ETH Price: $3,077.78 (-1.13%)

Transaction Decoder

Block:
20369091 at Jul-23-2024 11:59:59 AM +UTC
Transaction Fee:
0.000254512748625988 ETH $0.78
Gas Used:
52,726 Gas / 4.827082438 Gwei

Emitted Events:

257 TransparentUpgradeableProxy.0x8f8619524e8d462cead34604bd2247ede24175801481e4d0b8059ac8aa41c301( 0x8f8619524e8d462cead34604bd2247ede24175801481e4d0b8059ac8aa41c301, 0x0000000000000000000000000000000000000000000000000000000000000060, 0x000000000000000000000000999c410bfd119491710c91d793a83ce1eeb99f21, 0000000000000000000000000000000000000000000000012a5f58168ee60000 )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
5.436603162185779787 Eth5.436652772079179787 Eth0.0000496098934
0x52280f10...1e65C14af
(JPEGd: Auctions)
80.4 Eth58.9 Eth21.5
0x999c410b...1eEB99f21
14.481954145106516568 Eth
Nonce: 4
35.98169963235789058 Eth
Nonce: 5
21.499745487251374012

Execution Trace

TransparentUpgradeableProxy.0eaaf4c8( )
  • JPEGAuction.withdrawBid( _auctionIndex=96 )
    • ETH 21.5 0x999c410bfd119491710c91d793a83ce1eeb99f21.CALL( )
      File 1 of 2: TransparentUpgradeableProxy
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
      import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol";
      import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol";
      // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins.
      contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy {
          constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {}
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "../Proxy.sol";
      import "./ERC1967Upgrade.sol";
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       */
      contract ERC1967Proxy is Proxy, ERC1967Upgrade {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
           *
           * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
           * function call, and allows initializating the storage of the proxy like a Solidity constructor.
           */
          constructor(address _logic, bytes memory _data) payable {
              assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
              _upgradeToAndCall(_logic, _data, false);
          }
          /**
           * @dev Returns the current implementation address.
           */
          function _implementation() internal view virtual override returns (address impl) {
              return ERC1967Upgrade._getImplementation();
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "../ERC1967/ERC1967Proxy.sol";
      /**
       * @dev This contract implements a proxy that is upgradeable by an admin.
       *
       * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
       * clashing], which can potentially be used in an attack, this contract uses the
       * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
       * things that go hand in hand:
       *
       * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
       * that call matches one of the admin functions exposed by the proxy itself.
       * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
       * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
       * "admin cannot fallback to proxy target".
       *
       * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
       * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
       * to sudden errors when trying to call a function from the proxy implementation.
       *
       * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
       * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
       */
      contract TransparentUpgradeableProxy is ERC1967Proxy {
          /**
           * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
           * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
           */
          constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
              assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
              _changeAdmin(admin_);
          }
          /**
           * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
           */
          modifier ifAdmin() {
              if (msg.sender == _getAdmin()) {
                  _;
              } else {
                  _fallback();
              }
          }
          /**
           * @dev Returns the current admin.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function admin() external ifAdmin returns (address admin_) {
              admin_ = _getAdmin();
          }
          /**
           * @dev Returns the current implementation.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
           */
          function implementation() external ifAdmin returns (address implementation_) {
              implementation_ = _implementation();
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
           */
          function changeAdmin(address newAdmin) external virtual ifAdmin {
              _changeAdmin(newAdmin);
          }
          /**
           * @dev Upgrade the implementation of the proxy.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
           */
          function upgradeTo(address newImplementation) external ifAdmin {
              _upgradeToAndCall(newImplementation, bytes(""), false);
          }
          /**
           * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
           * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
           * proxied contract.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
           */
          function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
              _upgradeToAndCall(newImplementation, data, true);
          }
          /**
           * @dev Returns the current admin.
           */
          function _admin() internal view virtual returns (address) {
              return _getAdmin();
          }
          /**
           * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
           */
          function _beforeFallback() internal virtual override {
              require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
              super._beforeFallback();
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "./TransparentUpgradeableProxy.sol";
      import "../../access/Ownable.sol";
      /**
       * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
       * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
       */
      contract ProxyAdmin is Ownable {
          /**
           * @dev Returns the current implementation of `proxy`.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
              // We need to manually run the static call since the getter cannot be flagged as view
              // bytes4(keccak256("implementation()")) == 0x5c60da1b
              (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
              require(success);
              return abi.decode(returndata, (address));
          }
          /**
           * @dev Returns the current admin of `proxy`.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
              // We need to manually run the static call since the getter cannot be flagged as view
              // bytes4(keccak256("admin()")) == 0xf851a440
              (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
              require(success);
              return abi.decode(returndata, (address));
          }
          /**
           * @dev Changes the admin of `proxy` to `newAdmin`.
           *
           * Requirements:
           *
           * - This contract must be the current admin of `proxy`.
