ETH Price: $2,434.01 (+0.86%)

Transaction Decoder

Block:
21484450 at Dec-26-2024 05:08:11 AM +UTC
Transaction Fee:
0.000205855256867967 ETH $0.50
Gas Used:
47,859 Gas / 4.301286213 Gwei

Emitted Events:

305 StakingPool.Withdrawed( account=[Sender] 0x29bf678e889fa1d08604dc842a589a21c9e6da63, amount=914153535692466800404 )
306 OMTokenV2.Transfer( from=[Receiver] StakingPool, to=[Sender] 0x29bf678e889fa1d08604dc842a589a21c9e6da63, value=914153535692466800404 )

Account State Difference:

  Address   Before After State Difference Code
0x1eA973A6...9CF8D2Cb7
0x29bF678e...1C9E6dA63
0.415440283638965265 Eth
Nonce: 46
0.415234428382097298 Eth
Nonce: 47
0.000205855256867967
0x3593D125...6Dd60c95d
(beaverbuild)
18.205897242560967568 Eth18.205898052335247568 Eth0.00000080977428

Execution Trace

StakingPool.CALL( )
  • OMTokenV2.transfer( recipient=0x29bF678e889fA1d08604dc842A589a21C9E6dA63, amount=914153535692466800404 ) => ( True )
    File 1 of 2: StakingPool
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.19;
    pragma experimental ABIEncoderV2;
    import "./interfaces/IStakingPool.sol";
    import "./libs/StakingErrors.sol";
    import "@openzeppelin/contracts/utils/math/Math.sol";
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    import "@whitelist-merkle/Whitelist.sol";
    import "solowei/AttoDecimal.sol";
    import "solowei/TwoStageOwnable.sol";
    contract StakingPool is IStakingPool, ERC20, TwoStageOwnable {
        using SafeERC20 for IERC20;
        using AttoDecimal for AttoDecimal.Instance;
        struct Strategy {
            uint256 endBlockNumber;
            uint256 perBlockReward;
            uint256 startBlockNumber;
        }
        struct Unstake {
            uint256 amount;
            uint256 applicableAt;
        }
        Whitelist public whitelist;
        uint256 public constant MIN_STAKE_BALANCE = 10 ** 18;
        uint256 public claimingFeePercent;
        uint256 public lastUpdateBlockNumber;
        uint256 private _feePool;
        uint256 private _lockedRewards;
        uint256 private _totalStaked;
        uint256 private _totalUnstaked;
        uint256 private _unstakingTime;
        IERC20 private _stakingToken;
        AttoDecimal.Instance private _defaultPrice;
        AttoDecimal.Instance private _price;
        Strategy private _currentStrategy;
        Strategy private _nextStrategy;
        mapping(address => Unstake) private _unstakes;
        constructor(
            string memory syntheticTokenName,
            string memory syntheticTokenSymbol,
            IERC20 stakingToken_,
            address owner_,
            address whitelistAddress_,
            uint256 claimingFeePercent_,
            uint256 perBlockReward_,
            uint256 startBlockNumber_,
            uint256 duration_,
            uint256 unstakingTime_,
            uint256 defaultPriceMantissa
        )
            TwoStageOwnable(owner_)
            ERC20(syntheticTokenName, syntheticTokenSymbol)
        {
            _defaultPrice = AttoDecimal.Instance(defaultPriceMantissa);
            _stakingToken = stakingToken_;
            _setClaimingFeePercent(claimingFeePercent_);
            _validateStrategyParameters(perBlockReward_, startBlockNumber_, duration_);
            _setUnstakingTime(unstakingTime_);
            _setCurrentStrategy(perBlockReward_, startBlockNumber_, startBlockNumber_ + duration_);
            lastUpdateBlockNumber = getBlockNumber();
            _price = _defaultPrice;
            whitelist = Whitelist(whitelistAddress_);
        }
        /// @notice Cancels unstaking by staking locked for withdrawals tokens
        /// @param amount Amount of locked for withdrawals tokens
        function cancelUnstaking(uint256 amount) external onlyPositiveAmount(amount) returns (bool success) {
            _update();
            address caller = msg.sender;
            Unstake storage unstake_ = _unstakes[caller];
            uint256 unstakingAmount = unstake_.amount;
            require(unstakingAmount >= amount, "Not enough unstaked balance");
            uint256 stakedAmount = _price.mul(balanceOf(caller)).floor();
            require(stakedAmount + amount >= MIN_STAKE_BALANCE, "Stake balance lt min stake");
            uint256 synthAmount = AttoDecimal.div(amount, _price).floor();
            _mint(caller, synthAmount);
            _totalStaked = _totalStaked + amount;
            _totalUnstaked = _totalUnstaked - amount;
            unstake_.amount = unstakingAmount - amount;
            emit Staked(caller, address(0), amount, synthAmount);
            emit UnstakingCanceled(caller, amount);
            return true;
        }
        /// @notice Swaps synthetic tokens for staking tokens and immediately sends them to the caller but takes some fee
        /// @param amount Staking tokens amount to swap for. Fee will be taked from this amount
        /// @return claimedAmount Amount of staking tokens that was been sended to caller
        /// @return burnedAmount Amount of synthetic tokens that was burned while swapping
        function claim(uint256 amount)
            external
            onlyPositiveAmount(amount)
            returns (uint256 claimedAmount, uint256 burnedAmount)
        {
            _update();
            address caller = msg.sender;
            (claimedAmount, burnedAmount) = _calculateUnstake(caller, amount, _price);
            uint256 fee = (claimedAmount * claimingFeePercent) / 100;
            _burn(caller, burnedAmount);
            _totalStaked = _totalStaked - claimedAmount;
            claimedAmount = claimedAmount - fee;
            _feePool = _feePool + fee;
            emit Claimed(caller, amount, claimedAmount, fee, burnedAmount);
            _stakingToken.safeTransfer(caller, claimedAmount);
        }
        /// @notice Withdraws all staking tokens, that have been accumulated in immediately claiming process.
