ETH Price: $1,883.92 (+1.27%)

Transaction Decoder

Block:
10949456 at Sep-28-2020 06:42:19 AM +UTC
Transaction Fee:
0.027016857 ETH $50.90
Gas Used:
428,839 Gas / 63 Gwei

Emitted Events:

169 GegoToken.Transfer( from=0x0000000000000000000000000000000000000000, to=[Sender] 0x2b281affacf32c3f30b3669f24c09e9dc0ded880, tokenId=5567 )
170 0x9765fea9752505a685c1bce137ae5b2efe8ddf62.0xabb5aa25e431330054ae7be488946f3110792767caa5897258c1053e3b749b0c( 0xabb5aa25e431330054ae7be488946f3110792767caa5897258c1053e3b749b0c, 0x00000000000000000000000000000000000000000000000000000000000015bf, 0000000000000000000000000000000000000000000000000000000000000003, 0000000000000000000000000000000000000000000000000000000000002182, 00000000000000000000000000000000000000000000000029a2241af62c0000, 000000000000000000000000000000000000000000000000000000005f7185cb, 0000000000000000000000000000000000000000000000000000000000a71350, 0000000000000000000000000000000000000000000000000000000000000003, 0000000000000000000000002b281affacf32c3f30b3669f24c09e9dc0ded880 )
171 DandyToken.Transfer( from=0x0000000000000000000000000000000000000000, to=[Sender] 0x2b281affacf32c3f30b3669f24c09e9dc0ded880, value=50000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x27b4bC90...3Aa8941A7
0x2B281aFf...Dc0dED880
0.6494511847591205 Eth
Nonce: 0
0.6224343277591205 Eth
Nonce: 1
0.027016857
(Hiveon: Old Pool)
2,428.061551141018771082 Eth2,428.088567998018771082 Eth0.027016857
0x9765FeA9...EFe8dDf62
(DEGO.Finance: NFT)
0x9Dfc4B43...E8B0d9B82

Execution Trace

DEGO.Finance: NFT.CALL( )
  • GegoToken.mint( to=0x2B281aFfacf32C3F30B3669f24c09e9Dc0dED880, tokenId=5567 ) => ( True )
  • DandyToken.mint( account=0x2B281aFfacf32C3F30B3669f24c09e9Dc0dED880, amount=50000000000000000 )
    File 1 of 2: GegoToken
    /***
     *    ██████╗ ███████╗ ██████╗  ██████╗ 
     *    ██╔══██╗██╔════╝██╔════╝ ██╔═══██╗
     *    ██║  ██║█████╗  ██║  ███╗██║   ██║
     *    ██║  ██║██╔══╝  ██║   ██║██║   ██║
     *    ██████╔╝███████╗╚██████╔╝╚██████╔╝
     *    ╚═════╝ ╚══════╝ ╚═════╝  ╚═════╝ 
     *    
     * https://dego.finance
                                      
    * MIT License
    * ===========
    *
    * Copyright (c) 2020 dego
    *
    * Permission is hereby granted, free of charge, to any person obtaining a copy
    * of this software and associated documentation files (the "Software"), to deal
    * in the Software without restriction, including without limitation the rights
    * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    * copies of the Software, and to permit persons to whom the Software is
    * furnished to do so, subject to the following conditions:
    *
    * The above copyright notice and this permission notice shall be included in all
    * copies or substantial portions of the Software.
    *
    * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
    */
    // File: @openzeppelin/contracts/GSN/Context.sol
    
    pragma solidity ^0.5.0;
    
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    contract Context {
        // Empty internal constructor, to prevent people from mistakenly deploying
        // an instance of this contract, which should be used via inheritance.
        constructor () internal { }
        // solhint-disable-previous-line no-empty-blocks
    
        function _msgSender() internal view returns (address payable) {
            return msg.sender;
        }
    
        function _msgData() internal view returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    
    // File: @openzeppelin/contracts/introspection/IERC165.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    
    // File: @openzeppelin/contracts/token/ERC721/IERC721.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @dev Required interface of an ERC721 compliant contract.
     */
    contract IERC721 is IERC165 {
        event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
        event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
        event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
    
        /**
         * @dev Returns the number of NFTs in `owner`'s account.
         */
        function balanceOf(address owner) public view returns (uint256 balance);
    
        /**
         * @dev Returns the owner of the NFT specified by `tokenId`.
         */
        function ownerOf(uint256 tokenId) public view returns (address owner);
    
        /**
         * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to
         * another (`to`).
         *
         *
         *
         * Requirements:
         * - `from`, `to` cannot be zero.
         * - `tokenId` must be owned by `from`.
         * - If the caller is not `from`, it must be have been allowed to move this
         * NFT by either {approve} or {setApprovalForAll}.
         */
        function safeTransferFrom(address from, address to, uint256 tokenId) public;
        /**
         * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to
         * another (`to`).
         *
         * Requirements:
         * - If the caller is not `from`, it must be approved to move this NFT by
         * either {approve} or {setApprovalForAll}.
         */
        function transferFrom(address from, address to, uint256 tokenId) public;
        function approve(address to, uint256 tokenId) public;
        function getApproved(uint256 tokenId) public view returns (address operator);
    
        function setApprovalForAll(address operator, bool _approved) public;
        function isApprovedForAll(address owner, address operator) public view returns (bool);
    
