ETH Price: $2,248.36 (+0.24%)

Transaction Decoder

Block:
21585817 at Jan-09-2025 08:45:35 AM +UTC
Transaction Fee:
0.000320037043286064 ETH $0.72
Gas Used:
64,311 Gas / 4.976396624 Gwei

Emitted Events:

223 Bella.Transfer( from=[Receiver] BellaStaking, to=[Sender] 0x5823ce923c85426dfec713075e62798751311a49, value=1751925657675139876880 )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
5.546730011272981704 Eth5.546733226822981704 Eth0.00000321555
0x5823cE92...751311A49
0.040382112110571125 Eth
Nonce: 81
0.040062075067285061 Eth
Nonce: 82
0.000320037043286064
0x6Cb6FF55...26C04649d
0xA91ac63D...b0ba07e14

Execution Trace

BellaStaking.CALL( )
  • Bella.balanceOf( owner=0x6Cb6FF550Ea4473Ed462F8bda38aE3226C04649d ) => ( 822007020379832875414339 )
  • Bella.transfer( to=0x5823cE923C85426DFEc713075E62798751311A49, value=1751925657675139876880 ) => ( True )
    File 1 of 2: BellaStaking
    pragma solidity ^0.5.0;
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
            return c;
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         *
         * _Available since v2.4.0._
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
            return c;
        }
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
            return c;
        }
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
            return c;
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    pragma solidity ^0.5.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
     * the optional functions; to access them see {ERC20Detailed}.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    pragma solidity ^0.5.0;
    import "./IERC20.sol";
    import "../../math/SafeMath.sol";
    import "../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using SafeMath for uint256;
        using Address for address;
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
        function safeApprove(IERC20 token, address spender, uint256 value) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            // solhint-disable-next-line max-line-length
            require((value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 newAllowance = token.allowance(address(this), spender).add(value);
            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves.
            // A Solidity high level call has three parts:
            //  1. The target address is checked to verify it contains contract code
            //  2. The call itself is made, and success asserted
            //  3. The return value is decoded, which in turn checks the size of the returned data.
            // solhint-disable-next-line max-line-length
            require(address(token).isContract(), "SafeERC20: call to non-contract");
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = address(token).call(data);
            require(success, "SafeERC20: low-level call failed");
            if (returndata.length > 0) { // Return data is optional
                // solhint-disable-next-line max-line-length
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    pragma solidity ^0.5.5;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following 
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
            // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
            // for accounts without code, i.e. `keccak256('')`
            bytes32 codehash;
            bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
            // solhint-disable-next-line no-inline-assembly
            assembly { codehash := extcodehash(account) }
            return (codehash != accountHash && codehash != 0x0);
        }
        /**
         * @dev Converts an `address` into `address payable`. Note that this is
         * simply a type cast: the actual underlying value is not changed.
         *
         * _Available since v2.4.0._
         */
        function toPayable(address account) internal pure returns (address payable) {
            return address(uint160(account));
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         *
         * _Available since v2.4.0._
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            // solhint-disable-next-line avoid-call-value
            (bool success, ) = recipient.call.value(amount)("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    }
    pragma solidity ^0.5.0;
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     *
     * _Since v2.5.0:_ this module is now much more gas efficient, given net gas
     * metering changes introduced in the Istanbul hardfork.
     */
    contract ReentrancyGuard {
        bool private _notEntered;
        constructor () internal {
            // Storing an initial non-zero value makes deployment a bit more
            // expensive, but in exchange the refund on every call to nonReentrant
            // will be lower in amount. Since refunds are capped to a percetange of
            // the total transaction's gas, it is best to keep them low in cases
            // like this one, to increase the likelihood of the full refund coming
            // into effect.
            _notEntered = true;
        }
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and make it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            // On the first call to nonReentrant, _notEntered will be true
            require(_notEntered, "ReentrancyGuard: reentrant call");
            // Any calls to nonReentrant after this point will fail
            _notEntered = false;
            _;
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _notEntered = true;
        }
    }
    pragma solidity 0.5.15;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
    import "@openzeppelin/contracts/math/SafeMath.sol";
    import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
    import "../libraries/Ownable.sol";
    /**
     * @title BellaStaking
     * @dev stake btoken and get bella rewards, modified based on sushi swap's masterchef
     * delay rewards to get a boost:
     * dalay of: 0, 7, 15 and 30 days 
     */
    contract BellaStaking is Ownable, ReentrancyGuard {
        using SafeMath for uint256;
        using SafeERC20 for IERC20;
        uint256 constant NUM_TYPES = 4;
        // Info of each user.
        struct UserInfo {
            uint256 amount;     // How many btokens the user has provided.
            uint256 effectiveAmount; // amount*boost
            uint256 rewardDebt; // Reward debt. See explanation below.
            //
            // We do some fancy math here. Basically, any point in time, the amount of BELLAs
            // entitled to a user but is pending to be distributed is:
            //
            //   pending reward = (user.effectiveAmount * pool.accBellaPerShare) - user.rewardDebt
            //
            // Whenever a user deposits or withdraws btokens to a pool. Here's what happens:
            //   1. The pool's `accBellaPerShare` (and `lastRewardTime`) gets updated.
            //   2. User receives the pending reward sent to his/her address.
            //   3. User's `amount` and `effectiveAmount` gets updated.
            //   4. User's `rewardDebt` gets updated.
            uint256 earnedBella; // unclaimed bella
        }
        // bella under claiming
        struct ClaimingBella {
            uint256 amount;
            uint256 unlockTime;
        }
        // Info of each pool.
        struct PoolInfo {
            IERC20 underlyingToken;   // Address of underlying token.
            uint256 allocPoint;       // How many allocation points assigned to this pool.
            uint256 lastRewardTime;  // Last block number that BELLAs distribution occurs.
            uint256 accBellaPerShare; // Accumulated BELLAs per share, times 1e12. See below.
            uint256 totalEffectiveAmount; // Sum of user's amount*boost
        }
        IERC20 public bella;
        PoolInfo[] public poolInfo;
        // 7, 15, 30 days delay boost, 3 digit = from 100% to 199%
        mapping (uint256 => uint256[3]) public boostInfo;  
        // Info of each user that stakes btokens.
        mapping (uint256 => mapping (address => UserInfo[NUM_TYPES])) public userInfos;
        // User's bella under claiming
        mapping (address => ClaimingBella[]) public claimingBellas;
        // Total allocation poitns. Must be the sum of all allocation points in all pools.
        uint256 public totalAllocPoint = 0;
        // The timestamp when BELLA mining starts.
        uint256 public startTime;
        // period to released currently locked bella rewards
        uint256 public currentUnlockCycle;
        // under current release cycle, the releasing speed per second
        uint256 public bellaPerSecond;
        // timestamp that current round of bella rewards ends
        uint256 public unlockEndTimestamp;
        event Deposit(address indexed user, uint256 indexed pid, uint256 amount);
        event Withdraw(address indexed user, uint256 indexed pid, uint256 amount);
        event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount);
        modifier validPool(uint256 _pid) {
            require(_pid < poolInfo.length, "invalid pool id");
            _;
        }
        /**
        * @param _bella bella address
        * @param _startTime timestamp that starts reward distribution
        * @param governance governance address
        */
        constructor(
            IERC20 _bella,
            uint256 _startTime,
            address governance
        ) public Ownable(governance) {
            bella = _bella;
            startTime = _startTime;
        }
        /**
        * @return number of all the pools
        */
        function poolLength() public view returns (uint256) {
            return poolInfo.length;
        }
        /**
        * @dev Add a new underlying token to the pool. Can only be called by the governance.
        * delay rewards to get a boost:
        * dalay of: 0, 7, 15 and 30 days 
        * @param _allocPoint weight of this pool
        * @param _underlyingToken underlying token address
        * @param boost boostInfo of this pool
        * @param _withUpdate if update all the pool informations
        */
        function add(uint256 _allocPoint, IERC20 _underlyingToken, uint256[3] memory boost, bool _withUpdate) public onlyOwner {
            if (_withUpdate) {
                massUpdatePools();
            }
            for (uint256 i=0; i<3; i++) {
                require((boost[i]>=100 && boost[i]<=200), "invalid boost");
            }
            uint256 lastRewardTime = now > startTime ? now : startTime;
            totalAllocPoint = totalAllocPoint.add(_allocPoint);
            boostInfo[poolLength()] = boost;
            poolInfo.push(PoolInfo({
                underlyingToken: _underlyingToken,
                allocPoint: _allocPoint,
                lastRewardTime: lastRewardTime,
                accBellaPerShare: 0,
                totalEffectiveAmount: 0
            }));
        }
        /**
        * @dev Update the given pool's BELLA allocation point. Can only be called by the governance.
        * @param _pid id of the pool
        * @param _allocPoint weight of this pool
        */
        function set(uint256 _pid, uint256 _allocPoint) public validPool(_pid) onlyOwner {
            massUpdatePools();
            totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
            poolInfo[_pid].allocPoint = _allocPoint;
        }
        /**
         * @dev we will lock bella tokens on the begining every releasing cycle
         * @param amount the amount of bella token to lock
         * @param nextUnlockCycle next reward releasing cycle, unit=day
         */
        function lock(uint256 amount, uint256 nextUnlockCycle) external onlyOwner {
            massUpdatePools();
            currentUnlockCycle = nextUnlockCycle * 1 days;
            unlockEndTimestamp = now.add(currentUnlockCycle);
            bellaPerSecond = bella.balanceOf(address(this)).add(amount).div(currentUnlockCycle);
                