        ///     Allowed to be called only by the owner
        /// @return amount Amount of accumulated and withdrawed tokens
        function claimFees() external onlyOwner returns (uint256 amount) {
            require(_feePool > 0, "No fees");
            amount = _feePool;
            _feePool = 0;
            emit FeeClaimed(owner(), amount);
            _stakingToken.safeTransfer(owner(), amount);
        }
        /// @notice Creates new strategy. Allowed to be called only by the owner
        /// @param perBlockReward_ Reward that should be added to common staking tokens pool every block
        /// @param startBlockNumber_ Number of block from which strategy should starts
        /// @param duration_ Blocks count for which new strategy should be applied
        function createNewStrategy(
            uint256 perBlockReward_,
            uint256 startBlockNumber_,
            uint256 duration_
        )
            public
            onlyOwner
            returns (bool success)
        {
            _update();
            _validateStrategyParameters(perBlockReward_, startBlockNumber_, duration_);
            uint256 endBlockNumber = startBlockNumber_ + duration_;
            Strategy memory strategy = Strategy({
                perBlockReward: perBlockReward_,
                startBlockNumber: startBlockNumber_,
                endBlockNumber: endBlockNumber
            });
            if (_currentStrategy.startBlockNumber > getBlockNumber()) {
                delete _nextStrategy;
                emit NextStrategyRemoved();
                _currentStrategy = strategy;
                emit CurrentStrategyUpdated(perBlockReward_, startBlockNumber_, endBlockNumber);
            } else {
                emit NextStrategyUpdated(perBlockReward_, startBlockNumber_, endBlockNumber);
                _nextStrategy = strategy;
                if (_currentStrategy.endBlockNumber > startBlockNumber_) {
                    _currentStrategy.endBlockNumber = startBlockNumber_;
                    emit CurrentStrategyUpdated(
                        _currentStrategy.perBlockReward, _currentStrategy.startBlockNumber, startBlockNumber_
                    );
                }
            }
            return true;
        }
        function decreasePool(uint256 amount) external onlyPositiveAmount(amount) onlyOwner returns (bool success) {
            _update();
            if (_lockedRewards >= amount) {
                _lockedRewards = _lockedRewards - amount;
            } else {
                amount = _lockedRewards;
                _lockedRewards = 0;
            }
            emit PoolDecreased(amount);
            _stakingToken.safeTransfer(owner(), amount);
            return true;
        }
        /// @notice Increases pool of rewards
        /// @param amount Amount of staking tokens (in wei) that should be added to rewards pool
        function increasePool(uint256 amount) external onlyPositiveAmount(amount) returns (bool success) {
            _update();
            address payer = msg.sender;
            _lockedRewards = _lockedRewards + amount;
            emit PoolIncreased(payer, amount);
            _stakingToken.safeTransferFrom(payer, address(this), amount);
            return true;
        }
        /// @notice Change claiming fee percent. Can be called only by the owner
        /// @param feePercent New claiming fee percent
        function setClaimingFeePercent(uint256 feePercent) external onlyOwner returns (bool success) {
            _setClaimingFeePercent(feePercent);
            return true;
        }
        /// @notice Converts staking tokens to synthetic tokens
        /// @param amount Amount of staking tokens to be swapped
        /// @param proof Merkle Whitelist inclusion if user wallet proof
        /// @return mintedAmount Amount of synthetic tokens that was received at swapping process
        function stake(
            uint256 amount,
            bytes32[] calldata proof
        )
            external
            onlyPositiveAmount(amount)
            returns (uint256 mintedAmount)
        {
            if (!whitelist.isValidProof(proof, keccak256(abi.encodePacked(msg.sender)))) {
                revert StakingErrors.StakingPool__StakerNotWhitelisted(msg.sender);
            }
            return _stake(msg.sender, msg.sender, amount);
        }
        /// @notice Converts staking tokens to synthetic tokens and sends them to specific account
        /// @param account Receiver of synthetic tokens
        /// @param amount Amount of staking tokens to be swapped
        /// @param proof Merkle Whitelist inclusion if user wallet proof
        /// @return mintedAmount Amount of synthetic tokens that was received by specified account at swapping process
        function stakeForUser(
            address account,
            uint256 amount,
            bytes32[] calldata proof
        )
            external
            onlyPositiveAmount(amount)
            returns (uint256 mintedAmount)
        {
            if (!whitelist.isValidProof(proof, keccak256(abi.encodePacked(account)))) {
                revert StakingErrors.StakingPool__StakerNotWhitelisted(account);
            }
            return _stake(account, msg.sender, amount);
        }
        /// @notice Swapes synthetic tokens for staking tokens and locks them for some period
        /// @param amount Minimum amount of staking tokens that should be locked after swapping process
        /// @return unstakedAmount Amount of staking tokens that was locked
        /// @return burnedAmount Amount of synthetic tokens that was burned
        function unstake(uint256 amount)
            external
            onlyPositiveAmount(amount)
