ETH Price: $1,880.62 (+0.59%)

Transaction Decoder

Block:
22034455 at Mar-13-2025 12:46:11 AM +UTC
Transaction Fee:
0.000372254871296168 ETH $0.70
Gas Used:
597,143 Gas / 0.623393176 Gwei

Emitted Events:

329 L1ChugSplashProxy.0x35d79ab81f2b2017e19afb5c5571778877782d7a8786f5907f93b0f4702f4f23( 0x35d79ab81f2b2017e19afb5c5571778877782d7a8786f5907f93b0f4702f4f23, 0x000000000000000000000000ee3b64210adb28638d5686c3ceef1b41416cf046, 0x000000000000000000000000ee3b64210adb28638d5686c3ceef1b41416cf046, 00000000000000000000000000000000000000000000000004c9afac0f828000, 0000000000000000000000000000000000000000000000000000000000000040, 000000000000000000000000000000000000000000000000000000000000000b, 7375706572627269646765000000000000000000000000000000000000000000 )
330 L1ChugSplashProxy.0x2849b43074093a05396b6f2a937dee8565b15a48a7b3d4bffb732a5017380af5( 0x2849b43074093a05396b6f2a937dee8565b15a48a7b3d4bffb732a5017380af5, 0x000000000000000000000000ee3b64210adb28638d5686c3ceef1b41416cf046, 0x000000000000000000000000ee3b64210adb28638d5686c3ceef1b41416cf046, 00000000000000000000000000000000000000000000000004c9afac0f828000, 0000000000000000000000000000000000000000000000000000000000000040, 000000000000000000000000000000000000000000000000000000000000000b, 7375706572627269646765000000000000000000000000000000000000000000 )
331 Proxy.0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32( 0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32, 0x000000000000000000000000ae0a51e3f74b644e621b36ca9cea147a78d4d4b0, 0x0000000000000000000000004200000000000000000000000000000000000007, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000020, 000000000000000000000000000000000000000000000000000000000000020d, 00000000000000000000000000000000000000000000000004c9afac0f828000, 00000000000000000000000000000000000000000000000004c9afac0f828000, 0000000000077f2e00d764ad0b00010000000000000000000000000000000000, 0000000000000000000000ad5e000000000000000000000000eb9bf100225c21, 4efc3e7c651ebbadcf8517760700000000000000000000000042000000000000, 0000000000000000000000001000000000000000000000000000000000000000, 000000000004c9afac0f82800000000000000000000000000000000000000000, 00000000000000000000030d4000000000000000000000000000000000000000, 000000000000000000000000c000000000000000000000000000000000000000, 000000000000000000000000c41635f5fd000000000000000000000000ee3b64, 210adb28638d5686c3ceef1b41416cf046000000000000000000000000ee3b64, 210adb28638d5686c3ceef1b41416cf046000000000000000000000000000000, 00000000000000000004c9afac0f828000000000000000000000000000000000, 0000000000000000000000000000000080000000000000000000000000000000, 000000000000000000000000000000000b737570657262726964676500000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
332 ResolvedDelegateProxy.0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a( 0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a, 0x0000000000000000000000004200000000000000000000000000000000000010, 000000000000000000000000eb9bf100225c214efc3e7c651ebbadcf85177607, 0000000000000000000000000000000000000000000000000000000000000080, 000100000000000000000000000000000000000000000000000000000000ad5e, 0000000000000000000000000000000000000000000000000000000000030d40, 00000000000000000000000000000000000000000000000000000000000000c4, 1635f5fd000000000000000000000000ee3b64210adb28638d5686c3ceef1b41, 416cf046000000000000000000000000ee3b64210adb28638d5686c3ceef1b41, 416cf04600000000000000000000000000000000000000000000000004c9afac, 0f82800000000000000000000000000000000000000000000000000000000000, 0000008000000000000000000000000000000000000000000000000000000000, 0000000b73757065726272696467650000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
333 ResolvedDelegateProxy.0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546( 0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546, 0x000000000000000000000000eb9bf100225c214efc3e7c651ebbadcf85177607, 00000000000000000000000000000000000000000000000004c9afac0f828000 )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
6.053283964389476186 Eth6.053284645124733327 Eth0.000000680735257141
0x88e529A6...4614FAE92 10,477.296820274773949084 Eth10,477.641820274773949084 Eth0.345
0x9CF951E3...a78D4c39f
0xeE3B6421...1416Cf046
0.349951600081919879 Eth
Nonce: 526
0.004579345210623711 Eth
Nonce: 527
0.345372254871296168

Execution Trace

ETH 0.345 L1ChugSplashProxy.e11013dd( )
  • ProxyAdmin.STATICCALL( )
  • ETH 0.345 L1StandardBridge.bridgeETHTo( _to=0xeE3B64210aDB28638D5686C3cEeF1B41416Cf046, _minGasLimit=200000, _extraData=0x7375706572627269646765 )
    • ETH 0.345 ResolvedDelegateProxy.3dbb202b( )
      • AddressManager.getAddress( _name=OVM_L1CrossDomainMessenger ) => ( 0xD3494713A5cfaD3F5359379DfA074E2Ac8C6Fd65 )
      • ETH 0.345 L1CrossDomainMessenger.sendMessage( _target=0x4200000000000000000000000000000000000010, _message=0x1635F5FD000000000000000000000000EE3B64210ADB28638D5686C3CEEF1B41416CF046000000000000000000000000EE3B64210ADB28638D5686C3CEEF1B41416CF04600000000000000000000000000000000000000000000000004C9AFAC0F8280000000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000000B7375706572627269646765000000000000000000000000000000000000000000, _minGasLimit=200000 )
        • ETH 0.345 Proxy.e9e05c42( )
          • ETH 0.345 OptimismPortal2.depositTransaction( _to=0x4200000000000000000000000000000000000007, _value=345000000000000000, _gasLimit=491310, _isCreation=False, _data=0xD764AD0B000100000000000000000000000000000000000000000000000000000000AD5E000000000000000000000000EB9BF100225C214EFC3E7C651EBBADCF85177607000000000000000000000000420000000000000000000000000000000000001000000000000000000000000000000000000000000000000004C9AFAC0F8280000000000000000000000000000000000000000000000000000000000000030D4000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000C41635F5FD000000000000000000000000EE3B64210ADB28638D5686C3CEEF1B41416CF046000000000000000000000000EE3B64210ADB28638D5686C3CEEF1B41416CF04600000000000000000000000000000000000000000000000004C9AFAC0F8280000000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000000B737570657262726964676500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
            • Proxy.STATICCALL( )
              File 1 of 9: L1ChugSplashProxy
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title IL1ChugSplashDeployer
               */
              interface IL1ChugSplashDeployer {
                  function isUpgrading() external view returns (bool);
              }
              /**
               * @custom:legacy
               * @title L1ChugSplashProxy
               * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
               *         functions `setCode` and `setStorage` for changing the code or storage of the contract.
               *
               *         Note for future developers: do NOT make anything in this contract 'public' unless you
               *         know what you're doing. Anything public can potentially have a function signature that
               *         conflicts with a signature attached to the implementation contract. Public functions
               *         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
               *         reason not to have that modifier. And there almost certainly is not a good reason to not
               *         have that modifier. Beware!
               */
              contract L1ChugSplashProxy {
                  /**
                   * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
                   *         contract, the appended bytecode will be deployed as given.
                   */
                  bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
                  /**
                   * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice Blocks a function from being called when the parent signals that the system should
                   *         be paused via an isUpgrading function.
                   */
                  modifier onlyWhenNotPaused() {
                      address owner = _getOwner();
                      // We do a low-level call because there's no guarantee that the owner actually *is* an
                      // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                      // it turns out that it isn't the right type of contract.
                      (bool success, bytes memory returndata) = owner.staticcall(
                          abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
                      );
                      // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                      // can just continue as normal. We also expect that the return value is exactly 32 bytes
                      // long. If this isn't the case then we can safely ignore the result.
                      if (success && returndata.length == 32) {
                          // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                          // case that the isUpgrading function returned something other than 0 or 1. But we only
                          // really care about the case where this value is 0 (= false).
                          uint256 ret = abi.decode(returndata, (uint256));
                          require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
                      }
                      _;
                  }
                  /**
                   * @notice Makes a proxy call instead of triggering the given function when the caller is
                   *         either the owner or the zero address. Caller can only ever be the zero address if
                   *         this function is being called off-chain via eth_call, which is totally fine and can
                   *         be convenient for client-side tooling. Avoids situations where the proxy and
                   *         implementation share a sighash and the proxy function ends up being called instead
                   *         of the implementation one.
                   *
                   *         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
                   *         there's a way for someone to send a transaction with msg.sender == address(0) in any
                   *         real context then we have much bigger problems. Primary reason to include this
                   *         additional allowed sender is because the owner address can be changed dynamically
                   *         and we do not want clients to have to keep track of the current owner in order to
                   *         make an eth_call that doesn't trigger the proxied contract.
                   */
                  // slither-disable-next-line incorrect-modifier
                  modifier proxyCallIfNotOwner() {
                      if (msg.sender == _getOwner() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @param _owner Address of the initial contract owner.
                   */
                  constructor(address _owner) {
                      _setOwner(_owner);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Sets the code that should be running behind this proxy.
                   *
                   *         Note: This scheme is a bit different from the standard proxy scheme where one would
                   *         typically deploy the code separately and then set the implementation address. We're
                   *         doing it this way because it gives us a lot more freedom on the client side. Can
                   *         only be triggered by the contract owner.
                   *
                   * @param _code New contract code to run inside this contract.
                   */
                  function setCode(bytes memory _code) external proxyCallIfNotOwner {
                      // Get the code hash of the current implementation.
                      address implementation = _getImplementation();
                      // If the code hash matches the new implementation then we return early.
                      if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                          return;
                      }
                      // Create the deploycode by appending the magic prefix.
                      bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
                      // Deploy the code and set the new implementation address.
                      address newImplementation;
                      assembly {
                          newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                      }
                      // Check that the code was actually deployed correctly. I'm not sure if you can ever
                      // actually fail this check. Should only happen if the contract creation from above runs
                      // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                      // should be doing this check anyway though.
                      require(
                          _getAccountCodeHash(newImplementation) == keccak256(_code),
                          "L1ChugSplashProxy: code was not correctly deployed"
                      );
                      _setImplementation(newImplementation);
                  }
                  /**
                   * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
                   *         perform upgrades in a more transparent way. Only callable by the owner.
                   *
                   * @param _key   Storage key to modify.
                   * @param _value New value for the storage key.
                   */
                  function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
                      assembly {
                          sstore(_key, _value)
                      }
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _owner New owner of the proxy contract.
                   */
                  function setOwner(address _owner) external proxyCallIfNotOwner {
                      _setOwner(_owner);
                  }
                  /**
                   * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
                   *         making an eth_call and setting the "from" address to address(0).
                   *
                   * @return Owner address.
                   */
                  function getOwner() external proxyCallIfNotOwner returns (address) {
                      return _getOwner();
                  }
                  /**
                   * @notice Queries the implementation address. Can only be called by the owner OR by making an
                   *         eth_call and setting the "from" address to address(0).
                   *
                   * @return Implementation address.
                   */
                  function getImplementation() external proxyCallIfNotOwner returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _owner New owner of the proxy contract.
                   */
                  function _setOwner(address _owner) internal {
                      assembly {
                          sstore(OWNER_KEY, _owner)
                      }
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal onlyWhenNotPaused {
                      address implementation = _getImplementation();
                      require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address implementation;
                      assembly {
                          implementation := sload(IMPLEMENTATION_KEY)
                      }
                      return implementation;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getOwner() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
                  /**
                   * @notice Gets the code hash for a given account.
                   *
                   * @param _account Address of the account to get a code hash for.
                   *
                   * @return Code hash for the account.
                   */
                  function _getAccountCodeHash(address _account) internal view returns (bytes32) {
                      bytes32 codeHash;
                      assembly {
                          codeHash := extcodehash(_account)
                      }
                      return codeHash;
                  }
              }
              

              File 2 of 9: Proxy
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Constants } from "../libraries/Constants.sol";
              /// @title Proxy
              /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
              ///         if the caller is address(0), meaning that the call originated from an off-chain
              ///         simulation.
              contract Proxy {
                  /// @notice An event that is emitted each time the implementation is changed. This event is part
                  ///         of the EIP-1967 specification.
                  /// @param implementation The address of the implementation contract
                  event Upgraded(address indexed implementation);
                  /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
                  ///         EIP-1967 specification.
                  /// @param previousAdmin The previous owner of the contract
                  /// @param newAdmin      The new owner of the contract
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
                  ///         eth_call to interact with this proxy without needing to use low-level storage
                  ///         inspection. We assume that nobody is able to trigger calls from address(0) during
                  ///         normal EVM execution.
                  modifier proxyCallIfNotAdmin() {
                      if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
                  ///         EIP-1967 admin storage slot so that accidental storage collision with the
                  ///         implementation is not possible.
                  /// @param _admin Address of the initial contract admin. Admin as the ability to access the
                  ///               transparent proxy interface.
                  constructor(address _admin) {
                      _changeAdmin(_admin);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /// @notice Set the implementation contract address. The code at the given address will execute
                  ///         when this contract is called.
                  /// @param _implementation Address of the implementation contract.
                  function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                      _setImplementation(_implementation);
                  }
                  /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
                  ///         atomic execution of initialization-based upgrades.
                  /// @param _implementation Address of the implementation contract.
                  /// @param _data           Calldata to delegatecall the new implementation with.
                  function upgradeToAndCall(
                      address _implementation,
                      bytes calldata _data
                  )
                      public
                      payable
                      virtual
                      proxyCallIfNotAdmin
                      returns (bytes memory)
                  {
                      _setImplementation(_implementation);
                      (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                      require(success, "Proxy: delegatecall to new implementation contract failed");
                      return returndata;
                  }
                  /// @notice Changes the owner of the proxy contract. Only callable by the owner.
                  /// @param _admin New owner of the proxy contract.
                  function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                      _changeAdmin(_admin);
                  }
                  /// @notice Gets the owner of the proxy contract.
                  /// @return Owner address.
                  function admin() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getAdmin();
                  }
                  //// @notice Queries the implementation address.
                  /// @return Implementation address.
                  function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getImplementation();
                  }
                  /// @notice Sets the implementation address.
                  /// @param _implementation New implementation address.
                  function _setImplementation(address _implementation) internal {
                      bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                      assembly {
                          sstore(proxyImplementation, _implementation)
                      }
                      emit Upgraded(_implementation);
                  }
                  /// @notice Changes the owner of the proxy contract.
                  /// @param _admin New owner of the proxy contract.
                  function _changeAdmin(address _admin) internal {
                      address previous = _getAdmin();
                      bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                      assembly {
                          sstore(proxyOwner, _admin)
                      }
                      emit AdminChanged(previous, _admin);
                  }
                  /// @notice Performs the proxy call via a delegatecall.
                  function _doProxyCall() internal {
                      address impl = _getImplementation();
                      require(impl != address(0), "Proxy: implementation not initialized");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) { revert(0x0, returndatasize()) }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /// @notice Queries the implementation address.
                  /// @return Implementation address.
                  function _getImplementation() internal view returns (address) {
                      address impl;
                      bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                      assembly {
                          impl := sload(proxyImplementation)
                      }
                      return impl;
                  }
                  /// @notice Queries the owner of the proxy contract.
                  /// @return Owner address.
                  function _getAdmin() internal view returns (address) {
                      address owner;
                      bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                      assembly {
                          owner := sload(proxyOwner)
                      }
                      return owner;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { ResourceMetering } from "../L1/ResourceMetering.sol";
              /// @title Constants
              /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
              ///         the stuff used in multiple contracts. Constants that only apply to a single contract
              ///         should be defined in that contract instead.
              library Constants {
                  /// @notice Special address to be used as the tx origin for gas estimation calls in the
                  ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                  ///         the minimum gas limit specified by the user is not actually enough to execute the
                  ///         given message and you're attempting to estimate the actual necessary gas limit. We
                  ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                  ///         never have any code on any EVM chain.
                  address internal constant ESTIMATION_ADDRESS = address(1);
                  /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                  ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                  ///         non-zero to reduce the gas cost of message passing transactions.
                  address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                  /// @notice The storage slot that holds the address of a proxy implementation.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                  bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /// @notice The storage slot that holds the address of the owner.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                  bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                  ///         for a production network.
                  function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                      ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                          maxResourceLimit: 20_000_000,
                          elasticityMultiplier: 10,
                          baseFeeMaxChangeDenominator: 8,
                          minimumBaseFee: 1 gwei,
                          systemTxMaxGas: 1_000_000,
                          maximumBaseFee: type(uint128).max
                      });
                      return config;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
              import { Burn } from "../libraries/Burn.sol";
              import { Arithmetic } from "../libraries/Arithmetic.sol";
              /// @custom:upgradeable
              /// @title ResourceMetering
              /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
              ///         updates automatically based on current demand.
              abstract contract ResourceMetering is Initializable {
                  /// @notice Represents the various parameters that control the way in which resources are
                  ///         metered. Corresponds to the EIP-1559 resource metering system.
                  /// @custom:field prevBaseFee   Base fee from the previous block(s).
                  /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                  /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                  ///         market. These values should be set with care as it is possible to set them in
                  ///         a way that breaks the deposit gas market. The target resource limit is defined as
                  ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                  ///         single word. There is additional space for additions in the future.
                  /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                  ///                                            can be purchased per block.
                  /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                  ///                                            the resource limit.
                  /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                  /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                  ///                                            value.
                  /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                  ///                                            transaction. This should be set to the same
                  ///                                            number that the op-node sets as the gas limit
                  ///                                            for the system transaction.
                  /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                  ///                                            value.
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  /// @notice EIP-1559 style gas parameters.
                  ResourceParams public params;
                  /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                  uint256[48] private __gap;
                  /// @notice Meters access to a function based an amount of a requested resource.
                  /// @param _amount Amount of the resource requested.
                  modifier metered(uint64 _amount) {
                      // Record initial gas amount so we can refund for it later.
                      uint256 initialGas = gasleft();
                      // Run the underlying function.
                      _;
                      // Run the metering function.
                      _metered(_amount, initialGas);
                  }
                  /// @notice An internal function that holds all of the logic for metering a resource.
                  /// @param _amount     Amount of the resource requested.
                  /// @param _initialGas The amount of gas before any modifier execution.
                  function _metered(uint64 _amount, uint256 _initialGas) internal {
                      // Update block number and base fee if necessary.
                      uint256 blockDiff = block.number - params.prevBlockNum;
                      ResourceConfig memory config = _resourceConfig();
                      int256 targetResourceLimit =
                          int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                      if (blockDiff > 0) {
                          // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                          // at which deposits can be created and therefore limit the potential for deposits to
                          // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                          int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                          int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                              / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                          // Update base fee by adding the base fee delta and clamp the resulting value between
                          // min and max.
                          int256 newBaseFee = Arithmetic.clamp({
                              _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                          // If we skipped more than one block, we also need to account for every empty block.
                          // Empty block means there was no demand for deposits in that block, so we should
                          // reflect this lack of demand in the fee.
                          if (blockDiff > 1) {
                              // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                              // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                              // between min and max.
                              newBaseFee = Arithmetic.clamp({
                                  _value: Arithmetic.cdexp({
                                      _coefficient: newBaseFee,
                                      _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                      _exponent: int256(blockDiff - 1)
                                  }),
                                  _min: int256(uint256(config.minimumBaseFee)),
                                  _max: int256(uint256(config.maximumBaseFee))
                              });
                          }
                          // Update new base fee, reset bought gas, and update block number.
                          params.prevBaseFee = uint128(uint256(newBaseFee));
                          params.prevBoughtGas = 0;
                          params.prevBlockNum = uint64(block.number);
                      }
                      // Make sure we can actually buy the resource amount requested by the user.
                      params.prevBoughtGas += _amount;
                      require(
                          int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                          "ResourceMetering: cannot buy more gas than available gas limit"
                      );
                      // Determine the amount of ETH to be paid.
                      uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                      // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                      // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                      // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                      // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                      // during any 1 day period in the last 5 years, so should be fine.
                      uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                      // Give the user a refund based on the amount of gas they used to do all of the work up to
                      // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                      // effectively like a dynamic stipend (with a minimum value).
                      uint256 usedGas = _initialGas - gasleft();
                      if (gasCost > usedGas) {
                          Burn.gas(gasCost - usedGas);
                      }
                  }
                  /// @notice Virtual function that returns the resource config.
                  ///         Contracts that inherit this contract must implement this function.
                  /// @return ResourceConfig
                  function _resourceConfig() internal virtual returns (ResourceConfig memory);
                  /// @notice Sets initial resource parameter values.
                  ///         This function must either be called by the initializer function of an upgradeable
                  ///         child contract.
                  // solhint-disable-next-line func-name-mixedcase
                  function __ResourceMetering_init() internal onlyInitializing {
                      params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/Address.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard math utilities missing in the Solidity language.
               */
              library Math {
                  enum Rounding {
                      Down, // Toward negative infinity
                      Up, // Toward infinity
                      Zero // Toward zero
                  }
                  /**
                   * @dev Returns the largest of two numbers.
                   */
                  function max(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two numbers.
                   */
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two numbers. The result is rounded towards
                   * zero.
                   */
                  function average(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b) / 2 can overflow.
                      return (a & b) + (a ^ b) / 2;
                  }
                  /**
                   * @dev Returns the ceiling of the division of two numbers.
                   *
                   * This differs from standard division with `/` in that it rounds up instead
                   * of rounding down.
                   */
                  function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b - 1) / b can overflow on addition, so we distribute.
                      return a == 0 ? 0 : (a - 1) / b + 1;
                  }
                  /**
                   * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                   * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                   * with further edits by Uniswap Labs also under MIT license.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 result) {
                      unchecked {
                          // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                          // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                          // variables such that product = prod1 * 2^256 + prod0.
                          uint256 prod0; // Least significant 256 bits of the product
                          uint256 prod1; // Most significant 256 bits of the product
                          assembly {
                              let mm := mulmod(x, y, not(0))
                              prod0 := mul(x, y)
                              prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                          }
                          // Handle non-overflow cases, 256 by 256 division.
                          if (prod1 == 0) {
                              return prod0 / denominator;
                          }
                          // Make sure the result is less than 2^256. Also prevents denominator == 0.
                          require(denominator > prod1);
                          ///////////////////////////////////////////////
                          // 512 by 256 division.
                          ///////////////////////////////////////////////
                          // Make division exact by subtracting the remainder from [prod1 prod0].
                          uint256 remainder;
                          assembly {
                              // Compute remainder using mulmod.
                              remainder := mulmod(x, y, denominator)
                              // Subtract 256 bit number from 512 bit number.
                              prod1 := sub(prod1, gt(remainder, prod0))
                              prod0 := sub(prod0, remainder)
                          }
                          // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                          // See https://cs.stackexchange.com/q/138556/92363.
                          // Does not overflow because the denominator cannot be zero at this stage in the function.
                          uint256 twos = denominator & (~denominator + 1);
                          assembly {
                              // Divide denominator by twos.
                              denominator := div(denominator, twos)
                              // Divide [prod1 prod0] by twos.
                              prod0 := div(prod0, twos)
                              // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                              twos := add(div(sub(0, twos), twos), 1)
                          }
                          // Shift in bits from prod1 into prod0.
                          prod0 |= prod1 * twos;
                          // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                          // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                          // four bits. That is, denominator * inv = 1 mod 2^4.
                          uint256 inverse = (3 * denominator) ^ 2;
                          // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                          // in modular arithmetic, doubling the correct bits in each step.
                          inverse *= 2 - denominator * inverse; // inverse mod 2^8
                          inverse *= 2 - denominator * inverse; // inverse mod 2^16
                          inverse *= 2 - denominator * inverse; // inverse mod 2^32
                          inverse *= 2 - denominator * inverse; // inverse mod 2^64
                          inverse *= 2 - denominator * inverse; // inverse mod 2^128
                          inverse *= 2 - denominator * inverse; // inverse mod 2^256
                          // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                          // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                          // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                          // is no longer required.
                          result = prod0 * inverse;
                          return result;
                      }
                  }
                  /**
                   * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator,
                      Rounding rounding
                  ) internal pure returns (uint256) {
                      uint256 result = mulDiv(x, y, denominator);
                      if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                          result += 1;
                      }
                      return result;
                  }
                  /**
                   * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                   *
                   * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                   */
                  function sqrt(uint256 a) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                      // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                      // `msb(a) <= a < 2*msb(a)`.
                      // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                      // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                      // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                      // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                      uint256 result = 1;
                      uint256 x = a;
                      if (x >> 128 > 0) {
                          x >>= 128;
                          result <<= 64;
                      }
                      if (x >> 64 > 0) {
                          x >>= 64;
                          result <<= 32;
                      }
                      if (x >> 32 > 0) {
                          x >>= 32;
                          result <<= 16;
                      }
                      if (x >> 16 > 0) {
                          x >>= 16;
                          result <<= 8;
                      }
                      if (x >> 8 > 0) {
                          x >>= 8;
                          result <<= 4;
                      }
                      if (x >> 4 > 0) {
                          x >>= 4;
                          result <<= 2;
                      }
                      if (x >> 2 > 0) {
                          result <<= 1;
                      }
                      // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                      // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                      // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                      // into the expected uint128 result.
                      unchecked {
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          return min(result, a / result);
                      }
                  }
                  /**
                   * @notice Calculates sqrt(a), following the selected rounding direction.
                   */
                  function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                      uint256 result = sqrt(a);
                      if (rounding == Rounding.Up && result * result < a) {
                          result += 1;
                      }
                      return result;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @title Burn
              /// @notice Utilities for burning stuff.
              library Burn {
                  /// @notice Burns a given amount of ETH.
                  /// @param _amount Amount of ETH to burn.
                  function eth(uint256 _amount) internal {
                      new Burner{ value: _amount }();
                  }
                  /// @notice Burns a given amount of gas.
                  /// @param _amount Amount of gas to burn.
                  function gas(uint256 _amount) internal view {
                      uint256 i = 0;
                      uint256 initialGas = gasleft();
                      while (initialGas - gasleft() < _amount) {
                          ++i;
                      }
                  }
              }
              /// @title Burner
              /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
              ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
              ///         from the circulating supply.
              contract Burner {
                  constructor() payable {
                      selfdestruct(payable(address(this)));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
              import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
              /// @title Arithmetic
              /// @notice Even more math than before.
              library Arithmetic {
                  /// @notice Clamps a value between a minimum and maximum.
                  /// @param _value The value to clamp.
                  /// @param _min   The minimum value.
                  /// @param _max   The maximum value.
                  /// @return The clamped value.
                  function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                      return SignedMath.min(SignedMath.max(_value, _min), _max);
                  }
                  /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                  ///         Returns the result of: c * (1 - 1/d)^exp.
                  /// @param _coefficient Coefficient of the function.
                  /// @param _denominator Fractional denominator.
                  /// @param _exponent    Power function exponent.
                  /// @return Result of c * (1 - 1/d)^exp.
                  function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                      return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard signed math utilities missing in the Solidity language.
               */
              library SignedMath {
                  /**
                   * @dev Returns the largest of two signed numbers.
                   */
                  function max(int256 a, int256 b) internal pure returns (int256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two signed numbers.
                   */
                  function min(int256 a, int256 b) internal pure returns (int256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two signed numbers without overflow.
                   * The result is rounded towards zero.
                   */
                  function average(int256 a, int256 b) internal pure returns (int256) {
                      // Formula from the book "Hacker's Delight"
                      int256 x = (a & b) + ((a ^ b) >> 1);
                      return x + (int256(uint256(x) >> 255) & (a ^ b));
                  }
                  /**
                   * @dev Returns the absolute unsigned value of a signed value.
                   */
                  function abs(int256 n) internal pure returns (uint256) {
                      unchecked {
                          // must be unchecked in order to support `n = type(int256).min`
                          return uint256(n >= 0 ? n : -n);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.8.0;
              /// @notice Arithmetic library with operations for fixed-point numbers.
              /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
              library FixedPointMathLib {
                  /*//////////////////////////////////////////////////////////////
                                  SIMPLIFIED FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                  function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                  }
                  function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                  }
                  function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                  }
                  function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                  }
                  function powWad(int256 x, int256 y) internal pure returns (int256) {
                      // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                      return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                  }
                  function expWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          // When the result is < 0.5 we return zero. This happens when
                          // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                          if (x <= -42139678854452767551) return 0;
                          // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                          // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                          if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                          // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                          // for more intermediate precision and a binary basis. This base conversion
                          // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                          x = (x << 78) / 5**18;
                          // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                          // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                          // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                          int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                          x = x - k * 54916777467707473351141471128;
                          // k is in the range [-61, 195].
                          // Evaluate using a (6, 7)-term rational approximation.
                          // p is made monic, we'll multiply by a scale factor later.
                          int256 y = x + 1346386616545796478920950773328;
                          y = ((y * x) >> 96) + 57155421227552351082224309758442;
                          int256 p = y + x - 94201549194550492254356042504812;
                          p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                          p = p * x + (4385272521454847904659076985693276 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          int256 q = x - 2855989394907223263936484059900;
                          q = ((q * x) >> 96) + 50020603652535783019961831881945;
                          q = ((q * x) >> 96) - 533845033583426703283633433725380;
                          q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                          q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                          q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial won't have zeros in the domain as all its roots are complex.
                              // No scaling is necessary because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r should be in the range (0.09, 0.25) * 2**96.
                          // We now need to multiply r by:
                          // * the scale factor s = ~6.031367120.
                          // * the 2**k factor from the range reduction.
                          // * the 1e18 / 2**96 factor for base conversion.
                          // We do this all at once, with an intermediate result in 2**213
                          // basis, so the final right shift is always by a positive amount.
                          r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                      }
                  }
                  function lnWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          require(x > 0, "UNDEFINED");
                          // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                          // We do this by multiplying by 2**96 / 10**18. But since
                          // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                          // and add ln(2**96 / 10**18) at the end.
                          // Reduce range of x to (1, 2) * 2**96
                          // ln(2^k * x) = k * ln(2) + ln(x)
                          int256 k = int256(log2(uint256(x))) - 96;
                          x <<= uint256(159 - k);
                          x = int256(uint256(x) >> 159);
                          // Evaluate using a (8, 8)-term rational approximation.
                          // p is made monic, we will multiply by a scale factor later.
                          int256 p = x + 3273285459638523848632254066296;
                          p = ((p * x) >> 96) + 24828157081833163892658089445524;
                          p = ((p * x) >> 96) + 43456485725739037958740375743393;
                          p = ((p * x) >> 96) - 11111509109440967052023855526967;
                          p = ((p * x) >> 96) - 45023709667254063763336534515857;
                          p = ((p * x) >> 96) - 14706773417378608786704636184526;
                          p = p * x - (795164235651350426258249787498 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          // q is monic by convention.
                          int256 q = x + 5573035233440673466300451813936;
                          q = ((q * x) >> 96) + 71694874799317883764090561454958;
                          q = ((q * x) >> 96) + 283447036172924575727196451306956;
                          q = ((q * x) >> 96) + 401686690394027663651624208769553;
                          q = ((q * x) >> 96) + 204048457590392012362485061816622;
                          q = ((q * x) >> 96) + 31853899698501571402653359427138;
                          q = ((q * x) >> 96) + 909429971244387300277376558375;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial is known not to have zeros in the domain.
                              // No scaling required because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r is in the range (0, 0.125) * 2**96
                          // Finalization, we need to:
                          // * multiply by the scale factor s = 5.549…
                          // * add ln(2**96 / 10**18)
                          // * add k * ln(2)
                          // * multiply by 10**18 / 2**96 = 5**18 >> 78
                          // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                          r *= 1677202110996718588342820967067443963516166;
                          // add ln(2) * k * 5e18 * 2**192
                          r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                          // add ln(2**96 / 10**18) * 5e18 * 2**192
                          r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                          // base conversion: mul 2**18 / 2**192
                          r >>= 174;
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                  LOW LEVEL FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  function mulDivDown(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // Divide z by the denominator.
                          z := div(z, denominator)
                      }
                  }
                  function mulDivUp(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // First, divide z - 1 by the denominator and add 1.
                          // We allow z - 1 to underflow if z is 0, because we multiply the
                          // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                          z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                      }
                  }
                  function rpow(
                      uint256 x,
                      uint256 n,
                      uint256 scalar
                  ) internal pure returns (uint256 z) {
                      assembly {
                          switch x
                          case 0 {
                              switch n
                              case 0 {
                                  // 0 ** 0 = 1
                                  z := scalar
                              }
                              default {
                                  // 0 ** n = 0
                                  z := 0
                              }
                          }
                          default {
                              switch mod(n, 2)
                              case 0 {
                                  // If n is even, store scalar in z for now.
                                  z := scalar
                              }
                              default {
                                  // If n is odd, store x in z for now.
                                  z := x
                              }
                              // Shifting right by 1 is like dividing by 2.
                              let half := shr(1, scalar)
                              for {
                                  // Shift n right by 1 before looping to halve it.
                                  n := shr(1, n)
                              } n {
                                  // Shift n right by 1 each iteration to halve it.
                                  n := shr(1, n)
                              } {
                                  // Revert immediately if x ** 2 would overflow.
                                  // Equivalent to iszero(eq(div(xx, x), x)) here.
                                  if shr(128, x) {
                                      revert(0, 0)
                                  }
                                  // Store x squared.
                                  let xx := mul(x, x)
                                  // Round to the nearest number.
                                  let xxRound := add(xx, half)
                                  // Revert if xx + half overflowed.
                                  if lt(xxRound, xx) {
                                      revert(0, 0)
                                  }
                                  // Set x to scaled xxRound.
                                  x := div(xxRound, scalar)
                                  // If n is even:
                                  if mod(n, 2) {
                                      // Compute z * x.
                                      let zx := mul(z, x)
                                      // If z * x overflowed:
                                      if iszero(eq(div(zx, x), z)) {
                                          // Revert if x is non-zero.
                                          if iszero(iszero(x)) {
                                              revert(0, 0)
                                          }
                                      }
                                      // Round to the nearest number.
                                      let zxRound := add(zx, half)
                                      // Revert if zx + half overflowed.
                                      if lt(zxRound, zx) {
                                          revert(0, 0)
                                      }
                                      // Return properly scaled zxRound.
                                      z := div(zxRound, scalar)
                                  }
                              }
                          }
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                      GENERAL NUMBER UTILITIES
                  //////////////////////////////////////////////////////////////*/
                  function sqrt(uint256 x) internal pure returns (uint256 z) {
                      assembly {
                          let y := x // We start y at x, which will help us make our initial estimate.
                          z := 181 // The "correct" value is 1, but this saves a multiplication later.
                          // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                          // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                          // We check y >= 2^(k + 8) but shift right by k bits
                          // each branch to ensure that if x >= 256, then y >= 256.
                          if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                              y := shr(128, y)
                              z := shl(64, z)
                          }
                          if iszero(lt(y, 0x1000000000000000000)) {
                              y := shr(64, y)
                              z := shl(32, z)
                          }
                          if iszero(lt(y, 0x10000000000)) {
                              y := shr(32, y)
                              z := shl(16, z)
                          }
                          if iszero(lt(y, 0x1000000)) {
                              y := shr(16, y)
                              z := shl(8, z)
                          }
                          // Goal was to get z*z*y within a small factor of x. More iterations could
                          // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                          // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                          // That's not possible if x < 256 but we can just verify those cases exhaustively.
                          // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                          // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                          // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                          // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                          // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                          // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                          // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                          // There is no overflow risk here since y < 2^136 after the first branch above.
                          z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                          // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          // If x+1 is a perfect square, the Babylonian method cycles between
                          // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                          // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                          // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                          // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                          z := sub(z, lt(div(x, z), z))
                      }
                  }
                  function log2(uint256 x) internal pure returns (uint256 r) {
                      require(x > 0, "UNDEFINED");
                      assembly {
                          r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                          r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                          r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                          r := or(r, shl(4, lt(0xffff, shr(r, x))))
                          r := or(r, shl(3, lt(0xff, shr(r, x))))
                          r := or(r, shl(2, lt(0xf, shr(r, x))))
                          r := or(r, shl(1, lt(0x3, shr(r, x))))
                          r := or(r, lt(0x1, shr(r, x)))
                      }
                  }
              }
              

              File 3 of 9: ResolvedDelegateProxy
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { AddressManager } from "./AddressManager.sol";
              /**
               * @custom:legacy
               * @title ResolvedDelegateProxy
               * @notice ResolvedDelegateProxy is a legacy proxy contract that makes use of the AddressManager to
               *         resolve the implementation address. We're maintaining this contract for backwards
               *         compatibility so we can manage all legacy proxies where necessary.
               */
              contract ResolvedDelegateProxy {
                  /**
                   * @notice Mapping used to store the implementation name that corresponds to this contract. A
                   *         mapping was originally used as a way to bypass the same issue normally solved by
                   *         storing the implementation address in a specific storage slot that does not conflict
                   *         with any other storage slot. Generally NOT a safe solution but works as long as the
                   *         implementation does not also keep a mapping in the first storage slot.
                   */
                  mapping(address => string) private implementationName;
                  /**
                   * @notice Mapping used to store the address of the AddressManager contract where the
                   *         implementation address will be resolved from. Same concept here as with the above
                   *         mapping. Also generally unsafe but fine if the implementation doesn't keep a mapping
                   *         in the second storage slot.
                   */
                  mapping(address => AddressManager) private addressManager;
                  /**
                   * @param _addressManager  Address of the AddressManager.
                   * @param _implementationName implementationName of the contract to proxy to.
                   */
                  constructor(AddressManager _addressManager, string memory _implementationName) {
                      addressManager[address(this)] = _addressManager;
                      implementationName[address(this)] = _implementationName;
                  }
                  /**
                   * @notice Fallback, performs a delegatecall to the resolved implementation address.
                   */
                  // solhint-disable-next-line no-complex-fallback
                  fallback() external payable {
                      address target = addressManager[address(this)].getAddress(
                          (implementationName[address(this)])
                      );
                      require(target != address(0), "ResolvedDelegateProxy: target address must be initialized");
                      // slither-disable-next-line controlled-delegatecall
                      (bool success, bytes memory returndata) = target.delegatecall(msg.data);
                      if (success == true) {
                          assembly {
                              return(add(returndata, 0x20), mload(returndata))
                          }
                      } else {
                          assembly {
                              revert(add(returndata, 0x20), mload(returndata))
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              /**
               * @custom:legacy
               * @title AddressManager
               * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
               *         system to manage a registry of string names to addresses. We now use a more standard
               *         proxy system instead, but this contract is still necessary for backwards compatibility
               *         with several older contracts.
               */
              contract AddressManager is Ownable {
                  /**
                   * @notice Mapping of the hashes of string names to addresses.
                   */
                  mapping(bytes32 => address) private addresses;
                  /**
                   * @notice Emitted when an address is modified in the registry.
                   *
                   * @param name       String name being set in the registry.
                   * @param newAddress Address set for the given name.
                   * @param oldAddress Address that was previously set for the given name.
                   */
                  event AddressSet(string indexed name, address newAddress, address oldAddress);
                  /**
                   * @notice Changes the address associated with a particular name.
                   *
                   * @param _name    String name to associate an address with.
                   * @param _address Address to associate with the name.
                   */
                  function setAddress(string memory _name, address _address) external onlyOwner {
                      bytes32 nameHash = _getNameHash(_name);
                      address oldAddress = addresses[nameHash];
                      addresses[nameHash] = _address;
                      emit AddressSet(_name, _address, oldAddress);
                  }
                  /**
                   * @notice Retrieves the address associated with a given name.
