Transaction Hash:
Block:
21484450 at Dec-26-2024 05:08:11 AM +UTC
Transaction Fee:
0.000205855256867967 ETH
$0.50
Gas Used:
47,859 Gas / 4.301286213 Gwei
Emitted Events:
305 |
StakingPool.Withdrawed( account=[Sender] 0x29bf678e889fa1d08604dc842a589a21c9e6da63, amount=914153535692466800404 )
|
306 |
OMTokenV2.Transfer( from=[Receiver] StakingPool, to=[Sender] 0x29bf678e889fa1d08604dc842a589a21c9e6da63, value=914153535692466800404 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1eA973A6...9CF8D2Cb7 | |||||
0x29bF678e...1C9E6dA63 |
0.415440283638965265 Eth
Nonce: 46
|
0.415234428382097298 Eth
Nonce: 47
| 0.000205855256867967 | ||
0x3593D125...6Dd60c95d | |||||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 18.205897242560967568 Eth | 18.205898052335247568 Eth | 0.00000080977428 |
Execution Trace
StakingPool.CALL( )

-
OMTokenV2.transfer( recipient=0x29bF678e889fA1d08604dc842A589a21C9E6dA63, amount=914153535692466800404 ) => ( True )
File 1 of 2: StakingPool
File 2 of 2: OMTokenV2
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; pragma experimental ABIEncoderV2; import "./interfaces/IStakingPool.sol"; import "./libs/StakingErrors.sol"; import "@openzeppelin/contracts/utils/math/Math.sol"; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@whitelist-merkle/Whitelist.sol"; import "solowei/AttoDecimal.sol"; import "solowei/TwoStageOwnable.sol"; contract StakingPool is IStakingPool, ERC20, TwoStageOwnable { using SafeERC20 for IERC20; using AttoDecimal for AttoDecimal.Instance; struct Strategy { uint256 endBlockNumber; uint256 perBlockReward; uint256 startBlockNumber; } struct Unstake { uint256 amount; uint256 applicableAt; } Whitelist public whitelist; uint256 public constant MIN_STAKE_BALANCE = 10 ** 18; uint256 public claimingFeePercent; uint256 public lastUpdateBlockNumber; uint256 private _feePool; uint256 private _lockedRewards; uint256 private _totalStaked; uint256 private _totalUnstaked; uint256 private _unstakingTime; IERC20 private _stakingToken; AttoDecimal.Instance private _defaultPrice; AttoDecimal.Instance private _price; Strategy private _currentStrategy; Strategy private _nextStrategy; mapping(address => Unstake) private _unstakes; constructor( string memory syntheticTokenName, string memory syntheticTokenSymbol, IERC20 stakingToken_, address owner_, address whitelistAddress_, uint256 claimingFeePercent_, uint256 perBlockReward_, uint256 startBlockNumber_, uint256 duration_, uint256 unstakingTime_, uint256 defaultPriceMantissa ) TwoStageOwnable(owner_) ERC20(syntheticTokenName, syntheticTokenSymbol) { _defaultPrice = AttoDecimal.Instance(defaultPriceMantissa); _stakingToken = stakingToken_; _setClaimingFeePercent(claimingFeePercent_); _validateStrategyParameters(perBlockReward_, startBlockNumber_, duration_); _setUnstakingTime(unstakingTime_); _setCurrentStrategy(perBlockReward_, startBlockNumber_, startBlockNumber_ + duration_); lastUpdateBlockNumber = getBlockNumber(); _price = _defaultPrice; whitelist = Whitelist(whitelistAddress_); } /// @notice Cancels unstaking by staking locked for withdrawals tokens /// @param amount Amount of locked for withdrawals tokens function cancelUnstaking(uint256 amount) external onlyPositiveAmount(amount) returns (bool success) { _update(); address caller = msg.sender; Unstake storage unstake_ = _unstakes[caller]; uint256 unstakingAmount = unstake_.amount; require(unstakingAmount >= amount, "Not enough unstaked balance"); uint256 stakedAmount = _price.mul(balanceOf(caller)).floor(); require(stakedAmount + amount >= MIN_STAKE_BALANCE, "Stake balance lt min stake"); uint256 synthAmount = AttoDecimal.div(amount, _price).floor(); _mint(caller, synthAmount); _totalStaked = _totalStaked + amount; _totalUnstaked = _totalUnstaked - amount; unstake_.amount = unstakingAmount - amount; emit Staked(caller, address(0), amount, synthAmount); emit UnstakingCanceled(caller, amount); return true; } /// @notice Swaps synthetic tokens for staking tokens and immediately sends them to the