    
        function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public;
    }
    
    // File: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @title ERC721 token receiver interface
     * @dev Interface for any contract that wants to support safeTransfers
     * from ERC721 asset contracts.
     */
    contract IERC721Receiver {
        /**
         * @notice Handle the receipt of an NFT
         * @dev The ERC721 smart contract calls this function on the recipient
         * after a {IERC721-safeTransferFrom}. This function MUST return the function selector,
         * otherwise the caller will revert the transaction. The selector to be
         * returned can be obtained as `this.onERC721Received.selector`. This
         * function MAY throw to revert and reject the transfer.
         * Note: the ERC721 contract address is always the message sender.
         * @param operator The address which called `safeTransferFrom` function
         * @param from The address which previously owned the token
         * @param tokenId The NFT identifier which is being transferred
         * @param data Additional data with no specified format
         * @return bytes4 `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
         */
        function onERC721Received(address operator, address from, uint256 tokenId, bytes memory data)
        public returns (bytes4);
    }
    
    // File: @openzeppelin/contracts/math/SafeMath.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         *
         * _Available since v2.4.0._
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    
    // File: @openzeppelin/contracts/utils/Address.sol
    
    pragma solidity ^0.5.5;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following 
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
            // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
            // for accounts without code, i.e. `keccak256('')`
            bytes32 codehash;
            bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
            // solhint-disable-next-line no-inline-assembly
            assembly { codehash := extcodehash(account) }
            return (codehash != accountHash && codehash != 0x0);
        }
    
        /**
         * @dev Converts an `address` into `address payable`. Note that this is
         * simply a type cast: the actual underlying value is not changed.
         *
         * _Available since v2.4.0._
         */
        function toPayable(address account) internal pure returns (address payable) {
            return address(uint160(account));
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         *
         * _Available since v2.4.0._
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            // solhint-disable-next-line avoid-call-value
            (bool success, ) = recipient.call.value(amount)("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    }
    
    // File: @openzeppelin/contracts/drafts/Counters.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @title Counters
     * @author Matt Condon (@shrugs)
     * @dev Provides counters that can only be incremented or decremented by one. This can be used e.g. to track the number
     * of elements in a mapping, issuing ERC721 ids, or counting request ids.
     *
     * Include with `using Counters for Counters.Counter;`
     * Since it is not possible to overflow a 256 bit integer with increments of one, `increment` can skip the {SafeMath}
     * overflow check, thereby saving gas. This does assume however correct usage, in that the underlying `_value` is never
     * directly accessed.
     */
    library Counters {
        using SafeMath for uint256;
    
        struct Counter {
            // This variable should never be directly accessed by users of the library: interactions must be restricted to
            // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
            // this feature: see https://github.com/ethereum/solidity/issues/4637
            uint256 _value; // default: 0
        }
    
        function current(Counter storage counter) internal view returns (uint256) {
            return counter._value;
        }
    
        function increment(Counter storage counter) internal {
            // The {SafeMath} overflow check can be skipped here, see the comment at the top
            counter._value += 1;
        }
    
        function decrement(Counter storage counter) internal {
            counter._value = counter._value.sub(1);
        }
    }
    
    // File: @openzeppelin/contracts/introspection/ERC165.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @dev Implementation of the {IERC165} interface.
     *
     * Contracts may inherit from this and call {_registerInterface} to declare
     * their support of an interface.
     */
    contract ERC165 is IERC165 {
        /*
         * bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7
         */
        bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7;
    
        /**
         * @dev Mapping of interface ids to whether or not it's supported.
         */
        mapping(bytes4 => bool) private _supportedInterfaces;
    
        constructor () internal {
            // Derived contracts need only register support for their own interfaces,
            // we register support for ERC165 itself here
            _registerInterface(_INTERFACE_ID_ERC165);
        }
    
        /**
         * @dev See {IERC165-supportsInterface}.
         *
         * Time complexity O(1), guaranteed to always use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool) {
            return _supportedInterfaces[interfaceId];
        }
    
        /**
         * @dev Registers the contract as an implementer of the interface defined by
         * `interfaceId`. Support of the actual ERC165 interface is automatic and
         * registering its interface id is not required.
         *
         * See {IERC165-supportsInterface}.
         *
         * Requirements:
         *
         * - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`).
         */
        function _registerInterface(bytes4 interfaceId) internal {
            require(interfaceId != 0xffffffff, "ERC165: invalid interface id");
            _supportedInterfaces[interfaceId] = true;
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC721/ERC721.sol
    
    pragma solidity ^0.5.0;
    
    
    
    
    
    
    
    
    /**
     * @title ERC721 Non-Fungible Token Standard basic implementation
     * @dev see https://eips.ethereum.org/EIPS/eip-721
     */
    contract ERC721 is Context, ERC165, IERC721 {
        using SafeMath for uint256;
        using Address for address;
        using Counters for Counters.Counter;
    
        // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
        // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector`
        bytes4 private constant _ERC721_RECEIVED = 0x150b7a02;
    
        // Mapping from token ID to owner
        mapping (uint256 => address) private _tokenOwner;
    
        // Mapping from token ID to approved address
        mapping (uint256 => address) private _tokenApprovals;
    
        // Mapping from owner to number of owned token
        mapping (address => Counters.Counter) private _ownedTokensCount;
    
        // Mapping from owner to operator approvals
        mapping (address => mapping (address => bool)) private _operatorApprovals;
    