            returns (uint256 unstakedAmount, uint256 burnedAmount)
        {
            address caller = msg.sender;
            _update();
            (unstakedAmount, burnedAmount) = _calculateUnstake(caller, amount, _price);
            _burn(caller, burnedAmount);
            _totalStaked = _totalStaked - unstakedAmount;
            _totalUnstaked = _totalUnstaked + unstakedAmount;
            Unstake storage unstake_ = _unstakes[caller];
            unstake_.amount = unstake_.amount + unstakedAmount;
            unstake_.applicableAt = getTimestamp() + _unstakingTime;
            emit Unstaked(caller, amount, unstakedAmount, burnedAmount, unstake_.applicableAt);
        }
        /// @notice Updates price of synthetic token
        /// @dev Automatically has been called on every contract action, that uses or can affect price
        function update() external returns (bool success) {
            _update();
            return true;
        }
        /// @notice Withdraws unstaked staking tokens
        function withdraw() external returns (bool success) {
            address caller = msg.sender;
            Unstake storage unstake_ = _unstakes[caller];
            uint256 amount = unstake_.amount;
            require(amount > 0, "Not unstaked");
            require(unstake_.applicableAt <= getTimestamp(), "Not released at");
            delete _unstakes[caller];
            _totalUnstaked = _totalUnstaked - amount;
            emit Withdrawed(caller, amount);
            _stakingToken.safeTransfer(caller, amount);
            return true;
        }
        /// @notice Change unstaking time. Can be called only by the owner
        /// @param unstakingTime_ New unstaking process duration in seconds
        function setUnstakingTime(uint256 unstakingTime_) external onlyOwner returns (bool success) {
            _setUnstakingTime(unstakingTime_);
            return true;
        }
        function _getStrategyUnlockedRewards(Strategy memory strategy_) internal view returns (uint256 unlocked) {
            uint256 currentBlockNumber = getBlockNumber();
            if (currentBlockNumber < strategy_.startBlockNumber || currentBlockNumber == lastUpdateBlockNumber) {
                return unlocked;
            }
            uint256 lastRewardedBlockNumber = Math.max(lastUpdateBlockNumber, strategy_.startBlockNumber);
            uint256 lastRewardableBlockNumber = Math.min(currentBlockNumber, strategy_.endBlockNumber);
            if (lastRewardedBlockNumber < lastRewardableBlockNumber) {
                uint256 blocksDiff = lastRewardableBlockNumber - lastRewardedBlockNumber;
                unlocked = unlocked + (blocksDiff * strategy_.perBlockReward);
            }
        }
        function _calculateUnstake(
            address account,
            uint256 amount,
            AttoDecimal.Instance memory price_
        )
            internal
            view
            returns (uint256 unstakedAmount, uint256 burnedAmount)
        {
            unstakedAmount = amount;
            burnedAmount = AttoDecimal.div(amount, price_).ceil();
            uint256 balance = balanceOf(account);
            require(burnedAmount > 0, "Too small unstaking amount");
            require(balance >= burnedAmount, "Not enough synthetic tokens");
            uint256 remainingSyntheticBalance = balance - burnedAmount;
            uint256 remainingStake = _price.mul(remainingSyntheticBalance).floor();
            if (remainingStake < 10 ** 18) {
                burnedAmount = balance;
                unstakedAmount = unstakedAmount + remainingStake;
            }
        }
        function _unlockRewardsAndStake() internal {
            (uint256 unlocked, bool currentStrategyEnded) = getUnlockedRewards();
            if (currentStrategyEnded) {
                _currentStrategy = _nextStrategy;
                emit NextStrategyRemoved();
                if (_currentStrategy.endBlockNumber != 0) {
                    emit CurrentStrategyUpdated(
                        _currentStrategy.perBlockReward, _currentStrategy.startBlockNumber, _currentStrategy.endBlockNumber
                    );
                }
                delete _nextStrategy;
            }
            unlocked = Math.min(unlocked, _lockedRewards);
            if (unlocked > 0) {
                emit RewardsUnlocked(unlocked);
                _lockedRewards = _lockedRewards - unlocked;
                _totalStaked = _totalStaked + unlocked;
            }
            lastUpdateBlockNumber = getBlockNumber();
        }
        function _update() internal {
            if (getBlockNumber() <= lastUpdateBlockNumber) return;
            _unlockRewardsAndStake();
            _updatePrice();
        }
        function _updatePrice() internal {
            uint256 totalStaked_ = _totalStaked;
            uint256 totalSupply_ = totalSupply();
            if (totalSupply_ == 0) _price = _defaultPrice;
            else _price = AttoDecimal.div(totalStaked_, totalSupply_);
            emit PriceUpdated(_price.mantissa, AttoDecimal.BASE, AttoDecimal.EXPONENTIATION);
        }
        function _validateStrategyParameters(
            uint256 perBlockReward,
            uint256 startBlockNumber,
            uint256 duration
        )
            internal
            view
        {
            require(duration > 0, "Duration is zero");
            require(startBlockNumber >= getBlockNumber(), "Start block number lt current");
            require(perBlockReward <= 188 * 10 ** 18, "Per block reward overflow");
        }
        function _setClaimingFeePercent(uint256 feePercent) internal {
            require(feePercent >= 0 && feePercent <= 100, "Invalid fee percent");