caller but takes some fee /// @param amount Staking tokens amount to swap for. Fee will be taked from this amount /// @return claimedAmount Amount of staking tokens that was been sended to caller /// @return burnedAmount Amount of synthetic tokens that was burned while swapping function claim(uint256 amount) external onlyPositiveAmount(amount) returns (uint256 claimedAmount, uint256 burnedAmount) { _update(); address caller = msg.sender; (claimedAmount, burnedAmount) = _calculateUnstake(caller, amount, _price); uint256 fee = (claimedAmount * claimingFeePercent) / 100; _burn(caller, burnedAmount); _totalStaked = _totalStaked - claimedAmount; claimedAmount = claimedAmount - fee; _feePool = _feePool + fee; emit Claimed(caller, amount, claimedAmount, fee, burnedAmount); _stakingToken.safeTransfer(caller, claimedAmount); } /// @notice Withdraws all staking tokens, that have been accumulated in immediately claiming process. /// Allowed to be called only by the owner /// @return amount Amount of accumulated and withdrawed tokens function claimFees() external onlyOwner returns (uint256 amount) { require(_feePool > 0, "No fees"); amount = _feePool; _feePool = 0; emit FeeClaimed(owner(), amount); _stakingToken.safeTransfer(owner(), amount); } /// @notice Creates new strategy. Allowed to be called only by the owner /// @param perBlockReward_ Reward that should be added to common staking tokens pool every block /// @param startBlockNumber_ Number of block from which strategy should starts /// @param duration_ Blocks count for which new strategy should be applied function createNewStrategy( uint256 perBlockReward_, uint256 startBlockNumber_, uint256 duration_ ) public onlyOwner returns (bool success) { _update(); _validateStrategyParameters(perBlockReward_, startBlockNumber_, duration_); uint256 endBlockNumber = startBlockNumber_ + duration_; Strategy memory strategy = Strategy({ perBlockReward: perBlockReward_, startBlockNumber: startBlockNumber_, endBlockNumber: endBlockNumber }); if (_currentStrategy.startBlockNumber > getBlockNumber()) { delete _nextStrategy; emit NextStrategyRemoved(); _currentStrategy = strategy; emit CurrentStrategyUpdated(perBlockReward_, startBlockNumber_, endBlockNumber); } else { emit NextStrategyUpdated(perBlockReward_, startBlockNumber_, endBlockNumber); _nextStrategy = strategy; if (_currentStrategy.endBlockNumber > startBlockNumber_) { _currentStrategy.endBlockNumber = startBlockNumber_; emit CurrentStrategyUpdated( _currentStrategy.perBlockReward, _currentStrategy.startBlockNumber, startBlockNumber_ ); } } return true; } function decreasePool(uint256 amount) external onlyPositiveAmount(amount) onlyOwner returns (bool success) { _update(); if (_lockedRewards >= amount) { _lockedRewards = _lockedRewards - amount; } else { amount = _lockedRewards; _lockedRewards = 0; } emit PoolDecreased(amount); _stakingToken.safeTransfer(owner(), amount); return true; } /// @notice Increases pool of rewards /// @param amount Amount of staking tokens (in wei) that should be added to rewards pool function increasePool(uint256 amount) external onlyPositiveAmount(amount) returns (bool success) { _update(); address payer = msg.sender; _lockedRewards = _lockedRewards + amount; emit PoolIncreased(payer, amount); _stakingToken.safeTransferFrom(payer, address(this), amount); return true; } /// @notice Change claiming fee percent. Can be called only by the owner /// @param feePercent New claiming fee percent function setClaimingFeePercent(uint256 feePercent) external onlyOwner returns (bool success) { _setClaimingFeePercent(feePercent); return true; } /// @notice Converts staking tokens to synthetic tokens /// @param amount Amount of staking tokens to be swapped /// @param proof Merkle Whitelist inclusion if user wallet proof /// @return mintedAmount Amount of synthetic tokens that was received at swapping process function stake( uint256 amount, bytes32[] calldata proof ) external onlyPositiveAmount(amount) returns (uint256 mintedAmount) { if (!whitelist.isValidProof(proof, keccak256(abi.encodePacked(msg.sender)))) { revert StakingErrors.StakingPool__StakerNotWhitelisted(msg.sender); } return _stake(msg.sender, msg.sender, amount); } /// @notice Converts staking tokens to synthetic tokens and sends them to specific account /// @param account Receiver of synthetic tokens /// @param amount Amount of staking tokens to be swapped /// @param proof Merkle Whitelist inclusion if user wallet proof /// @return mintedAmount Amount of synthetic tokens that was received by specified account at swapping process function stakeForUser( address account, uint256 amount, bytes32[] calldata proof ) external onlyPositiveAmount(amount) returns (uint256 mintedAmount) { if (!whitelist.isValidProof(proof, keccak256(abi.encodePacked(account)))) { revert StakingErrors.StakingPool__StakerNotWhitelisted(account); } return _stake(account, msg.sender, amount); } /// @notice Swapes synthetic tokens for staking tokens and locks them for some period /// @param amount Minimum amount of staking tokens that should be locked after swapping process /// @return unstakedAmount Amount of staking tokens that was locked /// @return burnedAmount Amount of synthetic tokens that was burned function unstake(uint256 amount) external onlyPositiveAmount(amount) returns (uint256 unstakedAmount, uint256 burnedAmount) { address caller = msg.sender; _update(); (unstakedAmount, burnedAmount) = _calculateUnstake(caller, amount, _price); _burn(caller, burnedAmount); _totalStaked = _totalStaked - unstakedAmount; _totalUnstaked = _totalUnstaked + unstakedAmount; Unstake storage unstake_ = _unstakes[caller]; unstake_.amount = unstake_.amount + unstakedAmount; unstake_.applicableAt = getTimestamp() + _unstakingTime; emit Unstaked(caller, amount, unstakedAmount, burnedAmount, unstake_.applicableAt); } /// @notice Updates price of synthetic token /// @dev Automatically has been called on every contract action, that uses or can affect price function update() external returns (bool success) { _update(); return true; } /// @notice Withdraws unstaked staking tokens function withdraw() external returns (bool success) { address caller = msg.sender; Unstake storage unstake_ = _unstakes[caller]; uint256 amount = unstake_.amount; require(amount > 0, "Not unstaked"); require(unstake_.applicableAt <= getTimestamp(), "Not released at"); delete _unstakes[caller]; _totalUnstaked = _totalUnstaked - amount; emit Withdrawed(caller, amount); _stakingToken.safeTransfer(caller, amount); return true; } /// @notice Change unstaking time. Can be called only by the owner /// @param unstakingTime_ New unstaking process duration in seconds function setUnstakingTime(uint256 unstakingTime_) external onlyOwner returns (bool success) { _setUnstakingTime(unstakingTime_); return true; } function _getStrategyUnlockedRewards(Strategy memory strategy_) internal view returns (uint256 unlocked) { uint256 currentBlockNumber = getBlockNumber(); if (currentBlockNumber < strategy_.startBlockNumber || currentBlockNumber == lastUpdateBlockNumber) { return unlocked; } uint256 lastRewardedBlockNumber = Math.max(lastUpdateBlockNumber, strategy_.startBlockNumber); uint256 lastRewardableBlockNumber = Math.min(currentBlockNumber, strategy_.endBlockNumber); if (lastRewardedBlockNumber < lastRewardableBlockNumber) { uint256 blocksDiff = lastRewardableBlockNumber - lastRewardedBlockNumber; unlocked = unlocked + (blocksDiff * strategy_.perBlockReward); } } function _calculateUnstake( address account, uint256 amount, AttoDecimal.Instance memory price_ ) internal view returns (uint256 unstakedAmount, uint256 burnedAmount) { unstakedAmount = amount; burnedAmount = AttoDecimal.div(amount, price_).ceil(); uint256 balance = balanceOf(account); require(burnedAmount > 0, "Too small unstaking amount"); require(balance >= burnedAmount, "Not enough synthetic tokens"); uint256 remainingSyntheticBalance = balance - burnedAmount; uint256 remainingStake = _price.mul(remainingSyntheticBalance).floor(); if (remainingStake < 10 ** 18) { burnedAmount = balance; unstakedAmount = unstakedAmount + remainingStake; } } function _unlockRewardsAndStake() internal { (uint256 unlocked, bool currentStrategyEnded) = getUnlockedRewards(); if (currentStrategyEnded) { _currentStrategy = _nextStrategy; emit NextStrategyRemoved(); if (_currentStrategy.endBlockNumber != 0) { emit CurrentStrategyUpdated( _currentStrategy.perBlockReward, _currentStrategy.startBlockNumber, _currentStrategy.endBlockNumber ); } delete _nextStrategy; } unlocked = Math.min(unlocked, _lockedRewards); if (unlocked > 0) { emit RewardsUnlocked(unlocked); _lockedRewards = _lockedRewards - unlocked; _totalStaked = _totalStaked + unlocked; } lastUpdateBlockNumber = getBlockNumber(); } function _update() internal { if (getBlockNumber() <= lastUpdateBlockNumber) return; _unlockRewardsAndStake(); _updatePrice(); } function _updatePrice() internal { uint256 totalStaked_ = _totalStaked; uint256 totalSupply_ = totalSupply(); if (totalSupply_ == 0) _price = _defaultPrice; else _price = AttoDecimal.div(totalStaked_, totalSupply_); emit PriceUpdated(_price.mantissa, AttoDecimal.BASE, AttoDecimal.EXPONENTIATION); } function _validateStrategyParameters( uint256 perBlockReward, uint256 startBlockNumber, uint256 duration ) internal view { require(duration > 0, "Duration is zero"); require(startBlockNumber >= getBlockNumber(), "Start block number lt current"); require(perBlockReward <= 188 * 10 ** 18, "Per block reward overflow"); } function _setClaimingFeePercent(uint256 feePercent) internal { require(feePercent >= 0 && feePercent <= 100, "Invalid fee percent"); claimingFeePercent = feePercent; emit ClaimingFeePercentUpdated(feePercent); } function _setUnstakingTime(uint256 unstakingTime_) internal { _unstakingTime = unstakingTime_; emit UnstakingTimeUpdated(unstakingTime_); } function _beforeTokenTransfer(address from, address to, uint256 amount) internal override { _update(); string memory errorText = "Minimal stake balance should be more or equal to 1 token"; if (from != address(0)) { uint256 fromNewBalance = _price.mul(balanceOf(from) - amount).floor(); require(fromNewBalance >= MIN_STAKE_BALANCE || fromNewBalance == 0, errorText); } if (to != address(0)) { require(_price.mul(balanceOf(to) + amount).floor() >= MIN_STAKE_BALANCE, errorText); } } function _setCurrentStrategy(uint256 perBlockReward_, uint256 startBlockNumber_, uint256 endBlockNumber_) private { _currentStrategy = Strategy({ perBlockReward: perBlockReward_, startBlockNumber: startBlockNumber_, endBlockNumber: endBlockNumber_ }); emit CurrentStrategyUpdated(perBlockReward_, startBlockNumber_, endBlockNumber_); } function _stake(address staker, address payer, uint256 amount) private returns (uint256 mintedAmount) { _update(); mintedAmount = AttoDecimal.div(amount, _price).floor(); require(mintedAmount > 0, "Too small staking amount"); _mint(staker, mintedAmount); _totalStaked = _totalStaked + amount; emit Staked(staker, payer, amount, mintedAmount); _stakingToken.safeTransferFrom(payer, address(this), amount); } modifier onlyPositiveAmount(uint256 amount) { require(amount > 0, "Amount is not positive"); _; } function getBlockNumber() internal view virtual returns (uint256) { return block.number; } function getTimestamp() internal view virtual returns (uint256) { return block.timestamp; } function feePool() public view returns (uint256) { return _feePool; } function lockedRewards() public view returns (uint256) { return _lockedRewards; } function totalStaked() public view returns (uint256) { return _totalStaked; } function totalUnstaked() public view returns (uint256) { return _totalUnstaked; } function stakingToken() public view returns (IERC20) { return _stakingToken; } function unstakingTime() public view returns (uint256) { return _unstakingTime; } function currentStrategy() public view returns (Strategy memory) { return _currentStrategy; } function nextStrategy() public view returns (Strategy memory) { return _nextStrategy; } function getUnstake(address account) public view returns (Unstake memory result) { result = _unstakes[account]; } function defaultPrice() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation) { return _defaultPrice.toTuple(); } function getCurrentStrategyUnlockedRewards() public view returns (uint256 unlocked) { unlocked = _getStrategyUnlockedRewards(_currentStrategy); } function getUnlockedRewards() public view returns (uint256 unlocked, bool currentStrategyEnded) { unlocked = _getStrategyUnlockedRewards(_currentStrategy); if (getBlockNumber() >= _currentStrategy.endBlockNumber) { currentStrategyEnded = true; if (_nextStrategy.endBlockNumber != 0) unlocked = unlocked + _getStrategyUnlockedRewards(_nextStrategy); } } /// @notice Calculates price of synthetic token for current block function price() public view returns (uint256 mantissa, uint256 base, uint256 exponentiation) { (uint256 unlocked,) = getUnlockedRewards(); uint256 totalStaked_ = _totalStaked; uint256 totalSupply_ = totalSupply(); AttoDecimal.Instance memory result = _defaultPrice; if (totalSupply_ > 0) result = AttoDecimal.div(totalStaked_ + unlocked, totalSupply_); return result.toTuple(); } /// @notice Returns last updated price of synthetic token function priceStored() public view returns (uint256 mantissa, uint256 base, uint256 exponentiation) { return _price.toTuple(); } /// @notice Calculates expected result of swapping synthetic tokens for staking tokens /// @param account Account that wants to swap /// @param amount Minimum amount of staking tokens that should be received at swapping process /// @return unstakedAmount Amount of staking tokens that should be received at swapping process /// @return burnedAmount Amount of synthetic tokens that should be burned at swapping process function calculateUnstake( address account, uint256 amount ) public view returns (uint256 unstakedAmount, uint256 burnedAmount) { (uint256 mantissa_,,) = price(); return _calculateUnstake(account, amount, AttoDecimal.Instance(mantissa_)); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../StakingPool.sol"; interface IStakingPool { function cancelUnstaking(uint256 amount) external returns (bool success); function claim(uint256 amount) external returns (uint256 claimedAmount, uint256 burnedAmount); function claimFees() external returns (uint256 amount); function createNewStrategy( uint256 perBlockReward_, uint256 startBlockNumber_, uint256 duration_ ) external returns (bool success); function decreasePool(uint256 amount) external returns (bool success); function increasePool(uint256 amount) external returns (bool success); function setClaimingFeePercent(uint256 feePercent) external returns (bool success); function stake(uint256 amount, bytes32[] calldata proof) external returns (uint256 mintedAmount); function stakeForUser( address account, uint256 amount, bytes32[] calldata proof ) external returns (uint256 mintedAmount); function unstake(uint256 amount) external returns (uint256 unstakedAmount, uint256 burnedAmount); function update() external returns (bool success); function withdraw() external returns (bool success); function setUnstakingTime(uint256 unstakingTime_) external returns (bool success); function feePool() external view returns (uint256); function lockedRewards() external view returns (uint256); function totalStaked() external view returns (uint256); function totalUnstaked() external view returns (uint256); function stakingToken() external view returns (IERC20); function unstakingTime() external view returns (uint256); function currentStrategy() external view returns (StakingPool.Strategy memory); function nextStrategy() external view returns (StakingPool.Strategy memory); function getUnstake(address account) external view returns (StakingPool.Unstake memory result); function defaultPrice() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation); function getCurrentStrategyUnlockedRewards() external view returns (uint256 unlocked); function getUnlockedRewards() external