           */
          function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
              proxy.changeAdmin(newAdmin);
          }
          /**
           * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
              proxy.upgradeTo(implementation);
          }
          /**
           * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
           * {TransparentUpgradeableProxy-upgradeToAndCall}.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner {
              proxy.upgradeToAndCall{value: msg.value}(implementation, data);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       *
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       *
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internall call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 { revert(0, returndatasize()) }
                  default { return(0, returndatasize()) }
              }
          }
          /**
           * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
           * and {_fallback} should delegate.
           */
          function _implementation() internal view virtual returns (address);
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           *
           * This function does not return to its internall call site, it will return directly to the external caller.
           */
          function _fallback() internal virtual {
              _beforeFallback();
              _delegate(_implementation());
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback () external payable virtual {
              _fallback();
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
           * is empty.
           */
          receive () external payable virtual {
              _fallback();
          }
          /**
           * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
           * call, or as part of the Solidity `fallback` or `receive` functions.
           *
           * If overriden should call `super._beforeFallback()`.
           */
          function _beforeFallback() internal virtual {
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.2;
      import "../beacon/IBeacon.sol";
      import "../../utils/Address.sol";
      import "../../utils/StorageSlot.sol";
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       *
       * _Available since v4.1._
       *
       * @custom:oz-upgrades-unsafe-allow delegatecall
       */
      abstract contract ERC1967Upgrade {
          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Returns the current implementation address.
           */
          function _getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
              StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Perform implementation upgrade
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
          /**
           * @dev Perform implementation upgrade with additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(newImplementation, data);
              }
          }
          /**
           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal {
              address oldImplementation = _getImplementation();
              // Initial upgrade and setup call
              _setImplementation(newImplementation);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(newImplementation, data);
              }
              // Perform rollback test if not already in progress
              StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT);
              if (!rollbackTesting.value) {
                  // Trigger rollback using upgradeTo from the new implementation
                  rollbackTesting.value = true;
                  Address.functionDelegateCall(
                      newImplementation,
                      abi.encodeWithSignature(
                          "upgradeTo(address)",
                          oldImplementation
                      )
                  );
                  rollbackTesting.value = false;
                  // Check rollback was effective
                  require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades");
                  // Finally reset to the new implementation and log the upgrade
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
              }
          }
          /**
           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
           *
           * Emits a {BeaconUpgraded} event.
           */
          function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Returns the current admin.
           */
          function _getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
              StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _changeAdmin(address newAdmin) internal {
              emit AdminChanged(_getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
           */
          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Emitted when the beacon is upgraded.
           */
          event BeaconUpgraded(address indexed beacon);
          /**
           * @dev Returns the current beacon.
           */
          function _getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              require(
                  Address.isContract(newBeacon),
                  "ERC1967: new beacon is not a contract"
              );
              require(
                  Address.isContract(IBeacon(newBeacon).implementation()),
                  "ERC1967: beacon implementation is not a contract"
              );
              StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {BeaconProxy} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize, which returns 0 for contracts in
              // construction, since the code is only stored at the end of the
              // constructor execution.
              uint256 size;
              // solhint-disable-next-line no-inline-assembly
              assembly { size := extcodesize(account) }
              return size > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
              (bool success, ) = recipient.call{ value: amount }("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain`call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.call{ value: value }(data);
              return _verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.staticcall(data);
              return _verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
              require(isContract(target), "Address: delegate call to non-contract");
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return _verifyCallResult(success, returndata, errorMessage);
          }
          function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              assembly {
                  r.slot := slot
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor () {
              address msgSender = _msgSender();
              _owner = msgSender;
              emit OwnershipTransferred(address(0), msgSender);
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
              _;
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              emit OwnershipTransferred(_owner, address(0));
              _owner = address(0);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              emit OwnershipTransferred(_owner, newOwner);
              _owner = newOwner;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /*
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "../ERC1967/ERC1967Upgrade.sol";
      /**
       * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes
       * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify
       * continuation of the upgradability.
       *
       * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism.
       *
       * _Available since v4.1._
       */
      abstract contract UUPSUpgradeable is ERC1967Upgrade {
          function upgradeTo(address newImplementation) external virtual {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallSecure(newImplementation, bytes(""), false);
          }
          function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallSecure(newImplementation, data, true);
          }
          function _authorizeUpgrade(address newImplementation) internal virtual;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.2;
      import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol";
      abstract contract Proxiable is UUPSUpgradeable {
          function _authorizeUpgrade(address newImplementation) internal override {
              _beforeUpgrade(newImplementation);
          }
          function _beforeUpgrade(address newImplementation) internal virtual;
      }
      contract ChildOfProxiable is Proxiable {
          function _beforeUpgrade(address newImplementation) internal virtual override {}
      }
      

      File 2 of 2: JPEGAuction
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev External interface of AccessControl declared to support ERC165 detection.
       */
      interface IAccessControlUpgradeable {
          /**
           * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
           *
           * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
           * {RoleAdminChanged} not being emitted signaling this.
           *
           * _Available since v3.1._
           */
          event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
          /**
           * @dev Emitted when `account` is granted `role`.
           *
           * `sender` is the account that originated the contract call, an admin role
           * bearer except when using {AccessControl-_setupRole}.
           */
          event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Emitted when `account` is revoked `role`.
           *
           * `sender` is the account that originated the contract call:
           *   - if using `revokeRole`, it is the admin role bearer
           *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
           */
          event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) external view returns (bool);
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {AccessControl-_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) external view returns (bytes32);
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function grantRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function revokeRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been granted `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `account`.
           */
          function renounceRole(bytes32 role, address account) external;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.0;
      import "../../utils/AddressUpgradeable.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the
       * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() initializer {}
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           */
          bool private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Modifier to protect an initializer function from being invoked twice.
           */
          modifier initializer() {
              // If the contract is initializing we ignore whether _initialized is set in order to support multiple
              // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the
              // contract may have been reentered.
              require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized");
              bool isTopLevelCall = !_initializing;
              if (isTopLevelCall) {
                  _initializing = true;
                  _initialized = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
              }
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} modifier, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          function _isConstructor() private view returns (bool) {
              return !AddressUpgradeable.isContract(address(this));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module that helps prevent reentrant calls to a function.
       *
       * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
       * available, which can be applied to functions to make sure there are no nested
       * (reentrant) calls to them.
       *
       * Note that because there is a single `nonReentrant` guard, functions marked as
       * `nonReentrant` may not call one another. This can be worked around by making
       * those functions `private`, and then adding `external` `nonReentrant` entry
       * points to them.
       *
       * TIP: If you would like to learn more about reentrancy and alternative ways
       * to protect against it, check out our blog post
       * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
       */
      abstract contract ReentrancyGuardUpgradeable is Initializable {
          // Booleans are more expensive than uint256 or any type that takes up a full
          // word because each write operation emits an extra SLOAD to first read the
          // slot's contents, replace the bits taken up by the boolean, and then write
          // back. This is the compiler's defense against contract upgrades and
          // pointer aliasing, and it cannot be disabled.
          // The values being non-zero value makes deployment a bit more expensive,
          // but in exchange the refund on every call to nonReentrant will be lower in
          // amount. Since refunds are capped to a percentage of the total
          // transaction's gas, it is best to keep them low in cases like this one, to
          // increase the likelihood of the full refund coming into effect.
          uint256 private constant _NOT_ENTERED = 1;
          uint256 private constant _ENTERED = 2;
          uint256 private _status;
          function __ReentrancyGuard_init() internal onlyInitializing {
              __ReentrancyGuard_init_unchained();
          }
          function __ReentrancyGuard_init_unchained() internal onlyInitializing {
              _status = _NOT_ENTERED;
          }
          /**
           * @dev Prevents a contract from calling itself, directly or indirectly.
           * Calling a `nonReentrant` function from another `nonReentrant`
           * function is not supported. It is possible to prevent this from happening
           * by making the `nonReentrant` function external, and making it call a
           * `private` function that does the actual work.
           */
          modifier nonReentrant() {
              // On the first call to nonReentrant, _notEntered will be true
              require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
              // Any calls to nonReentrant after this point will fail
              _status = _ENTERED;
              _;
              // By storing the original value once again, a refund is triggered (see
              // https://eips.ethereum.org/EIPS/eip-2200)
              _status = _NOT_ENTERED;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20Upgradeable {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) external returns (bool);
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721.sol)
      pragma solidity ^0.8.0;
      import "../../utils/introspection/IERC165Upgradeable.sol";
      /**
       * @dev Required interface of an ERC721 compliant contract.
       */
      interface IERC721Upgradeable is IERC165Upgradeable {
          /**
           * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
           */
          event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
           */
          event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
           */
          event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
          /**
           * @dev Returns the number of tokens in ``owner``'s account.
           */
          function balanceOf(address owner) external view returns (uint256 balance);
          /**
           * @dev Returns the owner of the `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function ownerOf(uint256 tokenId) external view returns (address owner);
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
           * are aware of the ERC721 protocol to prevent tokens from being forever locked.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId
          ) external;
          /**
           * @dev Transfers `tokenId` token from `from` to `to`.
           *
           * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 tokenId
          ) external;
          /**
           * @dev Gives permission to `to` to transfer `tokenId` token to another account.
           * The approval is cleared when the token is transferred.
           *
           * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
           *
           * Requirements:
           *
           * - The caller must own the token or be an approved operator.
           * - `tokenId` must exist.
           *
           * Emits an {Approval} event.
           */
          function approve(address to, uint256 tokenId) external;
          /**
           * @dev Returns the account approved for `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function getApproved(uint256 tokenId) external view returns (address operator);
          /**
           * @dev Approve or remove `operator` as an operator for the caller.
           * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
           *
           * Requirements:
           *
           * - The `operator` cannot be the caller.
           *
           * Emits an {ApprovalForAll} event.
           */
          function setApprovalForAll(address operator, bool _approved) external;
          /**
           * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
           *
           * See {setApprovalForAll}
           */
          function isApprovedForAll(address owner, address operator) external view returns (bool);
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId,
              bytes calldata data
          ) external;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library AddressUpgradeable {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[EIP].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165Upgradeable {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev String operations.
       */
      library StringsUpgradeable {
          bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              // Inspired by OraclizeAPI's implementation - MIT licence
              // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
              if (value == 0) {
                  return "0";
              }
              uint256 temp = value;
              uint256 digits;
              while (temp != 0) {
                  digits++;
                  temp /= 10;
              }
              bytes memory buffer = new bytes(digits);
              while (value != 0) {
                  digits -= 1;
                  buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                  value /= 10;
              }
              return string(buffer);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              if (value == 0) {
                  return "0x00";
              }
              uint256 temp = value;
              uint256 length = 0;
              while (temp != 0) {
                  length++;
                  temp >>= 8;
              }
              return toHexString(value, length);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _HEX_SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/structs/EnumerableSet.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Library for managing
       * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
       * types.
       *
       * Sets have the following properties:
       *
       * - Elements are added, removed, and checked for existence in constant time
       * (O(1)).
       * - Elements are enumerated in O(n). No guarantees are made on the ordering.
       *
       * ```
       * contract Example {
       *     // Add the library methods
       *     using EnumerableSet for EnumerableSet.AddressSet;
       *
       *     // Declare a set state variable
       *     EnumerableSet.AddressSet private mySet;
       * }
       * ```
       *
       * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
       * and `uint256` (`UintSet`) are supported.
       */
      library EnumerableSetUpgradeable {
          // To implement this library for multiple types with as little code
          // repetition as possible, we write it in terms of a generic Set type with
          // bytes32 values.
          // The Set implementation uses private functions, and user-facing
          // implementations (such as AddressSet) are just wrappers around the
          // underlying Set.
          // This means that we can only create new EnumerableSets for types that fit
          // in bytes32.
          struct Set {
              // Storage of set values
              bytes32[] _values;
              // Position of the value in the `values` array, plus 1 because index 0
              // means a value is not in the set.
              mapping(bytes32 => uint256) _indexes;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function _add(Set storage set, bytes32 value) private returns (bool) {
              if (!_contains(set, value)) {
                  set._values.push(value);
                  // The value is stored at length-1, but we add 1 to all indexes
                  // and use 0 as a sentinel value
                  set._indexes[value] = set._values.length;
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function _remove(Set storage set, bytes32 value) private returns (bool) {
              // We read and store the value's index to prevent multiple reads from the same storage slot
              uint256 valueIndex = set._indexes[value];
              if (valueIndex != 0) {
                  // Equivalent to contains(set, value)
                  // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                  // the array, and then remove the last element (sometimes called as 'swap and pop').
                  // This modifies the order of the array, as noted in {at}.
                  uint256 toDeleteIndex = valueIndex - 1;
                  uint256 lastIndex = set._values.length - 1;
                  if (lastIndex != toDeleteIndex) {
                      bytes32 lastvalue = set._values[lastIndex];
                      // Move the last value to the index where the value to delete is
                      set._values[toDeleteIndex] = lastvalue;
                      // Update the index for the moved value
                      set._indexes[lastvalue] = valueIndex; // Replace lastvalue's index to valueIndex
                  }
                  // Delete the slot where the moved value was stored
                  set._values.pop();
                  // Delete the index for the deleted slot
                  delete set._indexes[value];
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function _contains(Set storage set, bytes32 value) private view returns (bool) {
              return set._indexes[value] != 0;
          }
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function _length(Set storage set) private view returns (uint256) {
              return set._values.length;
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function _at(Set storage set, uint256 index) private view returns (bytes32) {
              return set._values[index];
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function _values(Set storage set) private view returns (bytes32[] memory) {
              return set._values;
          }
          // Bytes32Set
          struct Bytes32Set {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _add(set._inner, value);
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _remove(set._inner, value);
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
              return _contains(set._inner, value);
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(Bytes32Set storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
              return _at(set._inner, index);
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
              return _values(set._inner);
          }
          // AddressSet
          struct AddressSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(AddressSet storage set, address value) internal returns (bool) {
              return _add(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(AddressSet storage set, address value) internal returns (bool) {
              return _remove(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(AddressSet storage set, address value) internal view returns (bool) {
              return _contains(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(AddressSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(AddressSet storage set, uint256 index) internal view returns (address) {
              return address(uint160(uint256(_at(set._inner, index))));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(AddressSet storage set) internal view returns (address[] memory) {
              bytes32[] memory store = _values(set._inner);
              address[] memory result;
              assembly {
                  result := store
              }
              return result;
          }
          // UintSet
          struct UintSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(UintSet storage set, uint256 value) internal returns (bool) {
              return _add(set._inner, bytes32(value));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(UintSet storage set, uint256 value) internal returns (bool) {
              return _remove(set._inner, bytes32(value));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(UintSet storage set, uint256 value) internal view returns (bool) {
              return _contains(set._inner, bytes32(value));
          }
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function length(UintSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(UintSet storage set, uint256 index) internal view returns (uint256) {
              return uint256(_at(set._inner, index));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(UintSet storage set) internal view returns (uint256[] memory) {
              bytes32[] memory store = _values(set._inner);
              uint256[] memory result;
              assembly {
                  result := store
              }
              return result;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
      pragma solidity ^0.8.0;
      import "./IERC165.sol";
      /**
       * @dev Implementation of the {IERC165} interface.
       *
       * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
       * for the additional interface id that will be supported. For example:
       *
       * ```solidity
       * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
       *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
       * }
       * ```
       *
       * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
       */
      abstract contract ERC165 is IERC165 {
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IERC165).interfaceId;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[EIP].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165 {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity ^0.8.4;
      interface IJPEGCardsCigStaking {
          function isUserStaking(address _user) external view returns (bool);
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity ^0.8.4;
      import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/token/ERC721/IERC721Upgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/structs/EnumerableSetUpgradeable.sol";
      import "../utils/AccessControlUpgradeable.sol";
      import "../utils/RateLib.sol";
      import "../interfaces/IJPEGCardsCigStaking.sol";
      contract JPEGAuction is AccessControlUpgradeable, ReentrancyGuardUpgradeable {
          using EnumerableSetUpgradeable for EnumerableSetUpgradeable.UintSet;
          using RateLib for RateLib.Rate;
          error InvalidAmount();
          error ZeroAddress();
          error Unauthorized();
          error InvalidBid(uint256 bidAmount);
          error InvalidAuction(uint256 index);
          event NewAuction(
              IERC721Upgradeable indexed nft,
              uint256 indexed index,
              uint256 startTime
          );
          event NewBid(
              uint256 indexed auctionId,
              address indexed bidder,
              uint256 bidValue
          );
          event AuctionCanceled(uint256 indexed auctionId);
          event JPEGWithdrawn(address indexed account, uint256 amount);
          event CardWithdrawn(address indexed account, uint256 index);
          event NFTClaimed(uint256 indexed auctionId);
          event BidWithdrawn(
              uint256 indexed auctionId,
              address indexed account,
              uint256 bidValue
          );
          event BidTimeIncrementChanged(uint256 newTime, uint256 oldTime);
          event MinimumIncrementRateChanged(
              RateLib.Rate newIncrementRate,
              RateLib.Rate oldIncrementRate
          );
          event DurationChanged(uint256 newDuration, uint256 oldDuration);
          enum StakeMode {
              CIG,
              JPEG,
              CARD,
              LEGACY
          }
          struct UserInfo {
              StakeMode stakeMode;
              uint256 stakeArgument; //unused for CIG
              uint256 unlockTime; //unused for CIG
          }
          struct Auction {
              IERC721Upgradeable nftAddress;
              uint256 nftIndex;
              uint256 startTime;
              uint256 endTime;
              uint256 minBid;
              address highestBidOwner;
              bool ownerClaimed;
              mapping(address => uint256) bids;
          }
          bytes32 public constant WHITELISTED_ROLE = keccak256("WHITELISTED_ROLE");
          IERC20Upgradeable public jpeg;
          IERC721Upgradeable public cards;
          address internal unused1;
          address internal unused2;
          uint256 internal unused3;
          uint256 public auctionDuration;
          uint256 public bidTimeIncrement;
          uint256 public auctionsLength;
          RateLib.Rate public minIncrementRate;
          mapping(address => UserInfo) public userInfo;
          mapping(address => EnumerableSetUpgradeable.UintSet) internal userAuctions;
          mapping(uint256 => Auction) public auctions;
          function initialize(
              uint256 _auctionDuration,
              uint256 _bidTimeIncrement,
              RateLib.Rate memory _incrementRate
          ) external initializer {
              __AccessControl_init();
              __ReentrancyGuard_init();
              _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
              setAuctionDuration(_auctionDuration);
              setBidTimeIncrement(_bidTimeIncrement);
              setMinimumIncrementRate(_incrementRate);
          }
          function finalizeUpgrade(
              address _admin,
              uint256 _auctionDuration
          ) external {
              bytes32 _role = keccak256("UPGRADED");
              if (hasRole(_role, address(this))) revert();
              auctionDuration = _auctionDuration;
              _grantRole(_role, address(this));
              _grantRole(DEFAULT_ADMIN_ROLE, _admin);
          }
          /// @notice Allows whitelisted addresses to create a new auction in the next slot.
          /// @param _nft The address of the NFT to sell
          /// @param _idx The index of the NFT to sell
          /// @param _minBid The minimum bid value
          function newAuction(
              IERC721Upgradeable _nft,
              uint256 _idx,
              uint256 _minBid
          ) external onlyRole(WHITELISTED_ROLE) {
              uint256 _startTime = _getNextSlotStart();
              _newAuction(
                  _nft,
                  _idx,
                  _startTime,
                  _startTime + auctionDuration,
                  _minBid
              );
          }
          /// @notice Allows the admin to create a new auction
          /// @param _nft The address of the NFT to sell
          /// @param _idx The index of the NFT to sell
          /// @param _startTime The time at which the auction starts
          /// @param _endTime The time at which the auction ends
          /// @param _minBid The minimum bid value
          function newCustomAuction(
              IERC721Upgradeable _nft,
              uint256 _idx,
              uint256 _startTime,
              uint256 _endTime,
              uint256 _minBid
          ) external onlyRole(DEFAULT_ADMIN_ROLE) {
              _newAuction(_nft, _idx, _startTime, _endTime, _minBid);
          }
          /// @notice Allows the admin to cancel an ongoing auction with no bids
          /// @param _auctionIndex The index of the auction to cancel
          /// @param _nftRecipient The address to send the auctioned NFT to
          function cancelAuction(
              uint256 _auctionIndex,
              address _nftRecipient
          ) external onlyRole(DEFAULT_ADMIN_ROLE) {
              if (_nftRecipient == address(0)) revert ZeroAddress();
              Auction storage auction = auctions[_auctionIndex];
              IERC721Upgradeable _nft = auction.nftAddress;
              if (address(_nft) == address(0)) revert InvalidAuction(_auctionIndex);
              if (auction.highestBidOwner != address(0)) revert Unauthorized();
              uint256 _nftIndex = auction.nftIndex;
              delete auctions[_auctionIndex];
              _nft.transferFrom(address(this), _nftRecipient, _nftIndex);
              emit AuctionCanceled(_auctionIndex);
          }
          /// @notice Allows users to bid on an auction. In case of multiple bids by the same user,
          /// the actual bid value is the sum of all bids.
          /// @param _auctionIndex The index of the auction to bid on
          function bid(uint256 _auctionIndex) public payable nonReentrant {
              Auction storage auction = auctions[_auctionIndex];
              uint256 _endTime = auction.endTime;
              if (
                  auction.startTime > block.timestamp ||
                  block.timestamp >= auction.endTime
              ) revert Unauthorized();
              uint256 _previousBid = auction.bids[msg.sender];
              uint256 _totalBid = msg.value + _previousBid;
              uint256 _currentMinBid = auction.bids[auction.highestBidOwner];
              _currentMinBid += minIncrementRate.calculate(_currentMinBid);
              if (_currentMinBid > _totalBid || auction.minBid > _totalBid)
                  revert InvalidBid(_totalBid);
              auction.highestBidOwner = msg.sender;
              auction.bids[msg.sender] = _totalBid;
              if (_previousBid == 0)
                  assert(userAuctions[msg.sender].add(_auctionIndex));
              uint256 _bidIncrement = bidTimeIncrement;
              if (_bidIncrement > _endTime - block.timestamp)
                  auction.endTime = block.timestamp + _bidIncrement;
              emit NewBid(_auctionIndex, msg.sender, _totalBid);
          }
          /// @notice Allows the highest bidder to claim the NFT they bid on if the auction is already over.
          /// @param _auctionIndex The index of the auction to claim the NFT from
          function claimNFT(uint256 _auctionIndex) external nonReentrant {
              Auction storage auction = auctions[_auctionIndex];
              if (
                  auction.highestBidOwner != msg.sender ||
                  auction.endTime > block.timestamp ||
                  !userAuctions[msg.sender].remove(_auctionIndex)
              ) revert Unauthorized();
              auction.nftAddress.transferFrom(
                  address(this),
                  msg.sender,
                  auction.nftIndex
              );
              emit NFTClaimed(_auctionIndex);
          }
          /// @notice Allows bidders to withdraw their bid. Only works if `msg.sender` isn't the highest bidder.
          /// @param _auctionIndex The auction to claim the bid from.
          function withdrawBid(uint256 _auctionIndex) public nonReentrant {
              Auction storage auction = auctions[_auctionIndex];
              if (auction.highestBidOwner == msg.sender) revert Unauthorized();
              uint256 _bidAmount = auction.bids[msg.sender];
              if (_bidAmount == 0) revert Unauthorized();
              delete auction.bids[msg.sender];
              assert(userAuctions[msg.sender].remove(_auctionIndex));
              (bool _sent, ) = payable(msg.sender).call{ value: _bidAmount }("");
              assert(_sent);
              emit BidWithdrawn(_auctionIndex, msg.sender, _bidAmount);
          }
          /// @notice Allows bidders to withdraw multiple bids. Only works if `msg.sender` isn't the highest bidder.
          /// @param _indexes The auctions to claim the bids from.
          function withdrawBids(uint256[] calldata _indexes) external {
              for (uint256 i; i < _indexes.length; i++) {
                  withdrawBid(_indexes[i]);
              }
          }
          /// @notice Allows users that deposited a Card in the previous JPEGAuction implementation to withdraw it.
          function withdrawCard() external nonReentrant {
              UserInfo memory _user = userInfo[msg.sender];
              if (_user.stakeMode != StakeMode.CARD) revert Unauthorized();
              delete userInfo[msg.sender];
              uint256 _cardIndex = _user.stakeArgument;
              cards.transferFrom(address(this), msg.sender, _cardIndex);
              emit CardWithdrawn(msg.sender, _cardIndex);
          }
          /// @notice Allows users that deposited JPEG in the previous JPEGAuction implementation to withdraw it.
          function withdrawJPEG() external nonReentrant {
              UserInfo memory _user = userInfo[msg.sender];
              if (_user.stakeMode != StakeMode.JPEG) revert Unauthorized();
              delete userInfo[msg.sender];
              uint256 _jpegAmount = _user.stakeArgument;
              jpeg.transfer(msg.sender, _jpegAmount);
              emit JPEGWithdrawn(msg.sender, _jpegAmount);
          }
          /// @return The list of active bids for an account.
          /// @param _account The address to check.
          function getActiveBids(
              address _account
          ) external view returns (uint256[] memory) {
              return userAuctions[_account].values();
          }
          /// @return The active bid of an account for an auction.
          /// @param _auctionIndex The auction to retrieve the bid from.
          /// @param _account The bidder's account
          function getAuctionBid(
              uint256 _auctionIndex,
              address _account
          ) external view returns (uint256) {
              return auctions[_auctionIndex].bids[_account];
          }
          /// @notice Allows admins to withdraw ETH after a successful auction.
          /// @param _auctionIndex The auction to withdraw the ETH from
          function withdrawETH(
              uint256 _auctionIndex
          ) external onlyRole(DEFAULT_ADMIN_ROLE) {
              Auction storage auction = auctions[_auctionIndex];
              address _highestBidder = auction.highestBidOwner;
              if (
                  auction.endTime > block.timestamp ||
                  _highestBidder == address(0) ||
                  auction.ownerClaimed
              ) revert Unauthorized();
              auction.ownerClaimed = true;
              (bool _sent, ) = payable(msg.sender).call{
                  value: auction.bids[_highestBidder]
              }("");
              assert(_sent);
          }
          /// @notice Allows admins to withdraw an unsold NFT
          /// @param _auctionIndex The auction to withdraw the NFT from.
          function withdrawUnsoldNFT(
              uint256 _auctionIndex
          ) external onlyRole(DEFAULT_ADMIN_ROLE) {
              Auction storage auction = auctions[_auctionIndex];
              address _highestBidder = auction.highestBidOwner;
              if (
                  auction.endTime > block.timestamp ||
                  _highestBidder != address(0) ||
                  auction.ownerClaimed
              ) revert Unauthorized();
              auction.ownerClaimed = true;
              auction.nftAddress.transferFrom(
                  address(this),
                  msg.sender,
                  auction.nftIndex
              );
          }
          /// @notice Allows admins to set the amount of time to increase an auction by if a bid happens in the last few minutes
          /// @param _newTime The new amount of time
          function setBidTimeIncrement(
              uint256 _newTime
          ) public onlyRole(DEFAULT_ADMIN_ROLE) {
              if (_newTime == 0) revert InvalidAmount();
              emit BidTimeIncrementChanged(_newTime, bidTimeIncrement);
              bidTimeIncrement = _newTime;
          }
          /// @notice Allows admins to set the minimum increment rate from the last highest bid.
          /// @param _newIncrementRate The new increment rate.
          function setMinimumIncrementRate(
              RateLib.Rate memory _newIncrementRate
          ) public onlyRole(DEFAULT_ADMIN_ROLE) {
              if (!_newIncrementRate.isValid() && !_newIncrementRate.isBelowOne())
                  revert RateLib.InvalidRate();
              emit MinimumIncrementRateChanged(_newIncrementRate, minIncrementRate);
              minIncrementRate = _newIncrementRate;
          }
          /// @notice Allows admins to set the default auction duration
          /// @param _duration The new default duration
          function setAuctionDuration(
              uint256 _duration
          ) public onlyRole(DEFAULT_ADMIN_ROLE) {
              if (_duration == 0) revert InvalidAmount();
              emit DurationChanged(_duration, auctionDuration);
              auctionDuration = _duration;
          }
          function _newAuction(
              IERC721Upgradeable _nft,
              uint256 _idx,
              uint256 _startTime,
              uint256 _endTime,
              uint256 _minBid
          ) internal {
              if (address(_nft) == address(0)) revert ZeroAddress();
              if (
                  block.timestamp > _startTime ||
                  _startTime >= _endTime ||
                  _minBid == 0
              ) revert InvalidAmount();
              Auction storage auction = auctions[auctionsLength++];
              auction.nftAddress = _nft;
              auction.nftIndex = _idx;
              auction.startTime = _startTime;
              auction.endTime = _endTime;
              auction.minBid = _minBid;
              _nft.transferFrom(msg.sender, address(this), _idx);
              emit NewAuction(_nft, _idx, _startTime);
          }
          function _getNextSlotStart() internal view returns (uint256) {
              uint256 _duration = auctionDuration;
              return block.timestamp - (block.timestamp % _duration) + _duration;
          }
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity ^0.8.4;
      import "@openzeppelin/contracts-upgradeable/access/IAccessControlUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/StringsUpgradeable.sol";
      import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
      //copy paste of openzeppelin's {AccessControlUpgradeable} contract but instead of extending
      //{ERC165Upgradeable} it extends {ERC165} to have the storage layout match {OwnableUpgradeable}'s
      //and allow replacing it.
      abstract contract AccessControlUpgradeable is
          Initializable,
          ContextUpgradeable,
          IAccessControlUpgradeable,
          ERC165
      {
          function __AccessControl_init() internal onlyInitializing {}
          function __AccessControl_init_unchained() internal onlyInitializing {}
          struct RoleData {
              mapping(address => bool) members;
              bytes32 adminRole;
          }
          mapping(bytes32 => RoleData) private _roles;
          bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
          /**
           * @dev Modifier that checks that an account has a specific role. Reverts
           * with a standardized message including the required role.
           *
           * The format of the revert reason is given by the following regular expression:
           *
           *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
           *
           * _Available since v4.1._
           */
          modifier onlyRole(bytes32 role) {
              _checkRole(role, _msgSender());
              _;
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(
              bytes4 interfaceId
          ) public view virtual override returns (bool) {
              return
                  interfaceId == type(IAccessControlUpgradeable).interfaceId ||
                  super.supportsInterface(interfaceId);
          }
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(
              bytes32 role,
              address account
          ) public view virtual override returns (bool) {
              return _roles[role].members[account];
          }
          /**
           * @dev Revert with a standard message if `account` is missing `role`.
           *
           * The format of the revert reason is given by the following regular expression:
           *
           *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
           */
          function _checkRole(bytes32 role, address account) internal view virtual {
              if (!hasRole(role, account)) {
                  revert(
                      string(
                          abi.encodePacked(
                              "AccessControl: account ",
                              StringsUpgradeable.toHexString(uint160(account), 20),
                              " is missing role ",
                              StringsUpgradeable.toHexString(uint256(role), 32)
                          )
                      )
                  );
              }
          }
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {_setRoleAdmin}.
           */
          function getRoleAdmin(
              bytes32 role
          ) public view virtual override returns (bytes32) {
              return _roles[role].adminRole;
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function grantRole(
              bytes32 role,
              address account
          ) public virtual override onlyRole(getRoleAdmin(role)) {
              _grantRole(role, account);
          }
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function revokeRole(
              bytes32 role,
              address account
          ) public virtual override onlyRole(getRoleAdmin(role)) {
              _revokeRole(role, account);
          }
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been revoked `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `account`.
           */
          function renounceRole(
              bytes32 role,
              address account
          ) public virtual override {
              require(
                  account == _msgSender(),
                  "AccessControl: can only renounce roles for self"
              );
              _revokeRole(role, account);
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event. Note that unlike {grantRole}, this function doesn't perform any
           * checks on the calling account.
           *
           * [WARNING]
           * ====
           * This function should only be called from the constructor when setting
           * up the initial roles for the system.
           *
           * Using this function in any other way is effectively circumventing the admin
           * system imposed by {AccessControl}.
           * ====
           *
           * NOTE: This function is deprecated in favor of {_grantRole}.
           */
          function _setupRole(bytes32 role, address account) internal virtual {
              _grantRole(role, account);
          }
          /**
           * @dev Sets `adminRole` as ``role``'s admin role.
           *
           * Emits a {RoleAdminChanged} event.
           */
          function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
              bytes32 previousAdminRole = getRoleAdmin(role);
              _roles[role].adminRole = adminRole;
              emit RoleAdminChanged(role, previousAdminRole, adminRole);
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * Internal function without access restriction.
           */
          function _grantRole(bytes32 role, address account) internal virtual {
              if (!hasRole(role, account)) {
                  _roles[role].members[account] = true;
                  emit RoleGranted(role, account, _msgSender());
              }
          }
          /**
           * @dev Revokes `role` from `account`.
           *
           * Internal function without access restriction.
           */
          function _revokeRole(bytes32 role, address account) internal virtual {
              if (hasRole(role, account)) {
                  _roles[role].members[account] = false;
                  emit RoleRevoked(role, account, _msgSender());
              }
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity ^0.8.4;
      library RateLib {
          error InvalidRate();
          struct Rate {
              uint128 numerator;
              uint128 denominator;
          }
          function isValid(Rate memory _rate) internal pure returns (bool) {
              return _rate.denominator != 0;
          }
          function isZero(Rate memory _rate) internal pure returns (bool) {
              return _rate.numerator == 0;
          }
          function isAboveOne(Rate memory _rate) internal pure returns (bool) {
              return _rate.numerator > _rate.denominator;
          }
          function isBelowOne(Rate memory _rate) internal pure returns (bool) {
              return _rate.denominator > _rate.numerator;
          }
          function isOne(Rate memory _rate) internal pure returns (bool) {
              return _rate.numerator == _rate.denominator;
          }
          function greaterThan(
              Rate memory _r1,
              Rate memory _r2
          ) internal pure returns (bool) {
              return
                  _r1.numerator * _r2.denominator > _r2.numerator * _r1.denominator;
          }
          function sum(
              Rate memory _r1,
              Rate memory _r2
          ) internal pure returns (Rate memory) {
              return
                  Rate({
                      numerator: _r1.numerator *
                          _r2.denominator +
                          _r1.denominator *
                          _r2.numerator,
                      denominator: _r1.denominator * _r2.denominator
                  });
          }
          function calculate(
              Rate memory _rate,
              uint256 _num
          ) internal pure returns (uint256) {
              return (_num * _rate.numerator) / _rate.denominator;
          }
      }