            require(
                bella.transferFrom(msg.sender, address(this), amount),
                "Additional bella transfer failed"
            );
        }
        /**
         * @dev user's total earned bella in all pools
         * @param _user user's address
         */
        function earnedBellaAllPool(address _user) external view returns  (uint256) {
            uint256 sum = 0;
            for (uint256 i = 0; i < poolInfo.length; i++) {
                sum = sum.add(earnedBellaAll(i, _user));
            }
            return sum;
        }
        /**
         * @dev user's total earned bella in a specific pool
         * @param _pid id of the pool
         * @param _user user's address
         */
        function earnedBellaAll(uint256 _pid, address _user) public view validPool(_pid) returns  (uint256) {
            uint256 sum = 0;
            for (uint256 i = 0; i < NUM_TYPES; i++) {
                sum = sum.add(earnedBella(_pid, _user, i));
            }
            return sum;
        }
        /**
         * @dev user's earned bella in a specific pool for a specific saving type
         * @param _pid id of the pool
         * @param _user user's address
         * @param savingType saving type
         */
        function earnedBella(uint256 _pid, address _user, uint256 savingType) public view validPool(_pid) returns (uint256) {
            require(savingType < NUM_TYPES, "invalid savingType");
            PoolInfo storage pool = poolInfo[_pid];
            UserInfo storage user = userInfos[_pid][_user][savingType];
            uint256 accBellaPerShare = pool.accBellaPerShare;
            if (now > pool.lastRewardTime && pool.totalEffectiveAmount != 0 && pool.lastRewardTime != unlockEndTimestamp) {
                uint256 delta = now > unlockEndTimestamp ? unlockEndTimestamp.sub(pool.lastRewardTime) : now.sub(pool.lastRewardTime);
                uint256 bellaReward = bellaPerSecond.mul(delta).mul(pool.allocPoint).div(totalAllocPoint);
                accBellaPerShare = accBellaPerShare.add(bellaReward.mul(1e12).div(pool.totalEffectiveAmount));
            }
            return user.effectiveAmount.mul(accBellaPerShare).div(1e12).sub(user.rewardDebt);
        }
        /**
         * @dev Update reward variables for all pools. Be careful of gas spending!
         */
        function massUpdatePools() public {
            uint256 length = poolInfo.length;
            for (uint256 pid = 0; pid < length; ++pid) {
                updatePool(pid);
            }
        }
        /**
         * @dev Update reward variables of the given pool to be up-to-date.
         * @param _pid id of the pool
         */
        function updatePool(uint256 _pid) public validPool(_pid) {
            PoolInfo storage pool = poolInfo[_pid];
            if (now <= pool.lastRewardTime || unlockEndTimestamp == pool.lastRewardTime) {
                return;
            }
            if (pool.totalEffectiveAmount == 0) {
                pool.lastRewardTime = now;
                return;
            }
            uint256 accBellaPerShare = pool.accBellaPerShare;
            // now > pool.lastRewardTime && pool.totalEffectiveAmount != 0
            if (now > unlockEndTimestamp) {
                uint256 delta = unlockEndTimestamp.sub(pool.lastRewardTime);
                uint256 bellaReward = bellaPerSecond.mul(delta).mul(pool.allocPoint).div(totalAllocPoint);
                pool.accBellaPerShare = accBellaPerShare.add(bellaReward.mul(1e12).div(pool.totalEffectiveAmount));
                pool.lastRewardTime = unlockEndTimestamp;
            } else {
                uint256 delta = now.sub(pool.lastRewardTime);
                uint256 bellaReward = bellaPerSecond.mul(delta).mul(pool.allocPoint).div(totalAllocPoint);
                pool.accBellaPerShare = accBellaPerShare.add(bellaReward.mul(1e12).div(pool.totalEffectiveAmount));
                pool.lastRewardTime = now;
            }
        }
        /**
         * @dev Deposit underlying token for bella allocation
         * @param _pid id of the pool
         * @param _amount amount of underlying token to deposit
         * @param savingType saving type
         */
        function deposit(uint256 _pid, uint256 _amount, uint256 savingType) public validPool(_pid) nonReentrant {
            require(savingType < NUM_TYPES, "invalid savingType");
            PoolInfo storage pool = poolInfo[_pid];
            UserInfo storage user = userInfos[_pid][msg.sender][savingType];
            updatePool(_pid);
            if (user.effectiveAmount > 0) {
                uint256 pending = user.effectiveAmount.mul(pool.accBellaPerShare).div(1e12).sub(user.rewardDebt);
                if(pending > 0) {
                    user.earnedBella = user.earnedBella.add(pending);
                }
            }
            if(_amount > 0) {
                pool.underlyingToken.safeTransferFrom(address(msg.sender), address(this), _amount);
                user.amount = user.amount.add(_amount);
                uint256 effectiveAmount = toEffectiveAmount(_pid, _amount, savingType);
                user.effectiveAmount = user.effectiveAmount.add(effectiveAmount);
                pool.totalEffectiveAmount = pool.totalEffectiveAmount.add(effectiveAmount);
            }
            user.rewardDebt = user.effectiveAmount.mul(pool.accBellaPerShare).div(1e12); /// 初始的奖励为0
            emit Deposit(msg.sender, _pid, _amount);
        }
        /**
         * @dev Withdraw underlying token
         * @param _pid id of the pool
         * @param _amount amount of underlying token to withdraw
         * @param savingType saving type
         */