                   *
                   * @param _name Name to retrieve an address for.
                   *
                   * @return Address associated with the given name.
                   */
                  function getAddress(string memory _name) external view returns (address) {
                      return addresses[_getNameHash(_name)];
                  }
                  /**
                   * @notice Computes the hash of a name.
                   *
                   * @param _name Name to compute a hash for.
                   *
                   * @return Hash of the given name.
                   */
                  function _getNameHash(string memory _name) internal pure returns (bytes32) {
                      return keccak256(abi.encodePacked(_name));
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
              pragma solidity ^0.8.0;
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
              }
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor() {
                      _transferOwnership(_msgSender());
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      _checkOwner();
                      _;
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if the sender is not the owner.
                   */
                  function _checkOwner() internal view virtual {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      _transferOwnership(address(0));
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      _transferOwnership(newOwner);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Internal function without access restriction.
                   */
                  function _transferOwnership(address newOwner) internal virtual {
                      address oldOwner = _owner;
                      _owner = newOwner;
                      emit OwnershipTransferred(oldOwner, newOwner);
                  }
              }
              

              File 4 of 9: ProxyAdmin
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              /**
               * @custom:legacy
               * @title AddressManager
               * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
               *         system to manage a registry of string names to addresses. We now use a more standard
               *         proxy system instead, but this contract is still necessary for backwards compatibility
               *         with several older contracts.
               */
              contract AddressManager is Ownable {
                  /**
                   * @notice Mapping of the hashes of string names to addresses.
                   */
                  mapping(bytes32 => address) private addresses;
                  /**
                   * @notice Emitted when an address is modified in the registry.
                   *
                   * @param name       String name being set in the registry.
                   * @param newAddress Address set for the given name.
                   * @param oldAddress Address that was previously set for the given name.
                   */
                  event AddressSet(string indexed name, address newAddress, address oldAddress);
                  /**
                   * @notice Changes the address associated with a particular name.
                   *
                   * @param _name    String name to associate an address with.
                   * @param _address Address to associate with the name.
                   */
                  function setAddress(string memory _name, address _address) external onlyOwner {
                      bytes32 nameHash = _getNameHash(_name);
                      address oldAddress = addresses[nameHash];
                      addresses[nameHash] = _address;
                      emit AddressSet(_name, _address, oldAddress);
                  }
                  /**
                   * @notice Retrieves the address associated with a given name.
                   *
                   * @param _name Name to retrieve an address for.
                   *
                   * @return Address associated with the given name.
                   */
                  function getAddress(string memory _name) external view returns (address) {
                      return addresses[_getNameHash(_name)];
                  }
                  /**
                   * @notice Computes the hash of a name.
                   *
                   * @param _name Name to compute a hash for.
                   *
                   * @return Hash of the given name.
                   */
                  function _getNameHash(string memory _name) internal pure returns (bytes32) {
                      return keccak256(abi.encodePacked(_name));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title IL1ChugSplashDeployer
               */
              interface IL1ChugSplashDeployer {
                  function isUpgrading() external view returns (bool);
              }
              /**
               * @custom:legacy
               * @title L1ChugSplashProxy
               * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
               *         functions `setCode` and `setStorage` for changing the code or storage of the contract.
               *
               *         Note for future developers: do NOT make anything in this contract 'public' unless you
               *         know what you're doing. Anything public can potentially have a function signature that
               *         conflicts with a signature attached to the implementation contract. Public functions
               *         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
               *         reason not to have that modifier. And there almost certainly is not a good reason to not
               *         have that modifier. Beware!
               */
              contract L1ChugSplashProxy {
                  /**
                   * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
                   *         contract, the appended bytecode will be deployed as given.
                   */
                  bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
                  /**
                   * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice Blocks a function from being called when the parent signals that the system should
                   *         be paused via an isUpgrading function.
                   */
                  modifier onlyWhenNotPaused() {
                      address owner = _getOwner();
                      // We do a low-level call because there's no guarantee that the owner actually *is* an
                      // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                      // it turns out that it isn't the right type of contract.
                      (bool success, bytes memory returndata) = owner.staticcall(
                          abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
                      );
                      // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                      // can just continue as normal. We also expect that the return value is exactly 32 bytes
                      // long. If this isn't the case then we can safely ignore the result.
                      if (success && returndata.length == 32) {
                          // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                          // case that the isUpgrading function returned something other than 0 or 1. But we only
                          // really care about the case where this value is 0 (= false).
                          uint256 ret = abi.decode(returndata, (uint256));
                          require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
                      }
                      _;
                  }
                  /**
                   * @notice Makes a proxy call instead of triggering the given function when the caller is
                   *         either the owner or the zero address. Caller can only ever be the zero address if
                   *         this function is being called off-chain via eth_call, which is totally fine and can
                   *         be convenient for client-side tooling. Avoids situations where the proxy and
                   *         implementation share a sighash and the proxy function ends up being called instead
                   *         of the implementation one.
                   *
                   *         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
                   *         there's a way for someone to send a transaction with msg.sender == address(0) in any
                   *         real context then we have much bigger problems. Primary reason to include this
                   *         additional allowed sender is because the owner address can be changed dynamically
                   *         and we do not want clients to have to keep track of the current owner in order to
                   *         make an eth_call that doesn't trigger the proxied contract.
                   */
                  // slither-disable-next-line incorrect-modifier
                  modifier proxyCallIfNotOwner() {
                      if (msg.sender == _getOwner() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @param _owner Address of the initial contract owner.
                   */
                  constructor(address _owner) {
                      _setOwner(_owner);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Sets the code that should be running behind this proxy.
                   *
                   *         Note: This scheme is a bit different from the standard proxy scheme where one would
                   *         typically deploy the code separately and then set the implementation address. We're
                   *         doing it this way because it gives us a lot more freedom on the client side. Can
                   *         only be triggered by the contract owner.
                   *
                   * @param _code New contract code to run inside this contract.
                   */
                  function setCode(bytes memory _code) external proxyCallIfNotOwner {
                      // Get the code hash of the current implementation.
                      address implementation = _getImplementation();
                      // If the code hash matches the new implementation then we return early.
                      if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                          return;
                      }
                      // Create the deploycode by appending the magic prefix.
                      bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
                      // Deploy the code and set the new implementation address.
                      address newImplementation;
                      assembly {
                          newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                      }
                      // Check that the code was actually deployed correctly. I'm not sure if you can ever
                      // actually fail this check. Should only happen if the contract creation from above runs
                      // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                      // should be doing this check anyway though.
                      require(
                          _getAccountCodeHash(newImplementation) == keccak256(_code),
                          "L1ChugSplashProxy: code was not correctly deployed"
                      );
                      _setImplementation(newImplementation);
                  }
                  /**
                   * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
                   *         perform upgrades in a more transparent way. Only callable by the owner.
                   *
                   * @param _key   Storage key to modify.
                   * @param _value New value for the storage key.
                   */
                  function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
                      assembly {
                          sstore(_key, _value)
                      }
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _owner New owner of the proxy contract.
                   */
                  function setOwner(address _owner) external proxyCallIfNotOwner {
                      _setOwner(_owner);
                  }
                  /**
                   * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
                   *         making an eth_call and setting the "from" address to address(0).
                   *
                   * @return Owner address.
                   */
                  function getOwner() external proxyCallIfNotOwner returns (address) {
                      return _getOwner();
                  }
                  /**
                   * @notice Queries the implementation address. Can only be called by the owner OR by making an
                   *         eth_call and setting the "from" address to address(0).
                   *
                   * @return Implementation address.
                   */
                  function getImplementation() external proxyCallIfNotOwner returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _owner New owner of the proxy contract.
                   */
                  function _setOwner(address _owner) internal {
                      assembly {
                          sstore(OWNER_KEY, _owner)
                      }
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal onlyWhenNotPaused {
                      address implementation = _getImplementation();
                      require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address implementation;
                      assembly {
                          implementation := sload(IMPLEMENTATION_KEY)
                      }
                      return implementation;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getOwner() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
                  /**
                   * @notice Gets the code hash for a given account.
                   *
                   * @param _account Address of the account to get a code hash for.
                   *
                   * @return Code hash for the account.
                   */
                  function _getAccountCodeHash(address _account) internal view returns (bytes32) {
                      bytes32 codeHash;
                      assembly {
                          codeHash := extcodehash(_account)
                      }
                      return codeHash;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title Proxy
               * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
               *         if the caller is address(0), meaning that the call originated from an off-chain
               *         simulation.
               */
              contract Proxy {
                  /**
                   * @notice The storage slot that holds the address of the implementation.
                   *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice The storage slot that holds the address of the owner.
                   *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice An event that is emitted each time the implementation is changed. This event is part
                   *         of the EIP-1967 specification.
                   *
                   * @param implementation The address of the implementation contract
                   */
                  event Upgraded(address indexed implementation);
                  /**
                   * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                   *         EIP-1967 specification.
                   *
                   * @param previousAdmin The previous owner of the contract
                   * @param newAdmin      The new owner of the contract
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /**
                   * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                   *         eth_call to interact with this proxy without needing to use low-level storage
                   *         inspection. We assume that nobody is able to trigger calls from address(0) during
                   *         normal EVM execution.
                   */
                  modifier proxyCallIfNotAdmin() {
                      if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                   *         EIP-1967 admin storage slot so that accidental storage collision with the
                   *         implementation is not possible.
                   *
                   * @param _admin Address of the initial contract admin. Admin as the ability to access the
                   *               transparent proxy interface.
                   */
                  constructor(address _admin) {
                      _changeAdmin(_admin);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Set the implementation contract address. The code at the given address will execute
                   *         when this contract is called.
                   *
                   * @param _implementation Address of the implementation contract.
                   */
                  function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                      _setImplementation(_implementation);
                  }
                  /**
                   * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                   *         atomic execution of initialization-based upgrades.
                   *
                   * @param _implementation Address of the implementation contract.
                   * @param _data           Calldata to delegatecall the new implementation with.
                   */
                  function upgradeToAndCall(address _implementation, bytes calldata _data)
                      public
                      payable
                      virtual
                      proxyCallIfNotAdmin
                      returns (bytes memory)
                  {
                      _setImplementation(_implementation);
                      (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                      require(success, "Proxy: delegatecall to new implementation contract failed");
                      return returndata;
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                      _changeAdmin(_admin);
                  }
                  /**
                   * @notice Gets the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function admin() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getAdmin();
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                      emit Upgraded(_implementation);
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function _changeAdmin(address _admin) internal {
                      address previous = _getAdmin();
                      assembly {
                          sstore(OWNER_KEY, _admin)
                      }
                      emit AdminChanged(previous, _admin);
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal {
                      address impl = _getImplementation();
                      require(impl != address(0), "Proxy: implementation not initialized");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address impl;
                      assembly {
                          impl := sload(IMPLEMENTATION_KEY)
                      }
                      return impl;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getAdmin() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              import { Proxy } from "./Proxy.sol";
              import { AddressManager } from "../legacy/AddressManager.sol";
              import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol";
              /**
               * @title IStaticERC1967Proxy
               * @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface.
               */
              interface IStaticERC1967Proxy {
                  function implementation() external view returns (address);
                  function admin() external view returns (address);
              }
              /**
               * @title IStaticL1ChugSplashProxy
               * @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface.
               */
              interface IStaticL1ChugSplashProxy {
                  function getImplementation() external view returns (address);
                  function getOwner() external view returns (address);
              }
              /**
               * @title ProxyAdmin
               * @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy,
               *         based on the OpenZeppelin implementation. It has backwards compatibility logic to work
               *         with the various types of proxies that have been deployed by Optimism in the past.
               */
              contract ProxyAdmin is Ownable {
                  /**
                   * @notice The proxy types that the ProxyAdmin can manage.
                   *
                   * @custom:value ERC1967    Represents an ERC1967 compliant transparent proxy interface.
                   * @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy).
                   * @custom:value RESOLVED   Represents the ResolvedDelegate proxy (legacy).
                   */
                  enum ProxyType {
                      ERC1967,
                      CHUGSPLASH,
                      RESOLVED
                  }
                  /**
                   * @notice A mapping of proxy types, used for backwards compatibility.
                   */
                  mapping(address => ProxyType) public proxyType;
                  /**
                   * @notice A reverse mapping of addresses to names held in the AddressManager. This must be
                   *         manually kept up to date with changes in the AddressManager for this contract
                   *         to be able to work as an admin for the ResolvedDelegateProxy type.
                   */
                  mapping(address => string) public implementationName;
                  /**
                   * @notice The address of the address manager, this is required to manage the
                   *         ResolvedDelegateProxy type.
                   */
                  AddressManager public addressManager;
                  /**
                   * @notice A legacy upgrading indicator used by the old Chugsplash Proxy.
                   */
                  bool internal upgrading;
                  /**
                   * @param _owner Address of the initial owner of this contract.
                   */
                  constructor(address _owner) Ownable() {
                      _transferOwnership(_owner);
                  }
                  /**
                   * @notice Sets the proxy type for a given address. Only required for non-standard (legacy)
                   *         proxy types.
                   *
                   * @param _address Address of the proxy.
                   * @param _type    Type of the proxy.
                   */
                  function setProxyType(address _address, ProxyType _type) external onlyOwner {
                      proxyType[_address] = _type;
                  }
                  /**
                   * @notice Sets the implementation name for a given address. Only required for
                   *         ResolvedDelegateProxy type proxies that have an implementation name.
                   *
                   * @param _address Address of the ResolvedDelegateProxy.
                   * @param _name    Name of the implementation for the proxy.
                   */
                  function setImplementationName(address _address, string memory _name) external onlyOwner {
                      implementationName[_address] = _name;
                  }
                  /**
                   * @notice Set the address of the AddressManager. This is required to manage legacy
                   *         ResolvedDelegateProxy type proxy contracts.
                   *
                   * @param _address Address of the AddressManager.
                   */
                  function setAddressManager(AddressManager _address) external onlyOwner {
                      addressManager = _address;
                  }
                  /**
                   * @custom:legacy
                   * @notice Set an address in the address manager. Since only the owner of the AddressManager
                   *         can directly modify addresses and the ProxyAdmin will own the AddressManager, this
                   *         gives the owner of the ProxyAdmin the ability to modify addresses directly.
                   *
                   * @param _name    Name to set within the AddressManager.
                   * @param _address Address to attach to the given name.
                   */
                  function setAddress(string memory _name, address _address) external onlyOwner {
                      addressManager.setAddress(_name, _address);
                  }
                  /**
                   * @custom:legacy
                   * @notice Set the upgrading status for the Chugsplash proxy type.
                   *
                   * @param _upgrading Whether or not the system is upgrading.
                   */
                  function setUpgrading(bool _upgrading) external onlyOwner {
                      upgrading = _upgrading;
                  }
                  /**
                   * @custom:legacy
                   * @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening.
                   *
                   * @return Whether or not there is an upgrade going on. May not actually tell you whether an
                   *         upgrade is going on, since we don't currently plan to use this variable for anything
                   *         other than a legacy indicator to fix a UX bug in the ChugSplash proxy.
                   */
                  function isUpgrading() external view returns (bool) {
                      return upgrading;
                  }
                  /**
                   * @notice Returns the implementation of the given proxy address.
                   *
                   * @param _proxy Address of the proxy to get the implementation of.
                   *
                   * @return Address of the implementation of the proxy.
                   */
                  function getProxyImplementation(address _proxy) external view returns (address) {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          return IStaticERC1967Proxy(_proxy).implementation();
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          return IStaticL1ChugSplashProxy(_proxy).getImplementation();
                      } else if (ptype == ProxyType.RESOLVED) {
                          return addressManager.getAddress(implementationName[_proxy]);
                      } else {
                          revert("ProxyAdmin: unknown proxy type");
                      }
                  }
                  /**
                   * @notice Returns the admin of the given proxy address.
                   *
                   * @param _proxy Address of the proxy to get the admin of.
                   *
                   * @return Address of the admin of the proxy.
                   */
                  function getProxyAdmin(address payable _proxy) external view returns (address) {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          return IStaticERC1967Proxy(_proxy).admin();
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          return IStaticL1ChugSplashProxy(_proxy).getOwner();
                      } else if (ptype == ProxyType.RESOLVED) {
                          return addressManager.owner();
                      } else {
                          revert("ProxyAdmin: unknown proxy type");
                      }
                  }
                  /**
                   * @notice Updates the admin of the given proxy address.
                   *
                   * @param _proxy    Address of the proxy to update.
                   * @param _newAdmin Address of the new proxy admin.
                   */
                  function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          Proxy(_proxy).changeAdmin(_newAdmin);
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          L1ChugSplashProxy(_proxy).setOwner(_newAdmin);
                      } else if (ptype == ProxyType.RESOLVED) {
                          addressManager.transferOwnership(_newAdmin);
                      } else {
                          revert("ProxyAdmin: unknown proxy type");
                      }
                  }
                  /**
                   * @notice Changes a proxy's implementation contract.
                   *
                   * @param _proxy          Address of the proxy to upgrade.
                   * @param _implementation Address of the new implementation address.
                   */
                  function upgrade(address payable _proxy, address _implementation) public onlyOwner {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          Proxy(_proxy).upgradeTo(_implementation);
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          L1ChugSplashProxy(_proxy).setStorage(
                              // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                              0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc,
                              bytes32(uint256(uint160(_implementation)))
                          );
                      } else if (ptype == ProxyType.RESOLVED) {
                          string memory name = implementationName[_proxy];
                          addressManager.setAddress(name, _implementation);
                      } else {
                          // It should not be possible to retrieve a ProxyType value which is not matched by
                          // one of the previous conditions.
                          assert(false);
                      }
                  }
                  /**
                   * @notice Changes a proxy's implementation contract and delegatecalls the new implementation
                   *         with some given data. Useful for atomic upgrade-and-initialize calls.
                   *
                   * @param _proxy          Address of the proxy to upgrade.
                   * @param _implementation Address of the new implementation address.
                   * @param _data           Data to trigger the new implementation with.
                   */
                  function upgradeAndCall(
                      address payable _proxy,
                      address _implementation,
                      bytes memory _data
                  ) external payable onlyOwner {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data);
                      } else {
                          // reverts if proxy type is unknown
                          upgrade(_proxy, _implementation);
                          (bool success, ) = _proxy.call{ value: msg.value }(_data);
                          require(success, "ProxyAdmin: call to proxy after upgrade failed");
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
              pragma solidity ^0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor() {
                      _transferOwnership(_msgSender());
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      _checkOwner();
                      _;
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if the sender is not the owner.
                   */
                  function _checkOwner() internal view virtual {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      _transferOwnership(address(0));
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      _transferOwnership(newOwner);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Internal function without access restriction.
                   */
                  function _transferOwnership(address newOwner) internal virtual {
                      address oldOwner = _owner;
                      _owner = newOwner;
                      emit OwnershipTransferred(oldOwner, newOwner);
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
              }
              

              File 5 of 9: L1StandardBridge
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Predeploys } from "src/libraries/Predeploys.sol";
              import { StandardBridge } from "src/universal/StandardBridge.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
              import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
              import { Constants } from "src/libraries/Constants.sol";
              /// @custom:proxied
              /// @title L1StandardBridge
              /// @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
              ///         L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
              ///         contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
              ///         stored within this contract. After Bedrock, ETH is instead stored inside the
              ///         OptimismPortal contract.
              ///         NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
              ///         of some token types that may not be properly supported by this contract include, but are
              ///         not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
              contract L1StandardBridge is StandardBridge, ISemver {
                  /// @custom:legacy
                  /// @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated.
                  /// @param from      Address of the depositor.
                  /// @param to        Address of the recipient on L2.
                  /// @param amount    Amount of ETH deposited.
                  /// @param extraData Extra data attached to the deposit.
                  event ETHDepositInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @custom:legacy
                  /// @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized.
                  /// @param from      Address of the withdrawer.
                  /// @param to        Address of the recipient on L1.
                  /// @param amount    Amount of ETH withdrawn.
                  /// @param extraData Extra data attached to the withdrawal.
                  event ETHWithdrawalFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @custom:legacy
                  /// @notice Emitted whenever an ERC20 deposit is initiated.
                  /// @param l1Token   Address of the token on L1.
                  /// @param l2Token   Address of the corresponding token on L2.
                  /// @param from      Address of the depositor.
                  /// @param to        Address of the recipient on L2.
                  /// @param amount    Amount of the ERC20 deposited.
                  /// @param extraData Extra data attached to the deposit.
                  event ERC20DepositInitiated(
                      address indexed l1Token,
                      address indexed l2Token,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @custom:legacy
                  /// @notice Emitted whenever an ERC20 withdrawal is finalized.
                  /// @param l1Token   Address of the token on L1.
                  /// @param l2Token   Address of the corresponding token on L2.
                  /// @param from      Address of the withdrawer.
                  /// @param to        Address of the recipient on L1.
                  /// @param amount    Amount of the ERC20 withdrawn.
                  /// @param extraData Extra data attached to the withdrawal.
                  event ERC20WithdrawalFinalized(
                      address indexed l1Token,
                      address indexed l2Token,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @notice Semantic version.
                  /// @custom:semver 2.1.0
                  string public constant version = "2.1.0";
                  /// @notice Address of the SuperchainConfig contract.
                  SuperchainConfig public superchainConfig;
                  /// @notice Constructs the L1StandardBridge contract.
                  constructor() StandardBridge() {
                      initialize({ _messenger: CrossDomainMessenger(address(0)), _superchainConfig: SuperchainConfig(address(0)) });
                  }
                  /// @notice Initializer.
                  /// @param _messenger        Contract for the CrossDomainMessenger on this network.
                  /// @param _superchainConfig Contract for the SuperchainConfig on this network.
                  function initialize(CrossDomainMessenger _messenger, SuperchainConfig _superchainConfig) public initializer {
                      superchainConfig = _superchainConfig;
                      __StandardBridge_init({
                          _messenger: _messenger,
                          _otherBridge: StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE))
                      });
                  }
                  /// @inheritdoc StandardBridge
                  function paused() public view override returns (bool) {
                      return superchainConfig.paused();
                  }
                  /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
                  receive() external payable override onlyEOA {
                      _initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ETH into the sender's account on L2.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA {
                      _initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ETH into a target account on L2.
                  ///         Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will
                  ///         be locked in the L2StandardBridge. ETH may be recoverable if the call can be
                  ///         successfully replayed by increasing the amount of gas supplied to the call. If the
                  ///         call will fail for any amount of gas, then the ETH will be locked permanently.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) external payable {
                      _initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ERC20 tokens into the sender's account on L2.
                  /// @param _l1Token     Address of the L1 token being deposited.
                  /// @param _l2Token     Address of the corresponding token on L2.
                  /// @param _amount      Amount of the ERC20 to deposit.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositERC20(
                      address _l1Token,
                      address _l2Token,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      external
                      virtual
                      onlyEOA
                  {
                      _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ERC20 tokens into a target account on L2.
                  /// @param _l1Token     Address of the L1 token being deposited.
                  /// @param _l2Token     Address of the corresponding token on L2.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _amount      Amount of the ERC20 to deposit.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositERC20To(
                      address _l1Token,
                      address _l2Token,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      external
                      virtual
                  {
                      _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Finalizes a withdrawal of ETH from L2.
                  /// @param _from      Address of the withdrawer on L2.
                  /// @param _to        Address of the recipient on L1.
                  /// @param _amount    Amount of ETH to withdraw.
                  /// @param _extraData Optional data forwarded from L2.
                  function finalizeETHWithdrawal(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      external
                      payable
                  {
                      finalizeBridgeETH(_from, _to, _amount, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Finalizes a withdrawal of ERC20 tokens from L2.
                  /// @param _l1Token   Address of the token on L1.
                  /// @param _l2Token   Address of the corresponding token on L2.
                  /// @param _from      Address of the withdrawer on L2.
                  /// @param _to        Address of the recipient on L1.
                  /// @param _amount    Amount of the ERC20 to withdraw.
                  /// @param _extraData Optional data forwarded from L2.
                  function finalizeERC20Withdrawal(
                      address _l1Token,
                      address _l2Token,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      external
                  {
                      finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Retrieves the access of the corresponding L2 bridge contract.
                  /// @return Address of the corresponding L2 bridge contract.
                  function l2TokenBridge() external view returns (address) {
                      return address(otherBridge);
                  }
                  /// @notice Internal function for initiating an ETH deposit.
                  /// @param _from        Address of the sender on L1.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  function _initiateETHDeposit(address _from, address _to, uint32 _minGasLimit, bytes memory _extraData) internal {
                      _initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
                  }
                  /// @notice Internal function for initiating an ERC20 deposit.
                  /// @param _l1Token     Address of the L1 token being deposited.
                  /// @param _l2Token     Address of the corresponding token on L2.
                  /// @param _from        Address of the sender on L1.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _amount      Amount of the ERC20 to deposit.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  function _initiateERC20Deposit(
                      address _l1Token,
                      address _l2Token,
                      address _from,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes memory _extraData
                  )
                      internal
                  {
                      _initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event.
                  ///         This is necessary for backwards compatibility with the legacy bridge.
                  function _emitETHBridgeInitiated(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ETHDepositInitiated(_from, _to, _amount, _extraData);
                      super._emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated
                  ///         event. This is necessary for backwards compatibility with the legacy bridge.
                  function _emitETHBridgeFinalized(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData);
                      super._emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
                  ///         event. This is necessary for backwards compatibility with the legacy bridge.
                  function _emitERC20BridgeInitiated(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                      super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
                  ///         event. This is necessary for backwards compatibility with the legacy bridge.
                  function _emitERC20BridgeFinalized(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                      super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Predeploys
              /// @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
              library Predeploys {
                  /// @notice Address of the L2ToL1MessagePasser predeploy.
                  address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                  /// @notice Address of the L2CrossDomainMessenger predeploy.
                  address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                  /// @notice Address of the L2StandardBridge predeploy.
                  address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                  /// @notice Address of the L2ERC721Bridge predeploy.
                  address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                  //// @notice Address of the SequencerFeeWallet predeploy.
                  address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                  /// @notice Address of the OptimismMintableERC20Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                  /// @notice Address of the OptimismMintableERC721Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                  /// @notice Address of the L1Block predeploy.
                  address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                  /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                  ///         and helpers for computing the L1 portion of the transaction fee.
                  address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                  /// @custom:legacy
                  /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                  ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                  address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                  /// @custom:legacy
                  /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                  address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                  /// @notice Address of the canonical WETH9 contract.
                  address internal constant WETH9 = 0x4200000000000000000000000000000000000006;
                  /// @custom:legacy
                  /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                  ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                  ///         can no longer be accessed.
                  address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                  /// @custom:legacy
                  /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                  ///         instead, which exposes more information about the L1 state.
                  address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                  /// @custom:legacy
                  /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                  ///         L2ToL1MessagePasser contract instead.
                  address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                  /// @notice Address of the ProxyAdmin predeploy.
                  address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                  /// @notice Address of the BaseFeeVault predeploy.
                  address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                  /// @notice Address of the L1FeeVault predeploy.
                  address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                  /// @notice Address of the GovernanceToken predeploy.
                  address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                  /// @notice Address of the SchemaRegistry predeploy.
                  address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                  /// @notice Address of the EAS predeploy.
                  address internal constant EAS = 0x4200000000000000000000000000000000000021;
                  /// @notice Address of the MultiCall3 predeploy.
                  address internal constant MultiCall3 = 0xcA11bde05977b3631167028862bE2a173976CA11;
                  /// @notice Address of the Create2Deployer predeploy.
                  address internal constant Create2Deployer = 0x13b0D85CcB8bf860b6b79AF3029fCA081AE9beF2;
                  /// @notice Address of the Safe_v130 predeploy.
                  address internal constant Safe_v130 = 0x69f4D1788e39c87893C980c06EdF4b7f686e2938;
                  /// @notice Address of the SafeL2_v130 predeploy.
                  address internal constant SafeL2_v130 = 0xfb1bffC9d739B8D520DaF37dF666da4C687191EA;
                  /// @notice Address of the MultiSendCallOnly_v130 predeploy.
                  address internal constant MultiSendCallOnly_v130 = 0xA1dabEF33b3B82c7814B6D82A79e50F4AC44102B;
                  /// @notice Address of the SafeSingletonFactory predeploy.
                  address internal constant SafeSingletonFactory = 0x914d7Fec6aaC8cd542e72Bca78B30650d45643d7;
                  /// @notice Address of the DeterministicDeploymentProxy predeploy.
                  address internal constant DeterministicDeploymentProxy = 0x4e59b44847b379578588920cA78FbF26c0B4956C;
                  /// @notice Address of the MultiSend_v130 predeploy.
                  address internal constant MultiSend_v130 = 0x998739BFdAAdde7C933B942a68053933098f9EDa;
                  /// @notice Address of the Permit2 predeploy.
                  address internal constant Permit2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
                  /// @notice Address of the SenderCreator predeploy.
                  address internal constant SenderCreator = 0x7fc98430eAEdbb6070B35B39D798725049088348;
                  /// @notice Address of the EntryPoint predeploy.
                  address internal constant EntryPoint = 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
              import { Address } from "@openzeppelin/contracts/utils/Address.sol";
              import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { IOptimismMintableERC20, ILegacyMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
              import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
              import { OptimismMintableERC20 } from "src/universal/OptimismMintableERC20.sol";
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              /// @custom:upgradeable
              /// @title StandardBridge
              /// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
              ///         the core bridging logic, including escrowing tokens that are native to the local chain
              ///         and minting/burning tokens that are native to the remote chain.
              abstract contract StandardBridge is Initializable {
                  using SafeERC20 for IERC20;
                  /// @notice The L2 gas limit set when eth is depoisited using the receive() function.
                  uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
                  /// @custom:legacy
                  /// @custom:spacer messenger
                  /// @notice Spacer for backwards compatibility.
                  bytes30 private spacer_0_2_30;
                  /// @custom:legacy
                  /// @custom:spacer l2TokenBridge
                  /// @notice Spacer for backwards compatibility.
                  address private spacer_1_0_20;
                  /// @notice Mapping that stores deposits for a given pair of local and remote tokens.
                  mapping(address => mapping(address => uint256)) public deposits;
                  /// @notice Messenger contract on this domain.
                  /// @custom:network-specific
                  CrossDomainMessenger public messenger;
                  /// @notice Corresponding bridge on the other domain.
                  /// @custom:network-specific
                  StandardBridge public otherBridge;
                  /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                  ///         A gap size of 45 was chosen here, so that the first slot used in a child contract
                  ///         would be a multiple of 50.
                  uint256[45] private __gap;
                  /// @notice Emitted when an ETH bridge is initiated to the other chain.
                  /// @param from      Address of the sender.
                  /// @param to        Address of the receiver.
                  /// @param amount    Amount of ETH sent.
                  /// @param extraData Extra data sent with the transaction.
                  event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @notice Emitted when an ETH bridge is finalized on this chain.
                  /// @param from      Address of the sender.
                  /// @param to        Address of the receiver.
                  /// @param amount    Amount of ETH sent.
                  /// @param extraData Extra data sent with the transaction.
                  event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @notice Emitted when an ERC20 bridge is initiated to the other chain.
                  /// @param localToken  Address of the ERC20 on this chain.
                  /// @param remoteToken Address of the ERC20 on the remote chain.
                  /// @param from        Address of the sender.
                  /// @param to          Address of the receiver.
                  /// @param amount      Amount of the ERC20 sent.
                  /// @param extraData   Extra data sent with the transaction.
                  event ERC20BridgeInitiated(
                      address indexed localToken,
                      address indexed remoteToken,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @notice Emitted when an ERC20 bridge is finalized on this chain.
                  /// @param localToken  Address of the ERC20 on this chain.
                  /// @param remoteToken Address of the ERC20 on the remote chain.
                  /// @param from        Address of the sender.
                  /// @param to          Address of the receiver.
                  /// @param amount      Amount of the ERC20 sent.
                  /// @param extraData   Extra data sent with the transaction.
                  event ERC20BridgeFinalized(
                      address indexed localToken,
                      address indexed remoteToken,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
                  ///         calling code within their constructors, but also doesn't really matter since we're
                  ///         just trying to prevent users accidentally depositing with smart contract wallets.
                  modifier onlyEOA() {
                      require(!Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA");
                      _;
                  }
                  /// @notice Ensures that the caller is a cross-chain message from the other bridge.
                  modifier onlyOtherBridge() {
                      require(
                          msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge),
                          "StandardBridge: function can only be called from the other bridge"
                      );
                      _;
                  }
                  /// @notice Initializer.
                  /// @param _messenger   Contract for CrossDomainMessenger on this network.
                  /// @param _otherBridge Contract for the other StandardBridge contract.
                  // solhint-disable-next-line func-name-mixedcase
                  function __StandardBridge_init(
                      CrossDomainMessenger _messenger,
                      StandardBridge _otherBridge
                  )
                      internal
                      onlyInitializing
                  {
                      messenger = _messenger;
                      otherBridge = _otherBridge;
                  }
                  /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
                  ///         Must be implemented by contracts that inherit.
                  receive() external payable virtual;
                  /// @notice Getter for messenger contract.
                  ///         Public getter is legacy and will be removed in the future. Use `messenger` instead.
                  /// @return Contract of the messenger on this domain.
                  /// @custom:legacy
                  function MESSENGER() external view returns (CrossDomainMessenger) {
                      return messenger;
                  }
                  /// @notice Getter for the other bridge contract.
                  ///         Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
                  /// @return Contract of the bridge on the other network.
                  /// @custom:legacy
                  function OTHER_BRIDGE() external view returns (StandardBridge) {
                      return otherBridge;
                  }
                  /// @notice This function should return true if the contract is paused.
                  ///         On L1 this function will check the SuperchainConfig for its paused status.
                  ///         On L2 this function should be a no-op.
                  /// @return Whether or not the contract is paused.
                  function paused() public view virtual returns (bool) {
                      return false;
                  }
                  /// @notice Sends ETH to the sender's address on the other chain.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
                      _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
                  }
                  /// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
                  ///         smart contract and the call fails, the ETH will be temporarily locked in the
                  ///         StandardBridge on the other chain until the call is replayed. If the call cannot be
                  ///         replayed with any amount of gas (call always reverts), then the ETH will be
                  ///         permanently locked in the StandardBridge on the other chain. ETH will also
                  ///         be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
                  ///         in that case.
                  /// @param _to          Address of the receiver.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
                      _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
                  }
                  /// @notice Sends ERC20 tokens to the sender's address on the other chain. Note that if the
                  ///         ERC20 token on the other chain does not recognize the local token as the correct
                  ///         pair token, the ERC20 bridge will fail and the tokens will be returned to sender on
                  ///         this chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _amount      Amount of local tokens to deposit.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeERC20(
                      address _localToken,
                      address _remoteToken,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      public
                      virtual
                      onlyEOA
                  {
                      _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
                  }
                  /// @notice Sends ERC20 tokens to a receiver's address on the other chain. Note that if the
                  ///         ERC20 token on the other chain does not recognize the local token as the correct
                  ///         pair token, the ERC20 bridge will fail and the tokens will be returned to sender on
                  ///         this chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of local tokens to deposit.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeERC20To(
                      address _localToken,
                      address _remoteToken,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      public
                      virtual
                  {
                      _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
                  }
                  /// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
                  ///         StandardBridge contract on the remote chain.
                  /// @param _from      Address of the sender.
                  /// @param _to        Address of the receiver.
                  /// @param _amount    Amount of ETH being bridged.
                  /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
                  ///                   not be triggered with this data, but it will be emitted and can be used
                  ///                   to identify the transaction.
                  function finalizeBridgeETH(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      public
                      payable
                      onlyOtherBridge
                  {
                      require(paused() == false, "StandardBridge: paused");
                      require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
                      require(_to != address(this), "StandardBridge: cannot send to self");
                      require(_to != address(messenger), "StandardBridge: cannot send to messenger");
                      // Emit the correct events. By default this will be _amount, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                      bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
                      require(success, "StandardBridge: ETH transfer failed");
                  }
                  /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
                  ///         StandardBridge contract on the remote chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of the ERC20 being bridged.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function finalizeBridgeERC20(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      public
                      onlyOtherBridge
                  {
                      require(paused() == false, "StandardBridge: paused");
                      if (_isOptimismMintableERC20(_localToken)) {
                          require(
                              _isCorrectTokenPair(_localToken, _remoteToken),
                              "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                          );
                          OptimismMintableERC20(_localToken).mint(_to, _amount);
                      } else {
                          deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
                          IERC20(_localToken).safeTransfer(_to, _amount);
                      }
                      // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
                  /// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of ETH being bridged.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function _initiateBridgeETH(
                      address _from,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes memory _extraData
                  )
                      internal
                  {
                      require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
                      // Emit the correct events. By default this will be _amount, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                      messenger.sendMessage{ value: _amount }({
                          _target: address(otherBridge),
                          _message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
                          _minGasLimit: _minGasLimit
                      });
                  }
                  /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of local tokens to deposit.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function _initiateBridgeERC20(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes memory _extraData
                  )
                      internal
                  {
                      if (_isOptimismMintableERC20(_localToken)) {
                          require(
                              _isCorrectTokenPair(_localToken, _remoteToken),
                              "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                          );
                          OptimismMintableERC20(_localToken).burn(_from, _amount);
                      } else {
                          IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
                          deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
                      }
                      // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                      messenger.sendMessage({
                          _target: address(otherBridge),
                          _message: abi.encodeWithSelector(
                              this.finalizeBridgeERC20.selector,
                              // Because this call will be executed on the remote chain, we reverse the order of
                              // the remote and local token addresses relative to their order in the
                              // finalizeBridgeERC20 function.
                              _remoteToken,
                              _localToken,
                              _from,
                              _to,
                              _amount,
                              _extraData
                              ),
                          _minGasLimit: _minGasLimit
                      });
                  }
                  /// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
                  ///         Just the way we like it.
                  /// @param _token Address of the token to check.
                  /// @return True if the token is an OptimismMintableERC20.
                  function _isOptimismMintableERC20(address _token) internal view returns (bool) {
                      return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId)
                          || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
                  }
                  /// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
                  ///         Calls can be saved in the future by combining this logic with
                  ///         `_isOptimismMintableERC20`.
                  /// @param _mintableToken OptimismMintableERC20 to check against.
                  /// @param _otherToken    Pair token to check.
                  /// @return True if the other token is the correct pair token for the OptimismMintableERC20.
                  function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
                      if (ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)) {
                          return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token();
                      } else {
                          return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
                      }
                  }
                  /// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
                  ///         when an ETH bridge is finalized on this chain.
                  /// @param _from      Address of the sender.
                  /// @param _to        Address of the receiver.
                  /// @param _amount    Amount of ETH sent.
                  /// @param _extraData Extra data sent with the transaction.
                  function _emitETHBridgeInitiated(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
                  }
                  /// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
                  ///         ETH bridge is finalized on this chain.
                  /// @param _from      Address of the sender.
                  /// @param _to        Address of the receiver.
                  /// @param _amount    Amount of ETH sent.
                  /// @param _extraData Extra data sent with the transaction.
                  function _emitETHBridgeFinalized(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
                  }
                  /// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
                  ///         event when an ERC20 bridge is initiated to the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the ERC20 on the remote chain.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of the ERC20 sent.
                  /// @param _extraData   Extra data sent with the transaction.
                  function _emitERC20BridgeInitiated(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
                  /// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
                  ///         event when an ERC20 bridge is initiated to the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the ERC20 on the remote chain.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of the ERC20 sent.