            claimingFeePercent = feePercent;
            emit ClaimingFeePercentUpdated(feePercent);
        }
        function _setUnstakingTime(uint256 unstakingTime_) internal {
            _unstakingTime = unstakingTime_;
            emit UnstakingTimeUpdated(unstakingTime_);
        }
        function _beforeTokenTransfer(address from, address to, uint256 amount) internal override {
            _update();
            string memory errorText = "Minimal stake balance should be more or equal to 1 token";
            if (from != address(0)) {
                uint256 fromNewBalance = _price.mul(balanceOf(from) - amount).floor();
                require(fromNewBalance >= MIN_STAKE_BALANCE || fromNewBalance == 0, errorText);
            }
            if (to != address(0)) {
                require(_price.mul(balanceOf(to) + amount).floor() >= MIN_STAKE_BALANCE, errorText);
            }
        }
        function _setCurrentStrategy(uint256 perBlockReward_, uint256 startBlockNumber_, uint256 endBlockNumber_) private {
            _currentStrategy = Strategy({
                perBlockReward: perBlockReward_,
                startBlockNumber: startBlockNumber_,
                endBlockNumber: endBlockNumber_
            });
            emit CurrentStrategyUpdated(perBlockReward_, startBlockNumber_, endBlockNumber_);
        }
        function _stake(address staker, address payer, uint256 amount) private returns (uint256 mintedAmount) {
            _update();
            mintedAmount = AttoDecimal.div(amount, _price).floor();
            require(mintedAmount > 0, "Too small staking amount");
            _mint(staker, mintedAmount);
            _totalStaked = _totalStaked + amount;
            emit Staked(staker, payer, amount, mintedAmount);
            _stakingToken.safeTransferFrom(payer, address(this), amount);
        }
        modifier onlyPositiveAmount(uint256 amount) {
            require(amount > 0, "Amount is not positive");
            _;
        }
        function getBlockNumber() internal view virtual returns (uint256) {
            return block.number;
        }
        function getTimestamp() internal view virtual returns (uint256) {
            return block.timestamp;
        }
        function feePool() public view returns (uint256) {
            return _feePool;
        }
        function lockedRewards() public view returns (uint256) {
            return _lockedRewards;
        }
        function totalStaked() public view returns (uint256) {
            return _totalStaked;
        }
        function totalUnstaked() public view returns (uint256) {
            return _totalUnstaked;
        }
        function stakingToken() public view returns (IERC20) {
            return _stakingToken;
        }
        function unstakingTime() public view returns (uint256) {
            return _unstakingTime;
        }
        function currentStrategy() public view returns (Strategy memory) {
            return _currentStrategy;
        }
        function nextStrategy() public view returns (Strategy memory) {
            return _nextStrategy;
        }
        function getUnstake(address account) public view returns (Unstake memory result) {
            result = _unstakes[account];
        }
        function defaultPrice() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation) {
            return _defaultPrice.toTuple();
        }
        function getCurrentStrategyUnlockedRewards() public view returns (uint256 unlocked) {
            unlocked = _getStrategyUnlockedRewards(_currentStrategy);
        }
        function getUnlockedRewards() public view returns (uint256 unlocked, bool currentStrategyEnded) {
            unlocked = _getStrategyUnlockedRewards(_currentStrategy);
            if (getBlockNumber() >= _currentStrategy.endBlockNumber) {
                currentStrategyEnded = true;
                if (_nextStrategy.endBlockNumber != 0) unlocked = unlocked + _getStrategyUnlockedRewards(_nextStrategy);
            }
        }
        /// @notice Calculates price of synthetic token for current block
        function price() public view returns (uint256 mantissa, uint256 base, uint256 exponentiation) {
            (uint256 unlocked,) = getUnlockedRewards();
            uint256 totalStaked_ = _totalStaked;
            uint256 totalSupply_ = totalSupply();
            AttoDecimal.Instance memory result = _defaultPrice;
            if (totalSupply_ > 0) result = AttoDecimal.div(totalStaked_ + unlocked, totalSupply_);
            return result.toTuple();
        }
        /// @notice Returns last updated price of synthetic token
        function priceStored() public view returns (uint256 mantissa, uint256 base, uint256 exponentiation) {
            return _price.toTuple();
        }
        /// @notice Calculates expected result of swapping synthetic tokens for staking tokens
        /// @param account Account that wants to swap
        /// @param amount Minimum amount of staking tokens that should be received at swapping process
        /// @return unstakedAmount Amount of staking tokens that should be received at swapping process
        /// @return burnedAmount Amount of synthetic tokens that should be burned at swapping process
        function calculateUnstake(
            address account,
            uint256 amount
        )
            public
            view
            returns (uint256 unstakedAmount, uint256 burnedAmount)
        {
            (uint256 mantissa_,,) = price();
            return _calculateUnstake(account, amount, AttoDecimal.Instance(mantissa_));
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.19;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "../StakingPool.sol";