        function withdraw(uint256 _pid, uint256 _amount, uint256 savingType) public validPool(_pid) nonReentrant {
            require(savingType < NUM_TYPES, "invalid savingType");
            PoolInfo storage pool = poolInfo[_pid];
            UserInfo storage user = userInfos[_pid][msg.sender][savingType];
            require(user.amount >= _amount, "withdraw: not good");
            updatePool(_pid);
            uint256 pending = user.effectiveAmount.mul(pool.accBellaPerShare).div(1e12).sub(user.rewardDebt);
            if(pending > 0) {
                user.earnedBella = user.earnedBella.add(pending);
            }
            if(_amount > 0) {
                user.amount = user.amount.sub(_amount);
                uint256 effectiveAmount = toEffectiveAmount(_pid, _amount, savingType);
                /// round errors?
                pool.totalEffectiveAmount = pool.totalEffectiveAmount.sub(effectiveAmount);
                user.effectiveAmount = toEffectiveAmount(_pid, user.amount, savingType);
                pool.underlyingToken.safeTransfer(address(msg.sender), _amount);
            }
            user.rewardDebt = user.effectiveAmount.mul(pool.accBellaPerShare).div(1e12);
            emit Withdraw(msg.sender, _pid, _amount);
        }
        /**
         * @dev Withdraw all underlying token in one pool
         * @param _pid id of the pool
         */
        function withdrawAll(uint256 _pid) public validPool(_pid) {
            for (uint256 i=0; i<NUM_TYPES; i++) {
                uint256 amount = userInfos[_pid][msg.sender][i].amount;
                if (amount != 0) {
                    withdraw(_pid, amount, i);
                }
            }
        }
        /**
         * @dev Withdraw without caring about rewards. EMERGENCY ONLY.
         * @param _pid id of the pool
         * @param savingType saving type
         */
        function emergencyWithdraw(uint256 _pid, uint256 savingType) public validPool(_pid) nonReentrant {
            require(savingType < NUM_TYPES, "invalid savingType");
            PoolInfo storage pool = poolInfo[_pid];
            UserInfo storage user = userInfos[_pid][msg.sender][savingType];
            uint256 amount = user.amount;
            pool.totalEffectiveAmount = pool.totalEffectiveAmount.sub(user.effectiveAmount);
            user.amount = 0;
            user.effectiveAmount = 0;
            user.rewardDebt = 0;
            user.earnedBella = 0;
            pool.underlyingToken.safeTransfer(address(msg.sender), amount);
            emit EmergencyWithdraw(msg.sender, _pid, amount);
        }
        /**
         * @dev claim earned bella to collect for a specific saving type
         * @param _pid id of the pool
         * @param savingType saving type
         */
        function claimBella(uint256 _pid, uint256 savingType) public {
            require(savingType < NUM_TYPES, "invalid savingType");
            UserInfo storage user = userInfos[_pid][msg.sender][savingType];
            updatePool(_pid);
            PoolInfo memory pool = poolInfo[_pid];
            uint256 pending = user.effectiveAmount.mul(pool.accBellaPerShare).div(1e12).sub(user.rewardDebt);
            if(pending > 0) {
                user.earnedBella = user.earnedBella.add(pending);
            }
            user.rewardDebt = user.effectiveAmount.mul(pool.accBellaPerShare).div(1e12);
            uint256 delay = getDelayFromType(savingType);
            if (delay == 0) {
                uint256 amount = user.earnedBella;
                user.earnedBella = 0;
                safeBellaTransfer(msg.sender, amount);
            } else {
                uint256 amount = user.earnedBella;
                user.earnedBella = 0;
                ClaimingBella[] storage claimingBella = claimingBellas[msg.sender];
                claimingBella.push(ClaimingBella({amount: amount, unlockTime: now.add(delay * 1 days)}));       
            }
        }
        /**
         * @dev claim all earned bella to collect
         * @param _pid id of the pool
         */
        function claimAllBella(uint256 _pid) public validPool(_pid) {
            for (uint256 i=0; i<NUM_TYPES; i++) {
                claimBella(_pid, i);
            }
        }
        /**
         * @dev collect claimed bella (instant and delayed)
         */
        function collectBella() public {
            uint256 sum = 0;
            ClaimingBella[] storage claimingBella = claimingBellas[msg.sender];
            for (uint256 i = 0; i < claimingBella.length; i++) {
                ClaimingBella storage claim = claimingBella[i];
                if (claimingBella[i].amount !=0 && claimingBella[i].unlockTime <= now) {
                    sum = sum.add(claim.amount);
                    delete claimingBella[i];
                }
            }
            safeBellaTransfer(msg.sender, sum);
            // clean array if len > 15 and have more than 4 zeros
            if (claimingBella.length > 15) {
                uint256 zeros = 0;
                for (uint256 i=0; i < claimingBella.length; i++) {
                    if (claimingBella[i].amount == 0) {
                        zeros++;
                    }
                }
                if (zeros < 5)
                    return;
                uint256 i = 0;
                while (i < claimingBella.length) {
                    if (claimingBella[i].amount == 0) {
                        claimingBella[i].amount = claimingBella[claimingBella.length-1].amount;
                        claimingBella[i].unlockTime = claimingBella[claimingBella.length-1].unlockTime;
                        claimingBella.pop();
                    } else {
                        i++;
                    }
                }         
            }
        }
        /**
         * @dev Get user's total staked btoken in on pool
         * @param _pid id of the pool
         * @param user user address
         */
        function getBtokenStaked(uint256 _pid, address user) external view validPool(_pid) returns (uint256) {
            uint256 sum = 0;
            for (uint256 i=0; i<NUM_TYPES; i++) {
               sum = sum.add(userInfos[_pid][user][i].amount);
            }
            return sum;
        }
        /**
         * @dev view function to see user's collectiable bella
         */
        function collectiableBella() external view returns (uint256) {
            uint256 sum = 0;
            ClaimingBella[] memory claimingBella = claimingBellas[msg.sender];
            for (uint256 i = 0; i < claimingBella.length; i++) {
                ClaimingBella memory claim = claimingBella[i];
                if (claim.amount !=0 && claim.unlockTime <= now) {
                    sum = sum.add(claim.amount);
                }
            }
            return sum;
        }
        /**
         * @dev view function to see user's delayed bella
         */
        function delayedBella() external view returns (uint256) {
            uint256 sum = 0;
            ClaimingBella[] memory claimingBella = claimingBellas[msg.sender];
            for (uint256 i = 0; i < claimingBella.length; i++) {
                ClaimingBella memory claim = claimingBella[i];
                if (claim.amount !=0 && claim.unlockTime > now) {
                    sum = sum.add(claim.amount);
                }
            }
            return sum;
        }
        /**
         * @dev view function to check boost*amount of each saving type 
         * @param pid id of the pool
         * @param amount amount of underlying token
         * @param savingType saving type
         * @return boost*amount
         */
        function toEffectiveAmount(uint256 pid, uint256 amount, uint256 savingType) internal view returns (uint256) {
            if (savingType == 0) {
                return amount;
            } else if (savingType == 1) {
                return amount * boostInfo[pid][0] / 100;
            } else if (savingType == 2) {
                return amount * boostInfo[pid][1] / 100;
            } else if (savingType == 3) {
                return amount * boostInfo[pid][2] / 100;
            } else {
                revert("toEffectiveAmount: invalid savingType");
            }
        }
        /**
         * @dev pure function to check delay of each saving type 
         * @param savingType saving type
         * @return delay of the input saving type
         */
        function getDelayFromType(uint256 savingType) internal pure returns (uint256) {
            if (savingType == 0) {
                return 0;
            } else if (savingType == 1) {
                return 7;
            } else if (savingType == 2) {
                return 15;
            } else if (savingType == 3) {
                return 30;
            } else {
                revert("getDelayFromType: invalid savingType");
            }
        }
        /**
         * @dev Safe bella transfer function, just in case if rounding error causes pool to not have enough BELLAs.
         * @param _to Target address to send bella
         * @param _amount Amount of bella to send
         */
        function safeBellaTransfer(address _to, uint256 _amount) internal {
            uint256 bellaBal = bella.balanceOf(address(this));
            if (_amount > bellaBal) {
                bella.transfer(_to, bellaBal);
            } else {
                bella.transfer(_to, _amount);
            }
        }
    }
    pragma solidity 0.5.15;
    /**
     * @title Ownable
     * @dev The Ownable contract has an owner address, and provides basic authorization control
     * functions, this simplifies the implementation of "user permissions".
     */
    contract Ownable {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev The Ownable constructor sets the original `owner` of the contract to the a
         * specified account.
         * @param initalOwner The address of the inital owner.
         */
        constructor(address initalOwner) internal {
            _owner = initalOwner;
            emit OwnershipTransferred(address(0), _owner);
        }
        /**
         * @return the address of the owner.
         */
        function owner() public view returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(isOwner(), "Only owner can call");
            _;
        }
        /**
         * @return true if `msg.sender` is the owner of the contract.
         */
        function isOwner() public view returns (bool) {
            return msg.sender == _owner;
        }
        /**
         * @dev Allows the current owner to relinquish control of the contract.
         * It will not be possible to call the functions with the `onlyOwner`
         * modifier anymore.
         * @notice Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
        /**
         * @dev Allows the current owner to transfer control of the contract to a newOwner.
         * @param newOwner The address to transfer ownership to.
         */
        function transferOwnership(address newOwner) public onlyOwner {
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers control of the contract to a newOwner.
         * @param newOwner The address to transfer ownership to.
         */
        function _transferOwnership(address newOwner) internal {
            require(newOwner != address(0), "Owner should not be 0 address");
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
    }
    