                  /// @param _extraData   Extra data sent with the transaction.
                  function _emitERC20BridgeFinalized(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title ISemver
              /// @notice ISemver is a simple contract for ensuring that contracts are
              ///         versioned using semantic versioning.
              interface ISemver {
                  /// @notice Getter for the semantic version of the contract. This is not
                  ///         meant to be used onchain but instead meant to be used by offchain
                  ///         tooling.
                  /// @return Semver contract version as a string.
                  function version() external view returns (string memory);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              import { Constants } from "src/libraries/Constants.sol";
              /// @custom:legacy
              /// @title CrossDomainMessengerLegacySpacer0
              /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
              ///         libAddressManager variable used to exist. Must be the first contract in the inheritance
              ///         tree of the CrossDomainMessenger.
              contract CrossDomainMessengerLegacySpacer0 {
                  /// @custom:legacy
                  /// @custom:spacer libAddressManager
                  /// @notice Spacer for backwards compatibility.
                  address private spacer_0_0_20;
              }
              /// @custom:legacy
              /// @title CrossDomainMessengerLegacySpacer1
              /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
              ///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
              ///         the third contract in the inheritance tree of the CrossDomainMessenger.
              contract CrossDomainMessengerLegacySpacer1 {
                  /// @custom:legacy
                  /// @custom:spacer ContextUpgradable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         ContextUpgradable.
                  uint256[50] private spacer_1_0_1600;
                  /// @custom:legacy
                  /// @custom:spacer OwnableUpgradeable's _owner
                  /// @notice Spacer for backwards compatibility.
                  ///         Come from OpenZeppelin OwnableUpgradeable.
                  address private spacer_51_0_20;
                  /// @custom:legacy
                  /// @custom:spacer OwnableUpgradeable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         OwnableUpgradeable.
                  uint256[49] private spacer_52_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer PausableUpgradable's _paused
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         PausableUpgradable.
                  bool private spacer_101_0_1;
                  /// @custom:legacy
                  /// @custom:spacer PausableUpgradable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         PausableUpgradable.
                  uint256[49] private spacer_102_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
                  /// @notice Spacer for backwards compatibility.
                  uint256 private spacer_151_0_32;
                  /// @custom:legacy
                  /// @custom:spacer ReentrancyGuardUpgradeable's __gap
                  /// @notice Spacer for backwards compatibility.
                  uint256[49] private spacer_152_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer blockedMessages
                  /// @notice Spacer for backwards compatibility.
                  mapping(bytes32 => bool) private spacer_201_0_32;
                  /// @custom:legacy
                  /// @custom:spacer relayedMessages
                  /// @notice Spacer for backwards compatibility.
                  mapping(bytes32 => bool) private spacer_202_0_32;
              }
              /// @custom:upgradeable
              /// @title CrossDomainMessenger
              /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
              ///         cross-chain messenger contracts. It's designed to be a universal interface that only
              ///         needs to be extended slightly to provide low-level message passing functionality on each
              ///         chain it's deployed on. Currently only designed for message passing between two paired
              ///         chains and does not support one-to-many interactions.
              ///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
              abstract contract CrossDomainMessenger is
                  CrossDomainMessengerLegacySpacer0,
                  Initializable,
                  CrossDomainMessengerLegacySpacer1
              {
                  /// @notice Current message version identifier.
                  uint16 public constant MESSAGE_VERSION = 1;
                  /// @notice Constant overhead added to the base gas for a message.
                  uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
                  /// @notice Numerator for dynamic overhead added to the base gas for a message.
                  uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
                  /// @notice Denominator for dynamic overhead added to the base gas for a message.
                  uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
                  /// @notice Extra gas added to base gas for each byte of calldata in a message.
                  uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
                  /// @notice Gas reserved for performing the external call in `relayMessage`.
                  uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
                  /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
                  uint64 public constant RELAY_RESERVED_GAS = 40_000;
                  /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
                  ///         call in `relayMessage`.
                  uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
                  /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
                  ///         be present in this mapping if it has successfully been relayed on this chain, and
                  ///         can therefore not be relayed again.
                  mapping(bytes32 => bool) public successfulMessages;
                  /// @notice Address of the sender of the currently executing message on the other chain. If the
                  ///         value of this variable is the default value (0x00000000...dead) then no message is
                  ///         currently being executed. Use the xDomainMessageSender getter which will throw an
                  ///         error if this is the case.
                  address internal xDomainMsgSender;
                  /// @notice Nonce for the next message to be sent, without the message version applied. Use the
                  ///         messageNonce getter which will insert the message version into the nonce to give you
                  ///         the actual nonce to be used for the message.
                  uint240 internal msgNonce;
                  /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
                  ///         executed at least once. A message will not be present in this mapping if it
                  ///         successfully executed on the first attempt.
                  mapping(bytes32 => bool) public failedMessages;
                  /// @notice CrossDomainMessenger contract on the other chain.
                  /// @custom:network-specific
                  CrossDomainMessenger public otherMessenger;
                  /// @notice Reserve extra slots in the storage layout for future upgrades.
                  ///         A gap size of 43 was chosen here, so that the first slot used in a child contract
                  ///         would be 1 plus a multiple of 50.
                  uint256[43] private __gap;
                  /// @notice Emitted whenever a message is sent to the other chain.
                  /// @param target       Address of the recipient of the message.
                  /// @param sender       Address of the sender of the message.
                  /// @param message      Message to trigger the recipient address with.
                  /// @param messageNonce Unique nonce attached to the message.
                  /// @param gasLimit     Minimum gas limit that the message can be executed with.
                  event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
                  /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
                  ///         SentMessage event without breaking the ABI of this contract, this is good enough.
                  /// @param sender Address of the sender of the message.
                  /// @param value  ETH value sent along with the message to the recipient.
                  event SentMessageExtension1(address indexed sender, uint256 value);
                  /// @notice Emitted whenever a message is successfully relayed on this chain.
                  /// @param msgHash Hash of the message that was relayed.
                  event RelayedMessage(bytes32 indexed msgHash);
                  /// @notice Emitted whenever a message fails to be relayed on this chain.
                  /// @param msgHash Hash of the message that failed to be relayed.
                  event FailedRelayedMessage(bytes32 indexed msgHash);
                  /// @notice Sends a message to some target address on the other chain. Note that if the call
                  ///         always reverts, then the message will be unrelayable, and any ETH sent will be
                  ///         permanently locked. The same will occur if the target on the other chain is
                  ///         considered unsafe (see the _isUnsafeTarget() function).
                  /// @param _target      Target contract or wallet address.
                  /// @param _message     Message to trigger the target address with.
                  /// @param _minGasLimit Minimum gas limit that the message can be executed with.
                  function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
                      // Triggers a message to the other messenger. Note that the amount of gas provided to the
                      // message is the amount of gas requested by the user PLUS the base gas value. We want to
                      // guarantee the property that the call to the target contract will always have at least
                      // the minimum gas limit specified by the user.
                      _sendMessage({
                          _to: address(otherMessenger),
                          _gasLimit: baseGas(_message, _minGasLimit),
                          _value: msg.value,
                          _data: abi.encodeWithSelector(
                              this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
                              )
                      });
                      emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
                      emit SentMessageExtension1(msg.sender, msg.value);
                      unchecked {
                          ++msgNonce;
                      }
                  }
                  /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
                  ///         be executed via cross-chain call from the other messenger OR if the message was
                  ///         already received once and is currently being replayed.
                  /// @param _nonce       Nonce of the message being relayed.
                  /// @param _sender      Address of the user who sent the message.
                  /// @param _target      Address that the message is targeted at.
                  /// @param _value       ETH value to send with the message.
                  /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
                  /// @param _message     Message to send to the target.
                  function relayMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _minGasLimit,
                      bytes calldata _message
                  )
                      external
                      payable
                  {
                      // On L1 this function will check the Portal for its paused status.
                      // On L2 this function should be a no-op, because paused will always return false.
                      require(paused() == false, "CrossDomainMessenger: paused");
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
                      // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
                      // to check that the legacy version of the message has not already been relayed.
                      if (version == 0) {
                          bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                          require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
                      }
                      // We use the v1 message hash as the unique identifier for the message because it commits
                      // to the value and minimum gas limit of the message.
                      bytes32 versionedHash =
                          Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
                      if (_isOtherMessenger()) {
                          // These properties should always hold when the message is first submitted (as
                          // opposed to being replayed).
                          assert(msg.value == _value);
                          assert(!failedMessages[versionedHash]);
                      } else {
                          require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
                          require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
                      }
                      require(
                          _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
                      );
                      require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
                      // If there is not enough gas left to perform the external call and finish the execution,
                      // return early and assign the message to the failedMessages mapping.
                      // We are asserting that we have enough gas to:
                      // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
                      //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
                      // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
                      //
                      // If `xDomainMsgSender` is not the default L2 sender, this function
                      // is being re-entered. This marks the message as failed to allow it to be replayed.
                      if (
                          !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                              || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
                      ) {
                          failedMessages[versionedHash] = true;
                          emit FailedRelayedMessage(versionedHash);
                          // Revert in this case if the transaction was triggered by the estimation address. This
                          // should only be possible during gas estimation or we have bigger problems. Reverting
                          // here will make the behavior of gas estimation change such that the gas limit
                          // computed will be the amount required to relay the message, even if that amount is
                          // greater than the minimum gas limit specified by the user.
                          if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                              revert("CrossDomainMessenger: failed to relay message");
                          }
                          return;
                      }
                      xDomainMsgSender = _sender;
                      bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
                      xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                      if (success) {
                          // This check is identical to one above, but it ensures that the same message cannot be relayed
                          // twice, and adds a layer of protection against rentrancy.
                          assert(successfulMessages[versionedHash] == false);
                          successfulMessages[versionedHash] = true;
                          emit RelayedMessage(versionedHash);
                      } else {
                          failedMessages[versionedHash] = true;
                          emit FailedRelayedMessage(versionedHash);
                          // Revert in this case if the transaction was triggered by the estimation address. This
                          // should only be possible during gas estimation or we have bigger problems. Reverting
                          // here will make the behavior of gas estimation change such that the gas limit
                          // computed will be the amount required to relay the message, even if that amount is
                          // greater than the minimum gas limit specified by the user.
                          if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                              revert("CrossDomainMessenger: failed to relay message");
                          }
                      }
                  }
                  /// @notice Retrieves the address of the contract or wallet that initiated the currently
                  ///         executing message on the other chain. Will throw an error if there is no message
                  ///         currently being executed. Allows the recipient of a call to see who triggered it.
                  /// @return Address of the sender of the currently executing message on the other chain.
                  function xDomainMessageSender() external view returns (address) {
                      require(
                          xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
                      );
                      return xDomainMsgSender;
                  }
                  /// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
                  ///         Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
                  /// @return CrossDomainMessenger contract on the other chain.
                  /// @custom:legacy
                  function OTHER_MESSENGER() public view returns (CrossDomainMessenger) {
                      return otherMessenger;
                  }
                  /// @notice Retrieves the next message nonce. Message version will be added to the upper two
                  ///         bytes of the message nonce. Message version allows us to treat messages as having
                  ///         different structures.
                  /// @return Nonce of the next message to be sent, with added message version.
                  function messageNonce() public view returns (uint256) {
                      return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
                  }
                  /// @notice Computes the amount of gas required to guarantee that a given message will be
                  ///         received on the other chain without running out of gas. Guaranteeing that a message
                  ///         will not run out of gas is important because this ensures that a message can always
                  ///         be replayed on the other chain if it fails to execute completely.
                  /// @param _message     Message to compute the amount of required gas for.
                  /// @param _minGasLimit Minimum desired gas limit when message goes to target.
                  /// @return Amount of gas required to guarantee message receipt.
                  function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
                      return
                      // Constant overhead
                      RELAY_CONSTANT_OVERHEAD
                      // Calldata overhead
                      + (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
                      // Dynamic overhead (EIP-150)
                      + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
                      // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
                      // factors. (Conservative)
                      + RELAY_CALL_OVERHEAD
                      // Relay reserved gas (to ensure execution of `relayMessage` completes after the
                      // subcontext finishes executing) (Conservative)
                      + RELAY_RESERVED_GAS
                      // Gas reserved for the execution between the `hasMinGas` check and the `CALL`
                      // opcode. (Conservative)
                      + RELAY_GAS_CHECK_BUFFER;
                  }
                  /// @notice Initializer.
                  /// @param _otherMessenger CrossDomainMessenger contract on the other chain.
                  // solhint-disable-next-line func-name-mixedcase
                  function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing {
                      // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
                      // meaning that this is a fresh contract deployment.
                      // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
                      // a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
                      if (xDomainMsgSender == address(0)) {
                          xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                      }
                      otherMessenger = _otherMessenger;
                  }
                  /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
                  ///         contracts because the logic for this depends on the network where the messenger is
                  ///         being deployed.
                  /// @param _to       Recipient of the message on the other chain.
                  /// @param _gasLimit Minimum gas limit the message can be executed with.
                  /// @param _value    Amount of ETH to send with the message.
                  /// @param _data     Message data.
                  function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
                  /// @notice Checks whether the message is coming from the other messenger. Implemented by child
                  ///         contracts because the logic for this depends on the network where the messenger is
                  ///         being deployed.
                  /// @return Whether the message is coming from the other messenger.
                  function _isOtherMessenger() internal view virtual returns (bool);
                  /// @notice Checks whether a given call target is a system address that could cause the
                  ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
                  ///         addresses. This is ONLY used to prevent the execution of messages to specific
                  ///         system addresses that could cause security issues, e.g., having the
                  ///         CrossDomainMessenger send messages to itself.
                  /// @param _target Address of the contract to check.
                  /// @return Whether or not the address is an unsafe system address.
                  function _isUnsafeTarget(address _target) internal view virtual returns (bool);
                  /// @notice This function should return true if the contract is paused.
                  ///         On L1 this function will check the SuperchainConfig for its paused status.
                  ///         On L2 this function should be a no-op.
                  /// @return Whether or not the contract is paused.
                  function paused() public view virtual returns (bool) {
                      return false;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { Storage } from "src/libraries/Storage.sol";
              /// @custom:audit none This contracts is not yet audited.
              /// @title SuperchainConfig
              /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
              contract SuperchainConfig is Initializable, ISemver {
                  /// @notice Enum representing different types of updates.
                  /// @custom:value GUARDIAN            Represents an update to the guardian.
                  enum UpdateType {
                      GUARDIAN
                  }
                  /// @notice Whether or not the Superchain is paused.
                  bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
                  /// @notice The address of the guardian, which can pause withdrawals from the System.
                  ///         It can only be modified by an upgrade.
                  bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
                  /// @notice Emitted when the pause is triggered.
                  /// @param identifier A string helping to identify provenance of the pause transaction.
                  event Paused(string identifier);
                  /// @notice Emitted when the pause is lifted.
                  event Unpaused();
                  /// @notice Emitted when configuration is updated.
                  /// @param updateType Type of update.
                  /// @param data       Encoded update data.
                  event ConfigUpdate(UpdateType indexed updateType, bytes data);
                  /// @notice Semantic version.
                  /// @custom:semver 1.1.0
                  string public constant version = "1.1.0";
                  /// @notice Constructs the SuperchainConfig contract.
                  constructor() {
                      initialize({ _guardian: address(0), _paused: false });
                  }
                  /// @notice Initializer.
                  /// @param _guardian    Address of the guardian, can pause the OptimismPortal.
                  /// @param _paused      Initial paused status.
                  function initialize(address _guardian, bool _paused) public initializer {
                      _setGuardian(_guardian);
                      if (_paused) {
                          _pause("Initializer paused");
                      }
                  }
                  /// @notice Getter for the guardian address.
                  function guardian() public view returns (address guardian_) {
                      guardian_ = Storage.getAddress(GUARDIAN_SLOT);
                  }
                  /// @notice Getter for the current paused status.
                  function paused() public view returns (bool paused_) {
                      paused_ = Storage.getBool(PAUSED_SLOT);
                  }
                  /// @notice Pauses withdrawals.
                  /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                  function pause(string memory _identifier) external {
                      require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
                      _pause(_identifier);
                  }
                  /// @notice Pauses withdrawals.
                  /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                  function _pause(string memory _identifier) internal {
                      Storage.setBool(PAUSED_SLOT, true);
                      emit Paused(_identifier);
                  }
                  /// @notice Unpauses withdrawals.
                  function unpause() external {
                      require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
                      Storage.setBool(PAUSED_SLOT, false);
                      emit Unpaused();
                  }
                  /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
                  ///         will be required to change the guardian.
                  /// @param _guardian The new guardian address.
                  function _setGuardian(address _guardian) internal {
                      Storage.setAddress(GUARDIAN_SLOT, _guardian);
                      emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { ResourceMetering } from "src/L1/ResourceMetering.sol";
              /// @title Constants
              /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
              ///         the stuff used in multiple contracts. Constants that only apply to a single contract
              ///         should be defined in that contract instead.
              library Constants {
                  /// @notice Special address to be used as the tx origin for gas estimation calls in the
                  ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                  ///         the minimum gas limit specified by the user is not actually enough to execute the
                  ///         given message and you're attempting to estimate the actual necessary gas limit. We
                  ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                  ///         never have any code on any EVM chain.
                  address internal constant ESTIMATION_ADDRESS = address(1);
                  /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                  ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                  ///         non-zero to reduce the gas cost of message passing transactions.
                  address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                  /// @notice The storage slot that holds the address of a proxy implementation.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                  bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /// @notice The storage slot that holds the address of the owner.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                  bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                  ///         for a production network.
                  function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                      ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                          maxResourceLimit: 20_000_000,
                          elasticityMultiplier: 10,
                          baseFeeMaxChangeDenominator: 8,
                          minimumBaseFee: 1 gwei,
                          systemTxMaxGas: 1_000_000,
                          maximumBaseFee: type(uint128).max
                      });
                      return config;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) external returns (bool);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
              pragma solidity ^0.8.0;
              import "./IERC165.sol";
              /**
               * @dev Library used to query support of an interface declared via {IERC165}.
               *
               * Note that these functions return the actual result of the query: they do not
               * `revert` if an interface is not supported. It is up to the caller to decide
               * what to do in these cases.
               */
              library ERC165Checker {
                  // As per the EIP-165 spec, no interface should ever match 0xffffffff
                  bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
                  /**
                   * @dev Returns true if `account` supports the {IERC165} interface,
                   */
                  function supportsERC165(address account) internal view returns (bool) {
                      // Any contract that implements ERC165 must explicitly indicate support of
                      // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
                      return
                          _supportsERC165Interface(account, type(IERC165).interfaceId) &&
                          !_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
                  }
                  /**
                   * @dev Returns true if `account` supports the interface defined by
                   * `interfaceId`. Support for {IERC165} itself is queried automatically.
                   *
                   * See {IERC165-supportsInterface}.
                   */
                  function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
                      // query support of both ERC165 as per the spec and support of _interfaceId
                      return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
                  }
                  /**
                   * @dev Returns a boolean array where each value corresponds to the
                   * interfaces passed in and whether they're supported or not. This allows
                   * you to batch check interfaces for a contract where your expectation
                   * is that some interfaces may not be supported.
                   *
                   * See {IERC165-supportsInterface}.
                   *
                   * _Available since v3.4._
                   */
                  function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
                      internal
                      view
                      returns (bool[] memory)
                  {
                      // an array of booleans corresponding to interfaceIds and whether they're supported or not
                      bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
                      // query support of ERC165 itself
                      if (supportsERC165(account)) {
                          // query support of each interface in interfaceIds
                          for (uint256 i = 0; i < interfaceIds.length; i++) {
                              interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
                          }
                      }
                      return interfaceIdsSupported;
                  }
                  /**
                   * @dev Returns true if `account` supports all the interfaces defined in
                   * `interfaceIds`. Support for {IERC165} itself is queried automatically.
                   *
                   * Batch-querying can lead to gas savings by skipping repeated checks for
                   * {IERC165} support.
                   *
                   * See {IERC165-supportsInterface}.
                   */
                  function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
                      // query support of ERC165 itself
                      if (!supportsERC165(account)) {
                          return false;
                      }
                      // query support of each interface in _interfaceIds
                      for (uint256 i = 0; i < interfaceIds.length; i++) {
                          if (!_supportsERC165Interface(account, interfaceIds[i])) {
                              return false;
                          }
                      }
                      // all interfaces supported
                      return true;
                  }
                  /**
                   * @notice Query if a contract implements an interface, does not check ERC165 support
                   * @param account The address of the contract to query for support of an interface
                   * @param interfaceId The interface identifier, as specified in ERC-165
                   * @return true if the contract at account indicates support of the interface with
                   * identifier interfaceId, false otherwise
                   * @dev Assumes that account contains a contract that supports ERC165, otherwise
                   * the behavior of this method is undefined. This precondition can be checked
                   * with {supportsERC165}.
                   * Interface identification is specified in ERC-165.
                   */
                  function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
                      // prepare call
                      bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
                      // perform static call
                      bool success;
                      uint256 returnSize;
                      uint256 returnValue;
                      assembly {
                          success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
                          returnSize := returndatasize()
                          returnValue := mload(0x00)
                      }
                      return success && returnSize >= 0x20 && returnValue > 0;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              import "../extensions/draft-IERC20Permit.sol";
              import "../../../utils/Address.sol";
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using Address for address;
                  function safeTransfer(
                      IERC20 token,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
                  function safeTransferFrom(
                      IERC20 token,
                      address from,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      require(
                          (value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
                  function safeIncreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      uint256 newAllowance = token.allowance(address(this), spender) + value;
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
                  function safeDecreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      unchecked {
                          uint256 oldAllowance = token.allowance(address(this), spender);
                          require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                          uint256 newAllowance = oldAllowance - value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                  }
                  function safePermit(
                      IERC20Permit token,
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) internal {
                      uint256 nonceBefore = token.nonces(owner);
                      token.permit(owner, spender, value, deadline, v, r, s);
                      uint256 nonceAfter = token.nonces(owner);
                      require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      if (returndata.length > 0) {
                          // Return data is optional
                          require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @title SafeCall
              /// @notice Perform low level safe calls
              library SafeCall {
                  /// @notice Performs a low level call without copying any returndata.
                  /// @dev Passes no calldata to the call context.
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
                      bool _success;
                      assembly {
                          _success :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  0, // inloc
                                  0, // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                      return _success;
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
                      bool _success;
                      assembly {
                          _success :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                      return _success;
                  }
                  /// @notice Helper function to determine if there is sufficient gas remaining within the context
                  ///         to guarantee that the minimum gas requirement for a call will be met as well as
                  ///         optionally reserving a specified amount of gas for after the call has concluded.
                  /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                  /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                  ///                     of the target context.
                  /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                  ///         context as well as reserve `_reservedGas` for the caller after the execution of
                  ///         the target context.
                  /// @dev !!!!! FOOTGUN ALERT !!!!!
                  ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                  ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                  ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                  ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                  ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                  ///          factors of the dynamic cost of the `CALL` opcode.
                  ///      2.) This function should *directly* precede the external call if possible. There is an
                  ///          added buffer to account for gas consumed between this check and the call, but it
                  ///          is only 5,700 gas.
                  ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                  ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                  ///          truncated.
                  ///      4.) Use wisely. This function is not a silver bullet.
                  function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                      bool _hasMinGas;
                      assembly {
                          // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                          _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                      }
                      return _hasMinGas;
                  }
                  /// @notice Perform a low level call without copying any returndata. This function
                  ///         will revert if the call cannot be performed with the specified minimum
                  ///         gas.
                  /// @param _target   Address to call
                  /// @param _minGas   The minimum amount of gas that may be passed to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function callWithMinGas(
                      address _target,
                      uint256 _minGas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool)
                  {
                      bool _success;
                      bool _hasMinGas = hasMinGas(_minGas, 0);
                      assembly {
                          // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                          if iszero(_hasMinGas) {
                              // Store the "Error(string)" selector in scratch space.
                              mstore(0, 0x08c379a0)
                              // Store the pointer to the string length in scratch space.
                              mstore(32, 32)
                              // Store the string.
                              //
                              // SAFETY:
                              // - We pad the beginning of the string with two zero bytes as well as the
                              // length (24) to ensure that we override the free memory pointer at offset
                              // 0x40. This is necessary because the free memory pointer is likely to
                              // be greater than 1 byte when this function is called, but it is incredibly
                              // unlikely that it will be greater than 3 bytes. As for the data within
                              // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                              // - It's fine to clobber the free memory pointer, we're reverting.
                              mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                              // Revert with 'Error("SafeCall: Not enough gas")'
                              revert(28, 100)
                          }
                          // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                          // above assertion. This ensures that, in all circumstances (except for when the
                          // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                          // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                          // the minimum amount of gas specified.
                          _success :=
                              call(
                                  gas(), // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0x00, // outloc
                                  0x00 // outlen
                              )
                      }
                      return _success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
              /// @title IOptimismMintableERC20
              /// @notice This interface is available on the OptimismMintableERC20 contract.
              ///         We declare it as a separate interface so that it can be used in
              ///         custom implementations of OptimismMintableERC20.
              interface IOptimismMintableERC20 is IERC165 {
                  function remoteToken() external view returns (address);
                  function bridge() external returns (address);
                  function mint(address _to, uint256 _amount) external;
                  function burn(address _from, uint256 _amount) external;
              }
              /// @custom:legacy
              /// @title ILegacyMintableERC20
              /// @notice This interface was available on the legacy L2StandardERC20 contract.
              ///         It remains available on the OptimismMintableERC20 contract for
              ///         backwards compatibility.
              interface ILegacyMintableERC20 is IERC165 {
                  function l1Token() external view returns (address);
                  function mint(address _to, uint256 _amount) external;
                  function burn(address _from, uint256 _amount) external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
              import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
              import { ILegacyMintableERC20, IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              /// @title OptimismMintableERC20
              /// @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed
              ///         to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to
              ///         use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa.
              ///         Designed to be backwards compatible with the older StandardL2ERC20 token which was only
              ///         meant for use on L2.
              contract OptimismMintableERC20 is IOptimismMintableERC20, ILegacyMintableERC20, ERC20, ISemver {
                  /// @notice Address of the corresponding version of this token on the remote chain.
                  address public immutable REMOTE_TOKEN;
                  /// @notice Address of the StandardBridge on this network.
                  address public immutable BRIDGE;
                  /// @notice Decimals of the token
                  uint8 private immutable DECIMALS;
                  /// @notice Emitted whenever tokens are minted for an account.
                  /// @param account Address of the account tokens are being minted for.
                  /// @param amount  Amount of tokens minted.
                  event Mint(address indexed account, uint256 amount);
                  /// @notice Emitted whenever tokens are burned from an account.
                  /// @param account Address of the account tokens are being burned from.
                  /// @param amount  Amount of tokens burned.
                  event Burn(address indexed account, uint256 amount);
                  /// @notice A modifier that only allows the bridge to call
                  modifier onlyBridge() {
                      require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn");
                      _;
                  }
                  /// @notice Semantic version.
                  /// @custom:semver 1.3.0
                  string public constant version = "1.3.0";
                  /// @param _bridge      Address of the L2 standard bridge.
                  /// @param _remoteToken Address of the corresponding L1 token.
                  /// @param _name        ERC20 name.
                  /// @param _symbol      ERC20 symbol.
                  constructor(
                      address _bridge,
                      address _remoteToken,
                      string memory _name,
                      string memory _symbol,
                      uint8 _decimals
                  )
                      ERC20(_name, _symbol)
                  {
                      REMOTE_TOKEN = _remoteToken;
                      BRIDGE = _bridge;
                      DECIMALS = _decimals;
                  }
                  /// @notice Allows the StandardBridge on this network to mint tokens.
                  /// @param _to     Address to mint tokens to.
                  /// @param _amount Amount of tokens to mint.
                  function mint(
                      address _to,
                      uint256 _amount
                  )
                      external
                      virtual
                      override(IOptimismMintableERC20, ILegacyMintableERC20)
                      onlyBridge
                  {
                      _mint(_to, _amount);
                      emit Mint(_to, _amount);
                  }
                  /// @notice Allows the StandardBridge on this network to burn tokens.
                  /// @param _from   Address to burn tokens from.
                  /// @param _amount Amount of tokens to burn.
                  function burn(
                      address _from,
                      uint256 _amount
                  )
                      external
                      virtual
                      override(IOptimismMintableERC20, ILegacyMintableERC20)
                      onlyBridge
                  {
                      _burn(_from, _amount);
                      emit Burn(_from, _amount);
                  }
                  /// @notice ERC165 interface check function.
                  /// @param _interfaceId Interface ID to check.
                  /// @return Whether or not the interface is supported by this contract.
                  function supportsInterface(bytes4 _interfaceId) external pure virtual returns (bool) {
                      bytes4 iface1 = type(IERC165).interfaceId;
                      // Interface corresponding to the legacy L2StandardERC20.
                      bytes4 iface2 = type(ILegacyMintableERC20).interfaceId;
                      // Interface corresponding to the updated OptimismMintableERC20 (this contract).
                      bytes4 iface3 = type(IOptimismMintableERC20).interfaceId;
                      return _interfaceId == iface1 || _interfaceId == iface2 || _interfaceId == iface3;
                  }
                  /// @custom:legacy
                  /// @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward.
                  function l1Token() public view returns (address) {
                      return REMOTE_TOKEN;
                  }
                  /// @custom:legacy
                  /// @notice Legacy getter for the bridge. Use BRIDGE going forward.
                  function l2Bridge() public view returns (address) {
                      return BRIDGE;
                  }
                  /// @custom:legacy
                  /// @notice Legacy getter for REMOTE_TOKEN.
                  function remoteToken() public view returns (address) {
                      return REMOTE_TOKEN;
                  }
                  /// @custom:legacy
                  /// @notice Legacy getter for BRIDGE.
                  function bridge() public view returns (address) {
                      return BRIDGE;
                  }
                  /// @dev Returns the number of decimals used to get its user representation.
                  /// For example, if `decimals` equals `2`, a balance of `505` tokens should
                  /// be displayed to a user as `5.05` (`505 / 10 ** 2`).
                  /// NOTE: This information is only used for _display_ purposes: it in
                  /// no way affects any of the arithmetic of the contract, including
                  /// {IERC20-balanceOf} and {IERC20-transfer}.
                  function decimals() public view override returns (uint8) {
                      return DECIMALS;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/Address.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/AddressUpgradeable.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { Types } from "src/libraries/Types.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              /// @title Hashing
              /// @notice Hashing handles Optimism's various different hashing schemes.
              library Hashing {
                  /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                  ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                  ///         system.
                  /// @param _tx User deposit transaction to hash.
                  /// @return Hash of the RLP encoded L2 deposit transaction.
                  function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(Encoding.encodeDepositTransaction(_tx));
                  }
                  /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                  ///         of the L2 transaction that corresponds to a deposit is unique and is
                  ///         deterministically generated from L1 transaction data.
                  /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                  /// @param _logIndex    The index of the log that created the deposit transaction.
                  /// @return Hash of the deposit transaction's "source hash".
                  function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                      bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                      return keccak256(abi.encode(bytes32(0), depositId));
                  }
                  /// @notice Hashes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Hashing: unknown cross domain message version");
                      }
                  }
                  /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                  }
                  /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                  }
                  /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                  /// @param _tx Withdrawal transaction to hash.
                  /// @return Hashed withdrawal transaction.
                  function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                  }
                  /// @notice Hashes the various elements of an output root proof into an output root hash which
                  ///         can be used to check if the proof is valid.
                  /// @param _outputRootProof Output root proof which should hash to an output root.
                  /// @return Hashed output root proof.
                  function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                      return keccak256(
                          abi.encode(
                              _outputRootProof.version,
                              _outputRootProof.stateRoot,
                              _outputRootProof.messagePasserStorageRoot,
                              _outputRootProof.latestBlockhash
                          )
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
              /// @title Encoding
              /// @notice Encoding handles Optimism's various different encoding schemes.
              library Encoding {
                  /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                  ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                  ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                  /// @param _tx User deposit transaction to encode.
                  /// @return RLP encoded L2 deposit transaction.
                  function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                      bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                      bytes[] memory raw = new bytes[](8);
                      raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                      raw[1] = RLPWriter.writeAddress(_tx.from);
                      raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                      raw[3] = RLPWriter.writeUint(_tx.mint);
                      raw[4] = RLPWriter.writeUint(_tx.value);
                      raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                      raw[6] = RLPWriter.writeBool(false);
                      raw[7] = RLPWriter.writeBytes(_tx.data);
                      return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                  }
                  /// @notice Encodes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      (, uint16 version) = decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Encoding: unknown cross domain message version");
                      }
                  }
                  /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                  }
                  /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      return abi.encodeWithSignature(
                          "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                          _nonce,
                          _sender,
                          _target,
                          _value,
                          _gasLimit,
                          _data
                      );
                  }
                  /// @notice Adds a version number into the first two bytes of a message nonce.
                  /// @param _nonce   Message nonce to encode into.
                  /// @param _version Version number to encode into the message nonce.
                  /// @return Message nonce with version encoded into the first two bytes.
                  function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                      uint256 nonce;
                      assembly {
                          nonce := or(shl(240, _version), _nonce)
                      }
                      return nonce;
                  }
                  /// @notice Pulls the version out of a version-encoded nonce.
                  /// @param _nonce Message nonce with version encoded into the first two bytes.
                  /// @return Nonce without encoded version.
                  /// @return Version of the message.
                  function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                      uint240 nonce;
                      uint16 version;
                      assembly {
                          nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                          version := shr(240, _nonce)
                      }
                      return (nonce, version);
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                  /// @param baseFeeScalar       L1 base fee Scalar
                  /// @param blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param timestamp           L1 timestamp.
                  /// @param number              L1 blocknumber.
                  /// @param baseFee             L1 base fee.
                  /// @param blobBaseFee         L1 blob base fee.
                  /// @param hash                L1 blockhash.
                  /// @param batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesEcotone(
                      uint32 baseFeeScalar,
                      uint32 blobBaseFeeScalar,
                      uint64 sequenceNumber,
                      uint64 timestamp,
                      uint64 number,
                      uint256 baseFee,
                      uint256 blobBaseFee,
                      bytes32 hash,
                      bytes32 batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                      return abi.encodePacked(
                          functionSignature,
                          baseFeeScalar,
                          blobBaseFeeScalar,
                          sequenceNumber,
                          timestamp,
                          number,
                          baseFee,
                          blobBaseFee,
                          hash,
                          batcherHash
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Storage
              /// @notice Storage handles reading and writing to arbitary storage locations
              library Storage {
                  /// @notice Returns an address stored in an arbitrary storage slot.
                  ///         These storage slots decouple the storage layout from
                  ///         solc's automation.
                  /// @param _slot The storage slot to retrieve the address from.
                  function getAddress(bytes32 _slot) internal view returns (address addr_) {
                      assembly {
                          addr_ := sload(_slot)
                      }
                  }
                  /// @notice Stores an address in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the address in.
                  /// @param _address The protocol version to store
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
                  ///      in arbitrary storage slots.
                  function setAddress(bytes32 _slot, address _address) internal {
                      assembly {
                          sstore(_slot, _address)
                      }
                  }
                  /// @notice Returns a uint256 stored in an arbitrary storage slot.
                  ///         These storage slots decouple the storage layout from
                  ///         solc's automation.
                  /// @param _slot The storage slot to retrieve the address from.
                  function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                      assembly {
                          value_ := sload(_slot)
                      }
                  }
                  /// @notice Stores a value in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the address in.
                  /// @param _value The protocol version to store
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                  ///      in arbitrary storage slots.
                  function setUint(bytes32 _slot, uint256 _value) internal {
                      assembly {
                          sstore(_slot, _value)
                      }
                  }
                  /// @notice Returns a bytes32 stored in an arbitrary storage slot.
                  ///         These storage slots decouple the storage layout from
                  ///         solc's automation.
                  /// @param _slot The storage slot to retrieve the address from.
                  function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                      assembly {
                          value_ := sload(_slot)
                      }
                  }
                  /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the address in.
                  /// @param _value The bytes32 value to store.
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                  ///      in arbitrary storage slots.
                  function setBytes32(bytes32 _slot, bytes32 _value) internal {
                      assembly {
                          sstore(_slot, _value)
                      }
                  }
                  /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the bool in.
                  /// @param _value The bool value to store
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                  ///      in arbitrary storage slots.
                  function setBool(bytes32 _slot, bool _value) internal {
                      assembly {
                          sstore(_slot, _value)
                      }
                  }
                  /// @notice Returns a bool stored in an arbitrary storage slot.
                  /// @param _slot The storage slot to retrieve the bool from.
                  function getBool(bytes32 _slot) internal view returns (bool value_) {
                      assembly {
                          value_ := sload(_slot)
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
              import { Burn } from "src/libraries/Burn.sol";
              import { Arithmetic } from "src/libraries/Arithmetic.sol";
              /// @custom:upgradeable
              /// @title ResourceMetering
              /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
              ///         updates automatically based on current demand.
              abstract contract ResourceMetering is Initializable {
                  /// @notice Represents the various parameters that control the way in which resources are
                  ///         metered. Corresponds to the EIP-1559 resource metering system.
                  /// @custom:field prevBaseFee   Base fee from the previous block(s).
                  /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                  /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                  ///         market. These values should be set with care as it is possible to set them in
                  ///         a way that breaks the deposit gas market. The target resource limit is defined as
                  ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                  ///         single word. There is additional space for additions in the future.
                  /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                  ///                                            can be purchased per block.
                  /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                  ///                                            the resource limit.
                  /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                  /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                  ///                                            value.
                  /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                  ///                                            transaction. This should be set to the same
                  ///                                            number that the op-node sets as the gas limit
                  ///                                            for the system transaction.
                  /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                  ///                                            value.
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  /// @notice EIP-1559 style gas parameters.
                  ResourceParams public params;
                  /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                  uint256[48] private __gap;
                  /// @notice Meters access to a function based an amount of a requested resource.
                  /// @param _amount Amount of the resource requested.
                  modifier metered(uint64 _amount) {
                      // Record initial gas amount so we can refund for it later.
                      uint256 initialGas = gasleft();
                      // Run the underlying function.
                      _;
                      // Run the metering function.
                      _metered(_amount, initialGas);
                  }
                  /// @notice An internal function that holds all of the logic for metering a resource.
                  /// @param _amount     Amount of the resource requested.
                  /// @param _initialGas The amount of gas before any modifier execution.
                  function _metered(uint64 _amount, uint256 _initialGas) internal {
                      // Update block number and base fee if necessary.
                      uint256 blockDiff = block.number - params.prevBlockNum;
                      ResourceConfig memory config = _resourceConfig();
                      int256 targetResourceLimit =
                          int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                      if (blockDiff > 0) {
                          // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                          // at which deposits can be created and therefore limit the potential for deposits to
                          // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                          int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                          int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                              / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                          // Update base fee by adding the base fee delta and clamp the resulting value between
                          // min and max.
                          int256 newBaseFee = Arithmetic.clamp({
                              _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                          // If we skipped more than one block, we also need to account for every empty block.
                          // Empty block means there was no demand for deposits in that block, so we should
                          // reflect this lack of demand in the fee.
                          if (blockDiff > 1) {
                              // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                              // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                              // between min and max.
                              newBaseFee = Arithmetic.clamp({
                                  _value: Arithmetic.cdexp({
                                      _coefficient: newBaseFee,
                                      _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                      _exponent: int256(blockDiff - 1)
                                  }),
                                  _min: int256(uint256(config.minimumBaseFee)),
                                  _max: int256(uint256(config.maximumBaseFee))
                              });
                          }
                          // Update new base fee, reset bought gas, and update block number.
