Transaction Hash:
Block:
21275316 at Nov-26-2024 11:49:23 PM +UTC
Transaction Fee:
0.00165544873103843 ETH
$4.95
Gas Used:
211,489 Gas / 7.82758787 Gwei
Emitted Events:
| 110 |
FiatTokenProxy.0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925( 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925, 0x0000000000000000000000001a5808ea973d5d23df22d5a49e79febeff4c6faf, 0x000000000000000000000000c92e8bdf79f0507f65a392b0ab4667716bfe0110, ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff )
|
| 111 |
GPv2Settlement.Interaction( target=HooksTrampoline, value=0, selector=System.Byte[] )
|
| 112 |
GPv2Settlement.Trade( owner=0x1a5808ea973d5d23df22d5a49e79febeff4c6faf, sellToken=[Receiver] FiatTokenProxy, buyToken=0xEeeeeEee...eeeeeEEeE, sellAmount=167972435, buyAmount=48725498522818746, feeAmount=0, orderUid=0xDC981516ACB0020DBA85937B5E78E9E44EA60F02F5696C8DF9E24D09D794C4971A5808EA973D5D23DF22D5A49E79FEBEFF4C6FAF67466559 )
|
| 113 |
FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000001a5808ea973d5d23df22d5a49e79febeff4c6faf, 0x0000000000000000000000009008d19f58aabd9ed0d60971565aa8510560ab41, 000000000000000000000000000000000000000000000000000000000a030e53 )
|
| 114 |
WETH9.Withdrawal( src=[Receiver] GPv2Settlement, wad=48725498522818746 )
|
| 115 |
GPv2Settlement.Interaction( target=WETH9, value=0, selector=System.Byte[] )
|
| 116 |
GPv2Settlement.Settlement( solver=[Sender] 0x4339889fd9dfca20a423fba011e9dff1c856caeb )
|
Account State Difference:
| Address | Before | After | State Difference | ||
|---|---|---|---|---|---|
| 0x1A5808eA...eff4C6faf | 0.218477125352276962 Eth | 0.267202623875095708 Eth | 0.048725498522818746 | ||
| 0x4339889F...1C856CAEb |
10.308400855409610872 Eth
Nonce: 132511
|
10.306745406678572442 Eth
Nonce: 132512
| 0.00165544873103843 | ||
| 0x9008D19f...10560ab41 | (CoW Protocol: GPv2Settlement) | ||||
| 0xA0b86991...E3606eB48 | |||||
| 0xC02aaA39...83C756Cc2 | 2,923,283.149792334126796852 Eth | 2,923,283.101066835603978106 Eth | 0.048725498522818746 | ||
|
0xE733455f...78f5552eD
Miner
| (Fee Recipient: 0xE7...2eD) | 4.964745772144730167 Eth | 4.964913711275497494 Eth | 0.000167939130767327 |
Execution Trace
GPv2Settlement.13d79a0b( )
EIP173Proxy.02cc250d( )-
GPv2AllowListAuthentication.isSolver( prospectiveSolver=0x4339889FD9dFCa20a423fbA011e9dfF1C856CAEb ) => ( True )
-
HooksTrampoline.execute( hooks= )FiatTokenProxy.d505accf( )
FiatTokenV2_2.permit( owner=0x1A5808eA973d5d23df22d5A49e79FEBeff4C6faf, spender=0xC92E8bdf79f0507f65a392b0ab4667716BFE0110, value=115792089237316195423570985008687907853269984665640564039457584007913129639935, deadline=1890452925, v=27, r=663D18FB2328EB6AFC536AC45BD0D96E5D52D0A6513D6D906F15FDB6964EA738, s=3AE81660E7C7FCA26ADDAB500FDDA58F7E19A22386D8CC8360067F99C68CDA6B )SignatureChecker.isValidSignatureNow( signer=0x1A5808eA973d5d23df22d5A49e79FEBeff4C6faf, digest=8137C24C73643016E6A14159A7F7180F6C952AF99AEF20F6F77DA2423ACCB1D6, signature=0x663D18FB2328EB6AFC536AC45BD0D96E5D52D0A6513D6D906F15FDB6964EA7383AE81660E7C7FCA26ADDAB500FDDA58F7E19A22386D8CC8360067F99C68CDA6B1B ) => ( True )-
Null: 0x000...001.8137c24c( )
-
-
Null: 0x000...001.dc981516( ) GPv2VaultRelayer.transferFromAccounts( transfers= )FiatTokenProxy.23b872dd( )
-
FiatTokenV2_2.transferFrom( from=0x1A5808eA973d5d23df22d5A49e79FEBeff4C6faf, to=0x9008D19f58AAbD9eD0D60971565AA8510560ab41, value=167972435 ) => ( True )
-
WETH9.withdraw( wad=48725498522818746 )
- ETH 0.048725498522818746
GPv2Settlement.CALL( )
- ETH 0.048725498522818746
- ETH 0.048725498522818746
0x1a5808ea973d5d23df22d5a49e79febeff4c6faf.CALL( )
File 1 of 9: GPv2Settlement
File 2 of 9: FiatTokenProxy
File 3 of 9: WETH9
File 4 of 9: EIP173Proxy
File 5 of 9: GPv2AllowListAuthentication
File 6 of 9: HooksTrampoline
File 7 of 9: FiatTokenV2_2
File 8 of 9: SignatureChecker
File 9 of 9: GPv2VaultRelayer
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "./GPv2VaultRelayer.sol";
import "./interfaces/GPv2Authentication.sol";
import "./interfaces/IERC20.sol";
import "./interfaces/IVault.sol";
import "./libraries/GPv2Interaction.sol";
import "./libraries/GPv2Order.sol";
import "./libraries/GPv2Trade.sol";
import "./libraries/GPv2Transfer.sol";
import "./libraries/SafeCast.sol";
import "./libraries/SafeMath.sol";
import "./mixins/GPv2Signing.sol";
import "./mixins/ReentrancyGuard.sol";
import "./mixins/StorageAccessible.sol";
/// @title Gnosis Protocol v2 Settlement Contract
/// @author Gnosis Developers
contract GPv2Settlement is GPv2Signing, ReentrancyGuard, StorageAccessible {
using GPv2Order for bytes;
using GPv2Transfer for IVault;
using SafeCast for int256;
using SafeCast for uint256;
using SafeMath for uint256;
/// @dev The authenticator is used to determine who can call the settle function.
/// That is, only authorised solvers have the ability to invoke settlements.
/// Any valid authenticator implements an isSolver method called by the onlySolver
/// modifier below.
GPv2Authentication public immutable authenticator;
/// @dev The Balancer Vault the protocol uses for managing user funds.
IVault public immutable vault;
/// @dev The Balancer Vault relayer which can interact on behalf of users.
/// This contract is created during deployment
GPv2VaultRelayer public immutable vaultRelayer;
/// @dev Map each user order by UID to the amount that has been filled so
/// far. If this amount is larger than or equal to the amount traded in the
/// order (amount sold for sell orders, amount bought for buy orders) then
/// the order cannot be traded anymore. If the order is fill or kill, then
/// this value is only used to determine whether the order has already been
/// executed.
mapping(bytes => uint256) public filledAmount;
/// @dev Event emitted for each executed trade.
event Trade(
address indexed owner,
IERC20 sellToken,
IERC20 buyToken,
uint256 sellAmount,
uint256 buyAmount,
uint256 feeAmount,
bytes orderUid
);
/// @dev Event emitted for each executed interaction.
///
/// For gas effeciency, only the interaction calldata selector (first 4
/// bytes) is included in the event. For interactions without calldata or
/// whose calldata is shorter than 4 bytes, the selector will be `0`.
event Interaction(address indexed target, uint256 value, bytes4 selector);
/// @dev Event emitted when a settlement complets
event Settlement(address indexed solver);
/// @dev Event emitted when an order is invalidated.
event OrderInvalidated(address indexed owner, bytes orderUid);
constructor(GPv2Authentication authenticator_, IVault vault_) {
authenticator = authenticator_;
vault = vault_;
vaultRelayer = new GPv2VaultRelayer(vault_);
}
// solhint-disable-next-line no-empty-blocks
receive() external payable {
// NOTE: Include an empty receive function so that the settlement
// contract can receive Ether from contract interactions.
}
/// @dev This modifier is called by settle function to block any non-listed
/// senders from settling batches.
modifier onlySolver {
require(authenticator.isSolver(msg.sender), "GPv2: not a solver");
_;
}
/// @dev Modifier to ensure that an external function is only callable as a
/// settlement interaction.
modifier onlyInteraction {
require(address(this) == msg.sender, "GPv2: not an interaction");
_;
}
/// @dev Settle the specified orders at a clearing price. Note that it is
/// the responsibility of the caller to ensure that all GPv2 invariants are
/// upheld for the input settlement, otherwise this call will revert.
/// Namely:
/// - All orders are valid and signed
/// - Accounts have sufficient balance and approval.
/// - Settlement contract has sufficient balance to execute trades. Note
/// this implies that the accumulated fees held in the contract can also
/// be used for settlement. This is OK since:
/// - Solvers need to be authorized
/// - Misbehaving solvers will be slashed for abusing accumulated fees for
/// settlement
/// - Critically, user orders are entirely protected
///
/// @param tokens An array of ERC20 tokens to be traded in the settlement.
/// Trades encode tokens as indices into this array.
/// @param clearingPrices An array of clearing prices where the `i`-th price
/// is for the `i`-th token in the [`tokens`] array.
/// @param trades Trades for signed orders.
/// @param interactions Smart contract interactions split into three
/// separate lists to be run before the settlement, during the settlement
/// and after the settlement respectively.
function settle(
IERC20[] calldata tokens,
uint256[] calldata clearingPrices,
GPv2Trade.Data[] calldata trades,
GPv2Interaction.Data[][3] calldata interactions
) external nonReentrant onlySolver {
executeInteractions(interactions[0]);
(
GPv2Transfer.Data[] memory inTransfers,
GPv2Transfer.Data[] memory outTransfers
) = computeTradeExecutions(tokens, clearingPrices, trades);
vaultRelayer.transferFromAccounts(inTransfers);
executeInteractions(interactions[1]);
vault.transferToAccounts(outTransfers);
executeInteractions(interactions[2]);
emit Settlement(msg.sender);
}
/// @dev Settle an order directly against Balancer V2 pools.
///
/// @param swaps The Balancer V2 swap steps to use for trading.
/// @param tokens An array of ERC20 tokens to be traded in the settlement.
/// Swaps and the trade encode tokens as indices into this array.
/// @param trade The trade to match directly against Balancer liquidity. The
/// order will always be fully executed, so the trade's `executedAmount`
/// field is used to represent a swap limit amount.
function swap(
IVault.BatchSwapStep[] calldata swaps,
IERC20[] calldata tokens,
GPv2Trade.Data calldata trade
) external nonReentrant onlySolver {
RecoveredOrder memory recoveredOrder = allocateRecoveredOrder();
GPv2Order.Data memory order = recoveredOrder.data;
recoverOrderFromTrade(recoveredOrder, tokens, trade);
IVault.SwapKind kind =
order.kind == GPv2Order.KIND_SELL
? IVault.SwapKind.GIVEN_IN
: IVault.SwapKind.GIVEN_OUT;
IVault.FundManagement memory funds;
funds.sender = recoveredOrder.owner;
funds.fromInternalBalance =
order.sellTokenBalance == GPv2Order.BALANCE_INTERNAL;
funds.recipient = payable(recoveredOrder.receiver);
funds.toInternalBalance =
order.buyTokenBalance == GPv2Order.BALANCE_INTERNAL;
int256[] memory limits = new int256[](tokens.length);
uint256 limitAmount = trade.executedAmount;
// NOTE: Array allocation initializes elements to 0, so we only need to
// set the limits we care about. This ensures that the swap will respect
// the order's limit price.
if (order.kind == GPv2Order.KIND_SELL) {
require(limitAmount >= order.buyAmount, "GPv2: limit too low");
limits[trade.sellTokenIndex] = order.sellAmount.toInt256();
limits[trade.buyTokenIndex] = -limitAmount.toInt256();
} else {
require(limitAmount <= order.sellAmount, "GPv2: limit too high");
limits[trade.sellTokenIndex] = limitAmount.toInt256();
limits[trade.buyTokenIndex] = -order.buyAmount.toInt256();
}
GPv2Transfer.Data memory feeTransfer;
feeTransfer.account = recoveredOrder.owner;
feeTransfer.token = order.sellToken;
feeTransfer.amount = order.feeAmount;
feeTransfer.balance = order.sellTokenBalance;
int256[] memory tokenDeltas =
vaultRelayer.batchSwapWithFee(
kind,
swaps,
tokens,
funds,
limits,
// NOTE: Specify a deadline to ensure that an expire order
// cannot be used to trade.
order.validTo,
feeTransfer
);
bytes memory orderUid = recoveredOrder.uid;
uint256 executedSellAmount =
tokenDeltas[trade.sellTokenIndex].toUint256();
uint256 executedBuyAmount =
(-tokenDeltas[trade.buyTokenIndex]).toUint256();
// NOTE: Check that the orders were completely filled and update their
// filled amounts to avoid replaying them. The limit price and order
// validity have already been verified when executing the swap through
// the `limit` and `deadline` parameters.
require(filledAmount[orderUid] == 0, "GPv2: order filled");
if (order.kind == GPv2Order.KIND_SELL) {
require(
executedSellAmount == order.sellAmount,
"GPv2: sell amount not respected"
);
filledAmount[orderUid] = order.sellAmount;
} else {
require(
executedBuyAmount == order.buyAmount,
"GPv2: buy amount not respected"
);
filledAmount[orderUid] = order.buyAmount;
}
emit Trade(
recoveredOrder.owner,
order.sellToken,
order.buyToken,
executedSellAmount,
executedBuyAmount,
order.feeAmount,
orderUid
);
emit Settlement(msg.sender);
}
/// @dev Invalidate onchain an order that has been signed offline.
///
/// @param orderUid The unique identifier of the order that is to be made
/// invalid after calling this function. The user that created the order
/// must be the the sender of this message. See [`extractOrderUidParams`]
/// for details on orderUid.
function invalidateOrder(bytes calldata orderUid) external {
(, address owner, ) = orderUid.extractOrderUidParams();
require(owner == msg.sender, "GPv2: caller does not own order");
filledAmount[orderUid] = uint256(-1);
emit OrderInvalidated(owner, orderUid);
}
/// @dev Free storage from the filled amounts of **expired** orders to claim
/// a gas refund. This method can only be called as an interaction.
///
/// @param orderUids The unique identifiers of the expired order to free
/// storage for.
function freeFilledAmountStorage(bytes[] calldata orderUids)
external
onlyInteraction
{
freeOrderStorage(filledAmount, orderUids);
}
/// @dev Free storage from the pre signatures of **expired** orders to claim
/// a gas refund. This method can only be called as an interaction.
///
/// @param orderUids The unique identifiers of the expired order to free
/// storage for.
function freePreSignatureStorage(bytes[] calldata orderUids)
external
onlyInteraction
{
freeOrderStorage(preSignature, orderUids);
}
/// @dev Process all trades one at a time returning the computed net in and
/// out transfers for the trades.
///
/// This method reverts if processing of any single trade fails. See
/// [`computeTradeExecution`] for more details.
///
/// @param tokens An array of ERC20 tokens to be traded in the settlement.
/// @param clearingPrices An array of token clearing prices.
/// @param trades Trades for signed orders.
/// @return inTransfers Array of in transfers of executed sell amounts.
/// @return outTransfers Array of out transfers of executed buy amounts.
function computeTradeExecutions(
IERC20[] calldata tokens,
uint256[] calldata clearingPrices,
GPv2Trade.Data[] calldata trades
)
internal
returns (
GPv2Transfer.Data[] memory inTransfers,
GPv2Transfer.Data[] memory outTransfers
)
{
RecoveredOrder memory recoveredOrder = allocateRecoveredOrder();
inTransfers = new GPv2Transfer.Data[](trades.length);
outTransfers = new GPv2Transfer.Data[](trades.length);
for (uint256 i = 0; i < trades.length; i++) {
GPv2Trade.Data calldata trade = trades[i];
recoverOrderFromTrade(recoveredOrder, tokens, trade);
computeTradeExecution(
recoveredOrder,
clearingPrices[trade.sellTokenIndex],
clearingPrices[trade.buyTokenIndex],
trade.executedAmount,
inTransfers[i],
outTransfers[i]
);
}
}
/// @dev Compute the in and out transfer amounts for a single trade.
/// This function reverts if:
/// - The order has expired
/// - The order's limit price is not respected
/// - The order gets over-filled
/// - The fee discount is larger than the executed fee
///
/// @param recoveredOrder The recovered order to process.
/// @param sellPrice The price of the order's sell token.
/// @param buyPrice The price of the order's buy token.
/// @param executedAmount The portion of the order to execute. This will be
/// ignored for fill-or-kill orders.
/// @param inTransfer Memory location for computed executed sell amount
/// transfer.
/// @param outTransfer Memory location for computed executed buy amount
/// transfer.
function computeTradeExecution(
RecoveredOrder memory recoveredOrder,
uint256 sellPrice,
uint256 buyPrice,
uint256 executedAmount,
GPv2Transfer.Data memory inTransfer,
GPv2Transfer.Data memory outTransfer
) internal {
GPv2Order.Data memory order = recoveredOrder.data;
bytes memory orderUid = recoveredOrder.uid;
// solhint-disable-next-line not-rely-on-time
require(order.validTo >= block.timestamp, "GPv2: order expired");
// NOTE: The following computation is derived from the equation:
// ```
// amount_x * price_x = amount_y * price_y
// ```
// Intuitively, if a chocolate bar is 0,50€ and a beer is 4€, 1 beer
// is roughly worth 8 chocolate bars (`1 * 4 = 8 * 0.5`). From this
// equation, we can derive:
// - The limit price for selling `x` and buying `y` is respected iff
// ```
// limit_x * price_x >= limit_y * price_y
// ```
// - The executed amount of token `y` given some amount of `x` and
// clearing prices is:
// ```
// amount_y = amount_x * price_x / price_y
// ```
require(
order.sellAmount.mul(sellPrice) >= order.buyAmount.mul(buyPrice),
"GPv2: limit price not respected"
);
uint256 executedSellAmount;
uint256 executedBuyAmount;
uint256 executedFeeAmount;
uint256 currentFilledAmount;
if (order.kind == GPv2Order.KIND_SELL) {
if (order.partiallyFillable) {
executedSellAmount = executedAmount;
executedFeeAmount = order.feeAmount.mul(executedSellAmount).div(
order.sellAmount
);
} else {
executedSellAmount = order.sellAmount;
executedFeeAmount = order.feeAmount;
}
executedBuyAmount = executedSellAmount.mul(sellPrice).ceilDiv(
buyPrice
);
currentFilledAmount = filledAmount[orderUid].add(
executedSellAmount
);
require(
currentFilledAmount <= order.sellAmount,
"GPv2: order filled"
);
} else {
if (order.partiallyFillable) {
executedBuyAmount = executedAmount;
executedFeeAmount = order.feeAmount.mul(executedBuyAmount).div(
order.buyAmount
);
} else {
executedBuyAmount = order.buyAmount;
executedFeeAmount = order.feeAmount;
}
executedSellAmount = executedBuyAmount.mul(buyPrice).div(sellPrice);
currentFilledAmount = filledAmount[orderUid].add(executedBuyAmount);
require(
currentFilledAmount <= order.buyAmount,
"GPv2: order filled"
);
}
executedSellAmount = executedSellAmount.add(executedFeeAmount);
filledAmount[orderUid] = currentFilledAmount;
emit Trade(
recoveredOrder.owner,
order.sellToken,
order.buyToken,
executedSellAmount,
executedBuyAmount,
executedFeeAmount,
orderUid
);
inTransfer.account = recoveredOrder.owner;
inTransfer.token = order.sellToken;
inTransfer.amount = executedSellAmount;
inTransfer.balance = order.sellTokenBalance;
outTransfer.account = recoveredOrder.receiver;
outTransfer.token = order.buyToken;
outTransfer.amount = executedBuyAmount;
outTransfer.balance = order.buyTokenBalance;
}
/// @dev Execute a list of arbitrary contract calls from this contract.
/// @param interactions The list of interactions to execute.
function executeInteractions(GPv2Interaction.Data[] calldata interactions)
internal
{
for (uint256 i; i < interactions.length; i++) {
GPv2Interaction.Data calldata interaction = interactions[i];
// To prevent possible attack on user funds, we explicitly disable
// any interactions with the vault relayer contract.
require(
interaction.target != address(vaultRelayer),
"GPv2: forbidden interaction"
);
GPv2Interaction.execute(interaction);
emit Interaction(
interaction.target,
interaction.value,
GPv2Interaction.selector(interaction)
);
}
}
/// @dev Claims refund for the specified storage and order UIDs.
///
/// This method reverts if any of the orders are still valid.
///
/// @param orderUids Order refund data for freeing storage.
/// @param orderStorage Order storage mapped on a UID.
function freeOrderStorage(
mapping(bytes => uint256) storage orderStorage,
bytes[] calldata orderUids
) internal {
for (uint256 i = 0; i < orderUids.length; i++) {
bytes calldata orderUid = orderUids[i];
(, , uint32 validTo) = orderUid.extractOrderUidParams();
// solhint-disable-next-line not-rely-on-time
require(validTo < block.timestamp, "GPv2: order still valid");
orderStorage[orderUid] = 0;
}
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "./interfaces/IERC20.sol";
import "./interfaces/IVault.sol";
import "./libraries/GPv2Transfer.sol";
/// @title Gnosis Protocol v2 Vault Relayer Contract
/// @author Gnosis Developers
contract GPv2VaultRelayer {
using GPv2Transfer for IVault;
/// @dev The creator of the contract which has special permissions. This
/// value is set at creation time and cannot change.
address private immutable creator;
/// @dev The vault this relayer is for.
IVault private immutable vault;
constructor(IVault vault_) {
creator = msg.sender;
vault = vault_;
}
/// @dev Modifier that ensures that a function can only be called by the
/// creator of this contract.
modifier onlyCreator {
require(msg.sender == creator, "GPv2: not creator");
_;
}
/// @dev Transfers all sell amounts for the executed trades from their
/// owners to the caller.
///
/// This function reverts if:
/// - The caller is not the creator of the vault relayer
/// - Any ERC20 transfer fails
///
/// @param transfers The transfers to execute.
function transferFromAccounts(GPv2Transfer.Data[] calldata transfers)
external
onlyCreator
{
vault.transferFromAccounts(transfers, msg.sender);
}
/// @dev Performs a Balancer batched swap on behalf of a user and sends a
/// fee to the caller.
///
/// This function reverts if:
/// - The caller is not the creator of the vault relayer
/// - The swap fails
/// - The fee transfer fails
///
/// @param kind The Balancer swap kind, this can either be `GIVEN_IN` for
/// sell orders or `GIVEN_OUT` for buy orders.
/// @param swaps The swaps to perform.
/// @param tokens The tokens for the swaps. Swaps encode to and from tokens
/// as indices into this array.
/// @param funds The fund management settings, specifying the user the swap
/// is being performed for as well as the recipient of the proceeds.
/// @param limits Swap limits for encoding limit prices.
/// @param deadline The deadline for the swap.
/// @param feeTransfer The transfer data for the caller fee.
/// @return tokenDeltas The executed swap amounts.
function batchSwapWithFee(
IVault.SwapKind kind,
IVault.BatchSwapStep[] calldata swaps,
IERC20[] memory tokens,
IVault.FundManagement memory funds,
int256[] memory limits,
uint256 deadline,
GPv2Transfer.Data calldata feeTransfer
) external onlyCreator returns (int256[] memory tokenDeltas) {
tokenDeltas = vault.batchSwap(
kind,
swaps,
tokens,
funds,
limits,
deadline
);
vault.fastTransferFromAccount(feeTransfer, msg.sender);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
/// @title Gnosis Protocol v2 Authentication Interface
/// @author Gnosis Developers
interface GPv2Authentication {
/// @dev determines whether the provided address is an authenticated solver.
/// @param prospectiveSolver the address of prospective solver.
/// @return true when prospectiveSolver is an authenticated solver, otherwise false.
function isSolver(address prospectiveSolver) external view returns (bool);
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
library GPv2EIP1271 {
/// @dev Value returned by a call to `isValidSignature` if the signature
/// was verified successfully. The value is defined in EIP-1271 as:
/// bytes4(keccak256("isValidSignature(bytes32,bytes)"))
bytes4 internal constant MAGICVALUE = 0x1626ba7e;
}
/// @title EIP1271 Interface
/// @dev Standardized interface for an implementation of smart contract
/// signatures as described in EIP-1271. The code that follows is identical to
/// the code in the standard with the exception of formatting and syntax
/// changes to adapt the code to our Solidity version.
interface EIP1271Verifier {
/// @dev Should return whether the signature provided is valid for the
/// provided data
/// @param _hash Hash of the data to be signed
/// @param _signature Signature byte array associated with _data
///
/// MUST return the bytes4 magic value 0x1626ba7e when function passes.
/// MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for
/// solc > 0.5)
/// MUST allow external calls
///
function isValidSignature(bytes32 _hash, bytes memory _signature)
external
view
returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
// Vendored from OpenZeppelin contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Added `name`, `symbol` and `decimals` function declarations
// <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/token/ERC20/IERC20.sol>
pragma solidity ^0.7.6;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the number of decimals the token uses.
*/
function decimals() external view returns (uint8);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount)
external
returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender)
external
view
returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.6;
pragma abicoder v2;
import "./IERC20.sol";
/**
* @dev Minimal interface for the Vault core contract only containing methods
* used by Gnosis Protocol V2. Original source:
* <https://github.com/balancer-labs/balancer-core-v2/blob/v1.0.0/contracts/vault/interfaces/IVault.sol>
*/
interface IVault {
// Internal Balance
//
// Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
// transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
// when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
// gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
//
// Internal Balance management features batching, which means a single contract call can be used to perform multiple
// operations of different kinds, with different senders and recipients, at once.
/**
* @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
* and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
* it lets integrators reuse a user's Vault allowance.
*
* For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
*/
function manageUserBalance(UserBalanceOp[] memory ops) external payable;
/**
* @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
without manual WETH wrapping or unwrapping.
*/
struct UserBalanceOp {
UserBalanceOpKind kind;
IERC20 asset;
uint256 amount;
address sender;
address payable recipient;
}
// There are four possible operations in `manageUserBalance`:
//
// - DEPOSIT_INTERNAL
// Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
// `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
//
// ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
// and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
// relevant for relayers).
//
// Emits an `InternalBalanceChanged` event.
//
//
// - WITHDRAW_INTERNAL
// Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
//
// ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
// it to the recipient as ETH.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_INTERNAL
// Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_EXTERNAL
// Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
// relayers, as it lets them reuse a user's Vault allowance.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `ExternalBalanceTransfer` event.
enum UserBalanceOpKind {
DEPOSIT_INTERNAL,
WITHDRAW_INTERNAL,
TRANSFER_INTERNAL,
TRANSFER_EXTERNAL
}
// Swaps
//
// Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
// they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
// aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
//
// The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
// In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
// and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
// More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
// individual swaps.
//
// There are two swap kinds:
// - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
// `onSwap` hook) the amount of tokens out (to send to the recipient).
// - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
// (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
//
// Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
// the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
// tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
// swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
// the final intended token.
//
// In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
// Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
// certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
// much less gas than they would otherwise.
//
// It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
// Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
// updating the Pool's internal accounting).
//
// To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
// involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
// minimum amount of tokens to receive (by passing a negative value) is specified.
//
// Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
// this point in time (e.g. if the transaction failed to be included in a block promptly).
//
// If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
// the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
// passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
// same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
//
// Finally, Internal Balance can be used when either sending or receiving tokens.
enum SwapKind {GIVEN_IN, GIVEN_OUT}
/**
* @dev Performs a swap with a single Pool.
*
* If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
* taken from the Pool, which must be greater than or equal to `limit`.
*
* If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
* sent to the Pool, which must be less than or equal to `limit`.
*
* Internal Balance usage and the recipient are determined by the `funds` struct.
*
* Emits a `Swap` event.
*/
function swap(
SingleSwap memory singleSwap,
FundManagement memory funds,
uint256 limit,
uint256 deadline
) external payable returns (uint256);
/**
* @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
* the `kind` value.
*
* `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
* Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct SingleSwap {
bytes32 poolId;
SwapKind kind;
IERC20 assetIn;
IERC20 assetOut;
uint256 amount;
bytes userData;
}
/**
* @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
* the amount of tokens sent to or received from the Pool, depending on the `kind` value.
*
* Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
* Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
* the same index in the `assets` array.
*
* Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
* Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
* `amountOut` depending on the swap kind.
*
* Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
* of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
* the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
*
* The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
* or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
* out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
* or unwrapped from WETH by the Vault.
*
* Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
* the minimum or maximum amount of each token the vault is allowed to transfer.
*
* `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
* equivalent `swap` call.
*
* Emits `Swap` events.
*/
function batchSwap(
SwapKind kind,
BatchSwapStep[] memory swaps,
IERC20[] memory assets,
FundManagement memory funds,
int256[] memory limits,
uint256 deadline
) external payable returns (int256[] memory);
/**
* @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
* `assets` array passed to that function, and ETH assets are converted to WETH.
*
* If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
* from the previous swap, depending on the swap kind.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct BatchSwapStep {
bytes32 poolId;
uint256 assetInIndex;
uint256 assetOutIndex;
uint256 amount;
bytes userData;
}
/**
* @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
* `recipient` account.
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
* transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
* must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
* `joinPool`.
*
* If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
* transferred. This matches the behavior of `exitPool`.
*
* Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
* revert.
*/
struct FundManagement {
address sender;
bool fromInternalBalance;
address payable recipient;
bool toInternalBalance;
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
/// @title Gnosis Protocol v2 Interaction Library
/// @author Gnosis Developers
library GPv2Interaction {
/// @dev Interaction data for performing arbitrary contract interactions.
/// Submitted to [`GPv2Settlement.settle`] for code execution.
struct Data {
address target;
uint256 value;
bytes callData;
}
/// @dev Execute an arbitrary contract interaction.
///
/// @param interaction Interaction data.
function execute(Data calldata interaction) internal {
address target = interaction.target;
uint256 value = interaction.value;
bytes calldata callData = interaction.callData;
// NOTE: Use assembly to call the interaction instead of a low level
// call for two reasons:
// - We don't want to copy the return data, since we discard it for
// interactions.
// - Solidity will under certain conditions generate code to copy input
// calldata twice to memory (the second being a "memcopy loop").
// <https://github.com/gnosis/gp-v2-contracts/pull/417#issuecomment-775091258>
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
calldatacopy(freeMemoryPointer, callData.offset, callData.length)
if iszero(
call(
gas(),
target,
value,
freeMemoryPointer,
callData.length,
0,
0
)
) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
}
/// @dev Extracts the Solidity ABI selector for the specified interaction.
///
/// @param interaction Interaction data.
/// @return result The 4 byte function selector of the call encoded in
/// this interaction.
function selector(Data calldata interaction)
internal
pure
returns (bytes4 result)
{
bytes calldata callData = interaction.callData;
if (callData.length >= 4) {
// NOTE: Read the first word of the interaction's calldata. The
// value does not need to be shifted since `bytesN` values are left
// aligned, and the value does not need to be masked since masking
// occurs when the value is accessed and not stored:
// <https://docs.soliditylang.org/en/v0.7.6/abi-spec.html#encoding-of-indexed-event-parameters>
// <https://docs.soliditylang.org/en/v0.7.6/assembly.html#access-to-external-variables-functions-and-libraries>
// solhint-disable-next-line no-inline-assembly
assembly {
result := calldataload(callData.offset)
}
}
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../interfaces/IERC20.sol";
/// @title Gnosis Protocol v2 Order Library
/// @author Gnosis Developers
library GPv2Order {
/// @dev The complete data for a Gnosis Protocol order. This struct contains
/// all order parameters that are signed for submitting to GP.
struct Data {
IERC20 sellToken;
IERC20 buyToken;
address receiver;
uint256 sellAmount;
uint256 buyAmount;
uint32 validTo;
bytes32 appData;
uint256 feeAmount;
bytes32 kind;
bool partiallyFillable;
bytes32 sellTokenBalance;
bytes32 buyTokenBalance;
}
/// @dev The order EIP-712 type hash for the [`GPv2Order.Data`] struct.
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256(
/// "Order(" +
/// "address sellToken," +
/// "address buyToken," +
/// "address receiver," +
/// "uint256 sellAmount," +
/// "uint256 buyAmount," +
/// "uint32 validTo," +
/// "bytes32 appData," +
/// "uint256 feeAmount," +
/// "string kind," +
/// "bool partiallyFillable" +
/// "string sellTokenBalance" +
/// "string buyTokenBalance" +
/// ")"
/// )
/// ```
bytes32 internal constant TYPE_HASH =
hex"d5a25ba2e97094ad7d83dc28a6572da797d6b3e7fc6663bd93efb789fc17e489";
/// @dev The marker value for a sell order for computing the order struct
/// hash. This allows the EIP-712 compatible wallets to display a
/// descriptive string for the order kind (instead of 0 or 1).
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256("sell")
/// ```
bytes32 internal constant KIND_SELL =
hex"f3b277728b3fee749481eb3e0b3b48980dbbab78658fc419025cb16eee346775";
/// @dev The OrderKind marker value for a buy order for computing the order
/// struct hash.
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256("buy")
/// ```
bytes32 internal constant KIND_BUY =
hex"6ed88e868af0a1983e3886d5f3e95a2fafbd6c3450bc229e27342283dc429ccc";
/// @dev The TokenBalance marker value for using direct ERC20 balances for
/// computing the order struct hash.
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256("erc20")
/// ```
bytes32 internal constant BALANCE_ERC20 =
hex"5a28e9363bb942b639270062aa6bb295f434bcdfc42c97267bf003f272060dc9";
/// @dev The TokenBalance marker value for using Balancer Vault external
/// balances (in order to re-use Vault ERC20 approvals) for computing the
/// order struct hash.
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256("external")
/// ```
bytes32 internal constant BALANCE_EXTERNAL =
hex"abee3b73373acd583a130924aad6dc38cfdc44ba0555ba94ce2ff63980ea0632";
/// @dev The TokenBalance marker value for using Balancer Vault internal
/// balances for computing the order struct hash.
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256("internal")
/// ```
bytes32 internal constant BALANCE_INTERNAL =
hex"4ac99ace14ee0a5ef932dc609df0943ab7ac16b7583634612f8dc35a4289a6ce";
/// @dev Marker address used to indicate that the receiver of the trade
/// proceeds should the owner of the order.
///
/// This is chosen to be `address(0)` for gas efficiency as it is expected
/// to be the most common case.
address internal constant RECEIVER_SAME_AS_OWNER = address(0);
/// @dev The byte length of an order unique identifier.
uint256 internal constant UID_LENGTH = 56;
/// @dev Returns the actual receiver for an order. This function checks
/// whether or not the [`receiver`] field uses the marker value to indicate
/// it is the same as the order owner.
///
/// @return receiver The actual receiver of trade proceeds.
function actualReceiver(Data memory order, address owner)
internal
pure
returns (address receiver)
{
if (order.receiver == RECEIVER_SAME_AS_OWNER) {
receiver = owner;
} else {
receiver = order.receiver;
}
}
/// @dev Return the EIP-712 signing hash for the specified order.
///
/// @param order The order to compute the EIP-712 signing hash for.
/// @param domainSeparator The EIP-712 domain separator to use.
/// @return orderDigest The 32 byte EIP-712 struct hash.
function hash(Data memory order, bytes32 domainSeparator)
internal
pure
returns (bytes32 orderDigest)
{
bytes32 structHash;
// NOTE: Compute the EIP-712 order struct hash in place. As suggested
// in the EIP proposal, noting that the order struct has 10 fields, and
// including the type hash `(12 + 1) * 32 = 416` bytes to hash.
// <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#rationale-for-encodedata>
// solhint-disable-next-line no-inline-assembly
assembly {
let dataStart := sub(order, 32)
let temp := mload(dataStart)
mstore(dataStart, TYPE_HASH)
structHash := keccak256(dataStart, 416)
mstore(dataStart, temp)
}
// NOTE: Now that we have the struct hash, compute the EIP-712 signing
// hash using scratch memory past the free memory pointer. The signing
// hash is computed from `"\\x19\\x01" || domainSeparator || structHash`.
// <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory>
// <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#specification>
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
mstore(freeMemoryPointer, "\\x19\\x01")
mstore(add(freeMemoryPointer, 2), domainSeparator)
mstore(add(freeMemoryPointer, 34), structHash)
orderDigest := keccak256(freeMemoryPointer, 66)
}
}
/// @dev Packs order UID parameters into the specified memory location. The
/// result is equivalent to `abi.encodePacked(...)` with the difference that
/// it allows re-using the memory for packing the order UID.
///
/// This function reverts if the order UID buffer is not the correct size.
///
/// @param orderUid The buffer pack the order UID parameters into.
/// @param orderDigest The EIP-712 struct digest derived from the order
/// parameters.
/// @param owner The address of the user who owns this order.
/// @param validTo The epoch time at which the order will stop being valid.
function packOrderUidParams(
bytes memory orderUid,
bytes32 orderDigest,
address owner,
uint32 validTo
) internal pure {
require(orderUid.length == UID_LENGTH, "GPv2: uid buffer overflow");
// NOTE: Write the order UID to the allocated memory buffer. The order
// parameters are written to memory in **reverse order** as memory
// operations write 32-bytes at a time and we want to use a packed
// encoding. This means, for example, that after writing the value of
// `owner` to bytes `20:52`, writing the `orderDigest` to bytes `0:32`
// will **overwrite** bytes `20:32`. This is desirable as addresses are
// only 20 bytes and `20:32` should be `0`s:
//
// | 1111111111222222222233333333334444444444555555
// byte | 01234567890123456789012345678901234567890123456789012345
// -------+---------------------------------------------------------
// field | [.........orderDigest..........][......owner.......][vT]
// -------+---------------------------------------------------------
// mstore | [000000000000000000000000000.vT]
// | [00000000000.......owner.......]
// | [.........orderDigest..........]
//
// Additionally, since Solidity `bytes memory` are length prefixed,
// 32 needs to be added to all the offsets.
//
// solhint-disable-next-line no-inline-assembly
assembly {
mstore(add(orderUid, 56), validTo)
mstore(add(orderUid, 52), owner)
mstore(add(orderUid, 32), orderDigest)
}
}
/// @dev Extracts specific order information from the standardized unique
/// order id of the protocol.
///
/// @param orderUid The unique identifier used to represent an order in
/// the protocol. This uid is the packed concatenation of the order digest,
/// the validTo order parameter and the address of the user who created the
/// order. It is used by the user to interface with the contract directly,
/// and not by calls that are triggered by the solvers.
/// @return orderDigest The EIP-712 signing digest derived from the order
/// parameters.
/// @return owner The address of the user who owns this order.
/// @return validTo The epoch time at which the order will stop being valid.
function extractOrderUidParams(bytes calldata orderUid)
internal
pure
returns (
bytes32 orderDigest,
address owner,
uint32 validTo
)
{
require(orderUid.length == UID_LENGTH, "GPv2: invalid uid");
// Use assembly to efficiently decode packed calldata.
// solhint-disable-next-line no-inline-assembly
assembly {
orderDigest := calldataload(orderUid.offset)
owner := shr(96, calldataload(add(orderUid.offset, 32)))
validTo := shr(224, calldataload(add(orderUid.offset, 52)))
}
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../interfaces/IERC20.sol";
/// @title Gnosis Protocol v2 Safe ERC20 Transfer Library
/// @author Gnosis Developers
/// @dev Gas-efficient version of Openzeppelin's SafeERC20 contract that notably
/// does not revert when calling a non-contract.
library GPv2SafeERC20 {
/// @dev Wrapper around a call to the ERC20 function `transfer` that reverts
/// also when the token returns `false`.
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
bytes4 selector_ = token.transfer.selector;
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
mstore(freeMemoryPointer, selector_)
mstore(
add(freeMemoryPointer, 4),
and(to, 0xffffffffffffffffffffffffffffffffffffffff)
)
mstore(add(freeMemoryPointer, 36), value)
if iszero(call(gas(), token, 0, freeMemoryPointer, 68, 0, 0)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
require(getLastTansferResult(token), "GPv2: failed transfer");
}
/// @dev Wrapper around a call to the ERC20 function `transferFrom` that
/// reverts also when the token returns `false`.
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
bytes4 selector_ = token.transferFrom.selector;
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
mstore(freeMemoryPointer, selector_)
mstore(
add(freeMemoryPointer, 4),
and(from, 0xffffffffffffffffffffffffffffffffffffffff)
)
mstore(
add(freeMemoryPointer, 36),
and(to, 0xffffffffffffffffffffffffffffffffffffffff)
)
mstore(add(freeMemoryPointer, 68), value)
if iszero(call(gas(), token, 0, freeMemoryPointer, 100, 0, 0)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
require(getLastTansferResult(token), "GPv2: failed transferFrom");
}
/// @dev Verifies that the last return was a successful `transfer*` call.
/// This is done by checking that the return data is either empty, or
/// is a valid ABI encoded boolean.
function getLastTansferResult(IERC20 token)
private
view
returns (bool success)
{
// NOTE: Inspecting previous return data requires assembly. Note that
// we write the return data to memory 0 in the case where the return
// data size is 32, this is OK since the first 64 bytes of memory are
// reserved by Solidy as a scratch space that can be used within
// assembly blocks.
// <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html>
// solhint-disable-next-line no-inline-assembly
assembly {
/// @dev Revert with an ABI encoded Solidity error with a message
/// that fits into 32-bytes.
///
/// An ABI encoded Solidity error has the following memory layout:
///
/// ------------+----------------------------------
/// byte range | value
/// ------------+----------------------------------
/// 0x00..0x04 | selector("Error(string)")
/// 0x04..0x24 | string offset (always 0x20)
/// 0x24..0x44 | string length
/// 0x44..0x64 | string value, padded to 32-bytes
function revertWithMessage(length, message) {
mstore(0x00, "\\x08\\xc3\\x79\\xa0")
mstore(0x04, 0x20)
mstore(0x24, length)
mstore(0x44, message)
revert(0x00, 0x64)
}
switch returndatasize()
// Non-standard ERC20 transfer without return.
case 0 {
// NOTE: When the return data size is 0, verify that there
// is code at the address. This is done in order to maintain
// compatibility with Solidity calling conventions.
// <https://docs.soliditylang.org/en/v0.7.6/control-structures.html#external-function-calls>
if iszero(extcodesize(token)) {
revertWithMessage(20, "GPv2: not a contract")
}
success := 1
}
// Standard ERC20 transfer returning boolean success value.
case 32 {
returndatacopy(0, 0, returndatasize())
// NOTE: For ABI encoding v1, any non-zero value is accepted
// as `true` for a boolean. In order to stay compatible with
// OpenZeppelin's `SafeERC20` library which is known to work
// with the existing ERC20 implementation we care about,
// make sure we return success for any non-zero return value
// from the `transfer*` call.
success := iszero(iszero(mload(0)))
}
default {
revertWithMessage(31, "GPv2: malformed transfer result")
}
}
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../interfaces/IERC20.sol";
import "../mixins/GPv2Signing.sol";
import "./GPv2Order.sol";
/// @title Gnosis Protocol v2 Trade Library.
/// @author Gnosis Developers
library GPv2Trade {
using GPv2Order for GPv2Order.Data;
using GPv2Order for bytes;
/// @dev A struct representing a trade to be executed as part a batch
/// settlement.
struct Data {
uint256 sellTokenIndex;
uint256 buyTokenIndex;
address receiver;
uint256 sellAmount;
uint256 buyAmount;
uint32 validTo;
bytes32 appData;
uint256 feeAmount;
uint256 flags;
uint256 executedAmount;
bytes signature;
}
/// @dev Extracts the order data and signing scheme for the specified trade.
///
/// @param trade The trade.
/// @param tokens The list of tokens included in the settlement. The token
/// indices in the trade parameters map to tokens in this array.
/// @param order The memory location to extract the order data to.
function extractOrder(
Data calldata trade,
IERC20[] calldata tokens,
GPv2Order.Data memory order
) internal pure returns (GPv2Signing.Scheme signingScheme) {
order.sellToken = tokens[trade.sellTokenIndex];
order.buyToken = tokens[trade.buyTokenIndex];
order.receiver = trade.receiver;
order.sellAmount = trade.sellAmount;
order.buyAmount = trade.buyAmount;
order.validTo = trade.validTo;
order.appData = trade.appData;
order.feeAmount = trade.feeAmount;
(
order.kind,
order.partiallyFillable,
order.sellTokenBalance,
order.buyTokenBalance,
signingScheme
) = extractFlags(trade.flags);
}
/// @dev Decodes trade flags.
///
/// Trade flags are used to tightly encode information on how to decode
/// an order. Examples that directly affect the structure of an order are
/// the kind of order (either a sell or a buy order) as well as whether the
/// order is partially fillable or if it is a "fill-or-kill" order. It also
/// encodes the signature scheme used to validate the order. As the most
/// likely values are fill-or-kill sell orders by an externally owned
/// account, the flags are chosen such that `0x00` represents this kind of
/// order. The flags byte uses the following format:
///
/// ```
/// bit | 31 ... | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
/// ----+----------+---+---+-------+---+---+
/// | reserved | * * | * | * * | * | * |
/// | | | | | | |
/// | | | | | | +---- order kind bit, 0 for a sell order
/// | | | | | | and 1 for a buy order
/// | | | | | |
/// | | | | | +-------- order fill bit, 0 for fill-or-kill
/// | | | | | and 1 for a partially fillable order
/// | | | | |
/// | | | +---+------------ use internal sell token balance bit:
/// | | | 0x: ERC20 token balance
/// | | | 10: external Balancer Vault balance
/// | | | 11: internal Balancer Vault balance
/// | | |
/// | | +-------------------- use buy token balance bit
/// | | 0: ERC20 token balance
/// | | 1: internal Balancer Vault balance
/// | |
/// +---+------------------------ signature scheme bits:
/// 00: EIP-712
/// 01: eth_sign
/// 10: EIP-1271
/// 11: pre_sign
/// ```
function extractFlags(uint256 flags)
internal
pure
returns (
bytes32 kind,
bool partiallyFillable,
bytes32 sellTokenBalance,
bytes32 buyTokenBalance,
GPv2Signing.Scheme signingScheme
)
{
if (flags & 0x01 == 0) {
kind = GPv2Order.KIND_SELL;
} else {
kind = GPv2Order.KIND_BUY;
}
partiallyFillable = flags & 0x02 != 0;
if (flags & 0x08 == 0) {
sellTokenBalance = GPv2Order.BALANCE_ERC20;
} else if (flags & 0x04 == 0) {
sellTokenBalance = GPv2Order.BALANCE_EXTERNAL;
} else {
sellTokenBalance = GPv2Order.BALANCE_INTERNAL;
}
if (flags & 0x10 == 0) {
buyTokenBalance = GPv2Order.BALANCE_ERC20;
} else {
buyTokenBalance = GPv2Order.BALANCE_INTERNAL;
}
// NOTE: Take advantage of the fact that Solidity will revert if the
// following expression does not produce a valid enum value. This means
// we check here that the leading reserved bits must be 0.
signingScheme = GPv2Signing.Scheme(flags >> 5);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "../interfaces/IERC20.sol";
import "../interfaces/IVault.sol";
import "./GPv2Order.sol";
import "./GPv2SafeERC20.sol";
/// @title Gnosis Protocol v2 Transfers
/// @author Gnosis Developers
library GPv2Transfer {
using GPv2SafeERC20 for IERC20;
/// @dev Transfer data.
struct Data {
address account;
IERC20 token;
uint256 amount;
bytes32 balance;
}
/// @dev Ether marker address used to indicate an Ether transfer.
address internal constant BUY_ETH_ADDRESS =
0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
/// @dev Execute the specified transfer from the specified account to a
/// recipient. The recipient will either receive internal Vault balances or
/// ERC20 token balances depending on whether the account is using internal
/// balances or not.
///
/// This method is used for transferring fees to the settlement contract
/// when settling a single order directly with Balancer.
///
/// Note that this method is subtly different from `transferFromAccounts`
/// with a single transfer with respect to how it deals with internal
/// balances. Specifically, this method will perform an **internal balance
/// transfer to the settlement contract instead of a withdrawal to the
/// external balance of the settlement contract** for trades that specify
/// trading with internal balances. This is done as a gas optimization in
/// the single order "fast-path".
///
/// @param vault The Balancer vault to use.
/// @param transfer The transfer to perform specifying the sender account.
/// @param recipient The recipient for the transfer.
function fastTransferFromAccount(
IVault vault,
Data calldata transfer,
address recipient
) internal {
require(
address(transfer.token) != BUY_ETH_ADDRESS,
"GPv2: cannot transfer native ETH"
);
if (transfer.balance == GPv2Order.BALANCE_ERC20) {
transfer.token.safeTransferFrom(
transfer.account,
recipient,
transfer.amount
);
} else {
IVault.UserBalanceOp[] memory balanceOps =
new IVault.UserBalanceOp[](1);
IVault.UserBalanceOp memory balanceOp = balanceOps[0];
balanceOp.kind = transfer.balance == GPv2Order.BALANCE_EXTERNAL
? IVault.UserBalanceOpKind.TRANSFER_EXTERNAL
: IVault.UserBalanceOpKind.TRANSFER_INTERNAL;
balanceOp.asset = transfer.token;
balanceOp.amount = transfer.amount;
balanceOp.sender = transfer.account;
balanceOp.recipient = payable(recipient);
vault.manageUserBalance(balanceOps);
}
}
/// @dev Execute the specified transfers from the specified accounts to a
/// single recipient. The recipient will receive all transfers as ERC20
/// token balances, regardless of whether or not the accounts are using
/// internal Vault balances.
///
/// This method is used for accumulating user balances into the settlement
/// contract.
///
/// @param vault The Balancer vault to use.
/// @param transfers The batched transfers to perform specifying the
/// sender accounts.
/// @param recipient The single recipient for all the transfers.
function transferFromAccounts(
IVault vault,
Data[] calldata transfers,
address recipient
) internal {
// NOTE: Allocate buffer of Vault balance operations large enough to
// hold all GP transfers. This is done to avoid re-allocations (which
// are gas inefficient) while still allowing all transfers to be batched
// into a single Vault call.
IVault.UserBalanceOp[] memory balanceOps =
new IVault.UserBalanceOp[](transfers.length);
uint256 balanceOpCount = 0;
for (uint256 i = 0; i < transfers.length; i++) {
Data calldata transfer = transfers[i];
require(
address(transfer.token) != BUY_ETH_ADDRESS,
"GPv2: cannot transfer native ETH"
);
if (transfer.balance == GPv2Order.BALANCE_ERC20) {
transfer.token.safeTransferFrom(
transfer.account,
recipient,
transfer.amount
);
} else {
IVault.UserBalanceOp memory balanceOp =
balanceOps[balanceOpCount++];
balanceOp.kind = transfer.balance == GPv2Order.BALANCE_EXTERNAL
? IVault.UserBalanceOpKind.TRANSFER_EXTERNAL
: IVault.UserBalanceOpKind.WITHDRAW_INTERNAL;
balanceOp.asset = transfer.token;
balanceOp.amount = transfer.amount;
balanceOp.sender = transfer.account;
balanceOp.recipient = payable(recipient);
}
}
if (balanceOpCount > 0) {
truncateBalanceOpsArray(balanceOps, balanceOpCount);
vault.manageUserBalance(balanceOps);
}
}
/// @dev Execute the specified transfers to their respective accounts.
///
/// This method is used for paying out trade proceeds from the settlement
/// contract.
///
/// @param vault The Balancer vault to use.
/// @param transfers The batched transfers to perform.
function transferToAccounts(IVault vault, Data[] memory transfers)
internal
{
IVault.UserBalanceOp[] memory balanceOps =
new IVault.UserBalanceOp[](transfers.length);
uint256 balanceOpCount = 0;
for (uint256 i = 0; i < transfers.length; i++) {
Data memory transfer = transfers[i];
if (address(transfer.token) == BUY_ETH_ADDRESS) {
require(
transfer.balance != GPv2Order.BALANCE_INTERNAL,
"GPv2: unsupported internal ETH"
);
payable(transfer.account).transfer(transfer.amount);
} else if (transfer.balance == GPv2Order.BALANCE_ERC20) {
transfer.token.safeTransfer(transfer.account, transfer.amount);
} else {
IVault.UserBalanceOp memory balanceOp =
balanceOps[balanceOpCount++];
balanceOp.kind = IVault.UserBalanceOpKind.DEPOSIT_INTERNAL;
balanceOp.asset = transfer.token;
balanceOp.amount = transfer.amount;
balanceOp.sender = address(this);
balanceOp.recipient = payable(transfer.account);
}
}
if (balanceOpCount > 0) {
truncateBalanceOpsArray(balanceOps, balanceOpCount);
vault.manageUserBalance(balanceOps);
}
}
/// @dev Truncate a Vault balance operation array to its actual size.
///
/// This method **does not** check whether or not the new length is valid,
/// and specifying a size that is larger than the array's actual length is
/// undefined behaviour.
///
/// @param balanceOps The memory array of balance operations to truncate.
/// @param newLength The new length to set.
function truncateBalanceOpsArray(
IVault.UserBalanceOp[] memory balanceOps,
uint256 newLength
) private pure {
// NOTE: Truncate the vault transfers array to the specified length.
// This is done by setting the array's length which occupies the first
// word in memory pointed to by the `balanceOps` memory variable.
// <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html>
// solhint-disable-next-line no-inline-assembly
assembly {
mstore(balanceOps, newLength)
}
}
}
// SPDX-License-Identifier: MIT
// Vendored from OpenZeppelin contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Shortened revert messages
// - Removed unused methods
// - Convert to `type(*).*` notation
// <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/utils/SafeCast.sol>
pragma solidity ^0.7.6;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: not positive");
return uint256(value);
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
require(
value <= uint256(type(int256).max),
"SafeCast: int256 overflow"
);
return int256(value);
}
}
// SPDX-License-Identifier: MIT
// Vendored from OpenZeppelin contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Shortened some revert messages
// - Removed unused methods
// - Added `ceilDiv` method
// <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/math/SafeMath.sol>
pragma solidity ^0.7.6;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: mul overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by 0");
return a / b;
}
/**
* @dev Returns the ceiling integer division of two unsigned integers,
* reverting on division by zero. The result is rounded towards up the
* nearest integer, instead of truncating the fractional part.
*
* Requirements:
*
* - The divisor cannot be zero.
* - The sum of the dividend and divisor cannot overflow.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: ceiling division by 0");
return a / b + (a % b == 0 ? 0 : 1);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../interfaces/GPv2EIP1271.sol";
import "../libraries/GPv2Order.sol";
import "../libraries/GPv2Trade.sol";
/// @title Gnosis Protocol v2 Signing Library.
/// @author Gnosis Developers
abstract contract GPv2Signing {
using GPv2Order for GPv2Order.Data;
using GPv2Order for bytes;
/// @dev Recovered trade data containing the extracted order and the
/// recovered owner address.
struct RecoveredOrder {
GPv2Order.Data data;
bytes uid;
address owner;
address receiver;
}
/// @dev Signing scheme used for recovery.
enum Scheme {Eip712, EthSign, Eip1271, PreSign}
/// @dev The EIP-712 domain type hash used for computing the domain
/// separator.
bytes32 private constant DOMAIN_TYPE_HASH =
keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
);
/// @dev The EIP-712 domain name used for computing the domain separator.
bytes32 private constant DOMAIN_NAME = keccak256("Gnosis Protocol");
/// @dev The EIP-712 domain version used for computing the domain separator.
bytes32 private constant DOMAIN_VERSION = keccak256("v2");
/// @dev Marker value indicating an order is pre-signed.
uint256 private constant PRE_SIGNED =
uint256(keccak256("GPv2Signing.Scheme.PreSign"));
/// @dev The domain separator used for signing orders that gets mixed in
/// making signatures for different domains incompatible. This domain
/// separator is computed following the EIP-712 standard and has replay
/// protection mixed in so that signed orders are only valid for specific
/// GPv2 contracts.
bytes32 public immutable domainSeparator;
/// @dev Storage indicating whether or not an order has been signed by a
/// particular address.
mapping(bytes => uint256) public preSignature;
/// @dev Event that is emitted when an account either pre-signs an order or
/// revokes an existing pre-signature.
event PreSignature(address indexed owner, bytes orderUid, bool signed);
constructor() {
// NOTE: Currently, the only way to get the chain ID in solidity is
// using assembly.
uint256 chainId;
// solhint-disable-next-line no-inline-assembly
assembly {
chainId := chainid()
}
domainSeparator = keccak256(
abi.encode(
DOMAIN_TYPE_HASH,
DOMAIN_NAME,
DOMAIN_VERSION,
chainId,
address(this)
)
);
}
/// @dev Sets a presignature for the specified order UID.
///
/// @param orderUid The unique identifier of the order to pre-sign.
function setPreSignature(bytes calldata orderUid, bool signed) external {
(, address owner, ) = orderUid.extractOrderUidParams();
require(owner == msg.sender, "GPv2: cannot presign order");
if (signed) {
preSignature[orderUid] = PRE_SIGNED;
} else {
preSignature[orderUid] = 0;
}
emit PreSignature(owner, orderUid, signed);
}
/// @dev Returns an empty recovered order with a pre-allocated buffer for
/// packing the unique identifier.
///
/// @return recoveredOrder The empty recovered order data.
function allocateRecoveredOrder()
internal
pure
returns (RecoveredOrder memory recoveredOrder)
{
recoveredOrder.uid = new bytes(GPv2Order.UID_LENGTH);
}
/// @dev Extracts order data and recovers the signer from the specified
/// trade.
///
/// @param recoveredOrder Memory location used for writing the recovered order data.
/// @param tokens The list of tokens included in the settlement. The token
/// indices in the trade parameters map to tokens in this array.
/// @param trade The trade data to recover the order data from.
function recoverOrderFromTrade(
RecoveredOrder memory recoveredOrder,
IERC20[] calldata tokens,
GPv2Trade.Data calldata trade
) internal view {
GPv2Order.Data memory order = recoveredOrder.data;
Scheme signingScheme = GPv2Trade.extractOrder(trade, tokens, order);
(bytes32 orderDigest, address owner) =
recoverOrderSigner(order, signingScheme, trade.signature);
recoveredOrder.uid.packOrderUidParams(
orderDigest,
owner,
order.validTo
);
recoveredOrder.owner = owner;
recoveredOrder.receiver = order.actualReceiver(owner);
}
/// @dev The length of any signature from an externally owned account.
uint256 private constant ECDSA_SIGNATURE_LENGTH = 65;
/// @dev Recovers an order's signer from the specified order and signature.
///
/// @param order The order to recover a signature for.
/// @param signingScheme The signing scheme.
/// @param signature The signature bytes.
/// @return orderDigest The computed order hash.
/// @return owner The recovered address from the specified signature.
function recoverOrderSigner(
GPv2Order.Data memory order,
Scheme signingScheme,
bytes calldata signature
) internal view returns (bytes32 orderDigest, address owner) {
orderDigest = order.hash(domainSeparator);
if (signingScheme == Scheme.Eip712) {
owner = recoverEip712Signer(orderDigest, signature);
} else if (signingScheme == Scheme.EthSign) {
owner = recoverEthsignSigner(orderDigest, signature);
} else if (signingScheme == Scheme.Eip1271) {
owner = recoverEip1271Signer(orderDigest, signature);
} else {
// signingScheme == Scheme.PreSign
owner = recoverPreSigner(orderDigest, signature, order.validTo);
}
}
/// @dev Perform an ECDSA recover for the specified message and calldata
/// signature.
///
/// The signature is encoded by tighyly packing the following struct:
/// ```
/// struct EncodedSignature {
/// bytes32 r;
/// bytes32 s;
/// uint8 v;
/// }
/// ```
///
/// @param message The signed message.
/// @param encodedSignature The encoded signature.
function ecdsaRecover(bytes32 message, bytes calldata encodedSignature)
internal
pure
returns (address signer)
{
require(
encodedSignature.length == ECDSA_SIGNATURE_LENGTH,
"GPv2: malformed ecdsa signature"
);
bytes32 r;
bytes32 s;
uint8 v;
// NOTE: Use assembly to efficiently decode signature data.
// solhint-disable-next-line no-inline-assembly
assembly {
// r = uint256(encodedSignature[0:32])
r := calldataload(encodedSignature.offset)
// s = uint256(encodedSignature[32:64])
s := calldataload(add(encodedSignature.offset, 32))
// v = uint8(encodedSignature[64])
v := shr(248, calldataload(add(encodedSignature.offset, 64)))
}
signer = ecrecover(message, v, r, s);
require(signer != address(0), "GPv2: invalid ecdsa signature");
}
/// @dev Decodes signature bytes originating from an EIP-712-encoded
/// signature.
///
/// EIP-712 signs typed data. The specifications are described in the
/// related EIP (<https://eips.ethereum.org/EIPS/eip-712>).
///
/// EIP-712 signatures are encoded as standard ECDSA signatures as described
/// in the corresponding decoding function [`ecdsaRecover`].
///
/// @param orderDigest The EIP-712 signing digest derived from the order
/// parameters.
/// @param encodedSignature Calldata pointing to tightly packed signature
/// bytes.
/// @return owner The address of the signer.
function recoverEip712Signer(
bytes32 orderDigest,
bytes calldata encodedSignature
) internal pure returns (address owner) {
owner = ecdsaRecover(orderDigest, encodedSignature);
}
/// @dev Decodes signature bytes originating from the output of the eth_sign
/// RPC call.
///
/// The specifications are described in the Ethereum documentation
/// (<https://eth.wiki/json-rpc/API#eth_sign>).
///
/// eth_sign signatures are encoded as standard ECDSA signatures as
/// described in the corresponding decoding function
/// [`ecdsaRecover`].
///
/// @param orderDigest The EIP-712 signing digest derived from the order
/// parameters.
/// @param encodedSignature Calldata pointing to tightly packed signature
/// bytes.
/// @return owner The address of the signer.
function recoverEthsignSigner(
bytes32 orderDigest,
bytes calldata encodedSignature
) internal pure returns (address owner) {
// The signed message is encoded as:
// `"\\x19Ethereum Signed Message:\
" || length || data`, where
// the length is a constant (32 bytes) and the data is defined as:
// `orderDigest`.
bytes32 ethsignDigest =
keccak256(
abi.encodePacked(
"\\x19Ethereum Signed Message:\
32",
orderDigest
)
);
owner = ecdsaRecover(ethsignDigest, encodedSignature);
}
/// @dev Verifies the input calldata as an EIP-1271 contract signature and
/// returns the address of the signer.
///
/// The encoded signature tightly packs the following struct:
///
/// ```
/// struct EncodedEip1271Signature {
/// address owner;
/// bytes signature;
/// }
/// ```
///
/// This function enforces that the encoded data stores enough bytes to
/// cover the full length of the decoded signature.
///
/// @param encodedSignature The encoded EIP-1271 signature.
/// @param orderDigest The EIP-712 signing digest derived from the order
/// parameters.
/// @return owner The address of the signer.
function recoverEip1271Signer(
bytes32 orderDigest,
bytes calldata encodedSignature
) internal view returns (address owner) {
// NOTE: Use assembly to read the verifier address from the encoded
// signature bytes.
// solhint-disable-next-line no-inline-assembly
assembly {
// owner = address(encodedSignature[0:20])
owner := shr(96, calldataload(encodedSignature.offset))
}
// NOTE: Configure prettier to ignore the following line as it causes
// a panic in the Solidity plugin.
// prettier-ignore
bytes calldata signature = encodedSignature[20:];
require(
EIP1271Verifier(owner).isValidSignature(orderDigest, signature) ==
GPv2EIP1271.MAGICVALUE,
"GPv2: invalid eip1271 signature"
);
}
/// @dev Verifies the order has been pre-signed. The signature is the
/// address of the signer of the order.
///
/// @param orderDigest The EIP-712 signing digest derived from the order
/// parameters.
/// @param encodedSignature The pre-sign signature reprenting the order UID.
/// @param validTo The order expiry timestamp.
/// @return owner The address of the signer.
function recoverPreSigner(
bytes32 orderDigest,
bytes calldata encodedSignature,
uint32 validTo
) internal view returns (address owner) {
require(encodedSignature.length == 20, "GPv2: malformed presignature");
// NOTE: Use assembly to read the owner address from the encoded
// signature bytes.
// solhint-disable-next-line no-inline-assembly
assembly {
// owner = address(encodedSignature[0:20])
owner := shr(96, calldataload(encodedSignature.offset))
}
bytes memory orderUid = new bytes(GPv2Order.UID_LENGTH);
orderUid.packOrderUidParams(orderDigest, owner, validTo);
require(
preSignature[orderUid] == PRE_SIGNED,
"GPv2: order not presigned"
);
}
}
// SPDX-License-Identifier: MIT
// Vendored from OpenZeppelin contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/utils/ReentrancyGuard.sol>
pragma solidity ^0.7.6;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: LGPL-3.0-only
// Vendored from Gnosis utility contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Added linter directives to ignore low level call and assembly warnings
// <https://github.com/gnosis/util-contracts/blob/v3.1.0-solc-7/contracts/StorageAccessible.sol>
pragma solidity ^0.7.6;
/// @title ViewStorageAccessible - Interface on top of StorageAccessible base class to allow simulations from view functions
interface ViewStorageAccessible {
/**
* @dev Same as `simulateDelegatecall` on StorageAccessible. Marked as view so that it can be called from external contracts
* that want to run simulations from within view functions. Will revert if the invoked simulation attempts to change state.
*/
function simulateDelegatecall(
address targetContract,
bytes memory calldataPayload
) external view returns (bytes memory);
/**
* @dev Same as `getStorageAt` on StorageAccessible. This method allows reading aribtrary ranges of storage.
*/
function getStorageAt(uint256 offset, uint256 length)
external
view
returns (bytes memory);
}
/// @title StorageAccessible - generic base contract that allows callers to access all internal storage.
contract StorageAccessible {
/**
* @dev Reads `length` bytes of storage in the currents contract
* @param offset - the offset in the current contract's storage in words to start reading from
* @param length - the number of words (32 bytes) of data to read
* @return the bytes that were read.
*/
function getStorageAt(uint256 offset, uint256 length)
external
view
returns (bytes memory)
{
bytes memory result = new bytes(length * 32);
for (uint256 index = 0; index < length; index++) {
// solhint-disable-next-line no-inline-assembly
assembly {
let word := sload(add(offset, index))
mstore(add(add(result, 0x20), mul(index, 0x20)), word)
}
}
return result;
}
/**
* @dev Performs a delegetecall on a targetContract in the context of self.
* Internally reverts execution to avoid side effects (making it static). Catches revert and returns encoded result as bytes.
* @param targetContract Address of the contract containing the code to execute.
* @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
*/
function simulateDelegatecall(
address targetContract,
bytes memory calldataPayload
) public returns (bytes memory response) {
bytes memory innerCall =
abi.encodeWithSelector(
this.simulateDelegatecallInternal.selector,
targetContract,
calldataPayload
);
// solhint-disable-next-line avoid-low-level-calls
(, response) = address(this).call(innerCall);
bool innerSuccess = response[response.length - 1] == 0x01;
setLength(response, response.length - 1);
if (innerSuccess) {
return response;
} else {
revertWith(response);
}
}
/**
* @dev Performs a delegetecall on a targetContract in the context of self.
* Internally reverts execution to avoid side effects (making it static). Returns encoded result as revert message
* concatenated with the success flag of the inner call as a last byte.
* @param targetContract Address of the contract containing the code to execute.
* @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
*/
function simulateDelegatecallInternal(
address targetContract,
bytes memory calldataPayload
) external returns (bytes memory response) {
bool success;
// solhint-disable-next-line avoid-low-level-calls
(success, response) = targetContract.delegatecall(calldataPayload);
revertWith(abi.encodePacked(response, success));
}
function revertWith(bytes memory response) internal pure {
// solhint-disable-next-line no-inline-assembly
assembly {
revert(add(response, 0x20), mload(response))
}
}
function setLength(bytes memory buffer, uint256 length) internal pure {
// solhint-disable-next-line no-inline-assembly
assembly {
mstore(buffer, length)
}
}
}
File 2 of 9: FiatTokenProxy
pragma solidity ^0.4.24;
// File: zos-lib/contracts/upgradeability/Proxy.sol
/**
* @title Proxy
* @dev Implements delegation of calls to other contracts, with proper
* forwarding of return values and bubbling of failures.
* It defines a fallback function that delegates all calls to the address
* returned by the abstract _implementation() internal function.
*/
contract Proxy {
/**
* @dev Fallback function.
* Implemented entirely in `_fallback`.
*/
function () payable external {
_fallback();
}
/**
* @return The Address of the implementation.
*/
function _implementation() internal view returns (address);
/**
* @dev Delegates execution to an implementation contract.
* This is a low level function that doesn't return to its internal call site.
* It will return to the external caller whatever the implementation returns.
* @param implementation Address to delegate.
*/
function _delegate(address implementation) internal {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize)
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize)
switch result
// delegatecall returns 0 on error.
case 0 { revert(0, returndatasize) }
default { return(0, returndatasize) }
}
}
/**
* @dev Function that is run as the first thing in the fallback function.
* Can be redefined in derived contracts to add functionality.
* Redefinitions must call super._willFallback().
*/
function _willFallback() internal {
}
/**
* @dev fallback implementation.
* Extracted to enable manual triggering.
*/
function _fallback() internal {
_willFallback();
_delegate(_implementation());
}
}
// File: openzeppelin-solidity/contracts/AddressUtils.sol
/**
* Utility library of inline functions on addresses
*/
library AddressUtils {
/**
* Returns whether the target address is a contract
* @dev This function will return false if invoked during the constructor of a contract,
* as the code is not actually created until after the constructor finishes.
* @param addr address to check
* @return whether the target address is a contract
*/
function isContract(address addr) internal view returns (bool) {
uint256 size;
// XXX Currently there is no better way to check if there is a contract in an address
// than to check the size of the code at that address.
// See https://ethereum.stackexchange.com/a/14016/36603
// for more details about how this works.
// TODO Check this again before the Serenity release, because all addresses will be
// contracts then.
// solium-disable-next-line security/no-inline-assembly
assembly { size := extcodesize(addr) }
return size > 0;
}
}
// File: zos-lib/contracts/upgradeability/UpgradeabilityProxy.sol
/**
* @title UpgradeabilityProxy
* @dev This contract implements a proxy that allows to change the
* implementation address to which it will delegate.
* Such a change is called an implementation upgrade.
*/
contract UpgradeabilityProxy is Proxy {
/**
* @dev Emitted when the implementation is upgraded.
* @param implementation Address of the new implementation.
*/
event Upgraded(address implementation);
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "org.zeppelinos.proxy.implementation", and is
* validated in the constructor.
*/
bytes32 private constant IMPLEMENTATION_SLOT = 0x7050c9e0f4ca769c69bd3a8ef740bc37934f8e2c036e5a723fd8ee048ed3f8c3;
/**
* @dev Contract constructor.
* @param _implementation Address of the initial implementation.
*/
constructor(address _implementation) public {
assert(IMPLEMENTATION_SLOT == keccak256("org.zeppelinos.proxy.implementation"));
_setImplementation(_implementation);
}
/**
* @dev Returns the current implementation.
* @return Address of the current implementation
*/
function _implementation() internal view returns (address impl) {
bytes32 slot = IMPLEMENTATION_SLOT;
assembly {
impl := sload(slot)
}
}
/**
* @dev Upgrades the proxy to a new implementation.
* @param newImplementation Address of the new implementation.
*/
function _upgradeTo(address newImplementation) internal {
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
}
/**
* @dev Sets the implementation address of the proxy.
* @param newImplementation Address of the new implementation.
*/
function _setImplementation(address newImplementation) private {
require(AddressUtils.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
bytes32 slot = IMPLEMENTATION_SLOT;
assembly {
sstore(slot, newImplementation)
}
}
}
// File: zos-lib/contracts/upgradeability/AdminUpgradeabilityProxy.sol
/**
* @title AdminUpgradeabilityProxy
* @dev This contract combines an upgradeability proxy with an authorization
* mechanism for administrative tasks.
* All external functions in this contract must be guarded by the
* `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
* feature proposal that would enable this to be done automatically.
*/
contract AdminUpgradeabilityProxy is UpgradeabilityProxy {
/**
* @dev Emitted when the administration has been transferred.
* @param previousAdmin Address of the previous admin.
* @param newAdmin Address of the new admin.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "org.zeppelinos.proxy.admin", and is
* validated in the constructor.
*/
bytes32 private constant ADMIN_SLOT = 0x10d6a54a4754c8869d6886b5f5d7fbfa5b4522237ea5c60d11bc4e7a1ff9390b;
/**
* @dev Modifier to check whether the `msg.sender` is the admin.
* If it is, it will run the function. Otherwise, it will delegate the call
* to the implementation.
*/
modifier ifAdmin() {
if (msg.sender == _admin()) {
_;
} else {
_fallback();
}
}
/**
* Contract constructor.
* It sets the `msg.sender` as the proxy administrator.
* @param _implementation address of the initial implementation.
*/
constructor(address _implementation) UpgradeabilityProxy(_implementation) public {
assert(ADMIN_SLOT == keccak256("org.zeppelinos.proxy.admin"));
_setAdmin(msg.sender);
}
/**
* @return The address of the proxy admin.
*/
function admin() external view ifAdmin returns (address) {
return _admin();
}
/**
* @return The address of the implementation.
*/
function implementation() external view ifAdmin returns (address) {
return _implementation();
}
/**
* @dev Changes the admin of the proxy.
* Only the current admin can call this function.
* @param newAdmin Address to transfer proxy administration to.
*/
function changeAdmin(address newAdmin) external ifAdmin {
require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
emit AdminChanged(_admin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev Upgrade the backing implementation of the proxy.
* Only the admin can call this function.
* @param newImplementation Address of the new implementation.
*/
function upgradeTo(address newImplementation) external ifAdmin {
_upgradeTo(newImplementation);
}
/**
* @dev Upgrade the backing implementation of the proxy and call a function
* on the new implementation.
* This is useful to initialize the proxied contract.
* @param newImplementation Address of the new implementation.
* @param data Data to send as msg.data in the low level call.
* It should include the signature and the parameters of the function to be
* called, as described in
* https://solidity.readthedocs.io/en/develop/abi-spec.html#function-selector-and-argument-encoding.
*/
function upgradeToAndCall(address newImplementation, bytes data) payable external ifAdmin {
_upgradeTo(newImplementation);
require(address(this).call.value(msg.value)(data));
}
/**
* @return The admin slot.
*/
function _admin() internal view returns (address adm) {
bytes32 slot = ADMIN_SLOT;
assembly {
adm := sload(slot)
}
}
/**
* @dev Sets the address of the proxy admin.
* @param newAdmin Address of the new proxy admin.
*/
function _setAdmin(address newAdmin) internal {
bytes32 slot = ADMIN_SLOT;
assembly {
sstore(slot, newAdmin)
}
}
/**
* @dev Only fall back when the sender is not the admin.
*/
function _willFallback() internal {
require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
super._willFallback();
}
}
// File: contracts/FiatTokenProxy.sol
/**
* Copyright CENTRE SECZ 2018
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is furnished to
* do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
pragma solidity ^0.4.24;
/**
* @title FiatTokenProxy
* @dev This contract proxies FiatToken calls and enables FiatToken upgrades
*/
contract FiatTokenProxy is AdminUpgradeabilityProxy {
constructor(address _implementation) public AdminUpgradeabilityProxy(_implementation) {
}
}File 3 of 9: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.4.18;
contract WETH9 {
string public name = "Wrapped Ether";
string public symbol = "WETH";
uint8 public decimals = 18;
event Approval(address indexed src, address indexed guy, uint wad);
event Transfer(address indexed src, address indexed dst, uint wad);
event Deposit(address indexed dst, uint wad);
event Withdrawal(address indexed src, uint wad);
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
function() public payable {
deposit();
}
function deposit() public payable {
balanceOf[msg.sender] += msg.value;
Deposit(msg.sender, msg.value);
}
function withdraw(uint wad) public {
require(balanceOf[msg.sender] >= wad);
balanceOf[msg.sender] -= wad;
msg.sender.transfer(wad);
Withdrawal(msg.sender, wad);
}
function totalSupply() public view returns (uint) {
return this.balance;
}
function approve(address guy, uint wad) public returns (bool) {
allowance[msg.sender][guy] = wad;
Approval(msg.sender, guy, wad);
return true;
}
function transfer(address dst, uint wad) public returns (bool) {
return transferFrom(msg.sender, dst, wad);
}
function transferFrom(address src, address dst, uint wad)
public
returns (bool)
{
require(balanceOf[src] >= wad);
if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
require(allowance[src][msg.sender] >= wad);
allowance[src][msg.sender] -= wad;
}
balanceOf[src] -= wad;
balanceOf[dst] += wad;
Transfer(src, dst, wad);
return true;
}
}
/*
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
*/File 4 of 9: EIP173Proxy
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "./Proxy.sol";
interface ERC165 {
function supportsInterface(bytes4 id) external view returns (bool);
}
///@notice Proxy implementing EIP173 for ownership management
contract EIP173Proxy is Proxy {
// ////////////////////////// EVENTS ///////////////////////////////////////////////////////////////////////
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
// /////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////////////
constructor(
address implementationAddress,
address ownerAddress,
bytes memory data
) payable {
_setImplementation(implementationAddress, data);
_setOwner(ownerAddress);
}
// ///////////////////// EXTERNAL ///////////////////////////////////////////////////////////////////////////
function owner() external view returns (address) {
return _owner();
}
function supportsInterface(bytes4 id) external view returns (bool) {
if (id == 0x01ffc9a7 || id == 0x7f5828d0) {
return true;
}
if (id == 0xFFFFFFFF) {
return false;
}
ERC165 implementation;
// solhint-disable-next-line security/no-inline-assembly
assembly {
implementation := sload(0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc)
}
// Technically this is not standard compliant as ERC-165 require 30,000 gas which that call cannot ensure
// because it is itself inside `supportsInterface` that might only get 30,000 gas.
// In practise this is unlikely to be an issue.
try implementation.supportsInterface(id) returns (bool support) {
return support;
} catch {
return false;
}
}
function transferOwnership(address newOwner) external onlyOwner {
_setOwner(newOwner);
}
function upgradeTo(address newImplementation) external onlyOwner {
_setImplementation(newImplementation, "");
}
function upgradeToAndCall(address newImplementation, bytes calldata data) external payable onlyOwner {
_setImplementation(newImplementation, data);
}
// /////////////////////// MODIFIERS ////////////////////////////////////////////////////////////////////////
modifier onlyOwner() {
require(msg.sender == _owner(), "NOT_AUTHORIZED");
_;
}
// ///////////////////////// INTERNAL //////////////////////////////////////////////////////////////////////
function _owner() internal view returns (address adminAddress) {
// solhint-disable-next-line security/no-inline-assembly
assembly {
adminAddress := sload(0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103)
}
}
function _setOwner(address newOwner) internal {
address previousOwner = _owner();
// solhint-disable-next-line security/no-inline-assembly
assembly {
sstore(0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103, newOwner)
}
emit OwnershipTransferred(previousOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
// EIP-1967
abstract contract Proxy {
// /////////////////////// EVENTS ///////////////////////////////////////////////////////////////////////////
event ProxyImplementationUpdated(address indexed previousImplementation, address indexed newImplementation);
// ///////////////////// EXTERNAL ///////////////////////////////////////////////////////////////////////////
receive() external payable virtual {
revert("ETHER_REJECTED"); // explicit reject by default
}
fallback() external payable {
_fallback();
}
// ///////////////////////// INTERNAL //////////////////////////////////////////////////////////////////////
function _fallback() internal {
// solhint-disable-next-line security/no-inline-assembly
assembly {
let implementationAddress := sload(0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc)
calldatacopy(0x0, 0x0, calldatasize())
let success := delegatecall(gas(), implementationAddress, 0x0, calldatasize(), 0, 0)
let retSz := returndatasize()
returndatacopy(0, 0, retSz)
switch success
case 0 {
revert(0, retSz)
}
default {
return(0, retSz)
}
}
}
function _setImplementation(address newImplementation, bytes memory data) internal {
address previousImplementation;
// solhint-disable-next-line security/no-inline-assembly
assembly {
previousImplementation := sload(0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc)
}
// solhint-disable-next-line security/no-inline-assembly
assembly {
sstore(0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc, newImplementation)
}
emit ProxyImplementationUpdated(previousImplementation, newImplementation);
if (data.length > 0) {
(bool success, ) = newImplementation.delegatecall(data);
if (!success) {
assembly {
// This assembly ensure the revert contains the exact string data
let returnDataSize := returndatasize()
returndatacopy(0, 0, returnDataSize)
revert(0, returnDataSize)
}
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "./EIP173Proxy.sol";
///@notice Proxy implementing EIP173 for ownership management that accept ETH via receive
contract EIP173ProxyWithReceive is EIP173Proxy {
constructor(
address implementationAddress,
address ownerAddress,
bytes memory data
) payable EIP173Proxy(implementationAddress, ownerAddress, data) {}
receive() external payable override {}
}
File 5 of 9: GPv2AllowListAuthentication
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "./interfaces/GPv2Authentication.sol";
import "./libraries/GPv2EIP1967.sol";
import "./mixins/Initializable.sol";
import "./mixins/StorageAccessible.sol";
/// @title Gnosis Protocol v2 Access Control Contract
/// @author Gnosis Developers
contract GPv2AllowListAuthentication is
GPv2Authentication,
Initializable,
StorageAccessible
{
/// @dev The address of the manager that has permissions to add and remove
/// solvers.
address public manager;
/// @dev The set of allowed solvers. Allowed solvers have a value of `true`
/// in this mapping.
mapping(address => bool) private solvers;
/// @dev Event emitted when the manager changes.
event ManagerChanged(address newManager, address oldManager);
/// @dev Event emitted when a solver gets added.
event SolverAdded(address solver);
/// @dev Event emitted when a solver gets removed.
event SolverRemoved(address solver);
/// @dev Initialize the manager to a value.
///
/// This method is a contract initializer that is called exactly once after
/// creation. An initializer is used instead of a constructor so that this
/// contract can be used behind a proxy.
///
/// This initializer is idempotent.
///
/// @param manager_ The manager to initialize the contract with.
function initializeManager(address manager_) external initializer {
manager = manager_;
emit ManagerChanged(manager_, address(0));
}
/// @dev Modifier that ensures a method can only be called by the contract
/// manager. Reverts if called by other addresses.
modifier onlyManager() {
require(manager == msg.sender, "GPv2: caller not manager");
_;
}
/// @dev Modifier that ensures method can be either called by the contract
/// manager or the proxy owner.
///
/// This modifier assumes that the proxy uses an EIP-1967 compliant storage
/// slot for the admin.
modifier onlyManagerOrOwner() {
require(
manager == msg.sender || GPv2EIP1967.getAdmin() == msg.sender,
"GPv2: not authorized"
);
_;
}
/// @dev Set the manager for this contract.
///
/// This method can be called by the current manager (if they want to to
/// reliquish the role and give it to another address) or the contract
/// owner (i.e. the proxy admin).
///
/// @param manager_ The new contract manager address.
function setManager(address manager_) external onlyManagerOrOwner {
address oldManager = manager;
manager = manager_;
emit ManagerChanged(manager_, oldManager);
}
/// @dev Add an address to the set of allowed solvers. This method can only
/// be called by the contract manager.
///
/// This function is idempotent.
///
/// @param solver The solver address to add.
function addSolver(address solver) external onlyManager {
solvers[solver] = true;
emit SolverAdded(solver);
}
/// @dev Removes an address to the set of allowed solvers. This method can
/// only be called by the contract manager.
///
/// This function is idempotent.
///
/// @param solver The solver address to remove.
function removeSolver(address solver) external onlyManager {
solvers[solver] = false;
emit SolverRemoved(solver);
}
/// @inheritdoc GPv2Authentication
function isSolver(address prospectiveSolver)
external
view
override
returns (bool)
{
return solvers[prospectiveSolver];
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
/// @title Gnosis Protocol v2 Authentication Interface
/// @author Gnosis Developers
interface GPv2Authentication {
/// @dev determines whether the provided address is an authenticated solver.
/// @param prospectiveSolver the address of prospective solver.
/// @return true when prospectiveSolver is an authenticated solver, otherwise false.
function isSolver(address prospectiveSolver) external view returns (bool);
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
library GPv2EIP1967 {
/// @dev The storage slot where the proxy administrator is stored, defined
/// as `keccak256('eip1967.proxy.admin') - 1`.
bytes32 internal constant ADMIN_SLOT =
hex"b53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103";
/// @dev Returns the address stored in the EIP-1967 administrator storage
/// slot for the current contract. If this method is not called from an
/// contract behind an EIP-1967 proxy, then it will most likely return
/// `address(0)`, as the implementation slot is likely to be unset.
///
/// @return admin The administrator address.
function getAdmin() internal view returns (address admin) {
// solhint-disable-next-line no-inline-assembly
assembly {
admin := sload(ADMIN_SLOT)
}
}
/// @dev Sets the storage at the EIP-1967 administrator slot to be the
/// specified address.
///
/// @param admin The administrator address to set.
function setAdmin(address admin) internal {
// solhint-disable-next-line no-inline-assembly
assembly {
sstore(ADMIN_SLOT, admin)
}
}
}
// SPDX-License-Identifier: MIT
// Vendored from OpenZeppelin contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Shortned revert messages
// - Inlined `Address.isContract` implementation
// <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/proxy/Initializable.sol>
pragma solidity ^0.7.6;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
*/
bool private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Modifier to protect an initializer function from being invoked twice.
*/
modifier initializer() {
require(
_initializing || _isConstructor() || !_initialized,
"Initializable: initialized"
);
bool isTopLevelCall = !_initializing;
if (isTopLevelCall) {
_initializing = true;
_initialized = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
}
}
/// @dev Returns true if and only if the function is running in the constructor
function _isConstructor() private view returns (bool) {
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly {
size := extcodesize(address())
}
return size == 0;
}
}
// SPDX-License-Identifier: LGPL-3.0-only
// Vendored from Gnosis utility contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Added linter directives to ignore low level call and assembly warnings
// <https://github.com/gnosis/util-contracts/blob/v3.1.0-solc-7/contracts/StorageAccessible.sol>
pragma solidity ^0.7.6;
/// @title ViewStorageAccessible - Interface on top of StorageAccessible base class to allow simulations from view functions
interface ViewStorageAccessible {
/**
* @dev Same as `simulateDelegatecall` on StorageAccessible. Marked as view so that it can be called from external contracts
* that want to run simulations from within view functions. Will revert if the invoked simulation attempts to change state.
*/
function simulateDelegatecall(
address targetContract,
bytes memory calldataPayload
) external view returns (bytes memory);
/**
* @dev Same as `getStorageAt` on StorageAccessible. This method allows reading aribtrary ranges of storage.
*/
function getStorageAt(uint256 offset, uint256 length)
external
view
returns (bytes memory);
}
/// @title StorageAccessible - generic base contract that allows callers to access all internal storage.
contract StorageAccessible {
/**
* @dev Reads `length` bytes of storage in the currents contract
* @param offset - the offset in the current contract's storage in words to start reading from
* @param length - the number of words (32 bytes) of data to read
* @return the bytes that were read.
*/
function getStorageAt(uint256 offset, uint256 length)
external
view
returns (bytes memory)
{
bytes memory result = new bytes(length * 32);
for (uint256 index = 0; index < length; index++) {
// solhint-disable-next-line no-inline-assembly
assembly {
let word := sload(add(offset, index))
mstore(add(add(result, 0x20), mul(index, 0x20)), word)
}
}
return result;
}
/**
* @dev Performs a delegetecall on a targetContract in the context of self.
* Internally reverts execution to avoid side effects (making it static). Catches revert and returns encoded result as bytes.
* @param targetContract Address of the contract containing the code to execute.
* @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
*/
function simulateDelegatecall(
address targetContract,
bytes memory calldataPayload
) public returns (bytes memory response) {
bytes memory innerCall =
abi.encodeWithSelector(
this.simulateDelegatecallInternal.selector,
targetContract,
calldataPayload
);
// solhint-disable-next-line avoid-low-level-calls
(, response) = address(this).call(innerCall);
bool innerSuccess = response[response.length - 1] == 0x01;
setLength(response, response.length - 1);
if (innerSuccess) {
return response;
} else {
revertWith(response);
}
}
/**
* @dev Performs a delegetecall on a targetContract in the context of self.
* Internally reverts execution to avoid side effects (making it static). Returns encoded result as revert message
* concatenated with the success flag of the inner call as a last byte.
* @param targetContract Address of the contract containing the code to execute.
* @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
*/
function simulateDelegatecallInternal(
address targetContract,
bytes memory calldataPayload
) external returns (bytes memory response) {
bool success;
// solhint-disable-next-line avoid-low-level-calls
(success, response) = targetContract.delegatecall(calldataPayload);
revertWith(abi.encodePacked(response, success));
}
function revertWith(bytes memory response) internal pure {
// solhint-disable-next-line no-inline-assembly
assembly {
revert(add(response, 0x20), mload(response))
}
}
function setLength(bytes memory buffer, uint256 length) internal pure {
// solhint-disable-next-line no-inline-assembly
assembly {
mstore(buffer, length)
}
}
}
File 6 of 9: HooksTrampoline
// SPDX-License-Identifier: LGPL-3.0-only
pragma solidity ^0.8;
/// @title CoW Protocol Hooks Trampoline
/// @dev A trampoline contract for calling user-specified hooks. It ensures that
/// user-specified calls are not executed from a privileged context, and that
/// reverts do not prevent settlements from executing.
/// @author CoW Developers
contract HooksTrampoline {
/// @dev A user-specified hook.
struct Hook {
address target;
bytes callData;
uint256 gasLimit;
}
/// @dev Error indicating that the trampoline was not called from the CoW
/// Protocol settlement contract.
error NotASettlement();
/// @dev The address of the CoW Protocol settlement contract.
address public immutable settlement;
/// @param settlement_ The address of the CoW protocol settlement contract.
constructor(address settlement_) {
settlement = settlement_;
}
/// @dev Modifier that ensures that the `msg.sender` is the CoW Protocol
/// settlement contract. Methods with this modifier are guaranteed to only
/// be called as part of a CoW Protocol settlement.
modifier onlySettlement() {
if (msg.sender != settlement) {
revert NotASettlement();
}
_;
}
/// @dev Executes the specified hooks. This function will revert if not
/// called by the CoW Protocol settlement contract. This allows hooks to be
/// semi-permissioned, ensuring that they are only executed as part of a CoW
/// Protocol settlement. Additionally, hooks are called with a gas limit,
/// and are allowed to revert. This is done in order to prevent badly
/// configured user-specified hooks from consuming more gas than expected
/// (for example, if a hook were to revert with an `INVALID` opcode) or
/// causing an otherwise valid settlement to revert, effectively
/// DoS-ing other orders.
///
/// @param hooks The hooks to execute.
function execute(Hook[] calldata hooks) external onlySettlement {
// Array bounds and overflow checks are not needed here, as `i` will
// never overflow and `hooks[i]` will never be out of bounds as `i` is
// smaller than `hooks.length`.
unchecked {
Hook calldata hook;
for (uint256 i; i < hooks.length; ++i) {
hook = hooks[i];
(bool success,) = hook.target.call{gas: hook.gasLimit}(hook.callData);
// In order to prevent custom hooks from DoS-ing settlements, we
// explicitly allow them to revert.
success;
}
}
}
}
File 7 of 9: FiatTokenV2_2
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { EIP712Domain } from "./EIP712Domain.sol"; // solhint-disable-line no-unused-import
import { Blacklistable } from "../v1/Blacklistable.sol"; // solhint-disable-line no-unused-import
import { FiatTokenV1 } from "../v1/FiatTokenV1.sol"; // solhint-disable-line no-unused-import
import { FiatTokenV2 } from "./FiatTokenV2.sol"; // solhint-disable-line no-unused-import
import { FiatTokenV2_1 } from "./FiatTokenV2_1.sol";
import { EIP712 } from "../util/EIP712.sol";
// solhint-disable func-name-mixedcase
/**
* @title FiatToken V2.2
* @notice ERC20 Token backed by fiat reserves, version 2.2
*/
contract FiatTokenV2_2 is FiatTokenV2_1 {
/**
* @notice Initialize v2.2
* @param accountsToBlacklist A list of accounts to migrate from the old blacklist
* @param newSymbol New token symbol
* data structure to the new blacklist data structure.
*/
function initializeV2_2(
address[] calldata accountsToBlacklist,
string calldata newSymbol
) external {
// solhint-disable-next-line reason-string
require(_initializedVersion == 2);
// Update fiat token symbol
symbol = newSymbol;
// Add previously blacklisted accounts to the new blacklist data structure
// and remove them from the old blacklist data structure.
for (uint256 i = 0; i < accountsToBlacklist.length; i++) {
require(
_deprecatedBlacklisted[accountsToBlacklist[i]],
"FiatTokenV2_2: Blacklisting previously unblacklisted account!"
);
_blacklist(accountsToBlacklist[i]);
delete _deprecatedBlacklisted[accountsToBlacklist[i]];
}
_blacklist(address(this));
delete _deprecatedBlacklisted[address(this)];
_initializedVersion = 3;
}
/**
* @dev Internal function to get the current chain id.
* @return The current chain id.
*/
function _chainId() internal virtual view returns (uint256) {
uint256 chainId;
assembly {
chainId := chainid()
}
return chainId;
}
/**
* @inheritdoc EIP712Domain
*/
function _domainSeparator() internal override view returns (bytes32) {
return EIP712.makeDomainSeparator(name, "2", _chainId());
}
/**
* @notice Update allowance with a signed permit
* @dev EOA wallet signatures should be packed in the order of r, s, v.
* @param owner Token owner's address (Authorizer)
* @param spender Spender's address
* @param value Amount of allowance
* @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration
* @param signature Signature bytes signed by an EOA wallet or a contract wallet
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
bytes memory signature
) external whenNotPaused {
_permit(owner, spender, value, deadline, signature);
}
/**
* @notice Execute a transfer with a signed authorization
* @dev EOA wallet signatures should be packed in the order of r, s, v.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param signature Signature bytes signed by an EOA wallet or a contract wallet
*/
function transferWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
bytes memory signature
) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
_transferWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
signature
);
}
/**
* @notice Receive a transfer with a signed authorization from the payer
* @dev This has an additional check to ensure that the payee's address
* matches the caller of this function to prevent front-running attacks.
* EOA wallet signatures should be packed in the order of r, s, v.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param signature Signature bytes signed by an EOA wallet or a contract wallet
*/
function receiveWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
bytes memory signature
) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
_receiveWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
signature
);
}
/**
* @notice Attempt to cancel an authorization
* @dev Works only if the authorization is not yet used.
* EOA wallet signatures should be packed in the order of r, s, v.
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @param signature Signature bytes signed by an EOA wallet or a contract wallet
*/
function cancelAuthorization(
address authorizer,
bytes32 nonce,
bytes memory signature
) external whenNotPaused {
_cancelAuthorization(authorizer, nonce, signature);
}
/**
* @dev Helper method that sets the blacklist state of an account on balanceAndBlacklistStates.
* If _shouldBlacklist is true, we apply a (1 << 255) bitmask with an OR operation on the
* account's balanceAndBlacklistState. This flips the high bit for the account to 1,
* indicating that the account is blacklisted.
*
* If _shouldBlacklist if false, we reset the account's balanceAndBlacklistStates to their
* balances. This clears the high bit for the account, indicating that the account is unblacklisted.
* @param _account The address of the account.
* @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted.
*/
function _setBlacklistState(address _account, bool _shouldBlacklist)
internal
override
{
balanceAndBlacklistStates[_account] = _shouldBlacklist
? balanceAndBlacklistStates[_account] | (1 << 255)
: _balanceOf(_account);
}
/**
* @dev Helper method that sets the balance of an account on balanceAndBlacklistStates.
* Since balances are stored in the last 255 bits of the balanceAndBlacklistStates value,
* we need to ensure that the updated balance does not exceed (2^255 - 1).
* Since blacklisted accounts' balances cannot be updated, the method will also
* revert if the account is blacklisted
* @param _account The address of the account.
* @param _balance The new fiat token balance of the account (max: (2^255 - 1)).
*/
function _setBalance(address _account, uint256 _balance) internal override {
require(
_balance <= ((1 << 255) - 1),
"FiatTokenV2_2: Balance exceeds (2^255 - 1)"
);
require(
!_isBlacklisted(_account),
"FiatTokenV2_2: Account is blacklisted"
);
balanceAndBlacklistStates[_account] = _balance;
}
/**
* @inheritdoc Blacklistable
*/
function _isBlacklisted(address _account)
internal
override
view
returns (bool)
{
return balanceAndBlacklistStates[_account] >> 255 == 1;
}
/**
* @dev Helper method to obtain the balance of an account. Since balances
* are stored in the last 255 bits of the balanceAndBlacklistStates value,
* we apply a ((1 << 255) - 1) bit bitmask with an AND operation on the
* balanceAndBlacklistState to obtain the balance.
* @param _account The address of the account.
* @return The fiat token balance of the account.
*/
function _balanceOf(address _account)
internal
override
view
returns (uint256)
{
return balanceAndBlacklistStates[_account] & ((1 << 255) - 1);
}
/**
* @inheritdoc FiatTokenV1
*/
function approve(address spender, uint256 value)
external
override
whenNotPaused
returns (bool)
{
_approve(msg.sender, spender, value);
return true;
}
/**
* @inheritdoc FiatTokenV2
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external override whenNotPaused {
_permit(owner, spender, value, deadline, v, r, s);
}
/**
* @inheritdoc FiatTokenV2
*/
function increaseAllowance(address spender, uint256 increment)
external
override
whenNotPaused
returns (bool)
{
_increaseAllowance(msg.sender, spender, increment);
return true;
}
/**
* @inheritdoc FiatTokenV2
*/
function decreaseAllowance(address spender, uint256 decrement)
external
override
whenNotPaused
returns (bool)
{
_decreaseAllowance(msg.sender, spender, decrement);
return true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { FiatTokenV2 } from "./FiatTokenV2.sol";
// solhint-disable func-name-mixedcase
/**
* @title FiatToken V2.1
* @notice ERC20 Token backed by fiat reserves, version 2.1
*/
contract FiatTokenV2_1 is FiatTokenV2 {
/**
* @notice Initialize v2.1
* @param lostAndFound The address to which the locked funds are sent
*/
function initializeV2_1(address lostAndFound) external {
// solhint-disable-next-line reason-string
require(_initializedVersion == 1);
uint256 lockedAmount = _balanceOf(address(this));
if (lockedAmount > 0) {
_transfer(address(this), lostAndFound, lockedAmount);
}
_blacklist(address(this));
_initializedVersion = 2;
}
/**
* @notice Version string for the EIP712 domain separator
* @return Version string
*/
function version() external pure returns (string memory) {
return "2";
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { FiatTokenV1_1 } from "../v1.1/FiatTokenV1_1.sol";
import { EIP712 } from "../util/EIP712.sol";
import { EIP3009 } from "./EIP3009.sol";
import { EIP2612 } from "./EIP2612.sol";
/**
* @title FiatToken V2
* @notice ERC20 Token backed by fiat reserves, version 2
*/
contract FiatTokenV2 is FiatTokenV1_1, EIP3009, EIP2612 {
uint8 internal _initializedVersion;
/**
* @notice Initialize v2
* @param newName New token name
*/
function initializeV2(string calldata newName) external {
// solhint-disable-next-line reason-string
require(initialized && _initializedVersion == 0);
name = newName;
_DEPRECATED_CACHED_DOMAIN_SEPARATOR = EIP712.makeDomainSeparator(
newName,
"2"
);
_initializedVersion = 1;
}
/**
* @notice Increase the allowance by a given increment
* @param spender Spender's address
* @param increment Amount of increase in allowance
* @return True if successful
*/
function increaseAllowance(address spender, uint256 increment)
external
virtual
whenNotPaused
notBlacklisted(msg.sender)
notBlacklisted(spender)
returns (bool)
{
_increaseAllowance(msg.sender, spender, increment);
return true;
}
/**
* @notice Decrease the allowance by a given decrement
* @param spender Spender's address
* @param decrement Amount of decrease in allowance
* @return True if successful
*/
function decreaseAllowance(address spender, uint256 decrement)
external
virtual
whenNotPaused
notBlacklisted(msg.sender)
notBlacklisted(spender)
returns (bool)
{
_decreaseAllowance(msg.sender, spender, decrement);
return true;
}
/**
* @notice Execute a transfer with a signed authorization
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function transferWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
_transferWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
v,
r,
s
);
}
/**
* @notice Receive a transfer with a signed authorization from the payer
* @dev This has an additional check to ensure that the payee's address
* matches the caller of this function to prevent front-running attacks.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function receiveWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
_receiveWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
v,
r,
s
);
}
/**
* @notice Attempt to cancel an authorization
* @dev Works only if the authorization is not yet used.
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function cancelAuthorization(
address authorizer,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) external whenNotPaused {
_cancelAuthorization(authorizer, nonce, v, r, s);
}
/**
* @notice Update allowance with a signed permit
* @param owner Token owner's address (Authorizer)
* @param spender Spender's address
* @param value Amount of allowance
* @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
)
external
virtual
whenNotPaused
notBlacklisted(owner)
notBlacklisted(spender)
{
_permit(owner, spender, value, deadline, v, r, s);
}
/**
* @dev Internal function to increase the allowance by a given increment
* @param owner Token owner's address
* @param spender Spender's address
* @param increment Amount of increase
*/
function _increaseAllowance(
address owner,
address spender,
uint256 increment
) internal override {
_approve(owner, spender, allowed[owner][spender].add(increment));
}
/**
* @dev Internal function to decrease the allowance by a given decrement
* @param owner Token owner's address
* @param spender Spender's address
* @param decrement Amount of decrease
*/
function _decreaseAllowance(
address owner,
address spender,
uint256 decrement
) internal override {
_approve(
owner,
spender,
allowed[owner][spender].sub(
decrement,
"ERC20: decreased allowance below zero"
)
);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
// solhint-disable func-name-mixedcase
/**
* @title EIP712 Domain
*/
contract EIP712Domain {
// was originally DOMAIN_SEPARATOR
// but that has been moved to a method so we can override it in V2_2+
bytes32 internal _DEPRECATED_CACHED_DOMAIN_SEPARATOR;
/**
* @notice Get the EIP712 Domain Separator.
* @return The bytes32 EIP712 domain separator.
*/
function DOMAIN_SEPARATOR() external view returns (bytes32) {
return _domainSeparator();
}
/**
* @dev Internal method to get the EIP712 Domain Separator.
* @return The bytes32 EIP712 domain separator.
*/
function _domainSeparator() internal virtual view returns (bytes32) {
return _DEPRECATED_CACHED_DOMAIN_SEPARATOR;
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol";
import { EIP712Domain } from "./EIP712Domain.sol";
import { SignatureChecker } from "../util/SignatureChecker.sol";
import { MessageHashUtils } from "../util/MessageHashUtils.sol";
/**
* @title EIP-3009
* @notice Provide internal implementation for gas-abstracted transfers
* @dev Contracts that inherit from this must wrap these with publicly
* accessible functions, optionally adding modifiers where necessary
*/
abstract contract EIP3009 is AbstractFiatTokenV2, EIP712Domain {
// keccak256("TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
bytes32
public constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH = 0x7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267;
// keccak256("ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
bytes32
public constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH = 0xd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8;
// keccak256("CancelAuthorization(address authorizer,bytes32 nonce)")
bytes32
public constant CANCEL_AUTHORIZATION_TYPEHASH = 0x158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a1597429;
/**
* @dev authorizer address => nonce => bool (true if nonce is used)
*/
mapping(address => mapping(bytes32 => bool)) private _authorizationStates;
event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce);
event AuthorizationCanceled(
address indexed authorizer,
bytes32 indexed nonce
);
/**
* @notice Returns the state of an authorization
* @dev Nonces are randomly generated 32-byte data unique to the
* authorizer's address
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @return True if the nonce is used
*/
function authorizationState(address authorizer, bytes32 nonce)
external
view
returns (bool)
{
return _authorizationStates[authorizer][nonce];
}
/**
* @notice Execute a transfer with a signed authorization
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function _transferWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) internal {
_transferWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
abi.encodePacked(r, s, v)
);
}
/**
* @notice Execute a transfer with a signed authorization
* @dev EOA wallet signatures should be packed in the order of r, s, v.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param signature Signature byte array produced by an EOA wallet or a contract wallet
*/
function _transferWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
bytes memory signature
) internal {
_requireValidAuthorization(from, nonce, validAfter, validBefore);
_requireValidSignature(
from,
keccak256(
abi.encode(
TRANSFER_WITH_AUTHORIZATION_TYPEHASH,
from,
to,
value,
validAfter,
validBefore,
nonce
)
),
signature
);
_markAuthorizationAsUsed(from, nonce);
_transfer(from, to, value);
}
/**
* @notice Receive a transfer with a signed authorization from the payer
* @dev This has an additional check to ensure that the payee's address
* matches the caller of this function to prevent front-running attacks.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function _receiveWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) internal {
_receiveWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
abi.encodePacked(r, s, v)
);
}
/**
* @notice Receive a transfer with a signed authorization from the payer
* @dev This has an additional check to ensure that the payee's address
* matches the caller of this function to prevent front-running attacks.
* EOA wallet signatures should be packed in the order of r, s, v.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param signature Signature byte array produced by an EOA wallet or a contract wallet
*/
function _receiveWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
bytes memory signature
) internal {
require(to == msg.sender, "FiatTokenV2: caller must be the payee");
_requireValidAuthorization(from, nonce, validAfter, validBefore);
_requireValidSignature(
from,
keccak256(
abi.encode(
RECEIVE_WITH_AUTHORIZATION_TYPEHASH,
from,
to,
value,
validAfter,
validBefore,
nonce
)
),
signature
);
_markAuthorizationAsUsed(from, nonce);
_transfer(from, to, value);
}
/**
* @notice Attempt to cancel an authorization
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function _cancelAuthorization(
address authorizer,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) internal {
_cancelAuthorization(authorizer, nonce, abi.encodePacked(r, s, v));
}
/**
* @notice Attempt to cancel an authorization
* @dev EOA wallet signatures should be packed in the order of r, s, v.
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @param signature Signature byte array produced by an EOA wallet or a contract wallet
*/
function _cancelAuthorization(
address authorizer,
bytes32 nonce,
bytes memory signature
) internal {
_requireUnusedAuthorization(authorizer, nonce);
_requireValidSignature(
authorizer,
keccak256(
abi.encode(CANCEL_AUTHORIZATION_TYPEHASH, authorizer, nonce)
),
signature
);
_authorizationStates[authorizer][nonce] = true;
emit AuthorizationCanceled(authorizer, nonce);
}
/**
* @notice Validates that signature against input data struct
* @param signer Signer's address
* @param dataHash Hash of encoded data struct
* @param signature Signature byte array produced by an EOA wallet or a contract wallet
*/
function _requireValidSignature(
address signer,
bytes32 dataHash,
bytes memory signature
) private view {
require(
SignatureChecker.isValidSignatureNow(
signer,
MessageHashUtils.toTypedDataHash(_domainSeparator(), dataHash),
signature
),
"FiatTokenV2: invalid signature"
);
}
/**
* @notice Check that an authorization is unused
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
*/
function _requireUnusedAuthorization(address authorizer, bytes32 nonce)
private
view
{
require(
!_authorizationStates[authorizer][nonce],
"FiatTokenV2: authorization is used or canceled"
);
}
/**
* @notice Check that authorization is valid
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
*/
function _requireValidAuthorization(
address authorizer,
bytes32 nonce,
uint256 validAfter,
uint256 validBefore
) private view {
require(
now > validAfter,
"FiatTokenV2: authorization is not yet valid"
);
require(now < validBefore, "FiatTokenV2: authorization is expired");
_requireUnusedAuthorization(authorizer, nonce);
}
/**
* @notice Mark an authorization as used
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
*/
function _markAuthorizationAsUsed(address authorizer, bytes32 nonce)
private
{
_authorizationStates[authorizer][nonce] = true;
emit AuthorizationUsed(authorizer, nonce);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol";
import { EIP712Domain } from "./EIP712Domain.sol";
import { MessageHashUtils } from "../util/MessageHashUtils.sol";
import { SignatureChecker } from "../util/SignatureChecker.sol";
/**
* @title EIP-2612
* @notice Provide internal implementation for gas-abstracted approvals
*/
abstract contract EIP2612 is AbstractFiatTokenV2, EIP712Domain {
// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")
bytes32
public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
mapping(address => uint256) private _permitNonces;
/**
* @notice Nonces for permit
* @param owner Token owner's address (Authorizer)
* @return Next nonce
*/
function nonces(address owner) external view returns (uint256) {
return _permitNonces[owner];
}
/**
* @notice Verify a signed approval permit and execute if valid
* @param owner Token owner's address (Authorizer)
* @param spender Spender's address
* @param value Amount of allowance
* @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function _permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
_permit(owner, spender, value, deadline, abi.encodePacked(r, s, v));
}
/**
* @notice Verify a signed approval permit and execute if valid
* @dev EOA wallet signatures should be packed in the order of r, s, v.
* @param owner Token owner's address (Authorizer)
* @param spender Spender's address
* @param value Amount of allowance
* @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration
* @param signature Signature byte array signed by an EOA wallet or a contract wallet
*/
function _permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
bytes memory signature
) internal {
require(
deadline == type(uint256).max || deadline >= now,
"FiatTokenV2: permit is expired"
);
bytes32 typedDataHash = MessageHashUtils.toTypedDataHash(
_domainSeparator(),
keccak256(
abi.encode(
PERMIT_TYPEHASH,
owner,
spender,
value,
_permitNonces[owner]++,
deadline
)
)
);
require(
SignatureChecker.isValidSignatureNow(
owner,
typedDataHash,
signature
),
"EIP2612: invalid signature"
);
_approve(owner, spender, value);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { AbstractFiatTokenV1 } from "../v1/AbstractFiatTokenV1.sol";
abstract contract AbstractFiatTokenV2 is AbstractFiatTokenV1 {
function _increaseAllowance(
address owner,
address spender,
uint256 increment
) internal virtual;
function _decreaseAllowance(
address owner,
address spender,
uint256 decrement
) internal virtual;
}
/**
* SPDX-License-Identifier: MIT
*
* Copyright (c) 2016 Smart Contract Solutions, Inc.
* Copyright (c) 2018-2020 CENTRE SECZ
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
pragma solidity 0.6.12;
import { Ownable } from "./Ownable.sol";
/**
* @notice Base contract which allows children to implement an emergency stop
* mechanism
* @dev Forked from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/feb665136c0dae9912e08397c1a21c4af3651ef3/contracts/lifecycle/Pausable.sol
* Modifications:
* 1. Added pauser role, switched pause/unpause to be onlyPauser (6/14/2018)
* 2. Removed whenNotPause/whenPaused from pause/unpause (6/14/2018)
* 3. Removed whenPaused (6/14/2018)
* 4. Switches ownable library to use ZeppelinOS (7/12/18)
* 5. Remove constructor (7/13/18)
* 6. Reformat, conform to Solidity 0.6 syntax and add error messages (5/13/20)
* 7. Make public functions external (5/27/20)
*/
contract Pausable is Ownable {
event Pause();
event Unpause();
event PauserChanged(address indexed newAddress);
address public pauser;
bool public paused = false;
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!paused, "Pausable: paused");
_;
}
/**
* @dev throws if called by any account other than the pauser
*/
modifier onlyPauser() {
require(msg.sender == pauser, "Pausable: caller is not the pauser");
_;
}
/**
* @dev called by the owner to pause, triggers stopped state
*/
function pause() external onlyPauser {
paused = true;
emit Pause();
}
/**
* @dev called by the owner to unpause, returns to normal state
*/
function unpause() external onlyPauser {
paused = false;
emit Unpause();
}
/**
* @notice Updates the pauser address.
* @param _newPauser The address of the new pauser.
*/
function updatePauser(address _newPauser) external onlyOwner {
require(
_newPauser != address(0),
"Pausable: new pauser is the zero address"
);
pauser = _newPauser;
emit PauserChanged(pauser);
}
}
/**
* SPDX-License-Identifier: MIT
*
* Copyright (c) 2018 zOS Global Limited.
* Copyright (c) 2018-2020 CENTRE SECZ
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
pragma solidity 0.6.12;
/**
* @notice The Ownable contract has an owner address, and provides basic
* authorization control functions
* @dev Forked from https://github.com/OpenZeppelin/openzeppelin-labs/blob/3887ab77b8adafba4a26ace002f3a684c1a3388b/upgradeability_ownership/contracts/ownership/Ownable.sol
* Modifications:
* 1. Consolidate OwnableStorage into this contract (7/13/18)
* 2. Reformat, conform to Solidity 0.6 syntax, and add error messages (5/13/20)
* 3. Make public functions external (5/27/20)
*/
contract Ownable {
// Owner of the contract
address private _owner;
/**
* @dev Event to show ownership has been transferred
* @param previousOwner representing the address of the previous owner
* @param newOwner representing the address of the new owner
*/
event OwnershipTransferred(address previousOwner, address newOwner);
/**
* @dev The constructor sets the original owner of the contract to the sender account.
*/
constructor() public {
setOwner(msg.sender);
}
/**
* @dev Tells the address of the owner
* @return the address of the owner
*/
function owner() external view returns (address) {
return _owner;
}
/**
* @dev Sets a new owner address
*/
function setOwner(address newOwner) internal {
_owner = newOwner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == _owner, "Ownable: caller is not the owner");
_;
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function transferOwnership(address newOwner) external onlyOwner {
require(
newOwner != address(0),
"Ownable: new owner is the zero address"
);
emit OwnershipTransferred(_owner, newOwner);
setOwner(newOwner);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
import { AbstractFiatTokenV1 } from "./AbstractFiatTokenV1.sol";
import { Ownable } from "./Ownable.sol";
import { Pausable } from "./Pausable.sol";
import { Blacklistable } from "./Blacklistable.sol";
/**
* @title FiatToken
* @dev ERC20 Token backed by fiat reserves
*/
contract FiatTokenV1 is AbstractFiatTokenV1, Ownable, Pausable, Blacklistable {
using SafeMath for uint256;
string public name;
string public symbol;
uint8 public decimals;
string public currency;
address public masterMinter;
bool internal initialized;
/// @dev A mapping that stores the balance and blacklist states for a given address.
/// The first bit defines whether the address is blacklisted (1 if blacklisted, 0 otherwise).
/// The last 255 bits define the balance for the address.
mapping(address => uint256) internal balanceAndBlacklistStates;
mapping(address => mapping(address => uint256)) internal allowed;
uint256 internal totalSupply_ = 0;
mapping(address => bool) internal minters;
mapping(address => uint256) internal minterAllowed;
event Mint(address indexed minter, address indexed to, uint256 amount);
event Burn(address indexed burner, uint256 amount);
event MinterConfigured(address indexed minter, uint256 minterAllowedAmount);
event MinterRemoved(address indexed oldMinter);
event MasterMinterChanged(address indexed newMasterMinter);
/**
* @notice Initializes the fiat token contract.
* @param tokenName The name of the fiat token.
* @param tokenSymbol The symbol of the fiat token.
* @param tokenCurrency The fiat currency that the token represents.
* @param tokenDecimals The number of decimals that the token uses.
* @param newMasterMinter The masterMinter address for the fiat token.
* @param newPauser The pauser address for the fiat token.
* @param newBlacklister The blacklister address for the fiat token.
* @param newOwner The owner of the fiat token.
*/
function initialize(
string memory tokenName,
string memory tokenSymbol,
string memory tokenCurrency,
uint8 tokenDecimals,
address newMasterMinter,
address newPauser,
address newBlacklister,
address newOwner
) public {
require(!initialized, "FiatToken: contract is already initialized");
require(
newMasterMinter != address(0),
"FiatToken: new masterMinter is the zero address"
);
require(
newPauser != address(0),
"FiatToken: new pauser is the zero address"
);
require(
newBlacklister != address(0),
"FiatToken: new blacklister is the zero address"
);
require(
newOwner != address(0),
"FiatToken: new owner is the zero address"
);
name = tokenName;
symbol = tokenSymbol;
currency = tokenCurrency;
decimals = tokenDecimals;
masterMinter = newMasterMinter;
pauser = newPauser;
blacklister = newBlacklister;
setOwner(newOwner);
initialized = true;
}
/**
* @dev Throws if called by any account other than a minter.
*/
modifier onlyMinters() {
require(minters[msg.sender], "FiatToken: caller is not a minter");
_;
}
/**
* @notice Mints fiat tokens to an address.
* @param _to The address that will receive the minted tokens.
* @param _amount The amount of tokens to mint. Must be less than or equal
* to the minterAllowance of the caller.
* @return True if the operation was successful.
*/
function mint(address _to, uint256 _amount)
external
whenNotPaused
onlyMinters
notBlacklisted(msg.sender)
notBlacklisted(_to)
returns (bool)
{
require(_to != address(0), "FiatToken: mint to the zero address");
require(_amount > 0, "FiatToken: mint amount not greater than 0");
uint256 mintingAllowedAmount = minterAllowed[msg.sender];
require(
_amount <= mintingAllowedAmount,
"FiatToken: mint amount exceeds minterAllowance"
);
totalSupply_ = totalSupply_.add(_amount);
_setBalance(_to, _balanceOf(_to).add(_amount));
minterAllowed[msg.sender] = mintingAllowedAmount.sub(_amount);
emit Mint(msg.sender, _to, _amount);
emit Transfer(address(0), _to, _amount);
return true;
}
/**
* @dev Throws if called by any account other than the masterMinter
*/
modifier onlyMasterMinter() {
require(
msg.sender == masterMinter,
"FiatToken: caller is not the masterMinter"
);
_;
}
/**
* @notice Gets the minter allowance for an account.
* @param minter The address to check.
* @return The remaining minter allowance for the account.
*/
function minterAllowance(address minter) external view returns (uint256) {
return minterAllowed[minter];
}
/**
* @notice Checks if an account is a minter.
* @param account The address to check.
* @return True if the account is a minter, false if the account is not a minter.
*/
function isMinter(address account) external view returns (bool) {
return minters[account];
}
/**
* @notice Gets the remaining amount of fiat tokens a spender is allowed to transfer on
* behalf of the token owner.
* @param owner The token owner's address.
* @param spender The spender's address.
* @return The remaining allowance.
*/
function allowance(address owner, address spender)
external
override
view
returns (uint256)
{
return allowed[owner][spender];
}
/**
* @notice Gets the totalSupply of the fiat token.
* @return The totalSupply of the fiat token.
*/
function totalSupply() external override view returns (uint256) {
return totalSupply_;
}
/**
* @notice Gets the fiat token balance of an account.
* @param account The address to check.
* @return balance The fiat token balance of the account.
*/
function balanceOf(address account)
external
override
view
returns (uint256)
{
return _balanceOf(account);
}
/**
* @notice Sets a fiat token allowance for a spender to spend on behalf of the caller.
* @param spender The spender's address.
* @param value The allowance amount.
* @return True if the operation was successful.
*/
function approve(address spender, uint256 value)
external
virtual
override
whenNotPaused
notBlacklisted(msg.sender)
notBlacklisted(spender)
returns (bool)
{
_approve(msg.sender, spender, value);
return true;
}
/**
* @dev Internal function to set allowance.
* @param owner Token owner's address.
* @param spender Spender's address.
* @param value Allowance amount.
*/
function _approve(
address owner,
address spender,
uint256 value
) internal override {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
allowed[owner][spender] = value;
emit Approval(owner, spender, value);
}
/**
* @notice Transfers tokens from an address to another by spending the caller's allowance.
* @dev The caller must have some fiat token allowance on the payer's tokens.
* @param from Payer's address.
* @param to Payee's address.
* @param value Transfer amount.
* @return True if the operation was successful.
*/
function transferFrom(
address from,
address to,
uint256 value
)
external
override
whenNotPaused
notBlacklisted(msg.sender)
notBlacklisted(from)
notBlacklisted(to)
returns (bool)
{
require(
value <= allowed[from][msg.sender],
"ERC20: transfer amount exceeds allowance"
);
_transfer(from, to, value);
allowed[from][msg.sender] = allowed[from][msg.sender].sub(value);
return true;
}
/**
* @notice Transfers tokens from the caller.
* @param to Payee's address.
* @param value Transfer amount.
* @return True if the operation was successful.
*/
function transfer(address to, uint256 value)
external
override
whenNotPaused
notBlacklisted(msg.sender)
notBlacklisted(to)
returns (bool)
{
_transfer(msg.sender, to, value);
return true;
}
/**
* @dev Internal function to process transfers.
* @param from Payer's address.
* @param to Payee's address.
* @param value Transfer amount.
*/
function _transfer(
address from,
address to,
uint256 value
) internal override {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
require(
value <= _balanceOf(from),
"ERC20: transfer amount exceeds balance"
);
_setBalance(from, _balanceOf(from).sub(value));
_setBalance(to, _balanceOf(to).add(value));
emit Transfer(from, to, value);
}
/**
* @notice Adds or updates a new minter with a mint allowance.
* @param minter The address of the minter.
* @param minterAllowedAmount The minting amount allowed for the minter.
* @return True if the operation was successful.
*/
function configureMinter(address minter, uint256 minterAllowedAmount)
external
whenNotPaused
onlyMasterMinter
returns (bool)
{
minters[minter] = true;
minterAllowed[minter] = minterAllowedAmount;
emit MinterConfigured(minter, minterAllowedAmount);
return true;
}
/**
* @notice Removes a minter.
* @param minter The address of the minter to remove.
* @return True if the operation was successful.
*/
function removeMinter(address minter)
external
onlyMasterMinter
returns (bool)
{
minters[minter] = false;
minterAllowed[minter] = 0;
emit MinterRemoved(minter);
return true;
}
/**
* @notice Allows a minter to burn some of its own tokens.
* @dev The caller must be a minter, must not be blacklisted, and the amount to burn
* should be less than or equal to the account's balance.
* @param _amount the amount of tokens to be burned.
*/
function burn(uint256 _amount)
external
whenNotPaused
onlyMinters
notBlacklisted(msg.sender)
{
uint256 balance = _balanceOf(msg.sender);
require(_amount > 0, "FiatToken: burn amount not greater than 0");
require(balance >= _amount, "FiatToken: burn amount exceeds balance");
totalSupply_ = totalSupply_.sub(_amount);
_setBalance(msg.sender, balance.sub(_amount));
emit Burn(msg.sender, _amount);
emit Transfer(msg.sender, address(0), _amount);
}
/**
* @notice Updates the master minter address.
* @param _newMasterMinter The address of the new master minter.
*/
function updateMasterMinter(address _newMasterMinter) external onlyOwner {
require(
_newMasterMinter != address(0),
"FiatToken: new masterMinter is the zero address"
);
masterMinter = _newMasterMinter;
emit MasterMinterChanged(masterMinter);
}
/**
* @inheritdoc Blacklistable
*/
function _blacklist(address _account) internal override {
_setBlacklistState(_account, true);
}
/**
* @inheritdoc Blacklistable
*/
function _unBlacklist(address _account) internal override {
_setBlacklistState(_account, false);
}
/**
* @dev Helper method that sets the blacklist state of an account.
* @param _account The address of the account.
* @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted.
*/
function _setBlacklistState(address _account, bool _shouldBlacklist)
internal
virtual
{
_deprecatedBlacklisted[_account] = _shouldBlacklist;
}
/**
* @dev Helper method that sets the balance of an account.
* @param _account The address of the account.
* @param _balance The new fiat token balance of the account.
*/
function _setBalance(address _account, uint256 _balance) internal virtual {
balanceAndBlacklistStates[_account] = _balance;
}
/**
* @inheritdoc Blacklistable
*/
function _isBlacklisted(address _account)
internal
virtual
override
view
returns (bool)
{
return _deprecatedBlacklisted[_account];
}
/**
* @dev Helper method to obtain the balance of an account.
* @param _account The address of the account.
* @return The fiat token balance of the account.
*/
function _balanceOf(address _account)
internal
virtual
view
returns (uint256)
{
return balanceAndBlacklistStates[_account];
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { Ownable } from "./Ownable.sol";
/**
* @title Blacklistable Token
* @dev Allows accounts to be blacklisted by a "blacklister" role
*/
abstract contract Blacklistable is Ownable {
address public blacklister;
mapping(address => bool) internal _deprecatedBlacklisted;
event Blacklisted(address indexed _account);
event UnBlacklisted(address indexed _account);
event BlacklisterChanged(address indexed newBlacklister);
/**
* @dev Throws if called by any account other than the blacklister.
*/
modifier onlyBlacklister() {
require(
msg.sender == blacklister,
"Blacklistable: caller is not the blacklister"
);
_;
}
/**
* @dev Throws if argument account is blacklisted.
* @param _account The address to check.
*/
modifier notBlacklisted(address _account) {
require(
!_isBlacklisted(_account),
"Blacklistable: account is blacklisted"
);
_;
}
/**
* @notice Checks if account is blacklisted.
* @param _account The address to check.
* @return True if the account is blacklisted, false if the account is not blacklisted.
*/
function isBlacklisted(address _account) external view returns (bool) {
return _isBlacklisted(_account);
}
/**
* @notice Adds account to blacklist.
* @param _account The address to blacklist.
*/
function blacklist(address _account) external onlyBlacklister {
_blacklist(_account);
emit Blacklisted(_account);
}
/**
* @notice Removes account from blacklist.
* @param _account The address to remove from the blacklist.
*/
function unBlacklist(address _account) external onlyBlacklister {
_unBlacklist(_account);
emit UnBlacklisted(_account);
}
/**
* @notice Updates the blacklister address.
* @param _newBlacklister The address of the new blacklister.
*/
function updateBlacklister(address _newBlacklister) external onlyOwner {
require(
_newBlacklister != address(0),
"Blacklistable: new blacklister is the zero address"
);
blacklister = _newBlacklister;
emit BlacklisterChanged(blacklister);
}
/**
* @dev Checks if account is blacklisted.
* @param _account The address to check.
* @return true if the account is blacklisted, false otherwise.
*/
function _isBlacklisted(address _account)
internal
virtual
view
returns (bool);
/**
* @dev Helper method that blacklists an account.
* @param _account The address to blacklist.
*/
function _blacklist(address _account) internal virtual;
/**
* @dev Helper method that unblacklists an account.
* @param _account The address to unblacklist.
*/
function _unBlacklist(address _account) internal virtual;
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
abstract contract AbstractFiatTokenV1 is IERC20 {
function _approve(
address owner,
address spender,
uint256 value
) internal virtual;
function _transfer(
address from,
address to,
uint256 value
) internal virtual;
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { Ownable } from "../v1/Ownable.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
contract Rescuable is Ownable {
using SafeERC20 for IERC20;
address private _rescuer;
event RescuerChanged(address indexed newRescuer);
/**
* @notice Returns current rescuer
* @return Rescuer's address
*/
function rescuer() external view returns (address) {
return _rescuer;
}
/**
* @notice Revert if called by any account other than the rescuer.
*/
modifier onlyRescuer() {
require(msg.sender == _rescuer, "Rescuable: caller is not the rescuer");
_;
}
/**
* @notice Rescue ERC20 tokens locked up in this contract.
* @param tokenContract ERC20 token contract address
* @param to Recipient address
* @param amount Amount to withdraw
*/
function rescueERC20(
IERC20 tokenContract,
address to,
uint256 amount
) external onlyRescuer {
tokenContract.safeTransfer(to, amount);
}
/**
* @notice Updates the rescuer address.
* @param newRescuer The address of the new rescuer.
*/
function updateRescuer(address newRescuer) external onlyOwner {
require(
newRescuer != address(0),
"Rescuable: new rescuer is the zero address"
);
_rescuer = newRescuer;
emit RescuerChanged(newRescuer);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { FiatTokenV1 } from "../v1/FiatTokenV1.sol";
import { Rescuable } from "./Rescuable.sol";
/**
* @title FiatTokenV1_1
* @dev ERC20 Token backed by fiat reserves
*/
contract FiatTokenV1_1 is FiatTokenV1, Rescuable {
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { ECRecover } from "./ECRecover.sol";
import { IERC1271 } from "../interface/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECRecover.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets.
*
* Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/SignatureChecker.sol
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECRecover.recover`.
* @param signer Address of the claimed signer
* @param digest Keccak-256 hash digest of the signed message
* @param signature Signature byte array associated with hash
*/
function isValidSignatureNow(
address signer,
bytes32 digest,
bytes memory signature
) external view returns (bool) {
if (!isContract(signer)) {
return ECRecover.recover(digest, signature) == signer;
}
return isValidERC1271SignatureNow(signer, digest, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
* @param signer Address of the claimed signer
* @param digest Keccak-256 hash digest of the signed message
* @param signature Signature byte array associated with hash
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 digest,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeWithSelector(
IERC1271.isValidSignature.selector,
digest,
signature
)
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) ==
bytes32(IERC1271.isValidSignature.selector));
}
/**
* @dev Checks if the input address is a smart contract.
*/
function isContract(address addr) internal view returns (bool) {
uint256 size;
assembly {
size := extcodesize(addr)
}
return size > 0;
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
* Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/MessageHashUtils.sol
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* @param domainSeparator Domain separator
* @param structHash Hashed EIP-712 data struct
* @return digest The keccak256 digest of an EIP-712 typed data
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash)
internal
pure
returns (bytes32 digest)
{
assembly {
let ptr := mload(0x40)
mstore(ptr, "\\x19\\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
/**
* @title EIP712
* @notice A library that provides EIP712 helper functions
*/
library EIP712 {
/**
* @notice Make EIP712 domain separator
* @param name Contract name
* @param version Contract version
* @param chainId Blockchain ID
* @return Domain separator
*/
function makeDomainSeparator(
string memory name,
string memory version,
uint256 chainId
) internal view returns (bytes32) {
return
keccak256(
abi.encode(
// keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f,
keccak256(bytes(name)),
keccak256(bytes(version)),
chainId,
address(this)
)
);
}
/**
* @notice Make EIP712 domain separator
* @param name Contract name
* @param version Contract version
* @return Domain separator
*/
function makeDomainSeparator(string memory name, string memory version)
internal
view
returns (bytes32)
{
uint256 chainId;
assembly {
chainId := chainid()
}
return makeDomainSeparator(name, version, chainId);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
/**
* @title ECRecover
* @notice A library that provides a safe ECDSA recovery function
*/
library ECRecover {
/**
* @notice Recover signer's address from a signed message
* @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/65e4ffde586ec89af3b7e9140bdc9235d1254853/contracts/cryptography/ECDSA.sol
* Modifications: Accept v, r, and s as separate arguments
* @param digest Keccak-256 hash digest of the signed message
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
* @return Signer address
*/
function recover(
bytes32 digest,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (
uint256(s) >
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0
) {
revert("ECRecover: invalid signature 's' value");
}
if (v != 27 && v != 28) {
revert("ECRecover: invalid signature 'v' value");
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(digest, v, r, s);
require(signer != address(0), "ECRecover: invalid signature");
return signer;
}
/**
* @notice Recover signer's address from a signed message
* @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/0053ee040a7ff1dbc39691c9e67a69f564930a88/contracts/utils/cryptography/ECDSA.sol
* @param digest Keccak-256 hash digest of the signed message
* @param signature Signature byte array associated with hash
* @return Signer address
*/
function recover(bytes32 digest, bytes memory signature)
internal
pure
returns (address)
{
require(signature.length == 65, "ECRecover: invalid signature length");
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return recover(digest, v, r, s);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with the provided data hash
* @return magicValue bytes4 magic value 0x1626ba7e when function passes
*/
function isValidSignature(bytes32 hash, bytes memory signature)
external
view
returns (bytes4 magicValue);
}
File 8 of 9: SignatureChecker
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { ECRecover } from "./ECRecover.sol";
import { IERC1271 } from "../interface/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECRecover.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets.
*
* Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/SignatureChecker.sol
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECRecover.recover`.
* @param signer Address of the claimed signer
* @param digest Keccak-256 hash digest of the signed message
* @param signature Signature byte array associated with hash
*/
function isValidSignatureNow(
address signer,
bytes32 digest,
bytes memory signature
) external view returns (bool) {
if (!isContract(signer)) {
return ECRecover.recover(digest, signature) == signer;
}
return isValidERC1271SignatureNow(signer, digest, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
* @param signer Address of the claimed signer
* @param digest Keccak-256 hash digest of the signed message
* @param signature Signature byte array associated with hash
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 digest,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeWithSelector(
IERC1271.isValidSignature.selector,
digest,
signature
)
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) ==
bytes32(IERC1271.isValidSignature.selector));
}
/**
* @dev Checks if the input address is a smart contract.
*/
function isContract(address addr) internal view returns (bool) {
uint256 size;
assembly {
size := extcodesize(addr)
}
return size > 0;
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
/**
* @title ECRecover
* @notice A library that provides a safe ECDSA recovery function
*/
library ECRecover {
/**
* @notice Recover signer's address from a signed message
* @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/65e4ffde586ec89af3b7e9140bdc9235d1254853/contracts/cryptography/ECDSA.sol
* Modifications: Accept v, r, and s as separate arguments
* @param digest Keccak-256 hash digest of the signed message
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
* @return Signer address
*/
function recover(
bytes32 digest,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (
uint256(s) >
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0
) {
revert("ECRecover: invalid signature 's' value");
}
if (v != 27 && v != 28) {
revert("ECRecover: invalid signature 'v' value");
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(digest, v, r, s);
require(signer != address(0), "ECRecover: invalid signature");
return signer;
}
/**
* @notice Recover signer's address from a signed message
* @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/0053ee040a7ff1dbc39691c9e67a69f564930a88/contracts/utils/cryptography/ECDSA.sol
* @param digest Keccak-256 hash digest of the signed message
* @param signature Signature byte array associated with hash
* @return Signer address
*/
function recover(bytes32 digest, bytes memory signature)
internal
pure
returns (address)
{
require(signature.length == 65, "ECRecover: invalid signature length");
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return recover(digest, v, r, s);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with the provided data hash
* @return magicValue bytes4 magic value 0x1626ba7e when function passes
*/
function isValidSignature(bytes32 hash, bytes memory signature)
external
view
returns (bytes4 magicValue);
}
File 9 of 9: GPv2VaultRelayer
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "./interfaces/GPv2Authentication.sol";
import "./libraries/GPv2EIP1967.sol";
import "./mixins/Initializable.sol";
import "./mixins/StorageAccessible.sol";
/// @title Gnosis Protocol v2 Access Control Contract
/// @author Gnosis Developers
contract GPv2AllowListAuthentication is
GPv2Authentication,
Initializable,
StorageAccessible
{
/// @dev The address of the manager that has permissions to add and remove
/// solvers.
address public manager;
/// @dev The set of allowed solvers. Allowed solvers have a value of `true`
/// in this mapping.
mapping(address => bool) private solvers;
/// @dev Event emitted when the manager changes.
event ManagerChanged(address newManager, address oldManager);
/// @dev Event emitted when a solver gets added.
event SolverAdded(address solver);
/// @dev Event emitted when a solver gets removed.
event SolverRemoved(address solver);
/// @dev Initialize the manager to a value.
///
/// This method is a contract initializer that is called exactly once after
/// creation. An initializer is used instead of a constructor so that this
/// contract can be used behind a proxy.
///
/// This initializer is idempotent.
///
/// @param manager_ The manager to initialize the contract with.
function initializeManager(address manager_) external initializer {
manager = manager_;
emit ManagerChanged(manager_, address(0));
}
/// @dev Modifier that ensures a method can only be called by the contract
/// manager. Reverts if called by other addresses.
modifier onlyManager() {
require(manager == msg.sender, "GPv2: caller not manager");
_;
}
/// @dev Modifier that ensures method can be either called by the contract
/// manager or the proxy owner.
///
/// This modifier assumes that the proxy uses an EIP-1967 compliant storage
/// slot for the admin.
modifier onlyManagerOrOwner() {
require(
manager == msg.sender || GPv2EIP1967.getAdmin() == msg.sender,
"GPv2: not authorized"
);
_;
}
/// @dev Set the manager for this contract.
///
/// This method can be called by the current manager (if they want to to
/// reliquish the role and give it to another address) or the contract
/// owner (i.e. the proxy admin).
///
/// @param manager_ The new contract manager address.
function setManager(address manager_) external onlyManagerOrOwner {
address oldManager = manager;
manager = manager_;
emit ManagerChanged(manager_, oldManager);
}
/// @dev Add an address to the set of allowed solvers. This method can only
/// be called by the contract manager.
///
/// This function is idempotent.
///
/// @param solver The solver address to add.
function addSolver(address solver) external onlyManager {
solvers[solver] = true;
emit SolverAdded(solver);
}
/// @dev Removes an address to the set of allowed solvers. This method can
/// only be called by the contract manager.
///
/// This function is idempotent.
///
/// @param solver The solver address to remove.
function removeSolver(address solver) external onlyManager {
solvers[solver] = false;
emit SolverRemoved(solver);
}
/// @inheritdoc GPv2Authentication
function isSolver(address prospectiveSolver)
external
view
override
returns (bool)
{
return solvers[prospectiveSolver];
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
/// @title Gnosis Protocol v2 Authentication Interface
/// @author Gnosis Developers
interface GPv2Authentication {
/// @dev determines whether the provided address is an authenticated solver.
/// @param prospectiveSolver the address of prospective solver.
/// @return true when prospectiveSolver is an authenticated solver, otherwise false.
function isSolver(address prospectiveSolver) external view returns (bool);
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
library GPv2EIP1967 {
/// @dev The storage slot where the proxy administrator is stored, defined
/// as `keccak256('eip1967.proxy.admin') - 1`.
bytes32 internal constant ADMIN_SLOT =
hex"b53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103";
/// @dev Returns the address stored in the EIP-1967 administrator storage
/// slot for the current contract. If this method is not called from an
/// contract behind an EIP-1967 proxy, then it will most likely return
/// `address(0)`, as the implementation slot is likely to be unset.
///
/// @return admin The administrator address.
function getAdmin() internal view returns (address admin) {
// solhint-disable-next-line no-inline-assembly
assembly {
admin := sload(ADMIN_SLOT)
}
}
/// @dev Sets the storage at the EIP-1967 administrator slot to be the
/// specified address.
///
/// @param admin The administrator address to set.
function setAdmin(address admin) internal {
// solhint-disable-next-line no-inline-assembly
assembly {
sstore(ADMIN_SLOT, admin)
}
}
}
// SPDX-License-Identifier: MIT
// Vendored from OpenZeppelin contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Shortned revert messages
// - Inlined `Address.isContract` implementation
// <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/proxy/Initializable.sol>
pragma solidity ^0.7.6;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
*/
bool private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Modifier to protect an initializer function from being invoked twice.
*/
modifier initializer() {
require(
_initializing || _isConstructor() || !_initialized,
"Initializable: initialized"
);
bool isTopLevelCall = !_initializing;
if (isTopLevelCall) {
_initializing = true;
_initialized = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
}
}
/// @dev Returns true if and only if the function is running in the constructor
function _isConstructor() private view returns (bool) {
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly {
size := extcodesize(address())
}
return size == 0;
}
}
// SPDX-License-Identifier: LGPL-3.0-only
// Vendored from Gnosis utility contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Added linter directives to ignore low level call and assembly warnings
// <https://github.com/gnosis/util-contracts/blob/v3.1.0-solc-7/contracts/StorageAccessible.sol>
pragma solidity ^0.7.6;
/// @title ViewStorageAccessible - Interface on top of StorageAccessible base class to allow simulations from view functions
interface ViewStorageAccessible {
/**
* @dev Same as `simulateDelegatecall` on StorageAccessible. Marked as view so that it can be called from external contracts
* that want to run simulations from within view functions. Will revert if the invoked simulation attempts to change state.
*/
function simulateDelegatecall(
address targetContract,
bytes memory calldataPayload
) external view returns (bytes memory);
/**
* @dev Same as `getStorageAt` on StorageAccessible. This method allows reading aribtrary ranges of storage.
*/
function getStorageAt(uint256 offset, uint256 length)
external
view
returns (bytes memory);
}
/// @title StorageAccessible - generic base contract that allows callers to access all internal storage.
contract StorageAccessible {
/**
* @dev Reads `length` bytes of storage in the currents contract
* @param offset - the offset in the current contract's storage in words to start reading from
* @param length - the number of words (32 bytes) of data to read
* @return the bytes that were read.
*/
function getStorageAt(uint256 offset, uint256 length)
external
view
returns (bytes memory)
{
bytes memory result = new bytes(length * 32);
for (uint256 index = 0; index < length; index++) {
// solhint-disable-next-line no-inline-assembly
assembly {
let word := sload(add(offset, index))
mstore(add(add(result, 0x20), mul(index, 0x20)), word)
}
}
return result;
}
/**
* @dev Performs a delegetecall on a targetContract in the context of self.
* Internally reverts execution to avoid side effects (making it static). Catches revert and returns encoded result as bytes.
* @param targetContract Address of the contract containing the code to execute.
* @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
*/
function simulateDelegatecall(
address targetContract,
bytes memory calldataPayload
) public returns (bytes memory response) {
bytes memory innerCall =
abi.encodeWithSelector(
this.simulateDelegatecallInternal.selector,
targetContract,
calldataPayload
);
// solhint-disable-next-line avoid-low-level-calls
(, response) = address(this).call(innerCall);
bool innerSuccess = response[response.length - 1] == 0x01;
setLength(response, response.length - 1);
if (innerSuccess) {
return response;
} else {
revertWith(response);
}
}
/**
* @dev Performs a delegetecall on a targetContract in the context of self.
* Internally reverts execution to avoid side effects (making it static). Returns encoded result as revert message
* concatenated with the success flag of the inner call as a last byte.
* @param targetContract Address of the contract containing the code to execute.
* @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
*/
function simulateDelegatecallInternal(
address targetContract,
bytes memory calldataPayload
) external returns (bytes memory response) {
bool success;
// solhint-disable-next-line avoid-low-level-calls
(success, response) = targetContract.delegatecall(calldataPayload);
revertWith(abi.encodePacked(response, success));
}
function revertWith(bytes memory response) internal pure {
// solhint-disable-next-line no-inline-assembly
assembly {
revert(add(response, 0x20), mload(response))
}
}
function setLength(bytes memory buffer, uint256 length) internal pure {
// solhint-disable-next-line no-inline-assembly
assembly {
mstore(buffer, length)
}
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../GPv2AllowListAuthentication.sol";
contract GPv2AllowListAuthenticationV2 is GPv2AllowListAuthentication {
function newMethod() external pure returns (uint256) {
return 1337;
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../GPv2AllowListAuthentication.sol";
import "../libraries/GPv2EIP1967.sol";
contract GPv2AllowListAuthenticationTestInterface is
GPv2AllowListAuthentication
{
constructor(address owner) {
GPv2EIP1967.setAdmin(owner);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "./GPv2VaultRelayer.sol";
import "./interfaces/GPv2Authentication.sol";
import "./interfaces/IERC20.sol";
import "./interfaces/IVault.sol";
import "./libraries/GPv2Interaction.sol";
import "./libraries/GPv2Order.sol";
import "./libraries/GPv2Trade.sol";
import "./libraries/GPv2Transfer.sol";
import "./libraries/SafeCast.sol";
import "./libraries/SafeMath.sol";
import "./mixins/GPv2Signing.sol";
import "./mixins/ReentrancyGuard.sol";
import "./mixins/StorageAccessible.sol";
/// @title Gnosis Protocol v2 Settlement Contract
/// @author Gnosis Developers
contract GPv2Settlement is GPv2Signing, ReentrancyGuard, StorageAccessible {
using GPv2Order for bytes;
using GPv2Transfer for IVault;
using SafeCast for int256;
using SafeCast for uint256;
using SafeMath for uint256;
/// @dev The authenticator is used to determine who can call the settle function.
/// That is, only authorised solvers have the ability to invoke settlements.
/// Any valid authenticator implements an isSolver method called by the onlySolver
/// modifier below.
GPv2Authentication public immutable authenticator;
/// @dev The Balancer Vault the protocol uses for managing user funds.
IVault public immutable vault;
/// @dev The Balancer Vault relayer which can interact on behalf of users.
/// This contract is created during deployment
GPv2VaultRelayer public immutable vaultRelayer;
/// @dev Map each user order by UID to the amount that has been filled so
/// far. If this amount is larger than or equal to the amount traded in the
/// order (amount sold for sell orders, amount bought for buy orders) then
/// the order cannot be traded anymore. If the order is fill or kill, then
/// this value is only used to determine whether the order has already been
/// executed.
mapping(bytes => uint256) public filledAmount;
/// @dev Event emitted for each executed trade.
event Trade(
address indexed owner,
IERC20 sellToken,
IERC20 buyToken,
uint256 sellAmount,
uint256 buyAmount,
uint256 feeAmount,
bytes orderUid
);
/// @dev Event emitted for each executed interaction.
///
/// For gas effeciency, only the interaction calldata selector (first 4
/// bytes) is included in the event. For interactions without calldata or
/// whose calldata is shorter than 4 bytes, the selector will be `0`.
event Interaction(address indexed target, uint256 value, bytes4 selector);
/// @dev Event emitted when a settlement complets
event Settlement(address indexed solver);
/// @dev Event emitted when an order is invalidated.
event OrderInvalidated(address indexed owner, bytes orderUid);
constructor(GPv2Authentication authenticator_, IVault vault_) {
authenticator = authenticator_;
vault = vault_;
vaultRelayer = new GPv2VaultRelayer(vault_);
}
// solhint-disable-next-line no-empty-blocks
receive() external payable {
// NOTE: Include an empty receive function so that the settlement
// contract can receive Ether from contract interactions.
}
/// @dev This modifier is called by settle function to block any non-listed
/// senders from settling batches.
modifier onlySolver {
require(authenticator.isSolver(msg.sender), "GPv2: not a solver");
_;
}
/// @dev Modifier to ensure that an external function is only callable as a
/// settlement interaction.
modifier onlyInteraction {
require(address(this) == msg.sender, "GPv2: not an interaction");
_;
}
/// @dev Settle the specified orders at a clearing price. Note that it is
/// the responsibility of the caller to ensure that all GPv2 invariants are
/// upheld for the input settlement, otherwise this call will revert.
/// Namely:
/// - All orders are valid and signed
/// - Accounts have sufficient balance and approval.
/// - Settlement contract has sufficient balance to execute trades. Note
/// this implies that the accumulated fees held in the contract can also
/// be used for settlement. This is OK since:
/// - Solvers need to be authorized
/// - Misbehaving solvers will be slashed for abusing accumulated fees for
/// settlement
/// - Critically, user orders are entirely protected
///
/// @param tokens An array of ERC20 tokens to be traded in the settlement.
/// Trades encode tokens as indices into this array.
/// @param clearingPrices An array of clearing prices where the `i`-th price
/// is for the `i`-th token in the [`tokens`] array.
/// @param trades Trades for signed orders.
/// @param interactions Smart contract interactions split into three
/// separate lists to be run before the settlement, during the settlement
/// and after the settlement respectively.
function settle(
IERC20[] calldata tokens,
uint256[] calldata clearingPrices,
GPv2Trade.Data[] calldata trades,
GPv2Interaction.Data[][3] calldata interactions
) external nonReentrant onlySolver {
executeInteractions(interactions[0]);
(
GPv2Transfer.Data[] memory inTransfers,
GPv2Transfer.Data[] memory outTransfers
) = computeTradeExecutions(tokens, clearingPrices, trades);
vaultRelayer.transferFromAccounts(inTransfers);
executeInteractions(interactions[1]);
vault.transferToAccounts(outTransfers);
executeInteractions(interactions[2]);
emit Settlement(msg.sender);
}
/// @dev Settle an order directly against Balancer V2 pools.
///
/// @param swaps The Balancer V2 swap steps to use for trading.
/// @param tokens An array of ERC20 tokens to be traded in the settlement.
/// Swaps and the trade encode tokens as indices into this array.
/// @param trade The trade to match directly against Balancer liquidity. The
/// order will always be fully executed, so the trade's `executedAmount`
/// field is used to represent a swap limit amount.
function swap(
IVault.BatchSwapStep[] calldata swaps,
IERC20[] calldata tokens,
GPv2Trade.Data calldata trade
) external nonReentrant onlySolver {
RecoveredOrder memory recoveredOrder = allocateRecoveredOrder();
GPv2Order.Data memory order = recoveredOrder.data;
recoverOrderFromTrade(recoveredOrder, tokens, trade);
IVault.SwapKind kind =
order.kind == GPv2Order.KIND_SELL
? IVault.SwapKind.GIVEN_IN
: IVault.SwapKind.GIVEN_OUT;
IVault.FundManagement memory funds;
funds.sender = recoveredOrder.owner;
funds.fromInternalBalance =
order.sellTokenBalance == GPv2Order.BALANCE_INTERNAL;
funds.recipient = payable(recoveredOrder.receiver);
funds.toInternalBalance =
order.buyTokenBalance == GPv2Order.BALANCE_INTERNAL;
int256[] memory limits = new int256[](tokens.length);
uint256 limitAmount = trade.executedAmount;
// NOTE: Array allocation initializes elements to 0, so we only need to
// set the limits we care about. This ensures that the swap will respect
// the order's limit price.
if (order.kind == GPv2Order.KIND_SELL) {
require(limitAmount >= order.buyAmount, "GPv2: limit too low");
limits[trade.sellTokenIndex] = order.sellAmount.toInt256();
limits[trade.buyTokenIndex] = -limitAmount.toInt256();
} else {
require(limitAmount <= order.sellAmount, "GPv2: limit too high");
limits[trade.sellTokenIndex] = limitAmount.toInt256();
limits[trade.buyTokenIndex] = -order.buyAmount.toInt256();
}
GPv2Transfer.Data memory feeTransfer;
feeTransfer.account = recoveredOrder.owner;
feeTransfer.token = order.sellToken;
feeTransfer.amount = order.feeAmount;
feeTransfer.balance = order.sellTokenBalance;
int256[] memory tokenDeltas =
vaultRelayer.batchSwapWithFee(
kind,
swaps,
tokens,
funds,
limits,
// NOTE: Specify a deadline to ensure that an expire order
// cannot be used to trade.
order.validTo,
feeTransfer
);
bytes memory orderUid = recoveredOrder.uid;
uint256 executedSellAmount =
tokenDeltas[trade.sellTokenIndex].toUint256();
uint256 executedBuyAmount =
(-tokenDeltas[trade.buyTokenIndex]).toUint256();
// NOTE: Check that the orders were completely filled and update their
// filled amounts to avoid replaying them. The limit price and order
// validity have already been verified when executing the swap through
// the `limit` and `deadline` parameters.
require(filledAmount[orderUid] == 0, "GPv2: order filled");
if (order.kind == GPv2Order.KIND_SELL) {
require(
executedSellAmount == order.sellAmount,
"GPv2: sell amount not respected"
);
filledAmount[orderUid] = order.sellAmount;
} else {
require(
executedBuyAmount == order.buyAmount,
"GPv2: buy amount not respected"
);
filledAmount[orderUid] = order.buyAmount;
}
emit Trade(
recoveredOrder.owner,
order.sellToken,
order.buyToken,
executedSellAmount,
executedBuyAmount,
order.feeAmount,
orderUid
);
emit Settlement(msg.sender);
}
/// @dev Invalidate onchain an order that has been signed offline.
///
/// @param orderUid The unique identifier of the order that is to be made
/// invalid after calling this function. The user that created the order
/// must be the the sender of this message. See [`extractOrderUidParams`]
/// for details on orderUid.
function invalidateOrder(bytes calldata orderUid) external {
(, address owner, ) = orderUid.extractOrderUidParams();
require(owner == msg.sender, "GPv2: caller does not own order");
filledAmount[orderUid] = uint256(-1);
emit OrderInvalidated(owner, orderUid);
}
/// @dev Free storage from the filled amounts of **expired** orders to claim
/// a gas refund. This method can only be called as an interaction.
///
/// @param orderUids The unique identifiers of the expired order to free
/// storage for.
function freeFilledAmountStorage(bytes[] calldata orderUids)
external
onlyInteraction
{
freeOrderStorage(filledAmount, orderUids);
}
/// @dev Free storage from the pre signatures of **expired** orders to claim
/// a gas refund. This method can only be called as an interaction.
///
/// @param orderUids The unique identifiers of the expired order to free
/// storage for.
function freePreSignatureStorage(bytes[] calldata orderUids)
external
onlyInteraction
{
freeOrderStorage(preSignature, orderUids);
}
/// @dev Process all trades one at a time returning the computed net in and
/// out transfers for the trades.
///
/// This method reverts if processing of any single trade fails. See
/// [`computeTradeExecution`] for more details.
///
/// @param tokens An array of ERC20 tokens to be traded in the settlement.
/// @param clearingPrices An array of token clearing prices.
/// @param trades Trades for signed orders.
/// @return inTransfers Array of in transfers of executed sell amounts.
/// @return outTransfers Array of out transfers of executed buy amounts.
function computeTradeExecutions(
IERC20[] calldata tokens,
uint256[] calldata clearingPrices,
GPv2Trade.Data[] calldata trades
)
internal
returns (
GPv2Transfer.Data[] memory inTransfers,
GPv2Transfer.Data[] memory outTransfers
)
{
RecoveredOrder memory recoveredOrder = allocateRecoveredOrder();
inTransfers = new GPv2Transfer.Data[](trades.length);
outTransfers = new GPv2Transfer.Data[](trades.length);
for (uint256 i = 0; i < trades.length; i++) {
GPv2Trade.Data calldata trade = trades[i];
recoverOrderFromTrade(recoveredOrder, tokens, trade);
computeTradeExecution(
recoveredOrder,
clearingPrices[trade.sellTokenIndex],
clearingPrices[trade.buyTokenIndex],
trade.executedAmount,
inTransfers[i],
outTransfers[i]
);
}
}
/// @dev Compute the in and out transfer amounts for a single trade.
/// This function reverts if:
/// - The order has expired
/// - The order's limit price is not respected
/// - The order gets over-filled
/// - The fee discount is larger than the executed fee
///
/// @param recoveredOrder The recovered order to process.
/// @param sellPrice The price of the order's sell token.
/// @param buyPrice The price of the order's buy token.
/// @param executedAmount The portion of the order to execute. This will be
/// ignored for fill-or-kill orders.
/// @param inTransfer Memory location for computed executed sell amount
/// transfer.
/// @param outTransfer Memory location for computed executed buy amount
/// transfer.
function computeTradeExecution(
RecoveredOrder memory recoveredOrder,
uint256 sellPrice,
uint256 buyPrice,
uint256 executedAmount,
GPv2Transfer.Data memory inTransfer,
GPv2Transfer.Data memory outTransfer
) internal {
GPv2Order.Data memory order = recoveredOrder.data;
bytes memory orderUid = recoveredOrder.uid;
// solhint-disable-next-line not-rely-on-time
require(order.validTo >= block.timestamp, "GPv2: order expired");
// NOTE: The following computation is derived from the equation:
// ```
// amount_x * price_x = amount_y * price_y
// ```
// Intuitively, if a chocolate bar is 0,50€ and a beer is 4€, 1 beer
// is roughly worth 8 chocolate bars (`1 * 4 = 8 * 0.5`). From this
// equation, we can derive:
// - The limit price for selling `x` and buying `y` is respected iff
// ```
// limit_x * price_x >= limit_y * price_y
// ```
// - The executed amount of token `y` given some amount of `x` and
// clearing prices is:
// ```
// amount_y = amount_x * price_x / price_y
// ```
require(
order.sellAmount.mul(sellPrice) >= order.buyAmount.mul(buyPrice),
"GPv2: limit price not respected"
);
uint256 executedSellAmount;
uint256 executedBuyAmount;
uint256 executedFeeAmount;
uint256 currentFilledAmount;
if (order.kind == GPv2Order.KIND_SELL) {
if (order.partiallyFillable) {
executedSellAmount = executedAmount;
executedFeeAmount = order.feeAmount.mul(executedSellAmount).div(
order.sellAmount
);
} else {
executedSellAmount = order.sellAmount;
executedFeeAmount = order.feeAmount;
}
executedBuyAmount = executedSellAmount.mul(sellPrice).ceilDiv(
buyPrice
);
currentFilledAmount = filledAmount[orderUid].add(
executedSellAmount
);
require(
currentFilledAmount <= order.sellAmount,
"GPv2: order filled"
);
} else {
if (order.partiallyFillable) {
executedBuyAmount = executedAmount;
executedFeeAmount = order.feeAmount.mul(executedBuyAmount).div(
order.buyAmount
);
} else {
executedBuyAmount = order.buyAmount;
executedFeeAmount = order.feeAmount;
}
executedSellAmount = executedBuyAmount.mul(buyPrice).div(sellPrice);
currentFilledAmount = filledAmount[orderUid].add(executedBuyAmount);
require(
currentFilledAmount <= order.buyAmount,
"GPv2: order filled"
);
}
executedSellAmount = executedSellAmount.add(executedFeeAmount);
filledAmount[orderUid] = currentFilledAmount;
emit Trade(
recoveredOrder.owner,
order.sellToken,
order.buyToken,
executedSellAmount,
executedBuyAmount,
executedFeeAmount,
orderUid
);
inTransfer.account = recoveredOrder.owner;
inTransfer.token = order.sellToken;
inTransfer.amount = executedSellAmount;
inTransfer.balance = order.sellTokenBalance;
outTransfer.account = recoveredOrder.receiver;
outTransfer.token = order.buyToken;
outTransfer.amount = executedBuyAmount;
outTransfer.balance = order.buyTokenBalance;
}
/// @dev Execute a list of arbitrary contract calls from this contract.
/// @param interactions The list of interactions to execute.
function executeInteractions(GPv2Interaction.Data[] calldata interactions)
internal
{
for (uint256 i; i < interactions.length; i++) {
GPv2Interaction.Data calldata interaction = interactions[i];
// To prevent possible attack on user funds, we explicitly disable
// any interactions with the vault relayer contract.
require(
interaction.target != address(vaultRelayer),
"GPv2: forbidden interaction"
);
GPv2Interaction.execute(interaction);
emit Interaction(
interaction.target,
interaction.value,
GPv2Interaction.selector(interaction)
);
}
}
/// @dev Claims refund for the specified storage and order UIDs.
///
/// This method reverts if any of the orders are still valid.
///
/// @param orderUids Order refund data for freeing storage.
/// @param orderStorage Order storage mapped on a UID.
function freeOrderStorage(
mapping(bytes => uint256) storage orderStorage,
bytes[] calldata orderUids
) internal {
for (uint256 i = 0; i < orderUids.length; i++) {
bytes calldata orderUid = orderUids[i];
(, , uint32 validTo) = orderUid.extractOrderUidParams();
// solhint-disable-next-line not-rely-on-time
require(validTo < block.timestamp, "GPv2: order still valid");
orderStorage[orderUid] = 0;
}
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "./interfaces/IERC20.sol";
import "./interfaces/IVault.sol";
import "./libraries/GPv2Transfer.sol";
/// @title Gnosis Protocol v2 Vault Relayer Contract
/// @author Gnosis Developers
contract GPv2VaultRelayer {
using GPv2Transfer for IVault;
/// @dev The creator of the contract which has special permissions. This
/// value is set at creation time and cannot change.
address private immutable creator;
/// @dev The vault this relayer is for.
IVault private immutable vault;
constructor(IVault vault_) {
creator = msg.sender;
vault = vault_;
}
/// @dev Modifier that ensures that a function can only be called by the
/// creator of this contract.
modifier onlyCreator {
require(msg.sender == creator, "GPv2: not creator");
_;
}
/// @dev Transfers all sell amounts for the executed trades from their
/// owners to the caller.
///
/// This function reverts if:
/// - The caller is not the creator of the vault relayer
/// - Any ERC20 transfer fails
///
/// @param transfers The transfers to execute.
function transferFromAccounts(GPv2Transfer.Data[] calldata transfers)
external
onlyCreator
{
vault.transferFromAccounts(transfers, msg.sender);
}
/// @dev Performs a Balancer batched swap on behalf of a user and sends a
/// fee to the caller.
///
/// This function reverts if:
/// - The caller is not the creator of the vault relayer
/// - The swap fails
/// - The fee transfer fails
///
/// @param kind The Balancer swap kind, this can either be `GIVEN_IN` for
/// sell orders or `GIVEN_OUT` for buy orders.
/// @param swaps The swaps to perform.
/// @param tokens The tokens for the swaps. Swaps encode to and from tokens
/// as indices into this array.
/// @param funds The fund management settings, specifying the user the swap
/// is being performed for as well as the recipient of the proceeds.
/// @param limits Swap limits for encoding limit prices.
/// @param deadline The deadline for the swap.
/// @param feeTransfer The transfer data for the caller fee.
/// @return tokenDeltas The executed swap amounts.
function batchSwapWithFee(
IVault.SwapKind kind,
IVault.BatchSwapStep[] calldata swaps,
IERC20[] memory tokens,
IVault.FundManagement memory funds,
int256[] memory limits,
uint256 deadline,
GPv2Transfer.Data calldata feeTransfer
) external onlyCreator returns (int256[] memory tokenDeltas) {
tokenDeltas = vault.batchSwap(
kind,
swaps,
tokens,
funds,
limits,
deadline
);
vault.fastTransferFromAccount(feeTransfer, msg.sender);
}
}
// SPDX-License-Identifier: MIT
// Vendored from OpenZeppelin contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Added `name`, `symbol` and `decimals` function declarations
// <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/token/ERC20/IERC20.sol>
pragma solidity ^0.7.6;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the number of decimals the token uses.
*/
function decimals() external view returns (uint8);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount)
external
returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender)
external
view
returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.6;
pragma abicoder v2;
import "./IERC20.sol";
/**
* @dev Minimal interface for the Vault core contract only containing methods
* used by Gnosis Protocol V2. Original source:
* <https://github.com/balancer-labs/balancer-core-v2/blob/v1.0.0/contracts/vault/interfaces/IVault.sol>
*/
interface IVault {
// Internal Balance
//
// Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
// transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
// when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
// gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
//
// Internal Balance management features batching, which means a single contract call can be used to perform multiple
// operations of different kinds, with different senders and recipients, at once.
/**
* @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
* and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
* it lets integrators reuse a user's Vault allowance.
*
* For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
*/
function manageUserBalance(UserBalanceOp[] memory ops) external payable;
/**
* @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
without manual WETH wrapping or unwrapping.
*/
struct UserBalanceOp {
UserBalanceOpKind kind;
IERC20 asset;
uint256 amount;
address sender;
address payable recipient;
}
// There are four possible operations in `manageUserBalance`:
//
// - DEPOSIT_INTERNAL
// Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
// `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
//
// ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
// and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
// relevant for relayers).
//
// Emits an `InternalBalanceChanged` event.
//
//
// - WITHDRAW_INTERNAL
// Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
//
// ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
// it to the recipient as ETH.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_INTERNAL
// Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_EXTERNAL
// Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
// relayers, as it lets them reuse a user's Vault allowance.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `ExternalBalanceTransfer` event.
enum UserBalanceOpKind {
DEPOSIT_INTERNAL,
WITHDRAW_INTERNAL,
TRANSFER_INTERNAL,
TRANSFER_EXTERNAL
}
// Swaps
//
// Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
// they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
// aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
//
// The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
// In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
// and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
// More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
// individual swaps.
//
// There are two swap kinds:
// - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
// `onSwap` hook) the amount of tokens out (to send to the recipient).
// - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
// (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
//
// Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
// the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
// tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
// swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
// the final intended token.
//
// In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
// Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
// certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
// much less gas than they would otherwise.
//
// It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
// Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
// updating the Pool's internal accounting).
//
// To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
// involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
// minimum amount of tokens to receive (by passing a negative value) is specified.
//
// Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
// this point in time (e.g. if the transaction failed to be included in a block promptly).
//
// If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
// the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
// passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
// same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
//
// Finally, Internal Balance can be used when either sending or receiving tokens.
enum SwapKind {GIVEN_IN, GIVEN_OUT}
/**
* @dev Performs a swap with a single Pool.
*
* If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
* taken from the Pool, which must be greater than or equal to `limit`.
*
* If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
* sent to the Pool, which must be less than or equal to `limit`.
*
* Internal Balance usage and the recipient are determined by the `funds` struct.
*
* Emits a `Swap` event.
*/
function swap(
SingleSwap memory singleSwap,
FundManagement memory funds,
uint256 limit,
uint256 deadline
) external payable returns (uint256);
/**
* @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
* the `kind` value.
*
* `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
* Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct SingleSwap {
bytes32 poolId;
SwapKind kind;
IERC20 assetIn;
IERC20 assetOut;
uint256 amount;
bytes userData;
}
/**
* @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
* the amount of tokens sent to or received from the Pool, depending on the `kind` value.
*
* Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
* Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
* the same index in the `assets` array.
*
* Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
* Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
* `amountOut` depending on the swap kind.
*
* Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
* of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
* the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
*
* The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
* or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
* out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
* or unwrapped from WETH by the Vault.
*
* Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
* the minimum or maximum amount of each token the vault is allowed to transfer.
*
* `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
* equivalent `swap` call.
*
* Emits `Swap` events.
*/
function batchSwap(
SwapKind kind,
BatchSwapStep[] memory swaps,
IERC20[] memory assets,
FundManagement memory funds,
int256[] memory limits,
uint256 deadline
) external payable returns (int256[] memory);
/**
* @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
* `assets` array passed to that function, and ETH assets are converted to WETH.
*
* If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
* from the previous swap, depending on the swap kind.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct BatchSwapStep {
bytes32 poolId;
uint256 assetInIndex;
uint256 assetOutIndex;
uint256 amount;
bytes userData;
}
/**
* @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
* `recipient` account.
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
* transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
* must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
* `joinPool`.
*
* If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
* transferred. This matches the behavior of `exitPool`.
*
* Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
* revert.
*/
struct FundManagement {
address sender;
bool fromInternalBalance;
address payable recipient;
bool toInternalBalance;
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
/// @title Gnosis Protocol v2 Interaction Library
/// @author Gnosis Developers
library GPv2Interaction {
/// @dev Interaction data for performing arbitrary contract interactions.
/// Submitted to [`GPv2Settlement.settle`] for code execution.
struct Data {
address target;
uint256 value;
bytes callData;
}
/// @dev Execute an arbitrary contract interaction.
///
/// @param interaction Interaction data.
function execute(Data calldata interaction) internal {
address target = interaction.target;
uint256 value = interaction.value;
bytes calldata callData = interaction.callData;
// NOTE: Use assembly to call the interaction instead of a low level
// call for two reasons:
// - We don't want to copy the return data, since we discard it for
// interactions.
// - Solidity will under certain conditions generate code to copy input
// calldata twice to memory (the second being a "memcopy loop").
// <https://github.com/gnosis/gp-v2-contracts/pull/417#issuecomment-775091258>
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
calldatacopy(freeMemoryPointer, callData.offset, callData.length)
if iszero(
call(
gas(),
target,
value,
freeMemoryPointer,
callData.length,
0,
0
)
) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
}
/// @dev Extracts the Solidity ABI selector for the specified interaction.
///
/// @param interaction Interaction data.
/// @return result The 4 byte function selector of the call encoded in
/// this interaction.
function selector(Data calldata interaction)
internal
pure
returns (bytes4 result)
{
bytes calldata callData = interaction.callData;
if (callData.length >= 4) {
// NOTE: Read the first word of the interaction's calldata. The
// value does not need to be shifted since `bytesN` values are left
// aligned, and the value does not need to be masked since masking
// occurs when the value is accessed and not stored:
// <https://docs.soliditylang.org/en/v0.7.6/abi-spec.html#encoding-of-indexed-event-parameters>
// <https://docs.soliditylang.org/en/v0.7.6/assembly.html#access-to-external-variables-functions-and-libraries>
// solhint-disable-next-line no-inline-assembly
assembly {
result := calldataload(callData.offset)
}
}
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../interfaces/IERC20.sol";
/// @title Gnosis Protocol v2 Order Library
/// @author Gnosis Developers
library GPv2Order {
/// @dev The complete data for a Gnosis Protocol order. This struct contains
/// all order parameters that are signed for submitting to GP.
struct Data {
IERC20 sellToken;
IERC20 buyToken;
address receiver;
uint256 sellAmount;
uint256 buyAmount;
uint32 validTo;
bytes32 appData;
uint256 feeAmount;
bytes32 kind;
bool partiallyFillable;
bytes32 sellTokenBalance;
bytes32 buyTokenBalance;
}
/// @dev The order EIP-712 type hash for the [`GPv2Order.Data`] struct.
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256(
/// "Order(" +
/// "address sellToken," +
/// "address buyToken," +
/// "address receiver," +
/// "uint256 sellAmount," +
/// "uint256 buyAmount," +
/// "uint32 validTo," +
/// "bytes32 appData," +
/// "uint256 feeAmount," +
/// "string kind," +
/// "bool partiallyFillable" +
/// "string sellTokenBalance" +
/// "string buyTokenBalance" +
/// ")"
/// )
/// ```
bytes32 internal constant TYPE_HASH =
hex"d5a25ba2e97094ad7d83dc28a6572da797d6b3e7fc6663bd93efb789fc17e489";
/// @dev The marker value for a sell order for computing the order struct
/// hash. This allows the EIP-712 compatible wallets to display a
/// descriptive string for the order kind (instead of 0 or 1).
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256("sell")
/// ```
bytes32 internal constant KIND_SELL =
hex"f3b277728b3fee749481eb3e0b3b48980dbbab78658fc419025cb16eee346775";
/// @dev The OrderKind marker value for a buy order for computing the order
/// struct hash.
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256("buy")
/// ```
bytes32 internal constant KIND_BUY =
hex"6ed88e868af0a1983e3886d5f3e95a2fafbd6c3450bc229e27342283dc429ccc";
/// @dev The TokenBalance marker value for using direct ERC20 balances for
/// computing the order struct hash.
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256("erc20")
/// ```
bytes32 internal constant BALANCE_ERC20 =
hex"5a28e9363bb942b639270062aa6bb295f434bcdfc42c97267bf003f272060dc9";
/// @dev The TokenBalance marker value for using Balancer Vault external
/// balances (in order to re-use Vault ERC20 approvals) for computing the
/// order struct hash.
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256("external")
/// ```
bytes32 internal constant BALANCE_EXTERNAL =
hex"abee3b73373acd583a130924aad6dc38cfdc44ba0555ba94ce2ff63980ea0632";
/// @dev The TokenBalance marker value for using Balancer Vault internal
/// balances for computing the order struct hash.
///
/// This value is pre-computed from the following expression:
/// ```
/// keccak256("internal")
/// ```
bytes32 internal constant BALANCE_INTERNAL =
hex"4ac99ace14ee0a5ef932dc609df0943ab7ac16b7583634612f8dc35a4289a6ce";
/// @dev Marker address used to indicate that the receiver of the trade
/// proceeds should the owner of the order.
///
/// This is chosen to be `address(0)` for gas efficiency as it is expected
/// to be the most common case.
address internal constant RECEIVER_SAME_AS_OWNER = address(0);
/// @dev The byte length of an order unique identifier.
uint256 internal constant UID_LENGTH = 56;
/// @dev Returns the actual receiver for an order. This function checks
/// whether or not the [`receiver`] field uses the marker value to indicate
/// it is the same as the order owner.
///
/// @return receiver The actual receiver of trade proceeds.
function actualReceiver(Data memory order, address owner)
internal
pure
returns (address receiver)
{
if (order.receiver == RECEIVER_SAME_AS_OWNER) {
receiver = owner;
} else {
receiver = order.receiver;
}
}
/// @dev Return the EIP-712 signing hash for the specified order.
///
/// @param order The order to compute the EIP-712 signing hash for.
/// @param domainSeparator The EIP-712 domain separator to use.
/// @return orderDigest The 32 byte EIP-712 struct hash.
function hash(Data memory order, bytes32 domainSeparator)
internal
pure
returns (bytes32 orderDigest)
{
bytes32 structHash;
// NOTE: Compute the EIP-712 order struct hash in place. As suggested
// in the EIP proposal, noting that the order struct has 10 fields, and
// including the type hash `(12 + 1) * 32 = 416` bytes to hash.
// <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#rationale-for-encodedata>
// solhint-disable-next-line no-inline-assembly
assembly {
let dataStart := sub(order, 32)
let temp := mload(dataStart)
mstore(dataStart, TYPE_HASH)
structHash := keccak256(dataStart, 416)
mstore(dataStart, temp)
}
// NOTE: Now that we have the struct hash, compute the EIP-712 signing
// hash using scratch memory past the free memory pointer. The signing
// hash is computed from `"\\x19\\x01" || domainSeparator || structHash`.
// <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory>
// <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#specification>
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
mstore(freeMemoryPointer, "\\x19\\x01")
mstore(add(freeMemoryPointer, 2), domainSeparator)
mstore(add(freeMemoryPointer, 34), structHash)
orderDigest := keccak256(freeMemoryPointer, 66)
}
}
/// @dev Packs order UID parameters into the specified memory location. The
/// result is equivalent to `abi.encodePacked(...)` with the difference that
/// it allows re-using the memory for packing the order UID.
///
/// This function reverts if the order UID buffer is not the correct size.
///
/// @param orderUid The buffer pack the order UID parameters into.
/// @param orderDigest The EIP-712 struct digest derived from the order
/// parameters.
/// @param owner The address of the user who owns this order.
/// @param validTo The epoch time at which the order will stop being valid.
function packOrderUidParams(
bytes memory orderUid,
bytes32 orderDigest,
address owner,
uint32 validTo
) internal pure {
require(orderUid.length == UID_LENGTH, "GPv2: uid buffer overflow");
// NOTE: Write the order UID to the allocated memory buffer. The order
// parameters are written to memory in **reverse order** as memory
// operations write 32-bytes at a time and we want to use a packed
// encoding. This means, for example, that after writing the value of
// `owner` to bytes `20:52`, writing the `orderDigest` to bytes `0:32`
// will **overwrite** bytes `20:32`. This is desirable as addresses are
// only 20 bytes and `20:32` should be `0`s:
//
// | 1111111111222222222233333333334444444444555555
// byte | 01234567890123456789012345678901234567890123456789012345
// -------+---------------------------------------------------------
// field | [.........orderDigest..........][......owner.......][vT]
// -------+---------------------------------------------------------
// mstore | [000000000000000000000000000.vT]
// | [00000000000.......owner.......]
// | [.........orderDigest..........]
//
// Additionally, since Solidity `bytes memory` are length prefixed,
// 32 needs to be added to all the offsets.
//
// solhint-disable-next-line no-inline-assembly
assembly {
mstore(add(orderUid, 56), validTo)
mstore(add(orderUid, 52), owner)
mstore(add(orderUid, 32), orderDigest)
}
}
/// @dev Extracts specific order information from the standardized unique
/// order id of the protocol.
///
/// @param orderUid The unique identifier used to represent an order in
/// the protocol. This uid is the packed concatenation of the order digest,
/// the validTo order parameter and the address of the user who created the
/// order. It is used by the user to interface with the contract directly,
/// and not by calls that are triggered by the solvers.
/// @return orderDigest The EIP-712 signing digest derived from the order
/// parameters.
/// @return owner The address of the user who owns this order.
/// @return validTo The epoch time at which the order will stop being valid.
function extractOrderUidParams(bytes calldata orderUid)
internal
pure
returns (
bytes32 orderDigest,
address owner,
uint32 validTo
)
{
require(orderUid.length == UID_LENGTH, "GPv2: invalid uid");
// Use assembly to efficiently decode packed calldata.
// solhint-disable-next-line no-inline-assembly
assembly {
orderDigest := calldataload(orderUid.offset)
owner := shr(96, calldataload(add(orderUid.offset, 32)))
validTo := shr(224, calldataload(add(orderUid.offset, 52)))
}
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../interfaces/IERC20.sol";
import "../mixins/GPv2Signing.sol";
import "./GPv2Order.sol";
/// @title Gnosis Protocol v2 Trade Library.
/// @author Gnosis Developers
library GPv2Trade {
using GPv2Order for GPv2Order.Data;
using GPv2Order for bytes;
/// @dev A struct representing a trade to be executed as part a batch
/// settlement.
struct Data {
uint256 sellTokenIndex;
uint256 buyTokenIndex;
address receiver;
uint256 sellAmount;
uint256 buyAmount;
uint32 validTo;
bytes32 appData;
uint256 feeAmount;
uint256 flags;
uint256 executedAmount;
bytes signature;
}
/// @dev Extracts the order data and signing scheme for the specified trade.
///
/// @param trade The trade.
/// @param tokens The list of tokens included in the settlement. The token
/// indices in the trade parameters map to tokens in this array.
/// @param order The memory location to extract the order data to.
function extractOrder(
Data calldata trade,
IERC20[] calldata tokens,
GPv2Order.Data memory order
) internal pure returns (GPv2Signing.Scheme signingScheme) {
order.sellToken = tokens[trade.sellTokenIndex];
order.buyToken = tokens[trade.buyTokenIndex];
order.receiver = trade.receiver;
order.sellAmount = trade.sellAmount;
order.buyAmount = trade.buyAmount;
order.validTo = trade.validTo;
order.appData = trade.appData;
order.feeAmount = trade.feeAmount;
(
order.kind,
order.partiallyFillable,
order.sellTokenBalance,
order.buyTokenBalance,
signingScheme
) = extractFlags(trade.flags);
}
/// @dev Decodes trade flags.
///
/// Trade flags are used to tightly encode information on how to decode
/// an order. Examples that directly affect the structure of an order are
/// the kind of order (either a sell or a buy order) as well as whether the
/// order is partially fillable or if it is a "fill-or-kill" order. It also
/// encodes the signature scheme used to validate the order. As the most
/// likely values are fill-or-kill sell orders by an externally owned
/// account, the flags are chosen such that `0x00` represents this kind of
/// order. The flags byte uses the following format:
///
/// ```
/// bit | 31 ... | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
/// ----+----------+---+---+-------+---+---+
/// | reserved | * * | * | * * | * | * |
/// | | | | | | |
/// | | | | | | +---- order kind bit, 0 for a sell order
/// | | | | | | and 1 for a buy order
/// | | | | | |
/// | | | | | +-------- order fill bit, 0 for fill-or-kill
/// | | | | | and 1 for a partially fillable order
/// | | | | |
/// | | | +---+------------ use internal sell token balance bit:
/// | | | 0x: ERC20 token balance
/// | | | 10: external Balancer Vault balance
/// | | | 11: internal Balancer Vault balance
/// | | |
/// | | +-------------------- use buy token balance bit
/// | | 0: ERC20 token balance
/// | | 1: internal Balancer Vault balance
/// | |
/// +---+------------------------ signature scheme bits:
/// 00: EIP-712
/// 01: eth_sign
/// 10: EIP-1271
/// 11: pre_sign
/// ```
function extractFlags(uint256 flags)
internal
pure
returns (
bytes32 kind,
bool partiallyFillable,
bytes32 sellTokenBalance,
bytes32 buyTokenBalance,
GPv2Signing.Scheme signingScheme
)
{
if (flags & 0x01 == 0) {
kind = GPv2Order.KIND_SELL;
} else {
kind = GPv2Order.KIND_BUY;
}
partiallyFillable = flags & 0x02 != 0;
if (flags & 0x08 == 0) {
sellTokenBalance = GPv2Order.BALANCE_ERC20;
} else if (flags & 0x04 == 0) {
sellTokenBalance = GPv2Order.BALANCE_EXTERNAL;
} else {
sellTokenBalance = GPv2Order.BALANCE_INTERNAL;
}
if (flags & 0x10 == 0) {
buyTokenBalance = GPv2Order.BALANCE_ERC20;
} else {
buyTokenBalance = GPv2Order.BALANCE_INTERNAL;
}
// NOTE: Take advantage of the fact that Solidity will revert if the
// following expression does not produce a valid enum value. This means
// we check here that the leading reserved bits must be 0.
signingScheme = GPv2Signing.Scheme(flags >> 5);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "../interfaces/IERC20.sol";
import "../interfaces/IVault.sol";
import "./GPv2Order.sol";
import "./GPv2SafeERC20.sol";
/// @title Gnosis Protocol v2 Transfers
/// @author Gnosis Developers
library GPv2Transfer {
using GPv2SafeERC20 for IERC20;
/// @dev Transfer data.
struct Data {
address account;
IERC20 token;
uint256 amount;
bytes32 balance;
}
/// @dev Ether marker address used to indicate an Ether transfer.
address internal constant BUY_ETH_ADDRESS =
0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
/// @dev Execute the specified transfer from the specified account to a
/// recipient. The recipient will either receive internal Vault balances or
/// ERC20 token balances depending on whether the account is using internal
/// balances or not.
///
/// This method is used for transferring fees to the settlement contract
/// when settling a single order directly with Balancer.
///
/// Note that this method is subtly different from `transferFromAccounts`
/// with a single transfer with respect to how it deals with internal
/// balances. Specifically, this method will perform an **internal balance
/// transfer to the settlement contract instead of a withdrawal to the
/// external balance of the settlement contract** for trades that specify
/// trading with internal balances. This is done as a gas optimization in
/// the single order "fast-path".
///
/// @param vault The Balancer vault to use.
/// @param transfer The transfer to perform specifying the sender account.
/// @param recipient The recipient for the transfer.
function fastTransferFromAccount(
IVault vault,
Data calldata transfer,
address recipient
) internal {
require(
address(transfer.token) != BUY_ETH_ADDRESS,
"GPv2: cannot transfer native ETH"
);
if (transfer.balance == GPv2Order.BALANCE_ERC20) {
transfer.token.safeTransferFrom(
transfer.account,
recipient,
transfer.amount
);
} else {
IVault.UserBalanceOp[] memory balanceOps =
new IVault.UserBalanceOp[](1);
IVault.UserBalanceOp memory balanceOp = balanceOps[0];
balanceOp.kind = transfer.balance == GPv2Order.BALANCE_EXTERNAL
? IVault.UserBalanceOpKind.TRANSFER_EXTERNAL
: IVault.UserBalanceOpKind.TRANSFER_INTERNAL;
balanceOp.asset = transfer.token;
balanceOp.amount = transfer.amount;
balanceOp.sender = transfer.account;
balanceOp.recipient = payable(recipient);
vault.manageUserBalance(balanceOps);
}
}
/// @dev Execute the specified transfers from the specified accounts to a
/// single recipient. The recipient will receive all transfers as ERC20
/// token balances, regardless of whether or not the accounts are using
/// internal Vault balances.
///
/// This method is used for accumulating user balances into the settlement
/// contract.
///
/// @param vault The Balancer vault to use.
/// @param transfers The batched transfers to perform specifying the
/// sender accounts.
/// @param recipient The single recipient for all the transfers.
function transferFromAccounts(
IVault vault,
Data[] calldata transfers,
address recipient
) internal {
// NOTE: Allocate buffer of Vault balance operations large enough to
// hold all GP transfers. This is done to avoid re-allocations (which
// are gas inefficient) while still allowing all transfers to be batched
// into a single Vault call.
IVault.UserBalanceOp[] memory balanceOps =
new IVault.UserBalanceOp[](transfers.length);
uint256 balanceOpCount = 0;
for (uint256 i = 0; i < transfers.length; i++) {
Data calldata transfer = transfers[i];
require(
address(transfer.token) != BUY_ETH_ADDRESS,
"GPv2: cannot transfer native ETH"
);
if (transfer.balance == GPv2Order.BALANCE_ERC20) {
transfer.token.safeTransferFrom(
transfer.account,
recipient,
transfer.amount
);
} else {
IVault.UserBalanceOp memory balanceOp =
balanceOps[balanceOpCount++];
balanceOp.kind = transfer.balance == GPv2Order.BALANCE_EXTERNAL
? IVault.UserBalanceOpKind.TRANSFER_EXTERNAL
: IVault.UserBalanceOpKind.WITHDRAW_INTERNAL;
balanceOp.asset = transfer.token;
balanceOp.amount = transfer.amount;
balanceOp.sender = transfer.account;
balanceOp.recipient = payable(recipient);
}
}
if (balanceOpCount > 0) {
truncateBalanceOpsArray(balanceOps, balanceOpCount);
vault.manageUserBalance(balanceOps);
}
}
/// @dev Execute the specified transfers to their respective accounts.
///
/// This method is used for paying out trade proceeds from the settlement
/// contract.
///
/// @param vault The Balancer vault to use.
/// @param transfers The batched transfers to perform.
function transferToAccounts(IVault vault, Data[] memory transfers)
internal
{
IVault.UserBalanceOp[] memory balanceOps =
new IVault.UserBalanceOp[](transfers.length);
uint256 balanceOpCount = 0;
for (uint256 i = 0; i < transfers.length; i++) {
Data memory transfer = transfers[i];
if (address(transfer.token) == BUY_ETH_ADDRESS) {
require(
transfer.balance != GPv2Order.BALANCE_INTERNAL,
"GPv2: unsupported internal ETH"
);
payable(transfer.account).transfer(transfer.amount);
} else if (transfer.balance == GPv2Order.BALANCE_ERC20) {
transfer.token.safeTransfer(transfer.account, transfer.amount);
} else {
IVault.UserBalanceOp memory balanceOp =
balanceOps[balanceOpCount++];
balanceOp.kind = IVault.UserBalanceOpKind.DEPOSIT_INTERNAL;
balanceOp.asset = transfer.token;
balanceOp.amount = transfer.amount;
balanceOp.sender = address(this);
balanceOp.recipient = payable(transfer.account);
}
}
if (balanceOpCount > 0) {
truncateBalanceOpsArray(balanceOps, balanceOpCount);
vault.manageUserBalance(balanceOps);
}
}
/// @dev Truncate a Vault balance operation array to its actual size.
///
/// This method **does not** check whether or not the new length is valid,
/// and specifying a size that is larger than the array's actual length is
/// undefined behaviour.
///
/// @param balanceOps The memory array of balance operations to truncate.
/// @param newLength The new length to set.
function truncateBalanceOpsArray(
IVault.UserBalanceOp[] memory balanceOps,
uint256 newLength
) private pure {
// NOTE: Truncate the vault transfers array to the specified length.
// This is done by setting the array's length which occupies the first
// word in memory pointed to by the `balanceOps` memory variable.
// <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html>
// solhint-disable-next-line no-inline-assembly
assembly {
mstore(balanceOps, newLength)
}
}
}
// SPDX-License-Identifier: MIT
// Vendored from OpenZeppelin contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Shortened revert messages
// - Removed unused methods
// - Convert to `type(*).*` notation
// <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/utils/SafeCast.sol>
pragma solidity ^0.7.6;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: not positive");
return uint256(value);
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
require(
value <= uint256(type(int256).max),
"SafeCast: int256 overflow"
);
return int256(value);
}
}
// SPDX-License-Identifier: MIT
// Vendored from OpenZeppelin contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// - Shortened some revert messages
// - Removed unused methods
// - Added `ceilDiv` method
// <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/math/SafeMath.sol>
pragma solidity ^0.7.6;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: mul overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by 0");
return a / b;
}
/**
* @dev Returns the ceiling integer division of two unsigned integers,
* reverting on division by zero. The result is rounded towards up the
* nearest integer, instead of truncating the fractional part.
*
* Requirements:
*
* - The divisor cannot be zero.
* - The sum of the dividend and divisor cannot overflow.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: ceiling division by 0");
return a / b + (a % b == 0 ? 0 : 1);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../interfaces/GPv2EIP1271.sol";
import "../libraries/GPv2Order.sol";
import "../libraries/GPv2Trade.sol";
/// @title Gnosis Protocol v2 Signing Library.
/// @author Gnosis Developers
abstract contract GPv2Signing {
using GPv2Order for GPv2Order.Data;
using GPv2Order for bytes;
/// @dev Recovered trade data containing the extracted order and the
/// recovered owner address.
struct RecoveredOrder {
GPv2Order.Data data;
bytes uid;
address owner;
address receiver;
}
/// @dev Signing scheme used for recovery.
enum Scheme {Eip712, EthSign, Eip1271, PreSign}
/// @dev The EIP-712 domain type hash used for computing the domain
/// separator.
bytes32 private constant DOMAIN_TYPE_HASH =
keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
);
/// @dev The EIP-712 domain name used for computing the domain separator.
bytes32 private constant DOMAIN_NAME = keccak256("Gnosis Protocol");
/// @dev The EIP-712 domain version used for computing the domain separator.
bytes32 private constant DOMAIN_VERSION = keccak256("v2");
/// @dev Marker value indicating an order is pre-signed.
uint256 private constant PRE_SIGNED =
uint256(keccak256("GPv2Signing.Scheme.PreSign"));
/// @dev The domain separator used for signing orders that gets mixed in
/// making signatures for different domains incompatible. This domain
/// separator is computed following the EIP-712 standard and has replay
/// protection mixed in so that signed orders are only valid for specific
/// GPv2 contracts.
bytes32 public immutable domainSeparator;
/// @dev Storage indicating whether or not an order has been signed by a
/// particular address.
mapping(bytes => uint256) public preSignature;
/// @dev Event that is emitted when an account either pre-signs an order or
/// revokes an existing pre-signature.
event PreSignature(address indexed owner, bytes orderUid, bool signed);
constructor() {
// NOTE: Currently, the only way to get the chain ID in solidity is
// using assembly.
uint256 chainId;
// solhint-disable-next-line no-inline-assembly
assembly {
chainId := chainid()
}
domainSeparator = keccak256(
abi.encode(
DOMAIN_TYPE_HASH,
DOMAIN_NAME,
DOMAIN_VERSION,
chainId,
address(this)
)
);
}
/// @dev Sets a presignature for the specified order UID.
///
/// @param orderUid The unique identifier of the order to pre-sign.
function setPreSignature(bytes calldata orderUid, bool signed) external {
(, address owner, ) = orderUid.extractOrderUidParams();
require(owner == msg.sender, "GPv2: cannot presign order");
if (signed) {
preSignature[orderUid] = PRE_SIGNED;
} else {
preSignature[orderUid] = 0;
}
emit PreSignature(owner, orderUid, signed);
}
/// @dev Returns an empty recovered order with a pre-allocated buffer for
/// packing the unique identifier.
///
/// @return recoveredOrder The empty recovered order data.
function allocateRecoveredOrder()
internal
pure
returns (RecoveredOrder memory recoveredOrder)
{
recoveredOrder.uid = new bytes(GPv2Order.UID_LENGTH);
}
/// @dev Extracts order data and recovers the signer from the specified
/// trade.
///
/// @param recoveredOrder Memory location used for writing the recovered order data.
/// @param tokens The list of tokens included in the settlement. The token
/// indices in the trade parameters map to tokens in this array.
/// @param trade The trade data to recover the order data from.
function recoverOrderFromTrade(
RecoveredOrder memory recoveredOrder,
IERC20[] calldata tokens,
GPv2Trade.Data calldata trade
) internal view {
GPv2Order.Data memory order = recoveredOrder.data;
Scheme signingScheme = GPv2Trade.extractOrder(trade, tokens, order);
(bytes32 orderDigest, address owner) =
recoverOrderSigner(order, signingScheme, trade.signature);
recoveredOrder.uid.packOrderUidParams(
orderDigest,
owner,
order.validTo
);
recoveredOrder.owner = owner;
recoveredOrder.receiver = order.actualReceiver(owner);
}
/// @dev The length of any signature from an externally owned account.
uint256 private constant ECDSA_SIGNATURE_LENGTH = 65;
/// @dev Recovers an order's signer from the specified order and signature.
///
/// @param order The order to recover a signature for.
/// @param signingScheme The signing scheme.
/// @param signature The signature bytes.
/// @return orderDigest The computed order hash.
/// @return owner The recovered address from the specified signature.
function recoverOrderSigner(
GPv2Order.Data memory order,
Scheme signingScheme,
bytes calldata signature
) internal view returns (bytes32 orderDigest, address owner) {
orderDigest = order.hash(domainSeparator);
if (signingScheme == Scheme.Eip712) {
owner = recoverEip712Signer(orderDigest, signature);
} else if (signingScheme == Scheme.EthSign) {
owner = recoverEthsignSigner(orderDigest, signature);
} else if (signingScheme == Scheme.Eip1271) {
owner = recoverEip1271Signer(orderDigest, signature);
} else {
// signingScheme == Scheme.PreSign
owner = recoverPreSigner(orderDigest, signature, order.validTo);
}
}
/// @dev Perform an ECDSA recover for the specified message and calldata
/// signature.
///
/// The signature is encoded by tighyly packing the following struct:
/// ```
/// struct EncodedSignature {
/// bytes32 r;
/// bytes32 s;
/// uint8 v;
/// }
/// ```
///
/// @param message The signed message.
/// @param encodedSignature The encoded signature.
function ecdsaRecover(bytes32 message, bytes calldata encodedSignature)
internal
pure
returns (address signer)
{
require(
encodedSignature.length == ECDSA_SIGNATURE_LENGTH,
"GPv2: malformed ecdsa signature"
);
bytes32 r;
bytes32 s;
uint8 v;
// NOTE: Use assembly to efficiently decode signature data.
// solhint-disable-next-line no-inline-assembly
assembly {
// r = uint256(encodedSignature[0:32])
r := calldataload(encodedSignature.offset)
// s = uint256(encodedSignature[32:64])
s := calldataload(add(encodedSignature.offset, 32))
// v = uint8(encodedSignature[64])
v := shr(248, calldataload(add(encodedSignature.offset, 64)))
}
signer = ecrecover(message, v, r, s);
require(signer != address(0), "GPv2: invalid ecdsa signature");
}
/// @dev Decodes signature bytes originating from an EIP-712-encoded
/// signature.
///
/// EIP-712 signs typed data. The specifications are described in the
/// related EIP (<https://eips.ethereum.org/EIPS/eip-712>).
///
/// EIP-712 signatures are encoded as standard ECDSA signatures as described
/// in the corresponding decoding function [`ecdsaRecover`].
///
/// @param orderDigest The EIP-712 signing digest derived from the order
/// parameters.
/// @param encodedSignature Calldata pointing to tightly packed signature
/// bytes.
/// @return owner The address of the signer.
function recoverEip712Signer(
bytes32 orderDigest,
bytes calldata encodedSignature
) internal pure returns (address owner) {
owner = ecdsaRecover(orderDigest, encodedSignature);
}
/// @dev Decodes signature bytes originating from the output of the eth_sign
/// RPC call.
///
/// The specifications are described in the Ethereum documentation
/// (<https://eth.wiki/json-rpc/API#eth_sign>).
///
/// eth_sign signatures are encoded as standard ECDSA signatures as
/// described in the corresponding decoding function
/// [`ecdsaRecover`].
///
/// @param orderDigest The EIP-712 signing digest derived from the order
/// parameters.
/// @param encodedSignature Calldata pointing to tightly packed signature
/// bytes.
/// @return owner The address of the signer.
function recoverEthsignSigner(
bytes32 orderDigest,
bytes calldata encodedSignature
) internal pure returns (address owner) {
// The signed message is encoded as:
// `"\\x19Ethereum Signed Message:\
" || length || data`, where
// the length is a constant (32 bytes) and the data is defined as:
// `orderDigest`.
bytes32 ethsignDigest =
keccak256(
abi.encodePacked(
"\\x19Ethereum Signed Message:\
32",
orderDigest
)
);
owner = ecdsaRecover(ethsignDigest, encodedSignature);
}
/// @dev Verifies the input calldata as an EIP-1271 contract signature and
/// returns the address of the signer.
///
/// The encoded signature tightly packs the following struct:
///
/// ```
/// struct EncodedEip1271Signature {
/// address owner;
/// bytes signature;
/// }
/// ```
///
/// This function enforces that the encoded data stores enough bytes to
/// cover the full length of the decoded signature.
///
/// @param encodedSignature The encoded EIP-1271 signature.
/// @param orderDigest The EIP-712 signing digest derived from the order
/// parameters.
/// @return owner The address of the signer.
function recoverEip1271Signer(
bytes32 orderDigest,
bytes calldata encodedSignature
) internal view returns (address owner) {
// NOTE: Use assembly to read the verifier address from the encoded
// signature bytes.
// solhint-disable-next-line no-inline-assembly
assembly {
// owner = address(encodedSignature[0:20])
owner := shr(96, calldataload(encodedSignature.offset))
}
// NOTE: Configure prettier to ignore the following line as it causes
// a panic in the Solidity plugin.
// prettier-ignore
bytes calldata signature = encodedSignature[20:];
require(
EIP1271Verifier(owner).isValidSignature(orderDigest, signature) ==
GPv2EIP1271.MAGICVALUE,
"GPv2: invalid eip1271 signature"
);
}
/// @dev Verifies the order has been pre-signed. The signature is the
/// address of the signer of the order.
///
/// @param orderDigest The EIP-712 signing digest derived from the order
/// parameters.
/// @param encodedSignature The pre-sign signature reprenting the order UID.
/// @param validTo The order expiry timestamp.
/// @return owner The address of the signer.
function recoverPreSigner(
bytes32 orderDigest,
bytes calldata encodedSignature,
uint32 validTo
) internal view returns (address owner) {
require(encodedSignature.length == 20, "GPv2: malformed presignature");
// NOTE: Use assembly to read the owner address from the encoded
// signature bytes.
// solhint-disable-next-line no-inline-assembly
assembly {
// owner = address(encodedSignature[0:20])
owner := shr(96, calldataload(encodedSignature.offset))
}
bytes memory orderUid = new bytes(GPv2Order.UID_LENGTH);
orderUid.packOrderUidParams(orderDigest, owner, validTo);
require(
preSignature[orderUid] == PRE_SIGNED,
"GPv2: order not presigned"
);
}
}
// SPDX-License-Identifier: MIT
// Vendored from OpenZeppelin contracts with minor modifications:
// - Modified Solidity version
// - Formatted code
// <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/utils/ReentrancyGuard.sol>
pragma solidity ^0.7.6;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../interfaces/IERC20.sol";
/// @title Gnosis Protocol v2 Safe ERC20 Transfer Library
/// @author Gnosis Developers
/// @dev Gas-efficient version of Openzeppelin's SafeERC20 contract that notably
/// does not revert when calling a non-contract.
library GPv2SafeERC20 {
/// @dev Wrapper around a call to the ERC20 function `transfer` that reverts
/// also when the token returns `false`.
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
bytes4 selector_ = token.transfer.selector;
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
mstore(freeMemoryPointer, selector_)
mstore(
add(freeMemoryPointer, 4),
and(to, 0xffffffffffffffffffffffffffffffffffffffff)
)
mstore(add(freeMemoryPointer, 36), value)
if iszero(call(gas(), token, 0, freeMemoryPointer, 68, 0, 0)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
require(getLastTansferResult(token), "GPv2: failed transfer");
}
/// @dev Wrapper around a call to the ERC20 function `transferFrom` that
/// reverts also when the token returns `false`.
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
bytes4 selector_ = token.transferFrom.selector;
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
mstore(freeMemoryPointer, selector_)
mstore(
add(freeMemoryPointer, 4),
and(from, 0xffffffffffffffffffffffffffffffffffffffff)
)
mstore(
add(freeMemoryPointer, 36),
and(to, 0xffffffffffffffffffffffffffffffffffffffff)
)
mstore(add(freeMemoryPointer, 68), value)
if iszero(call(gas(), token, 0, freeMemoryPointer, 100, 0, 0)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
require(getLastTansferResult(token), "GPv2: failed transferFrom");
}
/// @dev Verifies that the last return was a successful `transfer*` call.
/// This is done by checking that the return data is either empty, or
/// is a valid ABI encoded boolean.
function getLastTansferResult(IERC20 token)
private
view
returns (bool success)
{
// NOTE: Inspecting previous return data requires assembly. Note that
// we write the return data to memory 0 in the case where the return
// data size is 32, this is OK since the first 64 bytes of memory are
// reserved by Solidy as a scratch space that can be used within
// assembly blocks.
// <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html>
// solhint-disable-next-line no-inline-assembly
assembly {
/// @dev Revert with an ABI encoded Solidity error with a message
/// that fits into 32-bytes.
///
/// An ABI encoded Solidity error has the following memory layout:
///
/// ------------+----------------------------------
/// byte range | value
/// ------------+----------------------------------
/// 0x00..0x04 | selector("Error(string)")
/// 0x04..0x24 | string offset (always 0x20)
/// 0x24..0x44 | string length
/// 0x44..0x64 | string value, padded to 32-bytes
function revertWithMessage(length, message) {
mstore(0x00, "\\x08\\xc3\\x79\\xa0")
mstore(0x04, 0x20)
mstore(0x24, length)
mstore(0x44, message)
revert(0x00, 0x64)
}
switch returndatasize()
// Non-standard ERC20 transfer without return.
case 0 {
// NOTE: When the return data size is 0, verify that there
// is code at the address. This is done in order to maintain
// compatibility with Solidity calling conventions.
// <https://docs.soliditylang.org/en/v0.7.6/control-structures.html#external-function-calls>
if iszero(extcodesize(token)) {
revertWithMessage(20, "GPv2: not a contract")
}
success := 1
}
// Standard ERC20 transfer returning boolean success value.
case 32 {
returndatacopy(0, 0, returndatasize())
// NOTE: For ABI encoding v1, any non-zero value is accepted
// as `true` for a boolean. In order to stay compatible with
// OpenZeppelin's `SafeERC20` library which is known to work
// with the existing ERC20 implementation we care about,
// make sure we return success for any non-zero return value
// from the `transfer*` call.
success := iszero(iszero(mload(0)))
}
default {
revertWithMessage(31, "GPv2: malformed transfer result")
}
}
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
library GPv2EIP1271 {
/// @dev Value returned by a call to `isValidSignature` if the signature
/// was verified successfully. The value is defined in EIP-1271 as:
/// bytes4(keccak256("isValidSignature(bytes32,bytes)"))
bytes4 internal constant MAGICVALUE = 0x1626ba7e;
}
/// @title EIP1271 Interface
/// @dev Standardized interface for an implementation of smart contract
/// signatures as described in EIP-1271. The code that follows is identical to
/// the code in the standard with the exception of formatting and syntax
/// changes to adapt the code to our Solidity version.
interface EIP1271Verifier {
/// @dev Should return whether the signature provided is valid for the
/// provided data
/// @param _hash Hash of the data to be signed
/// @param _signature Signature byte array associated with _data
///
/// MUST return the bytes4 magic value 0x1626ba7e when function passes.
/// MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for
/// solc > 0.5)
/// MUST allow external calls
///
function isValidSignature(bytes32 _hash, bytes memory _signature)
external
view
returns (bytes4 magicValue);
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "../interfaces/GPv2EIP1271.sol";
import "../interfaces/IERC20.sol";
import "../libraries/GPv2Order.sol";
import "../libraries/GPv2SafeERC20.sol";
import "../libraries/SafeMath.sol";
import "../GPv2Settlement.sol";
/// @title Proof of Concept Smart Order
/// @author Gnosis Developers
contract SmartSellOrder is EIP1271Verifier {
using GPv2Order for GPv2Order.Data;
using GPv2SafeERC20 for IERC20;
using SafeMath for uint256;
bytes32 public constant APPDATA = keccak256("SmartSellOrder");
address public immutable owner;
bytes32 public immutable domainSeparator;
IERC20 public immutable sellToken;
IERC20 public immutable buyToken;
uint256 public immutable totalSellAmount;
uint256 public immutable totalFeeAmount;
uint32 public immutable validTo;
constructor(
GPv2Settlement settlement,
IERC20 sellToken_,
IERC20 buyToken_,
uint32 validTo_,
uint256 totalSellAmount_,
uint256 totalFeeAmount_
) {
owner = msg.sender;
domainSeparator = settlement.domainSeparator();
sellToken = sellToken_;
buyToken = buyToken_;
validTo = validTo_;
totalSellAmount = totalSellAmount_;
totalFeeAmount = totalFeeAmount_;
sellToken_.approve(
address(settlement.vaultRelayer()),
type(uint256).max
);
}
modifier onlyOwner {
require(msg.sender == owner, "not owner");
_;
}
function withdraw(uint256 amount) external onlyOwner {
sellToken.safeTransfer(owner, amount);
}
function close() external onlyOwner {
uint256 balance = sellToken.balanceOf(address(this));
if (balance != 0) {
sellToken.safeTransfer(owner, balance);
}
selfdestruct(payable(owner));
}
function isValidSignature(bytes32 hash, bytes memory signature)
external
view
override
returns (bytes4 magicValue)
{
uint256 sellAmount = abi.decode(signature, (uint256));
GPv2Order.Data memory order = orderForSellAmount(sellAmount);
if (order.hash(domainSeparator) == hash) {
magicValue = GPv2EIP1271.MAGICVALUE;
}
}
function orderForSellAmount(uint256 sellAmount)
public
view
returns (GPv2Order.Data memory order)
{
order.sellToken = sellToken;
order.buyToken = buyToken;
order.receiver = owner;
order.sellAmount = sellAmount;
order.buyAmount = buyAmountForSellAmount(sellAmount);
order.validTo = validTo;
order.appData = APPDATA;
order.feeAmount = totalFeeAmount.mul(sellAmount).div(totalSellAmount);
order.kind = GPv2Order.KIND_SELL;
// NOTE: We counter-intuitively set `partiallyFillable` to `false`, even
// if the smart order as a whole acts like a partially fillable order.
// This is done since, once a settlement commits to a specific sell
// amount, then it is expected to use it completely and not partially.
order.partiallyFillable = false;
order.sellTokenBalance = GPv2Order.BALANCE_ERC20;
order.buyTokenBalance = GPv2Order.BALANCE_ERC20;
}
function buyAmountForSellAmount(uint256 sellAmount)
private
view
returns (uint256 buyAmount)
{
uint256 feeAdjustedBalance =
sellToken.balanceOf(address(this)).mul(totalSellAmount).div(
totalSellAmount.add(totalFeeAmount)
);
uint256 soldAmount =
totalSellAmount > feeAdjustedBalance
? totalSellAmount - feeAdjustedBalance
: 0;
// NOTE: This is currently a silly price strategy where the xrate
// increases linearly from 1:1 to 1:2 as the smart order gets filled.
// This can be extended to more complex "price curves".
buyAmount = sellAmount
.mul(totalSellAmount.add(sellAmount).add(soldAmount))
.div(totalSellAmount);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../libraries/SafeMath.sol";
abstract contract NonStandardERC20 {
using SafeMath for uint256;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
function mint(address to, uint256 amount) external {
balanceOf[to] = balanceOf[to].add(amount);
}
function approve(address spender, uint256 amount) external {
allowance[msg.sender][spender] = amount;
}
function transfer_(address to, uint256 amount) internal {
balanceOf[msg.sender] = balanceOf[msg.sender].sub(amount);
balanceOf[to] = balanceOf[to].add(amount);
}
function transferFrom_(
address from,
address to,
uint256 amount
) internal {
allowance[from][msg.sender] = allowance[from][msg.sender].sub(amount);
balanceOf[from] = balanceOf[from].sub(amount);
balanceOf[to] = balanceOf[to].add(amount);
}
}
contract ERC20NoReturn is NonStandardERC20 {
function transfer(address to, uint256 amount) external {
transfer_(to, amount);
}
function transferFrom(
address from,
address to,
uint256 amount
) external {
transferFrom_(from, to, amount);
}
}
contract ERC20ReturningUint is NonStandardERC20 {
// Largest 256-bit prime :)
uint256 private constant OK =
115792089237316195423570985008687907853269984665640564039457584007913129639747;
function transfer(address to, uint256 amount) external returns (uint256) {
transfer_(to, amount);
return OK;
}
function transferFrom(
address from,
address to,
uint256 amount
) external returns (uint256) {
transferFrom_(from, to, amount);
return OK;
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "../interfaces/IERC20.sol";
import "../libraries/GPv2SafeERC20.sol";
contract GPv2SafeERC20TestInterface {
using GPv2SafeERC20 for IERC20;
function transfer(
IERC20 token,
address to,
uint256 value
) public {
token.safeTransfer(to, value);
}
function transferFrom(
IERC20 token,
address from,
address to,
uint256 value
) public {
token.safeTransferFrom(from, to, value);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "../libraries/GPv2Order.sol";
import "../libraries/GPv2Trade.sol";
contract GPv2TradeTestInterface {
function extractOrderTest(
IERC20[] calldata tokens,
GPv2Trade.Data calldata trade
) external pure returns (GPv2Order.Data memory order) {
GPv2Trade.extractOrder(trade, tokens, order);
}
function extractFlagsTest(uint256 flags)
external
pure
returns (
bytes32 kind,
bool partiallyFillable,
bytes32 sellTokenBalance,
bytes32 buyTokenBalance,
GPv2Signing.Scheme signingScheme
)
{
return GPv2Trade.extractFlags(flags);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "../libraries/GPv2Order.sol";
import "../libraries/GPv2Trade.sol";
import "../mixins/GPv2Signing.sol";
contract GPv2SigningTestInterface is GPv2Signing {
function recoverOrderFromTradeTest(
IERC20[] calldata tokens,
GPv2Trade.Data calldata trade
) external view returns (RecoveredOrder memory recoveredOrder) {
recoveredOrder = allocateRecoveredOrder();
recoverOrderFromTrade(recoveredOrder, tokens, trade);
}
function recoverOrderSignerTest(
GPv2Order.Data memory order,
GPv2Signing.Scheme signingScheme,
bytes calldata signature
) external view returns (address owner) {
(, owner) = recoverOrderSigner(order, signingScheme, signature);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
import "../interfaces/GPv2EIP1271.sol";
/// @dev This contract implements the standard described in EIP-1271 with the
/// minor change that the verification function changes the state. This is
/// forbidden by the standard specifications.
contract StateChangingEIP1271 {
uint256 public state = 0;
// solhint-disable-next-line no-unused-vars
function isValidSignature(bytes32 _hash, bytes memory _signature)
public
returns (bytes4 magicValue)
{
state += 1;
magicValue = GPv2EIP1271.MAGICVALUE;
// The following lines are here to suppress no-unused-var compiler-time
// warnings when compiling the contracts. The warning is forwarded by
// Hardhat from Solc. It is currently not possible to selectively
// ignore Solc warinings:
// <https://github.com/ethereum/solidity/issues/269>
_hash;
_signature;
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "../libraries/GPv2Order.sol";
contract GPv2OrderTestInterface {
using GPv2Order for GPv2Order.Data;
using GPv2Order for bytes;
function typeHashTest() external pure returns (bytes32) {
return GPv2Order.TYPE_HASH;
}
function hashTest(GPv2Order.Data memory order, bytes32 domainSeparator)
external
pure
returns (bytes32 orderDigest)
{
orderDigest = order.hash(domainSeparator);
}
function packOrderUidParamsTest(
uint256 bufferLength,
bytes32 orderDigest,
address owner,
uint32 validTo
) external pure returns (bytes memory orderUid) {
orderUid = new bytes(bufferLength);
orderUid.packOrderUidParams(orderDigest, owner, validTo);
}
function extractOrderUidParamsTest(bytes calldata orderUid)
external
pure
returns (
bytes32 orderDigest,
address owner,
uint32 validTo
)
{
return orderUid.extractOrderUidParams();
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "../libraries/GPv2Transfer.sol";
contract GPv2TransferTestInterface {
function fastTransferFromAccountTest(
IVault vault,
GPv2Transfer.Data calldata transfer,
address recipient
) external {
GPv2Transfer.fastTransferFromAccount(vault, transfer, recipient);
}
function transferFromAccountsTest(
IVault vault,
GPv2Transfer.Data[] calldata transfers,
address recipient
) external {
GPv2Transfer.transferFromAccounts(vault, transfers, recipient);
}
function transferToAccountsTest(
IVault vault,
GPv2Transfer.Data[] memory transfers
) external {
GPv2Transfer.transferToAccounts(vault, transfers);
}
// solhint-disable-next-line no-empty-blocks
receive() external payable {}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "../GPv2Settlement.sol";
import "../libraries/GPv2Interaction.sol";
import "../libraries/GPv2Trade.sol";
import "../libraries/GPv2Transfer.sol";
contract GPv2SettlementTestInterface is GPv2Settlement {
constructor(GPv2Authentication authenticator_, IVault vault)
GPv2Settlement(authenticator_, vault)
// solhint-disable-next-line no-empty-blocks
{
}
function setFilledAmount(bytes calldata orderUid, uint256 amount) external {
filledAmount[orderUid] = amount;
}
function computeTradeExecutionsTest(
IERC20[] calldata tokens,
uint256[] calldata clearingPrices,
GPv2Trade.Data[] calldata trades
)
external
returns (
GPv2Transfer.Data[] memory inTransfers,
GPv2Transfer.Data[] memory outTransfers
)
{
(inTransfers, outTransfers) = computeTradeExecutions(
tokens,
clearingPrices,
trades
);
}
function computeTradeExecutionMemoryTest() external returns (uint256 mem) {
RecoveredOrder memory recoveredOrder;
GPv2Transfer.Data memory inTransfer;
GPv2Transfer.Data memory outTransfer;
// NOTE: Solidity stores the free memory pointer at address 0x40. Read
// it before and after calling `processOrder` to ensure that there are
// no memory allocations.
// solhint-disable-next-line no-inline-assembly
assembly {
mem := mload(0x40)
}
// solhint-disable-next-line not-rely-on-time
recoveredOrder.data.validTo = uint32(block.timestamp);
computeTradeExecution(recoveredOrder, 1, 1, 0, inTransfer, outTransfer);
// solhint-disable-next-line no-inline-assembly
assembly {
mem := sub(mload(0x40), mem)
}
}
function executeInteractionsTest(
GPv2Interaction.Data[] calldata interactions
) external {
executeInteractions(interactions);
}
function freeFilledAmountStorageTest(bytes[] calldata orderUids) external {
this.freeFilledAmountStorage(orderUids);
}
function freePreSignatureStorageTest(bytes[] calldata orderUids) external {
this.freePreSignatureStorage(orderUids);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.7.6;
pragma abicoder v2;
import "../libraries/GPv2Interaction.sol";
contract GPv2InteractionTestInterface {
// solhint-disable-next-line no-empty-blocks
receive() external payable {}
function executeTest(GPv2Interaction.Data calldata interaction) external {
GPv2Interaction.execute(interaction);
}
function selectorTest(GPv2Interaction.Data calldata interaction)
external
pure
returns (bytes4)
{
return GPv2Interaction.selector(interaction);
}
}