Transaction Hash:
Block:
20359643 at Jul-22-2024 04:19:47 AM +UTC
Transaction Fee:
0.000273434123020176 ETH
$0.67
Gas Used:
51,957 Gas / 5.262700368 Gwei
Emitted Events:
278 |
AtomicQueue.AtomicRequestUpdated( user=[Sender] 0x76076b0a34e2daaced0aa99c58e8b5ae73a3097b, offerToken=0x7223442c...08F8c4273, wantToken=0x35fA1647...9B6118ac2, amount=1229792100520909151, deadline=1722226753, minPrice=1000912769790000233, timestamp=1721621987 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 8.566609849066542129 Eth | 8.566668621576934989 Eth | 0.00005877251039286 | |
0x76076B0a...E73a3097b |
0.280377993831601989 Eth
Nonce: 51
|
0.280104559708581813 Eth
Nonce: 52
| 0.000273434123020176 | ||
0xD45884B5...2F75dea07 | (ether.fi: Withdrawal Queue) |
Execution Trace
AtomicQueue.updateAtomicRequest( offer=0x7223442cad8e9cA474fC40109ab981608F8c4273, want=0x35fA164735182de50811E8e2E824cFb9B6118ac2, userRequest=[{name:deadline, type:uint64, order:1, indexed:false, value:1722226753, valueString:1722226753}, {name:atomicPrice, type:uint88, order:2, indexed:false, value:1000912769790000233, valueString:1000912769790000233}, {name:offerAmount, type:uint96, order:3, indexed:false, value:1229792100520909151, valueString:1229792100520909151}, {name:inSolve, type:bool, order:4, indexed:false, value:false, valueString:False}] )
updateAtomicRequest[AtomicQueue (ln:140)]
AtomicRequestUpdated[AtomicQueue (ln:146)]
// SPDX-License-Identifier: Apache-2.0 pragma solidity 0.8.21; import { Math } from "src/utils/Math.sol"; import { SafeTransferLib } from "@solmate/utils/SafeTransferLib.sol"; import { ERC20 } from "@solmate/tokens/ERC20.sol"; import { ReentrancyGuard } from "@solmate/utils/ReentrancyGuard.sol"; import { IAtomicSolver } from "./IAtomicSolver.sol"; /** * @title AtomicQueue * @notice Allows users to create `AtomicRequests` that specify an ERC20 asset to `offer` * and an ERC20 asset to `want` in return. * @notice Making atomic requests where the exchange rate between offer and want is not * relatively stable is effectively the same as placing a limit order between * those assets, so requests can be filled at a rate worse than the current market rate. * @notice It is possible for a user to make multiple requests that use the same offer asset. * If this is done it is important that the user has approved the queue to spend the * total amount of assets aggregated from all their requests, and to also have enough * `offer` asset to cover the aggregate total request of `offerAmount`. * @author crispymangoes */ contract AtomicQueue is ReentrancyGuard { using SafeTransferLib for ERC20; using Math for uint256; // ========================================= STRUCTS ========================================= /** * @notice Stores request information needed to fulfill a users atomic request. * @param deadline unix timestamp for when request is no longer valid * @param atomicPrice the price in terms of `want` asset the user wants their `offer` assets "sold" at * @dev atomicPrice MUST be in terms of `want` asset decimals. * @param offerAmount the amount of `offer` asset the user wants converted to `want` asset * @param inSolve bool used during solves to prevent duplicate users, and to prevent redoing multiple checks */ struct AtomicRequest { uint64 deadline; // deadline to fulfill request uint88 atomicPrice; // In terms of want asset decimals uint96 offerAmount; // The amount of offer asset the user wants to sell. bool inSolve; // Indicates whether this user is currently having their request fulfilled. } /** * @notice Used in `viewSolveMetaData` helper function to return data in a clean struct. * @param user the address of the user * @param flags 8 bits indicating the state of the user only the first 4 bits are used XXXX0000 * Either all flags are false(user is solvable) or only 1 is true(an error occurred). * From right to left * - 0: indicates user deadline has passed. * - 1: indicates user request has zero offer amount. * - 2: indicates user does not have enough offer asset in wallet. * - 3: indicates user has not given AtomicQueue approval. * @param assetsToOffer the amount of offer asset to solve * @param assetsForWant the amount of assets users want for their offer assets */ struct SolveMetaData { address user; uint8 flags; uint256 assetsToOffer; uint256 assetsForWant; } // ========================================= GLOBAL STATE ========================================= /** * @notice Maps user address to offer asset to want asset to a AtomicRequest struct. */ mapping(address => mapping(ERC20 => mapping(ERC20 => AtomicRequest))) public userAtomicRequest; //============================== ERRORS =============================== error AtomicQueue__UserRepeated(address user); error AtomicQueue__RequestDeadlineExceeded(address user); error AtomicQueue__UserNotInSolve(address user); error AtomicQueue__ZeroOfferAmount(address user); //============================== EVENTS =============================== /** * @notice Emitted when `updateAtomicRequest` is called. */ event AtomicRequestUpdated( address user, address offerToken, address wantToken, uint256 amount, uint256 