                          params.prevBaseFee = uint128(uint256(newBaseFee));
                          params.prevBoughtGas = 0;
                          params.prevBlockNum = uint64(block.number);
                      }
                      // Make sure we can actually buy the resource amount requested by the user.
                      params.prevBoughtGas += _amount;
                      require(
                          int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                          "ResourceMetering: cannot buy more gas than available gas limit"
                      );
                      // Determine the amount of ETH to be paid.
                      uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                      // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                      // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                      // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                      // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                      // during any 1 day period in the last 5 years, so should be fine.
                      uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                      // Give the user a refund based on the amount of gas they used to do all of the work up to
                      // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                      // effectively like a dynamic stipend (with a minimum value).
                      uint256 usedGas = _initialGas - gasleft();
                      if (gasCost > usedGas) {
                          Burn.gas(gasCost - usedGas);
                      }
                  }
                  /// @notice Virtual function that returns the resource config.
                  ///         Contracts that inherit this contract must implement this function.
                  /// @return ResourceConfig
                  function _resourceConfig() internal virtual returns (ResourceConfig memory);
                  /// @notice Sets initial resource parameter values.
                  ///         This function must either be called by the initializer function of an upgradeable
                  ///         child contract.
                  // solhint-disable-next-line func-name-mixedcase
                  function __ResourceMetering_init() internal onlyInitializing {
                      if (params.prevBlockNum == 0) {
                          params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC165 standard, as defined in the
               * https://eips.ethereum.org/EIPS/eip-165[EIP].
               *
               * Implementers can declare support of contract interfaces, which can then be
               * queried by others ({ERC165Checker}).
               *
               * For an implementation, see {ERC165}.
               */
              interface IERC165 {
                  /**
                   * @dev Returns true if this contract implements the interface defined by
                   * `interfaceId`. See the corresponding
                   * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
                   * to learn more about how these ids are created.
                   *
                   * This function call must use less than 30 000 gas.
                   */
                  function supportsInterface(bytes4 interfaceId) external view returns (bool);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
               * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
               *
               * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
               * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
               * need to send a transaction, and thus is not required to hold Ether at all.
               */
              interface IERC20Permit {
                  /**
                   * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                   * given ``owner``'s signed approval.
                   *
                   * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                   * ordering also apply here.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `deadline` must be a timestamp in the future.
                   * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                   * over the EIP712-formatted function arguments.
                   * - the signature must use ``owner``'s current nonce (see {nonces}).
                   *
                   * For more information on the signature format, see the
                   * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                   * section].
                   */
                  function permit(
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) external;
                  /**
                   * @dev Returns the current nonce for `owner`. This value must be
                   * included whenever a signature is generated for {permit}.
                   *
                   * Every successful call to {permit} increases ``owner``'s nonce by one. This
                   * prevents a signature from being used multiple times.
                   */
                  function nonces(address owner) external view returns (uint256);
                  /**
                   * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                   */
                  // solhint-disable-next-line func-name-mixedcase
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
              pragma solidity ^0.8.0;
              import "./IERC20.sol";
              import "./extensions/IERC20Metadata.sol";
              import "../../utils/Context.sol";
              /**
               * @dev Implementation of the {IERC20} interface.
               *
               * This implementation is agnostic to the way tokens are created. This means
               * that a supply mechanism has to be added in a derived contract using {_mint}.
               * For a generic mechanism see {ERC20PresetMinterPauser}.
               *
               * TIP: For a detailed writeup see our guide
               * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
               * to implement supply mechanisms].
               *
               * We have followed general OpenZeppelin Contracts guidelines: functions revert
               * instead returning `false` on failure. This behavior is nonetheless
               * conventional and does not conflict with the expectations of ERC20
               * applications.
               *
               * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
               * This allows applications to reconstruct the allowance for all accounts just
               * by listening to said events. Other implementations of the EIP may not emit
               * these events, as it isn't required by the specification.
               *
               * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
               * functions have been added to mitigate the well-known issues around setting
               * allowances. See {IERC20-approve}.
               */
              contract ERC20 is Context, IERC20, IERC20Metadata {
                  mapping(address => uint256) private _balances;
                  mapping(address => mapping(address => uint256)) private _allowances;
                  uint256 private _totalSupply;
                  string private _name;
                  string private _symbol;
                  /**
                   * @dev Sets the values for {name} and {symbol}.
                   *
                   * The default value of {decimals} is 18. To select a different value for
                   * {decimals} you should overload it.
                   *
                   * All two of these values are immutable: they can only be set once during
                   * construction.
                   */
                  constructor(string memory name_, string memory symbol_) {
                      _name = name_;
                      _symbol = symbol_;
                  }
                  /**
                   * @dev Returns the name of the token.
                   */
                  function name() public view virtual override returns (string memory) {
                      return _name;
                  }
                  /**
                   * @dev Returns the symbol of the token, usually a shorter version of the
                   * name.
                   */
                  function symbol() public view virtual override returns (string memory) {
                      return _symbol;
                  }
                  /**
                   * @dev Returns the number of decimals used to get its user representation.
                   * For example, if `decimals` equals `2`, a balance of `505` tokens should
                   * be displayed to a user as `5.05` (`505 / 10 ** 2`).
                   *
                   * Tokens usually opt for a value of 18, imitating the relationship between
                   * Ether and Wei. This is the value {ERC20} uses, unless this function is
                   * overridden;
                   *
                   * NOTE: This information is only used for _display_ purposes: it in
                   * no way affects any of the arithmetic of the contract, including
                   * {IERC20-balanceOf} and {IERC20-transfer}.
                   */
                  function decimals() public view virtual override returns (uint8) {
                      return 18;
                  }
                  /**
                   * @dev See {IERC20-totalSupply}.
                   */
                  function totalSupply() public view virtual override returns (uint256) {
                      return _totalSupply;
                  }
                  /**
                   * @dev See {IERC20-balanceOf}.
                   */
                  function balanceOf(address account) public view virtual override returns (uint256) {
                      return _balances[account];
                  }
                  /**
                   * @dev See {IERC20-transfer}.
                   *
                   * Requirements:
                   *
                   * - `to` cannot be the zero address.
                   * - the caller must have a balance of at least `amount`.
                   */
                  function transfer(address to, uint256 amount) public virtual override returns (bool) {
                      address owner = _msgSender();
                      _transfer(owner, to, amount);
                      return true;
                  }
                  /**
                   * @dev See {IERC20-allowance}.
                   */
                  function allowance(address owner, address spender) public view virtual override returns (uint256) {
                      return _allowances[owner][spender];
                  }
                  /**
                   * @dev See {IERC20-approve}.
                   *
                   * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
                   * `transferFrom`. This is semantically equivalent to an infinite approval.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   */
                  function approve(address spender, uint256 amount) public virtual override returns (bool) {
                      address owner = _msgSender();
                      _approve(owner, spender, amount);
                      return true;
                  }
                  /**
                   * @dev See {IERC20-transferFrom}.
                   *
                   * Emits an {Approval} event indicating the updated allowance. This is not
                   * required by the EIP. See the note at the beginning of {ERC20}.
                   *
                   * NOTE: Does not update the allowance if the current allowance
                   * is the maximum `uint256`.
                   *
                   * Requirements:
                   *
                   * - `from` and `to` cannot be the zero address.
                   * - `from` must have a balance of at least `amount`.
                   * - the caller must have allowance for ``from``'s tokens of at least
                   * `amount`.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) public virtual override returns (bool) {
                      address spender = _msgSender();
                      _spendAllowance(from, spender, amount);
                      _transfer(from, to, amount);
                      return true;
                  }
                  /**
                   * @dev Atomically increases the allowance granted to `spender` by the caller.
                   *
                   * This is an alternative to {approve} that can be used as a mitigation for
                   * problems described in {IERC20-approve}.
                   *
                   * Emits an {Approval} event indicating the updated allowance.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   */
                  function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                      address owner = _msgSender();
                      _approve(owner, spender, allowance(owner, spender) + addedValue);
                      return true;
                  }
                  /**
                   * @dev Atomically decreases the allowance granted to `spender` by the caller.
                   *
                   * This is an alternative to {approve} that can be used as a mitigation for
                   * problems described in {IERC20-approve}.
                   *
                   * Emits an {Approval} event indicating the updated allowance.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `spender` must have allowance for the caller of at least
                   * `subtractedValue`.
                   */
                  function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                      address owner = _msgSender();
                      uint256 currentAllowance = allowance(owner, spender);
                      require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                      unchecked {
                          _approve(owner, spender, currentAllowance - subtractedValue);
                      }
                      return true;
                  }
                  /**
                   * @dev Moves `amount` of tokens from `from` to `to`.
                   *
                   * This internal function is equivalent to {transfer}, and can be used to
                   * e.g. implement automatic token fees, slashing mechanisms, etc.
                   *
                   * Emits a {Transfer} event.
                   *
                   * Requirements:
                   *
                   * - `from` cannot be the zero address.
                   * - `to` cannot be the zero address.
                   * - `from` must have a balance of at least `amount`.
                   */
                  function _transfer(
                      address from,
                      address to,
                      uint256 amount
                  ) internal virtual {
                      require(from != address(0), "ERC20: transfer from the zero address");
                      require(to != address(0), "ERC20: transfer to the zero address");
                      _beforeTokenTransfer(from, to, amount);
                      uint256 fromBalance = _balances[from];
                      require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                      unchecked {
                          _balances[from] = fromBalance - amount;
                      }
                      _balances[to] += amount;
                      emit Transfer(from, to, amount);
                      _afterTokenTransfer(from, to, amount);
                  }
                  /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                   * the total supply.
                   *
                   * Emits a {Transfer} event with `from` set to the zero address.
                   *
                   * Requirements:
                   *
                   * - `account` cannot be the zero address.
                   */
                  function _mint(address account, uint256 amount) internal virtual {
                      require(account != address(0), "ERC20: mint to the zero address");
                      _beforeTokenTransfer(address(0), account, amount);
                      _totalSupply += amount;
                      _balances[account] += amount;
                      emit Transfer(address(0), account, amount);
                      _afterTokenTransfer(address(0), account, amount);
                  }
                  /**
                   * @dev Destroys `amount` tokens from `account`, reducing the
                   * total supply.
                   *
                   * Emits a {Transfer} event with `to` set to the zero address.
                   *
                   * Requirements:
                   *
                   * - `account` cannot be the zero address.
                   * - `account` must have at least `amount` tokens.
                   */
                  function _burn(address account, uint256 amount) internal virtual {
                      require(account != address(0), "ERC20: burn from the zero address");
                      _beforeTokenTransfer(account, address(0), amount);
                      uint256 accountBalance = _balances[account];
                      require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                      unchecked {
                          _balances[account] = accountBalance - amount;
                      }
                      _totalSupply -= amount;
                      emit Transfer(account, address(0), amount);
                      _afterTokenTransfer(account, address(0), amount);
                  }
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
                   *
                   * This internal function is equivalent to `approve`, and can be used to
                   * e.g. set automatic allowances for certain subsystems, etc.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `owner` cannot be the zero address.
                   * - `spender` cannot be the zero address.
                   */
                  function _approve(
                      address owner,
                      address spender,
                      uint256 amount
                  ) internal virtual {
                      require(owner != address(0), "ERC20: approve from the zero address");
                      require(spender != address(0), "ERC20: approve to the zero address");
                      _allowances[owner][spender] = amount;
                      emit Approval(owner, spender, amount);
                  }
                  /**
                   * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
                   *
                   * Does not update the allowance amount in case of infinite allowance.
                   * Revert if not enough allowance is available.
                   *
                   * Might emit an {Approval} event.
                   */
                  function _spendAllowance(
                      address owner,
                      address spender,
                      uint256 amount
                  ) internal virtual {
                      uint256 currentAllowance = allowance(owner, spender);
                      if (currentAllowance != type(uint256).max) {
                          require(currentAllowance >= amount, "ERC20: insufficient allowance");
                          unchecked {
                              _approve(owner, spender, currentAllowance - amount);
                          }
                      }
                  }
                  /**
                   * @dev Hook that is called before any transfer of tokens. This includes
                   * minting and burning.
                   *
                   * Calling conditions:
                   *
                   * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                   * will be transferred to `to`.
                   * - when `from` is zero, `amount` tokens will be minted for `to`.
                   * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                   * - `from` and `to` are never both zero.
                   *
                   * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                   */
                  function _beforeTokenTransfer(
                      address from,
                      address to,
                      uint256 amount
                  ) internal virtual {}
                  /**
                   * @dev Hook that is called after any transfer of tokens. This includes
                   * minting and burning.
                   *
                   * Calling conditions:
                   *
                   * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                   * has been transferred to `to`.
                   * - when `from` is zero, `amount` tokens have been minted for `to`.
                   * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
                   * - `from` and `to` are never both zero.
                   *
                   * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                   */
                  function _afterTokenTransfer(
                      address from,
                      address to,
                      uint256 amount
                  ) internal virtual {}
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library AddressUpgradeable {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Types
              /// @notice Contains various types used throughout the Optimism contract system.
              library Types {
                  /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                  ///         timestamp that the output root is posted. This timestamp is used to verify that the
                  ///         finalization period has passed since the output root was submitted.
                  /// @custom:field outputRoot    Hash of the L2 output.
                  /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                  /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                  struct OutputProposal {
                      bytes32 outputRoot;
                      uint128 timestamp;
                      uint128 l2BlockNumber;
                  }
                  /// @notice Struct representing the elements that are hashed together to generate an output root
                  ///         which itself represents a snapshot of the L2 state.
                  /// @custom:field version                  Version of the output root.
                  /// @custom:field stateRoot                Root of the state trie at the block of this output.
                  /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                  /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                  struct OutputRootProof {
                      bytes32 version;
                      bytes32 stateRoot;
                      bytes32 messagePasserStorageRoot;
                      bytes32 latestBlockhash;
                  }
                  /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                  ///         user (as opposed to a system deposit transaction generated by the system).
                  /// @custom:field from        Address of the sender of the transaction.
                  /// @custom:field to          Address of the recipient of the transaction.
                  /// @custom:field isCreation  True if the transaction is a contract creation.
                  /// @custom:field value       Value to send to the recipient.
                  /// @custom:field mint        Amount of ETH to mint.
                  /// @custom:field gasLimit    Gas limit of the transaction.
                  /// @custom:field data        Data of the transaction.
                  /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                  /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                  struct UserDepositTransaction {
                      address from;
                      address to;
                      bool isCreation;
                      uint256 value;
                      uint256 mint;
                      uint64 gasLimit;
                      bytes data;
                      bytes32 l1BlockHash;
                      uint256 logIndex;
                  }
                  /// @notice Struct representing a withdrawal transaction.
                  /// @custom:field nonce    Nonce of the withdrawal transaction
                  /// @custom:field sender   Address of the sender of the transaction.
                  /// @custom:field target   Address of the recipient of the transaction.
                  /// @custom:field value    Value to send to the recipient.
                  /// @custom:field gasLimit Gas limit of the transaction.
                  /// @custom:field data     Data of the transaction.
                  struct WithdrawalTransaction {
                      uint256 nonce;
                      address sender;
                      address target;
                      uint256 value;
                      uint256 gasLimit;
                      bytes data;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
              /// @title RLPWriter
              /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
              ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
              ///         modifications to improve legibility.
              library RLPWriter {
                  /// @notice RLP encodes a byte string.
                  /// @param _in The byte string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      if (_in.length == 1 && uint8(_in[0]) < 128) {
                          out_ = _in;
                      } else {
                          out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                      }
                  }
                  /// @notice RLP encodes a list of RLP encoded byte byte strings.
                  /// @param _in The list of RLP encoded byte strings.
                  /// @return list_ The RLP encoded list of items in bytes.
                  function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                      list_ = _flatten(_in);
                      list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                  }
                  /// @notice RLP encodes a string.
                  /// @param _in The string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeString(string memory _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(bytes(_in));
                  }
                  /// @notice RLP encodes an address.
                  /// @param _in The address to encode.
                  /// @return out_ The RLP encoded address in bytes.
                  function writeAddress(address _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(abi.encodePacked(_in));
                  }
                  /// @notice RLP encodes a uint.
                  /// @param _in The uint256 to encode.
                  /// @return out_ The RLP encoded uint256 in bytes.
                  function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(_toBinary(_in));
                  }
                  /// @notice RLP encodes a bool.
                  /// @param _in The bool to encode.
                  /// @return out_ The RLP encoded bool in bytes.
                  function writeBool(bool _in) internal pure returns (bytes memory out_) {
                      out_ = new bytes(1);
                      out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                  }
                  /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                  /// @param _len    The length of the string or the payload.
                  /// @param _offset 128 if item is string, 192 if item is list.
                  /// @return out_ RLP encoded bytes.
                  function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                      if (_len < 56) {
                          out_ = new bytes(1);
                          out_[0] = bytes1(uint8(_len) + uint8(_offset));
                      } else {
                          uint256 lenLen;
                          uint256 i = 1;
                          while (_len / i != 0) {
                              lenLen++;
                              i *= 256;
                          }
                          out_ = new bytes(lenLen + 1);
                          out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                          for (i = 1; i <= lenLen; i++) {
                              out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                          }
                      }
                  }
                  /// @notice Encode integer in big endian binary form with no leading zeroes.
                  /// @param _x The integer to encode.
                  /// @return out_ RLP encoded bytes.
                  function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                      bytes memory b = abi.encodePacked(_x);
                      uint256 i = 0;
                      for (; i < 32; i++) {
                          if (b[i] != 0) {
                              break;
                          }
                      }
                      out_ = new bytes(32 - i);
                      for (uint256 j = 0; j < out_.length; j++) {
                          out_[j] = b[i++];
                      }
                  }
                  /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                  /// @notice Copies a piece of memory to another location.
                  /// @param _dest Destination location.
                  /// @param _src  Source location.
                  /// @param _len  Length of memory to copy.
                  function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                      uint256 dest = _dest;
                      uint256 src = _src;
                      uint256 len = _len;
                      for (; len >= 32; len -= 32) {
                          assembly {
                              mstore(dest, mload(src))
                          }
                          dest += 32;
                          src += 32;
                      }
                      uint256 mask;
                      unchecked {
                          mask = 256 ** (32 - len) - 1;
                      }
                      assembly {
                          let srcpart := and(mload(src), not(mask))
                          let destpart := and(mload(dest), mask)
                          mstore(dest, or(destpart, srcpart))
                      }
                  }
                  /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                  /// @notice Flattens a list of byte strings into one byte string.
                  /// @param _list List of byte strings to flatten.
                  /// @return out_ The flattened byte string.
                  function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                      if (_list.length == 0) {
                          return new bytes(0);
                      }
                      uint256 len;
                      uint256 i = 0;
                      for (; i < _list.length; i++) {
                          len += _list[i].length;
                      }
                      out_ = new bytes(len);
                      uint256 flattenedPtr;
                      assembly {
                          flattenedPtr := add(out_, 0x20)
                      }
                      for (i = 0; i < _list.length; i++) {
                          bytes memory item = _list[i];
                          uint256 listPtr;
                          assembly {
                              listPtr := add(item, 0x20)
                          }
                          _memcpy(flattenedPtr, listPtr, item.length);
                          flattenedPtr += _list[i].length;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard math utilities missing in the Solidity language.
               */
              library Math {
                  enum Rounding {
                      Down, // Toward negative infinity
                      Up, // Toward infinity
                      Zero // Toward zero
                  }
                  /**
                   * @dev Returns the largest of two numbers.
                   */
                  function max(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two numbers.
                   */
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two numbers. The result is rounded towards
                   * zero.
                   */
                  function average(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b) / 2 can overflow.
                      return (a & b) + (a ^ b) / 2;
                  }
                  /**
                   * @dev Returns the ceiling of the division of two numbers.
                   *
                   * This differs from standard division with `/` in that it rounds up instead
                   * of rounding down.
                   */
                  function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b - 1) / b can overflow on addition, so we distribute.
                      return a == 0 ? 0 : (a - 1) / b + 1;
                  }
                  /**
                   * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                   * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                   * with further edits by Uniswap Labs also under MIT license.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 result) {
                      unchecked {
                          // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                          // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                          // variables such that product = prod1 * 2^256 + prod0.
                          uint256 prod0; // Least significant 256 bits of the product
                          uint256 prod1; // Most significant 256 bits of the product
                          assembly {
                              let mm := mulmod(x, y, not(0))
                              prod0 := mul(x, y)
                              prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                          }
                          // Handle non-overflow cases, 256 by 256 division.
                          if (prod1 == 0) {
                              return prod0 / denominator;
                          }
                          // Make sure the result is less than 2^256. Also prevents denominator == 0.
                          require(denominator > prod1);
                          ///////////////////////////////////////////////
                          // 512 by 256 division.
                          ///////////////////////////////////////////////
                          // Make division exact by subtracting the remainder from [prod1 prod0].
                          uint256 remainder;
                          assembly {
                              // Compute remainder using mulmod.
                              remainder := mulmod(x, y, denominator)
                              // Subtract 256 bit number from 512 bit number.
                              prod1 := sub(prod1, gt(remainder, prod0))
                              prod0 := sub(prod0, remainder)
                          }
                          // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                          // See https://cs.stackexchange.com/q/138556/92363.
                          // Does not overflow because the denominator cannot be zero at this stage in the function.
                          uint256 twos = denominator & (~denominator + 1);
                          assembly {
                              // Divide denominator by twos.
                              denominator := div(denominator, twos)
                              // Divide [prod1 prod0] by twos.
                              prod0 := div(prod0, twos)
                              // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                              twos := add(div(sub(0, twos), twos), 1)
                          }
                          // Shift in bits from prod1 into prod0.
                          prod0 |= prod1 * twos;
                          // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                          // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                          // four bits. That is, denominator * inv = 1 mod 2^4.
                          uint256 inverse = (3 * denominator) ^ 2;
                          // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                          // in modular arithmetic, doubling the correct bits in each step.
                          inverse *= 2 - denominator * inverse; // inverse mod 2^8
                          inverse *= 2 - denominator * inverse; // inverse mod 2^16
                          inverse *= 2 - denominator * inverse; // inverse mod 2^32
                          inverse *= 2 - denominator * inverse; // inverse mod 2^64
                          inverse *= 2 - denominator * inverse; // inverse mod 2^128
                          inverse *= 2 - denominator * inverse; // inverse mod 2^256
                          // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                          // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                          // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                          // is no longer required.
                          result = prod0 * inverse;
                          return result;
                      }
                  }
                  /**
                   * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator,
                      Rounding rounding
                  ) internal pure returns (uint256) {
                      uint256 result = mulDiv(x, y, denominator);
                      if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                          result += 1;
                      }
                      return result;
                  }
                  /**
                   * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                   *
                   * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                   */
                  function sqrt(uint256 a) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                      // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                      // `msb(a) <= a < 2*msb(a)`.
                      // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                      // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                      // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                      // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                      uint256 result = 1;
                      uint256 x = a;
                      if (x >> 128 > 0) {
                          x >>= 128;
                          result <<= 64;
                      }
                      if (x >> 64 > 0) {
                          x >>= 64;
                          result <<= 32;
                      }
                      if (x >> 32 > 0) {
                          x >>= 32;
                          result <<= 16;
                      }
                      if (x >> 16 > 0) {
                          x >>= 16;
                          result <<= 8;
                      }
                      if (x >> 8 > 0) {
                          x >>= 8;
                          result <<= 4;
                      }
                      if (x >> 4 > 0) {
                          x >>= 4;
                          result <<= 2;
                      }
                      if (x >> 2 > 0) {
                          result <<= 1;
                      }
                      // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                      // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                      // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                      // into the expected uint128 result.
                      unchecked {
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          return min(result, a / result);
                      }
                  }
                  /**
                   * @notice Calculates sqrt(a), following the selected rounding direction.
                   */
                  function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                      uint256 result = sqrt(a);
                      if (rounding == Rounding.Up && result * result < a) {
                          result += 1;
                      }
                      return result;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @title Burn
              /// @notice Utilities for burning stuff.
              library Burn {
                  /// @notice Burns a given amount of ETH.
                  /// @param _amount Amount of ETH to burn.
                  function eth(uint256 _amount) internal {
                      new Burner{ value: _amount }();
                  }
                  /// @notice Burns a given amount of gas.
                  /// @param _amount Amount of gas to burn.
                  function gas(uint256 _amount) internal view {
                      uint256 i = 0;
                      uint256 initialGas = gasleft();
                      while (initialGas - gasleft() < _amount) {
                          ++i;
                      }
                  }
              }
              /// @title Burner
              /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
              ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
              ///         from the circulating supply.
              contract Burner {
                  constructor() payable {
                      selfdestruct(payable(address(this)));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
              import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
              /// @title Arithmetic
              /// @notice Even more math than before.
              library Arithmetic {
                  /// @notice Clamps a value between a minimum and maximum.
                  /// @param _value The value to clamp.
                  /// @param _min   The minimum value.
                  /// @param _max   The maximum value.
                  /// @return The clamped value.
                  function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                      return SignedMath.min(SignedMath.max(_value, _min), _max);
                  }
                  /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                  ///         Returns the result of: c * (1 - 1/d)^exp.
                  /// @param _coefficient Coefficient of the function.
                  /// @param _denominator Fractional denominator.
                  /// @param _exponent    Power function exponent.
                  /// @return Result of c * (1 - 1/d)^exp.
                  function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                      return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              /**
               * @dev Interface for the optional metadata functions from the ERC20 standard.
               *
               * _Available since v4.1._
               */
              interface IERC20Metadata is IERC20 {
                  /**
                   * @dev Returns the name of the token.
                   */
                  function name() external view returns (string memory);
                  /**
                   * @dev Returns the symbol of the token.
                   */
                  function symbol() external view returns (string memory);
                  /**
                   * @dev Returns the decimals places of the token.
                   */
                  function decimals() external view returns (uint8);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard signed math utilities missing in the Solidity language.
               */
              library SignedMath {
                  /**
                   * @dev Returns the largest of two signed numbers.
                   */
                  function max(int256 a, int256 b) internal pure returns (int256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two signed numbers.
                   */
                  function min(int256 a, int256 b) internal pure returns (int256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two signed numbers without overflow.
                   * The result is rounded towards zero.
                   */
                  function average(int256 a, int256 b) internal pure returns (int256) {
                      // Formula from the book "Hacker's Delight"
                      int256 x = (a & b) + ((a ^ b) >> 1);
                      return x + (int256(uint256(x) >> 255) & (a ^ b));
                  }
                  /**
                   * @dev Returns the absolute unsigned value of a signed value.
                   */
                  function abs(int256 n) internal pure returns (uint256) {
                      unchecked {
                          // must be unchecked in order to support `n = type(int256).min`
                          return uint256(n >= 0 ? n : -n);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.8.0;
              /// @notice Arithmetic library with operations for fixed-point numbers.
              /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
              library FixedPointMathLib {
                  /*//////////////////////////////////////////////////////////////
                                  SIMPLIFIED FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                  function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                  }
                  function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                  }
                  function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                  }
                  function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                  }
                  function powWad(int256 x, int256 y) internal pure returns (int256) {
                      // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                      return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                  }
                  function expWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          // When the result is < 0.5 we return zero. This happens when
                          // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                          if (x <= -42139678854452767551) return 0;
                          // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                          // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                          if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                          // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                          // for more intermediate precision and a binary basis. This base conversion
                          // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                          x = (x << 78) / 5**18;
                          // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                          // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                          // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                          int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                          x = x - k * 54916777467707473351141471128;
                          // k is in the range [-61, 195].
                          // Evaluate using a (6, 7)-term rational approximation.
                          // p is made monic, we'll multiply by a scale factor later.
                          int256 y = x + 1346386616545796478920950773328;
                          y = ((y * x) >> 96) + 57155421227552351082224309758442;
                          int256 p = y + x - 94201549194550492254356042504812;
                          p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                          p = p * x + (4385272521454847904659076985693276 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          int256 q = x - 2855989394907223263936484059900;
                          q = ((q * x) >> 96) + 50020603652535783019961831881945;
                          q = ((q * x) >> 96) - 533845033583426703283633433725380;
                          q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                          q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                          q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial won't have zeros in the domain as all its roots are complex.
                              // No scaling is necessary because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r should be in the range (0.09, 0.25) * 2**96.
                          // We now need to multiply r by:
                          // * the scale factor s = ~6.031367120.
                          // * the 2**k factor from the range reduction.
                          // * the 1e18 / 2**96 factor for base conversion.
                          // We do this all at once, with an intermediate result in 2**213
                          // basis, so the final right shift is always by a positive amount.
                          r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                      }
                  }
                  function lnWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          require(x > 0, "UNDEFINED");
                          // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                          // We do this by multiplying by 2**96 / 10**18. But since
                          // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                          // and add ln(2**96 / 10**18) at the end.
                          // Reduce range of x to (1, 2) * 2**96
                          // ln(2^k * x) = k * ln(2) + ln(x)
                          int256 k = int256(log2(uint256(x))) - 96;
                          x <<= uint256(159 - k);
                          x = int256(uint256(x) >> 159);
                          // Evaluate using a (8, 8)-term rational approximation.
                          // p is made monic, we will multiply by a scale factor later.
                          int256 p = x + 3273285459638523848632254066296;
                          p = ((p * x) >> 96) + 24828157081833163892658089445524;
                          p = ((p * x) >> 96) + 43456485725739037958740375743393;
                          p = ((p * x) >> 96) - 11111509109440967052023855526967;
                          p = ((p * x) >> 96) - 45023709667254063763336534515857;
                          p = ((p * x) >> 96) - 14706773417378608786704636184526;
                          p = p * x - (795164235651350426258249787498 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          // q is monic by convention.
                          int256 q = x + 5573035233440673466300451813936;
                          q = ((q * x) >> 96) + 71694874799317883764090561454958;
                          q = ((q * x) >> 96) + 283447036172924575727196451306956;
                          q = ((q * x) >> 96) + 401686690394027663651624208769553;
                          q = ((q * x) >> 96) + 204048457590392012362485061816622;
                          q = ((q * x) >> 96) + 31853899698501571402653359427138;
                          q = ((q * x) >> 96) + 909429971244387300277376558375;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial is known not to have zeros in the domain.
                              // No scaling required because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r is in the range (0, 0.125) * 2**96
                          // Finalization, we need to:
                          // * multiply by the scale factor s = 5.549…
                          // * add ln(2**96 / 10**18)
                          // * add k * ln(2)
                          // * multiply by 10**18 / 2**96 = 5**18 >> 78
                          // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                          r *= 1677202110996718588342820967067443963516166;
                          // add ln(2) * k * 5e18 * 2**192
                          r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                          // add ln(2**96 / 10**18) * 5e18 * 2**192
                          r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                          // base conversion: mul 2**18 / 2**192
                          r >>= 174;
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                  LOW LEVEL FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  function mulDivDown(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // Divide z by the denominator.
                          z := div(z, denominator)
                      }
                  }
                  function mulDivUp(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // First, divide z - 1 by the denominator and add 1.
                          // We allow z - 1 to underflow if z is 0, because we multiply the
                          // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                          z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                      }
                  }
                  function rpow(
                      uint256 x,
                      uint256 n,
                      uint256 scalar
                  ) internal pure returns (uint256 z) {
                      assembly {
                          switch x
                          case 0 {
                              switch n
                              case 0 {
                                  // 0 ** 0 = 1
                                  z := scalar
                              }
                              default {
                                  // 0 ** n = 0
                                  z := 0
                              }
                          }
                          default {
                              switch mod(n, 2)
                              case 0 {
                                  // If n is even, store scalar in z for now.
                                  z := scalar
                              }
                              default {
                                  // If n is odd, store x in z for now.
                                  z := x
                              }
                              // Shifting right by 1 is like dividing by 2.
                              let half := shr(1, scalar)
                              for {
                                  // Shift n right by 1 before looping to halve it.
                                  n := shr(1, n)
                              } n {
                                  // Shift n right by 1 each iteration to halve it.
                                  n := shr(1, n)
                              } {
                                  // Revert immediately if x ** 2 would overflow.
                                  // Equivalent to iszero(eq(div(xx, x), x)) here.
                                  if shr(128, x) {
                                      revert(0, 0)
                                  }
                                  // Store x squared.
                                  let xx := mul(x, x)
                                  // Round to the nearest number.
                                  let xxRound := add(xx, half)
                                  // Revert if xx + half overflowed.
                                  if lt(xxRound, xx) {
                                      revert(0, 0)
                                  }
                                  // Set x to scaled xxRound.
                                  x := div(xxRound, scalar)
                                  // If n is even:
                                  if mod(n, 2) {
                                      // Compute z * x.
                                      let zx := mul(z, x)
                                      // If z * x overflowed:
                                      if iszero(eq(div(zx, x), z)) {
                                          // Revert if x is non-zero.
                                          if iszero(iszero(x)) {
                                              revert(0, 0)
                                          }
                                      }
                                      // Round to the nearest number.
                                      let zxRound := add(zx, half)
                                      // Revert if zx + half overflowed.
                                      if lt(zxRound, zx) {
                                          revert(0, 0)
                                      }
                                      // Return properly scaled zxRound.
                                      z := div(zxRound, scalar)
                                  }
                              }
                          }
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                      GENERAL NUMBER UTILITIES
                  //////////////////////////////////////////////////////////////*/
                  function sqrt(uint256 x) internal pure returns (uint256 z) {
                      assembly {
                          let y := x // We start y at x, which will help us make our initial estimate.
                          z := 181 // The "correct" value is 1, but this saves a multiplication later.
                          // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                          // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                          // We check y >= 2^(k + 8) but shift right by k bits
                          // each branch to ensure that if x >= 256, then y >= 256.
                          if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                              y := shr(128, y)
                              z := shl(64, z)
                          }
                          if iszero(lt(y, 0x1000000000000000000)) {
                              y := shr(64, y)
                              z := shl(32, z)
                          }
                          if iszero(lt(y, 0x10000000000)) {
                              y := shr(32, y)
                              z := shl(16, z)
                          }
                          if iszero(lt(y, 0x1000000)) {
                              y := shr(16, y)
                              z := shl(8, z)
                          }
                          // Goal was to get z*z*y within a small factor of x. More iterations could
                          // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                          // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                          // That's not possible if x < 256 but we can just verify those cases exhaustively.
                          // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                          // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                          // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                          // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                          // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                          // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                          // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                          // There is no overflow risk here since y < 2^136 after the first branch above.
                          z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                          // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          // If x+1 is a perfect square, the Babylonian method cycles between
                          // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                          // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                          // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                          // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                          z := sub(z, lt(div(x, z), z))
                      }
                  }
                  function log2(uint256 x) internal pure returns (uint256 r) {
                      require(x > 0, "UNDEFINED");
                      assembly {
                          r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                          r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                          r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                          r := or(r, shl(4, lt(0xffff, shr(r, x))))
                          r := or(r, shl(3, lt(0xff, shr(r, x))))
                          r := or(r, shl(2, lt(0xf, shr(r, x))))
                          r := or(r, shl(1, lt(0x3, shr(r, x))))
                          r := or(r, lt(0x1, shr(r, x)))
                      }
                  }
              }
              

              File 6 of 9: AddressManager
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              /**
               * @custom:legacy
               * @title AddressManager
               * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
               *         system to manage a registry of string names to addresses. We now use a more standard
               *         proxy system instead, but this contract is still necessary for backwards compatibility
               *         with several older contracts.
               */
              contract AddressManager is Ownable {
                  /**
                   * @notice Mapping of the hashes of string names to addresses.
                   */
                  mapping(bytes32 => address) private addresses;
                  /**
                   * @notice Emitted when an address is modified in the registry.
                   *
                   * @param name       String name being set in the registry.
                   * @param newAddress Address set for the given name.
                   * @param oldAddress Address that was previously set for the given name.
                   */
                  event AddressSet(string indexed name, address newAddress, address oldAddress);
                  /**
                   * @notice Changes the address associated with a particular name.
                   *
                   * @param _name    String name to associate an address with.
                   * @param _address Address to associate with the name.
                   */
                  function setAddress(string memory _name, address _address) external onlyOwner {
                      bytes32 nameHash = _getNameHash(_name);
                      address oldAddress = addresses[nameHash];
                      addresses[nameHash] = _address;
                      emit AddressSet(_name, _address, oldAddress);
                  }
                  /**
                   * @notice Retrieves the address associated with a given name.
                   *
                   * @param _name Name to retrieve an address for.
                   *
                   * @return Address associated with the given name.
                   */
                  function getAddress(string memory _name) external view returns (address) {
                      return addresses[_getNameHash(_name)];
                  }
                  /**
                   * @notice Computes the hash of a name.
                   *
                   * @param _name Name to compute a hash for.
                   *
                   * @return Hash of the given name.
                   */
                  function _getNameHash(string memory _name) internal pure returns (bytes32) {
                      return keccak256(abi.encodePacked(_name));
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
              pragma solidity ^0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor() {
                      _transferOwnership(_msgSender());
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      _checkOwner();
                      _;
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if the sender is not the owner.
                   */
                  function _checkOwner() internal view virtual {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      _transferOwnership(address(0));
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      _transferOwnership(newOwner);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Internal function without access restriction.
                   */
                  function _transferOwnership(address newOwner) internal virtual {
                      address oldOwner = _owner;
                      _owner = newOwner;
                      emit OwnershipTransferred(oldOwner, newOwner);
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
              }
              

              File 7 of 9: L1CrossDomainMessenger
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Predeploys } from "src/libraries/Predeploys.sol";
              import { OptimismPortal } from "src/L1/OptimismPortal.sol";
              import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
              /// @custom:proxied
              /// @title L1CrossDomainMessenger
              /// @notice The L1CrossDomainMessenger is a message passing interface between L1 and L2 responsible
              ///         for sending and receiving data on the L1 side. Users are encouraged to use this
              ///         interface instead of interacting with lower-level contracts directly.
              contract L1CrossDomainMessenger is CrossDomainMessenger, ISemver {
                  /// @notice Contract of the SuperchainConfig.
                  SuperchainConfig public superchainConfig;
                  /// @notice Contract of the OptimismPortal.
                  /// @custom:network-specific
                  OptimismPortal public portal;
                  /// @notice Semantic version.
                  /// @custom:semver 2.3.0
                  string public constant version = "2.3.0";
                  /// @notice Constructs the L1CrossDomainMessenger contract.
                  constructor() CrossDomainMessenger() {
                      initialize({ _superchainConfig: SuperchainConfig(address(0)), _portal: OptimismPortal(payable(address(0))) });
                  }
                  /// @notice Initializes the contract.
                  /// @param _superchainConfig Contract of the SuperchainConfig contract on this network.
                  /// @param _portal Contract of the OptimismPortal contract on this network.
                  function initialize(SuperchainConfig _superchainConfig, OptimismPortal _portal) public initializer {
                      superchainConfig = _superchainConfig;
                      portal = _portal;
                      __CrossDomainMessenger_init({ _otherMessenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) });
                  }
                  /// @notice Getter function for the OptimismPortal contract on this chain.
                  ///         Public getter is legacy and will be removed in the future. Use `portal()` instead.
                  /// @return Contract of the OptimismPortal on this chain.