        /*
         *     bytes4(keccak256('balanceOf(address)')) == 0x70a08231
         *     bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e
         *     bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3
         *     bytes4(keccak256('getApproved(uint256)')) == 0x081812fc
         *     bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465
         *     bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5
         *     bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd
         *     bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e
         *     bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde
         *
         *     => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^
         *        0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd
         */
        bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd;
    
        constructor () public {
            // register the supported interfaces to conform to ERC721 via ERC165
            _registerInterface(_INTERFACE_ID_ERC721);
        }
    
        /**
         * @dev Gets the balance of the specified address.
         * @param owner address to query the balance of
         * @return uint256 representing the amount owned by the passed address
         */
        function balanceOf(address owner) public view returns (uint256) {
            require(owner != address(0), "ERC721: balance query for the zero address");
    
            return _ownedTokensCount[owner].current();
        }
    
        /**
         * @dev Gets the owner of the specified token ID.
         * @param tokenId uint256 ID of the token to query the owner of
         * @return address currently marked as the owner of the given token ID
         */
        function ownerOf(uint256 tokenId) public view returns (address) {
            address owner = _tokenOwner[tokenId];
            require(owner != address(0), "ERC721: owner query for nonexistent token");
    
            return owner;
        }
    
        /**
         * @dev Approves another address to transfer the given token ID
         * The zero address indicates there is no approved address.
         * There can only be one approved address per token at a given time.
         * Can only be called by the token owner or an approved operator.
         * @param to address to be approved for the given token ID
         * @param tokenId uint256 ID of the token to be approved
         */
        function approve(address to, uint256 tokenId) public {
            address owner = ownerOf(tokenId);
            require(to != owner, "ERC721: approval to current owner");
    
            require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
                "ERC721: approve caller is not owner nor approved for all"
            );
    
            _tokenApprovals[tokenId] = to;
            emit Approval(owner, to, tokenId);
        }
    
        /**
         * @dev Gets the approved address for a token ID, or zero if no address set
         * Reverts if the token ID does not exist.
         * @param tokenId uint256 ID of the token to query the approval of
         * @return address currently approved for the given token ID
         */
        function getApproved(uint256 tokenId) public view returns (address) {
            require(_exists(tokenId), "ERC721: approved query for nonexistent token");
    
            return _tokenApprovals[tokenId];
        }
    
        /**
         * @dev Sets or unsets the approval of a given operator
         * An operator is allowed to transfer all tokens of the sender on their behalf.
         * @param to operator address to set the approval
         * @param approved representing the status of the approval to be set
         */
        function setApprovalForAll(address to, bool approved) public {
            require(to != _msgSender(), "ERC721: approve to caller");
    
            _operatorApprovals[_msgSender()][to] = approved;
            emit ApprovalForAll(_msgSender(), to, approved);
        }
    
        /**
         * @dev Tells whether an operator is approved by a given owner.
         * @param owner owner address which you want to query the approval of
         * @param operator operator address which you want to query the approval of
         * @return bool whether the given operator is approved by the given owner
         */
        function isApprovedForAll(address owner, address operator) public view returns (bool) {
            return _operatorApprovals[owner][operator];
        }
    
        /**
         * @dev Transfers the ownership of a given token ID to another address.
         * Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
         * Requires the msg.sender to be the owner, approved, or operator.
         * @param from current owner of the token
         * @param to address to receive the ownership of the given token ID
         * @param tokenId uint256 ID of the token to be transferred
         */
        function transferFrom(address from, address to, uint256 tokenId) public {
            //solhint-disable-next-line max-line-length
            require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
    
            _transferFrom(from, to, tokenId);
        }
    
        /**
         * @dev Safely transfers the ownership of a given token ID to another address
         * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received},
         * which is called upon a safe transfer, and return the magic value
         * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise,
         * the transfer is reverted.
         * Requires the msg.sender to be the owner, approved, or operator
         * @param from current owner of the token
         * @param to address to receive the ownership of the given token ID
         * @param tokenId uint256 ID of the token to be transferred
         */
        function safeTransferFrom(address from, address to, uint256 tokenId) public {
            safeTransferFrom(from, to, tokenId, "");
        }
    
        /**
         * @dev Safely transfers the ownership of a given token ID to another address
         * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received},
         * which is called upon a safe transfer, and return the magic value
         * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise,
         * the transfer is reverted.
         * Requires the _msgSender() to be the owner, approved, or operator
         * @param from current owner of the token
         * @param to address to receive the ownership of the given token ID
         * @param tokenId uint256 ID of the token to be transferred
         * @param _data bytes data to send along with a safe transfer check
         */
        function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public {
            require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
            _safeTransferFrom(from, to, tokenId, _data);
        }
    
        /**
         * @dev Safely transfers the ownership of a given token ID to another address
         * If the target address is a contract, it must implement `onERC721Received`,
         * which is called upon a safe transfer, and return the magic value
         * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise,
         * the transfer is reverted.
         * Requires the msg.sender to be the owner, approved, or operator
         * @param from current owner of the token
         * @param to address to receive the ownership of the given token ID
         * @param tokenId uint256 ID of the token to be transferred
         * @param _data bytes data to send along with a safe transfer check
         */
        function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal {
            _transferFrom(from, to, tokenId);
            require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
        }
    
        /**
         * @dev Returns whether the specified token exists.
         * @param tokenId uint256 ID of the token to query the existence of
         * @return bool whether the token exists
         */
        function _exists(uint256 tokenId) internal view returns (bool) {
            address owner = _tokenOwner[tokenId];
            return owner != address(0);
        }
    