deadline, uint256 minPrice, uint256 timestamp ); /** * @notice Emitted when `solve` exchanges a users offer asset for their want asset. */ event AtomicRequestFulfilled( address user, address offerToken, address wantToken, uint256 offerAmountSpent, uint256 wantAmountReceived, uint256 timestamp ); //============================== USER FUNCTIONS =============================== /** * @notice Get a users Atomic Request. * @param user the address of the user to get the request for * @param offer the ERC0 token they want to exchange for the want * @param want the ERC20 token they want in exchange for the offer */ function getUserAtomicRequest(address user, ERC20 offer, ERC20 want) external view returns (AtomicRequest memory) { return userAtomicRequest[user][offer][want]; } /** * @notice Helper function that returns either * true: Withdraw request is valid. * false: Withdraw request is not valid. * @dev It is possible for a withdraw request to return false from this function, but using the * request in `updateAtomicRequest` will succeed, but solvers will not be able to include * the user in `solve` unless some other state is changed. * @param offer the ERC0 token they want to exchange for the want * @param user the address of the user making the request * @param userRequest the request struct to validate */ function isAtomicRequestValid( ERC20 offer, address user, AtomicRequest calldata userRequest ) external view returns (bool) { // Validate amount. if (userRequest.offerAmount > offer.balanceOf(user)) return false; // Validate deadline. if (block.timestamp > userRequest.deadline) return false; // Validate approval. if (offer.allowance(user, address(this)) < userRequest.offerAmount) return false; // Validate offerAmount is nonzero. if (userRequest.offerAmount == 0) return false; // Validate atomicPrice is nonzero. if (userRequest.atomicPrice == 0) return false; return true; } /** * @notice Allows user to add/update their withdraw request. * @notice It is possible for a withdraw request with a zero atomicPrice to be made, and solved. * If this happens, users will be selling their shares for no assets in return. * To determine a safe atomicPrice, share.previewRedeem should be used to get * a good share price, then the user can lower it from there to make their request fill faster. * @param offer the ERC20 token the user is offering in exchange for the want * @param want the ERC20 token the user wants in exchange for offer * @param userRequest the users request */ function updateAtomicRequest(ERC20 offer, ERC20 want, AtomicRequest calldata userRequest) external nonReentrant { AtomicRequest storage request = userAtomicRequest[msg.sender][offer][want]; request.deadline = userRequest.deadline; request.atomicPrice = userRequest.atomicPrice; request.offerAmount = userRequest.offerAmount; // Emit full amount user has. emit AtomicRequestUpdated( msg.sender, address(offer), address(want), userRequest.offerAmount, userRequest.deadline, userRequest.atomicPrice, block.timestamp ); } //============================== SOLVER FUNCTIONS =============================== /** * @notice Called by solvers in order to exchange offer asset for want asset. * @notice Solvers are optimistically transferred the offer asset, then are required to * approve this contract to spend enough of want assets to cover all requests. * @dev It is very likely `solve` TXs will be front run if broadcasted to public mem pools, * so solvers should use private mem pools. * @param offer the ERC20 offer token to solve for * @param want the ERC20 want token to solve for * @param users an array of user addresses to solve for * @param runData extra data that is passed back to solver when `finishSolve` is called * @param solver the address to make `finishSolve` callback to */ function solve( ERC20 offer, ERC20 want, address[] calldata users, bytes calldata runData, address solver ) external nonReentrant { // Save offer asset decimals. uint8 offerDecimals = offer.decimals(); uint256 assetsToOffer; uint256 assetsForWant; for (uint256 i; i < users.length; ++i) { AtomicRequest storage request = userAtomicRequest[users[i]][offer][want]; if (request.inSolve) revert AtomicQueue__UserRepeated(users[i]); if (block.timestamp > request.deadline) revert AtomicQueue__RequestDeadlineExceeded(users[i]); if (request.offerAmount == 0) revert AtomicQueue__ZeroOfferAmount(users[i]); // User gets whatever their atomic price * offerAmount is. assetsForWant += _calculateAssetAmount(request.offerAmount, request.atomicPrice, offerDecimals); // If all checks above passed, the users request is valid and should be fulfilled. assetsToOffer += request.offerAmount; request.inSolve = true; // Transfer shares from user to solver. offer.safeTransferFrom(users[i], solver, request.offerAmount); } IAtomicSolver(solver).finishSolve(runData, msg.sender, offer, want, assetsToOffer, assetsForWant); for (uint256 i; i < users.length; ++i) { AtomicRequest storage request = userAtomicRequest[users[i]][offer][want]; if (request.inSolve) { // We know that the minimum price and deadline arguments are satisfied since this can only be true