ETH Price: $1,907.59 (-0.20%)

Transaction Decoder

Block:
12296083 at Apr-23-2021 11:06:53 AM +UTC
Transaction Fee:
0.008350342 ETH $15.93
Gas Used:
86,086 Gas / 97 Gwei

Emitted Events:

324 Token.Transfer( from=[Receiver] Farm, to=0x063c85CF2A06f2Cf90DcDe6A674D6f153Fe0cA74, value=257355824888730500000 )
325 Token.Transfer( from=[Receiver] Farm, to=0x0000000000000000000000000000000000000000, value=257355824888730500000 )
326 Token.Transfer( from=[Receiver] Farm, to=[Sender] 0xfd5ae3447b24c0df77cfda7a96426e87a80b1930, value=4632404847997149000000 )
327 Farm.Unstake( user=[Sender] 0xfd5ae3447b24c0df77cfda7a96426e87a80b1930, pid=0 )

Account State Difference:

  Address   Before After State Difference Code
0x0f51bb10...1F56B09Ad
(UUPool)
76.973188769402339841 Eth76.981539111402339841 Eth0.008350342
0xE33B1562...28aa1c781
0xFD5Ae344...7A80B1930
0.210000313547037294 Eth
Nonce: 373
0.201649971547037294 Eth
Nonce: 374
0.008350342

Execution Trace

Farm.unstake( _pid=0 )
  • 0x9f48313c86249a8a369c830ce0379cb634b94935.STATICCALL( )
  • 0x9f48313c86249a8a369c830ce0379cb634b94935.STATICCALL( )
  • 0x9f48313c86249a8a369c830ce0379cb634b94935.STATICCALL( )
  • 0x9f48313c86249a8a369c830ce0379cb634b94935.STATICCALL( )
  • Token.transfer( recipient=0x063c85CF2A06f2Cf90DcDe6A674D6f153Fe0cA74, amount=257355824888730500000 ) => ( True )
  • Token.burn( amount=257355824888730500000 )
  • Token.transfer( recipient=0xFD5Ae3447B24c0Df77cfdA7A96426E87A80B1930, amount=4632404847997149000000 ) => ( True )
    File 1 of 2: Farm
    // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
    
    
    
    pragma solidity >=0.6.0 <0.8.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: @openzeppelin/contracts/math/SafeMath.sol
    
    
    
    pragma solidity >=0.6.0 <0.8.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    
        /**
         * @dev Returns the substraction of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    
        /**
         * @dev Returns the division of two unsigned integers, with a division by zero flag.
         *
         * _Available since v3.4._
         */
        function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
         *
         * _Available since v3.4._
         */
        function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b <= a, "SafeMath: subtraction overflow");
            return a - b;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            if (a == 0) return 0;
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers, reverting on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b > 0, "SafeMath: division by zero");
            return a / b;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * reverting when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b > 0, "SafeMath: modulo by zero");
            return a % b;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {trySub}.
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            return a - b;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers, reverting with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {tryDiv}.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            return a / b;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * reverting with custom message when dividing by zero.
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {tryMod}.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
    
    // File: @openzeppelin/contracts/utils/Address.sol
    
    
    
    pragma solidity >=0.6.2 <0.8.0;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize, which returns 0 for contracts in
            // construction, since the code is only stored at the end of the
            // constructor execution.
    
            uint256 size;
            // solhint-disable-next-line no-inline-assembly
            assembly { size := extcodesize(account) }
            return size > 0;
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
            (bool success, ) = recipient.call{ value: amount }("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain`call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
          return functionCall(target, data, "Address: low-level call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.call{ value: value }(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.staticcall(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
    
        function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
    
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
    
    
    
    pragma solidity >=0.6.0 <0.8.0;
    
    
    
    
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using SafeMath for uint256;
        using Address for address;
    
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
    
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
    
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(IERC20 token, address spender, uint256 value) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            // solhint-disable-next-line max-line-length
            require((value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
    
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 newAllowance = token.allowance(address(this), spender).add(value);
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
    
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            if (returndata.length > 0) { // Return data is optional
                // solhint-disable-next-line max-line-length
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    
    // File: contracts/interfaces/IBurnable.sol
    
    //SPDX-License-Identifier: Unlicense
    pragma solidity 0.7.6;
    
    interface IBurnable {
      function burn(uint256 amount) external;
      function balanceOf(address account) external view returns (uint256);
    }
    
    // File: contracts/interfaces/IFarmManager.sol
    
    
    pragma solidity 0.7.6;
    
    interface IFarmManager {
        function getPaused() external view returns(bool);
        function getBurnRate() external view returns(uint256);
        function getUnstakeEpochs() external view returns(uint256);
        function getRedistributor() external view returns(address);
        function getLpLock() external view returns(address);
    }
    
    // File: contracts/Farm.sol
    
    
    pragma solidity 0.7.6;
    pragma abicoder v2;
    
    
    
    
    
    
    // Farm distributes the ERC20 rewards based on staked LP to each user.
    contract Farm {
        using SafeMath for uint256;
        using SafeERC20 for IERC20;
    
            // Info of each user.
        struct UserInfo {
            uint256 amount;     // How many LP tokens the user has provided.
            uint256 rewardDebt; // Reward debt. See explanation below.
            uint256 lastClaimTime;
            uint256 withdrawTime;
            
            // We do some fancy math here. Basically, any point in time, the amount of ERC20s
            // entitled to a user but is pending to be distributed is:
            //
            //   pending reward = (user.amount * pool.accERC20PerShare) - user.rewardDebt
            //
            // Whenever a user deposits or withdraws LP tokens to a pool. Here's what happens:
            //   1. The pool's `accERC20PerShare` (and `lastRewardBlock`) gets updated.
            //   2. User receives the pending reward sent to his/her address.
            //   3. User's `amount` gets updated.
            //   4. User's `rewardDebt` gets updated.
        }
    
        // Info of each pool.
        struct PoolInfo {
            IERC20 stakingToken;         // Address of staking token contract.
            uint256 allocPoint;         // How many allocation points assigned to this pool. ERC20s to distribute per block.
            uint256 lastRewardBlock;    // Last block number that ERC20s distribution occurs.
            uint256 accERC20PerShare;   // Accumulated ERC20s per share, times 1e36.
            uint256 supply;             // changes with unstakes.
            bool    isLP;               // if the staking token is an LP token.
        }
    
        // Address of the ERC20 Token contract.
        IERC20 public erc20;
        // The total amount of ERC20 that's paid out as reward.
        uint256 public paidOut = 0;
        // ERC20 tokens rewarded per block.
        uint256 public rewardPerBlock;
        // Manager interface to get globals for all farms.
        IFarmManager public manager;
        // Info of each pool.
        PoolInfo[] public poolInfo;
        // Info of each user that stakes LP tokens.
        mapping (uint256 => mapping (address => UserInfo)) public userInfo;
        // Total allocation points. Must be the sum of all allocation points in all pools.
        uint256 public totalAllocPoint = 0;
        // The block number when farming starts.
        uint256 public startBlock;
        // The block number when farming ends.
        uint256 public endBlock;
        // Seconds per epoch (1 day)
        uint256 public constant SECS_EPOCH = 86400;
    
        // events
        event Deposit(address indexed user, uint256 indexed pid, uint256 amount);
        event Withdraw(address indexed user, uint256 indexed pid);
        event Claim(address indexed user, uint256 indexed pid);
        event Unstake(address indexed user, uint256 indexed pid);
        event Initialize(IERC20 erc20, uint256 rewardPerBlock, uint256 startBlock, address manager);
    
        constructor(IERC20 _erc20, uint256 _rewardPerBlock, uint256 _startBlock, address _manager) public {
            erc20 = _erc20;
            rewardPerBlock = _rewardPerBlock;
            startBlock = _startBlock;
            endBlock = _startBlock;
            manager = IFarmManager(_manager);
            emit Initialize(_erc20, _rewardPerBlock, _startBlock, _manager);
        }
    
        // Fund the farm, increase the end block.
        function fund(uint256 _amount) external {
            require(msg.sender == address(manager), "fund: sender is not manager");
            require(block.number <= endBlock, "fund: too late, the farm is closed");
    
            erc20.safeTransferFrom(address(tx.origin), address(this), _amount);
            endBlock += _amount.div(rewardPerBlock);
        }
    
        // Update the given pool's ERC20 allocation point. Can only be called by the manager.
        function set(uint256 _pid, uint256 _allocPoint, bool _withUpdate) external {
            require(msg.sender == address(manager), "set: sender is not manager");
            if (_withUpdate) {
                massUpdatePools();
            }
            totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
            poolInfo[_pid].allocPoint = _allocPoint;
        }
    
        // Add a new staking token to the pool. Can only be called by the manager.
        function add(uint256 _allocPoint, IERC20 _stakingToken, bool _isLP, bool _withUpdate) external {
            require(msg.sender == address(manager), "fund: sender is not manager");
            if (_withUpdate) {
                massUpdatePools();
            }
            uint256 lastRewardBlock = block.number > startBlock ? block.number : startBlock;
            totalAllocPoint = totalAllocPoint.add(_allocPoint);
            poolInfo.push(PoolInfo({
                stakingToken: _stakingToken,
                supply: 0,
                allocPoint: _allocPoint,
                lastRewardBlock: lastRewardBlock,
                accERC20PerShare: 0,
                isLP: _isLP
            }));
        }
    
        // Update reward variables for all pools. Be careful of gas spending!
        function massUpdatePools() public {
            uint256 length = poolInfo.length;
            for (uint256 pid = 0; pid < length; ++pid) {
                updatePool(pid);
            }
        }
    
        // Update reward variables of the given pool to be up-to-date.
        function updatePool(uint256 _pid) public {
            PoolInfo storage pool = poolInfo[_pid];
            uint256 lastBlock = block.number < endBlock ? block.number : endBlock;
    
            if (lastBlock <= pool.lastRewardBlock) {
                return;
            }
            if (pool.supply == 0) {
                pool.lastRewardBlock = lastBlock;
                return;
            }
    
            uint256 nrOfBlocks = lastBlock.sub(pool.lastRewardBlock);
            uint256 erc20Reward = nrOfBlocks.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
    
            pool.accERC20PerShare = pool.accERC20PerShare.add(erc20Reward.mul(1e36).div(pool.supply));
            pool.lastRewardBlock = block.number;
        }
    
        // move LP tokens from one farm to another. only callable by Manager. 
        // tx.origin is user EOA, msg.sender is the Manager.
        function move(uint256 _pid) external {
            require(msg.sender == address(manager), "move: sender is not manager");
            PoolInfo storage pool = poolInfo[_pid];
            UserInfo storage user = userInfo[_pid][tx.origin];
            updatePool(_pid);
            uint256 pendingAmount = user.amount.mul(pool.accERC20PerShare).div(1e36).sub(user.rewardDebt);
            erc20Transfer(tx.origin, pendingAmount);
            pool.supply = pool.supply.sub(user.amount);
            pool.stakingToken.safeTransfer(address(manager), user.amount);
            user.amount = 0;
            user.rewardDebt = user.amount.mul(pool.accERC20PerShare).div(1e36);
            emit Withdraw(msg.sender, _pid);
        }
    