        /**
         * @dev Returns whether the given spender can transfer a given token ID.
         * @param spender address of the spender to query
         * @param tokenId uint256 ID of the token to be transferred
         * @return bool whether the msg.sender is approved for the given token ID,
         * is an operator of the owner, or is the owner of the token
         */
        function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) {
            require(_exists(tokenId), "ERC721: operator query for nonexistent token");
            address owner = ownerOf(tokenId);
            return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender));
        }
    
        /**
         * @dev Internal function to safely mint a new token.
         * Reverts if the given token ID already exists.
         * If the target address is a contract, it must implement `onERC721Received`,
         * which is called upon a safe transfer, and return the magic value
         * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise,
         * the transfer is reverted.
         * @param to The address that will own the minted token
         * @param tokenId uint256 ID of the token to be minted
         */
        function _safeMint(address to, uint256 tokenId) internal {
            _safeMint(to, tokenId, "");
        }
    
        /**
         * @dev Internal function to safely mint a new token.
         * Reverts if the given token ID already exists.
         * If the target address is a contract, it must implement `onERC721Received`,
         * which is called upon a safe transfer, and return the magic value
         * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise,
         * the transfer is reverted.
         * @param to The address that will own the minted token
         * @param tokenId uint256 ID of the token to be minted
         * @param _data bytes data to send along with a safe transfer check
         */
        function _safeMint(address to, uint256 tokenId, bytes memory _data) internal {
            _mint(to, tokenId);
            require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
        }
    
        /**
         * @dev Internal function to mint a new token.
         * Reverts if the given token ID already exists.
         * @param to The address that will own the minted token
         * @param tokenId uint256 ID of the token to be minted
         */
        function _mint(address to, uint256 tokenId) internal {
            require(to != address(0), "ERC721: mint to the zero address");
            require(!_exists(tokenId), "ERC721: token already minted");
    
            _tokenOwner[tokenId] = to;
            _ownedTokensCount[to].increment();
    
            emit Transfer(address(0), to, tokenId);
        }
    
        /**
         * @dev Internal function to burn a specific token.
         * Reverts if the token does not exist.
         * Deprecated, use {_burn} instead.
         * @param owner owner of the token to burn
         * @param tokenId uint256 ID of the token being burned
         */
        function _burn(address owner, uint256 tokenId) internal {
            require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own");
    
            _clearApproval(tokenId);
    
            _ownedTokensCount[owner].decrement();
            _tokenOwner[tokenId] = address(0);
    
            emit Transfer(owner, address(0), tokenId);
        }
    
        /**
         * @dev Internal function to burn a specific token.
         * Reverts if the token does not exist.
         * @param tokenId uint256 ID of the token being burned
         */
        function _burn(uint256 tokenId) internal {
            _burn(ownerOf(tokenId), tokenId);
        }
    
        /**
         * @dev Internal function to transfer ownership of a given token ID to another address.
         * As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
         * @param from current owner of the token
         * @param to address to receive the ownership of the given token ID
         * @param tokenId uint256 ID of the token to be transferred
         */
        function _transferFrom(address from, address to, uint256 tokenId) internal {
            require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own");
            require(to != address(0), "ERC721: transfer to the zero address");
    
            _clearApproval(tokenId);
    
            _ownedTokensCount[from].decrement();
            _ownedTokensCount[to].increment();
    
            _tokenOwner[tokenId] = to;
    
            emit Transfer(from, to, tokenId);
        }
    
        /**
         * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
         * The call is not executed if the target address is not a contract.
         *
         * This is an internal detail of the `ERC721` contract and its use is deprecated.
         * @param from address representing the previous owner of the given token ID
         * @param to target address that will receive the tokens
         * @param tokenId uint256 ID of the token to be transferred
         * @param _data bytes optional data to send along with the call
         * @return bool whether the call correctly returned the expected magic value
         */
        function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data)
            internal returns (bool)
        {
            if (!to.isContract()) {
                return true;
            }
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector(
                IERC721Receiver(to).onERC721Received.selector,
                _msgSender(),
                from,
                tokenId,
                _data
            ));
            if (!success) {
                if (returndata.length > 0) {
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert("ERC721: transfer to non ERC721Receiver implementer");
                }
            } else {
                bytes4 retval = abi.decode(returndata, (bytes4));
                return (retval == _ERC721_RECEIVED);
            }
        }
    
        /**
         * @dev Private function to clear current approval of a given token ID.
         * @param tokenId uint256 ID of the token to be transferred
         */
        function _clearApproval(uint256 tokenId) private {
            if (_tokenApprovals[tokenId] != address(0)) {
                _tokenApprovals[tokenId] = address(0);
            }
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC721/IERC721Enumerable.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
     * @dev See https://eips.ethereum.org/EIPS/eip-721
     */
    contract IERC721Enumerable is IERC721 {
        function totalSupply() public view returns (uint256);
        function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256 tokenId);
    
        function tokenByIndex(uint256 index) public view returns (uint256);
    }
    
    // File: @openzeppelin/contracts/token/ERC721/ERC721Enumerable.sol
    
    pragma solidity ^0.5.0;
    
    
    
    
    
    /**
     * @title ERC-721 Non-Fungible Token with optional enumeration extension logic
     * @dev See https://eips.ethereum.org/EIPS/eip-721
     */
    contract ERC721Enumerable is Context, ERC165, ERC721, IERC721Enumerable {
        // Mapping from owner to list of owned token IDs
        mapping(address => uint256[]) private _ownedTokens;
    