    File 2 of 2: Bella
    // File: @openzeppelin/contracts/math/SafeMath.sol
    
    // SPDX-License-Identifier: MIT
    
    pragma solidity ^0.6.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    
    // File: contracts/ERC20.sol
    
    pragma solidity 0.6.10;
    
    
    /**
     * @title Standard ERC20 token
     *
     * @dev Implementation of the basic standard token.
     * https://eips.ethereum.org/EIPS/eip-20
     * Originally based on code by FirstBlood:
     * https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
     *
     * This implementation emits additional Approval events, allowing applications to reconstruct the allowance status for
     * all accounts just by listening to said events. Note that this isn't required by the specification, and other
     * compliant implementations may not do it.
     */
    contract ERC20 {
        using SafeMath for uint256;
    
        mapping (address => uint256) internal _balances;
    
        mapping (address => mapping (address => uint256)) internal _allowed;
    
        uint256 internal _totalSupply;
    
        /**
         * @dev Total number of tokens in existence.
         */
        function totalSupply() public view returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev Gets the balance of the specified address.
         * @param owner The address to query the balance of.
         * @return A uint256 representing the amount owned by the passed address.
         */
        function balanceOf(address owner) public view returns (uint256) {
            return _balances[owner];
        }
    
        /**
         * @dev Function to check the amount of tokens that an owner allowed to a spender.
         * @param owner address The address which owns the funds.
         * @param spender address The address which will spend the funds.
         * @return A uint256 specifying the amount of tokens still available for the spender.
         */
        function allowance(address owner, address spender) public view returns (uint256) {
            return _allowed[owner][spender];
        }
    
        /**
         * @dev Transfer token to a specified address.
         * @param to The address to transfer to.
         * @param value The amount to be transferred.
         */
        function transfer(address to, uint256 value) public virtual returns (bool) {
            _transfer(msg.sender, to, value);
            return true;
        }
    
        /**
         * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
         * Beware that changing an allowance with this method brings the risk that someone may use both the old
         * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
         * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         * @param spender The address which will spend the funds.
         * @param value The amount of tokens to be spent.
         */
        function approve(address spender, uint256 value) public virtual returns (bool) {
            _approve(msg.sender, spender, value);
            return true;
        }
    