                  /// @custom:legacy
                  function PORTAL() external view returns (OptimismPortal) {
                      return portal;
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal override {
                      portal.depositTransaction{ value: _value }({
                          _to: _to,
                          _value: _value,
                          _gasLimit: _gasLimit,
                          _isCreation: false,
                          _data: _data
                      });
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function _isOtherMessenger() internal view override returns (bool) {
                      return msg.sender == address(portal) && portal.l2Sender() == address(otherMessenger);
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function _isUnsafeTarget(address _target) internal view override returns (bool) {
                      return _target == address(this) || _target == address(portal);
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function paused() public view override returns (bool) {
                      return superchainConfig.paused();
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Predeploys
              /// @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
              library Predeploys {
                  /// @notice Address of the L2ToL1MessagePasser predeploy.
                  address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                  /// @notice Address of the L2CrossDomainMessenger predeploy.
                  address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                  /// @notice Address of the L2StandardBridge predeploy.
                  address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                  /// @notice Address of the L2ERC721Bridge predeploy.
                  address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                  //// @notice Address of the SequencerFeeWallet predeploy.
                  address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                  /// @notice Address of the OptimismMintableERC20Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                  /// @notice Address of the OptimismMintableERC721Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                  /// @notice Address of the L1Block predeploy.
                  address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                  /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                  ///         and helpers for computing the L1 portion of the transaction fee.
                  address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                  /// @custom:legacy
                  /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                  ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                  address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                  /// @custom:legacy
                  /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                  address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                  /// @notice Address of the canonical WETH9 contract.
                  address internal constant WETH9 = 0x4200000000000000000000000000000000000006;
                  /// @custom:legacy
                  /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                  ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                  ///         can no longer be accessed.
                  address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                  /// @custom:legacy
                  /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                  ///         instead, which exposes more information about the L1 state.
                  address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                  /// @custom:legacy
                  /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                  ///         L2ToL1MessagePasser contract instead.
                  address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                  /// @notice Address of the ProxyAdmin predeploy.
                  address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                  /// @notice Address of the BaseFeeVault predeploy.
                  address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                  /// @notice Address of the L1FeeVault predeploy.
                  address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                  /// @notice Address of the GovernanceToken predeploy.
                  address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                  /// @notice Address of the SchemaRegistry predeploy.
                  address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                  /// @notice Address of the EAS predeploy.
                  address internal constant EAS = 0x4200000000000000000000000000000000000021;
                  /// @notice Address of the MultiCall3 predeploy.
                  address internal constant MultiCall3 = 0xcA11bde05977b3631167028862bE2a173976CA11;
                  /// @notice Address of the Create2Deployer predeploy.
                  address internal constant Create2Deployer = 0x13b0D85CcB8bf860b6b79AF3029fCA081AE9beF2;
                  /// @notice Address of the Safe_v130 predeploy.
                  address internal constant Safe_v130 = 0x69f4D1788e39c87893C980c06EdF4b7f686e2938;
                  /// @notice Address of the SafeL2_v130 predeploy.
                  address internal constant SafeL2_v130 = 0xfb1bffC9d739B8D520DaF37dF666da4C687191EA;
                  /// @notice Address of the MultiSendCallOnly_v130 predeploy.
                  address internal constant MultiSendCallOnly_v130 = 0xA1dabEF33b3B82c7814B6D82A79e50F4AC44102B;
                  /// @notice Address of the SafeSingletonFactory predeploy.
                  address internal constant SafeSingletonFactory = 0x914d7Fec6aaC8cd542e72Bca78B30650d45643d7;
                  /// @notice Address of the DeterministicDeploymentProxy predeploy.
                  address internal constant DeterministicDeploymentProxy = 0x4e59b44847b379578588920cA78FbF26c0B4956C;
                  /// @notice Address of the MultiSend_v130 predeploy.
                  address internal constant MultiSend_v130 = 0x998739BFdAAdde7C933B942a68053933098f9EDa;
                  /// @notice Address of the Permit2 predeploy.
                  address internal constant Permit2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
                  /// @notice Address of the SenderCreator predeploy.
                  address internal constant SenderCreator = 0x7fc98430eAEdbb6070B35B39D798725049088348;
                  /// @notice Address of the EntryPoint predeploy.
                  address internal constant EntryPoint = 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
              import { SystemConfig } from "src/L1/SystemConfig.sol";
              import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
              import { Constants } from "src/libraries/Constants.sol";
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
              import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
              import { ResourceMetering } from "src/L1/ResourceMetering.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { Constants } from "src/libraries/Constants.sol";
              /// @custom:proxied
              /// @title OptimismPortal
              /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
              ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
              ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
              contract OptimismPortal is Initializable, ResourceMetering, ISemver {
                  /// @notice Represents a proven withdrawal.
                  /// @custom:field outputRoot    Root of the L2 output this was proven against.
                  /// @custom:field timestamp     Timestamp at whcih the withdrawal was proven.
                  /// @custom:field l2OutputIndex Index of the output this was proven against.
                  struct ProvenWithdrawal {
                      bytes32 outputRoot;
                      uint128 timestamp;
                      uint128 l2OutputIndex;
                  }
                  /// @notice Version of the deposit event.
                  uint256 internal constant DEPOSIT_VERSION = 0;
                  /// @notice The L2 gas limit set when eth is deposited using the receive() function.
                  uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
                  /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
                  ///         If the of this variable is the default L2 sender address, then we are NOT inside of
                  ///         a call to finalizeWithdrawalTransaction.
                  address public l2Sender;
                  /// @notice A list of withdrawal hashes which have been successfully finalized.
                  mapping(bytes32 => bool) public finalizedWithdrawals;
                  /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
                  mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
                  /// @custom:legacy
                  /// @custom:spacer paused
                  /// @notice Spacer for backwards compatibility.
                  bool private spacer_53_0_1;
                  /// @notice Contract of the Superchain Config.
                  SuperchainConfig public superchainConfig;
                  /// @notice Contract of the L2OutputOracle.
                  /// @custom:network-specific
                  L2OutputOracle public l2Oracle;
                  /// @notice Contract of the SystemConfig.
                  /// @custom:network-specific
                  SystemConfig public systemConfig;
                  /// @notice Emitted when a transaction is deposited from L1 to L2.
                  ///         The parameters of this event are read by the rollup node and used to derive deposit
                  ///         transactions on L2.
                  /// @param from       Address that triggered the deposit transaction.
                  /// @param to         Address that the deposit transaction is directed to.
                  /// @param version    Version of this deposit transaction event.
                  /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
                  event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                  /// @notice Emitted when a withdrawal transaction is proven.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param from           Address that triggered the withdrawal transaction.
                  /// @param to             Address that the withdrawal transaction is directed to.
                  event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                  /// @notice Emitted when a withdrawal transaction is finalized.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param success        Whether the withdrawal transaction was successful.
                  event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                  /// @notice Reverts when paused.
                  modifier whenNotPaused() {
                      require(paused() == false, "OptimismPortal: paused");
                      _;
                  }
                  /// @notice Semantic version.
                  /// @custom:semver 2.5.0
                  string public constant version = "2.5.0";
                  /// @notice Constructs the OptimismPortal contract.
                  constructor() {
                      initialize({
                          _l2Oracle: L2OutputOracle(address(0)),
                          _systemConfig: SystemConfig(address(0)),
                          _superchainConfig: SuperchainConfig(address(0))
                      });
                  }
                  /// @notice Initializer.
                  /// @param _l2Oracle Contract of the L2OutputOracle.
                  /// @param _systemConfig Contract of the SystemConfig.
                  /// @param _superchainConfig Contract of the SuperchainConfig.
                  function initialize(
                      L2OutputOracle _l2Oracle,
                      SystemConfig _systemConfig,
                      SuperchainConfig _superchainConfig
                  )
                      public
                      initializer
                  {
                      l2Oracle = _l2Oracle;
                      systemConfig = _systemConfig;
                      superchainConfig = _superchainConfig;
                      if (l2Sender == address(0)) {
                          l2Sender = Constants.DEFAULT_L2_SENDER;
                      }
                      __ResourceMetering_init();
                  }
                  /// @notice Getter function for the contract of the L2OutputOracle on this chain.
                  ///         Public getter is legacy and will be removed in the future. Use `l2Oracle()` instead.
                  /// @return Contract of the L2OutputOracle on this chain.
                  /// @custom:legacy
                  function L2_ORACLE() external view returns (L2OutputOracle) {
                      return l2Oracle;
                  }
                  /// @notice Getter function for the contract of the SystemConfig on this chain.
                  ///         Public getter is legacy and will be removed in the future. Use `systemConfig()` instead.
                  /// @return Contract of the SystemConfig on this chain.
                  /// @custom:legacy
                  function SYSTEM_CONFIG() external view returns (SystemConfig) {
                      return systemConfig;
                  }
                  /// @notice Getter function for the address of the guardian.
                  ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
                  /// @return Address of the guardian.
                  /// @custom:legacy
                  function GUARDIAN() external view returns (address) {
                      return guardian();
                  }
                  /// @notice Getter function for the address of the guardian.
                  ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
                  /// @return Address of the guardian.
                  /// @custom:legacy
                  function guardian() public view returns (address) {
                      return superchainConfig.guardian();
                  }
                  /// @notice Getter for the current paused status.
                  /// @return paused_ Whether or not the contract is paused.
                  function paused() public view returns (bool paused_) {
                      paused_ = superchainConfig.paused();
                  }
                  /// @notice Computes the minimum gas limit for a deposit.
                  ///         The minimum gas limit linearly increases based on the size of the calldata.
                  ///         This is to prevent users from creating L2 resource usage without paying for it.
                  ///         This function can be used when interacting with the portal to ensure forwards
                  ///         compatibility.
                  /// @param _byteCount Number of bytes in the calldata.
                  /// @return The minimum gas limit for a deposit.
                  function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                      return _byteCount * 16 + 21000;
                  }
                  /// @notice Accepts value so that users can send ETH directly to this contract and have the
                  ///         funds be deposited to their address on L2. This is intended as a convenience
                  ///         function for EOAs. Contracts should call the depositTransaction() function directly
                  ///         otherwise any deposited funds will be lost due to address aliasing.
                  // solhint-disable-next-line ordering
                  receive() external payable {
                      depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
                  }
                  /// @notice Accepts ETH value without triggering a deposit to L2.
                  ///         This function mainly exists for the sake of the migration between the legacy
                  ///         Optimism system and Bedrock.
                  function donateETH() external payable {
                      // Intentionally empty.
                  }
                  /// @notice Getter for the resource config.
                  ///         Used internally by the ResourceMetering contract.
                  ///         The SystemConfig is the source of truth for the resource config.
                  /// @return ResourceMetering ResourceConfig
                  function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
                      return systemConfig.resourceConfig();
                  }
                  /// @notice Proves a withdrawal transaction.
                  /// @param _tx              Withdrawal transaction to finalize.
                  /// @param _l2OutputIndex   L2 output index to prove against.
                  /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
                  /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
                  function proveWithdrawalTransaction(
                      Types.WithdrawalTransaction memory _tx,
                      uint256 _l2OutputIndex,
                      Types.OutputRootProof calldata _outputRootProof,
                      bytes[] calldata _withdrawalProof
                  )
                      external
                      whenNotPaused
                  {
                      // Prevent users from creating a deposit transaction where this address is the message
                      // sender on L2. Because this is checked here, we do not need to check again in
                      // `finalizeWithdrawalTransaction`.
                      require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract");
                      // Get the output root and load onto the stack to prevent multiple mloads. This will
                      // revert if there is no output root for the given block number.
                      bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot;
                      // Verify that the output root can be generated with the elements in the proof.
                      require(
                          outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
                      );
                      // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                      bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                      ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                      // We generally want to prevent users from proving the same withdrawal multiple times
                      // because each successive proof will update the timestamp. A malicious user can take
                      // advantage of this to prevent other users from finalizing their withdrawal. However,
                      // since withdrawals are proven before an output root is finalized, we need to allow users
                      // to re-prove their withdrawal only in the case that the output root for their specified
                      // output index has been updated.
                      require(
                          provenWithdrawal.timestamp == 0
                              || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot,
                          "OptimismPortal: withdrawal hash has already been proven"
                      );
                      // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                      // Refer to the Solidity documentation for more information on how storage layouts are
                      // computed for mappings.
                      bytes32 storageKey = keccak256(
                          abi.encode(
                              withdrawalHash,
                              uint256(0) // The withdrawals mapping is at the first slot in the layout.
                          )
                      );
                      // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                      // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                      // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                      // be relayed on L1.
                      require(
                          SecureMerkleTrie.verifyInclusionProof(
                              abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot
                          ),
                          "OptimismPortal: invalid withdrawal inclusion proof"
                      );
                      // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
                      // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
                      // proven once unless it is submitted again with a different outputRoot.
                      provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
                          outputRoot: outputRoot,
                          timestamp: uint128(block.timestamp),
                          l2OutputIndex: uint128(_l2OutputIndex)
                      });
                      // Emit a `WithdrawalProven` event.
                      emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
                  }
                  /// @notice Finalizes a withdrawal transaction.
                  /// @param _tx Withdrawal transaction to finalize.
                  function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
                      // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                      // than the default value when a withdrawal transaction is being finalized. This check is
                      // a defacto reentrancy guard.
                      require(
                          l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction"
                      );
                      // Grab the proven withdrawal from the `provenWithdrawals` map.
                      bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                      ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                      // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                      // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                      // a timestamp of zero.
                      require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");
                      // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                      // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
                      // safety against weird bugs in the proving step.
                      require(
                          provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
                          "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
                      );
                      // A proven withdrawal must wait at least the finalization period before it can be
                      // finalized. This waiting period can elapse in parallel with the waiting period for the
                      // output the withdrawal was proven against. In effect, this means that the minimum
                      // withdrawal time is proposal submission time + finalization period.
                      require(
                          _isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
                          "OptimismPortal: proven withdrawal finalization period has not elapsed"
                      );
                      // Grab the OutputProposal from the L2OutputOracle, will revert if the output that
                      // corresponds to the given index has not been proposed yet.
                      Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex);
                      // Check that the output root that was used to prove the withdrawal is the same as the
                      // current output root for the given output index. An output root may change if it is
                      // deleted by the challenger address and then re-proposed.
                      require(
                          proposal.outputRoot == provenWithdrawal.outputRoot,
                          "OptimismPortal: output root proven is not the same as current output root"
                      );
                      // Check that the output proposal has also been finalized.
                      require(
                          _isFinalizationPeriodElapsed(proposal.timestamp),
                          "OptimismPortal: output proposal finalization period has not elapsed"
                      );
                      // Check that this withdrawal has not already been finalized, this is replay protection.
                      require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
                      // Mark the withdrawal as finalized so it can't be replayed.
                      finalizedWithdrawals[withdrawalHash] = true;
                      // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                      l2Sender = _tx.sender;
                      // Trigger the call to the target contract. We use a custom low level method
                      // SafeCall.callWithMinGas to ensure two key properties
                      //   1. Target contracts cannot force this call to run out of gas by returning a very large
                      //      amount of data (and this is OK because we don't care about the returndata here).
                      //   2. The amount of gas provided to the execution context of the target is at least the
                      //      gas limit specified by the user. If there is not enough gas in the current context
                      //      to accomplish this, `callWithMinGas` will revert.
                      bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
                      // Reset the l2Sender back to the default value.
                      l2Sender = Constants.DEFAULT_L2_SENDER;
                      // All withdrawals are immediately finalized. Replayability can
                      // be achieved through contracts built on top of this contract
                      emit WithdrawalFinalized(withdrawalHash, success);
                      // Reverting here is useful for determining the exact gas cost to successfully execute the
                      // sub call to the target contract if the minimum gas limit specified by the user would not
                      // be sufficient to execute the sub call.
                      if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
                          revert("OptimismPortal: withdrawal failed");
                      }
                  }
                  /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
                  ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
                  ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
                  ///         using the CrossDomainMessenger contracts for a simpler developer experience.
                  /// @param _to         Target address on L2.
                  /// @param _value      ETH value to send to the recipient.
                  /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                  /// @param _isCreation Whether or not the transaction is a contract creation.
                  /// @param _data       Data to trigger the recipient with.
                  function depositTransaction(
                      address _to,
                      uint256 _value,
                      uint64 _gasLimit,
                      bool _isCreation,
                      bytes memory _data
                  )
                      public
                      payable
                      metered(_gasLimit)
                  {
                      // Just to be safe, make sure that people specify address(0) as the target when doing
                      // contract creations.
                      if (_isCreation) {
                          require(_to == address(0), "OptimismPortal: must send to address(0) when creating a contract");
                      }
                      // Prevent depositing transactions that have too small of a gas limit. Users should pay
                      // more for more resource usage.
                      require(_gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small");
                      // Prevent the creation of deposit transactions that have too much calldata. This gives an
                      // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                      // that the transaction can fit into the p2p network policy of 128kb even though deposit
                      // transactions are not gossipped over the p2p network.
                      require(_data.length <= 120_000, "OptimismPortal: data too large");
                      // Transform the from-address to its alias if the caller is a contract.
                      address from = msg.sender;
                      if (msg.sender != tx.origin) {
                          from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                      }
                      // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                      // We use opaque data so that we can update the TransactionDeposited event in the future
                      // without breaking the current interface.
                      bytes memory opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
                      // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                      // transaction for this deposit.
                      emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
                  }
                  /// @notice Determine if a given output is finalized.
                  ///         Reverts if the call to l2Oracle.getL2Output reverts.
                  ///         Returns a boolean otherwise.
                  /// @param _l2OutputIndex Index of the L2 output to check.
                  /// @return Whether or not the output is finalized.
                  function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
                      return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp);
                  }
                  /// @notice Determines whether the finalization period has elapsed with respect to
                  ///         the provided block timestamp.
                  /// @param _timestamp Timestamp to check.
                  /// @return Whether or not the finalization period has elapsed.
                  function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
                      return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS();
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              import { Constants } from "src/libraries/Constants.sol";
              /// @custom:legacy
              /// @title CrossDomainMessengerLegacySpacer0
              /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
              ///         libAddressManager variable used to exist. Must be the first contract in the inheritance
              ///         tree of the CrossDomainMessenger.
              contract CrossDomainMessengerLegacySpacer0 {
                  /// @custom:legacy
                  /// @custom:spacer libAddressManager
                  /// @notice Spacer for backwards compatibility.
                  address private spacer_0_0_20;
              }
              /// @custom:legacy
              /// @title CrossDomainMessengerLegacySpacer1
              /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
              ///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
              ///         the third contract in the inheritance tree of the CrossDomainMessenger.
              contract CrossDomainMessengerLegacySpacer1 {
                  /// @custom:legacy
                  /// @custom:spacer ContextUpgradable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         ContextUpgradable.
                  uint256[50] private spacer_1_0_1600;
                  /// @custom:legacy
                  /// @custom:spacer OwnableUpgradeable's _owner
                  /// @notice Spacer for backwards compatibility.
                  ///         Come from OpenZeppelin OwnableUpgradeable.
                  address private spacer_51_0_20;
                  /// @custom:legacy
                  /// @custom:spacer OwnableUpgradeable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         OwnableUpgradeable.
                  uint256[49] private spacer_52_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer PausableUpgradable's _paused
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         PausableUpgradable.
                  bool private spacer_101_0_1;
                  /// @custom:legacy
                  /// @custom:spacer PausableUpgradable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         PausableUpgradable.
                  uint256[49] private spacer_102_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
                  /// @notice Spacer for backwards compatibility.
                  uint256 private spacer_151_0_32;
                  /// @custom:legacy
                  /// @custom:spacer ReentrancyGuardUpgradeable's __gap
                  /// @notice Spacer for backwards compatibility.
                  uint256[49] private spacer_152_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer blockedMessages
                  /// @notice Spacer for backwards compatibility.
                  mapping(bytes32 => bool) private spacer_201_0_32;
                  /// @custom:legacy
                  /// @custom:spacer relayedMessages
                  /// @notice Spacer for backwards compatibility.
                  mapping(bytes32 => bool) private spacer_202_0_32;
              }
              /// @custom:upgradeable
              /// @title CrossDomainMessenger
              /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
              ///         cross-chain messenger contracts. It's designed to be a universal interface that only
              ///         needs to be extended slightly to provide low-level message passing functionality on each
              ///         chain it's deployed on. Currently only designed for message passing between two paired
              ///         chains and does not support one-to-many interactions.
              ///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
              abstract contract CrossDomainMessenger is
                  CrossDomainMessengerLegacySpacer0,
                  Initializable,
                  CrossDomainMessengerLegacySpacer1
              {
                  /// @notice Current message version identifier.
                  uint16 public constant MESSAGE_VERSION = 1;
                  /// @notice Constant overhead added to the base gas for a message.
                  uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
                  /// @notice Numerator for dynamic overhead added to the base gas for a message.
                  uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
                  /// @notice Denominator for dynamic overhead added to the base gas for a message.
                  uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
                  /// @notice Extra gas added to base gas for each byte of calldata in a message.
                  uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
                  /// @notice Gas reserved for performing the external call in `relayMessage`.
                  uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
                  /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
                  uint64 public constant RELAY_RESERVED_GAS = 40_000;
                  /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
                  ///         call in `relayMessage`.
                  uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
                  /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
                  ///         be present in this mapping if it has successfully been relayed on this chain, and
                  ///         can therefore not be relayed again.
                  mapping(bytes32 => bool) public successfulMessages;
                  /// @notice Address of the sender of the currently executing message on the other chain. If the
                  ///         value of this variable is the default value (0x00000000...dead) then no message is
                  ///         currently being executed. Use the xDomainMessageSender getter which will throw an
                  ///         error if this is the case.
                  address internal xDomainMsgSender;
                  /// @notice Nonce for the next message to be sent, without the message version applied. Use the
                  ///         messageNonce getter which will insert the message version into the nonce to give you
                  ///         the actual nonce to be used for the message.
                  uint240 internal msgNonce;
                  /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
                  ///         executed at least once. A message will not be present in this mapping if it
                  ///         successfully executed on the first attempt.
                  mapping(bytes32 => bool) public failedMessages;
                  /// @notice CrossDomainMessenger contract on the other chain.
                  /// @custom:network-specific
                  CrossDomainMessenger public otherMessenger;
                  /// @notice Reserve extra slots in the storage layout for future upgrades.
                  ///         A gap size of 43 was chosen here, so that the first slot used in a child contract
                  ///         would be 1 plus a multiple of 50.
                  uint256[43] private __gap;
                  /// @notice Emitted whenever a message is sent to the other chain.
                  /// @param target       Address of the recipient of the message.
                  /// @param sender       Address of the sender of the message.
                  /// @param message      Message to trigger the recipient address with.
                  /// @param messageNonce Unique nonce attached to the message.
                  /// @param gasLimit     Minimum gas limit that the message can be executed with.
                  event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
                  /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
                  ///         SentMessage event without breaking the ABI of this contract, this is good enough.
                  /// @param sender Address of the sender of the message.
                  /// @param value  ETH value sent along with the message to the recipient.
                  event SentMessageExtension1(address indexed sender, uint256 value);
                  /// @notice Emitted whenever a message is successfully relayed on this chain.
                  /// @param msgHash Hash of the message that was relayed.
                  event RelayedMessage(bytes32 indexed msgHash);
                  /// @notice Emitted whenever a message fails to be relayed on this chain.
                  /// @param msgHash Hash of the message that failed to be relayed.
                  event FailedRelayedMessage(bytes32 indexed msgHash);
                  /// @notice Sends a message to some target address on the other chain. Note that if the call
                  ///         always reverts, then the message will be unrelayable, and any ETH sent will be
                  ///         permanently locked. The same will occur if the target on the other chain is
                  ///         considered unsafe (see the _isUnsafeTarget() function).
                  /// @param _target      Target contract or wallet address.
                  /// @param _message     Message to trigger the target address with.
                  /// @param _minGasLimit Minimum gas limit that the message can be executed with.
                  function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
                      // Triggers a message to the other messenger. Note that the amount of gas provided to the
                      // message is the amount of gas requested by the user PLUS the base gas value. We want to
                      // guarantee the property that the call to the target contract will always have at least
                      // the minimum gas limit specified by the user.
                      _sendMessage({
                          _to: address(otherMessenger),
                          _gasLimit: baseGas(_message, _minGasLimit),
                          _value: msg.value,
                          _data: abi.encodeWithSelector(
                              this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
                              )
                      });
                      emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
                      emit SentMessageExtension1(msg.sender, msg.value);
                      unchecked {
                          ++msgNonce;
                      }
                  }
                  /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
                  ///         be executed via cross-chain call from the other messenger OR if the message was
                  ///         already received once and is currently being replayed.
                  /// @param _nonce       Nonce of the message being relayed.
                  /// @param _sender      Address of the user who sent the message.
                  /// @param _target      Address that the message is targeted at.
                  /// @param _value       ETH value to send with the message.
                  /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
                  /// @param _message     Message to send to the target.
                  function relayMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _minGasLimit,
                      bytes calldata _message
                  )
                      external
                      payable
                  {
                      // On L1 this function will check the Portal for its paused status.
                      // On L2 this function should be a no-op, because paused will always return false.
                      require(paused() == false, "CrossDomainMessenger: paused");
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
                      // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
                      // to check that the legacy version of the message has not already been relayed.
                      if (version == 0) {
                          bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                          require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
                      }
                      // We use the v1 message hash as the unique identifier for the message because it commits
                      // to the value and minimum gas limit of the message.
                      bytes32 versionedHash =
                          Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
                      if (_isOtherMessenger()) {
                          // These properties should always hold when the message is first submitted (as
                          // opposed to being replayed).
                          assert(msg.value == _value);
                          assert(!failedMessages[versionedHash]);
                      } else {
                          require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
                          require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
                      }
                      require(
                          _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
                      );
                      require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
                      // If there is not enough gas left to perform the external call and finish the execution,
                      // return early and assign the message to the failedMessages mapping.
                      // We are asserting that we have enough gas to:
                      // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
                      //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
                      // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
                      //
                      // If `xDomainMsgSender` is not the default L2 sender, this function
                      // is being re-entered. This marks the message as failed to allow it to be replayed.
                      if (
                          !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                              || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
                      ) {
                          failedMessages[versionedHash] = true;
                          emit FailedRelayedMessage(versionedHash);
                          // Revert in this case if the transaction was triggered by the estimation address. This
                          // should only be possible during gas estimation or we have bigger problems. Reverting
                          // here will make the behavior of gas estimation change such that the gas limit
                          // computed will be the amount required to relay the message, even if that amount is
                          // greater than the minimum gas limit specified by the user.
                          if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                              revert("CrossDomainMessenger: failed to relay message");
                          }
                          return;
                      }
                      xDomainMsgSender = _sender;
                      bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
                      xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                      if (success) {
                          // This check is identical to one above, but it ensures that the same message cannot be relayed
                          // twice, and adds a layer of protection against rentrancy.
                          assert(successfulMessages[versionedHash] == false);
                          successfulMessages[versionedHash] = true;
                          emit RelayedMessage(versionedHash);
                      } else {
                          failedMessages[versionedHash] = true;
                          emit FailedRelayedMessage(versionedHash);
                          // Revert in this case if the transaction was triggered by the estimation address. This
                          // should only be possible during gas estimation or we have bigger problems. Reverting
                          // here will make the behavior of gas estimation change such that the gas limit
                          // computed will be the amount required to relay the message, even if that amount is
                          // greater than the minimum gas limit specified by the user.
                          if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                              revert("CrossDomainMessenger: failed to relay message");
                          }
                      }
                  }
                  /// @notice Retrieves the address of the contract or wallet that initiated the currently
                  ///         executing message on the other chain. Will throw an error if there is no message
                  ///         currently being executed. Allows the recipient of a call to see who triggered it.
                  /// @return Address of the sender of the currently executing message on the other chain.
                  function xDomainMessageSender() external view returns (address) {
                      require(
                          xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
                      );
                      return xDomainMsgSender;
                  }
                  /// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
                  ///         Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
                  /// @return CrossDomainMessenger contract on the other chain.
                  /// @custom:legacy
                  function OTHER_MESSENGER() public view returns (CrossDomainMessenger) {
                      return otherMessenger;
                  }
                  /// @notice Retrieves the next message nonce. Message version will be added to the upper two
                  ///         bytes of the message nonce. Message version allows us to treat messages as having
                  ///         different structures.
                  /// @return Nonce of the next message to be sent, with added message version.
                  function messageNonce() public view returns (uint256) {
                      return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
                  }
                  /// @notice Computes the amount of gas required to guarantee that a given message will be
                  ///         received on the other chain without running out of gas. Guaranteeing that a message
                  ///         will not run out of gas is important because this ensures that a message can always
                  ///         be replayed on the other chain if it fails to execute completely.
                  /// @param _message     Message to compute the amount of required gas for.
                  /// @param _minGasLimit Minimum desired gas limit when message goes to target.
                  /// @return Amount of gas required to guarantee message receipt.
                  function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
                      return
                      // Constant overhead
                      RELAY_CONSTANT_OVERHEAD
                      // Calldata overhead
                      + (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
                      // Dynamic overhead (EIP-150)
                      + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
                      // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
                      // factors. (Conservative)
                      + RELAY_CALL_OVERHEAD
                      // Relay reserved gas (to ensure execution of `relayMessage` completes after the
                      // subcontext finishes executing) (Conservative)
                      + RELAY_RESERVED_GAS
                      // Gas reserved for the execution between the `hasMinGas` check and the `CALL`
                      // opcode. (Conservative)
                      + RELAY_GAS_CHECK_BUFFER;
                  }
                  /// @notice Initializer.
                  /// @param _otherMessenger CrossDomainMessenger contract on the other chain.
                  // solhint-disable-next-line func-name-mixedcase
                  function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing {
                      // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
                      // meaning that this is a fresh contract deployment.
                      // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
                      // a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
                      if (xDomainMsgSender == address(0)) {
                          xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                      }
                      otherMessenger = _otherMessenger;
                  }
                  /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
                  ///         contracts because the logic for this depends on the network where the messenger is
                  ///         being deployed.
                  /// @param _to       Recipient of the message on the other chain.
                  /// @param _gasLimit Minimum gas limit the message can be executed with.
                  /// @param _value    Amount of ETH to send with the message.
                  /// @param _data     Message data.
                  function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
                  /// @notice Checks whether the message is coming from the other messenger. Implemented by child
                  ///         contracts because the logic for this depends on the network where the messenger is
                  ///         being deployed.
                  /// @return Whether the message is coming from the other messenger.
                  function _isOtherMessenger() internal view virtual returns (bool);
                  /// @notice Checks whether a given call target is a system address that could cause the
                  ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
                  ///         addresses. This is ONLY used to prevent the execution of messages to specific
                  ///         system addresses that could cause security issues, e.g., having the
                  ///         CrossDomainMessenger send messages to itself.
                  /// @param _target Address of the contract to check.
                  /// @return Whether or not the address is an unsafe system address.
                  function _isUnsafeTarget(address _target) internal view virtual returns (bool);
                  /// @notice This function should return true if the contract is paused.
                  ///         On L1 this function will check the SuperchainConfig for its paused status.
                  ///         On L2 this function should be a no-op.
                  /// @return Whether or not the contract is paused.
                  function paused() public view virtual returns (bool) {
                      return false;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title ISemver
              /// @notice ISemver is a simple contract for ensuring that contracts are
              ///         versioned using semantic versioning.
              interface ISemver {
                  /// @notice Getter for the semantic version of the contract. This is not
                  ///         meant to be used onchain but instead meant to be used by offchain
                  ///         tooling.
                  /// @return Semver contract version as a string.
                  function version() external view returns (string memory);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { Storage } from "src/libraries/Storage.sol";
              /// @custom:audit none This contracts is not yet audited.
              /// @title SuperchainConfig
              /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
              contract SuperchainConfig is Initializable, ISemver {
                  /// @notice Enum representing different types of updates.
                  /// @custom:value GUARDIAN            Represents an update to the guardian.
                  enum UpdateType {
                      GUARDIAN
                  }
                  /// @notice Whether or not the Superchain is paused.
                  bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
                  /// @notice The address of the guardian, which can pause withdrawals from the System.
                  ///         It can only be modified by an upgrade.
                  bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
                  /// @notice Emitted when the pause is triggered.
                  /// @param identifier A string helping to identify provenance of the pause transaction.
                  event Paused(string identifier);
                  /// @notice Emitted when the pause is lifted.
                  event Unpaused();
                  /// @notice Emitted when configuration is updated.
                  /// @param updateType Type of update.
                  /// @param data       Encoded update data.
                  event ConfigUpdate(UpdateType indexed updateType, bytes data);
                  /// @notice Semantic version.
                  /// @custom:semver 1.1.0
                  string public constant version = "1.1.0";
                  /// @notice Constructs the SuperchainConfig contract.
                  constructor() {
                      initialize({ _guardian: address(0), _paused: false });
                  }
                  /// @notice Initializer.
                  /// @param _guardian    Address of the guardian, can pause the OptimismPortal.
                  /// @param _paused      Initial paused status.
                  function initialize(address _guardian, bool _paused) public initializer {
                      _setGuardian(_guardian);
                      if (_paused) {
                          _pause("Initializer paused");
                      }
                  }
                  /// @notice Getter for the guardian address.
                  function guardian() public view returns (address guardian_) {
                      guardian_ = Storage.getAddress(GUARDIAN_SLOT);
                  }
                  /// @notice Getter for the current paused status.
                  function paused() public view returns (bool paused_) {
                      paused_ = Storage.getBool(PAUSED_SLOT);
                  }
                  /// @notice Pauses withdrawals.
                  /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                  function pause(string memory _identifier) external {
                      require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
                      _pause(_identifier);
                  }
                  /// @notice Pauses withdrawals.
                  /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                  function _pause(string memory _identifier) internal {
                      Storage.setBool(PAUSED_SLOT, true);
                      emit Paused(_identifier);
                  }
                  /// @notice Unpauses withdrawals.
                  function unpause() external {
                      require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
                      Storage.setBool(PAUSED_SLOT, false);
                      emit Unpaused();
                  }
                  /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
                  ///         will be required to change the guardian.
                  /// @param _guardian The new guardian address.
                  function _setGuardian(address _guardian) internal {
                      Storage.setAddress(GUARDIAN_SLOT, _guardian);
                      emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/Address.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @title SafeCall
              /// @notice Perform low level safe calls
              library SafeCall {
                  /// @notice Performs a low level call without copying any returndata.
                  /// @dev Passes no calldata to the call context.
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
                      bool _success;
                      assembly {
                          _success :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  0, // inloc
                                  0, // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                      return _success;
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
                      bool _success;
                      assembly {
                          _success :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                      return _success;
                  }
                  /// @notice Helper function to determine if there is sufficient gas remaining within the context
                  ///         to guarantee that the minimum gas requirement for a call will be met as well as
                  ///         optionally reserving a specified amount of gas for after the call has concluded.
                  /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                  /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                  ///                     of the target context.
                  /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                  ///         context as well as reserve `_reservedGas` for the caller after the execution of
                  ///         the target context.
                  /// @dev !!!!! FOOTGUN ALERT !!!!!
                  ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                  ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                  ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                  ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                  ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                  ///          factors of the dynamic cost of the `CALL` opcode.
                  ///      2.) This function should *directly* precede the external call if possible. There is an
                  ///          added buffer to account for gas consumed between this check and the call, but it
                  ///          is only 5,700 gas.
                  ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                  ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                  ///          truncated.
                  ///      4.) Use wisely. This function is not a silver bullet.
                  function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                      bool _hasMinGas;
                      assembly {
                          // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                          _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                      }
                      return _hasMinGas;
                  }
                  /// @notice Perform a low level call without copying any returndata. This function
                  ///         will revert if the call cannot be performed with the specified minimum
                  ///         gas.
                  /// @param _target   Address to call
                  /// @param _minGas   The minimum amount of gas that may be passed to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function callWithMinGas(
                      address _target,
                      uint256 _minGas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool)
                  {
                      bool _success;
                      bool _hasMinGas = hasMinGas(_minGas, 0);
                      assembly {
                          // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                          if iszero(_hasMinGas) {
                              // Store the "Error(string)" selector in scratch space.
                              mstore(0, 0x08c379a0)
                              // Store the pointer to the string length in scratch space.
                              mstore(32, 32)
                              // Store the string.
                              //
                              // SAFETY:
                              // - We pad the beginning of the string with two zero bytes as well as the
                              // length (24) to ensure that we override the free memory pointer at offset
                              // 0x40. This is necessary because the free memory pointer is likely to
                              // be greater than 1 byte when this function is called, but it is incredibly
                              // unlikely that it will be greater than 3 bytes. As for the data within
                              // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                              // - It's fine to clobber the free memory pointer, we're reverting.
                              mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                              // Revert with 'Error("SafeCall: Not enough gas")'
                              revert(28, 100)
                          }
                          // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                          // above assertion. This ensures that, in all circumstances (except for when the
                          // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                          // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                          // the minimum amount of gas specified.
                          _success :=
                              call(
                                  gas(), // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0x00, // outloc
                                  0x00 // outlen
                              )
                      }
                      return _success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { Types } from "src/libraries/Types.sol";
              import { Constants } from "src/libraries/Constants.sol";
              /// @custom:proxied
              /// @title L2OutputOracle
              /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
              ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
              ///         these outputs to verify information about the state of L2.
              contract L2OutputOracle is Initializable, ISemver {
                  /// @notice The number of the first L2 block recorded in this contract.
                  uint256 public startingBlockNumber;
                  /// @notice The timestamp of the first L2 block recorded in this contract.
                  uint256 public startingTimestamp;
                  /// @notice An array of L2 output proposals.
                  Types.OutputProposal[] internal l2Outputs;
                  /// @notice The interval in L2 blocks at which checkpoints must be submitted.
                  /// @custom:network-specific
                  uint256 public submissionInterval;
                  /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
                  /// @custom:network-specific
                  uint256 public l2BlockTime;
                  /// @notice The address of the challenger. Can be updated via upgrade.
                  /// @custom:network-specific
                  address public challenger;
                  /// @notice The address of the proposer. Can be updated via upgrade.
                  /// @custom:network-specific
                  address public proposer;
                  /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
                  /// @custom:network-specific
                  uint256 public finalizationPeriodSeconds;
                  /// @notice Emitted when an output is proposed.
                  /// @param outputRoot    The output root.
                  /// @param l2OutputIndex The index of the output in the l2Outputs array.
                  /// @param l2BlockNumber The L2 block number of the output root.
                  /// @param l1Timestamp   The L1 timestamp when proposed.
                  event OutputProposed(
                      bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
                  );
                  /// @notice Emitted when outputs are deleted.
                  /// @param prevNextOutputIndex Next L2 output index before the deletion.
                  /// @param newNextOutputIndex  Next L2 output index after the deletion.
                  event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
                  /// @notice Semantic version.
                  /// @custom:semver 1.8.0
                  string public constant version = "1.8.0";
                  /// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as
                  ///         in the getting-started config.
                  constructor() {
                      initialize({
                          _submissionInterval: 1,
                          _l2BlockTime: 1,
                          _startingBlockNumber: 0,
                          _startingTimestamp: 0,
                          _proposer: address(0),
                          _challenger: address(0),
                          _finalizationPeriodSeconds: 0
                      });
                  }
                  /// @notice Initializer.
                  /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
                  /// @param _l2BlockTime         The time per L2 block, in seconds.
                  /// @param _startingBlockNumber The number of the first L2 block.
                  /// @param _startingTimestamp   The timestamp of the first L2 block.
                  /// @param _proposer            The address of the proposer.
                  /// @param _challenger          The address of the challenger.