        // Mapping from token ID to index of the owner tokens list
        mapping(uint256 => uint256) private _ownedTokensIndex;
    
        // Array with all token ids, used for enumeration
        uint256[] private _allTokens;
    
        // Mapping from token id to position in the allTokens array
        mapping(uint256 => uint256) private _allTokensIndex;
    
        /*
         *     bytes4(keccak256('totalSupply()')) == 0x18160ddd
         *     bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59
         *     bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7
         *
         *     => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63
         */
        bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63;
    
        /**
         * @dev Constructor function.
         */
        constructor () public {
            // register the supported interface to conform to ERC721Enumerable via ERC165
            _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE);
        }
    
        /**
         * @dev Gets the token ID at a given index of the tokens list of the requested owner.
         * @param owner address owning the tokens list to be accessed
         * @param index uint256 representing the index to be accessed of the requested tokens list
         * @return uint256 token ID at the given index of the tokens list owned by the requested address
         */
        function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) {
            require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds");
            return _ownedTokens[owner][index];
        }
    
        /**
         * @dev Gets the total amount of tokens stored by the contract.
         * @return uint256 representing the total amount of tokens
         */
        function totalSupply() public view returns (uint256) {
            return _allTokens.length;
        }
    
        /**
         * @dev Gets the token ID at a given index of all the tokens in this contract
         * Reverts if the index is greater or equal to the total number of tokens.
         * @param index uint256 representing the index to be accessed of the tokens list
         * @return uint256 token ID at the given index of the tokens list
         */
        function tokenByIndex(uint256 index) public view returns (uint256) {
            require(index < totalSupply(), "ERC721Enumerable: global index out of bounds");
            return _allTokens[index];
        }
    
        /**
         * @dev Internal function to transfer ownership of a given token ID to another address.
         * As opposed to transferFrom, this imposes no restrictions on msg.sender.
         * @param from current owner of the token
         * @param to address to receive the ownership of the given token ID
         * @param tokenId uint256 ID of the token to be transferred
         */
        function _transferFrom(address from, address to, uint256 tokenId) internal {
            super._transferFrom(from, to, tokenId);
    
            _removeTokenFromOwnerEnumeration(from, tokenId);
    
            _addTokenToOwnerEnumeration(to, tokenId);
        }
    
        /**
         * @dev Internal function to mint a new token.
         * Reverts if the given token ID already exists.
         * @param to address the beneficiary that will own the minted token
         * @param tokenId uint256 ID of the token to be minted
         */
        function _mint(address to, uint256 tokenId) internal {
            super._mint(to, tokenId);
    
            _addTokenToOwnerEnumeration(to, tokenId);
    
            _addTokenToAllTokensEnumeration(tokenId);
        }
    
        /**
         * @dev Internal function to burn a specific token.
         * Reverts if the token does not exist.
         * Deprecated, use {ERC721-_burn} instead.
         * @param owner owner of the token to burn
         * @param tokenId uint256 ID of the token being burned
         */
        function _burn(address owner, uint256 tokenId) internal {
            super._burn(owner, tokenId);
    
            _removeTokenFromOwnerEnumeration(owner, tokenId);
            // Since tokenId will be deleted, we can clear its slot in _ownedTokensIndex to trigger a gas refund
            _ownedTokensIndex[tokenId] = 0;
    
            _removeTokenFromAllTokensEnumeration(tokenId);
        }
    
        /**
         * @dev Gets the list of token IDs of the requested owner.
         * @param owner address owning the tokens
         * @return uint256[] List of token IDs owned by the requested address
         */
        function _tokensOfOwner(address owner) internal view returns (uint256[] storage) {
            return _ownedTokens[owner];
        }
    
        /**
         * @dev Private function to add a token to this extension's ownership-tracking data structures.
         * @param to address representing the new owner of the given token ID
         * @param tokenId uint256 ID of the token to be added to the tokens list of the given address
         */
        function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private {
            _ownedTokensIndex[tokenId] = _ownedTokens[to].length;
            _ownedTokens[to].push(tokenId);
        }
    
        /**
         * @dev Private function to add a token to this extension's token tracking data structures.
         * @param tokenId uint256 ID of the token to be added to the tokens list
         */
        function _addTokenToAllTokensEnumeration(uint256 tokenId) private {
            _allTokensIndex[tokenId] = _allTokens.length;
            _allTokens.push(tokenId);
        }
    
        /**
         * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that
         * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for
         * gas optimizations e.g. when performing a transfer operation (avoiding double writes).
         * This has O(1) time complexity, but alters the order of the _ownedTokens array.
         * @param from address representing the previous owner of the given token ID
         * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address
         */
        function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private {
            // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and
            // then delete the last slot (swap and pop).
    
            uint256 lastTokenIndex = _ownedTokens[from].length.sub(1);
            uint256 tokenIndex = _ownedTokensIndex[tokenId];
    
            // When the token to delete is the last token, the swap operation is unnecessary
            if (tokenIndex != lastTokenIndex) {
                uint256 lastTokenId = _ownedTokens[from][lastTokenIndex];
    
                _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
                _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
            }
    
            // This also deletes the contents at the last position of the array
            _ownedTokens[from].length--;
    
            // Note that _ownedTokensIndex[tokenId] hasn't been cleared: it still points to the old slot (now occupied by
            // lastTokenId, or just over the end of the array if the token was the last one).
        }
    
        /**
         * @dev Private function to remove a token from this extension's token tracking data structures.
         * This has O(1) time complexity, but alters the order of the _allTokens array.
         * @param tokenId uint256 ID of the token to be removed from the tokens list
         */
        function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private {
            // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
            // then delete the last slot (swap and pop).
    