        /**
         * @dev Transfer tokens from one address to another.
         * Note that while this function emits an Approval event, this is not required as per the specification,
         * and other compliant implementations may not emit the event.
         * @param from address The address which you want to send tokens from
         * @param to address The address which you want to transfer to
         * @param value uint256 the amount of tokens to be transferred
         */
        function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
            _transfer(from, to, value);
            _approve(from, msg.sender, _allowed[from][msg.sender].sub(value));
            return true;
        }
    
        /**
         * @dev Increase the amount of tokens that an owner allowed to a spender.
         * approve should be called when _allowed[msg.sender][spender] == 0. To increment
         * allowed value is better to use this function to avoid 2 calls (and wait until
         * the first transaction is mined)
         * From MonolithDAO Token.sol
         * Emits an Approval event.
         * @param spender The address which will spend the funds.
         * @param addedValue The amount of tokens to increase the allowance by.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            _approve(msg.sender, spender, _allowed[msg.sender][spender].add(addedValue));
            return true;
        }
    
        /**
         * @dev Decrease the amount of tokens that an owner allowed to a spender.
         * approve should be called when _allowed[msg.sender][spender] == 0. To decrement
         * allowed value is better to use this function to avoid 2 calls (and wait until
         * the first transaction is mined)
         * From MonolithDAO Token.sol
         * Emits an Approval event.
         * @param spender The address which will spend the funds.
         * @param subtractedValue The amount of tokens to decrease the allowance by.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            _approve(msg.sender, spender, _allowed[msg.sender][spender].sub(subtractedValue));
            return true;
        }
    
        /**
         * @dev Transfer token for a specified addresses.
         * @param from The address to transfer from.
         * @param to The address to transfer to.
         * @param value The amount to be transferred.
         */
        function _transfer(address from, address to, uint256 value) internal {
            require(to != address(0));
    
            _balances[from] = _balances[from].sub(value);
            _balances[to] = _balances[to].add(value);
            emit Transfer(from, to, value);
        }
    
        /**
         * @dev Internal function that mints an amount of the token and assigns it to
         * an account. This encapsulates the modification of balances such that the
         * proper events are emitted.
         * @param account The account that will receive the created tokens.
         * @param value The amount that will be created.
         */
        function _mint(address account, uint256 value) internal {
            require(account != address(0));
    
            _totalSupply = _totalSupply.add(value);
            _balances[account] = _balances[account].add(value);
            emit Transfer(address(0), account, value);
        }
    
        /**
         * @dev Internal function that burns an amount of the token of a given
         * account.
         * @param account The account whose tokens will be burnt.
         * @param value The amount that will be burnt.
         */
        function _burn(address account, uint256 value) internal {
            require(account != address(0));
    
            _totalSupply = _totalSupply.sub(value);
            _balances[account] = _balances[account].sub(value);
            emit Transfer(account, address(0), value);
        }
    
        /**
         * @dev Approve an address to spend another addresses' tokens.
         * @param owner The address that owns the tokens.
         * @param spender The address that will spend the tokens.
         * @param value The number of tokens that can be spent.
         */
        function _approve(address owner, address spender, uint256 value) internal {
            require(spender != address(0));
            require(owner != address(0));
    
            _allowed[owner][spender] = value;
            emit Approval(owner, spender, value);
        }
    
        /**
         * @dev Internal function that burns an amount of the token of a given
         * account, deducting from the sender's allowance for said account. Uses the
         * internal burn function.
         * Emits an Approval event (reflecting the reduced allowance).
         * @param account The account whose tokens will be burnt.
         * @param value The amount that will be burnt.
         */
        function _burnFrom(address account, uint256 value) internal {
            _burn(account, value);
            _approve(account, msg.sender, _allowed[account][msg.sender].sub(value));
        }
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: contracts/Ownable.sol
    
    pragma solidity 0.6.10;
    
    /**
     * @title Ownable
     * @dev The Ownable contract has an owner address, and provides basic authorization control
     * functions, this simplifies the implementation of "user permissions".
     */
    contract Ownable {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev The Ownable constructor sets the original `owner` of the contract to the a
         * specified account.
         * @param initalOwner The address of the inital owner.
         */
        constructor(address initalOwner) internal {
            _owner = initalOwner;
            emit OwnershipTransferred(address(0), _owner);
        }
    
        /**
         * @return the address of the owner.
         */
        function owner() public view returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(isOwner(), "Only owner can call");
            _;
        }
    
        /**
         * @return true if `msg.sender` is the owner of the contract.
         */
        function isOwner() public view returns (bool) {
            return msg.sender == _owner;
        }
    
        /**
         * @dev Allows the current owner to relinquish control of the contract.
         * It will not be possible to call the functions with the `onlyOwner`
         * modifier anymore.
         * @notice Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
    