view returns (uint256 unlocked, bool currentStrategyEnded); function price() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation); function priceStored() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation); function calculateUnstake( address account, uint256 amount ) external view returns (uint256 unstakedAmount, uint256 burnedAmount); event Claimed( address indexed account, uint256 requestedAmount, uint256 claimedAmount, uint256 feeAmount, uint256 burnedAmount ); event ClaimingFeePercentUpdated(uint256 feePercent); event CurrentStrategyUpdated(uint256 perBlockReward, uint256 startBlockNumber, uint256 endBlockNumber); event FeeClaimed(address indexed receiver, uint256 amount); event Migrated( address indexed account, uint256 omTokenV1StakeAmount, uint256 stakingPoolV1Reward, uint256 stakingPoolV2Reward ); event NextStrategyUpdated(uint256 perBlockReward, uint256 startBlockNumber, uint256 endBlockNumber); event UnstakingTimeUpdated(uint256 unstakingTime); event NextStrategyRemoved(); event PoolDecreased(uint256 amount); event PoolIncreased(address indexed payer, uint256 amount); event PriceUpdated(uint256 mantissa, uint256 base, uint256 exponentiation); event RewardsUnlocked(uint256 amount); event Staked(address indexed account, address indexed payer, uint256 stakedAmount, uint256 mintedAmount); event Unstaked( address indexed account, uint256 requestedAmount, uint256 unstakedAmount, uint256 burnedAmount, uint256 applicableAt ); event UnstakingCanceled(address indexed account, uint256 amount); event Withdrawed(address indexed account, uint256 amount); } // SPDX-License-Identifier: MIT pragma solidity 0.8.19; library StakingErrors { error StakingPool__StakerNotWhitelisted(address staker); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.19; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "./interfaces/IWhitelistMerkle.sol"; import "./libs/Errors.sol"; contract Whitelist is IWhitelistMerkle, Ownable { bytes32 public rootHash; constructor(bytes32 _rootHash) { rootHash = _rootHash; } function isValidProof(bytes32[] calldata proof, bytes32 leaf) external view returns (bool) { return MerkleProof.verifyCalldata(proof, rootHash, leaf); } function setNewRootHash(bytes32 _rootHash) external onlyOwner { rootHash = _rootHash; } function renounceOwnership() public override onlyOwner { revert("Can't renounceOwnership here"); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.6; library AttoDecimal { struct Instance { uint256 mantissa; } uint256 internal constant BASE = 10; uint256 internal constant EXPONENTIATION = 18; uint256 internal constant ONE_MANTISSA = BASE**EXPONENTIATION; uint256 internal constant ONE_TENTH_MANTISSA = ONE_MANTISSA / 10; uint256 internal constant HALF_MANTISSA = ONE_MANTISSA / 2; uint256 internal constant SQUARED_ONE_MANTISSA = ONE_MANTISSA * ONE_MANTISSA; uint256 internal constant MAX_INTEGER = type(uint256).max / ONE_MANTISSA; function maximum() internal pure returns (Instance memory) { return Instance({mantissa: type(uint256).max}); } function zero() internal pure returns (Instance memory) { return Instance({mantissa: 0}); } function one() internal pure returns (Instance memory) { return Instance({mantissa: ONE_MANTISSA}); } function convert(uint256 integer) internal pure returns (Instance memory) { return Instance({mantissa: integer * ONE_MANTISSA}); } function compare(Instance memory a, Instance memory b) internal pure returns (int8) { if (a.mantissa < b.mantissa) return -1; return int8(a.mantissa > b.mantissa ? 