            uint256 lastTokenIndex = _allTokens.length.sub(1);
            uint256 tokenIndex = _allTokensIndex[tokenId];
    
            // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
            // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
            // an 'if' statement (like in _removeTokenFromOwnerEnumeration)
            uint256 lastTokenId = _allTokens[lastTokenIndex];
    
            _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
            _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
    
            // This also deletes the contents at the last position of the array
            _allTokens.length--;
            _allTokensIndex[tokenId] = 0;
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC721/IERC721Metadata.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
     * @dev See https://eips.ethereum.org/EIPS/eip-721
     */
    contract IERC721Metadata is IERC721 {
        function name() external view returns (string memory);
        function symbol() external view returns (string memory);
        function tokenURI(uint256 tokenId) external view returns (string memory);
    }
    
    // File: @openzeppelin/contracts/token/ERC721/ERC721Metadata.sol
    
    pragma solidity ^0.5.0;
    
    
    
    
    
    contract ERC721Metadata is Context, ERC165, ERC721, IERC721Metadata {
        // Token name
        string private _name;
    
        // Token symbol
        string private _symbol;
    
        // Base URI
        string private _baseURI;
    
        // Optional mapping for token URIs
        mapping(uint256 => string) private _tokenURIs;
    
        /*
         *     bytes4(keccak256('name()')) == 0x06fdde03
         *     bytes4(keccak256('symbol()')) == 0x95d89b41
         *     bytes4(keccak256('tokenURI(uint256)')) == 0xc87b56dd
         *
         *     => 0x06fdde03 ^ 0x95d89b41 ^ 0xc87b56dd == 0x5b5e139f
         */
        bytes4 private constant _INTERFACE_ID_ERC721_METADATA = 0x5b5e139f;
    
        /**
         * @dev Constructor function
         */
        constructor (string memory name, string memory symbol) public {
            _name = name;
            _symbol = symbol;
    
            // register the supported interfaces to conform to ERC721 via ERC165
            _registerInterface(_INTERFACE_ID_ERC721_METADATA);
        }
    
        /**
         * @dev Gets the token name.
         * @return string representing the token name
         */
        function name() external view returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Gets the token symbol.
         * @return string representing the token symbol
         */
        function symbol() external view returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the URI for a given token ID. May return an empty string.
         *
         * If the token's URI is non-empty and a base URI was set (via
         * {_setBaseURI}), it will be added to the token ID's URI as a prefix.
         *
         * Reverts if the token ID does not exist.
         */
        function tokenURI(uint256 tokenId) external view returns (string memory) {
            require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token");
    
            string memory _tokenURI = _tokenURIs[tokenId];
    
            // Even if there is a base URI, it is only appended to non-empty token-specific URIs
            if (bytes(_tokenURI).length == 0) {
                return "";
            } else {
                // abi.encodePacked is being used to concatenate strings
                return string(abi.encodePacked(_baseURI, _tokenURI));
            }
        }
    
        /**
         * @dev Internal function to set the token URI for a given token.
         *
         * Reverts if the token ID does not exist.
         *
         * TIP: if all token IDs share a prefix (e.g. if your URIs look like
         * `http://api.myproject.com/token/<id>`), use {_setBaseURI} to store
         * it and save gas.
         */
        function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal {
            require(_exists(tokenId), "ERC721Metadata: URI set of nonexistent token");
            _tokenURIs[tokenId] = _tokenURI;
        }
    
        /**
         * @dev Internal function to set the base URI for all token IDs. It is
         * automatically added as a prefix to the value returned in {tokenURI}.
         *
         * _Available since v2.5.0._
         */
        function _setBaseURI(string memory baseURI) internal {
            _baseURI = baseURI;
        }
    
        /**
        * @dev Returns the base URI set via {_setBaseURI}. This will be
        * automatically added as a preffix in {tokenURI} to each token's URI, when
        * they are non-empty.
        *
        * _Available since v2.5.0._
        */
        function baseURI() external view returns (string memory) {
            return _baseURI;
        }
    
        /**
         * @dev Internal function to burn a specific token.
         * Reverts if the token does not exist.
         * Deprecated, use _burn(uint256) instead.
         * @param owner owner of the token to burn
         * @param tokenId uint256 ID of the token being burned by the msg.sender
         */
        function _burn(address owner, uint256 tokenId) internal {
            super._burn(owner, tokenId);
    
            // Clear metadata (if any)
            if (bytes(_tokenURIs[tokenId]).length != 0) {
                delete _tokenURIs[tokenId];
            }
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC721/ERC721Full.sol
    
    pragma solidity ^0.5.0;
    
    
    
    
    /**
     * @title Full ERC721 Token
     * @dev This implementation includes all the required and some optional functionality of the ERC721 standard
     * Moreover, it includes approve all functionality using operator terminology.
     *
     * See https://eips.ethereum.org/EIPS/eip-721
     */
    contract ERC721Full is ERC721, ERC721Enumerable, ERC721Metadata {
        constructor (string memory name, string memory symbol) public ERC721Metadata(name, symbol) {
            // solhint-disable-previous-line no-empty-blocks
        }
    }
    