                  /// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal
                  ///                                   can be finalized.
                  function initialize(
                      uint256 _submissionInterval,
                      uint256 _l2BlockTime,
                      uint256 _startingBlockNumber,
                      uint256 _startingTimestamp,
                      address _proposer,
                      address _challenger,
                      uint256 _finalizationPeriodSeconds
                  )
                      public
                      initializer
                  {
                      require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
                      require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
                      require(
                          _startingTimestamp <= block.timestamp,
                          "L2OutputOracle: starting L2 timestamp must be less than current time"
                      );
                      submissionInterval = _submissionInterval;
                      l2BlockTime = _l2BlockTime;
                      startingBlockNumber = _startingBlockNumber;
                      startingTimestamp = _startingTimestamp;
                      proposer = _proposer;
                      challenger = _challenger;
                      finalizationPeriodSeconds = _finalizationPeriodSeconds;
                  }
                  /// @notice Getter for the submissionInterval.
                  ///         Public getter is legacy and will be removed in the future. Use `submissionInterval` instead.
                  /// @return Submission interval.
                  /// @custom:legacy
                  function SUBMISSION_INTERVAL() external view returns (uint256) {
                      return submissionInterval;
                  }
                  /// @notice Getter for the l2BlockTime.
                  ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead.
                  /// @return L2 block time.
                  /// @custom:legacy
                  function L2_BLOCK_TIME() external view returns (uint256) {
                      return l2BlockTime;
                  }
                  /// @notice Getter for the challenger address.
                  ///         Public getter is legacy and will be removed in the future. Use `challenger` instead.
                  /// @return Address of the challenger.
                  /// @custom:legacy
                  function CHALLENGER() external view returns (address) {
                      return challenger;
                  }
                  /// @notice Getter for the proposer address.
                  ///         Public getter is legacy and will be removed in the future. Use `proposer` instead.
                  /// @return Address of the proposer.
                  /// @custom:legacy
                  function PROPOSER() external view returns (address) {
                      return proposer;
                  }
                  /// @notice Getter for the finalizationPeriodSeconds.
                  ///         Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead.
                  /// @return Finalization period in seconds.
                  /// @custom:legacy
                  function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) {
                      return finalizationPeriodSeconds;
                  }
                  /// @notice Deletes all output proposals after and including the proposal that corresponds to
                  ///         the given output index. Only the challenger address can delete outputs.
                  /// @param _l2OutputIndex Index of the first L2 output to be deleted.
                  ///                       All outputs after this output will also be deleted.
                  // solhint-disable-next-line ordering
                  function deleteL2Outputs(uint256 _l2OutputIndex) external {
                      require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
                      // Make sure we're not *increasing* the length of the array.
                      require(
                          _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
                      );
                      // Do not allow deleting any outputs that have already been finalized.
                      require(
                          block.timestamp - l2Outputs[_l2OutputIndex].timestamp < finalizationPeriodSeconds,
                          "L2OutputOracle: cannot delete outputs that have already been finalized"
                      );
                      uint256 prevNextL2OutputIndex = nextOutputIndex();
                      // Use assembly to delete the array elements because Solidity doesn't allow it.
                      assembly {
                          sstore(l2Outputs.slot, _l2OutputIndex)
                      }
                      emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
                  }
                  /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
                  ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
                  ///         order to be accepted. This function may only be called by the Proposer.
                  /// @param _outputRoot    The L2 output of the checkpoint block.
                  /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
                  /// @param _l1BlockHash   A block hash which must be included in the current chain.
                  /// @param _l1BlockNumber The block number with the specified block hash.
                  function proposeL2Output(
                      bytes32 _outputRoot,
                      uint256 _l2BlockNumber,
                      bytes32 _l1BlockHash,
                      uint256 _l1BlockNumber
                  )
                      external
                      payable
                  {
                      require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
                      require(
                          _l2BlockNumber == nextBlockNumber(),
                          "L2OutputOracle: block number must be equal to next expected block number"
                      );
                      require(
                          computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                          "L2OutputOracle: cannot propose L2 output in the future"
                      );
                      require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
                      if (_l1BlockHash != bytes32(0)) {
                          // This check allows the proposer to propose an output based on a given L1 block,
                          // without fear that it will be reorged out.
                          // It will also revert if the blockheight provided is more than 256 blocks behind the
                          // chain tip (as the hash will return as zero). This does open the door to a griefing
                          // attack in which the proposer's submission is censored until the block is no longer
                          // retrievable, if the proposer is experiencing this attack it can simply leave out the
                          // blockhash value, and delay submission until it is confident that the L1 block is
                          // finalized.
                          require(
                              blockhash(_l1BlockNumber) == _l1BlockHash,
                              "L2OutputOracle: block hash does not match the hash at the expected height"
                          );
                      }
                      emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
                      l2Outputs.push(
                          Types.OutputProposal({
                              outputRoot: _outputRoot,
                              timestamp: uint128(block.timestamp),
                              l2BlockNumber: uint128(_l2BlockNumber)
                          })
                      );
                  }
                  /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
                  /// @param _l2OutputIndex Index of the output to return.
                  /// @return The output at the given index.
                  function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
                      return l2Outputs[_l2OutputIndex];
                  }
                  /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
                  ///         Uses a binary search to find the first output greater than or equal to the given
                  ///         block.
                  /// @param _l2BlockNumber L2 block number to find a checkpoint for.
                  /// @return Index of the first checkpoint that commits to the given L2 block number.
                  function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
                      // Make sure an output for this block number has actually been proposed.
                      require(
                          _l2BlockNumber <= latestBlockNumber(),
                          "L2OutputOracle: cannot get output for a block that has not been proposed"
                      );
                      // Make sure there's at least one output proposed.
                      require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
                      // Find the output via binary search, guaranteed to exist.
                      uint256 lo = 0;
                      uint256 hi = l2Outputs.length;
                      while (lo < hi) {
                          uint256 mid = (lo + hi) / 2;
                          if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                              lo = mid + 1;
                          } else {
                              hi = mid;
                          }
                      }
                      return lo;
                  }
                  /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
                  ///         Uses a binary search to find the first output greater than or equal to the given
                  ///         block.
                  /// @param _l2BlockNumber L2 block number to find a checkpoint for.
                  /// @return First checkpoint that commits to the given L2 block number.
                  function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
                      return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
                  }
                  /// @notice Returns the number of outputs that have been proposed.
                  ///         Will revert if no outputs have been proposed yet.
                  /// @return The number of outputs that have been proposed.
                  function latestOutputIndex() external view returns (uint256) {
                      return l2Outputs.length - 1;
                  }
                  /// @notice Returns the index of the next output to be proposed.
                  /// @return The index of the next output to be proposed.
                  function nextOutputIndex() public view returns (uint256) {
                      return l2Outputs.length;
                  }
                  /// @notice Returns the block number of the latest submitted L2 output proposal.
                  ///         If no proposals been submitted yet then this function will return the starting
                  ///         block number.
                  /// @return Latest submitted L2 block number.
                  function latestBlockNumber() public view returns (uint256) {
                      return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
                  }
                  /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
                  /// @return Next L2 block number.
                  function nextBlockNumber() public view returns (uint256) {
                      return latestBlockNumber() + submissionInterval;
                  }
                  /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
                  /// @param _l2BlockNumber The L2 block number of the target block.
                  /// @return L2 timestamp of the given block.
                  function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
                      return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { ResourceMetering } from "src/L1/ResourceMetering.sol";
              import { Storage } from "src/libraries/Storage.sol";
              import { Constants } from "src/libraries/Constants.sol";
              /// @title SystemConfig
              /// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
              ///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
              ///         the L2 chain.
              contract SystemConfig is OwnableUpgradeable, ISemver {
                  /// @notice Enum representing different types of updates.
                  /// @custom:value BATCHER              Represents an update to the batcher hash.
                  /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
                  /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
                  /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
                  ///                                    block distrubution.
                  enum UpdateType {
                      BATCHER,
                      GAS_CONFIG,
                      GAS_LIMIT,
                      UNSAFE_BLOCK_SIGNER
                  }
                  /// @notice Struct representing the addresses of L1 system contracts. These should be the
                  ///         proxies and are network specific.
                  struct Addresses {
                      address l1CrossDomainMessenger;
                      address l1ERC721Bridge;
                      address l1StandardBridge;
                      address l2OutputOracle;
                      address optimismPortal;
                      address optimismMintableERC20Factory;
                  }
                  /// @notice Version identifier, used for upgrades.
                  uint256 public constant VERSION = 0;
                  /// @notice Storage slot that the unsafe block signer is stored at.
                  ///         Storing it at this deterministic storage slot allows for decoupling the storage
                  ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
                  ///         proof to fetch this value.
                  /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
                  ///         User input should not be placed in storage in this contract until this migration
                  ///         happens. It is unlikely that keccak second preimage resistance will be broken,
                  ///         but it is better to be safe than sorry.
                  bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
                  /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
                  bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
                      bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
                  /// @notice Storage slot that the L1ERC721Bridge address is stored at.
                  bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
                  /// @notice Storage slot that the L1StandardBridge address is stored at.
                  bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
                  /// @notice Storage slot that the L2OutputOracle address is stored at.
                  bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1);
                  /// @notice Storage slot that the OptimismPortal address is stored at.
                  bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
                  /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
                  bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
                      bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
                  /// @notice Storage slot that the batch inbox address is stored at.
                  bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
                  /// @notice Storage slot for block at which the op-node can start searching for logs from.
                  bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1);
                  /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
                  uint256 public overhead;
                  /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
                  uint256 public scalar;
                  /// @notice Identifier for the batcher.
                  ///         For version 1 of this configuration, this is represented as an address left-padded
                  ///         with zeros to 32 bytes.
                  bytes32 public batcherHash;
                  /// @notice L2 block gas limit.
                  uint64 public gasLimit;
                  /// @notice The configuration for the deposit fee market.
                  ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
                  ///         Set as internal with a getter so that the struct is returned instead of a tuple.
                  ResourceMetering.ResourceConfig internal _resourceConfig;
                  /// @notice Emitted when configuration is updated.
                  /// @param version    SystemConfig version.
                  /// @param updateType Type of update.
                  /// @param data       Encoded update data.
                  event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                  /// @notice Semantic version.
                  /// @custom:semver 1.12.0
                  string public constant version = "1.12.0";
                  /// @notice Constructs the SystemConfig contract. Cannot set
                  ///         the owner to `address(0)` due to the Ownable contract's
                  ///         implementation, so set it to `address(0xdEaD)`
                  /// @dev    START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value
                  ///         in the singleton and is skipped by initialize when setting the start block.
                  constructor() {
                      Storage.setUint(START_BLOCK_SLOT, type(uint256).max);
                      initialize({
                          _owner: address(0xdEaD),
                          _overhead: 0,
                          _scalar: 0,
                          _batcherHash: bytes32(0),
                          _gasLimit: 1,
                          _unsafeBlockSigner: address(0),
                          _config: ResourceMetering.ResourceConfig({
                              maxResourceLimit: 1,
                              elasticityMultiplier: 1,
                              baseFeeMaxChangeDenominator: 2,
                              minimumBaseFee: 0,
                              systemTxMaxGas: 0,
                              maximumBaseFee: 0
                          }),
                          _batchInbox: address(0),
                          _addresses: SystemConfig.Addresses({
                              l1CrossDomainMessenger: address(0),
                              l1ERC721Bridge: address(0),
                              l1StandardBridge: address(0),
                              l2OutputOracle: address(0),
                              optimismPortal: address(0),
                              optimismMintableERC20Factory: address(0)
                          })
                      });
                  }
                  /// @notice Initializer.
                  ///         The resource config must be set before the require check.
                  /// @param _owner             Initial owner of the contract.
                  /// @param _overhead          Initial overhead value.
                  /// @param _scalar            Initial scalar value.
                  /// @param _batcherHash       Initial batcher hash.
                  /// @param _gasLimit          Initial gas limit.
                  /// @param _unsafeBlockSigner Initial unsafe block signer address.
                  /// @param _config            Initial ResourceConfig.
                  /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
                  ///                           canonical data.
                  /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
                  function initialize(
                      address _owner,
                      uint256 _overhead,
                      uint256 _scalar,
                      bytes32 _batcherHash,
                      uint64 _gasLimit,
                      address _unsafeBlockSigner,
                      ResourceMetering.ResourceConfig memory _config,
                      address _batchInbox,
                      SystemConfig.Addresses memory _addresses
                  )
                      public
                      initializer
                  {
                      __Ownable_init();
                      transferOwnership(_owner);
                      // These are set in ascending order of their UpdateTypes.
                      _setBatcherHash(_batcherHash);
                      _setGasConfig({ _overhead: _overhead, _scalar: _scalar });
                      _setGasLimit(_gasLimit);
                      Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                      Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
                      Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
                      Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
                      Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
                      Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle);
                      Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
                      Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
                      _setStartBlock();
                      _setResourceConfig(_config);
                      require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                  }
                  /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
                  ///         operate. The L2 gas limit must be larger than or equal to the amount of
                  ///         gas that is allocated for deposits per block plus the amount of gas that
                  ///         is allocated for the system transaction.
                  ///         This function is used to determine if changes to parameters are safe.
                  /// @return uint64 Minimum gas limit.
                  function minimumGasLimit() public view returns (uint64) {
                      return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
                  }
                  /// @notice High level getter for the unsafe block signer address.
                  ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
                  ///         key corresponding to this address.
                  /// @return addr_ Address of the unsafe block signer.
                  // solhint-disable-next-line ordering
                  function unsafeBlockSigner() public view returns (address addr_) {
                      addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
                  }
                  /// @notice Getter for the L1CrossDomainMessenger address.
                  function l1CrossDomainMessenger() external view returns (address addr_) {
                      addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
                  }
                  /// @notice Getter for the L1ERC721Bridge address.
                  function l1ERC721Bridge() external view returns (address addr_) {
                      addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
                  }
                  /// @notice Getter for the L1StandardBridge address.
                  function l1StandardBridge() external view returns (address addr_) {
                      addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
                  }
                  /// @notice Getter for the L2OutputOracle address.
                  function l2OutputOracle() external view returns (address addr_) {
                      addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT);
                  }
                  /// @notice Getter for the OptimismPortal address.
                  function optimismPortal() external view returns (address addr_) {
                      addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
                  }
                  /// @notice Getter for the OptimismMintableERC20Factory address.
                  function optimismMintableERC20Factory() external view returns (address addr_) {
                      addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
                  }
                  /// @notice Getter for the BatchInbox address.
                  function batchInbox() external view returns (address addr_) {
                      addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
                  }
                  /// @notice Getter for the StartBlock number.
                  function startBlock() external view returns (uint256 startBlock_) {
                      startBlock_ = Storage.getUint(START_BLOCK_SLOT);
                  }
                  /// @notice Updates the unsafe block signer address. Can only be called by the owner.
                  /// @param _unsafeBlockSigner New unsafe block signer address.
                  function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
                      _setUnsafeBlockSigner(_unsafeBlockSigner);
                  }
                  /// @notice Updates the unsafe block signer address.
                  /// @param _unsafeBlockSigner New unsafe block signer address.
                  function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
                      Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                      bytes memory data = abi.encode(_unsafeBlockSigner);
                      emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
                  }
                  /// @notice Updates the batcher hash. Can only be called by the owner.
                  /// @param _batcherHash New batcher hash.
                  function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
                      _setBatcherHash(_batcherHash);
                  }
                  /// @notice Internal function for updating the batcher hash.
                  /// @param _batcherHash New batcher hash.
                  function _setBatcherHash(bytes32 _batcherHash) internal {
                      batcherHash = _batcherHash;
                      bytes memory data = abi.encode(_batcherHash);
                      emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
                  }
                  /// @notice Updates gas config. Can only be called by the owner.
                  /// @param _overhead New overhead value.
                  /// @param _scalar   New scalar value.
                  function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
                      _setGasConfig(_overhead, _scalar);
                  }
                  /// @notice Internal function for updating the gas config.
                  /// @param _overhead New overhead value.
                  /// @param _scalar   New scalar value.
                  function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
                      overhead = _overhead;
                      scalar = _scalar;
                      bytes memory data = abi.encode(_overhead, _scalar);
                      emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
                  }
                  /// @notice Updates the L2 gas limit. Can only be called by the owner.
                  /// @param _gasLimit New gas limit.
                  function setGasLimit(uint64 _gasLimit) external onlyOwner {
                      _setGasLimit(_gasLimit);
                  }
                  /// @notice Internal function for updating the L2 gas limit.
                  /// @param _gasLimit New gas limit.
                  function _setGasLimit(uint64 _gasLimit) internal {
                      require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                      gasLimit = _gasLimit;
                      bytes memory data = abi.encode(_gasLimit);
                      emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
                  }
                  /// @notice Sets the start block in a backwards compatible way. Proxies
                  ///         that were initialized before the startBlock existed in storage
                  ///         can have their start block set by a user provided override.
                  ///         A start block of 0 indicates that there is no override and the
                  ///         start block will be set by `block.number`.
                  /// @dev    This logic is used to patch legacy deployments with new storage values.
                  ///         Use the override if it is provided as a non zero value and the value
                  ///         has not already been set in storage. Use `block.number` if the value
                  ///         has already been set in storage
                  function _setStartBlock() internal {
                      if (Storage.getUint(START_BLOCK_SLOT) == 0) {
                          Storage.setUint(START_BLOCK_SLOT, block.number);
                      }
                  }
                  /// @notice A getter for the resource config.
                  ///         Ensures that the struct is returned instead of a tuple.
                  /// @return ResourceConfig
                  function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
                      return _resourceConfig;
                  }
                  /// @notice An external setter for the resource config.
                  ///         In the future, this method may emit an event that the `op-node` picks up
                  ///         for when the resource config is changed.
                  /// @param _config The new resource config values.
                  function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
                      _setResourceConfig(_config);
                  }
                  /// @notice An internal setter for the resource config.
                  ///         Ensures that the config is sane before storing it by checking for invariants.
                  /// @param _config The new resource config.
                  function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
                      // Min base fee must be less than or equal to max base fee.
                      require(
                          _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
                      );
                      // Base fee change denominator must be greater than 1.
                      require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
                      // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
                      // The gas limit must be increased before these values can be increased.
                      require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
                      // Elasticity multiplier must be greater than 0.
                      require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
                      // No precision loss when computing target resource limit.
                      require(
                          ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                              == _config.maxResourceLimit,
                          "SystemConfig: precision loss with target resource limit"
                      );
                      _resourceConfig = _config;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { ResourceMetering } from "src/L1/ResourceMetering.sol";
              /// @title Constants
              /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
              ///         the stuff used in multiple contracts. Constants that only apply to a single contract
              ///         should be defined in that contract instead.
              library Constants {
                  /// @notice Special address to be used as the tx origin for gas estimation calls in the
                  ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                  ///         the minimum gas limit specified by the user is not actually enough to execute the
                  ///         given message and you're attempting to estimate the actual necessary gas limit. We
                  ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                  ///         never have any code on any EVM chain.
                  address internal constant ESTIMATION_ADDRESS = address(1);
                  /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                  ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                  ///         non-zero to reduce the gas cost of message passing transactions.
                  address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                  /// @notice The storage slot that holds the address of a proxy implementation.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                  bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /// @notice The storage slot that holds the address of the owner.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                  bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                  ///         for a production network.
                  function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                      ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                          maxResourceLimit: 20_000_000,
                          elasticityMultiplier: 10,
                          baseFeeMaxChangeDenominator: 8,
                          minimumBaseFee: 1 gwei,
                          systemTxMaxGas: 1_000_000,
                          maximumBaseFee: type(uint128).max
                      });
                      return config;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Types
              /// @notice Contains various types used throughout the Optimism contract system.
              library Types {
                  /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                  ///         timestamp that the output root is posted. This timestamp is used to verify that the
                  ///         finalization period has passed since the output root was submitted.
                  /// @custom:field outputRoot    Hash of the L2 output.
                  /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                  /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                  struct OutputProposal {
                      bytes32 outputRoot;
                      uint128 timestamp;
                      uint128 l2BlockNumber;
                  }
                  /// @notice Struct representing the elements that are hashed together to generate an output root
                  ///         which itself represents a snapshot of the L2 state.
                  /// @custom:field version                  Version of the output root.
                  /// @custom:field stateRoot                Root of the state trie at the block of this output.
                  /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                  /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                  struct OutputRootProof {
                      bytes32 version;
                      bytes32 stateRoot;
                      bytes32 messagePasserStorageRoot;
                      bytes32 latestBlockhash;
                  }
                  /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                  ///         user (as opposed to a system deposit transaction generated by the system).
                  /// @custom:field from        Address of the sender of the transaction.
                  /// @custom:field to          Address of the recipient of the transaction.
                  /// @custom:field isCreation  True if the transaction is a contract creation.
                  /// @custom:field value       Value to send to the recipient.
                  /// @custom:field mint        Amount of ETH to mint.
                  /// @custom:field gasLimit    Gas limit of the transaction.
                  /// @custom:field data        Data of the transaction.
                  /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                  /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                  struct UserDepositTransaction {
                      address from;
                      address to;
                      bool isCreation;
                      uint256 value;
                      uint256 mint;
                      uint64 gasLimit;
                      bytes data;
                      bytes32 l1BlockHash;
                      uint256 logIndex;
                  }
                  /// @notice Struct representing a withdrawal transaction.
                  /// @custom:field nonce    Nonce of the withdrawal transaction
                  /// @custom:field sender   Address of the sender of the transaction.
                  /// @custom:field target   Address of the recipient of the transaction.
                  /// @custom:field value    Value to send to the recipient.
                  /// @custom:field gasLimit Gas limit of the transaction.
                  /// @custom:field data     Data of the transaction.
                  struct WithdrawalTransaction {
                      uint256 nonce;
                      address sender;
                      address target;
                      uint256 value;
                      uint256 gasLimit;
                      bytes data;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { Types } from "src/libraries/Types.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              /// @title Hashing
              /// @notice Hashing handles Optimism's various different hashing schemes.
              library Hashing {
                  /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                  ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                  ///         system.
                  /// @param _tx User deposit transaction to hash.
                  /// @return Hash of the RLP encoded L2 deposit transaction.
                  function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(Encoding.encodeDepositTransaction(_tx));
                  }
                  /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                  ///         of the L2 transaction that corresponds to a deposit is unique and is
                  ///         deterministically generated from L1 transaction data.
                  /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                  /// @param _logIndex    The index of the log that created the deposit transaction.
                  /// @return Hash of the deposit transaction's "source hash".
                  function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                      bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                      return keccak256(abi.encode(bytes32(0), depositId));
                  }
                  /// @notice Hashes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Hashing: unknown cross domain message version");
                      }
                  }
                  /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                  }
                  /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                  }
                  /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                  /// @param _tx Withdrawal transaction to hash.
                  /// @return Hashed withdrawal transaction.
                  function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                  }
                  /// @notice Hashes the various elements of an output root proof into an output root hash which
                  ///         can be used to check if the proof is valid.
                  /// @param _outputRootProof Output root proof which should hash to an output root.
                  /// @return Hashed output root proof.
                  function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                      return keccak256(
                          abi.encode(
                              _outputRootProof.version,
                              _outputRootProof.stateRoot,
                              _outputRootProof.messagePasserStorageRoot,
                              _outputRootProof.latestBlockhash
                          )
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { MerkleTrie } from "./MerkleTrie.sol";
              /// @title SecureMerkleTrie
              /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
              ///         keys. Ethereum's state trie hashes input keys before storing them.
              library SecureMerkleTrie {
                  /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
                  /// @param _key   Key of the node to search for, as a hex string.
                  /// @param _value Value of the node to search for, as a hex string.
                  /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                  ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                  ///               nodes that make a path down to the target node.
                  /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                  ///               correctly constructed.
                  /// @return valid_ Whether or not the proof is valid.
                  function verifyInclusionProof(
                      bytes memory _key,
                      bytes memory _value,
                      bytes[] memory _proof,
                      bytes32 _root
                  )
                      internal
                      pure
                      returns (bool valid_)
                  {
                      bytes memory key = _getSecureKey(_key);
                      valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
                  }
                  /// @notice Retrieves the value associated with a given key.
                  /// @param _key   Key to search for, as hex bytes.
                  /// @param _proof Merkle trie inclusion proof for the key.
                  /// @param _root  Known root of the Merkle trie.
                  /// @return value_ Value of the key if it exists.
                  function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                      bytes memory key = _getSecureKey(_key);
                      value_ = MerkleTrie.get(key, _proof, _root);
                  }
                  /// @notice Computes the hashed version of the input key.
                  /// @param _key Key to hash.
                  /// @return hash_ Hashed version of the key.
                  function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
                      hash_ = abi.encodePacked(keccak256(_key));
                  }
              }
              // SPDX-License-Identifier: Apache-2.0
              /*
               * Copyright 2019-2021, Offchain Labs, Inc.
               *
               * Licensed under the Apache License, Version 2.0 (the "License");
               * you may not use this file except in compliance with the License.
               * You may obtain a copy of the License at
               *
               *    http://www.apache.org/licenses/LICENSE-2.0
               *
               * Unless required by applicable law or agreed to in writing, software
               * distributed under the License is distributed on an "AS IS" BASIS,
               * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
               * See the License for the specific language governing permissions and
               * limitations under the License.
               */
              pragma solidity ^0.8.0;
              library AddressAliasHelper {
                  uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
                  /// @notice Utility function that converts the address in the L1 that submitted a tx to
                  /// the inbox to the msg.sender viewed in the L2
                  /// @param l1Address the address in the L1 that triggered the tx to L2
                  /// @return l2Address L2 address as viewed in msg.sender
                  function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                      unchecked {
                          l2Address = address(uint160(l1Address) + offset);
                      }
                  }
                  /// @notice Utility function that converts the msg.sender viewed in the L2 to the
                  /// address in the L1 that submitted a tx to the inbox
                  /// @param l2Address L2 address as viewed in msg.sender
                  /// @return l1Address the address in the L1 that triggered the tx to L2
                  function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                      unchecked {
                          l1Address = address(uint160(l2Address) - offset);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
              import { Burn } from "src/libraries/Burn.sol";
              import { Arithmetic } from "src/libraries/Arithmetic.sol";
              /// @custom:upgradeable
              /// @title ResourceMetering
              /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
              ///         updates automatically based on current demand.
              abstract contract ResourceMetering is Initializable {
                  /// @notice Represents the various parameters that control the way in which resources are
                  ///         metered. Corresponds to the EIP-1559 resource metering system.
                  /// @custom:field prevBaseFee   Base fee from the previous block(s).
                  /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                  /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                  ///         market. These values should be set with care as it is possible to set them in
                  ///         a way that breaks the deposit gas market. The target resource limit is defined as
                  ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                  ///         single word. There is additional space for additions in the future.
                  /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                  ///                                            can be purchased per block.
                  /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                  ///                                            the resource limit.
                  /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                  /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                  ///                                            value.
                  /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                  ///                                            transaction. This should be set to the same
                  ///                                            number that the op-node sets as the gas limit
                  ///                                            for the system transaction.
                  /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                  ///                                            value.
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  /// @notice EIP-1559 style gas parameters.
                  ResourceParams public params;
                  /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                  uint256[48] private __gap;
                  /// @notice Meters access to a function based an amount of a requested resource.
                  /// @param _amount Amount of the resource requested.
                  modifier metered(uint64 _amount) {
                      // Record initial gas amount so we can refund for it later.
                      uint256 initialGas = gasleft();
                      // Run the underlying function.
                      _;
                      // Run the metering function.
                      _metered(_amount, initialGas);
                  }
                  /// @notice An internal function that holds all of the logic for metering a resource.
                  /// @param _amount     Amount of the resource requested.
                  /// @param _initialGas The amount of gas before any modifier execution.
                  function _metered(uint64 _amount, uint256 _initialGas) internal {
                      // Update block number and base fee if necessary.
                      uint256 blockDiff = block.number - params.prevBlockNum;
                      ResourceConfig memory config = _resourceConfig();
                      int256 targetResourceLimit =
                          int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                      if (blockDiff > 0) {
                          // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                          // at which deposits can be created and therefore limit the potential for deposits to
                          // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                          int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                          int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                              / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                          // Update base fee by adding the base fee delta and clamp the resulting value between
                          // min and max.
                          int256 newBaseFee = Arithmetic.clamp({
                              _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                          // If we skipped more than one block, we also need to account for every empty block.
                          // Empty block means there was no demand for deposits in that block, so we should
                          // reflect this lack of demand in the fee.
                          if (blockDiff > 1) {
                              // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                              // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                              // between min and max.
                              newBaseFee = Arithmetic.clamp({
                                  _value: Arithmetic.cdexp({
                                      _coefficient: newBaseFee,
                                      _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                      _exponent: int256(blockDiff - 1)
                                  }),
                                  _min: int256(uint256(config.minimumBaseFee)),
                                  _max: int256(uint256(config.maximumBaseFee))
                              });
                          }
                          // Update new base fee, reset bought gas, and update block number.
                          params.prevBaseFee = uint128(uint256(newBaseFee));
                          params.prevBoughtGas = 0;
                          params.prevBlockNum = uint64(block.number);
                      }
                      // Make sure we can actually buy the resource amount requested by the user.
                      params.prevBoughtGas += _amount;
                      require(
                          int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                          "ResourceMetering: cannot buy more gas than available gas limit"
                      );
                      // Determine the amount of ETH to be paid.
                      uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                      // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                      // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                      // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                      // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                      // during any 1 day period in the last 5 years, so should be fine.
                      uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                      // Give the user a refund based on the amount of gas they used to do all of the work up to
                      // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                      // effectively like a dynamic stipend (with a minimum value).
                      uint256 usedGas = _initialGas - gasleft();
                      if (gasCost > usedGas) {
                          Burn.gas(gasCost - usedGas);
                      }
                  }
                  /// @notice Virtual function that returns the resource config.
                  ///         Contracts that inherit this contract must implement this function.
                  /// @return ResourceConfig
                  function _resourceConfig() internal virtual returns (ResourceConfig memory);
                  /// @notice Sets initial resource parameter values.
                  ///         This function must either be called by the initializer function of an upgradeable
                  ///         child contract.
                  // solhint-disable-next-line func-name-mixedcase
                  function __ResourceMetering_init() internal onlyInitializing {
                      if (params.prevBlockNum == 0) {
                          params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/AddressUpgradeable.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
              /// @title Encoding
              /// @notice Encoding handles Optimism's various different encoding schemes.
              library Encoding {
                  /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                  ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                  ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                  /// @param _tx User deposit transaction to encode.
                  /// @return RLP encoded L2 deposit transaction.
                  function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                      bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                      bytes[] memory raw = new bytes[](8);
                      raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                      raw[1] = RLPWriter.writeAddress(_tx.from);
                      raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                      raw[3] = RLPWriter.writeUint(_tx.mint);
                      raw[4] = RLPWriter.writeUint(_tx.value);
                      raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                      raw[6] = RLPWriter.writeBool(false);
                      raw[7] = RLPWriter.writeBytes(_tx.data);
                      return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                  }
                  /// @notice Encodes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      (, uint16 version) = decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Encoding: unknown cross domain message version");
                      }
                  }
                  /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                  }
                  /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      return abi.encodeWithSignature(
                          "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                          _nonce,
                          _sender,
                          _target,
                          _value,
                          _gasLimit,
                          _data
                      );
                  }
                  /// @notice Adds a version number into the first two bytes of a message nonce.
                  /// @param _nonce   Message nonce to encode into.
                  /// @param _version Version number to encode into the message nonce.
                  /// @return Message nonce with version encoded into the first two bytes.
                  function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                      uint256 nonce;
                      assembly {
                          nonce := or(shl(240, _version), _nonce)
                      }
                      return nonce;
                  }
                  /// @notice Pulls the version out of a version-encoded nonce.
                  /// @param _nonce Message nonce with version encoded into the first two bytes.
                  /// @return Nonce without encoded version.
                  /// @return Version of the message.
                  function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                      uint240 nonce;
                      uint16 version;
                      assembly {
                          nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                          version := shr(240, _nonce)
                      }
                      return (nonce, version);
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                  /// @param baseFeeScalar       L1 base fee Scalar
                  /// @param blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param timestamp           L1 timestamp.
                  /// @param number              L1 blocknumber.
                  /// @param baseFee             L1 base fee.
                  /// @param blobBaseFee         L1 blob base fee.
                  /// @param hash                L1 blockhash.
                  /// @param batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesEcotone(
                      uint32 baseFeeScalar,
                      uint32 blobBaseFeeScalar,
                      uint64 sequenceNumber,
                      uint64 timestamp,
                      uint64 number,
                      uint256 baseFee,
                      uint256 blobBaseFee,
                      bytes32 hash,
                      bytes32 batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                      return abi.encodePacked(
                          functionSignature,
                          baseFeeScalar,
                          blobBaseFeeScalar,
                          sequenceNumber,
                          timestamp,
                          number,
                          baseFee,
                          blobBaseFee,
                          hash,
                          batcherHash
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Storage
              /// @notice Storage handles reading and writing to arbitary storage locations
              library Storage {
                  /// @notice Returns an address stored in an arbitrary storage slot.
                  ///         These storage slots decouple the storage layout from
                  ///         solc's automation.
                  /// @param _slot The storage slot to retrieve the address from.
                  function getAddress(bytes32 _slot) internal view returns (address addr_) {
                      assembly {
                          addr_ := sload(_slot)
                      }
                  }
                  /// @notice Stores an address in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the address in.
                  /// @param _address The protocol version to store
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
                  ///      in arbitrary storage slots.
                  function setAddress(bytes32 _slot, address _address) internal {
                      assembly {
                          sstore(_slot, _address)
                      }
                  }
                  /// @notice Returns a uint256 stored in an arbitrary storage slot.
                  ///         These storage slots decouple the storage layout from
                  ///         solc's automation.
                  /// @param _slot The storage slot to retrieve the address from.
                  function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                      assembly {
                          value_ := sload(_slot)
                      }
                  }
                  /// @notice Stores a value in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the address in.
                  /// @param _value The protocol version to store
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                  ///      in arbitrary storage slots.
                  function setUint(bytes32 _slot, uint256 _value) internal {
                      assembly {
                          sstore(_slot, _value)
                      }
                  }
                  /// @notice Returns a bytes32 stored in an arbitrary storage slot.
                  ///         These storage slots decouple the storage layout from
                  ///         solc's automation.
                  /// @param _slot The storage slot to retrieve the address from.
                  function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                      assembly {
                          value_ := sload(_slot)
                      }
                  }
                  /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the address in.
                  /// @param _value The bytes32 value to store.
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                  ///      in arbitrary storage slots.
                  function setBytes32(bytes32 _slot, bytes32 _value) internal {
                      assembly {
                          sstore(_slot, _value)
                      }
                  }
                  /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the bool in.
                  /// @param _value The bool value to store
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                  ///      in arbitrary storage slots.
                  function setBool(bytes32 _slot, bool _value) internal {
                      assembly {
                          sstore(_slot, _value)
                      }
                  }
                  /// @notice Returns a bool stored in an arbitrary storage slot.
                  /// @param _slot The storage slot to retrieve the bool from.
                  function getBool(bytes32 _slot) internal view returns (bool value_) {
                      assembly {
                          value_ := sload(_slot)
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
              pragma solidity ^0.8.0;
              import "../utils/ContextUpgradeable.sol";
              import "../proxy/utils/Initializable.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  function __Ownable_init() internal onlyInitializing {
                      __Ownable_init_unchained();
                  }
                  function __Ownable_init_unchained() internal onlyInitializing {
                      _transferOwnership(_msgSender());
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      _checkOwner();
                      _;
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if the sender is not the owner.
                   */
                  function _checkOwner() internal view virtual {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      _transferOwnership(address(0));
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      _transferOwnership(newOwner);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Internal function without access restriction.
                   */
                  function _transferOwnership(address newOwner) internal virtual {
                      address oldOwner = _owner;
                      _owner = newOwner;
                      emit OwnershipTransferred(oldOwner, newOwner);
                  }
                  /**
                   * @dev This empty reserved space is put in place to allow future versions to add new
                   * variables without shifting down storage in the inheritance chain.
                   * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                   */
                  uint256[49] private __gap;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { Bytes } from "../Bytes.sol";
              import { RLPReader } from "../rlp/RLPReader.sol";
              /// @title MerkleTrie
              /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
              ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
              ///         trie radix constant to support other trie radixes.
              library MerkleTrie {
                  /// @notice Struct representing a node in the trie.
                  /// @custom:field encoded The RLP-encoded node.
                  /// @custom:field decoded The RLP-decoded node.
                  struct TrieNode {
                      bytes encoded;
                      RLPReader.RLPItem[] decoded;
                  }
                  /// @notice Determines the number of elements per branch node.
                  uint256 internal constant TREE_RADIX = 16;
                  /// @notice Branch nodes have TREE_RADIX elements and one value element.
                  uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
                  /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
                  uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
                  /// @notice Prefix for even-nibbled extension node paths.
                  uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
                  /// @notice Prefix for odd-nibbled extension node paths.
                  uint8 internal constant PREFIX_EXTENSION_ODD = 1;
                  /// @notice Prefix for even-nibbled leaf node paths.
                  uint8 internal constant PREFIX_LEAF_EVEN = 2;
                  /// @notice Prefix for odd-nibbled leaf node paths.
                  uint8 internal constant PREFIX_LEAF_ODD = 3;
                  /// @notice Verifies a proof that a given key/value pair is present in the trie.
                  /// @param _key   Key of the node to search for, as a hex string.
                  /// @param _value Value of the node to search for, as a hex string.
                  /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                  ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                  ///               nodes that make a path down to the target node.
                  /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                  ///               correctly constructed.
                  /// @return valid_ Whether or not the proof is valid.
                  function verifyInclusionProof(
                      bytes memory _key,
                      bytes memory _value,
                      bytes[] memory _proof,
                      bytes32 _root
                  )
                      internal
                      pure
                      returns (bool valid_)
                  {
                      valid_ = Bytes.equal(_value, get(_key, _proof, _root));
                  }
                  /// @notice Retrieves the value associated with a given key.
                  /// @param _key   Key to search for, as hex bytes.
                  /// @param _proof Merkle trie inclusion proof for the key.
                  /// @param _root  Known root of the Merkle trie.
                  /// @return value_ Value of the key if it exists.
                  function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                      require(_key.length > 0, "MerkleTrie: empty key");
                      TrieNode[] memory proof = _parseProof(_proof);
                      bytes memory key = Bytes.toNibbles(_key);
                      bytes memory currentNodeID = abi.encodePacked(_root);
                      uint256 currentKeyIndex = 0;
                      // Proof is top-down, so we start at the first element (root).
                      for (uint256 i = 0; i < proof.length; i++) {
                          TrieNode memory currentNode = proof[i];
                          // Key index should never exceed total key length or we'll be out of bounds.
                          require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                          if (currentKeyIndex == 0) {
                              // First proof element is always the root node.
                              require(
                                  Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                  "MerkleTrie: invalid root hash"
                              );
                          } else if (currentNode.encoded.length >= 32) {
                              // Nodes 32 bytes or larger are hashed inside branch nodes.
                              require(
                                  Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                  "MerkleTrie: invalid large internal hash"
                              );
                          } else {
                              // Nodes smaller than 32 bytes aren't hashed.
                              require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                          }
                          if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                              if (currentKeyIndex == key.length) {
                                  // Value is the last element of the decoded list (for branch nodes). There's
                                  // some ambiguity in the Merkle trie specification because bytes(0) is a
                                  // valid value to place into the trie, but for branch nodes bytes(0) can exist
                                  // even when the value wasn't explicitly placed there. Geth treats a value of
                                  // bytes(0) as "key does not exist" and so we do the same.
                                  value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                                  require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                                  // Extra proof elements are not allowed.
                                  require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                                  return value_;
                              } else {
                                  // We're not at the end of the key yet.
                                  // Figure out what the next node ID should be and continue.
