
              function symbol() public view virtual returns (string memory) {
                  return _symbol;
              }
              /**
               * @dev Returns the number of decimals used to get its user representation.
               * For example, if `decimals` equals `2`, a balance of `505` tokens should
               * be displayed to a user as `5,05` (`505 / 10 ** 2`).
               *
               * Tokens usually opt for a value of 18, imitating the relationship between
               * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
               * called.
               *
               * NOTE: This information is only used for _display_ purposes: it in
               * no way affects any of the arithmetic of the contract, including
               * {IERC20-balanceOf} and {IERC20-transfer}.
               */
              function decimals() public view virtual returns (uint8) {
                  return _decimals;
              }
              /**
               * @dev See {IERC20-totalSupply}.
               */
              function totalSupply() public view virtual override returns (uint256) {
                  return _totalSupply;
              }
              /**
               * @dev See {IERC20-balanceOf}.
               */
              function balanceOf(address account) public view virtual override returns (uint256) {
                  return _balances[account];
              }
              /**
               * @dev See {IERC20-transfer}.
               *
               * Requirements:
               *
               * - `recipient` cannot be the zero address.
               * - the caller must have a balance of at least `amount`.
               */
              function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
                  _transfer(_msgSender(), recipient, amount);
                  return true;
              }
              /**
               * @dev See {IERC20-allowance}.
               */
              function allowance(address owner, address spender) public view virtual override returns (uint256) {
                  return _allowances[owner][spender];
              }
              /**
               * @dev See {IERC20-approve}.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               */
              function approve(address spender, uint256 amount) public virtual override returns (bool) {
                  _approve(_msgSender(), spender, amount);
                  return true;
              }
              /**
               * @dev See {IERC20-transferFrom}.
               *
               * Emits an {Approval} event indicating the updated allowance. This is not
               * required by the EIP. See the note at the beginning of {ERC20}.
               *
               * Requirements:
               *
               * - `sender` and `recipient` cannot be the zero address.
               * - `sender` must have a balance of at least `amount`.
               * - the caller must have allowance for ``sender``'s tokens of at least
               * `amount`.
               */
              function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
                  _transfer(sender, recipient, amount);
                  _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
                  return true;
              }
              /**
               * @dev Atomically increases the allowance granted to `spender` by the caller.
               *
               * This is an alternative to {approve} that can be used as a mitigation for
               * problems described in {IERC20-approve}.
               *
               * Emits an {Approval} event indicating the updated allowance.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               */
              function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                  _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
                  return true;
              }
              /**
               * @dev Atomically decreases the allowance granted to `spender` by the caller.
               *
               * This is an alternative to {approve} that can be used as a mitigation for
               * problems described in {IERC20-approve}.
               *
               * Emits an {Approval} event indicating the updated allowance.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               * - `spender` must have allowance for the caller of at least
               * `subtractedValue`.
               */
              function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                  _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
                  return true;
              }
              /**
               * @dev Moves tokens `amount` from `sender` to `recipient`.
               *
               * This is internal function is equivalent to {transfer}, and can be used to
               * e.g. implement automatic token fees, slashing mechanisms, etc.
               *
               * Emits a {Transfer} event.
               *
               * Requirements:
               *
               * - `sender` cannot be the zero address.
               * - `recipient` cannot be the zero address.
               * - `sender` must have a balance of at least `amount`.
               */
              function _transfer(address sender, address recipient, uint256 amount) internal virtual {
                  require(sender != address(0), "ERC20: transfer from the zero address");
                  require(recipient != address(0), "ERC20: transfer to the zero address");
                  _beforeTokenTransfer(sender, recipient, amount);
                  _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
                  _balances[recipient] = _balances[recipient].add(amount);
                  emit Transfer(sender, recipient, amount);
              }
              /** @dev Creates `amount` tokens and assigns them to `account`, increasing
               * the total supply.
               *
               * Emits a {Transfer} event with `from` set to the zero address.
               *
               * Requirements:
               *
               * - `to` cannot be the zero address.
               */
              function _mint(address account, uint256 amount) internal virtual {
                  require(account != address(0), "ERC20: mint to the zero address");
                  _beforeTokenTransfer(address(0), account, amount);
                  _totalSupply = _totalSupply.add(amount);
                  _balances[account] = _balances[account].add(amount);
                  emit Transfer(address(0), account, amount);
              }
              /**
               * @dev Destroys `amount` tokens from `account`, reducing the
               * total supply.
               *
               * Emits a {Transfer} event with `to` set to the zero address.