        // Deposit LP tokens to Farm for ERC20 allocation. 
        // can come from manager or user address directly; in either case, tx.origin is the user.
        // In the case the call is coming from the mananger, msg.sender is the manager.
        function deposit(uint256 _pid, uint256 _amount) external {
            require(manager.getPaused()==false, "deposit: farm paused");
            address userAddress = ((msg.sender == address(manager)) ? tx.origin : msg.sender);
            PoolInfo storage pool = poolInfo[_pid];
            UserInfo storage user = userInfo[_pid][userAddress];
            require(user.withdrawTime == 0, "deposit: user is unstaking");
            updatePool(_pid);
            if (user.amount > 0) {
                uint256 pendingAmount = user.amount.mul(pool.accERC20PerShare).div(1e36).sub(user.rewardDebt);
                erc20Transfer(userAddress, pendingAmount);
            }
            pool.stakingToken.safeTransferFrom(address(msg.sender), address(this), _amount);
            pool.supply = pool.supply.add(_amount);
            user.amount = user.amount.add(_amount);
            user.rewardDebt = user.amount.mul(pool.accERC20PerShare).div(1e36);
            emit Deposit(userAddress, _pid, _amount);
        }
    
        // Distribute rewards and start unstake period.
        function withdraw(uint256 _pid) external {
            require(manager.getPaused()==false, "withdraw: farm paused");
            PoolInfo storage pool = poolInfo[_pid];
            UserInfo storage user = userInfo[_pid][msg.sender];
            require(user.amount > 0, "withdraw: amount must be greater than 0");
            require(user.withdrawTime == 0, "withdraw: user is unstaking");
            updatePool(_pid);
    
            // transfer any rewards due
            uint256 pendingAmount = user.amount.mul(pool.accERC20PerShare).div(1e36).sub(user.rewardDebt);
            erc20Transfer(msg.sender, pendingAmount);
            pool.supply = pool.supply.sub(user.amount);
            user.rewardDebt = 0;
            user.withdrawTime = block.timestamp;
            emit Withdraw(msg.sender, _pid);
        }
    
        // unstake LP tokens from Farm. if done within "unstakeEpochs" days, apply burn.
        function unstake(uint256 _pid) external {
            require(manager.getPaused()==false, "unstake: farm paused");
            PoolInfo storage pool = poolInfo[_pid];
            UserInfo storage user = userInfo[_pid][msg.sender];
            require(user.withdrawTime > 0, "unstake: user is not unstaking");
            updatePool(_pid);
            //apply burn fee if unstaking before unstake epochs.
            uint256 unstakeEpochs = manager.getUnstakeEpochs();
            uint256 burnRate = manager.getBurnRate();
            address redistributor = manager.getRedistributor();
            if((user.withdrawTime.add(SECS_EPOCH.mul(unstakeEpochs)) > block.timestamp) && burnRate > 0){
                uint penalty = user.amount.div(1000).mul(burnRate);
                user.amount = user.amount.sub(penalty);
                // if the staking address is an LP, send 50% of penalty to redistributor, and 50% to lp lock address.
                if(pool.isLP){
                    pool.stakingToken.safeTransfer(redistributor, penalty.div(2));
                    pool.stakingToken.safeTransfer(manager.getLpLock(), penalty.div(2));
                }else {
                    // for normal ERC20 tokens, 50% of the penalty is sent to the redistributor address, 50% is burned from the supply.
                    pool.stakingToken.safeTransfer(redistributor, penalty.div(2));
                    IBurnable(address(pool.stakingToken)).burn(penalty.div(2));
                }
            }
            uint userAmount = user.amount;
            // allows user to stake again.
            user.withdrawTime = 0;
            user.amount = 0;
            pool.stakingToken.safeTransfer(address(msg.sender), userAmount);
            emit Unstake(msg.sender, _pid);
        }
    
        // claim LP tokens from Farm.
        function claim(uint256 _pid) external {
            require(manager.getPaused() == false, "claim: farm paused");
            PoolInfo storage pool = poolInfo[_pid];
            UserInfo storage user = userInfo[_pid][msg.sender];
            require(user.amount > 0, "claim: amount is equal to 0");
            require(user.withdrawTime == 0, "claim: user is unstaking");
            updatePool(_pid);
            uint256 pendingAmount = user.amount.mul(pool.accERC20PerShare).div(1e36).sub(user.rewardDebt);
            erc20Transfer(msg.sender, pendingAmount);
            user.rewardDebt = user.amount.mul(pool.accERC20PerShare).div(1e36);
            user.lastClaimTime = block.timestamp;
            emit Claim(msg.sender, _pid);
        }
    
        // Transfer ERC20 and update the required ERC20 to payout all rewards
        function erc20Transfer(address _to, uint256 _amount) internal {
            erc20.transfer(_to, _amount);
            paidOut += _amount;
        }
    
        // emergency withdraw rewards. only owner. EMERGENCY ONLY.
        function emergencyWithdrawRewards() external {
            require(msg.sender == address(manager), "emergencyWithdrawRewards: sender is not manager");
            uint balance = erc20.balanceOf(address(this));
            erc20.safeTransfer(address(tx.origin), balance);
        }
    }

    File 2 of 2: Token
    // File: openzeppelin-solidity/contracts/token/ERC20/IERC20.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
     * the optional functions; to access them see `ERC20Detailed`.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a `Transfer` event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through `transferFrom`. This is
         * zero by default.
         *
         * This value changes when `approve` or `transferFrom` are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * > Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an `Approval` event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a `Transfer` event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to `approve`. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: openzeppelin-solidity/contracts/math/SafeMath.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b <= a, "SafeMath: subtraction overflow");
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, "SafeMath: division by zero");
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b != 0, "SafeMath: modulo by zero");
            return a % b;
        }
    }
    
    // File: openzeppelin-solidity/contracts/token/ERC20/ERC20.sol
    
    pragma solidity ^0.5.0;
    
    
    
    /**
     * @dev Implementation of the `IERC20` interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using `_mint`.
     * For a generic mechanism see `ERC20Mintable`.
     *
     * *For a detailed writeup see our guide [How to implement supply
     * mechanisms](https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226).*
     *
     * We have followed general OpenZeppelin guidelines: functions revert instead
     * of returning `false` on failure. This behavior is nonetheless conventional
     * and does not conflict with the expectations of ERC20 applications.
     *
     * Additionally, an `Approval` event is emitted on calls to `transferFrom`.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard `decreaseAllowance` and `increaseAllowance`
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See `IERC20.approve`.
     */
    contract ERC20 is IERC20 {
        using SafeMath for uint256;
    
        mapping (address => uint256) private _balances;
    
        mapping (address => mapping (address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        /**
         * @dev See `IERC20.totalSupply`.
         */
        function totalSupply() public view returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See `IERC20.balanceOf`.
         */
        function balanceOf(address account) public view returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See `IERC20.transfer`.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public returns (bool) {
            _transfer(msg.sender, recipient, amount);
            return true;
        }
    
        /**
         * @dev See `IERC20.allowance`.
         */
        function allowance(address owner, address spender) public view returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See `IERC20.approve`.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 value) public returns (bool) {
            _approve(msg.sender, spender, value);
            return true;
        }
    
        /**
         * @dev See `IERC20.transferFrom`.
         *
         * Emits an `Approval` event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of `ERC20`;
         *
         * Requirements:
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `value`.
         * - the caller must have allowance for `sender`'s tokens of at least
         * `amount`.
         */
        function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
            _transfer(sender, recipient, amount);
            _approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount));
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to `approve` that can be used as a mitigation for
         * problems described in `IERC20.approve`.
         *
         * Emits an `Approval` event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
            _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to `approve` that can be used as a mitigation for
         * problems described in `IERC20.approve`.
         *
         * Emits an `Approval` event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
            _approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue));
            return true;
        }
    
        /**
         * @dev Moves tokens `amount` from `sender` to `recipient`.
         *
         * This is internal function is equivalent to `transfer`, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a `Transfer` event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(address sender, address recipient, uint256 amount) internal {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _balances[sender] = _balances[sender].sub(amount);
            _balances[recipient] = _balances[recipient].add(amount);
            emit Transfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a `Transfer` event with `from` set to the zero address.
         *
         * Requirements
         *
         * - `to` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _totalSupply = _totalSupply.add(amount);
            _balances[account] = _balances[account].add(amount);
            emit Transfer(address(0), account, amount);
        }
    
         /**
         * @dev Destoys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a `Transfer` event with `to` set to the zero address.
         *
         * Requirements
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 value) internal {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _totalSupply = _totalSupply.sub(value);
            _balances[account] = _balances[account].sub(value);
            emit Transfer(account, address(0), value);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
         *
         * This is internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an `Approval` event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 value) internal {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = value;
            emit Approval(owner, spender, value);
        }
    
        /**
         * @dev Destoys `amount` tokens from `account`.`amount` is then deducted
         * from the caller's allowance.
         *
         * See `_burn` and `_approve`.
         */
        function _burnFrom(address account, uint256 amount) internal {
            _burn(account, amount);
            _approve(account, msg.sender, _allowances[account][msg.sender].sub(amount));
        }
    }
    
    // File: openzeppelin-solidity/contracts/token/ERC20/ERC20Detailed.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @dev Optional functions from the ERC20 standard.
     */
    contract ERC20Detailed is IERC20 {
        string private _name;
        string private _symbol;
        uint8 private _decimals;
    
        /**
         * @dev Sets the values for `name`, `symbol`, and `decimals`. All three of
         * these values are immutable: they can only be set once during
         * construction.
         */
        constructor (string memory name, string memory symbol, uint8 decimals) public {
            _name = name;
            _symbol = symbol;
            _decimals = decimals;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5,05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei.
         *
         * > Note that this information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * `IERC20.balanceOf` and `IERC20.transfer`.
         */
        function decimals() public view returns (uint8) {
            return _decimals;
        }
    }
    
    // File: openzeppelin-solidity/contracts/token/ERC20/ERC20Burnable.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @dev Extension of `ERC20` that allows token holders to destroy both their own
     * tokens and those that they have an allowance for, in a way that can be
     * recognized off-chain (via event analysis).
     */
    contract ERC20Burnable is ERC20 {
        /**
         * @dev Destoys `amount` tokens from the caller.
         *
         * See `ERC20._burn`.
         */
        function burn(uint256 amount) public {
            _burn(msg.sender, amount);
        }
    
        /**
         * @dev See `ERC20._burnFrom`.
         */
        function burnFrom(address account, uint256 amount) public {
            _burnFrom(account, amount);
        }
    }
    
    // File: openzeppelin-solidity/contracts/ownership/Ownable.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be aplied to your functions to restrict their use to
     * the owner.
     */
    contract Ownable {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor () internal {
            _owner = msg.sender;
            emit OwnershipTransferred(address(0), _owner);
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(isOwner(), "Ownable: caller is not the owner");
            _;
        }
    
        /**
         * @dev Returns true if the caller is the current owner.
         */
        function isOwner() public view returns (bool) {
            return msg.sender == _owner;
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * > Note: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public onlyOwner {
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         */
        function _transferOwnership(address newOwner) internal {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
    }
    
    // File: contracts/Token.sol
    
    pragma solidity ^0.5.0;
    
    
    
    
    
    contract Token is ERC20, ERC20Detailed, ERC20Burnable, Ownable {
    
        string private _name = "DAO Maker Token";
        string private constant _symbol = "DAO";
        uint   private constant _numTokens = 312000000;
        
        event NameChanged(string newName, address by);
    
        constructor () public ERC20Detailed(_name, _symbol, 18) {
            _mint(msg.sender, _numTokens * (10 ** uint256(decimals())));
        }
        
        function changeName(string memory name) public onlyOwner{
            _name = name;
            emit NameChanged(name, msg.sender);
        }
        
        function name() public view returns (string memory) {
            return _name;
        }
    }