                                  uint8 branchKey = uint8(key[currentKeyIndex]);
                                  RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                                  currentNodeID = _getNodeID(nextNode);
                                  currentKeyIndex += 1;
                              }
                          } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                              bytes memory path = _getNodePath(currentNode);
                              uint8 prefix = uint8(path[0]);
                              uint8 offset = 2 - (prefix % 2);
                              bytes memory pathRemainder = Bytes.slice(path, offset);
                              bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                              uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                              // Whether this is a leaf node or an extension node, the path remainder MUST be a
                              // prefix of the key remainder (or be equal to the key remainder) or the proof is
                              // considered invalid.
                              require(
                                  pathRemainder.length == sharedNibbleLength,
                                  "MerkleTrie: path remainder must share all nibbles with key"
                              );
                              if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                                  // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                                  // the key remainder must be exactly equal to the path remainder. We already
                                  // did the necessary byte comparison, so it's more efficient here to check that
                                  // the key remainder length equals the shared nibble length, which implies
                                  // equality with the path remainder (since we already did the same check with
                                  // the path remainder and the shared nibble length).
                                  require(
                                      keyRemainder.length == sharedNibbleLength,
                                      "MerkleTrie: key remainder must be identical to path remainder"
                                  );
                                  // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                                  // state trie. Empty values are not allowed in the state trie, so we can safely
                                  // say that if the value is empty, the key should not exist and the proof is
                                  // invalid.
                                  value_ = RLPReader.readBytes(currentNode.decoded[1]);
                                  require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                                  // Extra proof elements are not allowed.
                                  require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                                  return value_;
                              } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                                  // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                                  // in the proof and increment the key index by the length of the path remainder
                                  // which is equal to the shared nibble length.
                                  currentNodeID = _getNodeID(currentNode.decoded[1]);
                                  currentKeyIndex += sharedNibbleLength;
                              } else {
                                  revert("MerkleTrie: received a node with an unknown prefix");
                              }
                          } else {
                              revert("MerkleTrie: received an unparseable node");
                          }
                      }
                      revert("MerkleTrie: ran out of proof elements");
                  }
                  /// @notice Parses an array of proof elements into a new array that contains both the original
                  ///         encoded element and the RLP-decoded element.
                  /// @param _proof Array of proof elements to parse.
                  /// @return proof_ Proof parsed into easily accessible structs.
                  function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
                      uint256 length = _proof.length;
                      proof_ = new TrieNode[](length);
                      for (uint256 i = 0; i < length;) {
                          proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                          unchecked {
                              ++i;
                          }
                      }
                  }
                  /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
                  ///         specification, but nodes < 32 bytes are not actually hashed.
                  /// @param _node Node to pull an ID for.
                  /// @return id_ ID for the node, depending on the size of its contents.
                  function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
                      id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
                  }
                  /// @notice Gets the path for a leaf or extension node.
                  /// @param _node Node to get a path for.
                  /// @return nibbles_ Node path, converted to an array of nibbles.
                  function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
                      nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
                  }
                  /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
                  /// @param _a First nibble array.
                  /// @param _b Second nibble array.
                  /// @return shared_ Number of shared nibbles.
                  function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
                      uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                      for (; shared_ < max && _a[shared_] == _b[shared_];) {
                          unchecked {
                              ++shared_;
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard math utilities missing in the Solidity language.
               */
              library Math {
                  enum Rounding {
                      Down, // Toward negative infinity
                      Up, // Toward infinity
                      Zero // Toward zero
                  }
                  /**
                   * @dev Returns the largest of two numbers.
                   */
                  function max(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two numbers.
                   */
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two numbers. The result is rounded towards
                   * zero.
                   */
                  function average(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b) / 2 can overflow.
                      return (a & b) + (a ^ b) / 2;
                  }
                  /**
                   * @dev Returns the ceiling of the division of two numbers.
                   *
                   * This differs from standard division with `/` in that it rounds up instead
                   * of rounding down.
                   */
                  function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b - 1) / b can overflow on addition, so we distribute.
                      return a == 0 ? 0 : (a - 1) / b + 1;
                  }
                  /**
                   * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                   * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                   * with further edits by Uniswap Labs also under MIT license.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 result) {
                      unchecked {
                          // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                          // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                          // variables such that product = prod1 * 2^256 + prod0.
                          uint256 prod0; // Least significant 256 bits of the product
                          uint256 prod1; // Most significant 256 bits of the product
                          assembly {
                              let mm := mulmod(x, y, not(0))
                              prod0 := mul(x, y)
                              prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                          }
                          // Handle non-overflow cases, 256 by 256 division.
                          if (prod1 == 0) {
                              return prod0 / denominator;
                          }
                          // Make sure the result is less than 2^256. Also prevents denominator == 0.
                          require(denominator > prod1);
                          ///////////////////////////////////////////////
                          // 512 by 256 division.
                          ///////////////////////////////////////////////
                          // Make division exact by subtracting the remainder from [prod1 prod0].
                          uint256 remainder;
                          assembly {
                              // Compute remainder using mulmod.
                              remainder := mulmod(x, y, denominator)
                              // Subtract 256 bit number from 512 bit number.
                              prod1 := sub(prod1, gt(remainder, prod0))
                              prod0 := sub(prod0, remainder)
                          }
                          // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                          // See https://cs.stackexchange.com/q/138556/92363.
                          // Does not overflow because the denominator cannot be zero at this stage in the function.
                          uint256 twos = denominator & (~denominator + 1);
                          assembly {
                              // Divide denominator by twos.
                              denominator := div(denominator, twos)
                              // Divide [prod1 prod0] by twos.
                              prod0 := div(prod0, twos)
                              // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                              twos := add(div(sub(0, twos), twos), 1)
                          }
                          // Shift in bits from prod1 into prod0.
                          prod0 |= prod1 * twos;
                          // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                          // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                          // four bits. That is, denominator * inv = 1 mod 2^4.
                          uint256 inverse = (3 * denominator) ^ 2;
                          // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                          // in modular arithmetic, doubling the correct bits in each step.
                          inverse *= 2 - denominator * inverse; // inverse mod 2^8
                          inverse *= 2 - denominator * inverse; // inverse mod 2^16
                          inverse *= 2 - denominator * inverse; // inverse mod 2^32
                          inverse *= 2 - denominator * inverse; // inverse mod 2^64
                          inverse *= 2 - denominator * inverse; // inverse mod 2^128
                          inverse *= 2 - denominator * inverse; // inverse mod 2^256
                          // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                          // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                          // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                          // is no longer required.
                          result = prod0 * inverse;
                          return result;
                      }
                  }
                  /**
                   * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator,
                      Rounding rounding
                  ) internal pure returns (uint256) {
                      uint256 result = mulDiv(x, y, denominator);
                      if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                          result += 1;
                      }
                      return result;
                  }
                  /**
                   * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                   *
                   * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                   */
                  function sqrt(uint256 a) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                      // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                      // `msb(a) <= a < 2*msb(a)`.
                      // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                      // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                      // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                      // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                      uint256 result = 1;
                      uint256 x = a;
                      if (x >> 128 > 0) {
                          x >>= 128;
                          result <<= 64;
                      }
                      if (x >> 64 > 0) {
                          x >>= 64;
                          result <<= 32;
                      }
                      if (x >> 32 > 0) {
                          x >>= 32;
                          result <<= 16;
                      }
                      if (x >> 16 > 0) {
                          x >>= 16;
                          result <<= 8;
                      }
                      if (x >> 8 > 0) {
                          x >>= 8;
                          result <<= 4;
                      }
                      if (x >> 4 > 0) {
                          x >>= 4;
                          result <<= 2;
                      }
                      if (x >> 2 > 0) {
                          result <<= 1;
                      }
                      // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                      // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                      // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                      // into the expected uint128 result.
                      unchecked {
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          return min(result, a / result);
                      }
                  }
                  /**
                   * @notice Calculates sqrt(a), following the selected rounding direction.
                   */
                  function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                      uint256 result = sqrt(a);
                      if (rounding == Rounding.Up && result * result < a) {
                          result += 1;
                      }
                      return result;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @title Burn
              /// @notice Utilities for burning stuff.
              library Burn {
                  /// @notice Burns a given amount of ETH.
                  /// @param _amount Amount of ETH to burn.
                  function eth(uint256 _amount) internal {
                      new Burner{ value: _amount }();
                  }
                  /// @notice Burns a given amount of gas.
                  /// @param _amount Amount of gas to burn.
                  function gas(uint256 _amount) internal view {
                      uint256 i = 0;
                      uint256 initialGas = gasleft();
                      while (initialGas - gasleft() < _amount) {
                          ++i;
                      }
                  }
              }
              /// @title Burner
              /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
              ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
              ///         from the circulating supply.
              contract Burner {
                  constructor() payable {
                      selfdestruct(payable(address(this)));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
              import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
              /// @title Arithmetic
              /// @notice Even more math than before.
              library Arithmetic {
                  /// @notice Clamps a value between a minimum and maximum.
                  /// @param _value The value to clamp.
                  /// @param _min   The minimum value.
                  /// @param _max   The maximum value.
                  /// @return The clamped value.
                  function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                      return SignedMath.min(SignedMath.max(_value, _min), _max);
                  }
                  /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                  ///         Returns the result of: c * (1 - 1/d)^exp.
                  /// @param _coefficient Coefficient of the function.
                  /// @param _denominator Fractional denominator.
                  /// @param _exponent    Power function exponent.
                  /// @return Result of c * (1 - 1/d)^exp.
                  function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                      return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library AddressUpgradeable {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
              /// @title RLPWriter
              /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
              ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
              ///         modifications to improve legibility.
              library RLPWriter {
                  /// @notice RLP encodes a byte string.
                  /// @param _in The byte string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      if (_in.length == 1 && uint8(_in[0]) < 128) {
                          out_ = _in;
                      } else {
                          out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                      }
                  }
                  /// @notice RLP encodes a list of RLP encoded byte byte strings.
                  /// @param _in The list of RLP encoded byte strings.
                  /// @return list_ The RLP encoded list of items in bytes.
                  function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                      list_ = _flatten(_in);
                      list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                  }
                  /// @notice RLP encodes a string.
                  /// @param _in The string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeString(string memory _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(bytes(_in));
                  }
                  /// @notice RLP encodes an address.
                  /// @param _in The address to encode.
                  /// @return out_ The RLP encoded address in bytes.
                  function writeAddress(address _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(abi.encodePacked(_in));
                  }
                  /// @notice RLP encodes a uint.
                  /// @param _in The uint256 to encode.
                  /// @return out_ The RLP encoded uint256 in bytes.
                  function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(_toBinary(_in));
                  }
                  /// @notice RLP encodes a bool.
                  /// @param _in The bool to encode.
                  /// @return out_ The RLP encoded bool in bytes.
                  function writeBool(bool _in) internal pure returns (bytes memory out_) {
                      out_ = new bytes(1);
                      out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                  }
                  /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                  /// @param _len    The length of the string or the payload.
                  /// @param _offset 128 if item is string, 192 if item is list.
                  /// @return out_ RLP encoded bytes.
                  function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                      if (_len < 56) {
                          out_ = new bytes(1);
                          out_[0] = bytes1(uint8(_len) + uint8(_offset));
                      } else {
                          uint256 lenLen;
                          uint256 i = 1;
                          while (_len / i != 0) {
                              lenLen++;
                              i *= 256;
                          }
                          out_ = new bytes(lenLen + 1);
                          out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                          for (i = 1; i <= lenLen; i++) {
                              out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                          }
                      }
                  }
                  /// @notice Encode integer in big endian binary form with no leading zeroes.
                  /// @param _x The integer to encode.
                  /// @return out_ RLP encoded bytes.
                  function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                      bytes memory b = abi.encodePacked(_x);
                      uint256 i = 0;
                      for (; i < 32; i++) {
                          if (b[i] != 0) {
                              break;
                          }
                      }
                      out_ = new bytes(32 - i);
                      for (uint256 j = 0; j < out_.length; j++) {
                          out_[j] = b[i++];
                      }
                  }
                  /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                  /// @notice Copies a piece of memory to another location.
                  /// @param _dest Destination location.
                  /// @param _src  Source location.
                  /// @param _len  Length of memory to copy.
                  function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                      uint256 dest = _dest;
                      uint256 src = _src;
                      uint256 len = _len;
                      for (; len >= 32; len -= 32) {
                          assembly {
                              mstore(dest, mload(src))
                          }
                          dest += 32;
                          src += 32;
                      }
                      uint256 mask;
                      unchecked {
                          mask = 256 ** (32 - len) - 1;
                      }
                      assembly {
                          let srcpart := and(mload(src), not(mask))
                          let destpart := and(mload(dest), mask)
                          mstore(dest, or(destpart, srcpart))
                      }
                  }
                  /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                  /// @notice Flattens a list of byte strings into one byte string.
                  /// @param _list List of byte strings to flatten.
                  /// @return out_ The flattened byte string.
                  function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                      if (_list.length == 0) {
                          return new bytes(0);
                      }
                      uint256 len;
                      uint256 i = 0;
                      for (; i < _list.length; i++) {
                          len += _list[i].length;
                      }
                      out_ = new bytes(len);
                      uint256 flattenedPtr;
                      assembly {
                          flattenedPtr := add(out_, 0x20)
                      }
                      for (i = 0; i < _list.length; i++) {
                          bytes memory item = _list[i];
                          uint256 listPtr;
                          assembly {
                              listPtr := add(item, 0x20)
                          }
                          _memcpy(flattenedPtr, listPtr, item.length);
                          flattenedPtr += _list[i].length;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
              pragma solidity ^0.8.0;
              import "../proxy/utils/Initializable.sol";
              /**
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract ContextUpgradeable is Initializable {
                  function __Context_init() internal onlyInitializing {
                  }
                  function __Context_init_unchained() internal onlyInitializing {
                  }
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
                  /**
                   * @dev This empty reserved space is put in place to allow future versions to add new
                   * variables without shifting down storage in the inheritance chain.
                   * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                   */
                  uint256[50] private __gap;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Bytes
              /// @notice Bytes is a library for manipulating byte arrays.
              library Bytes {
                  /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
                  /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
                  ///         as opposed to a pointer to the original array. Will throw if trying to slice more
                  ///         bytes than exist in the array.
                  /// @param _bytes Byte array to slice.
                  /// @param _start Starting index of the slice.
                  /// @param _length Length of the slice.
                  /// @return Slice of the input byte array.
                  function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                      unchecked {
                          require(_length + 31 >= _length, "slice_overflow");
                          require(_start + _length >= _start, "slice_overflow");
                          require(_bytes.length >= _start + _length, "slice_outOfBounds");
                      }
                      bytes memory tempBytes;
                      assembly {
                          switch iszero(_length)
                          case 0 {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // The first word of the slice result is potentially a partial
                              // word read from the original array. To read it, we calculate
                              // the length of that partial word and start copying that many
                              // bytes into the array. The first word we copy will start with
                              // data we don't care about, but the last `lengthmod` bytes will
                              // land at the beginning of the contents of the new array. When
                              // we're done copying, we overwrite the full first word with
                              // the actual length of the slice.
                              let lengthmod := and(_length, 31)
                              // The multiplication in the next line is necessary
                              // because when slicing multiples of 32 bytes (lengthmod == 0)
                              // the following copy loop was copying the origin's length
                              // and then ending prematurely not copying everything it should.
                              let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                              let end := add(mc, _length)
                              for {
                                  // The multiplication in the next line has the same exact purpose
                                  // as the one above.
                                  let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } { mstore(mc, mload(cc)) }
                              mstore(tempBytes, _length)
                              //update free-memory pointer
                              //allocating the array padded to 32 bytes like the compiler does now
                              mstore(0x40, and(add(mc, 31), not(31)))
                          }
                          //if we want a zero-length slice let's just return a zero-length array
                          default {
                              tempBytes := mload(0x40)
                              //zero out the 32 bytes slice we are about to return
                              //we need to do it because Solidity does not garbage collect
                              mstore(tempBytes, 0)
                              mstore(0x40, add(tempBytes, 0x20))
                          }
                      }
                      return tempBytes;
                  }
                  /// @notice Slices a byte array with a given starting index up to the end of the original byte
                  ///         array. Returns a new array rathern than a pointer to the original.
                  /// @param _bytes Byte array to slice.
                  /// @param _start Starting index of the slice.
                  /// @return Slice of the input byte array.
                  function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                      if (_start >= _bytes.length) {
                          return bytes("");
                      }
                      return slice(_bytes, _start, _bytes.length - _start);
                  }
                  /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
                  ///         Resulting nibble array will be exactly twice as long as the input byte array.
                  /// @param _bytes Input byte array to convert.
                  /// @return Resulting nibble array.
                  function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                      bytes memory _nibbles;
                      assembly {
                          // Grab a free memory offset for the new array
                          _nibbles := mload(0x40)
                          // Load the length of the passed bytes array from memory
                          let bytesLength := mload(_bytes)
                          // Calculate the length of the new nibble array
                          // This is the length of the input array times 2
                          let nibblesLength := shl(0x01, bytesLength)
                          // Update the free memory pointer to allocate memory for the new array.
                          // To do this, we add the length of the new array + 32 bytes for the array length
                          // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                          mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                          // Store the length of the new array in memory
                          mstore(_nibbles, nibblesLength)
                          // Store the memory offset of the _bytes array's contents on the stack
                          let bytesStart := add(_bytes, 0x20)
                          // Store the memory offset of the nibbles array's contents on the stack
                          let nibblesStart := add(_nibbles, 0x20)
                          // Loop through each byte in the input array
                          for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                              // Get the starting offset of the next 2 bytes in the nibbles array
                              let offset := add(nibblesStart, shl(0x01, i))
                              // Load the byte at the current index within the `_bytes` array
                              let b := byte(0x00, mload(add(bytesStart, i)))
                              // Pull out the first nibble and store it in the new array
                              mstore8(offset, shr(0x04, b))
                              // Pull out the second nibble and store it in the new array
                              mstore8(add(offset, 0x01), and(b, 0x0F))
                          }
                      }
                      return _nibbles;
                  }
                  /// @notice Compares two byte arrays by comparing their keccak256 hashes.
                  /// @param _bytes First byte array to compare.
                  /// @param _other Second byte array to compare.
                  /// @return True if the two byte arrays are equal, false otherwise.
                  function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                      return keccak256(_bytes) == keccak256(_other);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.8;
              /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
              /// @title RLPReader
              /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
              ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
              ///         various tweaks to improve readability.
              library RLPReader {
                  /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
                  type MemoryPointer is uint256;
                  /// @notice RLP item types.
                  /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
                  /// @custom:value LIST_ITEM Represents an RLP list item.
                  enum RLPItemType {
                      DATA_ITEM,
                      LIST_ITEM
                  }
                  /// @notice Struct representing an RLP item.
                  /// @custom:field length Length of the RLP item.
                  /// @custom:field ptr    Pointer to the RLP item in memory.
                  struct RLPItem {
                      uint256 length;
                      MemoryPointer ptr;
                  }
                  /// @notice Max list length that this library will accept.
                  uint256 internal constant MAX_LIST_LENGTH = 32;
                  /// @notice Converts bytes to a reference to memory position and length.
                  /// @param _in Input bytes to convert.
                  /// @return out_ Output memory reference.
                  function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
                      // Empty arrays are not RLP items.
                      require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
                      MemoryPointer ptr;
                      assembly {
                          ptr := add(_in, 32)
                      }
                      out_ = RLPItem({ length: _in.length, ptr: ptr });
                  }
                  /// @notice Reads an RLP list value into a list of RLP items.
                  /// @param _in RLP list value.
                  /// @return out_ Decoded RLP list items.
                  function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
                      (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                      require(itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item");
                      require(listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder");
                      // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                      // writing to the length. Since we can't know the number of RLP items without looping over
                      // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                      // simply set a reasonable maximum list length and decrease the size before we finish.
                      out_ = new RLPItem[](MAX_LIST_LENGTH);
                      uint256 itemCount = 0;
                      uint256 offset = listOffset;
                      while (offset < _in.length) {
                          (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                              RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                          );
                          // We don't need to check itemCount < out.length explicitly because Solidity already
                          // handles this check on our behalf, we'd just be wasting gas.
                          out_[itemCount] = RLPItem({
                              length: itemLength + itemOffset,
                              ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                          });
                          itemCount += 1;
                          offset += itemOffset + itemLength;
                      }
                      // Decrease the array size to match the actual item count.
                      assembly {
                          mstore(out_, itemCount)
                      }
                  }
                  /// @notice Reads an RLP list value into a list of RLP items.
                  /// @param _in RLP list value.
                  /// @return out_ Decoded RLP list items.
                  function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
                      out_ = readList(toRLPItem(_in));
                  }
                  /// @notice Reads an RLP bytes value into bytes.
                  /// @param _in RLP bytes value.
                  /// @return out_ Decoded bytes.
                  function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                      (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                      require(itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item");
                      require(_in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder");
                      out_ = _copy(_in.ptr, itemOffset, itemLength);
                  }
                  /// @notice Reads an RLP bytes value into bytes.
                  /// @param _in RLP bytes value.
                  /// @return out_ Decoded bytes.
                  function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      out_ = readBytes(toRLPItem(_in));
                  }
                  /// @notice Reads the raw bytes of an RLP item.
                  /// @param _in RLP item to read.
                  /// @return out_ Raw RLP bytes.
                  function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                      out_ = _copy(_in.ptr, 0, _in.length);
                  }
                  /// @notice Decodes the length of an RLP item.
                  /// @param _in RLP item to decode.
                  /// @return offset_ Offset of the encoded data.
                  /// @return length_ Length of the encoded data.
                  /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
                  function _decodeLength(RLPItem memory _in)
                      private
                      pure
                      returns (uint256 offset_, uint256 length_, RLPItemType type_)
                  {
                      // Short-circuit if there's nothing to decode, note that we perform this check when
                      // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                      // that function and create an RLP item directly. So we need to check this anyway.
                      require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
                      MemoryPointer ptr = _in.ptr;
                      uint256 prefix;
                      assembly {
                          prefix := byte(0, mload(ptr))
                      }
                      if (prefix <= 0x7f) {
                          // Single byte.
                          return (0, 1, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xb7) {
                          // Short string.
                          // slither-disable-next-line variable-scope
                          uint256 strLen = prefix - 0x80;
                          require(
                              _in.length > strLen, "RLPReader: length of content must be greater than string length (short string)"
                          );
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          require(
                              strLen != 1 || firstByteOfContent >= 0x80,
                              "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
                          );
                          return (1, strLen, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xbf) {
                          // Long string.
                          uint256 lenOfStrLen = prefix - 0xb7;
                          require(
                              _in.length > lenOfStrLen,
                              "RLPReader: length of content must be > than length of string length (long string)"
                          );
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          require(
                              firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)"
                          );
                          uint256 strLen;
                          assembly {
                              strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                          }
                          require(strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)");
                          require(
                              _in.length > lenOfStrLen + strLen,
                              "RLPReader: length of content must be greater than total length (long string)"
                          );
                          return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xf7) {
                          // Short list.
                          // slither-disable-next-line variable-scope
                          uint256 listLen = prefix - 0xc0;
                          require(_in.length > listLen, "RLPReader: length of content must be greater than list length (short list)");
                          return (1, listLen, RLPItemType.LIST_ITEM);
                      } else {
                          // Long list.
                          uint256 lenOfListLen = prefix - 0xf7;
                          require(
                              _in.length > lenOfListLen,
                              "RLPReader: length of content must be > than length of list length (long list)"
                          );
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          require(
                              firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)"
                          );
                          uint256 listLen;
                          assembly {
                              listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                          }
                          require(listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)");
                          require(
                              _in.length > lenOfListLen + listLen,
                              "RLPReader: length of content must be greater than total length (long list)"
                          );
                          return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                      }
                  }
                  /// @notice Copies the bytes from a memory location.
                  /// @param _src    Pointer to the location to read from.
                  /// @param _offset Offset to start reading from.
                  /// @param _length Number of bytes to read.
                  /// @return out_ Copied bytes.
                  function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
                      out_ = new bytes(_length);
                      if (_length == 0) {
                          return out_;
                      }
                      // Mostly based on Solidity's copy_memory_to_memory:
                      // solhint-disable max-line-length
                      // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                      uint256 src = MemoryPointer.unwrap(_src) + _offset;
                      assembly {
                          let dest := add(out_, 32)
                          let i := 0
                          for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                          if gt(i, _length) { mstore(add(dest, _length), 0) }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard signed math utilities missing in the Solidity language.
               */
              library SignedMath {
                  /**
                   * @dev Returns the largest of two signed numbers.
                   */
                  function max(int256 a, int256 b) internal pure returns (int256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two signed numbers.
                   */
                  function min(int256 a, int256 b) internal pure returns (int256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two signed numbers without overflow.
                   * The result is rounded towards zero.
                   */
                  function average(int256 a, int256 b) internal pure returns (int256) {
                      // Formula from the book "Hacker's Delight"
                      int256 x = (a & b) + ((a ^ b) >> 1);
                      return x + (int256(uint256(x) >> 255) & (a ^ b));
                  }
                  /**
                   * @dev Returns the absolute unsigned value of a signed value.
                   */
                  function abs(int256 n) internal pure returns (uint256) {
                      unchecked {
                          // must be unchecked in order to support `n = type(int256).min`
                          return uint256(n >= 0 ? n : -n);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.8.0;
              /// @notice Arithmetic library with operations for fixed-point numbers.
              /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
              library FixedPointMathLib {
                  /*//////////////////////////////////////////////////////////////
                                  SIMPLIFIED FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                  function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                  }
                  function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                  }
                  function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                  }
                  function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                  }
                  function powWad(int256 x, int256 y) internal pure returns (int256) {
                      // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                      return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                  }
                  function expWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          // When the result is < 0.5 we return zero. This happens when
                          // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                          if (x <= -42139678854452767551) return 0;
                          // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                          // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                          if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                          // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                          // for more intermediate precision and a binary basis. This base conversion
                          // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                          x = (x << 78) / 5**18;
                          // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                          // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                          // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                          int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                          x = x - k * 54916777467707473351141471128;
                          // k is in the range [-61, 195].
                          // Evaluate using a (6, 7)-term rational approximation.
                          // p is made monic, we'll multiply by a scale factor later.
                          int256 y = x + 1346386616545796478920950773328;
                          y = ((y * x) >> 96) + 57155421227552351082224309758442;
                          int256 p = y + x - 94201549194550492254356042504812;
                          p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                          p = p * x + (4385272521454847904659076985693276 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          int256 q = x - 2855989394907223263936484059900;
                          q = ((q * x) >> 96) + 50020603652535783019961831881945;
                          q = ((q * x) >> 96) - 533845033583426703283633433725380;
                          q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                          q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                          q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial won't have zeros in the domain as all its roots are complex.
                              // No scaling is necessary because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r should be in the range (0.09, 0.25) * 2**96.
                          // We now need to multiply r by:
                          // * the scale factor s = ~6.031367120.
                          // * the 2**k factor from the range reduction.
                          // * the 1e18 / 2**96 factor for base conversion.
                          // We do this all at once, with an intermediate result in 2**213
                          // basis, so the final right shift is always by a positive amount.
                          r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                      }
                  }
                  function lnWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          require(x > 0, "UNDEFINED");
                          // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                          // We do this by multiplying by 2**96 / 10**18. But since
                          // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                          // and add ln(2**96 / 10**18) at the end.
                          // Reduce range of x to (1, 2) * 2**96
                          // ln(2^k * x) = k * ln(2) + ln(x)
                          int256 k = int256(log2(uint256(x))) - 96;
                          x <<= uint256(159 - k);
                          x = int256(uint256(x) >> 159);
                          // Evaluate using a (8, 8)-term rational approximation.
                          // p is made monic, we will multiply by a scale factor later.
                          int256 p = x + 3273285459638523848632254066296;
                          p = ((p * x) >> 96) + 24828157081833163892658089445524;
                          p = ((p * x) >> 96) + 43456485725739037958740375743393;
                          p = ((p * x) >> 96) - 11111509109440967052023855526967;
                          p = ((p * x) >> 96) - 45023709667254063763336534515857;
                          p = ((p * x) >> 96) - 14706773417378608786704636184526;
                          p = p * x - (795164235651350426258249787498 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          // q is monic by convention.
                          int256 q = x + 5573035233440673466300451813936;
                          q = ((q * x) >> 96) + 71694874799317883764090561454958;
                          q = ((q * x) >> 96) + 283447036172924575727196451306956;
                          q = ((q * x) >> 96) + 401686690394027663651624208769553;
                          q = ((q * x) >> 96) + 204048457590392012362485061816622;
                          q = ((q * x) >> 96) + 31853899698501571402653359427138;
                          q = ((q * x) >> 96) + 909429971244387300277376558375;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial is known not to have zeros in the domain.
                              // No scaling required because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r is in the range (0, 0.125) * 2**96
                          // Finalization, we need to:
                          // * multiply by the scale factor s = 5.549…
                          // * add ln(2**96 / 10**18)
                          // * add k * ln(2)
                          // * multiply by 10**18 / 2**96 = 5**18 >> 78
                          // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                          r *= 1677202110996718588342820967067443963516166;
                          // add ln(2) * k * 5e18 * 2**192
                          r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                          // add ln(2**96 / 10**18) * 5e18 * 2**192
                          r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                          // base conversion: mul 2**18 / 2**192
                          r >>= 174;
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                  LOW LEVEL FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  function mulDivDown(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // Divide z by the denominator.
                          z := div(z, denominator)
                      }
                  }
                  function mulDivUp(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // First, divide z - 1 by the denominator and add 1.
                          // We allow z - 1 to underflow if z is 0, because we multiply the
                          // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                          z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                      }
                  }
                  function rpow(
                      uint256 x,
                      uint256 n,
                      uint256 scalar
                  ) internal pure returns (uint256 z) {
                      assembly {
                          switch x
                          case 0 {
                              switch n
                              case 0 {
                                  // 0 ** 0 = 1
                                  z := scalar
                              }
                              default {
                                  // 0 ** n = 0
                                  z := 0
                              }
                          }
                          default {
                              switch mod(n, 2)
                              case 0 {
                                  // If n is even, store scalar in z for now.
                                  z := scalar
                              }
                              default {
                                  // If n is odd, store x in z for now.
                                  z := x
                              }
                              // Shifting right by 1 is like dividing by 2.
                              let half := shr(1, scalar)
                              for {
                                  // Shift n right by 1 before looping to halve it.
                                  n := shr(1, n)
                              } n {
                                  // Shift n right by 1 each iteration to halve it.
                                  n := shr(1, n)
                              } {
                                  // Revert immediately if x ** 2 would overflow.
                                  // Equivalent to iszero(eq(div(xx, x), x)) here.
                                  if shr(128, x) {
                                      revert(0, 0)
                                  }
                                  // Store x squared.
                                  let xx := mul(x, x)
                                  // Round to the nearest number.
                                  let xxRound := add(xx, half)
                                  // Revert if xx + half overflowed.
                                  if lt(xxRound, xx) {
                                      revert(0, 0)
                                  }
                                  // Set x to scaled xxRound.
                                  x := div(xxRound, scalar)
                                  // If n is even:
                                  if mod(n, 2) {
                                      // Compute z * x.
                                      let zx := mul(z, x)
                                      // If z * x overflowed:
                                      if iszero(eq(div(zx, x), z)) {
                                          // Revert if x is non-zero.
                                          if iszero(iszero(x)) {
                                              revert(0, 0)
                                          }
                                      }
                                      // Round to the nearest number.
                                      let zxRound := add(zx, half)
                                      // Revert if zx + half overflowed.
                                      if lt(zxRound, zx) {
                                          revert(0, 0)
                                      }
                                      // Return properly scaled zxRound.
                                      z := div(zxRound, scalar)
                                  }
                              }
                          }
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                      GENERAL NUMBER UTILITIES
                  //////////////////////////////////////////////////////////////*/
                  function sqrt(uint256 x) internal pure returns (uint256 z) {
                      assembly {
                          let y := x // We start y at x, which will help us make our initial estimate.
                          z := 181 // The "correct" value is 1, but this saves a multiplication later.
                          // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                          // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                          // We check y >= 2^(k + 8) but shift right by k bits
                          // each branch to ensure that if x >= 256, then y >= 256.
                          if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                              y := shr(128, y)
                              z := shl(64, z)
                          }
                          if iszero(lt(y, 0x1000000000000000000)) {
                              y := shr(64, y)
                              z := shl(32, z)
                          }
                          if iszero(lt(y, 0x10000000000)) {
                              y := shr(32, y)
                              z := shl(16, z)
                          }
                          if iszero(lt(y, 0x1000000)) {
                              y := shr(16, y)
                              z := shl(8, z)
                          }
                          // Goal was to get z*z*y within a small factor of x. More iterations could
                          // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                          // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                          // That's not possible if x < 256 but we can just verify those cases exhaustively.
                          // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                          // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                          // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                          // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                          // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                          // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                          // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                          // There is no overflow risk here since y < 2^136 after the first branch above.
                          z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                          // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          // If x+1 is a perfect square, the Babylonian method cycles between
                          // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                          // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                          // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                          // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                          z := sub(z, lt(div(x, z), z))
                      }
                  }
                  function log2(uint256 x) internal pure returns (uint256 r) {
                      require(x > 0, "UNDEFINED");
                      assembly {
                          r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                          r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                          r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                          r := or(r, shl(4, lt(0xffff, shr(r, x))))
                          r := or(r, shl(3, lt(0xff, shr(r, x))))
                          r := or(r, shl(2, lt(0xf, shr(r, x))))
                          r := or(r, shl(1, lt(0x3, shr(r, x))))
                          r := or(r, lt(0x1, shr(r, x)))
                      }
                  }
              }
              

              File 8 of 9: OptimismPortal2
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { DisputeGameFactory, IDisputeGame } from "src/dispute/DisputeGameFactory.sol";
              import { SystemConfig } from "src/L1/SystemConfig.sol";
              import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
              import { Constants } from "src/libraries/Constants.sol";
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
              import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
              import { ResourceMetering } from "src/L1/ResourceMetering.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { Constants } from "src/libraries/Constants.sol";
              import "src/libraries/PortalErrors.sol";
              import "src/dispute/lib/Types.sol";
              /// @custom:proxied
              /// @title OptimismPortal2
              /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
              ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
              ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
              contract OptimismPortal2 is Initializable, ResourceMetering, ISemver {
                  /// @notice Represents a proven withdrawal.
                  /// @custom:field disputeGameProxy The address of the dispute game proxy that the withdrawal was proven against.
                  /// @custom:field timestamp        Timestamp at whcih the withdrawal was proven.
                  struct ProvenWithdrawal {
                      IDisputeGame disputeGameProxy;
                      uint64 timestamp;
                  }
                  /// @notice The delay between when a withdrawal transaction is proven and when it may be finalized.
                  uint256 internal immutable PROOF_MATURITY_DELAY_SECONDS;
                  /// @notice The delay between when a dispute game is resolved and when a withdrawal proven against it may be
                  ///         finalized.
                  uint256 internal immutable DISPUTE_GAME_FINALITY_DELAY_SECONDS;
                  /// @notice Version of the deposit event.
                  uint256 internal constant DEPOSIT_VERSION = 0;
                  /// @notice The L2 gas limit set when eth is deposited using the receive() function.
                  uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
                  /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
                  ///         If the of this variable is the default L2 sender address, then we are NOT inside of
                  ///         a call to finalizeWithdrawalTransaction.
                  address public l2Sender;
                  /// @notice A list of withdrawal hashes which have been successfully finalized.
                  mapping(bytes32 => bool) public finalizedWithdrawals;
                  /// @custom:legacy
                  /// @custom:spacer provenWithdrawals
                  /// @notice Spacer taking up the legacy `provenWithdrawals` mapping slot.
                  bytes32 private spacer_52_0_32;
                  /// @custom:legacy
                  /// @custom:spacer paused
                  /// @notice Spacer for backwards compatibility.
                  bool private spacer_53_0_1;
                  /// @notice Contract of the Superchain Config.
                  SuperchainConfig public superchainConfig;
                  /// @custom:legacy
                  /// @custom:spacer l2Oracle
                  /// @notice Spacer taking up the legacy `l2Oracle` address slot.
                  address private spacer_54_0_20;
                  /// @notice Contract of the SystemConfig.
                  /// @custom:network-specific
                  SystemConfig public systemConfig;
                  /// @notice Address of the DisputeGameFactory.
                  /// @custom:network-specific
                  DisputeGameFactory public disputeGameFactory;
                  /// @notice A mapping of withdrawal hashes to proof submitters to `ProvenWithdrawal` data.
                  mapping(bytes32 => mapping(address => ProvenWithdrawal)) public provenWithdrawals;
                  /// @notice A mapping of dispute game addresses to whether or not they are blacklisted.
                  mapping(IDisputeGame => bool) public disputeGameBlacklist;
                  /// @notice The game type that the OptimismPortal consults for output proposals.
                  GameType public respectedGameType;
                  /// @notice The timestamp at which the respected game type was last updated.
                  uint64 public respectedGameTypeUpdatedAt;
                  /// @notice Mapping of withdrawal hashes to addresses that have submitted a proof for the withdrawal.
                  mapping(bytes32 => address[]) public proofSubmitters;
                  /// @custom:spacer _balance (custom gas token)
                  /// @notice Spacer for forwards compatibility.
                  bytes32 private spacer_61_0_32;
                  /// @notice Emitted when a transaction is deposited from L1 to L2.
                  ///         The parameters of this event are read by the rollup node and used to derive deposit
                  ///         transactions on L2.
                  /// @param from       Address that triggered the deposit transaction.
                  /// @param to         Address that the deposit transaction is directed to.
                  /// @param version    Version of this deposit transaction event.
                  /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
                  event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                  /// @notice Emitted when a withdrawal transaction is proven.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param from           Address that triggered the withdrawal transaction.
                  /// @param to             Address that the withdrawal transaction is directed to.
                  event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                  /// @notice Emitted when a withdrawal transaction is proven. Exists as a separate event to allow for backwards
                  ///         compatibility for tooling that observes the `WithdrawalProven` event.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param proofSubmitter Address of the proof submitter.
                  event WithdrawalProvenExtension1(bytes32 indexed withdrawalHash, address indexed proofSubmitter);
                  /// @notice Emitted when a withdrawal transaction is finalized.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param success        Whether the withdrawal transaction was successful.
                  event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                  /// @notice Emitted when a dispute game is blacklisted by the Guardian.
                  /// @param disputeGame Address of the dispute game that was blacklisted.
                  event DisputeGameBlacklisted(IDisputeGame indexed disputeGame);
                  /// @notice Emitted when the Guardian changes the respected game type in the portal.
                  /// @param newGameType The new respected game type.
                  /// @param updatedAt   The timestamp at which the respected game type was updated.
                  event RespectedGameTypeSet(GameType indexed newGameType, Timestamp indexed updatedAt);
                  /// @notice Reverts when paused.
                  modifier whenNotPaused() {
                      if (paused()) revert CallPaused();
                      _;
                  }
                  /// @notice Semantic version.
                  /// @custom:semver 3.10.0
                  string public constant version = "3.10.0";
                  /// @notice Constructs the OptimismPortal contract.
                  constructor(uint256 _proofMaturityDelaySeconds, uint256 _disputeGameFinalityDelaySeconds) {
                      PROOF_MATURITY_DELAY_SECONDS = _proofMaturityDelaySeconds;
                      DISPUTE_GAME_FINALITY_DELAY_SECONDS = _disputeGameFinalityDelaySeconds;
                      initialize({
                          _disputeGameFactory: DisputeGameFactory(address(0)),
                          _systemConfig: SystemConfig(address(0)),
                          _superchainConfig: SuperchainConfig(address(0)),
                          _initialRespectedGameType: GameType.wrap(0)
                      });
                  }
                  /// @notice Initializer.