               *
               * Requirements:
               *
               * - `account` cannot be the zero address.
               * - `account` must have at least `amount` tokens.
               */
              function _burn(address account, uint256 amount) internal virtual {
                  require(account != address(0), "ERC20: burn from the zero address");
                  _beforeTokenTransfer(account, address(0), amount);
                  _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
                  _totalSupply = _totalSupply.sub(amount);
                  emit Transfer(account, address(0), amount);
              }
              /**
               * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
               *
               * This internal function is equivalent to `approve`, and can be used to
               * e.g. set automatic allowances for certain subsystems, etc.
               *
               * Emits an {Approval} event.
               *
               * Requirements:
               *
               * - `owner` cannot be the zero address.
               * - `spender` cannot be the zero address.
               */
              function _approve(address owner, address spender, uint256 amount) internal virtual {
                  require(owner != address(0), "ERC20: approve from the zero address");
                  require(spender != address(0), "ERC20: approve to the zero address");
                  _allowances[owner][spender] = amount;
                  emit Approval(owner, spender, amount);
              }
              /**
               * @dev Sets {decimals} to a value other than the default one of 18.
               *
               * WARNING: This function should only be called from the constructor. Most
               * applications that interact with token contracts will not expect
               * {decimals} to ever change, and may work incorrectly if it does.
               */
              function _setupDecimals(uint8 decimals_) internal virtual {
                  _decimals = decimals_;
              }
              /**
               * @dev Hook that is called before any transfer of tokens. This includes
               * minting and burning.
               *
               * Calling conditions:
               *
               * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
               * will be to transferred to `to`.
               * - when `from` is zero, `amount` tokens will be minted for `to`.
               * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
               * - `from` and `to` are never both zero.
               *
               * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
               */
              function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          /*
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with GSN meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract Context {
              function _msgSender() internal view virtual returns (address payable) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes memory) {
                  this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                  return msg.data;
              }
          }// SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          /**
           * @dev Interface of the ERC20 standard as defined in the EIP.
           */
          interface IERC20 {
              /**
               * @dev Returns the amount of tokens in existence.
               */
              function totalSupply() external view returns (uint256);
              /**
               * @dev Returns the amount of tokens owned by `account`.
               */
              function balanceOf(address account) external view returns (uint256);
              /**
               * @dev Moves `amount` tokens from the caller's account to `recipient`.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transfer(address recipient, uint256 amount) external returns (bool);
              /**
               * @dev Returns the remaining number of tokens that `spender` will be
               * allowed to spend on behalf of `owner` through {transferFrom}. This is
               * zero by default.
               *
               * This value changes when {approve} or {transferFrom} are called.
               */
              function allowance(address owner, address spender) external view returns (uint256);
              /**
               * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * IMPORTANT: Beware that changing an allowance with this method brings the risk
               * that someone may use both the old and the new allowance by unfortunate
               * transaction ordering. One possible solution to mitigate this race
               * condition is to first reduce the spender's allowance to 0 and set the
               * desired value afterwards:
               * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
               *
               * Emits an {Approval} event.
               */
              function approve(address spender, uint256 amount) external returns (bool);
              /**
               * @dev Moves `amount` tokens from `sender` to `recipient` using the
               * allowance mechanism. `amount` is then deducted from the caller's
               * allowance.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
              /**
               * @dev Emitted when `value` tokens are moved from one account (`from`) to
               * another (`to`).
               *
               * Note that `value` may be zero.
               */
              event Transfer(address indexed from, address indexed to, uint256 value);
              /**
               * @dev Emitted when the allowance of a `spender` for an `owner` is set by
               * a call to {approve}. `value` is the new allowance.
               */
              event Approval(address indexed owner, address indexed spender, uint256 value);
          }// SPDX-License-Identifier: MIT
          pragma solidity >=0.6.0 <0.8.0;
          /**
           * @dev Wrappers over Solidity's arithmetic operations with added overflow
           * checks.
           *
           * Arithmetic operations in Solidity wrap on overflow. This can easily result
           * in bugs, because programmers usually assume that an overflow raises an
           * error, which is the standard behavior in high level programming languages.
           * `SafeMath` restores this intuition by reverting the transaction when an
           * operation overflows.
           *
           * Using this library instead of the unchecked operations eliminates an entire
           * class of bugs, so it's recommended to use it always.
           */
          library SafeMath {
              /**
               * @dev Returns the addition of two unsigned integers, with an overflow flag.