1 : 0); } function compare(Instance memory a, uint256 b) internal pure returns (int8) { return compare(a, convert(b)); } function add(Instance memory a, Instance memory b) internal pure returns (Instance memory) { return Instance({mantissa: a.mantissa + b.mantissa}); } function add(Instance memory a, uint256 b) internal pure returns (Instance memory) { return Instance({mantissa: a.mantissa + b * ONE_MANTISSA}); } function sub(Instance memory a, Instance memory b) internal pure returns (Instance memory) { return Instance({mantissa: a.mantissa - b.mantissa}); } function sub(Instance memory a, uint256 b) internal pure returns (Instance memory) { return Instance({mantissa: a.mantissa - b * ONE_MANTISSA}); } function sub(uint256 a, Instance memory b) internal pure returns (Instance memory) { return Instance({mantissa: a * ONE_MANTISSA - b.mantissa}); } function mul(Instance memory a, Instance memory b) internal pure returns (Instance memory) { return Instance({mantissa: a.mantissa * b.mantissa / ONE_MANTISSA}); } function mul(Instance memory a, uint256 b) internal pure returns (Instance memory) { return Instance({mantissa: a.mantissa * b}); } function div(Instance memory a, Instance memory b) internal pure returns (Instance memory) { return Instance({mantissa: a.mantissa * ONE_MANTISSA / b.mantissa}); } function div(Instance memory a, uint256 b) internal pure returns (Instance memory) { return Instance({mantissa: a.mantissa / b}); } function div(uint256 a, Instance memory b) internal pure returns (Instance memory) { return Instance({mantissa: a * SQUARED_ONE_MANTISSA / b.mantissa}); } function div(uint256 a, uint256 b) internal pure returns (Instance memory) { return Instance({mantissa: a * ONE_MANTISSA / b}); } function idiv(Instance memory a, Instance memory b) internal pure returns (uint256) { return a.mantissa / b.mantissa; } function idiv(Instance memory a, uint256 b) internal pure returns (uint256) { return a.mantissa / (b * ONE_MANTISSA); } function idiv(uint256 a, Instance memory b) internal pure returns (uint256) { return a * ONE_MANTISSA / b.mantissa; } function mod(Instance memory a, Instance memory b) internal pure returns (Instance memory) { return Instance({mantissa: a.mantissa % b.mantissa}); } function mod(Instance memory a, uint256 b) internal pure returns (Instance memory) { return Instance({mantissa: a.mantissa % (b * ONE_MANTISSA)}); } function mod(uint256 a, Instance memory b) internal pure returns (Instance memory) { if (a > MAX_INTEGER) return Instance({mantissa: a % b.mantissa * ONE_MANTISSA % b.mantissa}); return Instance({mantissa: a * ONE_MANTISSA % b.mantissa}); } function floor(Instance memory a) internal pure returns (uint256) { return a.mantissa / ONE_MANTISSA; } function ceil(Instance memory a) internal pure returns (uint256) { return (a.mantissa / ONE_MANTISSA) + (a.mantissa % ONE_MANTISSA > 0 ? 1 : 0); } function round(Instance memory a) internal pure returns (uint256) { return (a.mantissa / ONE_MANTISSA) + ((a.mantissa / ONE_TENTH_MANTISSA) % 10 >= 5 ? 1 : 0); } function eq(Instance memory a, Instance memory b) internal pure returns (bool) { return a.mantissa == b.mantissa; } function eq(Instance memory a, uint256 b) internal pure returns (bool) { if (b > MAX_INTEGER) return false; return a.mantissa == b * ONE_MANTISSA; } function gt(Instance memory a, Instance memory b) internal pure returns (bool) { return a.mantissa > b.mantissa; } function gt(Instance memory a, uint256 b) internal pure returns (bool) { if (b > MAX_INTEGER) return false; return a.mantissa > b * ONE_MANTISSA; } function gte(Instance memory a, Instance memory b) internal pure returns (bool) { return a.mantissa >= b.mantissa; } function gte(Instance memory a, uint256 b) internal pure returns (bool) { if (b > MAX_INTEGER) return false; return a.mantissa >= b * ONE_MANTISSA; } function lt(Instance memory a, Instance memory b) internal pure returns (bool) { return a.mantissa < b.mantissa; } function lt(Instance memory a, uint256 b) internal pure returns (bool) { if (b > MAX_INTEGER) return true; return a.mantissa < b * ONE_MANTISSA; } function lte(Instance memory a, Instance memory b) internal pure returns (bool) { return a.mantissa <= b.mantissa; } function lte(Instance memory a, uint256 b) internal pure returns (bool) { if (b > MAX_INTEGER) return true; return a.mantissa <= b * ONE_MANTISSA; } function isInteger(Instance memory a) internal pure returns (bool) { return a.mantissa % ONE_MANTISSA == 0; } function isPositive(Instance memory a) internal pure returns (bool) { return a.mantissa > 0; } function isZero(Instance memory a) internal pure returns (bool) { return a.mantissa == 0; } function sum(Instance[] memory array) internal pure returns (Instance memory result) { uint256 length = array.length; for (uint256 index = 0; index < length; index++) result = add(result, array[index]); } function toTuple(Instance memory a) internal pure returns ( uint256 mantissa, uint256 base, uint256 exponentiation ) { return (a.mantissa, BASE, EXPONENTIATION); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.6; abstract contract TwoStageOwnable { address private _nominatedOwner; address private _owner; function nominatedOwner() public view returns (address) { return _nominatedOwner; } function owner() public view returns (address) { return _owner; } event OwnerChanged(address indexed newOwner); event OwnerNominated(address indexed nominatedOwner); constructor(address owner_) { require(owner_ != address(0), "Owner is zero"); _setOwner(owner_); } function acceptOwnership() external returns (bool success) { require(msg.sender == _nominatedOwner, "Not nominated to ownership"); _setOwner(_nominatedOwner); return true; } function nominateNewOwner(address owner_) external onlyOwner returns (bool success) { _nominateNewOwner(owner_); return true; } modifier onlyOwner { require(msg.sender == _owner, "Not owner"); _; } function _nominateNewOwner(address owner_) internal { if (_nominatedOwner == owner_) return; require(_owner != owner_, "Already owner"); _nominatedOwner = owner_; emit OwnerNominated(owner_); } function _setOwner(address newOwner) internal { if (_owner == newOwner) return; _owner = newOwner; _nominatedOwner = address(0); emit OwnerChanged(newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.19; interface IWhitelistMerkle { function isValidProof(bytes32[] calldata proof, bytes32 leaf) external view returns (bool); function setNewRootHash(bytes32 _rootHash) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.19; library Errors { error MerkleWhitelist__AddressNotWhitelisted(address wallet); }
File 2 of 2: OMTokenV2
// SPDX-License-Identifier: MIT pragma solidity ^0.6.12; import "openzeppelin-solidity/contracts/token/ERC20/ERC20Capped.sol"; import "openzeppelin-solidity/contracts/access/Ownable.sol"; contract OMTokenV2 is ERC20Capped, Ownable { constructor(address owner_) public ERC20("MANTRA DAO", "OM") ERC20Capped(888888888 * 10**18) { transferOwnership(owner_); } function mint(address account, uint256 amount) external onlyOwner returns (bool success) { _mint(account, amount); return true; } function renounceOwnership() public override { require(totalSupply() == cap(), "Total supply not equals to cap"); super.renounceOwnership(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../GSN/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../../GSN/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol) public { _name = name; _symbol = symbol; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "./ERC20.sol"; /** * @dev Extension of {ERC20} that adds a cap to the supply of tokens. */ abstract contract ERC20Capped is ERC20 { uint256 private _cap; /** * @dev Sets the value of the `cap`. This value is immutable, it can only be * set once during construction. */ constructor (uint256 cap) public { require(cap > 0, "ERC20Capped: cap is 0"); _cap = cap; } /** * @dev Returns the cap on the token's total supply. */ function cap() public view returns (uint256) { return _cap; } /** * @dev See {ERC20-_beforeTokenTransfer}. * * Requirements: * * - minted tokens must not cause the total supply to go over the cap. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override { super._beforeTokenTransfer(from, to, amount); if (from == address(0)) { // When minting tokens require(totalSupply().add(amount) <= _cap, "ERC20Capped: cap exceeded"); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies in extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }