ETH Price: $1,820.42 (+0.56%)

Transaction Decoder

Block:
11877081 at Feb-17-2021 10:32:23 PM +UTC
Transaction Fee:
0.017432181 ETH $31.73
Gas Used:
79,599 Gas / 219 Gwei

Emitted Events:

169 Pool.Transfer( from=[Receiver] MerkleDistributor, to=[Sender] 0x4a845975e70243f65bdb093d9d1db52280306b11, amount=29886060000000000000 )
170 MerkleDistributor.Claimed( index=4920, account=[Sender] 0x4a845975e70243f65bdb093d9d1db52280306b11, amount=29886060000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x0cEC1A91...0bDE6844e
(Hiveon Pool)
2,603.878472309389183261 Eth2,603.895904490389183261 Eth0.017432181
0x4A845975...280306B11
0.075536146826760606 Eth
Nonce: 352
0.058103965826760606 Eth
Nonce: 353
0.017432181
0xBE1a3351...67997016f

Execution Trace

MerkleDistributor.claim( )
  • Pool.transfer( dst=0x4A845975e70243f65BDB093D9d1db52280306B11, rawAmount=29886060000000000000 ) => ( True )
    File 1 of 2: MerkleDistributor
    // SPDX-License-Identifier: UNLICENSED
    pragma solidity >=0.5.0;
    // Allows anyone to claim a token if they exist in a merkle root.
    interface IMerkleDistributor {
        // Returns the address of the token distributed by this contract.
        function token() external view returns (address);
        // Returns the merkle root of the merkle tree containing account balances available to claim.
        function merkleRoot() external view returns (bytes32);
        // Returns true if the index has been marked claimed.
        function isClaimed(uint256 index) external view returns (bool);
        // Claim the given amount of the token to the given address. Reverts if the inputs are invalid.
        function claim(uint256 index, address account, uint256 amount, bytes32[] calldata merkleProof) external;
        // This event is triggered whenever a call to #claim succeeds.
        event Claimed(uint256 index, address account, uint256 amount);
    }// SPDX-License-Identifier: UNLICENSED
    pragma solidity =0.6.11;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@openzeppelin/contracts/cryptography/MerkleProof.sol";
    import "../interfaces/IMerkleDistributor.sol";
    contract ClearableMerkleDistributor is IMerkleDistributor {
        address public immutable override token;
        bytes32 public immutable override merkleRoot;
        bool public claimOnlyOnce;
        // This is a packed array of booleans.
        mapping(uint256 => uint256) private claimedBitMap;
        constructor(address token_, bytes32 merkleRoot_) public {
            token = token_;
            merkleRoot = merkleRoot_;
        }
        function setClaimOnlyOnce(bool _claimOnlyOnce) external {
            claimOnlyOnce = _claimOnlyOnce;
        }
        function isClaimed(uint256 index) public view override returns (bool) {
            if (!claimOnlyOnce) { return false; }
            uint256 claimedWordIndex = index / 256;
            uint256 claimedBitIndex = index % 256;
            uint256 claimedWord = claimedBitMap[claimedWordIndex];
            uint256 mask = (1 << claimedBitIndex);
            return claimedWord & mask == mask;
        }
        function _setClaimed(uint256 index) private {
            uint256 claimedWordIndex = index / 256;
            uint256 claimedBitIndex = index % 256;
            claimedBitMap[claimedWordIndex] = claimedBitMap[claimedWordIndex] | (1 << claimedBitIndex);
        }
        function claim(uint256 index, address account, uint256 amount, bytes32[] calldata merkleProof) external override {
            if (claimOnlyOnce) {
                require(!isClaimed(index), 'MerkleDistributor: Drop already claimed.');
            }
            // Verify the merkle proof.
            bytes32 node = keccak256(abi.encodePacked(index, account, amount));
            require(MerkleProof.verify(merkleProof, merkleRoot, node), 'MerkleDistributor: Invalid proof.');
            // Mark it claimed and send the token.
            _setClaimed(index);
            require(IERC20(token).transfer(account, amount), 'MerkleDistributor: Transfer failed.');
            emit Claimed(index, account, amount);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    /**
     * @dev These functions deal with verification of Merkle trees (hash trees),
     */
    library MerkleProof {
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                bytes32 proofElement = proof[i];
                if (computedHash <= proofElement) {
                    // Hash(current computed hash + current element of the proof)
                    computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
                } else {
                    // Hash(current element of the proof + current computed hash)
                    computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
                }
            }
            // Check if the computed hash (root) is equal to the provided root
            return computedHash == root;
        }
    }
    // SPDX-License-Identifier: UNLICENSED
    pragma solidity =0.6.11;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@openzeppelin/contracts/cryptography/MerkleProof.sol";
    import "./interfaces/IMerkleDistributor.sol";
    contract MerkleDistributor is IMerkleDistributor {
        address public immutable override token;
        bytes32 public immutable override merkleRoot;
        // This is a packed array of booleans.
        mapping(uint256 => uint256) private claimedBitMap;
        constructor(address token_, bytes32 merkleRoot_) public {
            token = token_;
            merkleRoot = merkleRoot_;
        }
        function isClaimed(uint256 index) public view override returns (bool) {
            uint256 claimedWordIndex = index / 256;
            uint256 claimedBitIndex = index % 256;
            uint256 claimedWord = claimedBitMap[claimedWordIndex];
            uint256 mask = (1 << claimedBitIndex);
            return claimedWord & mask == mask;
        }
        function _setClaimed(uint256 index) private {
            uint256 claimedWordIndex = index / 256;
            uint256 claimedBitIndex = index % 256;
            claimedBitMap[claimedWordIndex] = claimedBitMap[claimedWordIndex] | (1 << claimedBitIndex);
        }
        function claim(uint256 index, address account, uint256 amount, bytes32[] calldata merkleProof) external override {
            require(!isClaimed(index), 'MerkleDistributor: Drop already claimed.');
            // Verify the merkle proof.
            bytes32 node = keccak256(abi.encodePacked(index, account, amount));
            require(MerkleProof.verify(merkleProof, merkleRoot, node), 'MerkleDistributor: Invalid proof.');
            // Mark it claimed and send the token.
            _setClaimed(index);
            require(IERC20(token).transfer(account, amount), 'MerkleDistributor: Transfer failed.');
            emit Claimed(index, account, amount);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    import "../../GSN/Context.sol";
    import "./IERC20.sol";
    import "../../math/SafeMath.sol";
    import "../../utils/Address.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin guidelines: functions revert instead
     * of returning `false` on failure. This behavior is nonetheless conventional
     * and does not conflict with the expectations of ERC20 applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20 {
        using SafeMath for uint256;
        using Address for address;
        mapping (address => uint256) private _balances;
        mapping (address => mapping (address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        uint8 private _decimals;
        /**
         * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
         * a default value of 18.
         *
         * To select a different value for {decimals}, use {_setupDecimals}.
         *
         * All three of these values are immutable: they can only be set once during
         * construction.
         */
        constructor (string memory name, string memory symbol) public {
            _name = name;
            _symbol = symbol;
            _decimals = 18;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5,05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
         * called.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view returns (uint8) {
            return _decimals;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            _approve(_msgSender(), spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20};
         *
         * Requirements:
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for ``sender``'s tokens of at least
         * `amount`.
         */
        function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
            _transfer(sender, recipient, amount);
            _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
            return true;
        }
        /**
         * @dev Moves tokens `amount` from `sender` to `recipient`.
         *
         * This is internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(address sender, address recipient, uint256 amount) internal virtual {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(sender, recipient, amount);
            _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
            _balances[recipient] = _balances[recipient].add(amount);
            emit Transfer(sender, recipient, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements
         *
         * - `to` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply = _totalSupply.add(amount);
            _balances[account] = _balances[account].add(amount);
            emit Transfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
            _totalSupply = _totalSupply.sub(amount);
            emit Transfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
         *
         * This is internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 amount) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Sets {decimals} to a value other than the default one of 18.
         *
         * WARNING: This function should only be called from the constructor. Most
         * applications that interact with token contracts will not expect
         * {decimals} to ever change, and may work incorrectly if it does.
         */
        function _setupDecimals(uint8 decimals_) internal {
            _decimals = decimals_;
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be to transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address payable) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
            return c;
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
            return c;
        }
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
            return c;
        }
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
            return c;
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.2;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
            // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
            // for accounts without code, i.e. `keccak256('')`
            bytes32 codehash;
            bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
            // solhint-disable-next-line no-inline-assembly
            assembly { codehash := extcodehash(account) }
            return (codehash != accountHash && codehash != 0x0);
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
            (bool success, ) = recipient.call{ value: amount }("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain`call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
          return functionCall(target, data, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            return _functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            return _functionCallWithValue(target, data, value, errorMessage);
        }
        function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
            require(isContract(target), "Address: call to non-contract");
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    // SPDX-License-Identifier: UNLICENSED
    pragma solidity =0.6.11;
    import '@openzeppelin/contracts/token/ERC20/ERC20.sol';
    contract TestERC20 is ERC20 {
        constructor (string memory name_, string memory symbol_, uint amountToMint) ERC20(name_, symbol_) public {
            setBalance(msg.sender, amountToMint);
        }
        // sets the balance of the address
        // this mints/burns the amount depending on the current balance
        function setBalance(address to, uint amount) public {
            uint old = balanceOf(to);
            if (old < amount) {
                _mint(to, amount - old);
            } else if (old > amount) {
                _burn(to, old - amount);
            }
        }
    }
    

    File 2 of 2: Pool
    pragma solidity ^0.5.16;
    pragma experimental ABIEncoderV2;
    import "./SafeMath.sol";
    contract Pool {
        /// @notice EIP-20 token name for this token
        string public constant name = "PoolTogether";
        /// @notice EIP-20 token symbol for this token
        string public constant symbol = "POOL";
        /// @notice EIP-20 token decimals for this token
        uint8 public constant decimals = 18;
        /// @notice Total number of tokens in circulation
        uint public totalSupply = 10_000_000e18; // 10 million Pool
        /// @notice Address which may mint new tokens
        address public minter;
        /// @notice The timestamp after which minting may occur
        uint public mintingAllowedAfter;
        /// @notice Minimum time between mints
        uint32 public constant minimumTimeBetweenMints = 365 days; //1 year
        /// @notice Cap on the percentage of totalSupply that can be minted at each mint
        uint8 public constant mintCap = 2;
        /// @notice Allowance amounts on behalf of others
        mapping (address => mapping (address => uint96)) internal allowances;
        /// @notice Official record of token balances for each account
        mapping (address => uint96) internal balances;
        /// @notice A record of each accounts delegate
        mapping (address => address) public delegates;
        /// @notice A checkpoint for marking number of votes from a given block
        struct Checkpoint {
            uint32 fromBlock;
            uint96 votes;
        }
        /// @notice A record of votes checkpoints for each account, by index
        mapping (address => mapping (uint32 => Checkpoint)) public checkpoints;
        /// @notice The number of checkpoints for each account
        mapping (address => uint32) public numCheckpoints;
        /// @notice The EIP-712 typehash for the contract's domain
        bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");
        /// @notice The EIP-712 typehash for the delegation struct used by the contract
        bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
        /// @notice The EIP-712 typehash for the permit struct used by the contract
        bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
        /// @notice A record of states for signing / validating signatures
        mapping (address => uint) public nonces;
        /// @notice An event thats emitted when the minter address is changed
        event MinterChanged(address minter, address newMinter);
        /// @notice An event thats emitted when an account changes its delegate
        event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
        /// @notice An event thats emitted when a delegate account's vote balance changes
        event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint newBalance);
        /// @notice The standard EIP-20 transfer event
        event Transfer(address indexed from, address indexed to, uint256 amount);
        /// @notice The standard EIP-20 approval event
        event Approval(address indexed owner, address indexed spender, uint256 amount);
        /**
         * @notice Construct a new Pool token
         * @param account The initial account to grant all the tokens
         * @param minter_ The account with minting ability
         * @param mintingAllowedAfter_ The timestamp after which minting may occur
         */
        constructor(address account, address minter_, uint mintingAllowedAfter_) public {
            require(mintingAllowedAfter_ >= block.timestamp, "Pool::constructor: minting can only begin after deployment");
            balances[account] = uint96(totalSupply);
            emit Transfer(address(0), account, totalSupply);
            minter = minter_;
            emit MinterChanged(address(0), minter);
            mintingAllowedAfter = mintingAllowedAfter_;
        }
        /**
         * @notice Change the minter address
         * @param minter_ The address of the new minter
         */
        function setMinter(address minter_) external {
            require(msg.sender == minter, "Pool::setMinter: only the minter can change the minter address");
            emit MinterChanged(minter, minter_);
            minter = minter_;
        }
        /**
         * @notice Mint new tokens
         * @param dst The address of the destination account
         * @param rawAmount The number of tokens to be minted
         */
        function mint(address dst, uint rawAmount) external {
            require(msg.sender == minter, "Pool::mint: only the minter can mint");
            require(block.timestamp >= mintingAllowedAfter, "Pool::mint: minting not allowed yet");
            require(dst != address(0), "Pool::mint: cannot transfer to the zero address");
            // record the mint
            mintingAllowedAfter = SafeMath.add(block.timestamp, minimumTimeBetweenMints);
            // mint the amount
            uint96 amount = safe96(rawAmount, "Pool::mint: amount exceeds 96 bits");
            require(amount <= SafeMath.div(SafeMath.mul(totalSupply, mintCap), 100), "Pool::mint: exceeded mint cap");
            totalSupply = safe96(SafeMath.add(totalSupply, amount), "Pool::mint: totalSupply exceeds 96 bits");
            // transfer the amount to the recipient
            balances[dst] = add96(balances[dst], amount, "Pool::mint: transfer amount overflows");
            emit Transfer(address(0), dst, amount);
            // move delegates
            _moveDelegates(address(0), delegates[dst], amount);
        }
        /**
         * @notice Get the number of tokens `spender` is approved to spend on behalf of `account`
         * @param account The address of the account holding the funds
         * @param spender The address of the account spending the funds
         * @return The number of tokens approved
         */
        function allowance(address account, address spender) external view returns (uint) {
            return allowances[account][spender];
        }
        /**
         * @notice Approve `spender` to transfer up to `amount` from `src`
         * @dev This will overwrite the approval amount for `spender`
         *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
         * @param spender The address of the account which may transfer tokens
         * @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
         * @return Whether or not the approval succeeded
         */
        function approve(address spender, uint rawAmount) external returns (bool) {
            uint96 amount;
            if (rawAmount == uint(-1)) {
                amount = uint96(-1);
            } else {
                amount = safe96(rawAmount, "Pool::approve: amount exceeds 96 bits");
            }
            allowances[msg.sender][spender] = amount;
            emit Approval(msg.sender, spender, amount);
            return true;
        }
        /**
         * @notice Triggers an approval from owner to spends
         * @param owner The address to approve from
         * @param spender The address to be approved
         * @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
         * @param deadline The time at which to expire the signature
         * @param v The recovery byte of the signature
         * @param r Half of the ECDSA signature pair
         * @param s Half of the ECDSA signature pair
         */
        function permit(address owner, address spender, uint rawAmount, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
            uint96 amount;
            if (rawAmount == uint(-1)) {
                amount = uint96(-1);
            } else {
                amount = safe96(rawAmount, "Pool::permit: amount exceeds 96 bits");
            }
            bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this)));
            bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, rawAmount, nonces[owner]++, deadline));
            bytes32 digest = keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
            address signatory = ecrecover(digest, v, r, s);
            require(signatory != address(0), "Pool::permit: invalid signature");
            require(signatory == owner, "Pool::permit: unauthorized");
            require(now <= deadline, "Pool::permit: signature expired");
            allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @notice Get the number of tokens held by the `account`
         * @param account The address of the account to get the balance of
         * @return The number of tokens held
         */
        function balanceOf(address account) external view returns (uint) {
            return balances[account];
        }
        /**
         * @notice Transfer `amount` tokens from `msg.sender` to `dst`
         * @param dst The address of the destination account
         * @param rawAmount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transfer(address dst, uint rawAmount) external returns (bool) {
            uint96 amount = safe96(rawAmount, "Pool::transfer: amount exceeds 96 bits");
            _transferTokens(msg.sender, dst, amount);
            return true;
        }
        /**
         * @notice Transfer `amount` tokens from `src` to `dst`
         * @param src The address of the source account
         * @param dst The address of the destination account
         * @param rawAmount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transferFrom(address src, address dst, uint rawAmount) external returns (bool) {
            address spender = msg.sender;
            uint96 spenderAllowance = allowances[src][spender];
            uint96 amount = safe96(rawAmount, "Pool::approve: amount exceeds 96 bits");
            if (spender != src && spenderAllowance != uint96(-1)) {
                uint96 newAllowance = sub96(spenderAllowance, amount, "Pool::transferFrom: transfer amount exceeds spender allowance");
                allowances[src][spender] = newAllowance;
                emit Approval(src, spender, newAllowance);
            }
            _transferTokens(src, dst, amount);
            return true;
        }
        /**
         * @notice Delegate votes from `msg.sender` to `delegatee`
         * @param delegatee The address to delegate votes to
         */
        function delegate(address delegatee) public {
            return _delegate(msg.sender, delegatee);
        }
        /**
         * @notice Delegates votes from signatory to `delegatee`
         * @param delegatee The address to delegate votes to
         * @param nonce The contract state required to match the signature
         * @param expiry The time at which to expire the signature
         * @param v The recovery byte of the signature
         * @param r Half of the ECDSA signature pair
         * @param s Half of the ECDSA signature pair
         */
        function delegateBySig(address delegatee, uint nonce, uint expiry, uint8 v, bytes32 r, bytes32 s) public {
            bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this)));
            bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry));
            bytes32 digest = keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
            address signatory = ecrecover(digest, v, r, s);
            require(signatory != address(0), "Pool::delegateBySig: invalid signature");
            require(nonce == nonces[signatory]++, "Pool::delegateBySig: invalid nonce");
            require(now <= expiry, "Pool::delegateBySig: signature expired");
            return _delegate(signatory, delegatee);
        }
        /**
         * @notice Gets the current votes balance for `account`
         * @param account The address to get votes balance
         * @return The number of current votes for `account`
         */
        function getCurrentVotes(address account) external view returns (uint96) {
            uint32 nCheckpoints = numCheckpoints[account];
            return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
        }
        /**
         * @notice Determine the prior number of votes for an account as of a block number
         * @dev Block number must be a finalized block or else this function will revert to prevent misinformation.
         * @param account The address of the account to check
         * @param blockNumber The block number to get the vote balance at
         * @return The number of votes the account had as of the given block
         */
        function getPriorVotes(address account, uint blockNumber) public view returns (uint96) {
            require(blockNumber < block.number, "Pool::getPriorVotes: not yet determined");
            uint32 nCheckpoints = numCheckpoints[account];
            if (nCheckpoints == 0) {
                return 0;
            }
            // First check most recent balance
            if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
                return checkpoints[account][nCheckpoints - 1].votes;
            }
            // Next check implicit zero balance
            if (checkpoints[account][0].fromBlock > blockNumber) {
                return 0;
            }
            uint32 lower = 0;
            uint32 upper = nCheckpoints - 1;
            while (upper > lower) {
                uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
                Checkpoint memory cp = checkpoints[account][center];
                if (cp.fromBlock == blockNumber) {
                    return cp.votes;
                } else if (cp.fromBlock < blockNumber) {
                    lower = center;
                } else {
                    upper = center - 1;
                }
            }
            return checkpoints[account][lower].votes;
        }
        function _delegate(address delegator, address delegatee) internal {
            address currentDelegate = delegates[delegator];
            uint96 delegatorBalance = balances[delegator];
            delegates[delegator] = delegatee;
            emit DelegateChanged(delegator, currentDelegate, delegatee);
            _moveDelegates(currentDelegate, delegatee, delegatorBalance);
        }
        function _transferTokens(address src, address dst, uint96 amount) internal {
            require(src != address(0), "Pool::_transferTokens: cannot transfer from the zero address");
            require(dst != address(0), "Pool::_transferTokens: cannot transfer to the zero address");
            balances[src] = sub96(balances[src], amount, "Pool::_transferTokens: transfer amount exceeds balance");
            balances[dst] = add96(balances[dst], amount, "Pool::_transferTokens: transfer amount overflows");
            emit Transfer(src, dst, amount);
            _moveDelegates(delegates[src], delegates[dst], amount);
        }
        function _moveDelegates(address srcRep, address dstRep, uint96 amount) internal {
            if (srcRep != dstRep && amount > 0) {
                if (srcRep != address(0)) {
                    uint32 srcRepNum = numCheckpoints[srcRep];
                    uint96 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
                    uint96 srcRepNew = sub96(srcRepOld, amount, "Pool::_moveVotes: vote amount underflows");
                    _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
                }
                if (dstRep != address(0)) {
                    uint32 dstRepNum = numCheckpoints[dstRep];
                    uint96 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
                    uint96 dstRepNew = add96(dstRepOld, amount, "Pool::_moveVotes: vote amount overflows");
                    _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
                }
            }
        }
        function _writeCheckpoint(address delegatee, uint32 nCheckpoints, uint96 oldVotes, uint96 newVotes) internal {
          uint32 blockNumber = safe32(block.number, "Pool::_writeCheckpoint: block number exceeds 32 bits");
          if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
              checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
          } else {
              checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
              numCheckpoints[delegatee] = nCheckpoints + 1;
          }
          emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
        }
        function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {
            require(n < 2**32, errorMessage);
            return uint32(n);
        }
        function safe96(uint n, string memory errorMessage) internal pure returns (uint96) {
            require(n < 2**96, errorMessage);
            return uint96(n);
        }
        function add96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
            uint96 c = a + b;
            require(c >= a, errorMessage);
            return c;
        }
        function sub96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
            require(b <= a, errorMessage);
            return a - b;
        }
        function getChainId() internal pure returns (uint) {
            uint256 chainId;
            assembly { chainId := chainid() }
            return chainId;
        }
    }pragma solidity ^0.5.16;
    // From https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol
    // Subject to the MIT license.
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
            return c;
        }
        /**
         * @dev Returns the addition of two unsigned integers, reverting with custom message on overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, errorMessage);
            return c;
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on underflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot underflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction underflow");
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on underflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot underflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
            return c;
        }
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
            return c;
        }
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
            uint256 c = a * b;
            require(c / a == b, errorMessage);
            return c;
        }
        /**
         * @dev Returns the integer division of two unsigned integers.
         * Reverts on division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
        /**
         * @dev Returns the integer division of two unsigned integers.
         * Reverts with custom message on division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
            return c;
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }pragma solidity ^0.5.16;
    import "./SafeMath.sol";
    contract TreasuryVester {
        using SafeMath for uint;
        address public pool;
        address public recipient;
        uint public vestingAmount;
        uint public vestingBegin;
        uint public vestingCliff;
        uint public vestingEnd;
        uint public lastUpdate;
        constructor(
            address pool_,
            address recipient_,
            uint vestingAmount_,
            uint vestingBegin_,
            uint vestingCliff_,
            uint vestingEnd_
        ) public {
            require(vestingBegin_ >= block.timestamp, 'TreasuryVester::constructor: vesting begin too early');
            require(vestingCliff_ >= vestingBegin_, 'TreasuryVester::constructor: cliff is too early');
            require(vestingEnd_ > vestingCliff_, 'TreasuryVester::constructor: end is too early');
            pool = pool_;
            recipient = recipient_;
            vestingAmount = vestingAmount_;
            vestingBegin = vestingBegin_;
            vestingCliff = vestingCliff_;
            vestingEnd = vestingEnd_;
            lastUpdate = vestingBegin;
        }
        function setRecipient(address recipient_) public {
            require(msg.sender == recipient, 'TreasuryVester::setRecipient: unauthorized');
            recipient = recipient_;
        }
        function claim() public {
            require(block.timestamp >= vestingCliff, 'TreasuryVester::claim: not time yet');
            uint amount;
            if (block.timestamp >= vestingEnd) {
                amount = IERC20(pool).balanceOf(address(this));
            } else {
                amount = vestingAmount.mul(block.timestamp - lastUpdate).div(vestingEnd - vestingBegin);
                lastUpdate = block.timestamp;
            }
            IERC20(pool).transfer(recipient, amount);
        }
    }
    interface IERC20 {
        function balanceOf(address account) external view returns (uint);
        function transfer(address dst, uint rawAmount) external returns (bool);
    }pragma solidity ^0.5.16;
    import "./SafeMath.sol";
    contract Timelock {
        using SafeMath for uint;
        event NewAdmin(address indexed newAdmin);
        event NewPendingAdmin(address indexed newPendingAdmin);
        event NewDelay(uint indexed newDelay);
        event CancelTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature,  bytes data, uint eta);
        event ExecuteTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature,  bytes data, uint eta);
        event QueueTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);
        function gracePeriod() public pure returns (uint) { return 14 days; }
        function minimumDelay() public pure returns (uint) { return 2 days; }
        function maximumDelay() public pure returns (uint) { return 30 days; }
        address public admin;
        address public pendingAdmin;
        uint public delay;
        mapping (bytes32 => bool) public queuedTransactions;
        constructor(address admin_, uint delay_) public {
            require(delay_ >= minimumDelay(), "Timelock::constructor: Delay must exceed minimum delay.");
            require(delay_ <= maximumDelay(), "Timelock::setDelay: Delay must not exceed maximum delay.");
            admin = admin_;
            delay = delay_;
        }
        function() external payable { }
        function setDelay(uint delay_) public {
            require(msg.sender == address(this), "Timelock::setDelay: Call must come from Timelock.");
            require(delay_ >= minimumDelay(), "Timelock::setDelay: Delay must exceed minimum delay.");
            require(delay_ <= maximumDelay(), "Timelock::setDelay: Delay must not exceed maximum delay.");
            delay = delay_;
            emit NewDelay(delay);
        }
        function acceptAdmin() public {
            require(msg.sender == pendingAdmin, "Timelock::acceptAdmin: Call must come from pendingAdmin.");
            admin = msg.sender;
            pendingAdmin = address(0);
            emit NewAdmin(admin);
        }
        function setPendingAdmin(address pendingAdmin_) public {
            require(msg.sender == address(this), "Timelock::setPendingAdmin: Call must come from Timelock.");
            pendingAdmin = pendingAdmin_;
            emit NewPendingAdmin(pendingAdmin);
        }
        function queueTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public returns (bytes32) {
            require(msg.sender == admin, "Timelock::queueTransaction: Call must come from admin.");
            require(eta >= getBlockTimestamp().add(delay), "Timelock::queueTransaction: Estimated execution block must satisfy delay.");
            bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));
            queuedTransactions[txHash] = true;
            emit QueueTransaction(txHash, target, value, signature, data, eta);
            return txHash;
        }
        function cancelTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public {
            require(msg.sender == admin, "Timelock::cancelTransaction: Call must come from admin.");
            bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));
            queuedTransactions[txHash] = false;
            emit CancelTransaction(txHash, target, value, signature, data, eta);
        }
        function executeTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public payable returns (bytes memory) {
            require(msg.sender == admin, "Timelock::executeTransaction: Call must come from admin.");
            bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));
            require(queuedTransactions[txHash], "Timelock::executeTransaction: Transaction hasn't been queued.");
            require(getBlockTimestamp() >= eta, "Timelock::executeTransaction: Transaction hasn't surpassed time lock.");
            require(getBlockTimestamp() <= eta.add(gracePeriod()), "Timelock::executeTransaction: Transaction is stale.");
            queuedTransactions[txHash] = false;
            bytes memory callData;
            if (bytes(signature).length == 0) {
                callData = data;
            } else {
                callData = abi.encodePacked(bytes4(keccak256(bytes(signature))), data);
            }
            // solium-disable-next-line security/no-call-value
            (bool success, bytes memory returnData) = target.call.value(value)(callData);
            require(success, "Timelock::executeTransaction: Transaction execution reverted.");
            emit ExecuteTransaction(txHash, target, value, signature, data, eta);
            return returnData;
        }
        function getBlockTimestamp() internal view returns (uint) {
            // solium-disable-next-line security/no-block-members
            return block.timestamp;
        }
    }pragma solidity ^0.5.16;
    import "../Timelock.sol";
    contract Nolock is Timelock {
        function gracePeriod() public pure returns (uint) { return 10 minutes; }
        function minimumDelay() public pure returns (uint) { return 1 seconds; }
        function maximumDelay() public pure returns (uint) { return 100000 days; }
        constructor(address admin_, uint delay_) public Timelock(admin_, delay_) {}
    }