    // File: contracts/library/Governance.sol
    
    pragma solidity ^0.5.0;
    
    contract Governance {
    
        address public _governance;
    
        constructor() public {
            _governance = tx.origin;
        }
    
        event GovernanceTransferred(address indexed previousOwner, address indexed newOwner);
    
        modifier onlyGovernance {
            require(msg.sender == _governance, "not governance");
            _;
        }
    
        function setGovernance(address governance)  public  onlyGovernance
        {
            require(governance != address(0), "new governance the zero address");
            emit GovernanceTransferred(_governance, governance);
            _governance = governance;
        }
    
    
    }
    
    // File: contracts/library/DegoUtil.sol
    
    pragma solidity ^0.5.0;
    
    
    library DegoUtil {
        function uintToString(uint _i) internal pure returns (string memory _uintAsString) {
            if (_i == 0) {
                return "0";
            }
            uint j = _i;
            uint len;
            while (j != 0) {
                len++;
                j /= 10;
            }
            bytes memory bstr = new bytes(len);
            uint k = len - 1;
            while (_i != 0) {
                bstr[k--] = byte(uint8(48 + _i % 10));
                _i /= 10;
            }
            return string(bstr);
        }
    }
    
    // File: contracts/nft/GegoToken.sol
    
    pragma solidity ^0.5.5;
    
    
    
    
    contract GegoToken is ERC721Full, Governance {
        // for minters
        mapping(address => bool) public _minters;
    
    
    
        constructor() public ERC721Full("gego.dego", "GEGO") {
            _setBaseURI("https://api.dego.finance/gego-token/");
        }
    
    
        function setURIPrefix(string memory baseURI) internal {
            _setBaseURI(baseURI);
        }
    
    
        /**
         * @dev Function to mint tokens.
         * @param to The address that will receive the minted token.
         * @param tokenId The token id to mint.
         * @return A boolean that indicates if the operation was successful.
         */
        function mint(address to, uint256 tokenId) external returns (bool) {
            require(_minters[msg.sender], "!minter");
            _mint(to, tokenId);
            _setTokenURI(tokenId, DegoUtil.uintToString(tokenId));
            return true;
        }
    
        /**
         * @dev Function to safely mint tokens.
         * @param to The address that will receive the minted token.
         * @param tokenId The token id to mint.
         * @return A boolean that indicates if the operation was successful.
         */
        function safeMint(address to, uint256 tokenId) public returns (bool) {
            require(_minters[msg.sender], "!minter");
            _safeMint(to, tokenId);
            _setTokenURI(tokenId, DegoUtil.uintToString(tokenId));
            return true;
        }
    
        /**
         * @dev Function to safely mint tokens.
         * @param to The address that will receive the minted token.
         * @param tokenId The token id to mint.
         * @param _data bytes data to send along with a safe transfer check.
         * @return A boolean that indicates if the operation was successful.
         */
        function safeMint(
            address to,
            uint256 tokenId,
            bytes memory _data
        ) public returns (bool) {
            _safeMint(to, tokenId, _data);
            _setTokenURI(tokenId, DegoUtil.uintToString(tokenId));
            return true;
        }
    
        function addMinter(address minter) public onlyGovernance {
            _minters[minter] = true;
        }
    
        function removeMinter(address minter) public onlyGovernance {
            _minters[minter] = false;
        }
    
        /**
         * @dev Burns a specific ERC721 token.
         * @param tokenId uint256 id of the ERC721 token to be burned.
         */
        function burn(uint256 tokenId) external {
            //solhint-disable-next-line max-line-length
            require(_minters[msg.sender], "!minter");
            require(
                _isApprovedOrOwner(_msgSender(), tokenId),
                "caller is not owner nor approved"
            );
            _burn(tokenId);
        }
    
    
        /**
         * @dev Gets the list of token IDs of the requested owner.
         * @param owner address owning the tokens
         * @return uint256[] List of token IDs owned by the requested address
         */
        function tokensOfOwner(address owner) public view returns (uint256[] memory) {
            return _tokensOfOwner(owner);
        }
    
    
    }
    

    File 2 of 2: DandyToken
    /***
     *    ██████╗ ███████╗ ██████╗  ██████╗ 
     *    ██╔══██╗██╔════╝██╔════╝ ██╔═══██╗
     *    ██║  ██║█████╗  ██║  ███╗██║   ██║
     *    ██║  ██║██╔══╝  ██║   ██║██║   ██║
     *    ██████╔╝███████╗╚██████╔╝╚██████╔╝
     *    ╚═════╝ ╚══════╝ ╚═════╝  ╚═════╝ 
     *    
     * https://dego.finance
                                      
    * MIT License
    * ===========
    *
    * Copyright (c) 2020 dego
    *
    * Permission is hereby granted, free of charge, to any person obtaining a copy
    * of this software and associated documentation files (the "Software"), to deal
    * in the Software without restriction, including without limitation the rights
    * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    * copies of the Software, and to permit persons to whom the Software is
    * furnished to do so, subject to the following conditions:
    *
    * The above copyright notice and this permission notice shall be included in all
    * copies or substantial portions of the Software.
    *
    * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
    */
    // File: @openzeppelin/contracts/math/SafeMath.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         *
         * _Available since v2.4.0._
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
     * the optional functions; to access them see {ERC20Detailed}.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: @openzeppelin/contracts/token/ERC20/ERC20Detailed.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @dev Optional functions from the ERC20 standard.
     */
    contract ERC20Detailed is IERC20 {
        string private _name;
        string private _symbol;
        uint8 private _decimals;
    
        /**
         * @dev Sets the values for `name`, `symbol`, and `decimals`. All three of
         * these values are immutable: they can only be set once during
         * construction.
         */
        constructor (string memory name, string memory symbol, uint8 decimals) public {
            _name = name;
            _symbol = symbol;
            _decimals = decimals;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5,05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view returns (uint8) {
            return _decimals;
        }
    }
    
    // File: @openzeppelin/contracts/utils/Address.sol
    
    pragma solidity ^0.5.5;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following 
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
            // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
            // for accounts without code, i.e. `keccak256('')`
            bytes32 codehash;
            bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
            // solhint-disable-next-line no-inline-assembly
            assembly { codehash := extcodehash(account) }
            return (codehash != accountHash && codehash != 0x0);
        }
    
        /**
         * @dev Converts an `address` into `address payable`. Note that this is
         * simply a type cast: the actual underlying value is not changed.
         *
         * _Available since v2.4.0._
         */
        function toPayable(address account) internal pure returns (address payable) {
            return address(uint160(account));
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         *
         * _Available since v2.4.0._
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            // solhint-disable-next-line avoid-call-value
            (bool success, ) = recipient.call.value(amount)("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
    
    pragma solidity ^0.5.0;
    
    
    
    
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using SafeMath for uint256;
        using Address for address;
    
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
    
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
    
        function safeApprove(IERC20 token, address spender, uint256 value) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            // solhint-disable-next-line max-line-length
            require((value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
    
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 newAllowance = token.allowance(address(this), spender).add(value);
            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves.
    
            // A Solidity high level call has three parts:
            //  1. The target address is checked to verify it contains contract code
            //  2. The call itself is made, and success asserted
            //  3. The return value is decoded, which in turn checks the size of the returned data.
            // solhint-disable-next-line max-line-length
            require(address(token).isContract(), "SafeERC20: call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = address(token).call(data);
            require(success, "SafeERC20: low-level call failed");
    
            if (returndata.length > 0) { // Return data is optional
                // solhint-disable-next-line max-line-length
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    
    // File: @openzeppelin/contracts/GSN/Context.sol
    
    pragma solidity ^0.5.0;
    
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    contract Context {
        // Empty internal constructor, to prevent people from mistakenly deploying
        // an instance of this contract, which should be used via inheritance.
        constructor () internal { }
        // solhint-disable-previous-line no-empty-blocks
    
        function _msgSender() internal view returns (address payable) {
            return msg.sender;
        }
    
        function _msgData() internal view returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/ERC20.sol
    
    pragma solidity ^0.5.0;
    
    
    
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20Mintable}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin guidelines: functions revert instead
     * of returning `false` on failure. This behavior is nonetheless conventional
     * and does not conflict with the expectations of ERC20 applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20 {
        using SafeMath for uint256;
    
        mapping (address => uint256) private _balances;
    
        mapping (address => mapping (address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public returns (bool) {
            _approve(_msgSender(), spender, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20};
         *
         * Requirements:
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for `sender`'s tokens of at least
         * `amount`.
         */
        function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
            _transfer(sender, recipient, amount);
            _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
            return true;
        }
    
        /**
         * @dev Moves tokens `amount` from `sender` to `recipient`.
         *
         * This is internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(address sender, address recipient, uint256 amount) internal {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
            _balances[recipient] = _balances[recipient].add(amount);
            emit Transfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements
         *
         * - `to` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _totalSupply = _totalSupply.add(amount);
            _balances[account] = _balances[account].add(amount);
            emit Transfer(address(0), account, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
            _totalSupply = _totalSupply.sub(amount);
            emit Transfer(account, address(0), amount);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
         *
         * This is internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 amount) internal {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`.`amount` is then deducted
         * from the caller's allowance.
         *
         * See {_burn} and {_approve}.
         */
        function _burnFrom(address account, uint256 amount) internal {
            _burn(account, amount);
            _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
        }
    }
    
    // File: contracts/library/Governance.sol
    
    pragma solidity ^0.5.0;
    
    contract Governance {
    
        address public _governance;
    
        constructor() public {
            _governance = tx.origin;
        }
    
        event GovernanceTransferred(address indexed previousOwner, address indexed newOwner);
    
        modifier onlyGovernance {
            require(msg.sender == _governance, "not governance");
            _;
        }
    
        function setGovernance(address governance)  public  onlyGovernance
        {
            require(governance != address(0), "new governance the zero address");
            emit GovernanceTransferred(_governance, governance);
            _governance = governance;
        }
    
    
    }
    
    // File: contracts/dandy/DandyToken.sol
    
    pragma solidity ^0.5.5;
    
    
    
    
    
    
    
    /// @title DandyToken Contract
    
    contract DandyToken is Governance, ERC20, ERC20Detailed {
        using SafeERC20 for IERC20;
        using Address for address;
        using SafeMath for uint256;
    
        // for minters
        mapping(address => bool) public _minters;
    
        //token base data
        uint256 internal _totalSupply;
        mapping(address => uint256) public _balances;
        mapping(address => mapping(address => uint256)) public _allowances;
    
        /**
         * CONSTRUCTOR
         *
         * @dev Initialize the Token
         */
    
        constructor() public ERC20Detailed("dandy.dego", "DANDY", 18) {}
    
        function mint(address account, uint256 amount) public {
            require(_minters[msg.sender], "!minter");
            _mint(account, amount);
        }
    
    
        function addMinter(address minter) public onlyGovernance{
            _minters[minter] = true;
        }
    
        function removeMinter(address minter) public onlyGovernance {
            _minters[minter] = false;
        }
    }