               *
               * _Available since v3.4._
               */
              function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  uint256 c = a + b;
                  if (c < a) return (false, 0);
                  return (true, c);
              }
              /**
               * @dev Returns the substraction of two unsigned integers, with an overflow flag.
               *
               * _Available since v3.4._
               */
              function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  if (b > a) return (false, 0);
                  return (true, a - b);
              }
              /**
               * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
               *
               * _Available since v3.4._
               */
              function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) return (true, 0);
                  uint256 c = a * b;
                  if (c / a != b) return (false, 0);
                  return (true, c);
              }
              /**
               * @dev Returns the division of two unsigned integers, with a division by zero flag.
               *
               * _Available since v3.4._
               */
              function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  if (b == 0) return (false, 0);
                  return (true, a / b);
              }
              /**
               * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
               *
               * _Available since v3.4._
               */
              function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  if (b == 0) return (false, 0);
                  return (true, a % b);
              }
              /**
               * @dev Returns the addition of two unsigned integers, reverting on
               * overflow.
               *
               * Counterpart to Solidity's `+` operator.
               *
               * Requirements:
               *
               * - Addition cannot overflow.
               */
              function add(uint256 a, uint256 b) internal pure returns (uint256) {
                  uint256 c = a + b;
                  require(c >= a, "SafeMath: addition overflow");
                  return c;
              }
              /**
               * @dev Returns the subtraction of two unsigned integers, reverting on
               * overflow (when the result is negative).
               *
               * Counterpart to Solidity's `-` operator.
               *
               * Requirements:
               *
               * - Subtraction cannot overflow.
               */
              function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                  require(b <= a, "SafeMath: subtraction overflow");
                  return a - b;
              }
              /**
               * @dev Returns the multiplication of two unsigned integers, reverting on
               * overflow.
               *
               * Counterpart to Solidity's `*` operator.
               *
               * Requirements:
               *
               * - Multiplication cannot overflow.
               */
              function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                  if (a == 0) return 0;
                  uint256 c = a * b;
                  require(c / a == b, "SafeMath: multiplication overflow");
                  return c;
              }
              /**
               * @dev Returns the integer division of two unsigned integers, reverting on
               * division by zero. The result is rounded towards zero.
               *
               * Counterpart to Solidity's `/` operator. Note: this function uses a
               * `revert` opcode (which leaves remaining gas untouched) while Solidity
               * uses an invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               *
               * - The divisor cannot be zero.
               */
              function div(uint256 a, uint256 b) internal pure returns (uint256) {
                  require(b > 0, "SafeMath: division by zero");
                  return a / b;
              }
              /**
               * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
               * reverting when dividing by zero.
               *
               * Counterpart to Solidity's `%` operator. This function uses a `revert`
               * opcode (which leaves remaining gas untouched) while Solidity uses an
               * invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               *
               * - The divisor cannot be zero.
               */
              function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                  require(b > 0, "SafeMath: modulo by zero");
                  return a % b;
              }
              /**
               * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
               * overflow (when the result is negative).
               *
               * CAUTION: This function is deprecated because it requires allocating memory for the error
               * message unnecessarily. For custom revert reasons use {trySub}.
               *
               * Counterpart to Solidity's `-` operator.
               *
               * Requirements:
               *
               * - Subtraction cannot overflow.
               */
              function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                  require(b <= a, errorMessage);
                  return a - b;
              }
              /**
               * @dev Returns the integer division of two unsigned integers, reverting with custom message on
               * division by zero. The result is rounded towards zero.
               *
               * CAUTION: This function is deprecated because it requires allocating memory for the error
               * message unnecessarily. For custom revert reasons use {tryDiv}.
               *
               * Counterpart to Solidity's `/` operator. Note: this function uses a
               * `revert` opcode (which leaves remaining gas untouched) while Solidity
               * uses an invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               *
               * - The divisor cannot be zero.
               */
              function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                  require(b > 0, errorMessage);
                  return a / b;
              }
              /**
               * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
               * reverting with custom message when dividing by zero.
               *
               * CAUTION: This function is deprecated because it requires allocating memory for the error
               * message unnecessarily. For custom revert reasons use {tryMod}.
               *
               * Counterpart to Solidity's `%` operator. This function uses a `revert`
               * opcode (which leaves remaining gas untouched) while Solidity uses an
               * invalid opcode to revert (consuming all remaining gas).
               *
               * Requirements:
               *
               * - The divisor cannot be zero.
               */
              function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                  require(b > 0, errorMessage);
                  return a % b;
              }
          }