        /**
         * @dev Allows the current owner to transfer control of the contract to a newOwner.
         * @param newOwner The address to transfer ownership to.
         */
        function transferOwnership(address newOwner) public onlyOwner {
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers control of the contract to a newOwner.
         * @param newOwner The address to transfer ownership to.
         */
        function _transferOwnership(address newOwner) internal {
            require(newOwner != address(0), "Owner should not be 0 address");
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
    }
    
    // File: contracts/Bella.sol
    
    pragma solidity 0.6.10;
    
    
    
    
    /**
     * @title Bella
     * @dev Bella is an ownable, mintable, pausable and burnable ERC20 token
     */
    contract Bella is ERC20, Ownable {
        using SafeMath for uint;
    
        string public constant name = "Bella";
        uint8 public constant decimals = 18;
        string public constant symbol = "BEL";
        uint public constant initalSupply = 1 * 10**8 * 10**uint(decimals); // 100 million
        
        bool public paused; // True when circulation is paused.
    
        mapping (address => bool) public freezed;
        mapping (address => bool) public minter;
    
        /**
         * @dev Throws if called by any account that is not a minter.
         */
        modifier onlyMinter() {
            require(minter[msg.sender], "Only minter can call");
            _;
        }
    
        /**
         * @dev Throws if called when the circulation is paused.
         */
        modifier whenNotPaused() {
            require(paused == false, "Cirlulation paused!");
            _;
        }
    
        /**
         * @dev The Bella constructor sets the original manager of the contract to the a
         * specified account, and send all the inital supply to it.
         * @param manager The address of the first manager of this contract.
         */
        constructor(address manager) public Ownable(manager) {
            _balances[manager] = initalSupply;
            _totalSupply = initalSupply;
        }
    
        /**
         * @dev Add an address to the minter list.
         * @param minterAddress The address to be added as a minter.
         */
        function addMinter(address minterAddress) public onlyOwner {
            minter[minterAddress] = true;
        }
    
        /**
         * @dev Remove an address from the minter list.
         * @param minterAddress The address to be removed from minters.
         */
        function removeMinter(address minterAddress) public onlyOwner {
            minter[minterAddress] = false;
        }
    
        /**
         * @dev Function to mint tokens by a minter
         * @param to The address that will receive the minted tokens.
         * @param value The amount of tokens to mint.
         * @return A boolean that indicates if the operation was successful.
         */
        function mint(address to, uint value) public onlyMinter returns (bool) {
            _mint(to, value);
            return true;
        }
    
        /**
         * @dev Function to pause all the circulation in the case of emergency.
         */
        function pause() public onlyOwner {
            paused = true;
        }
    
        /**
         * @dev Function to recover all the circulation from emergency.
         */
        function unpause() public onlyOwner {
            paused = false;
        }
    
        /**
         * @dev Function to freeze a specific user's circulation from emergency.
         * @param user The user to freeze
         */
        function freeze(address user) public onlyOwner {
            freezed[user] = true;
        }
    
        /**
         * @dev Function to recover a specific user's circulation from emergency.
         * @param user The user to recover
         */
        function unfreeze(address user) public onlyOwner {
            freezed[user] = false;
        }
    
        /**
         * @dev Burns a specific amount of tokens.
         * @param value The amount of token to be burned.
         */
        function burn(uint256 value) public {
            _burn(msg.sender, value);
        }
    
        /**
         * @dev Burns a specific amount of tokens from the target address and decrements allowance.
         * @param from address The account whose tokens will be burned.
         * @param value uint256 The amount of token to be burned.
         */
        function burnFrom(address from, uint256 value) public {
            _burnFrom(from, value);
        }
    
        function transfer(address to, uint256 value) public whenNotPaused override returns (bool) {
            require(!freezed[msg.sender] && !freezed[to], "target user is freezed");
            return super.transfer(to, value);
        }
    
        function transferFrom(address from, address to, uint256 value) public whenNotPaused override returns (bool) {
            require(!freezed[from] && !freezed[to], "target user is freezed");
            return super.transferFrom(from, to, value);
        }
    
        function approve(address spender, uint256 value) public whenNotPaused override returns (bool) {
            return super.approve(spender, value);
        }
    
        function increaseAllowance(address spender, uint addedValue) public whenNotPaused override returns (bool) {
            return super.increaseAllowance(spender, addedValue);
        }
    
        function decreaseAllowance(address spender, uint subtractedValue) public whenNotPaused override returns (bool) {
            return super.decreaseAllowance(spender, subtractedValue);
        }
    }