if they were. // Send user their share of assets. uint256 assetsToUser = _calculateAssetAmount(request.offerAmount, request.atomicPrice, offerDecimals); want.safeTransferFrom(solver, users[i], assetsToUser); emit AtomicRequestFulfilled( users[i], address(offer), address(want), request.offerAmount, assetsToUser, block.timestamp ); // Set shares to withdraw to 0. request.offerAmount = 0; request.inSolve = false; } else revert AtomicQueue__UserNotInSolve(users[i]); } } /** * @notice Helper function solvers can use to determine if users are solvable, and the required amounts to do so. * @notice Repeated users are not accounted for in this setup, so if solvers have repeat users in their `users` * array the results can be wrong. * @dev Since a user can have multiple requests with the same offer asset but different want asset, it is * possible for `viewSolveMetaData` to report no errors, but for a solve to fail, if any solves were done * between the time `viewSolveMetaData` and before `solve` is called. * @param offer the ERC20 offer token to check for solvability * @param want the ERC20 want token to check for solvability * @param users an array of user addresses to check for solvability */ function viewSolveMetaData( ERC20 offer, ERC20 want, address[] calldata users ) external view returns (SolveMetaData[] memory metaData, uint256 totalAssetsForWant, uint256 totalAssetsToOffer) { // Save offer asset decimals. uint8 offerDecimals = offer.decimals(); // Setup meta data. metaData = new SolveMetaData[](users.length); for (uint256 i; i < users.length; ++i) { AtomicRequest memory request = userAtomicRequest[users[i]][offer][want]; metaData[i].user = users[i]; if (block.timestamp > request.deadline) { metaData[i].flags |= uint8(1); } if (request.offerAmount == 0) { metaData[i].flags |= uint8(1) << 1; } if (offer.balanceOf(users[i]) < request.offerAmount) { metaData[i].flags |= uint8(1) << 2; } if (offer.allowance(users[i], address(this)) < request.offerAmount) { metaData[i].flags |= uint8(1) << 3; } metaData[i].assetsToOffer = request.offerAmount; // User gets whatever their execution share price is. uint256 userAssets = _calculateAssetAmount(request.offerAmount, request.atomicPrice, offerDecimals); metaData[i].assetsForWant = userAssets; // If flags is zero, no errors occurred. if (metaData[i].flags == 0) { totalAssetsForWant += userAssets; totalAssetsToOffer += request.offerAmount; } } } //============================== INTERNAL FUNCTIONS =============================== /** * @notice Helper function to calculate the amount of want assets a users wants in exchange for * `offerAmount` of offer asset. */ function _calculateAssetAmount( uint256 offerAmount, uint256 atomicPrice, uint8 offerDecimals ) internal pure returns (uint256) { return atomicPrice.mulDivDown(offerAmount, 10 ** offerDecimals); } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.8.21; library Math { /** * @notice Substract with a floor of 0 for the result. */ function subMinZero(uint256 x, uint256 y) internal pure returns (uint256) { return x > y ? x - y : 0; } /** * @notice Used to change the decimals of precision used for an amount. */ function changeDecimals(uint256 amount, uint8 fromDecimals, uint8 toDecimals) internal pure returns (uint256) { if (fromDecimals == toDecimals) { return amount; } else if (fromDecimals < toDecimals) { return amount * 10 ** (toDecimals - fromDecimals); } else { return amount / 10 ** (fromDecimals - toDecimals); } } // ===================================== OPENZEPPELIN'S MATH ===================================== function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } // ================================= SOLMATE's FIXEDPOINTMATHLIB ================================= uint256 public constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulDivDown(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument. mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Gas optimized reentrancy protection for smart contracts. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ReentrancyGuard.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol) abstract contract ReentrancyGuard { uint256 private locked = 1; modifier nonReentrant() virtual { require(locked == 1, "REENTRANCY"); locked = 2; _; locked = 1; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.8.0; import { ERC20 } from "@solmate/tokens/ERC20.sol"; interface IAtomicSolver { /** * @notice This function must be implemented in order for an address to be a `solver` * for the AtomicQueue * @param runData arbitrary bytes data that is dependent on how each solver is setup * it could contain swap data, or flash loan data, etc.. * @param initiator the address that initiated a solve * @param offer the ERC20 asset sent to the solver * @param want the ERC20 asset the solver must approve the queue for * @param assetsToOffer the amount of `offer` sent to the solver * @param assetsForWant the amount of `want` the solver must approve the queue for */ function finishSolve( bytes calldata runData, address initiator, ERC20 offer, ERC20 want, uint256 assetsToOffer, uint256 assetsForWant ) external; }