    interface IStakingPool {
        function cancelUnstaking(uint256 amount) external returns (bool success);
        function claim(uint256 amount) external returns (uint256 claimedAmount, uint256 burnedAmount);
        function claimFees() external returns (uint256 amount);
        function createNewStrategy(
            uint256 perBlockReward_,
            uint256 startBlockNumber_,
            uint256 duration_
        )
            external
            returns (bool success);
        function decreasePool(uint256 amount) external returns (bool success);
        function increasePool(uint256 amount) external returns (bool success);
        function setClaimingFeePercent(uint256 feePercent) external returns (bool success);
        function stake(uint256 amount, bytes32[] calldata proof) external returns (uint256 mintedAmount);
        function stakeForUser(
            address account,
            uint256 amount,
            bytes32[] calldata proof
        )
            external
            returns (uint256 mintedAmount);
        function unstake(uint256 amount) external returns (uint256 unstakedAmount, uint256 burnedAmount);
        function update() external returns (bool success);
        function withdraw() external returns (bool success);
        function setUnstakingTime(uint256 unstakingTime_) external returns (bool success);
        function feePool() external view returns (uint256);
        function lockedRewards() external view returns (uint256);
        function totalStaked() external view returns (uint256);
        function totalUnstaked() external view returns (uint256);
        function stakingToken() external view returns (IERC20);
        function unstakingTime() external view returns (uint256);
        function currentStrategy() external view returns (StakingPool.Strategy memory);
        function nextStrategy() external view returns (StakingPool.Strategy memory);
        function getUnstake(address account) external view returns (StakingPool.Unstake memory result);
        function defaultPrice() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation);
        function getCurrentStrategyUnlockedRewards() external view returns (uint256 unlocked);
        function getUnlockedRewards() external view returns (uint256 unlocked, bool currentStrategyEnded);
        function price() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation);
        function priceStored() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation);
        function calculateUnstake(
            address account,
            uint256 amount
        )
            external
            view
            returns (uint256 unstakedAmount, uint256 burnedAmount);
        event Claimed(
            address indexed account, uint256 requestedAmount, uint256 claimedAmount, uint256 feeAmount, uint256 burnedAmount
        );
        event ClaimingFeePercentUpdated(uint256 feePercent);
        event CurrentStrategyUpdated(uint256 perBlockReward, uint256 startBlockNumber, uint256 endBlockNumber);
        event FeeClaimed(address indexed receiver, uint256 amount);
        event Migrated(
            address indexed account, uint256 omTokenV1StakeAmount, uint256 stakingPoolV1Reward, uint256 stakingPoolV2Reward
        );
        event NextStrategyUpdated(uint256 perBlockReward, uint256 startBlockNumber, uint256 endBlockNumber);
        event UnstakingTimeUpdated(uint256 unstakingTime);
        event NextStrategyRemoved();
        event PoolDecreased(uint256 amount);
        event PoolIncreased(address indexed payer, uint256 amount);
        event PriceUpdated(uint256 mantissa, uint256 base, uint256 exponentiation);
        event RewardsUnlocked(uint256 amount);
        event Staked(address indexed account, address indexed payer, uint256 stakedAmount, uint256 mintedAmount);
        event Unstaked(
            address indexed account,
            uint256 requestedAmount,
            uint256 unstakedAmount,
            uint256 burnedAmount,
            uint256 applicableAt
        );
        event UnstakingCanceled(address indexed account, uint256 amount);
        event Withdrawed(address indexed account, uint256 amount);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.19;
    library StakingErrors {
        error StakingPool__StakerNotWhitelisted(address staker);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10**64) {
                    value /= 10**64;
                    result += 64;
                }
                if (value >= 10**32) {
                    value /= 10**32;
                    result += 32;
                }
                if (value >= 10**16) {
                    value /= 10**16;
                    result += 16;
                }
                if (value >= 10**8) {
                    value /= 10**8;
                    result += 8;
                }
                if (value >= 10**4) {
                    value /= 10**4;
                    result += 4;
                }
                if (value >= 10**2) {
                    value /= 10**2;
                    result += 2;
                }
                if (value >= 10**1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
                // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                // decrementing then incrementing.
                _balances[to] += amount;
            }
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            unchecked {
                // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                _balances[account] += amount;
            }
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
                // Overflow not possible: amount <= accountBalance <= totalSupply.
                _totalSupply -= amount;
            }
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    import "../extensions/draft-IERC20Permit.sol";
    import "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        function safeTransfer(
            IERC20 token,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
        function safeTransferFrom(
            IERC20 token,
            address from,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
        function safeIncreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 newAllowance = token.allowance(address(this), spender) + value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
        function safeDecreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            unchecked {
                uint256 oldAllowance = token.allowance(address(this), spender);
                require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                uint256 newAllowance = oldAllowance - value;
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
        }
        function safePermit(
            IERC20Permit token,
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal {
            uint256 nonceBefore = token.nonces(owner);
            token.permit(owner, spender, value, deadline, v, r, s);
            uint256 nonceAfter = token.nonces(owner);
            require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            if (returndata.length > 0) {
                // Return data is optional
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    // SPDX-License-Identifier: UNLICENSED
    pragma solidity 0.8.19;
    import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "./interfaces/IWhitelistMerkle.sol";
    import "./libs/Errors.sol";
    contract Whitelist is IWhitelistMerkle, Ownable {
        bytes32 public rootHash;
        constructor(bytes32 _rootHash) {
            rootHash = _rootHash;
        }
        function isValidProof(bytes32[] calldata proof, bytes32 leaf) external view returns (bool) {
            return MerkleProof.verifyCalldata(proof, rootHash, leaf);
        }
        function setNewRootHash(bytes32 _rootHash) external onlyOwner {
            rootHash = _rootHash;
        }
        function renounceOwnership() public override onlyOwner {
            revert("Can't renounceOwnership here");
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.6;
    library AttoDecimal {
        struct Instance {
            uint256 mantissa;
        }
        uint256 internal constant BASE = 10;
        uint256 internal constant EXPONENTIATION = 18;
        uint256 internal constant ONE_MANTISSA = BASE**EXPONENTIATION;
        uint256 internal constant ONE_TENTH_MANTISSA = ONE_MANTISSA / 10;
        uint256 internal constant HALF_MANTISSA = ONE_MANTISSA / 2;
        uint256 internal constant SQUARED_ONE_MANTISSA = ONE_MANTISSA * ONE_MANTISSA;
        uint256 internal constant MAX_INTEGER = type(uint256).max / ONE_MANTISSA;
        function maximum() internal pure returns (Instance memory) {
            return Instance({mantissa: type(uint256).max});
        }
        function zero() internal pure returns (Instance memory) {
            return Instance({mantissa: 0});
        }
        function one() internal pure returns (Instance memory) {
            return Instance({mantissa: ONE_MANTISSA});
        }
        function convert(uint256 integer) internal pure returns (Instance memory) {
            return Instance({mantissa: integer * ONE_MANTISSA});
        }
        function compare(Instance memory a, Instance memory b) internal pure returns (int8) {
            if (a.mantissa < b.mantissa) return -1;
            return int8(a.mantissa > b.mantissa ? 1 : 0);
        }
        function compare(Instance memory a, uint256 b) internal pure returns (int8) {
            return compare(a, convert(b));
        }
        function add(Instance memory a, Instance memory b) internal pure returns (Instance memory) {
            return Instance({mantissa: a.mantissa + b.mantissa});
        }
        function add(Instance memory a, uint256 b) internal pure returns (Instance memory) {
            return Instance({mantissa: a.mantissa + b * ONE_MANTISSA});
        }
        function sub(Instance memory a, Instance memory b) internal pure returns (Instance memory) {
            return Instance({mantissa: a.mantissa - b.mantissa});
        }
        function sub(Instance memory a, uint256 b) internal pure returns (Instance memory) {
            return Instance({mantissa: a.mantissa - b * ONE_MANTISSA});
        }
        function sub(uint256 a, Instance memory b) internal pure returns (Instance memory) {
            return Instance({mantissa: a * ONE_MANTISSA - b.mantissa});
        }
        function mul(Instance memory a, Instance memory b) internal pure returns (Instance memory) {
            return Instance({mantissa: a.mantissa * b.mantissa / ONE_MANTISSA});
        }
        function mul(Instance memory a, uint256 b) internal pure returns (Instance memory) {
            return Instance({mantissa: a.mantissa * b});
        }
        function div(Instance memory a, Instance memory b) internal pure returns (Instance memory) {
            return Instance({mantissa: a.mantissa * ONE_MANTISSA / b.mantissa});
        }
        function div(Instance memory a, uint256 b) internal pure returns (Instance memory) {
            return Instance({mantissa: a.mantissa / b});
        }
        function div(uint256 a, Instance memory b) internal pure returns (Instance memory) {
            return Instance({mantissa: a * SQUARED_ONE_MANTISSA / b.mantissa});
        }
        function div(uint256 a, uint256 b) internal pure returns (Instance memory) {
            return Instance({mantissa: a * ONE_MANTISSA / b});
        }
        function idiv(Instance memory a, Instance memory b) internal pure returns (uint256) {
            return a.mantissa / b.mantissa;
        }
        function idiv(Instance memory a, uint256 b) internal pure returns (uint256) {
            return a.mantissa / (b * ONE_MANTISSA);
        }
        function idiv(uint256 a, Instance memory b) internal pure returns (uint256) {
            return a * ONE_MANTISSA / b.mantissa;
        }
        function mod(Instance memory a, Instance memory b) internal pure returns (Instance memory) {
            return Instance({mantissa: a.mantissa % b.mantissa});
        }
        function mod(Instance memory a, uint256 b) internal pure returns (Instance memory) {
            return Instance({mantissa: a.mantissa % (b * ONE_MANTISSA)});
        }
        function mod(uint256 a, Instance memory b) internal pure returns (Instance memory) {
            if (a > MAX_INTEGER) return Instance({mantissa: a % b.mantissa * ONE_MANTISSA % b.mantissa});
            return Instance({mantissa: a * ONE_MANTISSA % b.mantissa});
        }
        function floor(Instance memory a) internal pure returns (uint256) {
            return a.mantissa / ONE_MANTISSA;
        }
        function ceil(Instance memory a) internal pure returns (uint256) {
            return (a.mantissa / ONE_MANTISSA) + (a.mantissa % ONE_MANTISSA > 0 ? 1 : 0);
        }
        function round(Instance memory a) internal pure returns (uint256) {
            return (a.mantissa / ONE_MANTISSA) + ((a.mantissa / ONE_TENTH_MANTISSA) % 10 >= 5 ? 1 : 0);
        }
        function eq(Instance memory a, Instance memory b) internal pure returns (bool) {
            return a.mantissa == b.mantissa;
        }
        function eq(Instance memory a, uint256 b) internal pure returns (bool) {
            if (b > MAX_INTEGER) return false;
            return a.mantissa == b * ONE_MANTISSA;
        }
        function gt(Instance memory a, Instance memory b) internal pure returns (bool) {
            return a.mantissa > b.mantissa;
        }
        function gt(Instance memory a, uint256 b) internal pure returns (bool) {
            if (b > MAX_INTEGER) return false;
            return a.mantissa > b * ONE_MANTISSA;
        }
        function gte(Instance memory a, Instance memory b) internal pure returns (bool) {
            return a.mantissa >= b.mantissa;
        }
        function gte(Instance memory a, uint256 b) internal pure returns (bool) {
            if (b > MAX_INTEGER) return false;
            return a.mantissa >= b * ONE_MANTISSA;
        }
        function lt(Instance memory a, Instance memory b) internal pure returns (bool) {
            return a.mantissa < b.mantissa;
        }
        function lt(Instance memory a, uint256 b) internal pure returns (bool) {
            if (b > MAX_INTEGER) return true;
            return a.mantissa < b * ONE_MANTISSA;
        }
        function lte(Instance memory a, Instance memory b) internal pure returns (bool) {
            return a.mantissa <= b.mantissa;
        }
        function lte(Instance memory a, uint256 b) internal pure returns (bool) {
            if (b > MAX_INTEGER) return true;
            return a.mantissa <= b * ONE_MANTISSA;
        }
        function isInteger(Instance memory a) internal pure returns (bool) {
            return a.mantissa % ONE_MANTISSA == 0;
        }
        function isPositive(Instance memory a) internal pure returns (bool) {
            return a.mantissa > 0;
        }
        function isZero(Instance memory a) internal pure returns (bool) {
            return a.mantissa == 0;
        }
        function sum(Instance[] memory array) internal pure returns (Instance memory result) {
            uint256 length = array.length;
            for (uint256 index = 0; index < length; index++) result = add(result, array[index]);
        }
        function toTuple(Instance memory a)
            internal
            pure
            returns (
                uint256 mantissa,
                uint256 base,
                uint256 exponentiation
            )
        {
            return (a.mantissa, BASE, EXPONENTIATION);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.6;
    abstract contract TwoStageOwnable {
        address private _nominatedOwner;
        address private _owner;
        function nominatedOwner() public view returns (address) {
            return _nominatedOwner;
        }
        function owner() public view returns (address) {
            return _owner;
        }
        event OwnerChanged(address indexed newOwner);
        event OwnerNominated(address indexed nominatedOwner);
        constructor(address owner_) {
            require(owner_ != address(0), "Owner is zero");
            _setOwner(owner_);
        }
        function acceptOwnership() external returns (bool success) {
            require(msg.sender == _nominatedOwner, "Not nominated to ownership");
            _setOwner(_nominatedOwner);
            return true;
        }
        function nominateNewOwner(address owner_) external onlyOwner returns (bool success) {
            _nominateNewOwner(owner_);
            return true;
        }
        modifier onlyOwner {
            require(msg.sender == _owner, "Not owner");
            _;
        }
        function _nominateNewOwner(address owner_) internal {
            if (_nominatedOwner == owner_) return;
            require(_owner != owner_, "Already owner");
            _nominatedOwner = owner_;
            emit OwnerNominated(owner_);
        }
        function _setOwner(address newOwner) internal {
            if (_owner == newOwner) return;
            _owner = newOwner;
            _nominatedOwner = address(0);
            emit OwnerChanged(newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates merkle trees that are safe
     * against this attack out of the box.
     */
    library MerkleProof {
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(
            bytes32[] memory proof,
            bytes32 root,
            bytes32 leaf
        ) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
        /**
         * @dev Calldata version of {verify}
         *
         * _Available since v4.7._
         */
        function verifyCalldata(
            bytes32[] calldata proof,
            bytes32 root,
            bytes32 leaf
        ) internal pure returns (bool) {
            return processProofCalldata(proof, leaf) == root;
        }
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         *
         * _Available since v4.4._
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Calldata version of {processProof}
         *
         * _Available since v4.7._
         */
        function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProof(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Calldata version of {multiProofVerify}
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         *
         * _Available since v4.7._
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                return hashes[totalHashes - 1];
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        /**
         * @dev Calldata version of {processMultiProof}.
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                return hashes[totalHashes - 1];
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
            return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
        }
        function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.19;
    interface IWhitelistMerkle {
        function isValidProof(bytes32[] calldata proof, bytes32 leaf) external view returns (bool);
        function setNewRootHash(bytes32 _rootHash) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.19;
    library Errors {
        error MerkleWhitelist__AddressNotWhitelisted(address wallet);
    }
    

    File 2 of 2: OMTokenV2
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.12;
    import "openzeppelin-solidity/contracts/token/ERC20/ERC20Capped.sol";
    import "openzeppelin-solidity/contracts/access/Ownable.sol";
    contract OMTokenV2 is ERC20Capped, Ownable {
        constructor(address owner_) public ERC20("MANTRA DAO", "OM") ERC20Capped(888888888 * 10**18) {
            transferOwnership(owner_);
        }
        function mint(address account, uint256 amount) external onlyOwner returns (bool success) {
            _mint(account, amount);
            return true;
        }
        function renounceOwnership() public override {
            require(totalSupply() == cap(), "Total supply not equals to cap");
            super.renounceOwnership();
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address payable) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    import "../GSN/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor () internal {
            address msgSender = _msgSender();
            _owner = msgSender;
            emit OwnershipTransferred(address(0), msgSender);
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(_owner == _msgSender(), "Ownable: caller is not the owner");
            _;
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
            return c;
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
            return c;
        }
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
            return c;
        }
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
            return c;
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    import "../../GSN/Context.sol";
    import "./IERC20.sol";
    import "../../math/SafeMath.sol";
    import "../../utils/Address.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin guidelines: functions revert instead
     * of returning `false` on failure. This behavior is nonetheless conventional
     * and does not conflict with the expectations of ERC20 applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20 {
        using SafeMath for uint256;
        using Address for address;
        mapping (address => uint256) private _balances;
        mapping (address => mapping (address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        uint8 private _decimals;
        /**
         * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
         * a default value of 18.
         *
         * To select a different value for {decimals}, use {_setupDecimals}.
         *
         * All three of these values are immutable: they can only be set once during
         * construction.
         */
        constructor (string memory name, string memory symbol) public {
            _name = name;
            _symbol = symbol;
            _decimals = 18;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5,05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
         * called.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view returns (uint8) {
            return _decimals;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            _approve(_msgSender(), spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20};
         *
         * Requirements:
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for ``sender``'s tokens of at least
         * `amount`.
         */
        function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
            _transfer(sender, recipient, amount);
            _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
            return true;
        }
        /**
         * @dev Moves tokens `amount` from `sender` to `recipient`.
         *
         * This is internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(address sender, address recipient, uint256 amount) internal virtual {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(sender, recipient, amount);
            _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
            _balances[recipient] = _balances[recipient].add(amount);
            emit Transfer(sender, recipient, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements
         *
         * - `to` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply = _totalSupply.add(amount);
            _balances[account] = _balances[account].add(amount);
            emit Transfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
            _totalSupply = _totalSupply.sub(amount);
            emit Transfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 amount) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Sets {decimals} to a value other than the default one of 18.
         *
         * WARNING: This function should only be called from the constructor. Most
         * applications that interact with token contracts will not expect
         * {decimals} to ever change, and may work incorrectly if it does.
         */
        function _setupDecimals(uint8 decimals_) internal {
            _decimals = decimals_;
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be to transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    import "./ERC20.sol";
    /**
     * @dev Extension of {ERC20} that adds a cap to the supply of tokens.
     */
    abstract contract ERC20Capped is ERC20 {
        uint256 private _cap;
        /**
         * @dev Sets the value of the `cap`. This value is immutable, it can only be
         * set once during construction.
         */
        constructor (uint256 cap) public {
            require(cap > 0, "ERC20Capped: cap is 0");
            _cap = cap;
        }
        /**
         * @dev Returns the cap on the token's total supply.
         */
        function cap() public view returns (uint256) {
            return _cap;
        }
        /**
         * @dev See {ERC20-_beforeTokenTransfer}.
         *
         * Requirements:
         *
         * - minted tokens must not cause the total supply to go over the cap.
         */
        function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
            super._beforeTokenTransfer(from, to, amount);
            if (from == address(0)) { // When minting tokens
                require(totalSupply().add(amount) <= _cap, "ERC20Capped: cap exceeded");
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.2;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies in extcodesize, which returns 0 for contracts in
            // construction, since the code is only stored at the end of the
            // constructor execution.
            uint256 size;
            // solhint-disable-next-line no-inline-assembly
            assembly { size := extcodesize(account) }
            return size > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
            (bool success, ) = recipient.call{ value: amount }("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain`call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
          return functionCall(target, data, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            return _functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            return _functionCallWithValue(target, data, value, errorMessage);
        }
        function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
            require(isContract(target), "Address: call to non-contract");
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }