ETH Price: $2,536.63 (-4.71%)

Transaction Decoder

Block:
20002799 at Jun-02-2024 07:59:23 AM +UTC
Transaction Fee:
0.000373231772098416 ETH $0.95
Gas Used:
72,884 Gas / 5.120901324 Gwei

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
9.240906194477089812 Eth9.240906743328885668 Eth0.000000548851795856
0xAe15a8f0...D3B0af472
0.021836901929027957 Eth
Nonce: 1185
0.021463670156929541 Eth
Nonce: 1186
0.000373231772098416
0xEB127cFb...CF9dc8C38

Execution Trace

TransferHelper.bulkTransfer( items=, conduitKey=0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000 ) => ( items=, conduitKey= )
  • Conduit.execute( transfers= ) => ( transfers= )
    • GoldChip.transferFrom( from=0xAe15a8f0DB29c6C7a840aBc445ABE3CD3B0af472, to=0x33f2B38397187B381923F526B0a257938BFde3fc, tokenId=515 )
    • GoldChip.transferFrom( from=0xAe15a8f0DB29c6C7a840aBc445ABE3CD3B0af472, to=0x33f2B38397187B381923F526B0a257938BFde3fc, tokenId=372 )
      bulkTransfer[TransferHelper (ln:57)]
      File 1 of 3: TransferHelper
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      import { IERC721Receiver } from "../interfaces/IERC721Receiver.sol";
      import "./TransferHelperStructs.sol";
      import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
      import {
          ConduitControllerInterface
      } from "../interfaces/ConduitControllerInterface.sol";
      import { Conduit } from "../conduit/Conduit.sol";
      import { ConduitTransfer } from "../conduit/lib/ConduitStructs.sol";
      import {
          TransferHelperInterface
      } from "../interfaces/TransferHelperInterface.sol";
      import { TransferHelperErrors } from "../interfaces/TransferHelperErrors.sol";
      /**
       * @title TransferHelper
       * @author stephankmin, stuckinaboot, ryanio
       * @notice TransferHelper is a utility contract for transferring
       *         ERC20/ERC721/ERC1155 items in bulk to specific recipients.
       */
      contract TransferHelper is TransferHelperInterface, TransferHelperErrors {
          // Allow for interaction with the conduit controller.
          ConduitControllerInterface internal immutable _CONDUIT_CONTROLLER;
          // Set conduit creation code and runtime code hashes as immutable arguments.
          bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH;
          bytes32 internal immutable _CONDUIT_RUNTIME_CODE_HASH;
          /**
           * @dev Set the supplied conduit controller and retrieve its
           *      conduit creation code hash.
           *
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(address conduitController) {
              // Get the conduit creation code and runtime code hashes from the
              // supplied conduit controller and set them as an immutable.
              ConduitControllerInterface controller = ConduitControllerInterface(
                  conduitController
              );
              (_CONDUIT_CREATION_CODE_HASH, _CONDUIT_RUNTIME_CODE_HASH) = controller
                  .getConduitCodeHashes();
              // Set the supplied conduit controller as an immutable.
              _CONDUIT_CONTROLLER = controller;
          }
          /**
           * @notice Transfer multiple ERC20/ERC721/ERC1155 items to
           *         specified recipients.
           *
           * @param items      The items to transfer to an intended recipient.
           * @param conduitKey An optional conduit key referring to a conduit through
           *                   which the bulk transfer should occur.
           *
           * @return magicValue A value indicating that the transfers were successful.
           */
          function bulkTransfer(
              TransferHelperItemsWithRecipient[] calldata items,
              bytes32 conduitKey
          ) external override returns (bytes4 magicValue) {
              // Ensure that a conduit key has been supplied.
              if (conduitKey == bytes32(0)) {
                  revert InvalidConduit(conduitKey, address(0));
              }
              // Use conduit derived from supplied conduit key to perform transfers.
              _performTransfersWithConduit(items, conduitKey);
              // Return a magic value indicating that the transfers were performed.
              magicValue = this.bulkTransfer.selector;
          }
          /**
           * @notice Perform multiple transfers to specified recipients via the
           *         conduit derived from the provided conduit key.
           *
           * @param transfers  The items to transfer.
           * @param conduitKey The conduit key referring to the conduit through
           *                   which the bulk transfer should occur.
           */
          function _performTransfersWithConduit(
              TransferHelperItemsWithRecipient[] calldata transfers,
              bytes32 conduitKey
          ) internal {
              // Retrieve total number of transfers and place on stack.
              uint256 numTransfers = transfers.length;
              // Derive the conduit address from the deployer, conduit key
              // and creation code hash.
              address conduit = address(
                  uint160(
                      uint256(
                          keccak256(
                              abi.encodePacked(
                                  bytes1(0xff),
                                  address(_CONDUIT_CONTROLLER),
                                  conduitKey,
                                  _CONDUIT_CREATION_CODE_HASH
                              )
                          )
                      )
                  )
              );
              // Declare a variable to store the sum of all items across transfers.
              uint256 sumOfItemsAcrossAllTransfers;
              // Skip overflow checks: all for loops are indexed starting at zero.
              unchecked {
                  // Iterate over each transfer.
                  for (uint256 i = 0; i < numTransfers; ++i) {
                      // Retrieve the transfer in question.
                      TransferHelperItemsWithRecipient calldata transfer = transfers[
                          i
                      ];
                      // Increment totalItems by the number of items in the transfer.
                      sumOfItemsAcrossAllTransfers += transfer.items.length;
                  }
              }
              // Declare a new array in memory with length totalItems to populate with
              // each conduit transfer.
              ConduitTransfer[] memory conduitTransfers = new ConduitTransfer[](
                  sumOfItemsAcrossAllTransfers
              );
              // Declare an index for storing ConduitTransfers in conduitTransfers.
              uint256 itemIndex;
              // Skip overflow checks: all for loops are indexed starting at zero.
              unchecked {
                  // Iterate over each transfer.
                  for (uint256 i = 0; i < numTransfers; ++i) {
                      // Retrieve the transfer in question.
                      TransferHelperItemsWithRecipient calldata transfer = transfers[
                          i
                      ];
                      // Retrieve the items of the transfer in question.
                      TransferHelperItem[] calldata transferItems = transfer.items;
                      // Ensure recipient is not the zero address.
                      _checkRecipientIsNotZeroAddress(transfer.recipient);
                      // Create a boolean indicating whether validateERC721Receiver
                      // is true and recipient is a contract.
                      bool callERC721Receiver = transfer.validateERC721Receiver &&
                          transfer.recipient.code.length != 0;
                      // Retrieve the total number of items in the transfer and
                      // place on stack.
                      uint256 numItemsInTransfer = transferItems.length;
                      // Iterate over each item in the transfer to create a
                      // corresponding ConduitTransfer.
                      for (uint256 j = 0; j < numItemsInTransfer; ++j) {
                          // Retrieve the item from the transfer.
                          TransferHelperItem calldata item = transferItems[j];
                          if (item.itemType == ConduitItemType.ERC20) {
                              // Ensure that the identifier of an ERC20 token is 0.
                              if (item.identifier != 0) {
                                  revert InvalidERC20Identifier();
                              }
                          }
                          // If the item is an ERC721 token and
                          // callERC721Receiver is true...
                          if (item.itemType == ConduitItemType.ERC721) {
                              if (callERC721Receiver) {
                                  // Check if the recipient implements
                                  // onERC721Received for the given tokenId.
                                  _checkERC721Receiver(
                                      conduit,
                                      transfer.recipient,
                                      item.identifier
                                  );
                              }
                          }
                          // Create a ConduitTransfer corresponding to each
                          // TransferHelperItem.
                          conduitTransfers[itemIndex] = ConduitTransfer(
                              item.itemType,
                              item.token,
                              msg.sender,
                              transfer.recipient,
                              item.identifier,
                              item.amount
                          );
                          // Increment the index for storing ConduitTransfers.
                          ++itemIndex;
                      }
                  }
              }
              // Attempt the external call to transfer tokens via the derived conduit.
              try ConduitInterface(conduit).execute(conduitTransfers) returns (
                  bytes4 conduitMagicValue
              ) {
                  // Check if the value returned from the external call matches
                  // the conduit `execute` selector.
                  if (conduitMagicValue != ConduitInterface.execute.selector) {
                      // If the external call fails, revert with the conduit key
                      // and conduit address.
                      revert InvalidConduit(conduitKey, conduit);
                  }
              } catch Error(string memory reason) {
                  // Catch reverts with a provided reason string and
                  // revert with the reason, conduit key and conduit address.
                  revert ConduitErrorRevertString(reason, conduitKey, conduit);
              } catch (bytes memory data) {
                  // Conduits will throw a custom error when attempting to transfer
                  // native token item types or an ERC721 item amount other than 1.
                  // Bubble up these custom errors when encountered. Note that the
                  // conduit itself will bubble up revert reasons from transfers as
                  // well, meaning that these errors are not necessarily indicative of
                  // an issue with the item type or amount in cases where the same
                  // custom error signature is encountered during a conduit transfer.
                  // Set initial value of first four bytes of revert data to the mask.
                  bytes4 customErrorSelector = bytes4(0xffffffff);
                  // Utilize assembly to read first four bytes (if present) directly.
                  assembly {
                      // Combine original mask with first four bytes of revert data.
                      customErrorSelector := and(
                          mload(add(data, 0x20)), // Data begins after length offset.
                          customErrorSelector
                      )
                  }
                  // Pass through the custom error in question if the revert data is
                  // the correct length and matches an expected custom error selector.
                  if (
                      data.length == 4 &&
                      (customErrorSelector == InvalidItemType.selector ||
                          customErrorSelector == InvalidERC721TransferAmount.selector)
                  ) {
                      // "Bubble up" the revert reason.
                      assembly {
                          revert(add(data, 0x20), 0x04)
                      }
                  }
                  // Catch all other reverts from the external call to the conduit and
                  // include the conduit's raw revert reason as a data argument to a
                  // new custom error.
                  revert ConduitErrorRevertBytes(data, conduitKey, conduit);
              }
          }
          /**
           * @notice An internal function to check if a recipient address implements
           *         onERC721Received for a given tokenId. Note that this check does
           *         not adhere to the safe transfer specification and is only meant
           *         to provide an additional layer of assurance that the recipient
           *         can receive the tokens — any hooks or post-transfer checks will
           *         fail and the caller will be the transfer helper rather than the
           *         ERC721 contract. Note that the conduit is set as the operator, as
           *         it will be the caller once the transfer is performed.
           *
           * @param conduit   The conduit to provide as the operator when calling
           *                  onERC721Received.
           * @param recipient The ERC721 recipient on which to call onERC721Received.
           * @param tokenId   The ERC721 tokenId of the token being transferred.
           */
          function _checkERC721Receiver(
              address conduit,
              address recipient,
              uint256 tokenId
          ) internal {
              // Check if recipient can receive ERC721 tokens.
              try
                  IERC721Receiver(recipient).onERC721Received(
                      conduit,
                      msg.sender,
                      tokenId,
                      ""
                  )
              returns (bytes4 selector) {
                  // Check if onERC721Received selector is valid.
                  if (selector != IERC721Receiver.onERC721Received.selector) {
                      // Revert if recipient cannot accept
                      // ERC721 tokens.
                      revert InvalidERC721Recipient(recipient);
                  }
              } catch (bytes memory data) {
                  // "Bubble up" recipient's revert reason.
                  revert ERC721ReceiverErrorRevertBytes(
                      data,
                      recipient,
                      msg.sender,
                      tokenId
                  );
              } catch Error(string memory reason) {
                  // "Bubble up" recipient's revert reason.
                  revert ERC721ReceiverErrorRevertString(
                      reason,
                      recipient,
                      msg.sender,
                      tokenId
                  );
              }
          }
          /**
           * @notice An internal function that reverts if the passed-in recipient
           *         is the zero address.
           *
           * @param recipient The recipient on which to perform the check.
           */
          function _checkRecipientIsNotZeroAddress(address recipient) internal pure {
              // Revert if the recipient is the zero address.
              if (recipient == address(0x0)) {
                  revert RecipientCannotBeZeroAddress();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      interface IERC721Receiver {
          function onERC721Received(
              address operator,
              address from,
              uint256 tokenId,
              bytes calldata data
          ) external returns (bytes4);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      import { ConduitItemType } from "../conduit/lib/ConduitEnums.sol";
      /**
       * @dev A TransferHelperItem specifies the itemType (ERC20/ERC721/ERC1155),
       *      token address, token identifier, and amount of the token to be
       *      transferred via the TransferHelper. For ERC20 tokens, identifier
       *      must be 0. For ERC721 tokens, amount must be 1.
       */
      struct TransferHelperItem {
          ConduitItemType itemType;
          address token;
          uint256 identifier;
          uint256 amount;
      }
      /**
       * @dev A TransferHelperItemsWithRecipient specifies the tokens to transfer
       *      via the TransferHelper, their intended recipient, and a boolean flag
       *      indicating whether onERC721Received should be called on a recipient
       *      contract.
       */
      struct TransferHelperItemsWithRecipient {
          TransferHelperItem[] items;
          address recipient;
          bool validateERC721Receiver;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      import {
          ConduitTransfer,
          ConduitBatch1155Transfer
      } from "../conduit/lib/ConduitStructs.sol";
      /**
       * @title ConduitInterface
       * @author 0age
       * @notice ConduitInterface contains all external function interfaces, events,
       *         and errors for conduit contracts.
       */
      interface ConduitInterface {
          /**
           * @dev Revert with an error when attempting to execute transfers using a
           *      caller that does not have an open channel.
           */
          error ChannelClosed(address channel);
          /**
           * @dev Revert with an error when attempting to update a channel to the
           *      current status of that channel.
           */
          error ChannelStatusAlreadySet(address channel, bool isOpen);
          /**
           * @dev Revert with an error when attempting to execute a transfer for an
           *      item that does not have an ERC20/721/1155 item type.
           */
          error InvalidItemType();
          /**
           * @dev Revert with an error when attempting to update the status of a
           *      channel from a caller that is not the conduit controller.
           */
          error InvalidController();
          /**
           * @dev Emit an event whenever a channel is opened or closed.
           *
           * @param channel The channel that has been updated.
           * @param open    A boolean indicating whether the conduit is open or not.
           */
          event ChannelUpdated(address indexed channel, bool open);
          /**
           * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
           *         with an open channel can call this function.
           *
           * @param transfers The ERC20/721/1155 transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function execute(ConduitTransfer[] calldata transfers)
              external
              returns (bytes4 magicValue);
          /**
           * @notice Execute a sequence of batch 1155 transfers. Only a caller with an
           *         open channel can call this function.
           *
           * @param batch1155Transfers The 1155 batch transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function executeBatch1155(
              ConduitBatch1155Transfer[] calldata batch1155Transfers
          ) external returns (bytes4 magicValue);
          /**
           * @notice Execute a sequence of transfers, both single and batch 1155. Only
           *         a caller with an open channel can call this function.
           *
           * @param standardTransfers  The ERC20/721/1155 transfers to perform.
           * @param batch1155Transfers The 1155 batch transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function executeWithBatch1155(
              ConduitTransfer[] calldata standardTransfers,
              ConduitBatch1155Transfer[] calldata batch1155Transfers
          ) external returns (bytes4 magicValue);
          /**
           * @notice Open or close a given channel. Only callable by the controller.
           *
           * @param channel The channel to open or close.
           * @param isOpen  The status of the channel (either open or closed).
           */
          function updateChannel(address channel, bool isOpen) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      /**
       * @title ConduitControllerInterface
       * @author 0age
       * @notice ConduitControllerInterface contains all external function interfaces,
       *         structs, events, and errors for the conduit controller.
       */
      interface ConduitControllerInterface {
          /**
           * @dev Track the conduit key, current owner, new potential owner, and open
           *      channels for each deployed conduit.
           */
          struct ConduitProperties {
              bytes32 key;
              address owner;
              address potentialOwner;
              address[] channels;
              mapping(address => uint256) channelIndexesPlusOne;
          }
          /**
           * @dev Emit an event whenever a new conduit is created.
           *
           * @param conduit    The newly created conduit.
           * @param conduitKey The conduit key used to create the new conduit.
           */
          event NewConduit(address conduit, bytes32 conduitKey);
          /**
           * @dev Emit an event whenever conduit ownership is transferred.
           *
           * @param conduit       The conduit for which ownership has been
           *                      transferred.
           * @param previousOwner The previous owner of the conduit.
           * @param newOwner      The new owner of the conduit.
           */
          event OwnershipTransferred(
              address indexed conduit,
              address indexed previousOwner,
              address indexed newOwner
          );
          /**
           * @dev Emit an event whenever a conduit owner registers a new potential
           *      owner for that conduit.
           *
           * @param newPotentialOwner The new potential owner of the conduit.
           */
          event PotentialOwnerUpdated(address indexed newPotentialOwner);
          /**
           * @dev Revert with an error when attempting to create a new conduit using a
           *      conduit key where the first twenty bytes of the key do not match the
           *      address of the caller.
           */
          error InvalidCreator();
          /**
           * @dev Revert with an error when attempting to create a new conduit when no
           *      initial owner address is supplied.
           */
          error InvalidInitialOwner();
          /**
           * @dev Revert with an error when attempting to set a new potential owner
           *      that is already set.
           */
          error NewPotentialOwnerAlreadySet(
              address conduit,
              address newPotentialOwner
          );
          /**
           * @dev Revert with an error when attempting to cancel ownership transfer
           *      when no new potential owner is currently set.
           */
          error NoPotentialOwnerCurrentlySet(address conduit);
          /**
           * @dev Revert with an error when attempting to interact with a conduit that
           *      does not yet exist.
           */
          error NoConduit();
          /**
           * @dev Revert with an error when attempting to create a conduit that
           *      already exists.
           */
          error ConduitAlreadyExists(address conduit);
          /**
           * @dev Revert with an error when attempting to update channels or transfer
           *      ownership of a conduit when the caller is not the owner of the
           *      conduit in question.
           */
          error CallerIsNotOwner(address conduit);
          /**
           * @dev Revert with an error when attempting to register a new potential
           *      owner and supplying the null address.
           */
          error NewPotentialOwnerIsZeroAddress(address conduit);
          /**
           * @dev Revert with an error when attempting to claim ownership of a conduit
           *      with a caller that is not the current potential owner for the
           *      conduit in question.
           */
          error CallerIsNotNewPotentialOwner(address conduit);
          /**
           * @dev Revert with an error when attempting to retrieve a channel using an
           *      index that is out of range.
           */
          error ChannelOutOfRange(address conduit);
          /**
           * @notice Deploy a new conduit using a supplied conduit key and assigning
           *         an initial owner for the deployed conduit. Note that the first
           *         twenty bytes of the supplied conduit key must match the caller
           *         and that a new conduit cannot be created if one has already been
           *         deployed using the same conduit key.
           *
           * @param conduitKey   The conduit key used to deploy the conduit. Note that
           *                     the first twenty bytes of the conduit key must match
           *                     the caller of this contract.
           * @param initialOwner The initial owner to set for the new conduit.
           *
           * @return conduit The address of the newly deployed conduit.
           */
          function createConduit(bytes32 conduitKey, address initialOwner)
              external
              returns (address conduit);
          /**
           * @notice Open or close a channel on a given conduit, thereby allowing the
           *         specified account to execute transfers against that conduit.
           *         Extreme care must be taken when updating channels, as malicious
           *         or vulnerable channels can transfer any ERC20, ERC721 and ERC1155
           *         tokens where the token holder has granted the conduit approval.
           *         Only the owner of the conduit in question may call this function.
           *
           * @param conduit The conduit for which to open or close the channel.
           * @param channel The channel to open or close on the conduit.
           * @param isOpen  A boolean indicating whether to open or close the channel.
           */
          function updateChannel(
              address conduit,
              address channel,
              bool isOpen
          ) external;
          /**
           * @notice Initiate conduit ownership transfer by assigning a new potential
           *         owner for the given conduit. Once set, the new potential owner
           *         may call `acceptOwnership` to claim ownership of the conduit.
           *         Only the owner of the conduit in question may call this function.
           *
           * @param conduit The conduit for which to initiate ownership transfer.
           * @param newPotentialOwner The new potential owner of the conduit.
           */
          function transferOwnership(address conduit, address newPotentialOwner)
              external;
          /**
           * @notice Clear the currently set potential owner, if any, from a conduit.
           *         Only the owner of the conduit in question may call this function.
           *
           * @param conduit The conduit for which to cancel ownership transfer.
           */
          function cancelOwnershipTransfer(address conduit) external;
          /**
           * @notice Accept ownership of a supplied conduit. Only accounts that the
           *         current owner has set as the new potential owner may call this
           *         function.
           *
           * @param conduit The conduit for which to accept ownership.
           */
          function acceptOwnership(address conduit) external;
          /**
           * @notice Retrieve the current owner of a deployed conduit.
           *
           * @param conduit The conduit for which to retrieve the associated owner.
           *
           * @return owner The owner of the supplied conduit.
           */
          function ownerOf(address conduit) external view returns (address owner);
          /**
           * @notice Retrieve the conduit key for a deployed conduit via reverse
           *         lookup.
           *
           * @param conduit The conduit for which to retrieve the associated conduit
           *                key.
           *
           * @return conduitKey The conduit key used to deploy the supplied conduit.
           */
          function getKey(address conduit) external view returns (bytes32 conduitKey);
          /**
           * @notice Derive the conduit associated with a given conduit key and
           *         determine whether that conduit exists (i.e. whether it has been
           *         deployed).
           *
           * @param conduitKey The conduit key used to derive the conduit.
           *
           * @return conduit The derived address of the conduit.
           * @return exists  A boolean indicating whether the derived conduit has been
           *                 deployed or not.
           */
          function getConduit(bytes32 conduitKey)
              external
              view
              returns (address conduit, bool exists);
          /**
           * @notice Retrieve the potential owner, if any, for a given conduit. The
           *         current owner may set a new potential owner via
           *         `transferOwnership` and that owner may then accept ownership of
           *         the conduit in question via `acceptOwnership`.
           *
           * @param conduit The conduit for which to retrieve the potential owner.
           *
           * @return potentialOwner The potential owner, if any, for the conduit.
           */
          function getPotentialOwner(address conduit)
              external
              view
              returns (address potentialOwner);
          /**
           * @notice Retrieve the status (either open or closed) of a given channel on
           *         a conduit.
           *
           * @param conduit The conduit for which to retrieve the channel status.
           * @param channel The channel for which to retrieve the status.
           *
           * @return isOpen The status of the channel on the given conduit.
           */
          function getChannelStatus(address conduit, address channel)
              external
              view
              returns (bool isOpen);
          /**
           * @notice Retrieve the total number of open channels for a given conduit.
           *
           * @param conduit The conduit for which to retrieve the total channel count.
           *
           * @return totalChannels The total number of open channels for the conduit.
           */
          function getTotalChannels(address conduit)
              external
              view
              returns (uint256 totalChannels);
          /**
           * @notice Retrieve an open channel at a specific index for a given conduit.
           *         Note that the index of a channel can change as a result of other
           *         channels being closed on the conduit.
           *
           * @param conduit      The conduit for which to retrieve the open channel.
           * @param channelIndex The index of the channel in question.
           *
           * @return channel The open channel, if any, at the specified channel index.
           */
          function getChannel(address conduit, uint256 channelIndex)
              external
              view
              returns (address channel);
          /**
           * @notice Retrieve all open channels for a given conduit. Note that calling
           *         this function for a conduit with many channels will revert with
           *         an out-of-gas error.
           *
           * @param conduit The conduit for which to retrieve open channels.
           *
           * @return channels An array of open channels on the given conduit.
           */
          function getChannels(address conduit)
              external
              view
              returns (address[] memory channels);
          /**
           * @dev Retrieve the conduit creation code and runtime code hashes.
           */
          function getConduitCodeHashes()
              external
              view
              returns (bytes32 creationCodeHash, bytes32 runtimeCodeHash);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
      import { ConduitItemType } from "./lib/ConduitEnums.sol";
      import { TokenTransferrer } from "../lib/TokenTransferrer.sol";
      import {
          ConduitTransfer,
          ConduitBatch1155Transfer
      } from "./lib/ConduitStructs.sol";
      import "./lib/ConduitConstants.sol";
      /**
       * @title Conduit
       * @author 0age
       * @notice This contract serves as an originator for "proxied" transfers. Each
       *         conduit is deployed and controlled by a "conduit controller" that can
       *         add and remove "channels" or contracts that can instruct the conduit
       *         to transfer approved ERC20/721/1155 tokens. *IMPORTANT NOTE: each
       *         conduit has an owner that can arbitrarily add or remove channels, and
       *         a malicious or negligent owner can add a channel that allows for any
       *         approved ERC20/721/1155 tokens to be taken immediately — be extremely
       *         cautious with what conduits you give token approvals to!*
       */
      contract Conduit is ConduitInterface, TokenTransferrer {
          // Set deployer as an immutable controller that can update channel statuses.
          address private immutable _controller;
          // Track the status of each channel.
          mapping(address => bool) private _channels;
          /**
           * @notice Ensure that the caller is currently registered as an open channel
           *         on the conduit.
           */
          modifier onlyOpenChannel() {
              // Utilize assembly to access channel storage mapping directly.
              assembly {
                  // Write the caller to scratch space.
                  mstore(ChannelKey_channel_ptr, caller())
                  // Write the storage slot for _channels to scratch space.
                  mstore(ChannelKey_slot_ptr, _channels.slot)
                  // Derive the position in storage of _channels[msg.sender]
                  // and check if the stored value is zero.
                  if iszero(
                      sload(keccak256(ChannelKey_channel_ptr, ChannelKey_length))
                  ) {
                      // The caller is not an open channel; revert with
                      // ChannelClosed(caller). First, set error signature in memory.
                      mstore(ChannelClosed_error_ptr, ChannelClosed_error_signature)
                      // Next, set the caller as the argument.
                      mstore(ChannelClosed_channel_ptr, caller())
                      // Finally, revert, returning full custom error with argument.
                      revert(ChannelClosed_error_ptr, ChannelClosed_error_length)
                  }
              }
              // Continue with function execution.
              _;
          }
          /**
           * @notice In the constructor, set the deployer as the controller.
           */
          constructor() {
              // Set the deployer as the controller.
              _controller = msg.sender;
          }
          /**
           * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
           *         with an open channel can call this function. Note that channels
           *         are expected to implement reentrancy protection if desired, and
           *         that cross-channel reentrancy may be possible if the conduit has
           *         multiple open channels at once. Also note that channels are
           *         expected to implement checks against transferring any zero-amount
           *         items if that constraint is desired.
           *
           * @param transfers The ERC20/721/1155 transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function execute(ConduitTransfer[] calldata transfers)
              external
              override
              onlyOpenChannel
              returns (bytes4 magicValue)
          {
              // Retrieve the total number of transfers and place on the stack.
              uint256 totalStandardTransfers = transfers.length;
              // Iterate over each transfer.
              for (uint256 i = 0; i < totalStandardTransfers; ) {
                  // Retrieve the transfer in question and perform the transfer.
                  _transfer(transfers[i]);
                  // Skip overflow check as for loop is indexed starting at zero.
                  unchecked {
                      ++i;
                  }
              }
              // Return a magic value indicating that the transfers were performed.
              magicValue = this.execute.selector;
          }
          /**
           * @notice Execute a sequence of batch 1155 item transfers. Only a caller
           *         with an open channel can call this function. Note that channels
           *         are expected to implement reentrancy protection if desired, and
           *         that cross-channel reentrancy may be possible if the conduit has
           *         multiple open channels at once. Also note that channels are
           *         expected to implement checks against transferring any zero-amount
           *         items if that constraint is desired.
           *
           * @param batchTransfers The 1155 batch item transfers to perform.
           *
           * @return magicValue A magic value indicating that the item transfers were
           *                    performed successfully.
           */
          function executeBatch1155(
              ConduitBatch1155Transfer[] calldata batchTransfers
          ) external override onlyOpenChannel returns (bytes4 magicValue) {
              // Perform 1155 batch transfers. Note that memory should be considered
              // entirely corrupted from this point forward.
              _performERC1155BatchTransfers(batchTransfers);
              // Return a magic value indicating that the transfers were performed.
              magicValue = this.executeBatch1155.selector;
          }
          /**
           * @notice Execute a sequence of transfers, both single ERC20/721/1155 item
           *         transfers as well as batch 1155 item transfers. Only a caller
           *         with an open channel can call this function. Note that channels
           *         are expected to implement reentrancy protection if desired, and
           *         that cross-channel reentrancy may be possible if the conduit has
           *         multiple open channels at once. Also note that channels are
           *         expected to implement checks against transferring any zero-amount
           *         items if that constraint is desired.
           *
           * @param standardTransfers The ERC20/721/1155 item transfers to perform.
           * @param batchTransfers    The 1155 batch item transfers to perform.
           *
           * @return magicValue A magic value indicating that the item transfers were
           *                    performed successfully.
           */
          function executeWithBatch1155(
              ConduitTransfer[] calldata standardTransfers,
              ConduitBatch1155Transfer[] calldata batchTransfers
          ) external override onlyOpenChannel returns (bytes4 magicValue) {
              // Retrieve the total number of transfers and place on the stack.
              uint256 totalStandardTransfers = standardTransfers.length;
              // Iterate over each standard transfer.
              for (uint256 i = 0; i < totalStandardTransfers; ) {
                  // Retrieve the transfer in question and perform the transfer.
                  _transfer(standardTransfers[i]);
                  // Skip overflow check as for loop is indexed starting at zero.
                  unchecked {
                      ++i;
                  }
              }
              // Perform 1155 batch transfers. Note that memory should be considered
              // entirely corrupted from this point forward aside from the free memory
              // pointer having the default value.
              _performERC1155BatchTransfers(batchTransfers);
              // Return a magic value indicating that the transfers were performed.
              magicValue = this.executeWithBatch1155.selector;
          }
          /**
           * @notice Open or close a given channel. Only callable by the controller.
           *
           * @param channel The channel to open or close.
           * @param isOpen  The status of the channel (either open or closed).
           */
          function updateChannel(address channel, bool isOpen) external override {
              // Ensure that the caller is the controller of this contract.
              if (msg.sender != _controller) {
                  revert InvalidController();
              }
              // Ensure that the channel does not already have the indicated status.
              if (_channels[channel] == isOpen) {
                  revert ChannelStatusAlreadySet(channel, isOpen);
              }
              // Update the status of the channel.
              _channels[channel] = isOpen;
              // Emit a corresponding event.
              emit ChannelUpdated(channel, isOpen);
          }
          /**
           * @dev Internal function to transfer a given ERC20/721/1155 item. Note that
           *      channels are expected to implement checks against transferring any
           *      zero-amount items if that constraint is desired.
           *
           * @param item The ERC20/721/1155 item to transfer.
           */
          function _transfer(ConduitTransfer calldata item) internal {
              // Determine the transfer method based on the respective item type.
              if (item.itemType == ConduitItemType.ERC20) {
                  // Transfer ERC20 token. Note that item.identifier is ignored and
                  // therefore ERC20 transfer items are potentially malleable — this
                  // check should be performed by the calling channel if a constraint
                  // on item malleability is desired.
                  _performERC20Transfer(item.token, item.from, item.to, item.amount);
              } else if (item.itemType == ConduitItemType.ERC721) {
                  // Ensure that exactly one 721 item is being transferred.
                  if (item.amount != 1) {
                      revert InvalidERC721TransferAmount();
                  }
                  // Transfer ERC721 token.
                  _performERC721Transfer(
                      item.token,
                      item.from,
                      item.to,
                      item.identifier
                  );
              } else if (item.itemType == ConduitItemType.ERC1155) {
                  // Transfer ERC1155 token.
                  _performERC1155Transfer(
                      item.token,
                      item.from,
                      item.to,
                      item.identifier,
                      item.amount
                  );
              } else {
                  // Throw with an error.
                  revert InvalidItemType();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      import { ConduitItemType } from "./ConduitEnums.sol";
      struct ConduitTransfer {
          ConduitItemType itemType;
          address token;
          address from;
          address to;
          uint256 identifier;
          uint256 amount;
      }
      struct ConduitBatch1155Transfer {
          address token;
          address from;
          address to;
          uint256[] ids;
          uint256[] amounts;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      import {
          TransferHelperItem,
          TransferHelperItemsWithRecipient
      } from "../helpers/TransferHelperStructs.sol";
      interface TransferHelperInterface {
          /**
           * @notice Transfer multiple items to a single recipient.
           *
           * @param items The items to transfer.
           * @param conduitKey  The key of the conduit performing the bulk transfer.
           */
          function bulkTransfer(
              TransferHelperItemsWithRecipient[] calldata items,
              bytes32 conduitKey
          ) external returns (bytes4);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      /**
       * @title TransferHelperErrors
       */
      interface TransferHelperErrors {
          /**
           * @dev Revert with an error when attempting to execute transfers with a
           *      NATIVE itemType.
           */
          error InvalidItemType();
          /**
           * @dev Revert with an error when an ERC721 transfer with amount other than
           *      one is attempted.
           */
          error InvalidERC721TransferAmount();
          /**
           * @dev Revert with an error when attempting to execute an ERC721 transfer
           *      to an invalid recipient.
           */
          error InvalidERC721Recipient(address recipient);
          /**
           * @dev Revert with an error when a call to a ERC721 receiver reverts with
           *      bytes data.
           */
          error ERC721ReceiverErrorRevertBytes(
              bytes reason,
              address receiver,
              address sender,
              uint256 identifier
          );
          /**
           * @dev Revert with an error when a call to a ERC721 receiver reverts with
           *      string reason.
           */
          error ERC721ReceiverErrorRevertString(
              string reason,
              address receiver,
              address sender,
              uint256 identifier
          );
          /**
           * @dev Revert with an error when an ERC20 token has an invalid identifier.
           */
          error InvalidERC20Identifier();
          /**
           * @dev Revert with an error if the recipient is the zero address.
           */
          error RecipientCannotBeZeroAddress();
          /**
           * @dev Revert with an error when attempting to fill an order referencing an
           *      invalid conduit (i.e. one that has not been deployed).
           */
          error InvalidConduit(bytes32 conduitKey, address conduit);
          /**
           * @dev Revert with an error when a call to a conduit reverts with a
           *      reason string.
           */
          error ConduitErrorRevertString(
              string reason,
              bytes32 conduitKey,
              address conduit
          );
          /**
           * @dev Revert with an error when a call to a conduit reverts with bytes
           *      data.
           */
          error ConduitErrorRevertBytes(
              bytes reason,
              bytes32 conduitKey,
              address conduit
          );
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      enum ConduitItemType {
          NATIVE, // unused
          ERC20,
          ERC721,
          ERC1155
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      import "./TokenTransferrerConstants.sol";
      import {
          TokenTransferrerErrors
      } from "../interfaces/TokenTransferrerErrors.sol";
      import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol";
      /**
       * @title TokenTransferrer
       * @author 0age
       * @custom:coauthor d1ll0n
       * @custom:coauthor transmissions11
       * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721,
       *         ERC1155, and batch ERC1155 transfers, used by both Seaport as well as
       *         by conduits deployed by the ConduitController. Use great caution when
       *         considering these functions for use in other codebases, as there are
       *         significant side effects and edge cases that need to be thoroughly
       *         understood and carefully addressed.
       */
      contract TokenTransferrer is TokenTransferrerErrors {
          /**
           * @dev Internal function to transfer ERC20 tokens from a given originator
           *      to a given recipient. Sufficient approvals must be set on the
           *      contract performing the transfer.
           *
           * @param token      The ERC20 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param amount     The amount to transfer.
           */
          function _performERC20Transfer(
              address token,
              address from,
              address to,
              uint256 amount
          ) internal {
              // Utilize assembly to perform an optimized ERC20 token transfer.
              assembly {
                  // The free memory pointer memory slot will be used when populating
                  // call data for the transfer; read the value and restore it later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  // Write call data into memory, starting with function selector.
                  mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature)
                  mstore(ERC20_transferFrom_from_ptr, from)
                  mstore(ERC20_transferFrom_to_ptr, to)
                  mstore(ERC20_transferFrom_amount_ptr, amount)
                  // Make call & copy up to 32 bytes of return data to scratch space.
                  // Scratch space does not need to be cleared ahead of time, as the
                  // subsequent check will ensure that either at least a full word of
                  // return data is received (in which case it will be overwritten) or
                  // that no data is received (in which case scratch space will be
                  // ignored) on a successful call to the given token.
                  let callStatus := call(
                      gas(),
                      token,
                      0,
                      ERC20_transferFrom_sig_ptr,
                      ERC20_transferFrom_length,
                      0,
                      OneWord
                  )
                  // Determine whether transfer was successful using status & result.
                  let success := and(
                      // Set success to whether the call reverted, if not check it
                      // either returned exactly 1 (can't just be non-zero data), or
                      // had no return data.
                      or(
                          and(eq(mload(0), 1), gt(returndatasize(), 31)),
                          iszero(returndatasize())
                      ),
                      callStatus
                  )
                  // Handle cases where either the transfer failed or no data was
                  // returned. Group these, as most transfers will succeed with data.
                  // Equivalent to `or(iszero(success), iszero(returndatasize()))`
                  // but after it's inverted for JUMPI this expression is cheaper.
                  if iszero(and(success, iszero(iszero(returndatasize())))) {
                      // If the token has no code or the transfer failed: Equivalent
                      // to `or(iszero(success), iszero(extcodesize(token)))` but
                      // after it's inverted for JUMPI this expression is cheaper.
                      if iszero(and(iszero(iszero(extcodesize(token))), success)) {
                          // If the transfer failed:
                          if iszero(success) {
                              // If it was due to a revert:
                              if iszero(callStatus) {
                                  // If it returned a message, bubble it up as long as
                                  // sufficient gas remains to do so:
                                  if returndatasize() {
                                      // Ensure that sufficient gas is available to
                                      // copy returndata while expanding memory where
                                      // necessary. Start by computing the word size
                                      // of returndata and allocated memory. Round up
                                      // to the nearest full word.
                                      let returnDataWords := div(
                                          add(returndatasize(), AlmostOneWord),
                                          OneWord
                                      )
                                      // Note: use the free memory pointer in place of
                                      // msize() to work around a Yul warning that
                                      // prevents accessing msize directly when the IR
                                      // pipeline is activated.
                                      let msizeWords := div(memPointer, OneWord)
                                      // Next, compute the cost of the returndatacopy.
                                      let cost := mul(CostPerWord, returnDataWords)
                                      // Then, compute cost of new memory allocation.
                                      if gt(returnDataWords, msizeWords) {
                                          cost := add(
                                              cost,
                                              add(
                                                  mul(
                                                      sub(
                                                          returnDataWords,
                                                          msizeWords
                                                      ),
                                                      CostPerWord
                                                  ),
                                                  div(
                                                      sub(
                                                          mul(
                                                              returnDataWords,
                                                              returnDataWords
                                                          ),
                                                          mul(msizeWords, msizeWords)
                                                      ),
                                                      MemoryExpansionCoefficient
                                                  )
                                              )
                                          )
                                      }
                                      // Finally, add a small constant and compare to
                                      // gas remaining; bubble up the revert data if
                                      // enough gas is still available.
                                      if lt(add(cost, ExtraGasBuffer), gas()) {
                                          // Copy returndata to memory; overwrite
                                          // existing memory.
                                          returndatacopy(0, 0, returndatasize())
                                          // Revert, specifying memory region with
                                          // copied returndata.
                                          revert(0, returndatasize())
                                      }
                                  }
                                  // Otherwise revert with a generic error message.
                                  mstore(
                                      TokenTransferGenericFailure_error_sig_ptr,
                                      TokenTransferGenericFailure_error_signature
                                  )
                                  mstore(
                                      TokenTransferGenericFailure_error_token_ptr,
                                      token
                                  )
                                  mstore(
                                      TokenTransferGenericFailure_error_from_ptr,
                                      from
                                  )
                                  mstore(TokenTransferGenericFailure_error_to_ptr, to)
                                  mstore(TokenTransferGenericFailure_error_id_ptr, 0)
                                  mstore(
                                      TokenTransferGenericFailure_error_amount_ptr,
                                      amount
                                  )
                                  revert(
                                      TokenTransferGenericFailure_error_sig_ptr,
                                      TokenTransferGenericFailure_error_length
                                  )
                              }
                              // Otherwise revert with a message about the token
                              // returning false or non-compliant return values.
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_sig_ptr,
                                  BadReturnValueFromERC20OnTransfer_error_signature
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_token_ptr,
                                  token
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_from_ptr,
                                  from
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_to_ptr,
                                  to
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_amount_ptr,
                                  amount
                              )
                              revert(
                                  BadReturnValueFromERC20OnTransfer_error_sig_ptr,
                                  BadReturnValueFromERC20OnTransfer_error_length
                              )
                          }
                          // Otherwise, revert with error about token not having code:
                          mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                          mstore(NoContract_error_token_ptr, token)
                          revert(NoContract_error_sig_ptr, NoContract_error_length)
                      }
                      // Otherwise, the token just returned no data despite the call
                      // having succeeded; no need to optimize for this as it's not
                      // technically ERC20 compliant.
                  }
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer an ERC721 token from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer. Note that this function does
           *      not check whether the receiver can accept the ERC721 token (i.e. it
           *      does not use `safeTransferFrom`).
           *
           * @param token      The ERC721 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param identifier The tokenId to transfer.
           */
          function _performERC721Transfer(
              address token,
              address from,
              address to,
              uint256 identifier
          ) internal {
              // Utilize assembly to perform an optimized ERC721 token transfer.
              assembly {
                  // If the token has no code, revert.
                  if iszero(extcodesize(token)) {
                      mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                      mstore(NoContract_error_token_ptr, token)
                      revert(NoContract_error_sig_ptr, NoContract_error_length)
                  }
                  // The free memory pointer memory slot will be used when populating
                  // call data for the transfer; read the value and restore it later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  // Write call data to memory starting with function selector.
                  mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature)
                  mstore(ERC721_transferFrom_from_ptr, from)
                  mstore(ERC721_transferFrom_to_ptr, to)
                  mstore(ERC721_transferFrom_id_ptr, identifier)
                  // Perform the call, ignoring return data.
                  let success := call(
                      gas(),
                      token,
                      0,
                      ERC721_transferFrom_sig_ptr,
                      ERC721_transferFrom_length,
                      0,
                      0
                  )
                  // If the transfer reverted:
                  if iszero(success) {
                      // If it returned a message, bubble it up as long as sufficient
                      // gas remains to do so:
                      if returndatasize() {
                          // Ensure that sufficient gas is available to copy
                          // returndata while expanding memory where necessary. Start
                          // by computing word size of returndata & allocated memory.
                          // Round up to the nearest full word.
                          let returnDataWords := div(
                              add(returndatasize(), AlmostOneWord),
                              OneWord
                          )
                          // Note: use the free memory pointer in place of msize() to
                          // work around a Yul warning that prevents accessing msize
                          // directly when the IR pipeline is activated.
                          let msizeWords := div(memPointer, OneWord)
                          // Next, compute the cost of the returndatacopy.
                          let cost := mul(CostPerWord, returnDataWords)
                          // Then, compute cost of new memory allocation.
                          if gt(returnDataWords, msizeWords) {
                              cost := add(
                                  cost,
                                  add(
                                      mul(
                                          sub(returnDataWords, msizeWords),
                                          CostPerWord
                                      ),
                                      div(
                                          sub(
                                              mul(returnDataWords, returnDataWords),
                                              mul(msizeWords, msizeWords)
                                          ),
                                          MemoryExpansionCoefficient
                                      )
                                  )
                              )
                          }
                          // Finally, add a small constant and compare to gas
                          // remaining; bubble up the revert data if enough gas is
                          // still available.
                          if lt(add(cost, ExtraGasBuffer), gas()) {
                              // Copy returndata to memory; overwrite existing memory.
                              returndatacopy(0, 0, returndatasize())
                              // Revert, giving memory region with copied returndata.
                              revert(0, returndatasize())
                          }
                      }
                      // Otherwise revert with a generic error message.
                      mstore(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_signature
                      )
                      mstore(TokenTransferGenericFailure_error_token_ptr, token)
                      mstore(TokenTransferGenericFailure_error_from_ptr, from)
                      mstore(TokenTransferGenericFailure_error_to_ptr, to)
                      mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
                      mstore(TokenTransferGenericFailure_error_amount_ptr, 1)
                      revert(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_length
                      )
                  }
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer ERC1155 tokens from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer and contract recipients must
           *      implement the ERC1155TokenReceiver interface to indicate that they
           *      are willing to accept the transfer.
           *
           * @param token      The ERC1155 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param identifier The id to transfer.
           * @param amount     The amount to transfer.
           */
          function _performERC1155Transfer(
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount
          ) internal {
              // Utilize assembly to perform an optimized ERC1155 token transfer.
              assembly {
                  // If the token has no code, revert.
                  if iszero(extcodesize(token)) {
                      mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                      mstore(NoContract_error_token_ptr, token)
                      revert(NoContract_error_sig_ptr, NoContract_error_length)
                  }
                  // The following memory slots will be used when populating call data
                  // for the transfer; read the values and restore them later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  let slot0x80 := mload(Slot0x80)
                  let slot0xA0 := mload(Slot0xA0)
                  let slot0xC0 := mload(Slot0xC0)
                  // Write call data into memory, beginning with function selector.
                  mstore(
                      ERC1155_safeTransferFrom_sig_ptr,
                      ERC1155_safeTransferFrom_signature
                  )
                  mstore(ERC1155_safeTransferFrom_from_ptr, from)
                  mstore(ERC1155_safeTransferFrom_to_ptr, to)
                  mstore(ERC1155_safeTransferFrom_id_ptr, identifier)
                  mstore(ERC1155_safeTransferFrom_amount_ptr, amount)
                  mstore(
                      ERC1155_safeTransferFrom_data_offset_ptr,
                      ERC1155_safeTransferFrom_data_length_offset
                  )
                  mstore(ERC1155_safeTransferFrom_data_length_ptr, 0)
                  // Perform the call, ignoring return data.
                  let success := call(
                      gas(),
                      token,
                      0,
                      ERC1155_safeTransferFrom_sig_ptr,
                      ERC1155_safeTransferFrom_length,
                      0,
                      0
                  )
                  // If the transfer reverted:
                  if iszero(success) {
                      // If it returned a message, bubble it up as long as sufficient
                      // gas remains to do so:
                      if returndatasize() {
                          // Ensure that sufficient gas is available to copy
                          // returndata while expanding memory where necessary. Start
                          // by computing word size of returndata & allocated memory.
                          // Round up to the nearest full word.
                          let returnDataWords := div(
                              add(returndatasize(), AlmostOneWord),
                              OneWord
                          )
                          // Note: use the free memory pointer in place of msize() to
                          // work around a Yul warning that prevents accessing msize
                          // directly when the IR pipeline is activated.
                          let msizeWords := div(memPointer, OneWord)
                          // Next, compute the cost of the returndatacopy.
                          let cost := mul(CostPerWord, returnDataWords)
                          // Then, compute cost of new memory allocation.
                          if gt(returnDataWords, msizeWords) {
                              cost := add(
                                  cost,
                                  add(
                                      mul(
                                          sub(returnDataWords, msizeWords),
                                          CostPerWord
                                      ),
                                      div(
                                          sub(
                                              mul(returnDataWords, returnDataWords),
                                              mul(msizeWords, msizeWords)
                                          ),
                                          MemoryExpansionCoefficient
                                      )
                                  )
                              )
                          }
                          // Finally, add a small constant and compare to gas
                          // remaining; bubble up the revert data if enough gas is
                          // still available.
                          if lt(add(cost, ExtraGasBuffer), gas()) {
                              // Copy returndata to memory; overwrite existing memory.
                              returndatacopy(0, 0, returndatasize())
                              // Revert, giving memory region with copied returndata.
                              revert(0, returndatasize())
                          }
                      }
                      // Otherwise revert with a generic error message.
                      mstore(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_signature
                      )
                      mstore(TokenTransferGenericFailure_error_token_ptr, token)
                      mstore(TokenTransferGenericFailure_error_from_ptr, from)
                      mstore(TokenTransferGenericFailure_error_to_ptr, to)
                      mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
                      mstore(TokenTransferGenericFailure_error_amount_ptr, amount)
                      revert(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_length
                      )
                  }
                  mstore(Slot0x80, slot0x80) // Restore slot 0x80.
                  mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0.
                  mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0.
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer ERC1155 tokens from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer and contract recipients must
           *      implement the ERC1155TokenReceiver interface to indicate that they
           *      are willing to accept the transfer. NOTE: this function is not
           *      memory-safe; it will overwrite existing memory, restore the free
           *      memory pointer to the default value, and overwrite the zero slot.
           *      This function should only be called once memory is no longer
           *      required and when uninitialized arrays are not utilized, and memory
           *      should be considered fully corrupted (aside from the existence of a
           *      default-value free memory pointer) after calling this function.
           *
           * @param batchTransfers The group of 1155 batch transfers to perform.
           */
          function _performERC1155BatchTransfers(
              ConduitBatch1155Transfer[] calldata batchTransfers
          ) internal {
              // Utilize assembly to perform optimized batch 1155 transfers.
              assembly {
                  let len := batchTransfers.length
                  // Pointer to first head in the array, which is offset to the struct
                  // at each index. This gets incremented after each loop to avoid
                  // multiplying by 32 to get the offset for each element.
                  let nextElementHeadPtr := batchTransfers.offset
                  // Pointer to beginning of the head of the array. This is the
                  // reference position each offset references. It's held static to
                  // let each loop calculate the data position for an element.
                  let arrayHeadPtr := nextElementHeadPtr
                  // Write the function selector, which will be reused for each call:
                  // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
                  mstore(
                      ConduitBatch1155Transfer_from_offset,
                      ERC1155_safeBatchTransferFrom_signature
                  )
                  // Iterate over each batch transfer.
                  for {
                      let i := 0
                  } lt(i, len) {
                      i := add(i, 1)
                  } {
                      // Read the offset to the beginning of the element and add
                      // it to pointer to the beginning of the array head to get
                      // the absolute position of the element in calldata.
                      let elementPtr := add(
                          arrayHeadPtr,
                          calldataload(nextElementHeadPtr)
                      )
                      // Retrieve the token from calldata.
                      let token := calldataload(elementPtr)
                      // If the token has no code, revert.
                      if iszero(extcodesize(token)) {
                          mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                          mstore(NoContract_error_token_ptr, token)
                          revert(NoContract_error_sig_ptr, NoContract_error_length)
                      }
                      // Get the total number of supplied ids.
                      let idsLength := calldataload(
                          add(elementPtr, ConduitBatch1155Transfer_ids_length_offset)
                      )
                      // Determine the expected offset for the amounts array.
                      let expectedAmountsOffset := add(
                          ConduitBatch1155Transfer_amounts_length_baseOffset,
                          mul(idsLength, OneWord)
                      )
                      // Validate struct encoding.
                      let invalidEncoding := iszero(
                          and(
                              // ids.length == amounts.length
                              eq(
                                  idsLength,
                                  calldataload(add(elementPtr, expectedAmountsOffset))
                              ),
                              and(
                                  // ids_offset == 0xa0
                                  eq(
                                      calldataload(
                                          add(
                                              elementPtr,
                                              ConduitBatch1155Transfer_ids_head_offset
                                          )
                                      ),
                                      ConduitBatch1155Transfer_ids_length_offset
                                  ),
                                  // amounts_offset == 0xc0 + ids.length*32
                                  eq(
                                      calldataload(
                                          add(
                                              elementPtr,
                                              ConduitBatchTransfer_amounts_head_offset
                                          )
                                      ),
                                      expectedAmountsOffset
                                  )
                              )
                          )
                      )
                      // Revert with an error if the encoding is not valid.
                      if invalidEncoding {
                          mstore(
                              Invalid1155BatchTransferEncoding_ptr,
                              Invalid1155BatchTransferEncoding_selector
                          )
                          revert(
                              Invalid1155BatchTransferEncoding_ptr,
                              Invalid1155BatchTransferEncoding_length
                          )
                      }
                      // Update the offset position for the next loop
                      nextElementHeadPtr := add(nextElementHeadPtr, OneWord)
                      // Copy the first section of calldata (before dynamic values).
                      calldatacopy(
                          BatchTransfer1155Params_ptr,
                          add(elementPtr, ConduitBatch1155Transfer_from_offset),
                          ConduitBatch1155Transfer_usable_head_size
                      )
                      // Determine size of calldata required for ids and amounts. Note
                      // that the size includes both lengths as well as the data.
                      let idsAndAmountsSize := add(TwoWords, mul(idsLength, TwoWords))
                      // Update the offset for the data array in memory.
                      mstore(
                          BatchTransfer1155Params_data_head_ptr,
                          add(
                              BatchTransfer1155Params_ids_length_offset,
                              idsAndAmountsSize
                          )
                      )
                      // Set the length of the data array in memory to zero.
                      mstore(
                          add(
                              BatchTransfer1155Params_data_length_basePtr,
                              idsAndAmountsSize
                          ),
                          0
                      )
                      // Determine the total calldata size for the call to transfer.
                      let transferDataSize := add(
                          BatchTransfer1155Params_calldata_baseSize,
                          idsAndAmountsSize
                      )
                      // Copy second section of calldata (including dynamic values).
                      calldatacopy(
                          BatchTransfer1155Params_ids_length_ptr,
                          add(elementPtr, ConduitBatch1155Transfer_ids_length_offset),
                          idsAndAmountsSize
                      )
                      // Perform the call to transfer 1155 tokens.
                      let success := call(
                          gas(),
                          token,
                          0,
                          ConduitBatch1155Transfer_from_offset, // Data portion start.
                          transferDataSize, // Location of the length of callData.
                          0,
                          0
                      )
                      // If the transfer reverted:
                      if iszero(success) {
                          // If it returned a message, bubble it up as long as
                          // sufficient gas remains to do so:
                          if returndatasize() {
                              // Ensure that sufficient gas is available to copy
                              // returndata while expanding memory where necessary.
                              // Start by computing word size of returndata and
                              // allocated memory. Round up to the nearest full word.
                              let returnDataWords := div(
                                  add(returndatasize(), AlmostOneWord),
                                  OneWord
                              )
                              // Note: use transferDataSize in place of msize() to
                              // work around a Yul warning that prevents accessing
                              // msize directly when the IR pipeline is activated.
                              // The free memory pointer is not used here because
                              // this function does almost all memory management
                              // manually and does not update it, and transferDataSize
                              // should be the largest memory value used (unless a
                              // previous batch was larger).
                              let msizeWords := div(transferDataSize, OneWord)
                              // Next, compute the cost of the returndatacopy.
                              let cost := mul(CostPerWord, returnDataWords)
                              // Then, compute cost of new memory allocation.
                              if gt(returnDataWords, msizeWords) {
                                  cost := add(
                                      cost,
                                      add(
                                          mul(
                                              sub(returnDataWords, msizeWords),
                                              CostPerWord
                                          ),
                                          div(
                                              sub(
                                                  mul(
                                                      returnDataWords,
                                                      returnDataWords
                                                  ),
                                                  mul(msizeWords, msizeWords)
                                              ),
                                              MemoryExpansionCoefficient
                                          )
                                      )
                                  )
                              }
                              // Finally, add a small constant and compare to gas
                              // remaining; bubble up the revert data if enough gas is
                              // still available.
                              if lt(add(cost, ExtraGasBuffer), gas()) {
                                  // Copy returndata to memory; overwrite existing.
                                  returndatacopy(0, 0, returndatasize())
                                  // Revert with memory region containing returndata.
                                  revert(0, returndatasize())
                              }
                          }
                          // Set the error signature.
                          mstore(
                              0,
                              ERC1155BatchTransferGenericFailure_error_signature
                          )
                          // Write the token.
                          mstore(ERC1155BatchTransferGenericFailure_token_ptr, token)
                          // Increase the offset to ids by 32.
                          mstore(
                              BatchTransfer1155Params_ids_head_ptr,
                              ERC1155BatchTransferGenericFailure_ids_offset
                          )
                          // Increase the offset to amounts by 32.
                          mstore(
                              BatchTransfer1155Params_amounts_head_ptr,
                              add(
                                  OneWord,
                                  mload(BatchTransfer1155Params_amounts_head_ptr)
                              )
                          )
                          // Return modified region. The total size stays the same as
                          // `token` uses the same number of bytes as `data.length`.
                          revert(0, transferDataSize)
                      }
                  }
                  // Reset the free memory pointer to the default value; memory must
                  // be assumed to be dirtied and not reused from this point forward.
                  // Also note that the zero slot is not reset to zero, meaning empty
                  // arrays cannot be safely created or utilized until it is restored.
                  mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      // error ChannelClosed(address channel)
      uint256 constant ChannelClosed_error_signature = (
          0x93daadf200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ChannelClosed_error_ptr = 0x00;
      uint256 constant ChannelClosed_channel_ptr = 0x4;
      uint256 constant ChannelClosed_error_length = 0x24;
      // For the mapping:
      // mapping(address => bool) channels
      // The position in storage for a particular account is:
      // keccak256(abi.encode(account, channels.slot))
      uint256 constant ChannelKey_channel_ptr = 0x00;
      uint256 constant ChannelKey_slot_ptr = 0x20;
      uint256 constant ChannelKey_length = 0x40;
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      /*
       * -------------------------- Disambiguation & Other Notes ---------------------
       *    - The term "head" is used as it is in the documentation for ABI encoding,
       *      but only in reference to dynamic types, i.e. it always refers to the
       *      offset or pointer to the body of a dynamic type. In calldata, the head
       *      is always an offset (relative to the parent object), while in memory,
       *      the head is always the pointer to the body. More information found here:
       *      https://docs.soliditylang.org/en/v0.8.14/abi-spec.html#argument-encoding
       *        - Note that the length of an array is separate from and precedes the
       *          head of the array.
       *
       *    - The term "body" is used in place of the term "head" used in the ABI
       *      documentation. It refers to the start of the data for a dynamic type,
       *      e.g. the first word of a struct or the first word of the first element
       *      in an array.
       *
       *    - The term "pointer" is used to describe the absolute position of a value
       *      and never an offset relative to another value.
       *        - The suffix "_ptr" refers to a memory pointer.
       *        - The suffix "_cdPtr" refers to a calldata pointer.
       *
       *    - The term "offset" is used to describe the position of a value relative
       *      to some parent value. For example, OrderParameters_conduit_offset is the
       *      offset to the "conduit" value in the OrderParameters struct relative to
       *      the start of the body.
       *        - Note: Offsets are used to derive pointers.
       *
       *    - Some structs have pointers defined for all of their fields in this file.
       *      Lines which are commented out are fields that are not used in the
       *      codebase but have been left in for readability.
       */
      uint256 constant AlmostOneWord = 0x1f;
      uint256 constant OneWord = 0x20;
      uint256 constant TwoWords = 0x40;
      uint256 constant ThreeWords = 0x60;
      uint256 constant FreeMemoryPointerSlot = 0x40;
      uint256 constant ZeroSlot = 0x60;
      uint256 constant DefaultFreeMemoryPointer = 0x80;
      uint256 constant Slot0x80 = 0x80;
      uint256 constant Slot0xA0 = 0xa0;
      uint256 constant Slot0xC0 = 0xc0;
      // abi.encodeWithSignature("transferFrom(address,address,uint256)")
      uint256 constant ERC20_transferFrom_signature = (
          0x23b872dd00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC20_transferFrom_sig_ptr = 0x0;
      uint256 constant ERC20_transferFrom_from_ptr = 0x04;
      uint256 constant ERC20_transferFrom_to_ptr = 0x24;
      uint256 constant ERC20_transferFrom_amount_ptr = 0x44;
      uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
      // abi.encodeWithSignature(
      //     "safeTransferFrom(address,address,uint256,uint256,bytes)"
      // )
      uint256 constant ERC1155_safeTransferFrom_signature = (
          0xf242432a00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0;
      uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04;
      uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24;
      uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44;
      uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64;
      uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84;
      uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4;
      uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196
      uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0;
      // abi.encodeWithSignature(
      //     "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)"
      // )
      uint256 constant ERC1155_safeBatchTransferFrom_signature = (
          0x2eb2c2d600000000000000000000000000000000000000000000000000000000
      );
      bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4(
          bytes32(ERC1155_safeBatchTransferFrom_signature)
      );
      uint256 constant ERC721_transferFrom_signature = ERC20_transferFrom_signature;
      uint256 constant ERC721_transferFrom_sig_ptr = 0x0;
      uint256 constant ERC721_transferFrom_from_ptr = 0x04;
      uint256 constant ERC721_transferFrom_to_ptr = 0x24;
      uint256 constant ERC721_transferFrom_id_ptr = 0x44;
      uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
      // abi.encodeWithSignature("NoContract(address)")
      uint256 constant NoContract_error_signature = (
          0x5f15d67200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant NoContract_error_sig_ptr = 0x0;
      uint256 constant NoContract_error_token_ptr = 0x4;
      uint256 constant NoContract_error_length = 0x24; // 4 + 32 == 36
      // abi.encodeWithSignature(
      //     "TokenTransferGenericFailure(address,address,address,uint256,uint256)"
      // )
      uint256 constant TokenTransferGenericFailure_error_signature = (
          0xf486bc8700000000000000000000000000000000000000000000000000000000
      );
      uint256 constant TokenTransferGenericFailure_error_sig_ptr = 0x0;
      uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x4;
      uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x24;
      uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x44;
      uint256 constant TokenTransferGenericFailure_error_id_ptr = 0x64;
      uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0x84;
      // 4 + 32 * 5 == 164
      uint256 constant TokenTransferGenericFailure_error_length = 0xa4;
      // abi.encodeWithSignature(
      //     "BadReturnValueFromERC20OnTransfer(address,address,address,uint256)"
      // )
      uint256 constant BadReturnValueFromERC20OnTransfer_error_signature = (
          0x9889192300000000000000000000000000000000000000000000000000000000
      );
      uint256 constant BadReturnValueFromERC20OnTransfer_error_sig_ptr = 0x0;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x4;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x24;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x44;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x64;
      // 4 + 32 * 4 == 132
      uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;
      uint256 constant ExtraGasBuffer = 0x20;
      uint256 constant CostPerWord = 3;
      uint256 constant MemoryExpansionCoefficient = 0x200;
      // Values are offset by 32 bytes in order to write the token to the beginning
      // in the event of a revert
      uint256 constant BatchTransfer1155Params_ptr = 0x24;
      uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64;
      uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84;
      uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4;
      uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4;
      uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4;
      uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4;
      uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0;
      uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0;
      uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0;
      uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80;
      uint256 constant ConduitBatch1155Transfer_from_offset = 0x20;
      uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60;
      uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80;
      uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0;
      uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0;
      uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0;
      // Note: abbreviated version of above constant to adhere to line length limit.
      uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80;
      uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00;
      uint256 constant Invalid1155BatchTransferEncoding_length = 0x04;
      uint256 constant Invalid1155BatchTransferEncoding_selector = (
          0xeba2084c00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155BatchTransferGenericFailure_error_signature = (
          0xafc445e200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04;
      uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0;
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      /**
       * @title TokenTransferrerErrors
       */
      interface TokenTransferrerErrors {
          /**
           * @dev Revert with an error when an ERC721 transfer with amount other than
           *      one is attempted.
           */
          error InvalidERC721TransferAmount();
          /**
           * @dev Revert with an error when attempting to fulfill an order where an
           *      item has an amount of zero.
           */
          error MissingItemAmount();
          /**
           * @dev Revert with an error when attempting to fulfill an order where an
           *      item has unused parameters. This includes both the token and the
           *      identifier parameters for native transfers as well as the identifier
           *      parameter for ERC20 transfers. Note that the conduit does not
           *      perform this check, leaving it up to the calling channel to enforce
           *      when desired.
           */
          error UnusedItemParameters();
          /**
           * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token
           *      transfer reverts.
           *
           * @param token      The token for which the transfer was attempted.
           * @param from       The source of the attempted transfer.
           * @param to         The recipient of the attempted transfer.
           * @param identifier The identifier for the attempted transfer.
           * @param amount     The amount for the attempted transfer.
           */
          error TokenTransferGenericFailure(
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount
          );
          /**
           * @dev Revert with an error when a batch ERC1155 token transfer reverts.
           *
           * @param token       The token for which the transfer was attempted.
           * @param from        The source of the attempted transfer.
           * @param to          The recipient of the attempted transfer.
           * @param identifiers The identifiers for the attempted transfer.
           * @param amounts     The amounts for the attempted transfer.
           */
          error ERC1155BatchTransferGenericFailure(
              address token,
              address from,
              address to,
              uint256[] identifiers,
              uint256[] amounts
          );
          /**
           * @dev Revert with an error when an ERC20 token transfer returns a falsey
           *      value.
           *
           * @param token      The token for which the ERC20 transfer was attempted.
           * @param from       The source of the attempted ERC20 transfer.
           * @param to         The recipient of the attempted ERC20 transfer.
           * @param amount     The amount for the attempted ERC20 transfer.
           */
          error BadReturnValueFromERC20OnTransfer(
              address token,
              address from,
              address to,
              uint256 amount
          );
          /**
           * @dev Revert with an error when an account being called as an assumed
           *      contract does not have code and returns no data.
           *
           * @param account The account that should contain code.
           */
          error NoContract(address account);
          /**
           * @dev Revert with an error when attempting to execute an 1155 batch
           *      transfer using calldata not produced by default ABI encoding or with
           *      different lengths for ids and amounts arrays.
           */
          error Invalid1155BatchTransferEncoding();
      }
      

      File 2 of 3: GoldChip
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.20;
      import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
      import {Ownable2Step} from "@openzeppelin/contracts/access/Ownable2Step.sol";
      import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
      import {ERC721} from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
      import {AccessControl, IAccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
      import {AccessControlEnumerable} from "@openzeppelin/contracts/access/extensions/AccessControlEnumerable.sol";
      import {IGoldChip} from "../interface/IGoldChip.sol";
      import {IChipNotifier} from "../interface/IChipNotifier.sol";
      contract GoldChip is Ownable2Step, ReentrancyGuard, ERC721, AccessControlEnumerable, IGoldChip {
          uint256 public constant MAX_SUPPLY = 8000;
          bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
          bool public burnable;
          uint256 public nextTokenId;
          uint256 public totalSupply;
          address public chipNotifier;
          mapping(uint256 => address) public boundOwner;
          string private _baseTokenURI;
          constructor() Ownable(_msgSender()) ERC721("GoldChip", "GOLDCHIP") {}
          modifier whenBurnable() {
              if (!burnable) {
                  revert TokenNotBurnable();
              }
              _;
          }
          function grantRole(
              bytes32 role,
              address account
          ) public override(AccessControl, IAccessControl) onlyOwner {
              _grantRole(role, account);
          }
          function revokeRole(
              bytes32 role,
              address account
          ) public override(AccessControl, IAccessControl) onlyOwner {
              _revokeRole(role, account);
          }
          function setBurnable(bool enabled) public onlyOwner {
              burnable = enabled;
              emit BurnableSet(enabled);
          }
          function setChipNotifier(address notifier) public onlyOwner {
              chipNotifier = notifier;
              emit ChipNotifierSet(notifier);
          }
          function setBaseTokenURI(string calldata uri) external onlyOwner {
              _baseTokenURI = uri;
              emit BaseTokenURIUpdated(uri);
          }
          function mint(address recipient) external nonReentrant onlyRole(MINTER_ROLE) returns (uint256) {
              if (nextTokenId >= MAX_SUPPLY) {
                  revert ExceedMaxSupply();
              }
              uint256 tokenId = nextTokenId;
              unchecked {
                  nextTokenId++;
              }
              _safeMint(recipient, tokenId);
              return tokenId;
          }
          function burn(uint256 tokenId) public whenBurnable {
              // Only the token owner can burn the token
              if (_ownerOf(tokenId) != _msgSender()) {
                  revert NotTokenOwner();
              }
              boundOwner[tokenId] = _msgSender();
              _update(address(0), tokenId, _msgSender());
              if (chipNotifier != address(0)) {
                  IChipNotifier(chipNotifier).notifyChipBurned(_msgSender(), tokenId);
              }
          }
          function _baseURI() internal view override returns (string memory) {
              return _baseTokenURI;
          }
          function supportsInterface(
              bytes4 interfaceId
          ) public view virtual override(ERC721, AccessControlEnumerable) returns (bool) {
              return super.supportsInterface(interfaceId);
          }
          function _update(
              address to,
              uint256 tokenId,
              address auth
          ) internal override returns (address) {
              address from = super._update(to, tokenId, auth);
              if (from == address(0)) {
                  totalSupply += 1;
              } else if (to == address(0)) {
                  totalSupply -= 1;
              }
              return from;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
      pragma solidity ^0.8.20;
      import {Context} from "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * The initial owner is set to the address provided by the deployer. This can
       * later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          /**
           * @dev The caller account is not authorized to perform an operation.
           */
          error OwnableUnauthorizedAccount(address account);
          /**
           * @dev The owner is not a valid owner account. (eg. `address(0)`)
           */
          error OwnableInvalidOwner(address owner);
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
           */
          constructor(address initialOwner) {
              if (initialOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(initialOwner);
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              if (owner() != _msgSender()) {
                  revert OwnableUnauthorizedAccount(_msgSender());
              }
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              if (newOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
      pragma solidity ^0.8.20;
      import {Ownable} from "./Ownable.sol";
      /**
       * @dev Contract module which provides access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * This extension of the {Ownable} contract includes a two-step mechanism to transfer
       * ownership, where the new owner must call {acceptOwnership} in order to replace the
       * old one. This can help prevent common mistakes, such as transfers of ownership to
       * incorrect accounts, or to contracts that are unable to interact with the
       * permission system.
       *
       * The initial owner is specified at deployment time in the constructor for `Ownable`. This
       * can later be changed with {transferOwnership} and {acceptOwnership}.
       *
       * This module is used through inheritance. It will make available all functions
       * from parent (Ownable).
       */
      abstract contract Ownable2Step is Ownable {
          address private _pendingOwner;
          event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Returns the address of the pending owner.
           */
          function pendingOwner() public view virtual returns (address) {
              return _pendingOwner;
          }
          /**
           * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual override onlyOwner {
              _pendingOwner = newOwner;
              emit OwnershipTransferStarted(owner(), newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual override {
              delete _pendingOwner;
              super._transferOwnership(newOwner);
          }
          /**
           * @dev The new owner accepts the ownership transfer.
           */
          function acceptOwnership() public virtual {
              address sender = _msgSender();
              if (pendingOwner() != sender) {
                  revert OwnableUnauthorizedAccount(sender);
              }
              _transferOwnership(sender);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Contract module that helps prevent reentrant calls to a function.
       *
       * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
       * available, which can be applied to functions to make sure there are no nested
       * (reentrant) calls to them.
       *
       * Note that because there is a single `nonReentrant` guard, functions marked as
       * `nonReentrant` may not call one another. This can be worked around by making
       * those functions `private`, and then adding `external` `nonReentrant` entry
       * points to them.
       *
       * TIP: If you would like to learn more about reentrancy and alternative ways
       * to protect against it, check out our blog post
       * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
       */
      abstract contract ReentrancyGuard {
          // Booleans are more expensive than uint256 or any type that takes up a full
          // word because each write operation emits an extra SLOAD to first read the
          // slot's contents, replace the bits taken up by the boolean, and then write
          // back. This is the compiler's defense against contract upgrades and
          // pointer aliasing, and it cannot be disabled.
          // The values being non-zero value makes deployment a bit more expensive,
          // but in exchange the refund on every call to nonReentrant will be lower in
          // amount. Since refunds are capped to a percentage of the total
          // transaction's gas, it is best to keep them low in cases like this one, to
          // increase the likelihood of the full refund coming into effect.
          uint256 private constant NOT_ENTERED = 1;
          uint256 private constant ENTERED = 2;
          uint256 private _status;
          /**
           * @dev Unauthorized reentrant call.
           */
          error ReentrancyGuardReentrantCall();
          constructor() {
              _status = NOT_ENTERED;
          }
          /**
           * @dev Prevents a contract from calling itself, directly or indirectly.
           * Calling a `nonReentrant` function from another `nonReentrant`
           * function is not supported. It is possible to prevent this from happening
           * by making the `nonReentrant` function external, and making it call a
           * `private` function that does the actual work.
           */
          modifier nonReentrant() {
              _nonReentrantBefore();
              _;
              _nonReentrantAfter();
          }
          function _nonReentrantBefore() private {
              // On the first call to nonReentrant, _status will be NOT_ENTERED
              if (_status == ENTERED) {
                  revert ReentrancyGuardReentrantCall();
              }
              // Any calls to nonReentrant after this point will fail
              _status = ENTERED;
          }
          function _nonReentrantAfter() private {
              // By storing the original value once again, a refund is triggered (see
              // https://eips.ethereum.org/EIPS/eip-2200)
              _status = NOT_ENTERED;
          }
          /**
           * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
           * `nonReentrant` function in the call stack.
           */
          function _reentrancyGuardEntered() internal view returns (bool) {
              return _status == ENTERED;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/ERC721.sol)
      pragma solidity ^0.8.20;
      import {IERC721} from "./IERC721.sol";
      import {IERC721Receiver} from "./IERC721Receiver.sol";
      import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
      import {Context} from "../../utils/Context.sol";
      import {Strings} from "../../utils/Strings.sol";
      import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
      import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";
      /**
       * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including
       * the Metadata extension, but not including the Enumerable extension, which is available separately as
       * {ERC721Enumerable}.
       */
      abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
          using Strings for uint256;
          // Token name
          string private _name;
          // Token symbol
          string private _symbol;
          mapping(uint256 tokenId => address) private _owners;
          mapping(address owner => uint256) private _balances;
          mapping(uint256 tokenId => address) private _tokenApprovals;
          mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;
          /**
           * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
           */
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
              return
                  interfaceId == type(IERC721).interfaceId ||
                  interfaceId == type(IERC721Metadata).interfaceId ||
                  super.supportsInterface(interfaceId);
          }
          /**
           * @dev See {IERC721-balanceOf}.
           */
          function balanceOf(address owner) public view virtual returns (uint256) {
              if (owner == address(0)) {
                  revert ERC721InvalidOwner(address(0));
              }
              return _balances[owner];
          }
          /**
           * @dev See {IERC721-ownerOf}.
           */
          function ownerOf(uint256 tokenId) public view virtual returns (address) {
              return _requireOwned(tokenId);
          }
          /**
           * @dev See {IERC721Metadata-name}.
           */
          function name() public view virtual returns (string memory) {
              return _name;
          }
          /**
           * @dev See {IERC721Metadata-symbol}.
           */
          function symbol() public view virtual returns (string memory) {
              return _symbol;
          }
          /**
           * @dev See {IERC721Metadata-tokenURI}.
           */
          function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
              _requireOwned(tokenId);
              string memory baseURI = _baseURI();
              return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
          }
          /**
           * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
           * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
           * by default, can be overridden in child contracts.
           */
          function _baseURI() internal view virtual returns (string memory) {
              return "";
          }
          /**
           * @dev See {IERC721-approve}.
           */
          function approve(address to, uint256 tokenId) public virtual {
              _approve(to, tokenId, _msgSender());
          }
          /**
           * @dev See {IERC721-getApproved}.
           */
          function getApproved(uint256 tokenId) public view virtual returns (address) {
              _requireOwned(tokenId);
              return _getApproved(tokenId);
          }
          /**
           * @dev See {IERC721-setApprovalForAll}.
           */
          function setApprovalForAll(address operator, bool approved) public virtual {
              _setApprovalForAll(_msgSender(), operator, approved);
          }
          /**
           * @dev See {IERC721-isApprovedForAll}.
           */
          function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
              return _operatorApprovals[owner][operator];
          }
          /**
           * @dev See {IERC721-transferFrom}.
           */
          function transferFrom(address from, address to, uint256 tokenId) public virtual {
              if (to == address(0)) {
                  revert ERC721InvalidReceiver(address(0));
              }
              // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
              // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
              address previousOwner = _update(to, tokenId, _msgSender());
              if (previousOwner != from) {
                  revert ERC721IncorrectOwner(from, tokenId, previousOwner);
              }
          }
          /**
           * @dev See {IERC721-safeTransferFrom}.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId) public {
              safeTransferFrom(from, to, tokenId, "");
          }
          /**
           * @dev See {IERC721-safeTransferFrom}.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
              transferFrom(from, to, tokenId);
              _checkOnERC721Received(from, to, tokenId, data);
          }
          /**
           * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
           *
           * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
           * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances
           * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
           * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
           */
          function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
              return _owners[tokenId];
          }
          /**
           * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
           */
          function _getApproved(uint256 tokenId) internal view virtual returns (address) {
              return _tokenApprovals[tokenId];
          }
          /**
           * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
           * particular (ignoring whether it is owned by `owner`).
           *
           * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
           * assumption.
           */
          function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
              return
                  spender != address(0) &&
                  (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
          }
          /**
           * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
           * Reverts if `spender` does not have approval from the provided `owner` for the given token or for all its assets
           * the `spender` for the specific `tokenId`.
           *
           * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
           * assumption.
           */
          function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
              if (!_isAuthorized(owner, spender, tokenId)) {
                  if (owner == address(0)) {
                      revert ERC721NonexistentToken(tokenId);
                  } else {
                      revert ERC721InsufficientApproval(spender, tokenId);
                  }
              }
          }
          /**
           * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
           *
           * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
           * a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
           *
           * WARNING: Increasing an account's balance using this function tends to be paired with an override of the
           * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
           * remain consistent with one another.
           */
          function _increaseBalance(address account, uint128 value) internal virtual {
              unchecked {
                  _balances[account] += value;
              }
          }
          /**
           * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
           * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
           *
           * The `auth` argument is optional. If the value passed is non 0, then this function will check that
           * `auth` is either the owner of the token, or approved to operate on the token (by the owner).
           *
           * Emits a {Transfer} event.
           *
           * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
           */
          function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
              address from = _ownerOf(tokenId);
              // Perform (optional) operator check
              if (auth != address(0)) {
                  _checkAuthorized(from, auth, tokenId);
              }
              // Execute the update
              if (from != address(0)) {
                  // Clear approval. No need to re-authorize or emit the Approval event
                  _approve(address(0), tokenId, address(0), false);
                  unchecked {
                      _balances[from] -= 1;
                  }
              }
              if (to != address(0)) {
                  unchecked {
                      _balances[to] += 1;
                  }
              }
              _owners[tokenId] = to;
              emit Transfer(from, to, tokenId);
              return from;
          }
          /**
           * @dev Mints `tokenId` and transfers it to `to`.
           *
           * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
           *
           * Requirements:
           *
           * - `tokenId` must not exist.
           * - `to` cannot be the zero address.
           *
           * Emits a {Transfer} event.
           */
          function _mint(address to, uint256 tokenId) internal {
              if (to == address(0)) {
                  revert ERC721InvalidReceiver(address(0));
              }
              address previousOwner = _update(to, tokenId, address(0));
              if (previousOwner != address(0)) {
                  revert ERC721InvalidSender(address(0));
              }
          }
          /**
           * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
           *
           * Requirements:
           *
           * - `tokenId` must not exist.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function _safeMint(address to, uint256 tokenId) internal {
              _safeMint(to, tokenId, "");
          }
          /**
           * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
           * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
           */
          function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
              _mint(to, tokenId);
              _checkOnERC721Received(address(0), to, tokenId, data);
          }
          /**
           * @dev Destroys `tokenId`.
           * The approval is cleared when the token is burned.
           * This is an internal function that does not check if the sender is authorized to operate on the token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           *
           * Emits a {Transfer} event.
           */
          function _burn(uint256 tokenId) internal {
              address previousOwner = _update(address(0), tokenId, address(0));
              if (previousOwner == address(0)) {
                  revert ERC721NonexistentToken(tokenId);
              }
          }
          /**
           * @dev Transfers `tokenId` from `from` to `to`.
           *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           *
           * Emits a {Transfer} event.
           */
          function _transfer(address from, address to, uint256 tokenId) internal {
              if (to == address(0)) {
                  revert ERC721InvalidReceiver(address(0));
              }
              address previousOwner = _update(to, tokenId, address(0));
              if (previousOwner == address(0)) {
                  revert ERC721NonexistentToken(tokenId);
              } else if (previousOwner != from) {
                  revert ERC721IncorrectOwner(from, tokenId, previousOwner);
              }
          }
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
           * are aware of the ERC-721 standard to prevent tokens from being forever locked.
           *
           * `data` is additional data, it has no specified format and it is sent in call to `to`.
           *
           * This internal function is like {safeTransferFrom} in the sense that it invokes
           * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
           * implement alternative mechanisms to perform token transfer, such as signature-based.
           *
           * Requirements:
           *
           * - `tokenId` token must exist and be owned by `from`.
           * - `to` cannot be the zero address.
           * - `from` cannot be the zero address.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function _safeTransfer(address from, address to, uint256 tokenId) internal {
              _safeTransfer(from, to, tokenId, "");
          }
          /**
           * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
           * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
           */
          function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
              _transfer(from, to, tokenId);
              _checkOnERC721Received(from, to, tokenId, data);
          }
          /**
           * @dev Approve `to` to operate on `tokenId`
           *
           * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
           * either the owner of the token, or approved to operate on all tokens held by this owner.
           *
           * Emits an {Approval} event.
           *
           * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
           */
          function _approve(address to, uint256 tokenId, address auth) internal {
              _approve(to, tokenId, auth, true);
          }
          /**
           * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
           * emitted in the context of transfers.
           */
          function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
              // Avoid reading the owner unless necessary
              if (emitEvent || auth != address(0)) {
                  address owner = _requireOwned(tokenId);
                  // We do not use _isAuthorized because single-token approvals should not be able to call approve
                  if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
                      revert ERC721InvalidApprover(auth);
                  }
                  if (emitEvent) {
                      emit Approval(owner, to, tokenId);
                  }
              }
              _tokenApprovals[tokenId] = to;
          }
          /**
           * @dev Approve `operator` to operate on all of `owner` tokens
           *
           * Requirements:
           * - operator can't be the address zero.
           *
           * Emits an {ApprovalForAll} event.
           */
          function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
              if (operator == address(0)) {
                  revert ERC721InvalidOperator(operator);
              }
              _operatorApprovals[owner][operator] = approved;
              emit ApprovalForAll(owner, operator, approved);
          }
          /**
           * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
           * Returns the owner.
           *
           * Overrides to ownership logic should be done to {_ownerOf}.
           */
          function _requireOwned(uint256 tokenId) internal view returns (address) {
              address owner = _ownerOf(tokenId);
              if (owner == address(0)) {
                  revert ERC721NonexistentToken(tokenId);
              }
              return owner;
          }
          /**
           * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target address. This will revert if the
           * recipient doesn't accept the token transfer. The call is not executed if the target address is not a contract.
           *
           * @param from address representing the previous owner of the given token ID
           * @param to target address that will receive the tokens
           * @param tokenId uint256 ID of the token to be transferred
           * @param data bytes optional data to send along with the call
           */
          function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory data) private {
              if (to.code.length > 0) {
                  try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                      if (retval != IERC721Receiver.onERC721Received.selector) {
                          revert ERC721InvalidReceiver(to);
                      }
                  } catch (bytes memory reason) {
                      if (reason.length == 0) {
                          revert ERC721InvalidReceiver(to);
                      } else {
                          /// @solidity memory-safe-assembly
                          assembly {
                              revert(add(32, reason), mload(reason))
                          }
                      }
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
      pragma solidity ^0.8.20;
      import {IAccessControl} from "./IAccessControl.sol";
      import {Context} from "../utils/Context.sol";
      import {ERC165} from "../utils/introspection/ERC165.sol";
      /**
       * @dev Contract module that allows children to implement role-based access
       * control mechanisms. This is a lightweight version that doesn't allow enumerating role
       * members except through off-chain means by accessing the contract event logs. Some
       * applications may benefit from on-chain enumerability, for those cases see
       * {AccessControlEnumerable}.
       *
       * Roles are referred to by their `bytes32` identifier. These should be exposed
       * in the external API and be unique. The best way to achieve this is by
       * using `public constant` hash digests:
       *
       * ```solidity
       * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
       * ```
       *
       * Roles can be used to represent a set of permissions. To restrict access to a
       * function call, use {hasRole}:
       *
       * ```solidity
       * function foo() public {
       *     require(hasRole(MY_ROLE, msg.sender));
       *     ...
       * }
       * ```
       *
       * Roles can be granted and revoked dynamically via the {grantRole} and
       * {revokeRole} functions. Each role has an associated admin role, and only
       * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
       *
       * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
       * that only accounts with this role will be able to grant or revoke other
       * roles. More complex role relationships can be created by using
       * {_setRoleAdmin}.
       *
       * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
       * grant and revoke this role. Extra precautions should be taken to secure
       * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
       * to enforce additional security measures for this role.
       */
      abstract contract AccessControl is Context, IAccessControl, ERC165 {
          struct RoleData {
              mapping(address account => bool) hasRole;
              bytes32 adminRole;
          }
          mapping(bytes32 role => RoleData) private _roles;
          bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
          /**
           * @dev Modifier that checks that an account has a specific role. Reverts
           * with an {AccessControlUnauthorizedAccount} error including the required role.
           */
          modifier onlyRole(bytes32 role) {
              _checkRole(role);
              _;
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
          }
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) public view virtual returns (bool) {
              return _roles[role].hasRole[account];
          }
          /**
           * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
           * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
           */
          function _checkRole(bytes32 role) internal view virtual {
              _checkRole(role, _msgSender());
          }
          /**
           * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
           * is missing `role`.
           */
          function _checkRole(bytes32 role, address account) internal view virtual {
              if (!hasRole(role, account)) {
                  revert AccessControlUnauthorizedAccount(account, role);
              }
          }
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
              return _roles[role].adminRole;
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           *
           * May emit a {RoleGranted} event.
           */
          function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
              _grantRole(role, account);
          }
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           *
           * May emit a {RoleRevoked} event.
           */
          function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
              _revokeRole(role, account);
          }
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been revoked `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `callerConfirmation`.
           *
           * May emit a {RoleRevoked} event.
           */
          function renounceRole(bytes32 role, address callerConfirmation) public virtual {
              if (callerConfirmation != _msgSender()) {
                  revert AccessControlBadConfirmation();
              }
              _revokeRole(role, callerConfirmation);
          }
          /**
           * @dev Sets `adminRole` as ``role``'s admin role.
           *
           * Emits a {RoleAdminChanged} event.
           */
          function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
              bytes32 previousAdminRole = getRoleAdmin(role);
              _roles[role].adminRole = adminRole;
              emit RoleAdminChanged(role, previousAdminRole, adminRole);
          }
          /**
           * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
           *
           * Internal function without access restriction.
           *
           * May emit a {RoleGranted} event.
           */
          function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
              if (!hasRole(role, account)) {
                  _roles[role].hasRole[account] = true;
                  emit RoleGranted(role, account, _msgSender());
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
           *
           * Internal function without access restriction.
           *
           * May emit a {RoleRevoked} event.
           */
          function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
              if (hasRole(role, account)) {
                  _roles[role].hasRole[account] = false;
                  emit RoleRevoked(role, account, _msgSender());
                  return true;
              } else {
                  return false;
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/AccessControlEnumerable.sol)
      pragma solidity ^0.8.20;
      import {IAccessControlEnumerable} from "./IAccessControlEnumerable.sol";
      import {AccessControl} from "../AccessControl.sol";
      import {EnumerableSet} from "../../utils/structs/EnumerableSet.sol";
      /**
       * @dev Extension of {AccessControl} that allows enumerating the members of each role.
       */
      abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {
          using EnumerableSet for EnumerableSet.AddressSet;
          mapping(bytes32 role => EnumerableSet.AddressSet) private _roleMembers;
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
          }
          /**
           * @dev Returns one of the accounts that have `role`. `index` must be a
           * value between 0 and {getRoleMemberCount}, non-inclusive.
           *
           * Role bearers are not sorted in any particular way, and their ordering may
           * change at any point.
           *
           * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
           * you perform all queries on the same block. See the following
           * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
           * for more information.
           */
          function getRoleMember(bytes32 role, uint256 index) public view virtual returns (address) {
              return _roleMembers[role].at(index);
          }
          /**
           * @dev Returns the number of accounts that have `role`. Can be used
           * together with {getRoleMember} to enumerate all bearers of a role.
           */
          function getRoleMemberCount(bytes32 role) public view virtual returns (uint256) {
              return _roleMembers[role].length();
          }
          /**
           * @dev Overload {AccessControl-_grantRole} to track enumerable memberships
           */
          function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
              bool granted = super._grantRole(role, account);
              if (granted) {
                  _roleMembers[role].add(account);
              }
              return granted;
          }
          /**
           * @dev Overload {AccessControl-_revokeRole} to track enumerable memberships
           */
          function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
              bool revoked = super._revokeRole(role, account);
              if (revoked) {
                  _roleMembers[role].remove(account);
              }
              return revoked;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.20;
      interface IGoldChip {
          error TokenNotBurnable();
          error NotTokenOwner();
          error ExceedMaxSupply();
          event BaseTokenURIUpdated(string uri);
          event ChipNotifierSet(address notifier);
          event BurnableSet(bool enabled);
          function mint(address recipient) external returns (uint256);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.20;
      interface IChipNotifier {
          function notifyChipBurned(address owner, uint256 tokenId) external;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
      pragma solidity ^0.8.20;
      import {IERC165} from "../../utils/introspection/IERC165.sol";
      /**
       * @dev Required interface of an ERC-721 compliant contract.
       */
      interface IERC721 is IERC165 {
          /**
           * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
           */
          event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
           */
          event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
           */
          event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
          /**
           * @dev Returns the number of tokens in ``owner``'s account.
           */
          function balanceOf(address owner) external view returns (uint256 balance);
          /**
           * @dev Returns the owner of the `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function ownerOf(uint256 tokenId) external view returns (address owner);
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
           *   a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
           * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
           *   {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
           *   a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId) external;
          /**
           * @dev Transfers `tokenId` token from `from` to `to`.
           *
           * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
           * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
           * understand this adds an external call which potentially creates a reentrancy vulnerability.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 tokenId) external;
          /**
           * @dev Gives permission to `to` to transfer `tokenId` token to another account.
           * The approval is cleared when the token is transferred.
           *
           * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
           *
           * Requirements:
           *
           * - The caller must own the token or be an approved operator.
           * - `tokenId` must exist.
           *
           * Emits an {Approval} event.
           */
          function approve(address to, uint256 tokenId) external;
          /**
           * @dev Approve or remove `operator` as an operator for the caller.
           * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
           *
           * Requirements:
           *
           * - The `operator` cannot be the address zero.
           *
           * Emits an {ApprovalForAll} event.
           */
          function setApprovalForAll(address operator, bool approved) external;
          /**
           * @dev Returns the account approved for `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function getApproved(uint256 tokenId) external view returns (address operator);
          /**
           * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
           *
           * See {setApprovalForAll}
           */
          function isApprovedForAll(address owner, address operator) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)
      pragma solidity ^0.8.20;
      /**
       * @title ERC-721 token receiver interface
       * @dev Interface for any contract that wants to support safeTransfers
       * from ERC-721 asset contracts.
       */
      interface IERC721Receiver {
          /**
           * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
           * by `operator` from `from`, this function is called.
           *
           * It must return its Solidity selector to confirm the token transfer.
           * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
           * reverted.
           *
           * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
           */
          function onERC721Received(
              address operator,
              address from,
              uint256 tokenId,
              bytes calldata data
          ) external returns (bytes4);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)
      pragma solidity ^0.8.20;
      import {IERC721} from "../IERC721.sol";
      /**
       * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
       * @dev See https://eips.ethereum.org/EIPS/eip-721
       */
      interface IERC721Metadata is IERC721 {
          /**
           * @dev Returns the token collection name.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the token collection symbol.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
           */
          function tokenURI(uint256 tokenId) external view returns (string memory);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
      pragma solidity ^0.8.20;
      import {Math} from "./math/Math.sol";
      import {SignedMath} from "./math/SignedMath.sol";
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant HEX_DIGITS = "0123456789abcdef";
          uint8 private constant ADDRESS_LENGTH = 20;
          /**
           * @dev The `value` string doesn't fit in the specified `length`.
           */
          error StringsInsufficientHexLength(uint256 value, uint256 length);
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = Math.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  /// @solidity memory-safe-assembly
                  assembly {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `int256` to its ASCII `string` decimal representation.
           */
          function toStringSigned(int256 value) internal pure returns (string memory) {
              return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, Math.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              uint256 localValue = value;
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = HEX_DIGITS[localValue & 0xf];
                  localValue >>= 4;
              }
              if (localValue != 0) {
                  revert StringsInsufficientHexLength(value, length);
              }
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
           * representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
          }
          /**
           * @dev Returns true if the two strings are equal.
           */
          function equal(string memory a, string memory b) internal pure returns (bool) {
              return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
      pragma solidity ^0.8.20;
      import {IERC165} from "./IERC165.sol";
      /**
       * @dev Implementation of the {IERC165} interface.
       *
       * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
       * for the additional interface id that will be supported. For example:
       *
       * ```solidity
       * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
       *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
       * }
       * ```
       */
      abstract contract ERC165 is IERC165 {
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
              return interfaceId == type(IERC165).interfaceId;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard ERC-20 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
       */
      interface IERC20Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC20InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC20InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           * @param allowance Amount of tokens a `spender` is allowed to operate with.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC20InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC20InvalidSpender(address spender);
      }
      /**
       * @dev Standard ERC-721 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
       */
      interface IERC721Errors {
          /**
           * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
           * Used in balance queries.
           * @param owner Address of the current owner of a token.
           */
          error ERC721InvalidOwner(address owner);
          /**
           * @dev Indicates a `tokenId` whose `owner` is the zero address.
           * @param tokenId Identifier number of a token.
           */
          error ERC721NonexistentToken(uint256 tokenId);
          /**
           * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param tokenId Identifier number of a token.
           * @param owner Address of the current owner of a token.
           */
          error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC721InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC721InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param tokenId Identifier number of a token.
           */
          error ERC721InsufficientApproval(address operator, uint256 tokenId);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC721InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC721InvalidOperator(address operator);
      }
      /**
       * @dev Standard ERC-1155 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
       */
      interface IERC1155Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           * @param tokenId Identifier number of a token.
           */
          error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC1155InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC1155InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param owner Address of the current owner of a token.
           */
          error ERC1155MissingApprovalForAll(address operator, address owner);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC1155InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC1155InvalidOperator(address operator);
          /**
           * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
           * Used in batch transfers.
           * @param idsLength Length of the array of token identifiers
           * @param valuesLength Length of the array of token amounts
           */
          error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev External interface of AccessControl declared to support ERC-165 detection.
       */
      interface IAccessControl {
          /**
           * @dev The `account` is missing a role.
           */
          error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
          /**
           * @dev The caller of a function is not the expected one.
           *
           * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
           */
          error AccessControlBadConfirmation();
          /**
           * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
           *
           * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
           * {RoleAdminChanged} not being emitted signaling this.
           */
          event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
          /**
           * @dev Emitted when `account` is granted `role`.
           *
           * `sender` is the account that originated the contract call, an admin role
           * bearer except when using {AccessControl-_setupRole}.
           */
          event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Emitted when `account` is revoked `role`.
           *
           * `sender` is the account that originated the contract call:
           *   - if using `revokeRole`, it is the admin role bearer
           *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
           */
          event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) external view returns (bool);
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {AccessControl-_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) external view returns (bytes32);
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function grantRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function revokeRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been granted `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `callerConfirmation`.
           */
          function renounceRole(bytes32 role, address callerConfirmation) external;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/IAccessControlEnumerable.sol)
      pragma solidity ^0.8.20;
      import {IAccessControl} from "../IAccessControl.sol";
      /**
       * @dev External interface of AccessControlEnumerable declared to support ERC-165 detection.
       */
      interface IAccessControlEnumerable is IAccessControl {
          /**
           * @dev Returns one of the accounts that have `role`. `index` must be a
           * value between 0 and {getRoleMemberCount}, non-inclusive.
           *
           * Role bearers are not sorted in any particular way, and their ordering may
           * change at any point.
           *
           * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
           * you perform all queries on the same block. See the following
           * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
           * for more information.
           */
          function getRoleMember(bytes32 role, uint256 index) external view returns (address);
          /**
           * @dev Returns the number of accounts that have `role`. Can be used
           * together with {getRoleMember} to enumerate all bearers of a role.
           */
          function getRoleMemberCount(bytes32 role) external view returns (uint256);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
      // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Library for managing
       * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
       * types.
       *
       * Sets have the following properties:
       *
       * - Elements are added, removed, and checked for existence in constant time
       * (O(1)).
       * - Elements are enumerated in O(n). No guarantees are made on the ordering.
       *
       * ```solidity
       * contract Example {
       *     // Add the library methods
       *     using EnumerableSet for EnumerableSet.AddressSet;
       *
       *     // Declare a set state variable
       *     EnumerableSet.AddressSet private mySet;
       * }
       * ```
       *
       * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
       * and `uint256` (`UintSet`) are supported.
       *
       * [WARNING]
       * ====
       * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
       * unusable.
       * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
       *
       * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
       * array of EnumerableSet.
       * ====
       */
      library EnumerableSet {
          // To implement this library for multiple types with as little code
          // repetition as possible, we write it in terms of a generic Set type with
          // bytes32 values.
          // The Set implementation uses private functions, and user-facing
          // implementations (such as AddressSet) are just wrappers around the
          // underlying Set.
          // This means that we can only create new EnumerableSets for types that fit
          // in bytes32.
          struct Set {
              // Storage of set values
              bytes32[] _values;
              // Position is the index of the value in the `values` array plus 1.
              // Position 0 is used to mean a value is not in the set.
              mapping(bytes32 value => uint256) _positions;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function _add(Set storage set, bytes32 value) private returns (bool) {
              if (!_contains(set, value)) {
                  set._values.push(value);
                  // The value is stored at length-1, but we add 1 to all indexes
                  // and use 0 as a sentinel value
                  set._positions[value] = set._values.length;
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function _remove(Set storage set, bytes32 value) private returns (bool) {
              // We cache the value's position to prevent multiple reads from the same storage slot
              uint256 position = set._positions[value];
              if (position != 0) {
                  // Equivalent to contains(set, value)
                  // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                  // the array, and then remove the last element (sometimes called as 'swap and pop').
                  // This modifies the order of the array, as noted in {at}.
                  uint256 valueIndex = position - 1;
                  uint256 lastIndex = set._values.length - 1;
                  if (valueIndex != lastIndex) {
                      bytes32 lastValue = set._values[lastIndex];
                      // Move the lastValue to the index where the value to delete is
                      set._values[valueIndex] = lastValue;
                      // Update the tracked position of the lastValue (that was just moved)
                      set._positions[lastValue] = position;
                  }
                  // Delete the slot where the moved value was stored
                  set._values.pop();
                  // Delete the tracked position for the deleted slot
                  delete set._positions[value];
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function _contains(Set storage set, bytes32 value) private view returns (bool) {
              return set._positions[value] != 0;
          }
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function _length(Set storage set) private view returns (uint256) {
              return set._values.length;
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function _at(Set storage set, uint256 index) private view returns (bytes32) {
              return set._values[index];
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function _values(Set storage set) private view returns (bytes32[] memory) {
              return set._values;
          }
          // Bytes32Set
          struct Bytes32Set {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _add(set._inner, value);
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _remove(set._inner, value);
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
              return _contains(set._inner, value);
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(Bytes32Set storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
              return _at(set._inner, index);
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
              bytes32[] memory store = _values(set._inner);
              bytes32[] memory result;
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
              return result;
          }
          // AddressSet
          struct AddressSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(AddressSet storage set, address value) internal returns (bool) {
              return _add(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(AddressSet storage set, address value) internal returns (bool) {
              return _remove(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(AddressSet storage set, address value) internal view returns (bool) {
              return _contains(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(AddressSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(AddressSet storage set, uint256 index) internal view returns (address) {
              return address(uint160(uint256(_at(set._inner, index))));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(AddressSet storage set) internal view returns (address[] memory) {
              bytes32[] memory store = _values(set._inner);
              address[] memory result;
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
              return result;
          }
          // UintSet
          struct UintSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(UintSet storage set, uint256 value) internal returns (bool) {
              return _add(set._inner, bytes32(value));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(UintSet storage set, uint256 value) internal returns (bool) {
              return _remove(set._inner, bytes32(value));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(UintSet storage set, uint256 value) internal view returns (bool) {
              return _contains(set._inner, bytes32(value));
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(UintSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(UintSet storage set, uint256 index) internal view returns (uint256) {
              return uint256(_at(set._inner, index));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(UintSet storage set) internal view returns (uint256[] memory) {
              bytes32[] memory store = _values(set._inner);
              uint256[] memory result;
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
              return result;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC-165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[ERC].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165 {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          /**
           * @dev Muldiv operation overflow.
           */
          error MathOverflowedMulDiv();
          enum Rounding {
              Floor, // Toward negative infinity
              Ceil, // Toward positive infinity
              Trunc, // Toward zero
              Expand // Away from zero
          }
          /**
           * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
           */
          function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  uint256 c = a + b;
                  if (c < a) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
           */
          function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b > a) return (false, 0);
                  return (true, a - b);
              }
          }
          /**
           * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
           */
          function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) return (true, 0);
                  uint256 c = a * b;
                  if (c / a != b) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
           */
          function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a / b);
              }
          }
          /**
           * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
           */
          function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a % b);
              }
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds towards infinity instead
           * of rounding towards zero.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              if (b == 0) {
                  // Guarantee the same behavior as in a regular Solidity division.
                  return a / b;
              }
              // The following calculation ensures accurate ceiling division without overflow.
              // Since a is non-zero, (a - 1) / b will not overflow.
              // The largest possible result occurs when (a - 1) / b is type(uint256).max,
              // but the largest value we can obtain is type(uint256).max - 1, which happens
              // when a = type(uint256).max and b = 1.
              unchecked {
                  return a == 0 ? 0 : (a - 1) / b + 1;
              }
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
           * denominator == 0.
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
           * Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0 = x * y; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                      // The surrounding unchecked block does not change this fact.
                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  if (denominator <= prod1) {
                      revert MathOverflowedMulDiv();
                  }
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                  // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                  uint256 twos = denominator & (0 - denominator);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                  // works in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
           * towards zero.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
              }
          }
          /**
           * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
           */
          function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
              return uint8(rounding) % 2 == 1;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      

      File 3 of 3: Conduit
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
      import { ConduitItemType } from "./lib/ConduitEnums.sol";
      import { TokenTransferrer } from "../lib/TokenTransferrer.sol";
      // prettier-ignore
      import {
          ConduitTransfer,
          ConduitBatch1155Transfer
      } from "./lib/ConduitStructs.sol";
      import "./lib/ConduitConstants.sol";
      /**
       * @title Conduit
       * @author 0age
       * @notice This contract serves as an originator for "proxied" transfers. Each
       *         conduit is deployed and controlled by a "conduit controller" that can
       *         add and remove "channels" or contracts that can instruct the conduit
       *         to transfer approved ERC20/721/1155 tokens. *IMPORTANT NOTE: each
       *         conduit has an owner that can arbitrarily add or remove channels, and
       *         a malicious or negligent owner can add a channel that allows for any
       *         approved ERC20/721/1155 tokens to be taken immediately — be extremely
       *         cautious with what conduits you give token approvals to!*
       */
      contract Conduit is ConduitInterface, TokenTransferrer {
          // Set deployer as an immutable controller that can update channel statuses.
          address private immutable _controller;
          // Track the status of each channel.
          mapping(address => bool) private _channels;
          /**
           * @notice Ensure that the caller is currently registered as an open channel
           *         on the conduit.
           */
          modifier onlyOpenChannel() {
              // Utilize assembly to access channel storage mapping directly.
              assembly {
                  // Write the caller to scratch space.
                  mstore(ChannelKey_channel_ptr, caller())
                  // Write the storage slot for _channels to scratch space.
                  mstore(ChannelKey_slot_ptr, _channels.slot)
                  // Derive the position in storage of _channels[msg.sender]
                  // and check if the stored value is zero.
                  if iszero(
                      sload(keccak256(ChannelKey_channel_ptr, ChannelKey_length))
                  ) {
                      // The caller is not an open channel; revert with
                      // ChannelClosed(caller). First, set error signature in memory.
                      mstore(ChannelClosed_error_ptr, ChannelClosed_error_signature)
                      // Next, set the caller as the argument.
                      mstore(ChannelClosed_channel_ptr, caller())
                      // Finally, revert, returning full custom error with argument.
                      revert(ChannelClosed_error_ptr, ChannelClosed_error_length)
                  }
              }
              // Continue with function execution.
              _;
          }
          /**
           * @notice In the constructor, set the deployer as the controller.
           */
          constructor() {
              // Set the deployer as the controller.
              _controller = msg.sender;
          }
          /**
           * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
           *         with an open channel can call this function. Note that channels
           *         are expected to implement reentrancy protection if desired, and
           *         that cross-channel reentrancy may be possible if the conduit has
           *         multiple open channels at once. Also note that channels are
           *         expected to implement checks against transferring any zero-amount
           *         items if that constraint is desired.
           *
           * @param transfers The ERC20/721/1155 transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function execute(ConduitTransfer[] calldata transfers)
              external
              override
              onlyOpenChannel
              returns (bytes4 magicValue)
          {
              // Retrieve the total number of transfers and place on the stack.
              uint256 totalStandardTransfers = transfers.length;
              // Iterate over each transfer.
              for (uint256 i = 0; i < totalStandardTransfers; ) {
                  // Retrieve the transfer in question and perform the transfer.
                  _transfer(transfers[i]);
                  // Skip overflow check as for loop is indexed starting at zero.
                  unchecked {
                      ++i;
                  }
              }
              // Return a magic value indicating that the transfers were performed.
              magicValue = this.execute.selector;
          }
          /**
           * @notice Execute a sequence of batch 1155 item transfers. Only a caller
           *         with an open channel can call this function. Note that channels
           *         are expected to implement reentrancy protection if desired, and
           *         that cross-channel reentrancy may be possible if the conduit has
           *         multiple open channels at once. Also note that channels are
           *         expected to implement checks against transferring any zero-amount
           *         items if that constraint is desired.
           *
           * @param batchTransfers The 1155 batch item transfers to perform.
           *
           * @return magicValue A magic value indicating that the item transfers were
           *                    performed successfully.
           */
          function executeBatch1155(
              ConduitBatch1155Transfer[] calldata batchTransfers
          ) external override onlyOpenChannel returns (bytes4 magicValue) {
              // Perform 1155 batch transfers. Note that memory should be considered
              // entirely corrupted from this point forward.
              _performERC1155BatchTransfers(batchTransfers);
              // Return a magic value indicating that the transfers were performed.
              magicValue = this.executeBatch1155.selector;
          }
          /**
           * @notice Execute a sequence of transfers, both single ERC20/721/1155 item
           *         transfers as well as batch 1155 item transfers. Only a caller
           *         with an open channel can call this function. Note that channels
           *         are expected to implement reentrancy protection if desired, and
           *         that cross-channel reentrancy may be possible if the conduit has
           *         multiple open channels at once. Also note that channels are
           *         expected to implement checks against transferring any zero-amount
           *         items if that constraint is desired.
           *
           * @param standardTransfers The ERC20/721/1155 item transfers to perform.
           * @param batchTransfers    The 1155 batch item transfers to perform.
           *
           * @return magicValue A magic value indicating that the item transfers were
           *                    performed successfully.
           */
          function executeWithBatch1155(
              ConduitTransfer[] calldata standardTransfers,
              ConduitBatch1155Transfer[] calldata batchTransfers
          ) external override onlyOpenChannel returns (bytes4 magicValue) {
              // Retrieve the total number of transfers and place on the stack.
              uint256 totalStandardTransfers = standardTransfers.length;
              // Iterate over each standard transfer.
              for (uint256 i = 0; i < totalStandardTransfers; ) {
                  // Retrieve the transfer in question and perform the transfer.
                  _transfer(standardTransfers[i]);
                  // Skip overflow check as for loop is indexed starting at zero.
                  unchecked {
                      ++i;
                  }
              }
              // Perform 1155 batch transfers. Note that memory should be considered
              // entirely corrupted from this point forward aside from the free memory
              // pointer having the default value.
              _performERC1155BatchTransfers(batchTransfers);
              // Return a magic value indicating that the transfers were performed.
              magicValue = this.executeWithBatch1155.selector;
          }
          /**
           * @notice Open or close a given channel. Only callable by the controller.
           *
           * @param channel The channel to open or close.
           * @param isOpen  The status of the channel (either open or closed).
           */
          function updateChannel(address channel, bool isOpen) external override {
              // Ensure that the caller is the controller of this contract.
              if (msg.sender != _controller) {
                  revert InvalidController();
              }
              // Ensure that the channel does not already have the indicated status.
              if (_channels[channel] == isOpen) {
                  revert ChannelStatusAlreadySet(channel, isOpen);
              }
              // Update the status of the channel.
              _channels[channel] = isOpen;
              // Emit a corresponding event.
              emit ChannelUpdated(channel, isOpen);
          }
          /**
           * @dev Internal function to transfer a given ERC20/721/1155 item. Note that
           *      channels are expected to implement checks against transferring any
           *      zero-amount items if that constraint is desired.
           *
           * @param item The ERC20/721/1155 item to transfer.
           */
          function _transfer(ConduitTransfer calldata item) internal {
              // Determine the transfer method based on the respective item type.
              if (item.itemType == ConduitItemType.ERC20) {
                  // Transfer ERC20 token. Note that item.identifier is ignored and
                  // therefore ERC20 transfer items are potentially malleable — this
                  // check should be performed by the calling channel if a constraint
                  // on item malleability is desired.
                  _performERC20Transfer(item.token, item.from, item.to, item.amount);
              } else if (item.itemType == ConduitItemType.ERC721) {
                  // Ensure that exactly one 721 item is being transferred.
                  if (item.amount != 1) {
                      revert InvalidERC721TransferAmount();
                  }
                  // Transfer ERC721 token.
                  _performERC721Transfer(
                      item.token,
                      item.from,
                      item.to,
                      item.identifier
                  );
              } else if (item.itemType == ConduitItemType.ERC1155) {
                  // Transfer ERC1155 token.
                  _performERC1155Transfer(
                      item.token,
                      item.from,
                      item.to,
                      item.identifier,
                      item.amount
                  );
              } else {
                  // Throw with an error.
                  revert InvalidItemType();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      // prettier-ignore
      import {
          ConduitTransfer,
          ConduitBatch1155Transfer
      } from "../conduit/lib/ConduitStructs.sol";
      /**
       * @title ConduitInterface
       * @author 0age
       * @notice ConduitInterface contains all external function interfaces, events,
       *         and errors for conduit contracts.
       */
      interface ConduitInterface {
          /**
           * @dev Revert with an error when attempting to execute transfers using a
           *      caller that does not have an open channel.
           */
          error ChannelClosed(address channel);
          /**
           * @dev Revert with an error when attempting to update a channel to the
           *      current status of that channel.
           */
          error ChannelStatusAlreadySet(address channel, bool isOpen);
          /**
           * @dev Revert with an error when attempting to execute a transfer for an
           *      item that does not have an ERC20/721/1155 item type.
           */
          error InvalidItemType();
          /**
           * @dev Revert with an error when attempting to update the status of a
           *      channel from a caller that is not the conduit controller.
           */
          error InvalidController();
          /**
           * @dev Emit an event whenever a channel is opened or closed.
           *
           * @param channel The channel that has been updated.
           * @param open    A boolean indicating whether the conduit is open or not.
           */
          event ChannelUpdated(address indexed channel, bool open);
          /**
           * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
           *         with an open channel can call this function.
           *
           * @param transfers The ERC20/721/1155 transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function execute(ConduitTransfer[] calldata transfers)
              external
              returns (bytes4 magicValue);
          /**
           * @notice Execute a sequence of batch 1155 transfers. Only a caller with an
           *         open channel can call this function.
           *
           * @param batch1155Transfers The 1155 batch transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function executeBatch1155(
              ConduitBatch1155Transfer[] calldata batch1155Transfers
          ) external returns (bytes4 magicValue);
          /**
           * @notice Execute a sequence of transfers, both single and batch 1155. Only
           *         a caller with an open channel can call this function.
           *
           * @param standardTransfers  The ERC20/721/1155 transfers to perform.
           * @param batch1155Transfers The 1155 batch transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function executeWithBatch1155(
              ConduitTransfer[] calldata standardTransfers,
              ConduitBatch1155Transfer[] calldata batch1155Transfers
          ) external returns (bytes4 magicValue);
          /**
           * @notice Open or close a given channel. Only callable by the controller.
           *
           * @param channel The channel to open or close.
           * @param isOpen  The status of the channel (either open or closed).
           */
          function updateChannel(address channel, bool isOpen) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      enum ConduitItemType {
          NATIVE, // unused
          ERC20,
          ERC721,
          ERC1155
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      import "./TokenTransferrerConstants.sol";
      // prettier-ignore
      import {
          TokenTransferrerErrors
      } from "../interfaces/TokenTransferrerErrors.sol";
      import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol";
      /**
       * @title TokenTransferrer
       * @author 0age
       * @custom:coauthor d1ll0n
       * @custom:coauthor transmissions11
       * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721,
       *         ERC1155, and batch ERC1155 transfers, used by both Seaport as well as
       *         by conduits deployed by the ConduitController. Use great caution when
       *         considering these functions for use in other codebases, as there are
       *         significant side effects and edge cases that need to be thoroughly
       *         understood and carefully addressed.
       */
      contract TokenTransferrer is TokenTransferrerErrors {
          /**
           * @dev Internal function to transfer ERC20 tokens from a given originator
           *      to a given recipient. Sufficient approvals must be set on the
           *      contract performing the transfer.
           *
           * @param token      The ERC20 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param amount     The amount to transfer.
           */
          function _performERC20Transfer(
              address token,
              address from,
              address to,
              uint256 amount
          ) internal {
              // Utilize assembly to perform an optimized ERC20 token transfer.
              assembly {
                  // The free memory pointer memory slot will be used when populating
                  // call data for the transfer; read the value and restore it later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  // Write call data into memory, starting with function selector.
                  mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature)
                  mstore(ERC20_transferFrom_from_ptr, from)
                  mstore(ERC20_transferFrom_to_ptr, to)
                  mstore(ERC20_transferFrom_amount_ptr, amount)
                  // Make call & copy up to 32 bytes of return data to scratch space.
                  // Scratch space does not need to be cleared ahead of time, as the
                  // subsequent check will ensure that either at least a full word of
                  // return data is received (in which case it will be overwritten) or
                  // that no data is received (in which case scratch space will be
                  // ignored) on a successful call to the given token.
                  let callStatus := call(
                      gas(),
                      token,
                      0,
                      ERC20_transferFrom_sig_ptr,
                      ERC20_transferFrom_length,
                      0,
                      OneWord
                  )
                  // Determine whether transfer was successful using status & result.
                  let success := and(
                      // Set success to whether the call reverted, if not check it
                      // either returned exactly 1 (can't just be non-zero data), or
                      // had no return data.
                      or(
                          and(eq(mload(0), 1), gt(returndatasize(), 31)),
                          iszero(returndatasize())
                      ),
                      callStatus
                  )
                  // Handle cases where either the transfer failed or no data was
                  // returned. Group these, as most transfers will succeed with data.
                  // Equivalent to `or(iszero(success), iszero(returndatasize()))`
                  // but after it's inverted for JUMPI this expression is cheaper.
                  if iszero(and(success, iszero(iszero(returndatasize())))) {
                      // If the token has no code or the transfer failed: Equivalent
                      // to `or(iszero(success), iszero(extcodesize(token)))` but
                      // after it's inverted for JUMPI this expression is cheaper.
                      if iszero(and(iszero(iszero(extcodesize(token))), success)) {
                          // If the transfer failed:
                          if iszero(success) {
                              // If it was due to a revert:
                              if iszero(callStatus) {
                                  // If it returned a message, bubble it up as long as
                                  // sufficient gas remains to do so:
                                  if returndatasize() {
                                      // Ensure that sufficient gas is available to
                                      // copy returndata while expanding memory where
                                      // necessary. Start by computing the word size
                                      // of returndata and allocated memory. Round up
                                      // to the nearest full word.
                                      let returnDataWords := div(
                                          add(returndatasize(), AlmostOneWord),
                                          OneWord
                                      )
                                      // Note: use the free memory pointer in place of
                                      // msize() to work around a Yul warning that
                                      // prevents accessing msize directly when the IR
                                      // pipeline is activated.
                                      let msizeWords := div(memPointer, OneWord)
                                      // Next, compute the cost of the returndatacopy.
                                      let cost := mul(CostPerWord, returnDataWords)
                                      // Then, compute cost of new memory allocation.
                                      if gt(returnDataWords, msizeWords) {
                                          cost := add(
                                              cost,
                                              add(
                                                  mul(
                                                      sub(
                                                          returnDataWords,
                                                          msizeWords
                                                      ),
                                                      CostPerWord
                                                  ),
                                                  div(
                                                      sub(
                                                          mul(
                                                              returnDataWords,
                                                              returnDataWords
                                                          ),
                                                          mul(msizeWords, msizeWords)
                                                      ),
                                                      MemoryExpansionCoefficient
                                                  )
                                              )
                                          )
                                      }
                                      // Finally, add a small constant and compare to
                                      // gas remaining; bubble up the revert data if
                                      // enough gas is still available.
                                      if lt(add(cost, ExtraGasBuffer), gas()) {
                                          // Copy returndata to memory; overwrite
                                          // existing memory.
                                          returndatacopy(0, 0, returndatasize())
                                          // Revert, specifying memory region with
                                          // copied returndata.
                                          revert(0, returndatasize())
                                      }
                                  }
                                  // Otherwise revert with a generic error message.
                                  mstore(
                                      TokenTransferGenericFailure_error_sig_ptr,
                                      TokenTransferGenericFailure_error_signature
                                  )
                                  mstore(
                                      TokenTransferGenericFailure_error_token_ptr,
                                      token
                                  )
                                  mstore(
                                      TokenTransferGenericFailure_error_from_ptr,
                                      from
                                  )
                                  mstore(TokenTransferGenericFailure_error_to_ptr, to)
                                  mstore(TokenTransferGenericFailure_error_id_ptr, 0)
                                  mstore(
                                      TokenTransferGenericFailure_error_amount_ptr,
                                      amount
                                  )
                                  revert(
                                      TokenTransferGenericFailure_error_sig_ptr,
                                      TokenTransferGenericFailure_error_length
                                  )
                              }
                              // Otherwise revert with a message about the token
                              // returning false or non-compliant return values.
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_sig_ptr,
                                  BadReturnValueFromERC20OnTransfer_error_signature
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_token_ptr,
                                  token
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_from_ptr,
                                  from
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_to_ptr,
                                  to
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_amount_ptr,
                                  amount
                              )
                              revert(
                                  BadReturnValueFromERC20OnTransfer_error_sig_ptr,
                                  BadReturnValueFromERC20OnTransfer_error_length
                              )
                          }
                          // Otherwise, revert with error about token not having code:
                          mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                          mstore(NoContract_error_token_ptr, token)
                          revert(NoContract_error_sig_ptr, NoContract_error_length)
                      }
                      // Otherwise, the token just returned no data despite the call
                      // having succeeded; no need to optimize for this as it's not
                      // technically ERC20 compliant.
                  }
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer an ERC721 token from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer. Note that this function does
           *      not check whether the receiver can accept the ERC721 token (i.e. it
           *      does not use `safeTransferFrom`).
           *
           * @param token      The ERC721 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param identifier The tokenId to transfer.
           */
          function _performERC721Transfer(
              address token,
              address from,
              address to,
              uint256 identifier
          ) internal {
              // Utilize assembly to perform an optimized ERC721 token transfer.
              assembly {
                  // If the token has no code, revert.
                  if iszero(extcodesize(token)) {
                      mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                      mstore(NoContract_error_token_ptr, token)
                      revert(NoContract_error_sig_ptr, NoContract_error_length)
                  }
                  // The free memory pointer memory slot will be used when populating
                  // call data for the transfer; read the value and restore it later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  // Write call data to memory starting with function selector.
                  mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature)
                  mstore(ERC721_transferFrom_from_ptr, from)
                  mstore(ERC721_transferFrom_to_ptr, to)
                  mstore(ERC721_transferFrom_id_ptr, identifier)
                  // Perform the call, ignoring return data.
                  let success := call(
                      gas(),
                      token,
                      0,
                      ERC721_transferFrom_sig_ptr,
                      ERC721_transferFrom_length,
                      0,
                      0
                  )
                  // If the transfer reverted:
                  if iszero(success) {
                      // If it returned a message, bubble it up as long as sufficient
                      // gas remains to do so:
                      if returndatasize() {
                          // Ensure that sufficient gas is available to copy
                          // returndata while expanding memory where necessary. Start
                          // by computing word size of returndata & allocated memory.
                          // Round up to the nearest full word.
                          let returnDataWords := div(
                              add(returndatasize(), AlmostOneWord),
                              OneWord
                          )
                          // Note: use the free memory pointer in place of msize() to
                          // work around a Yul warning that prevents accessing msize
                          // directly when the IR pipeline is activated.
                          let msizeWords := div(memPointer, OneWord)
                          // Next, compute the cost of the returndatacopy.
                          let cost := mul(CostPerWord, returnDataWords)
                          // Then, compute cost of new memory allocation.
                          if gt(returnDataWords, msizeWords) {
                              cost := add(
                                  cost,
                                  add(
                                      mul(
                                          sub(returnDataWords, msizeWords),
                                          CostPerWord
                                      ),
                                      div(
                                          sub(
                                              mul(returnDataWords, returnDataWords),
                                              mul(msizeWords, msizeWords)
                                          ),
                                          MemoryExpansionCoefficient
                                      )
                                  )
                              )
                          }
                          // Finally, add a small constant and compare to gas
                          // remaining; bubble up the revert data if enough gas is
                          // still available.
                          if lt(add(cost, ExtraGasBuffer), gas()) {
                              // Copy returndata to memory; overwrite existing memory.
                              returndatacopy(0, 0, returndatasize())
                              // Revert, giving memory region with copied returndata.
                              revert(0, returndatasize())
                          }
                      }
                      // Otherwise revert with a generic error message.
                      mstore(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_signature
                      )
                      mstore(TokenTransferGenericFailure_error_token_ptr, token)
                      mstore(TokenTransferGenericFailure_error_from_ptr, from)
                      mstore(TokenTransferGenericFailure_error_to_ptr, to)
                      mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
                      mstore(TokenTransferGenericFailure_error_amount_ptr, 1)
                      revert(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_length
                      )
                  }
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer ERC1155 tokens from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer and contract recipients must
           *      implement the ERC1155TokenReceiver interface to indicate that they
           *      are willing to accept the transfer.
           *
           * @param token      The ERC1155 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param identifier The id to transfer.
           * @param amount     The amount to transfer.
           */
          function _performERC1155Transfer(
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount
          ) internal {
              // Utilize assembly to perform an optimized ERC1155 token transfer.
              assembly {
                  // If the token has no code, revert.
                  if iszero(extcodesize(token)) {
                      mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                      mstore(NoContract_error_token_ptr, token)
                      revert(NoContract_error_sig_ptr, NoContract_error_length)
                  }
                  // The following memory slots will be used when populating call data
                  // for the transfer; read the values and restore them later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  let slot0x80 := mload(Slot0x80)
                  let slot0xA0 := mload(Slot0xA0)
                  let slot0xC0 := mload(Slot0xC0)
                  // Write call data into memory, beginning with function selector.
                  mstore(
                      ERC1155_safeTransferFrom_sig_ptr,
                      ERC1155_safeTransferFrom_signature
                  )
                  mstore(ERC1155_safeTransferFrom_from_ptr, from)
                  mstore(ERC1155_safeTransferFrom_to_ptr, to)
                  mstore(ERC1155_safeTransferFrom_id_ptr, identifier)
                  mstore(ERC1155_safeTransferFrom_amount_ptr, amount)
                  mstore(
                      ERC1155_safeTransferFrom_data_offset_ptr,
                      ERC1155_safeTransferFrom_data_length_offset
                  )
                  mstore(ERC1155_safeTransferFrom_data_length_ptr, 0)
                  // Perform the call, ignoring return data.
                  let success := call(
                      gas(),
                      token,
                      0,
                      ERC1155_safeTransferFrom_sig_ptr,
                      ERC1155_safeTransferFrom_length,
                      0,
                      0
                  )
                  // If the transfer reverted:
                  if iszero(success) {
                      // If it returned a message, bubble it up as long as sufficient
                      // gas remains to do so:
                      if returndatasize() {
                          // Ensure that sufficient gas is available to copy
                          // returndata while expanding memory where necessary. Start
                          // by computing word size of returndata & allocated memory.
                          // Round up to the nearest full word.
                          let returnDataWords := div(
                              add(returndatasize(), AlmostOneWord),
                              OneWord
                          )
                          // Note: use the free memory pointer in place of msize() to
                          // work around a Yul warning that prevents accessing msize
                          // directly when the IR pipeline is activated.
                          let msizeWords := div(memPointer, OneWord)
                          // Next, compute the cost of the returndatacopy.
                          let cost := mul(CostPerWord, returnDataWords)
                          // Then, compute cost of new memory allocation.
                          if gt(returnDataWords, msizeWords) {
                              cost := add(
                                  cost,
                                  add(
                                      mul(
                                          sub(returnDataWords, msizeWords),
                                          CostPerWord
                                      ),
                                      div(
                                          sub(
                                              mul(returnDataWords, returnDataWords),
                                              mul(msizeWords, msizeWords)
                                          ),
                                          MemoryExpansionCoefficient
                                      )
                                  )
                              )
                          }
                          // Finally, add a small constant and compare to gas
                          // remaining; bubble up the revert data if enough gas is
                          // still available.
                          if lt(add(cost, ExtraGasBuffer), gas()) {
                              // Copy returndata to memory; overwrite existing memory.
                              returndatacopy(0, 0, returndatasize())
                              // Revert, giving memory region with copied returndata.
                              revert(0, returndatasize())
                          }
                      }
                      // Otherwise revert with a generic error message.
                      mstore(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_signature
                      )
                      mstore(TokenTransferGenericFailure_error_token_ptr, token)
                      mstore(TokenTransferGenericFailure_error_from_ptr, from)
                      mstore(TokenTransferGenericFailure_error_to_ptr, to)
                      mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
                      mstore(TokenTransferGenericFailure_error_amount_ptr, amount)
                      revert(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_length
                      )
                  }
                  mstore(Slot0x80, slot0x80) // Restore slot 0x80.
                  mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0.
                  mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0.
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer ERC1155 tokens from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer and contract recipients must
           *      implement the ERC1155TokenReceiver interface to indicate that they
           *      are willing to accept the transfer. NOTE: this function is not
           *      memory-safe; it will overwrite existing memory, restore the free
           *      memory pointer to the default value, and overwrite the zero slot.
           *      This function should only be called once memory is no longer
           *      required and when uninitialized arrays are not utilized, and memory
           *      should be considered fully corrupted (aside from the existence of a
           *      default-value free memory pointer) after calling this function.
           *
           * @param batchTransfers The group of 1155 batch transfers to perform.
           */
          function _performERC1155BatchTransfers(
              ConduitBatch1155Transfer[] calldata batchTransfers
          ) internal {
              // Utilize assembly to perform optimized batch 1155 transfers.
              assembly {
                  let len := batchTransfers.length
                  // Pointer to first head in the array, which is offset to the struct
                  // at each index. This gets incremented after each loop to avoid
                  // multiplying by 32 to get the offset for each element.
                  let nextElementHeadPtr := batchTransfers.offset
                  // Pointer to beginning of the head of the array. This is the
                  // reference position each offset references. It's held static to
                  // let each loop calculate the data position for an element.
                  let arrayHeadPtr := nextElementHeadPtr
                  // Write the function selector, which will be reused for each call:
                  // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
                  mstore(
                      ConduitBatch1155Transfer_from_offset,
                      ERC1155_safeBatchTransferFrom_signature
                  )
                  // Iterate over each batch transfer.
                  for {
                      let i := 0
                  } lt(i, len) {
                      i := add(i, 1)
                  } {
                      // Read the offset to the beginning of the element and add
                      // it to pointer to the beginning of the array head to get
                      // the absolute position of the element in calldata.
                      let elementPtr := add(
                          arrayHeadPtr,
                          calldataload(nextElementHeadPtr)
                      )
                      // Retrieve the token from calldata.
                      let token := calldataload(elementPtr)
                      // If the token has no code, revert.
                      if iszero(extcodesize(token)) {
                          mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                          mstore(NoContract_error_token_ptr, token)
                          revert(NoContract_error_sig_ptr, NoContract_error_length)
                      }
                      // Get the total number of supplied ids.
                      let idsLength := calldataload(
                          add(elementPtr, ConduitBatch1155Transfer_ids_length_offset)
                      )
                      // Determine the expected offset for the amounts array.
                      let expectedAmountsOffset := add(
                          ConduitBatch1155Transfer_amounts_length_baseOffset,
                          mul(idsLength, OneWord)
                      )
                      // Validate struct encoding.
                      let invalidEncoding := iszero(
                          and(
                              // ids.length == amounts.length
                              eq(
                                  idsLength,
                                  calldataload(add(elementPtr, expectedAmountsOffset))
                              ),
                              and(
                                  // ids_offset == 0xa0
                                  eq(
                                      calldataload(
                                          add(
                                              elementPtr,
                                              ConduitBatch1155Transfer_ids_head_offset
                                          )
                                      ),
                                      ConduitBatch1155Transfer_ids_length_offset
                                  ),
                                  // amounts_offset == 0xc0 + ids.length*32
                                  eq(
                                      calldataload(
                                          add(
                                              elementPtr,
                                              ConduitBatchTransfer_amounts_head_offset
                                          )
                                      ),
                                      expectedAmountsOffset
                                  )
                              )
                          )
                      )
                      // Revert with an error if the encoding is not valid.
                      if invalidEncoding {
                          mstore(
                              Invalid1155BatchTransferEncoding_ptr,
                              Invalid1155BatchTransferEncoding_selector
                          )
                          revert(
                              Invalid1155BatchTransferEncoding_ptr,
                              Invalid1155BatchTransferEncoding_length
                          )
                      }
                      // Update the offset position for the next loop
                      nextElementHeadPtr := add(nextElementHeadPtr, OneWord)
                      // Copy the first section of calldata (before dynamic values).
                      calldatacopy(
                          BatchTransfer1155Params_ptr,
                          add(elementPtr, ConduitBatch1155Transfer_from_offset),
                          ConduitBatch1155Transfer_usable_head_size
                      )
                      // Determine size of calldata required for ids and amounts. Note
                      // that the size includes both lengths as well as the data.
                      let idsAndAmountsSize := add(TwoWords, mul(idsLength, TwoWords))
                      // Update the offset for the data array in memory.
                      mstore(
                          BatchTransfer1155Params_data_head_ptr,
                          add(
                              BatchTransfer1155Params_ids_length_offset,
                              idsAndAmountsSize
                          )
                      )
                      // Set the length of the data array in memory to zero.
                      mstore(
                          add(
                              BatchTransfer1155Params_data_length_basePtr,
                              idsAndAmountsSize
                          ),
                          0
                      )
                      // Determine the total calldata size for the call to transfer.
                      let transferDataSize := add(
                          BatchTransfer1155Params_calldata_baseSize,
                          idsAndAmountsSize
                      )
                      // Copy second section of calldata (including dynamic values).
                      calldatacopy(
                          BatchTransfer1155Params_ids_length_ptr,
                          add(elementPtr, ConduitBatch1155Transfer_ids_length_offset),
                          idsAndAmountsSize
                      )
                      // Perform the call to transfer 1155 tokens.
                      let success := call(
                          gas(),
                          token,
                          0,
                          ConduitBatch1155Transfer_from_offset, // Data portion start.
                          transferDataSize, // Location of the length of callData.
                          0,
                          0
                      )
                      // If the transfer reverted:
                      if iszero(success) {
                          // If it returned a message, bubble it up as long as
                          // sufficient gas remains to do so:
                          if returndatasize() {
                              // Ensure that sufficient gas is available to copy
                              // returndata while expanding memory where necessary.
                              // Start by computing word size of returndata and
                              // allocated memory. Round up to the nearest full word.
                              let returnDataWords := div(
                                  add(returndatasize(), AlmostOneWord),
                                  OneWord
                              )
                              // Note: use transferDataSize in place of msize() to
                              // work around a Yul warning that prevents accessing
                              // msize directly when the IR pipeline is activated.
                              // The free memory pointer is not used here because
                              // this function does almost all memory management
                              // manually and does not update it, and transferDataSize
                              // should be the largest memory value used (unless a
                              // previous batch was larger).
                              let msizeWords := div(transferDataSize, OneWord)
                              // Next, compute the cost of the returndatacopy.
                              let cost := mul(CostPerWord, returnDataWords)
                              // Then, compute cost of new memory allocation.
                              if gt(returnDataWords, msizeWords) {
                                  cost := add(
                                      cost,
                                      add(
                                          mul(
                                              sub(returnDataWords, msizeWords),
                                              CostPerWord
                                          ),
                                          div(
                                              sub(
                                                  mul(
                                                      returnDataWords,
                                                      returnDataWords
                                                  ),
                                                  mul(msizeWords, msizeWords)
                                              ),
                                              MemoryExpansionCoefficient
                                          )
                                      )
                                  )
                              }
                              // Finally, add a small constant and compare to gas
                              // remaining; bubble up the revert data if enough gas is
                              // still available.
                              if lt(add(cost, ExtraGasBuffer), gas()) {
                                  // Copy returndata to memory; overwrite existing.
                                  returndatacopy(0, 0, returndatasize())
                                  // Revert with memory region containing returndata.
                                  revert(0, returndatasize())
                              }
                          }
                          // Set the error signature.
                          mstore(
                              0,
                              ERC1155BatchTransferGenericFailure_error_signature
                          )
                          // Write the token.
                          mstore(ERC1155BatchTransferGenericFailure_token_ptr, token)
                          // Increase the offset to ids by 32.
                          mstore(
                              BatchTransfer1155Params_ids_head_ptr,
                              ERC1155BatchTransferGenericFailure_ids_offset
                          )
                          // Increase the offset to amounts by 32.
                          mstore(
                              BatchTransfer1155Params_amounts_head_ptr,
                              add(
                                  OneWord,
                                  mload(BatchTransfer1155Params_amounts_head_ptr)
                              )
                          )
                          // Return modified region. The total size stays the same as
                          // `token` uses the same number of bytes as `data.length`.
                          revert(0, transferDataSize)
                      }
                  }
                  // Reset the free memory pointer to the default value; memory must
                  // be assumed to be dirtied and not reused from this point forward.
                  // Also note that the zero slot is not reset to zero, meaning empty
                  // arrays cannot be safely created or utilized until it is restored.
                  mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      import { ConduitItemType } from "./ConduitEnums.sol";
      struct ConduitTransfer {
          ConduitItemType itemType;
          address token;
          address from;
          address to;
          uint256 identifier;
          uint256 amount;
      }
      struct ConduitBatch1155Transfer {
          address token;
          address from;
          address to;
          uint256[] ids;
          uint256[] amounts;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      // error ChannelClosed(address channel)
      uint256 constant ChannelClosed_error_signature = (
          0x93daadf200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ChannelClosed_error_ptr = 0x00;
      uint256 constant ChannelClosed_channel_ptr = 0x4;
      uint256 constant ChannelClosed_error_length = 0x24;
      // For the mapping:
      // mapping(address => bool) channels
      // The position in storage for a particular account is:
      // keccak256(abi.encode(account, channels.slot))
      uint256 constant ChannelKey_channel_ptr = 0x00;
      uint256 constant ChannelKey_slot_ptr = 0x20;
      uint256 constant ChannelKey_length = 0x40;
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      /*
       * -------------------------- Disambiguation & Other Notes ---------------------
       *    - The term "head" is used as it is in the documentation for ABI encoding,
       *      but only in reference to dynamic types, i.e. it always refers to the
       *      offset or pointer to the body of a dynamic type. In calldata, the head
       *      is always an offset (relative to the parent object), while in memory,
       *      the head is always the pointer to the body. More information found here:
       *      https://docs.soliditylang.org/en/v0.8.14/abi-spec.html#argument-encoding
       *        - Note that the length of an array is separate from and precedes the
       *          head of the array.
       *
       *    - The term "body" is used in place of the term "head" used in the ABI
       *      documentation. It refers to the start of the data for a dynamic type,
       *      e.g. the first word of a struct or the first word of the first element
       *      in an array.
       *
       *    - The term "pointer" is used to describe the absolute position of a value
       *      and never an offset relative to another value.
       *        - The suffix "_ptr" refers to a memory pointer.
       *        - The suffix "_cdPtr" refers to a calldata pointer.
       *
       *    - The term "offset" is used to describe the position of a value relative
       *      to some parent value. For example, OrderParameters_conduit_offset is the
       *      offset to the "conduit" value in the OrderParameters struct relative to
       *      the start of the body.
       *        - Note: Offsets are used to derive pointers.
       *
       *    - Some structs have pointers defined for all of their fields in this file.
       *      Lines which are commented out are fields that are not used in the
       *      codebase but have been left in for readability.
       */
      uint256 constant AlmostOneWord = 0x1f;
      uint256 constant OneWord = 0x20;
      uint256 constant TwoWords = 0x40;
      uint256 constant ThreeWords = 0x60;
      uint256 constant FreeMemoryPointerSlot = 0x40;
      uint256 constant ZeroSlot = 0x60;
      uint256 constant DefaultFreeMemoryPointer = 0x80;
      uint256 constant Slot0x80 = 0x80;
      uint256 constant Slot0xA0 = 0xa0;
      uint256 constant Slot0xC0 = 0xc0;
      // abi.encodeWithSignature("transferFrom(address,address,uint256)")
      uint256 constant ERC20_transferFrom_signature = (
          0x23b872dd00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC20_transferFrom_sig_ptr = 0x0;
      uint256 constant ERC20_transferFrom_from_ptr = 0x04;
      uint256 constant ERC20_transferFrom_to_ptr = 0x24;
      uint256 constant ERC20_transferFrom_amount_ptr = 0x44;
      uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
      // abi.encodeWithSignature(
      //     "safeTransferFrom(address,address,uint256,uint256,bytes)"
      // )
      uint256 constant ERC1155_safeTransferFrom_signature = (
          0xf242432a00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0;
      uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04;
      uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24;
      uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44;
      uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64;
      uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84;
      uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4;
      uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196
      uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0;
      // abi.encodeWithSignature(
      //     "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)"
      // )
      uint256 constant ERC1155_safeBatchTransferFrom_signature = (
          0x2eb2c2d600000000000000000000000000000000000000000000000000000000
      );
      bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4(
          bytes32(ERC1155_safeBatchTransferFrom_signature)
      );
      uint256 constant ERC721_transferFrom_signature = ERC20_transferFrom_signature;
      uint256 constant ERC721_transferFrom_sig_ptr = 0x0;
      uint256 constant ERC721_transferFrom_from_ptr = 0x04;
      uint256 constant ERC721_transferFrom_to_ptr = 0x24;
      uint256 constant ERC721_transferFrom_id_ptr = 0x44;
      uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
      // abi.encodeWithSignature("NoContract(address)")
      uint256 constant NoContract_error_signature = (
          0x5f15d67200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant NoContract_error_sig_ptr = 0x0;
      uint256 constant NoContract_error_token_ptr = 0x4;
      uint256 constant NoContract_error_length = 0x24; // 4 + 32 == 36
      // abi.encodeWithSignature(
      //     "TokenTransferGenericFailure(address,address,address,uint256,uint256)"
      // )
      uint256 constant TokenTransferGenericFailure_error_signature = (
          0xf486bc8700000000000000000000000000000000000000000000000000000000
      );
      uint256 constant TokenTransferGenericFailure_error_sig_ptr = 0x0;
      uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x4;
      uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x24;
      uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x44;
      uint256 constant TokenTransferGenericFailure_error_id_ptr = 0x64;
      uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0x84;
      // 4 + 32 * 5 == 164
      uint256 constant TokenTransferGenericFailure_error_length = 0xa4;
      // abi.encodeWithSignature(
      //     "BadReturnValueFromERC20OnTransfer(address,address,address,uint256)"
      // )
      uint256 constant BadReturnValueFromERC20OnTransfer_error_signature = (
          0x9889192300000000000000000000000000000000000000000000000000000000
      );
      uint256 constant BadReturnValueFromERC20OnTransfer_error_sig_ptr = 0x0;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x4;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x24;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x44;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x64;
      // 4 + 32 * 4 == 132
      uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;
      uint256 constant ExtraGasBuffer = 0x20;
      uint256 constant CostPerWord = 3;
      uint256 constant MemoryExpansionCoefficient = 0x200;
      // Values are offset by 32 bytes in order to write the token to the beginning
      // in the event of a revert
      uint256 constant BatchTransfer1155Params_ptr = 0x24;
      uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64;
      uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84;
      uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4;
      uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4;
      uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4;
      uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4;
      uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0;
      uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0;
      uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0;
      uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80;
      uint256 constant ConduitBatch1155Transfer_from_offset = 0x20;
      uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60;
      uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80;
      uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0;
      uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0;
      uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0;
      // Note: abbreviated version of above constant to adhere to line length limit.
      uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80;
      uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00;
      uint256 constant Invalid1155BatchTransferEncoding_length = 0x04;
      uint256 constant Invalid1155BatchTransferEncoding_selector = (
          0xeba2084c00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155BatchTransferGenericFailure_error_signature = (
          0xafc445e200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04;
      uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0;
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      /**
       * @title TokenTransferrerErrors
       */
      interface TokenTransferrerErrors {
          /**
           * @dev Revert with an error when an ERC721 transfer with amount other than
           *      one is attempted.
           */
          error InvalidERC721TransferAmount();
          /**
           * @dev Revert with an error when attempting to fulfill an order where an
           *      item has an amount of zero.
           */
          error MissingItemAmount();
          /**
           * @dev Revert with an error when attempting to fulfill an order where an
           *      item has unused parameters. This includes both the token and the
           *      identifier parameters for native transfers as well as the identifier
           *      parameter for ERC20 transfers. Note that the conduit does not
           *      perform this check, leaving it up to the calling channel to enforce
           *      when desired.
           */
          error UnusedItemParameters();
          /**
           * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token
           *      transfer reverts.
           *
           * @param token      The token for which the transfer was attempted.
           * @param from       The source of the attempted transfer.
           * @param to         The recipient of the attempted transfer.
           * @param identifier The identifier for the attempted transfer.
           * @param amount     The amount for the attempted transfer.
           */
          error TokenTransferGenericFailure(
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount
          );
          /**
           * @dev Revert with an error when a batch ERC1155 token transfer reverts.
           *
           * @param token       The token for which the transfer was attempted.
           * @param from        The source of the attempted transfer.
           * @param to          The recipient of the attempted transfer.
           * @param identifiers The identifiers for the attempted transfer.
           * @param amounts     The amounts for the attempted transfer.
           */
          error ERC1155BatchTransferGenericFailure(
              address token,
              address from,
              address to,
              uint256[] identifiers,
              uint256[] amounts
          );
          /**
           * @dev Revert with an error when an ERC20 token transfer returns a falsey
           *      value.
           *
           * @param token      The token for which the ERC20 transfer was attempted.
           * @param from       The source of the attempted ERC20 transfer.
           * @param to         The recipient of the attempted ERC20 transfer.
           * @param amount     The amount for the attempted ERC20 transfer.
           */
          error BadReturnValueFromERC20OnTransfer(
              address token,
              address from,
              address to,
              uint256 amount
          );
          /**
           * @dev Revert with an error when an account being called as an assumed
           *      contract does not have code and returns no data.
           *
           * @param account The account that should contain code.
           */
          error NoContract(address account);
          /**
           * @dev Revert with an error when attempting to execute an 1155 batch
           *      transfer using calldata not produced by default ABI encoding or with
           *      different lengths for ids and amounts arrays.
           */
          error Invalid1155BatchTransferEncoding();
      }