                  /// @param _disputeGameFactory Contract of the DisputeGameFactory.
                  /// @param _systemConfig Contract of the SystemConfig.
                  /// @param _superchainConfig Contract of the SuperchainConfig.
                  function initialize(
                      DisputeGameFactory _disputeGameFactory,
                      SystemConfig _systemConfig,
                      SuperchainConfig _superchainConfig,
                      GameType _initialRespectedGameType
                  )
                      public
                      initializer
                  {
                      disputeGameFactory = _disputeGameFactory;
                      systemConfig = _systemConfig;
                      superchainConfig = _superchainConfig;
                      // Set the `l2Sender` slot, only if it is currently empty. This signals the first initialization of the
                      // contract.
                      if (l2Sender == address(0)) {
                          l2Sender = Constants.DEFAULT_L2_SENDER;
                          // Set the `respectedGameTypeUpdatedAt` timestamp, to ignore all games of the respected type prior
                          // to this operation.
                          respectedGameTypeUpdatedAt = uint64(block.timestamp);
                          // Set the initial respected game type
                          respectedGameType = _initialRespectedGameType;
                      }
                      __ResourceMetering_init();
                  }
                  /// @notice Getter function for the address of the guardian.
                  ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
                  /// @return Address of the guardian.
                  /// @custom:legacy
                  function guardian() public view returns (address) {
                      return superchainConfig.guardian();
                  }
                  /// @notice Getter for the current paused status.
                  function paused() public view returns (bool) {
                      return superchainConfig.paused();
                  }
                  /// @notice Getter for the proof maturity delay.
                  function proofMaturityDelaySeconds() public view returns (uint256) {
                      return PROOF_MATURITY_DELAY_SECONDS;
                  }
                  /// @notice Getter for the dispute game finality delay.
                  function disputeGameFinalityDelaySeconds() public view returns (uint256) {
                      return DISPUTE_GAME_FINALITY_DELAY_SECONDS;
                  }
                  /// @notice Computes the minimum gas limit for a deposit.
                  ///         The minimum gas limit linearly increases based on the size of the calldata.
                  ///         This is to prevent users from creating L2 resource usage without paying for it.
                  ///         This function can be used when interacting with the portal to ensure forwards
                  ///         compatibility.
                  /// @param _byteCount Number of bytes in the calldata.
                  /// @return The minimum gas limit for a deposit.
                  function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                      return _byteCount * 16 + 21000;
                  }
                  /// @notice Accepts value so that users can send ETH directly to this contract and have the
                  ///         funds be deposited to their address on L2. This is intended as a convenience
                  ///         function for EOAs. Contracts should call the depositTransaction() function directly
                  ///         otherwise any deposited funds will be lost due to address aliasing.
                  receive() external payable {
                      depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
                  }
                  /// @notice Accepts ETH value without triggering a deposit to L2.
                  ///         This function mainly exists for the sake of the migration between the legacy
                  ///         Optimism system and Bedrock.
                  function donateETH() external payable {
                      // Intentionally empty.
                  }
                  /// @notice Getter for the resource config.
                  ///         Used internally by the ResourceMetering contract.
                  ///         The SystemConfig is the source of truth for the resource config.
                  /// @return ResourceMetering ResourceConfig
                  function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
                      return systemConfig.resourceConfig();
                  }
                  /// @notice Proves a withdrawal transaction.
                  /// @param _tx               Withdrawal transaction to finalize.
                  /// @param _disputeGameIndex Index of the dispute game to prove the withdrawal against.
                  /// @param _outputRootProof  Inclusion proof of the L2ToL1MessagePasser contract's storage root.
                  /// @param _withdrawalProof  Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
                  function proveWithdrawalTransaction(
                      Types.WithdrawalTransaction memory _tx,
                      uint256 _disputeGameIndex,
                      Types.OutputRootProof calldata _outputRootProof,
                      bytes[] calldata _withdrawalProof
                  )
                      external
                      whenNotPaused
                  {
                      // Prevent users from creating a deposit transaction where this address is the message
                      // sender on L2. Because this is checked here, we do not need to check again in
                      // `finalizeWithdrawalTransaction`.
                      require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract");
                      // Fetch the dispute game proxy from the `DisputeGameFactory` contract.
                      (GameType gameType,, IDisputeGame gameProxy) = disputeGameFactory.gameAtIndex(_disputeGameIndex);
                      Claim outputRoot = gameProxy.rootClaim();
                      // The game type of the dispute game must be the respected game type.
                      require(gameType.raw() == respectedGameType.raw(), "OptimismPortal: invalid game type");
                      // Verify that the output root can be generated with the elements in the proof.
                      require(
                          outputRoot.raw() == Hashing.hashOutputRootProof(_outputRootProof),
                          "OptimismPortal: invalid output root proof"
                      );
                      // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                      bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                      // We do not allow for proving withdrawals against dispute games that have resolved against the favor
                      // of the root claim.
                      require(
                          gameProxy.status() != GameStatus.CHALLENGER_WINS,
                          "OptimismPortal: cannot prove against invalid dispute games"
                      );
                      // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                      // Refer to the Solidity documentation for more information on how storage layouts are
                      // computed for mappings.
                      bytes32 storageKey = keccak256(
                          abi.encode(
                              withdrawalHash,
                              uint256(0) // The withdrawals mapping is at the first slot in the layout.
                          )
                      );
                      // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                      // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                      // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                      // be relayed on L1.
                      require(
                          SecureMerkleTrie.verifyInclusionProof({
                              _key: abi.encode(storageKey),
                              _value: hex"01",
                              _proof: _withdrawalProof,
                              _root: _outputRootProof.messagePasserStorageRoot
                          }),
                          "OptimismPortal: invalid withdrawal inclusion proof"
                      );
                      // Designate the withdrawalHash as proven by storing the `disputeGameProxy` & `timestamp` in the
                      // `provenWithdrawals` mapping. A `withdrawalHash` can only be proven once unless the dispute game it proved
                      // against resolves against the favor of the root claim.
                      provenWithdrawals[withdrawalHash][msg.sender] =
                          ProvenWithdrawal({ disputeGameProxy: gameProxy, timestamp: uint64(block.timestamp) });
                      // Emit a `WithdrawalProven` event.
                      emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
                      // Emit a `WithdrawalProvenExtension1` event.
                      emit WithdrawalProvenExtension1(withdrawalHash, msg.sender);
                      // Add the proof submitter to the list of proof submitters for this withdrawal hash.
                      proofSubmitters[withdrawalHash].push(msg.sender);
                  }
                  /// @notice Finalizes a withdrawal transaction.
                  /// @param _tx Withdrawal transaction to finalize.
                  function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
                      finalizeWithdrawalTransactionExternalProof(_tx, msg.sender);
                  }
                  /// @notice Finalizes a withdrawal transaction, using an external proof submitter.
                  /// @param _tx Withdrawal transaction to finalize.
                  /// @param _proofSubmitter Address of the proof submitter.
                  function finalizeWithdrawalTransactionExternalProof(
                      Types.WithdrawalTransaction memory _tx,
                      address _proofSubmitter
                  )
                      public
                      whenNotPaused
                  {
                      // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                      // than the default value when a withdrawal transaction is being finalized. This check is
                      // a defacto reentrancy guard.
                      require(
                          l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction"
                      );
                      // Compute the withdrawal hash.
                      bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                      // Check that the withdrawal can be finalized.
                      checkWithdrawal(withdrawalHash, _proofSubmitter);
                      // Mark the withdrawal as finalized so it can't be replayed.
                      finalizedWithdrawals[withdrawalHash] = true;
                      // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                      l2Sender = _tx.sender;
                      // Trigger the call to the target contract. We use a custom low level method
                      // SafeCall.callWithMinGas to ensure two key properties
                      //   1. Target contracts cannot force this call to run out of gas by returning a very large
                      //      amount of data (and this is OK because we don't care about the returndata here).
                      //   2. The amount of gas provided to the execution context of the target is at least the
                      //      gas limit specified by the user. If there is not enough gas in the current context
                      //      to accomplish this, `callWithMinGas` will revert.
                      bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
                      // Reset the l2Sender back to the default value.
                      l2Sender = Constants.DEFAULT_L2_SENDER;
                      // All withdrawals are immediately finalized. Replayability can
                      // be achieved through contracts built on top of this contract
                      emit WithdrawalFinalized(withdrawalHash, success);
                      // Reverting here is useful for determining the exact gas cost to successfully execute the
                      // sub call to the target contract if the minimum gas limit specified by the user would not
                      // be sufficient to execute the sub call.
                      if (!success && tx.origin == Constants.ESTIMATION_ADDRESS) {
                          revert GasEstimation();
                      }
                  }
                  /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
                  ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
                  ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
                  ///         using the CrossDomainMessenger contracts for a simpler developer experience.
                  /// @param _to         Target address on L2.
                  /// @param _value      ETH value to send to the recipient.
                  /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                  /// @param _isCreation Whether or not the transaction is a contract creation.
                  /// @param _data       Data to trigger the recipient with.
                  function depositTransaction(
                      address _to,
                      uint256 _value,
                      uint64 _gasLimit,
                      bool _isCreation,
                      bytes memory _data
                  )
                      public
                      payable
                      metered(_gasLimit)
                  {
                      // Just to be safe, make sure that people specify address(0) as the target when doing
                      // contract creations.
                      if (_isCreation && _to != address(0)) revert BadTarget();
                      // Prevent depositing transactions that have too small of a gas limit. Users should pay
                      // more for more resource usage.
                      if (_gasLimit < minimumGasLimit(uint64(_data.length))) revert SmallGasLimit();
                      // Prevent the creation of deposit transactions that have too much calldata. This gives an
                      // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                      // that the transaction can fit into the p2p network policy of 128kb even though deposit
                      // transactions are not gossipped over the p2p network.
                      if (_data.length > 120_000) revert LargeCalldata();
                      // Transform the from-address to its alias if the caller is a contract.
                      address from = msg.sender;
                      if (msg.sender != tx.origin) {
                          from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                      }
                      // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                      // We use opaque data so that we can update the TransactionDeposited event in the future
                      // without breaking the current interface.
                      bytes memory opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
                      // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                      // transaction for this deposit.
                      emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
                  }
                  /// @notice Blacklists a dispute game. Should only be used in the event that a dispute game resolves incorrectly.
                  /// @param _disputeGame Dispute game to blacklist.
                  function blacklistDisputeGame(IDisputeGame _disputeGame) external {
                      if (msg.sender != guardian()) revert Unauthorized();
                      disputeGameBlacklist[_disputeGame] = true;
                      emit DisputeGameBlacklisted(_disputeGame);
                  }
                  /// @notice Sets the respected game type. Changing this value can alter the security properties of the system,
                  ///         depending on the new game's behavior.
                  /// @param _gameType The game type to consult for output proposals.
                  function setRespectedGameType(GameType _gameType) external {
                      if (msg.sender != guardian()) revert Unauthorized();
                      respectedGameType = _gameType;
                      respectedGameTypeUpdatedAt = uint64(block.timestamp);
                      emit RespectedGameTypeSet(_gameType, Timestamp.wrap(respectedGameTypeUpdatedAt));
                  }
                  /// @notice Checks if a withdrawal can be finalized. This function will revert if the withdrawal cannot be
                  ///         finalized, and otherwise has no side-effects.
                  /// @param _withdrawalHash Hash of the withdrawal to check.
                  /// @param _proofSubmitter The submitter of the proof for the withdrawal hash
                  function checkWithdrawal(bytes32 _withdrawalHash, address _proofSubmitter) public view {
                      ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[_withdrawalHash][_proofSubmitter];
                      IDisputeGame disputeGameProxy = provenWithdrawal.disputeGameProxy;
                      // The dispute game must not be blacklisted.
                      require(!disputeGameBlacklist[disputeGameProxy], "OptimismPortal: dispute game has been blacklisted");
                      // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                      // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                      // a timestamp of zero.
                      require(
                          provenWithdrawal.timestamp != 0,
                          "OptimismPortal: withdrawal has not been proven by proof submitter address yet"
                      );
                      uint64 createdAt = disputeGameProxy.createdAt().raw();
                      // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                      // starting timestamp inside the Dispute Game. Not strictly necessary but extra layer of
                      // safety against weird bugs in the proving step.
                      require(
                          provenWithdrawal.timestamp > createdAt,
                          "OptimismPortal: withdrawal timestamp less than dispute game creation timestamp"
                      );
                      // A proven withdrawal must wait at least `PROOF_MATURITY_DELAY_SECONDS` before finalizing.
                      require(
                          block.timestamp - provenWithdrawal.timestamp > PROOF_MATURITY_DELAY_SECONDS,
                          "OptimismPortal: proven withdrawal has not matured yet"
                      );
                      // A proven withdrawal must wait until the dispute game it was proven against has been
                      // resolved in favor of the root claim (the output proposal). This is to prevent users
                      // from finalizing withdrawals proven against non-finalized output roots.
                      require(
                          disputeGameProxy.status() == GameStatus.DEFENDER_WINS,
                          "OptimismPortal: output proposal has not been validated"
                      );
                      // The game type of the dispute game must be the respected game type. This was also checked in
                      // `proveWithdrawalTransaction`, but we check it again in case the respected game type has changed since
                      // the withdrawal was proven.
                      require(disputeGameProxy.gameType().raw() == respectedGameType.raw(), "OptimismPortal: invalid game type");
                      // The game must have been created after `respectedGameTypeUpdatedAt`. This is to prevent users from creating
                      // invalid disputes against a deployed game type while the off-chain challenge agents are not watching.
                      require(
                          createdAt >= respectedGameTypeUpdatedAt,
                          "OptimismPortal: dispute game created before respected game type was updated"
                      );
                      // Before a withdrawal can be finalized, the dispute game it was proven against must have been
                      // resolved for at least `DISPUTE_GAME_FINALITY_DELAY_SECONDS`. This is to allow for manual
                      // intervention in the event that a dispute game is resolved incorrectly.
                      require(
                          block.timestamp - disputeGameProxy.resolvedAt().raw() > DISPUTE_GAME_FINALITY_DELAY_SECONDS,
                          "OptimismPortal: output proposal in air-gap"
                      );
                      // Check that this withdrawal has not already been finalized, this is replay protection.
                      require(!finalizedWithdrawals[_withdrawalHash], "OptimismPortal: withdrawal has already been finalized");
                  }
                  /// @notice External getter for the number of proof submitters for a withdrawal hash.
                  /// @param _withdrawalHash Hash of the withdrawal.
                  /// @return The number of proof submitters for the withdrawal hash.
                  function numProofSubmitters(bytes32 _withdrawalHash) external view returns (uint256) {
                      return proofSubmitters[_withdrawalHash].length;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/Address.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @title SafeCall
              /// @notice Perform low level safe calls
              library SafeCall {
                  /// @notice Performs a low level call without copying any returndata.
                  /// @dev Passes no calldata to the call context.
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
                      bool _success;
                      assembly {
                          _success :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  0, // inloc
                                  0, // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                      return _success;
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
                      bool _success;
                      assembly {
                          _success :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                      return _success;
                  }
                  /// @notice Helper function to determine if there is sufficient gas remaining within the context
                  ///         to guarantee that the minimum gas requirement for a call will be met as well as
                  ///         optionally reserving a specified amount of gas for after the call has concluded.
                  /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                  /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                  ///                     of the target context.
                  /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                  ///         context as well as reserve `_reservedGas` for the caller after the execution of
                  ///         the target context.
                  /// @dev !!!!! FOOTGUN ALERT !!!!!
                  ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                  ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                  ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                  ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                  ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                  ///          factors of the dynamic cost of the `CALL` opcode.
                  ///      2.) This function should *directly* precede the external call if possible. There is an
                  ///          added buffer to account for gas consumed between this check and the call, but it
                  ///          is only 5,700 gas.
                  ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                  ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                  ///          truncated.
                  ///      4.) Use wisely. This function is not a silver bullet.
                  function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                      bool _hasMinGas;
                      assembly {
                          // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                          _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                      }
                      return _hasMinGas;
                  }
                  /// @notice Perform a low level call without copying any returndata. This function
                  ///         will revert if the call cannot be performed with the specified minimum
                  ///         gas.
                  /// @param _target   Address to call
                  /// @param _minGas   The minimum amount of gas that may be passed to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function callWithMinGas(
                      address _target,
                      uint256 _minGas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool)
                  {
                      bool _success;
                      bool _hasMinGas = hasMinGas(_minGas, 0);
                      assembly {
                          // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                          if iszero(_hasMinGas) {
                              // Store the "Error(string)" selector in scratch space.
                              mstore(0, 0x08c379a0)
                              // Store the pointer to the string length in scratch space.
                              mstore(32, 32)
                              // Store the string.
                              //
                              // SAFETY:
                              // - We pad the beginning of the string with two zero bytes as well as the
                              // length (24) to ensure that we override the free memory pointer at offset
                              // 0x40. This is necessary because the free memory pointer is likely to
                              // be greater than 1 byte when this function is called, but it is incredibly
                              // unlikely that it will be greater than 3 bytes. As for the data within
                              // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                              // - It's fine to clobber the free memory pointer, we're reverting.
                              mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                              // Revert with 'Error("SafeCall: Not enough gas")'
                              revert(28, 100)
                          }
                          // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                          // above assertion. This ensures that, in all circumstances (except for when the
                          // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                          // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                          // the minimum amount of gas specified.
                          _success :=
                              call(
                                  gas(), // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0x00, // outloc
                                  0x00 // outlen
                              )
                      }
                      return _success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { LibClone } from "@solady/utils/LibClone.sol";
              import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { IDisputeGame } from "src/dispute/interfaces/IDisputeGame.sol";
              import { IDisputeGameFactory } from "src/dispute/interfaces/IDisputeGameFactory.sol";
              import "src/dispute/lib/Types.sol";
              import "src/dispute/lib/Errors.sol";
              /// @title DisputeGameFactory
              /// @notice A factory contract for creating `IDisputeGame` contracts. All created dispute games are stored in both a
              ///         mapping and an append only array. The timestamp of the creation time of the dispute game is packed tightly
              ///         into the storage slot with the address of the dispute game to make offchain discoverability of playable
              ///         dispute games easier.
              contract DisputeGameFactory is OwnableUpgradeable, IDisputeGameFactory, ISemver {
                  /// @dev Allows for the creation of clone proxies with immutable arguments.
                  using LibClone for address;
                  /// @notice Semantic version.
                  /// @custom:semver 1.0.0
                  string public constant version = "1.0.0";
                  /// @inheritdoc IDisputeGameFactory
                  mapping(GameType => IDisputeGame) public gameImpls;
                  /// @inheritdoc IDisputeGameFactory
                  mapping(GameType => uint256) public initBonds;
                  /// @notice Mapping of a hash of `gameType || rootClaim || extraData` to the deployed `IDisputeGame` clone (where
                  //          `||` denotes concatenation).
                  mapping(Hash => GameId) internal _disputeGames;
                  /// @notice An append-only array of disputeGames that have been created. Used by offchain game solvers to
                  ///         efficiently track dispute games.
                  GameId[] internal _disputeGameList;
                  /// @notice Constructs a new DisputeGameFactory contract.
                  constructor() OwnableUpgradeable() {
                      initialize(address(0));
                  }
                  /// @notice Initializes the contract.
                  /// @param _owner The owner of the contract.
                  function initialize(address _owner) public initializer {
                      __Ownable_init();
                      _transferOwnership(_owner);
                  }
                  /// @inheritdoc IDisputeGameFactory
                  function gameCount() external view returns (uint256 gameCount_) {
                      gameCount_ = _disputeGameList.length;
                  }
                  /// @inheritdoc IDisputeGameFactory
                  function games(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes calldata _extraData
                  )
                      external
                      view
                      returns (IDisputeGame proxy_, Timestamp timestamp_)
                  {
                      Hash uuid = getGameUUID(_gameType, _rootClaim, _extraData);
                      (, Timestamp timestamp, address proxy) = _disputeGames[uuid].unpack();
                      (proxy_, timestamp_) = (IDisputeGame(proxy), timestamp);
                  }
                  /// @inheritdoc IDisputeGameFactory
                  function gameAtIndex(uint256 _index)
                      external
                      view
                      returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_)
                  {
                      (GameType gameType, Timestamp timestamp, address proxy) = _disputeGameList[_index].unpack();
                      (gameType_, timestamp_, proxy_) = (gameType, timestamp, IDisputeGame(proxy));
                  }
                  /// @inheritdoc IDisputeGameFactory
                  function create(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes calldata _extraData
                  )
                      external
                      payable
                      returns (IDisputeGame proxy_)
                  {
                      // Grab the implementation contract for the given `GameType`.
                      IDisputeGame impl = gameImpls[_gameType];
                      // If there is no implementation to clone for the given `GameType`, revert.
                      if (address(impl) == address(0)) revert NoImplementation(_gameType);
                      // If the required initialization bond is not met, revert.
                      if (msg.value != initBonds[_gameType]) revert IncorrectBondAmount();
                      // Get the hash of the parent block.
                      bytes32 parentHash = blockhash(block.number - 1);
                      // Clone the implementation contract and initialize it with the given parameters.
                      //
                      // CWIA Calldata Layout:
                      // ┌──────────────┬────────────────────────────────────┐
                      // │    Bytes     │            Description             │
                      // ├──────────────┼────────────────────────────────────┤
                      // │ [0, 20)      │ Game creator address               │
                      // │ [20, 52)     │ Root claim                         │
                      // │ [52, 84)     │ Parent block hash at creation time │
                      // │ [84, 84 + n) │ Extra data (opaque)                │
                      // └──────────────┴────────────────────────────────────┘
                      proxy_ = IDisputeGame(address(impl).clone(abi.encodePacked(msg.sender, _rootClaim, parentHash, _extraData)));
                      proxy_.initialize{ value: msg.value }();
                      // Compute the unique identifier for the dispute game.
                      Hash uuid = getGameUUID(_gameType, _rootClaim, _extraData);
                      // If a dispute game with the same UUID already exists, revert.
                      if (GameId.unwrap(_disputeGames[uuid]) != bytes32(0)) revert GameAlreadyExists(uuid);
                      // Pack the game ID.
                      GameId id = LibGameId.pack(_gameType, Timestamp.wrap(uint64(block.timestamp)), address(proxy_));
                      // Store the dispute game id in the mapping & emit the `DisputeGameCreated` event.
                      _disputeGames[uuid] = id;
                      _disputeGameList.push(id);
                      emit DisputeGameCreated(address(proxy_), _gameType, _rootClaim);
                  }
                  /// @inheritdoc IDisputeGameFactory
                  function getGameUUID(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes calldata _extraData
                  )
                      public
                      pure
                      returns (Hash uuid_)
                  {
                      uuid_ = Hash.wrap(keccak256(abi.encode(_gameType, _rootClaim, _extraData)));
                  }
                  /// @inheritdoc IDisputeGameFactory
                  function findLatestGames(
                      GameType _gameType,
                      uint256 _start,
                      uint256 _n
                  )
                      external
                      view
                      returns (GameSearchResult[] memory games_)
                  {
                      // If the `_start` index is greater than or equal to the game array length or `_n == 0`, return an empty array.
                      if (_start >= _disputeGameList.length || _n == 0) return games_;
                      // Allocate enough memory for the full array, but start the array's length at `0`. We may not use all of the
                      // memory allocated, but we don't know ahead of time the final size of the array.
                      assembly {
                          games_ := mload(0x40)
                          mstore(0x40, add(games_, add(0x20, shl(0x05, _n))))
                      }
                      // Perform a reverse linear search for the `_n` most recent games of type `_gameType`.
                      for (uint256 i = _start; i >= 0 && i <= _start;) {
                          GameId id = _disputeGameList[i];
                          (GameType gameType, Timestamp timestamp, address proxy) = id.unpack();
                          if (gameType.raw() == _gameType.raw()) {
                              // Increase the size of the `games_` array by 1.
                              // SAFETY: We can safely lazily allocate memory here because we pre-allocated enough memory for the max
                              //         possible size of the array.
                              assembly {
                                  mstore(games_, add(mload(games_), 0x01))
                              }
                              bytes memory extraData = IDisputeGame(proxy).extraData();
                              Claim rootClaim = IDisputeGame(proxy).rootClaim();
                              games_[games_.length - 1] = GameSearchResult({
                                  index: i,
                                  metadata: id,
                                  timestamp: timestamp,
                                  rootClaim: rootClaim,
                                  extraData: extraData
                              });
                              if (games_.length >= _n) break;
                          }
                          unchecked {
                              i--;
                          }
                      }
                  }
                  /// @inheritdoc IDisputeGameFactory
                  function setImplementation(GameType _gameType, IDisputeGame _impl) external onlyOwner {
                      gameImpls[_gameType] = _impl;
                      emit ImplementationSet(address(_impl), _gameType);
                  }
                  /// @inheritdoc IDisputeGameFactory
                  function setInitBond(GameType _gameType, uint256 _initBond) external onlyOwner {
                      initBonds[_gameType] = _initBond;
                      emit InitBondUpdated(_gameType, _initBond);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { ResourceMetering } from "src/L1/ResourceMetering.sol";
              import { Storage } from "src/libraries/Storage.sol";
              import { Constants } from "src/libraries/Constants.sol";
              /// @title SystemConfig
              /// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
              ///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
              ///         the L2 chain.
              contract SystemConfig is OwnableUpgradeable, ISemver {
                  /// @notice Enum representing different types of updates.
                  /// @custom:value BATCHER              Represents an update to the batcher hash.
                  /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
                  /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
                  /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
                  ///                                    block distrubution.
                  enum UpdateType {
                      BATCHER,
                      GAS_CONFIG,
                      GAS_LIMIT,
                      UNSAFE_BLOCK_SIGNER
                  }
                  /// @notice Struct representing the addresses of L1 system contracts. These should be the
                  ///         proxies and are network specific.
                  struct Addresses {
                      address l1CrossDomainMessenger;
                      address l1ERC721Bridge;
                      address l1StandardBridge;
                      address disputeGameFactory;
                      address optimismPortal;
                      address optimismMintableERC20Factory;
                  }
                  /// @notice Version identifier, used for upgrades.
                  uint256 public constant VERSION = 0;
                  /// @notice Storage slot that the unsafe block signer is stored at.
                  ///         Storing it at this deterministic storage slot allows for decoupling the storage
                  ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
                  ///         proof to fetch this value.
                  /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
                  ///         User input should not be placed in storage in this contract until this migration
                  ///         happens. It is unlikely that keccak second preimage resistance will be broken,
                  ///         but it is better to be safe than sorry.
                  bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
                  /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
                  bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
                      bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
                  /// @notice Storage slot that the L1ERC721Bridge address is stored at.
                  bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
                  /// @notice Storage slot that the L1StandardBridge address is stored at.
                  bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
                  /// @notice Storage slot that the OptimismPortal address is stored at.
                  bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
                  /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
                  bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
                      bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
                  /// @notice Storage slot that the batch inbox address is stored at.
                  bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
                  /// @notice Storage slot for block at which the op-node can start searching for logs from.
                  bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1);
                  /// @notice Storage slot for the DisputeGameFactory address.
                  bytes32 public constant DISPUTE_GAME_FACTORY_SLOT =
                      bytes32(uint256(keccak256("systemconfig.disputegamefactory")) - 1);
                  /// @notice The maximum gas limit that can be set for L2 blocks. This limit is used to enforce that the blocks
                  ///         on L2 are not too large to process and prove. Over time, this value can be increased as various
                  ///         optimizations and improvements are made to the system at large.
                  uint64 internal constant MAX_GAS_LIMIT = 200_000_000;
                  /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
                  uint256 public overhead;
                  /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
                  uint256 public scalar;
                  /// @notice Identifier for the batcher.
                  ///         For version 1 of this configuration, this is represented as an address left-padded
                  ///         with zeros to 32 bytes.
                  bytes32 public batcherHash;
                  /// @notice L2 block gas limit.
                  uint64 public gasLimit;
                  /// @notice The configuration for the deposit fee market.
                  ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
                  ///         Set as internal with a getter so that the struct is returned instead of a tuple.
                  ResourceMetering.ResourceConfig internal _resourceConfig;
                  /// @notice Emitted when configuration is updated.
                  /// @param version    SystemConfig version.
                  /// @param updateType Type of update.
                  /// @param data       Encoded update data.
                  event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                  /// @notice Semantic version.
                  /// @custom:semver 2.2.0
                  string public constant version = "2.2.0";
                  /// @notice Constructs the SystemConfig contract. Cannot set
                  ///         the owner to `address(0)` due to the Ownable contract's
                  ///         implementation, so set it to `address(0xdEaD)`
                  /// @dev    START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value
                  ///         in the singleton and is skipped by initialize when setting the start block.
                  constructor() {
                      Storage.setUint(START_BLOCK_SLOT, type(uint256).max);
                      initialize({
                          _owner: address(0xdEaD),
                          _overhead: 0,
                          _scalar: 0,
                          _batcherHash: bytes32(0),
                          _gasLimit: 1,
                          _unsafeBlockSigner: address(0),
                          _config: ResourceMetering.ResourceConfig({
                              maxResourceLimit: 1,
                              elasticityMultiplier: 1,
                              baseFeeMaxChangeDenominator: 2,
                              minimumBaseFee: 0,
                              systemTxMaxGas: 0,
                              maximumBaseFee: 0
                          }),
                          _batchInbox: address(0),
                          _addresses: SystemConfig.Addresses({
                              l1CrossDomainMessenger: address(0),
                              l1ERC721Bridge: address(0),
                              l1StandardBridge: address(0),
                              disputeGameFactory: address(0),
                              optimismPortal: address(0),
                              optimismMintableERC20Factory: address(0)
                          })
                      });
                  }
                  /// @notice Initializer.
                  ///         The resource config must be set before the require check.
                  /// @param _owner             Initial owner of the contract.
                  /// @param _overhead          Initial overhead value.
                  /// @param _scalar            Initial scalar value.
                  /// @param _batcherHash       Initial batcher hash.
                  /// @param _gasLimit          Initial gas limit.
                  /// @param _unsafeBlockSigner Initial unsafe block signer address.
                  /// @param _config            Initial ResourceConfig.
                  /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
                  ///                           canonical data.
                  /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
                  function initialize(
                      address _owner,
                      uint256 _overhead,
                      uint256 _scalar,
                      bytes32 _batcherHash,
                      uint64 _gasLimit,
                      address _unsafeBlockSigner,
                      ResourceMetering.ResourceConfig memory _config,
                      address _batchInbox,
                      SystemConfig.Addresses memory _addresses
                  )
                      public
                      initializer
                  {
                      __Ownable_init();
                      transferOwnership(_owner);
                      // These are set in ascending order of their UpdateTypes.
                      _setBatcherHash(_batcherHash);
                      _setGasConfig({ _overhead: _overhead, _scalar: _scalar });
                      _setGasLimit(_gasLimit);
                      Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                      Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
                      Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
                      Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
                      Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
                      Storage.setAddress(DISPUTE_GAME_FACTORY_SLOT, _addresses.disputeGameFactory);
                      Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
                      Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
                      _setStartBlock();
                      _setResourceConfig(_config);
                      require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                  }
                  /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
                  ///         operate. The L2 gas limit must be larger than or equal to the amount of
                  ///         gas that is allocated for deposits per block plus the amount of gas that
                  ///         is allocated for the system transaction.
                  ///         This function is used to determine if changes to parameters are safe.
                  /// @return uint64 Minimum gas limit.
                  function minimumGasLimit() public view returns (uint64) {
                      return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
                  }
                  /// @notice Returns the maximum L2 gas limit that can be safely set for the system to
                  ///         operate. This bound is used to prevent the gas limit from being set too high
                  ///         and causing the system to be unable to process and/or prove L2 blocks.
                  /// @return uint64 Maximum gas limit.
                  function maximumGasLimit() public pure returns (uint64) {
                      return MAX_GAS_LIMIT;
                  }
                  /// @notice High level getter for the unsafe block signer address.
                  ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
                  ///         key corresponding to this address.
                  /// @return addr_ Address of the unsafe block signer.
                  function unsafeBlockSigner() public view returns (address addr_) {
                      addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
                  }
                  /// @notice Getter for the L1CrossDomainMessenger address.
                  function l1CrossDomainMessenger() external view returns (address addr_) {
                      addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
                  }
                  /// @notice Getter for the L1ERC721Bridge address.
                  function l1ERC721Bridge() external view returns (address addr_) {
                      addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
                  }
                  /// @notice Getter for the L1StandardBridge address.
                  function l1StandardBridge() external view returns (address addr_) {
                      addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
                  }
                  /// @notice Getter for the DisputeGameFactory address.
                  function disputeGameFactory() external view returns (address addr_) {
                      addr_ = Storage.getAddress(DISPUTE_GAME_FACTORY_SLOT);
                  }
                  /// @notice Getter for the OptimismPortal address.
                  function optimismPortal() external view returns (address addr_) {
                      addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
                  }
                  /// @notice Getter for the OptimismMintableERC20Factory address.
                  function optimismMintableERC20Factory() external view returns (address addr_) {
                      addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
                  }
                  /// @notice Getter for the BatchInbox address.
                  function batchInbox() external view returns (address addr_) {
                      addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
                  }
                  /// @notice Getter for the StartBlock number.
                  function startBlock() external view returns (uint256 startBlock_) {
                      startBlock_ = Storage.getUint(START_BLOCK_SLOT);
                  }
                  /// @notice Updates the unsafe block signer address. Can only be called by the owner.
                  /// @param _unsafeBlockSigner New unsafe block signer address.
                  function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
                      _setUnsafeBlockSigner(_unsafeBlockSigner);
                  }
                  /// @notice Updates the unsafe block signer address.
                  /// @param _unsafeBlockSigner New unsafe block signer address.
                  function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
                      Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                      bytes memory data = abi.encode(_unsafeBlockSigner);
                      emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
                  }
                  /// @notice Updates the batcher hash. Can only be called by the owner.
                  /// @param _batcherHash New batcher hash.
                  function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
                      _setBatcherHash(_batcherHash);
                  }
                  /// @notice Internal function for updating the batcher hash.
                  /// @param _batcherHash New batcher hash.
                  function _setBatcherHash(bytes32 _batcherHash) internal {
                      batcherHash = _batcherHash;
                      bytes memory data = abi.encode(_batcherHash);
                      emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
                  }
                  /// @notice Updates gas config. Can only be called by the owner.
                  /// @param _overhead New overhead value.
                  /// @param _scalar   New scalar value.
                  function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
                      _setGasConfig(_overhead, _scalar);
                  }
                  /// @notice Internal function for updating the gas config.
                  /// @param _overhead New overhead value.
                  /// @param _scalar   New scalar value.
                  function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
                      overhead = _overhead;
                      scalar = _scalar;
                      bytes memory data = abi.encode(_overhead, _scalar);
                      emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
                  }
                  /// @notice Updates the L2 gas limit. Can only be called by the owner.
                  /// @param _gasLimit New gas limit.
                  function setGasLimit(uint64 _gasLimit) external onlyOwner {
                      _setGasLimit(_gasLimit);
                  }
                  /// @notice Internal function for updating the L2 gas limit.
                  /// @param _gasLimit New gas limit.
                  function _setGasLimit(uint64 _gasLimit) internal {
                      require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                      require(_gasLimit <= maximumGasLimit(), "SystemConfig: gas limit too high");
                      gasLimit = _gasLimit;
                      bytes memory data = abi.encode(_gasLimit);
                      emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
                  }
                  /// @notice Sets the start block in a backwards compatible way. Proxies
                  ///         that were initialized before the startBlock existed in storage
                  ///         can have their start block set by a user provided override.
                  ///         A start block of 0 indicates that there is no override and the
                  ///         start block will be set by `block.number`.
                  /// @dev    This logic is used to patch legacy deployments with new storage values.
                  ///         Use the override if it is provided as a non zero value and the value
                  ///         has not already been set in storage. Use `block.number` if the value
                  ///         has already been set in storage
                  function _setStartBlock() internal {
                      if (Storage.getUint(START_BLOCK_SLOT) == 0) {
                          Storage.setUint(START_BLOCK_SLOT, block.number);
                      }
                  }
                  /// @notice A getter for the resource config.
                  ///         Ensures that the struct is returned instead of a tuple.
                  /// @return ResourceConfig
                  function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
                      return _resourceConfig;
                  }
                  /// @notice An internal setter for the resource config.
                  ///         Ensures that the config is sane before storing it by checking for invariants.
                  ///         In the future, this method may emit an event that the `op-node` picks up
                  ///         for when the resource config is changed.
                  /// @param _config The new resource config.
                  function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
                      // Min base fee must be less than or equal to max base fee.
                      require(
                          _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
                      );
                      // Base fee change denominator must be greater than 1.
                      require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
                      // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
                      // The gas limit must be increased before these values can be increased.
                      require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
                      // Elasticity multiplier must be greater than 0.
                      require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
                      // No precision loss when computing target resource limit.
                      require(
                          ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                              == _config.maxResourceLimit,
                          "SystemConfig: precision loss with target resource limit"
                      );
                      _resourceConfig = _config;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { ISemver } from "src/universal/ISemver.sol";
              import { Storage } from "src/libraries/Storage.sol";
              /// @custom:audit none This contracts is not yet audited.
              /// @title SuperchainConfig
              /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
              contract SuperchainConfig is Initializable, ISemver {
                  /// @notice Enum representing different types of updates.
                  /// @custom:value GUARDIAN            Represents an update to the guardian.
                  enum UpdateType {
                      GUARDIAN
                  }
                  /// @notice Whether or not the Superchain is paused.
                  bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
                  /// @notice The address of the guardian, which can pause withdrawals from the System.
                  ///         It can only be modified by an upgrade.
                  bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
                  /// @notice Emitted when the pause is triggered.
                  /// @param identifier A string helping to identify provenance of the pause transaction.
                  event Paused(string identifier);
                  /// @notice Emitted when the pause is lifted.
                  event Unpaused();
                  /// @notice Emitted when configuration is updated.
                  /// @param updateType Type of update.
                  /// @param data       Encoded update data.
                  event ConfigUpdate(UpdateType indexed updateType, bytes data);
                  /// @notice Semantic version.
                  /// @custom:semver 1.1.0
                  string public constant version = "1.1.0";
                  /// @notice Constructs the SuperchainConfig contract.
                  constructor() {
                      initialize({ _guardian: address(0), _paused: false });
                  }
                  /// @notice Initializer.
                  /// @param _guardian    Address of the guardian, can pause the OptimismPortal.
                  /// @param _paused      Initial paused status.
                  function initialize(address _guardian, bool _paused) public initializer {
                      _setGuardian(_guardian);
                      if (_paused) {
                          _pause("Initializer paused");
                      }
                  }
                  /// @notice Getter for the guardian address.
                  function guardian() public view returns (address guardian_) {
                      guardian_ = Storage.getAddress(GUARDIAN_SLOT);
                  }
                  /// @notice Getter for the current paused status.
                  function paused() public view returns (bool paused_) {
                      paused_ = Storage.getBool(PAUSED_SLOT);
                  }
                  /// @notice Pauses withdrawals.
                  /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                  function pause(string memory _identifier) external {
                      require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
                      _pause(_identifier);
                  }
                  /// @notice Pauses withdrawals.
                  /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                  function _pause(string memory _identifier) internal {
                      Storage.setBool(PAUSED_SLOT, true);
                      emit Paused(_identifier);
                  }
                  /// @notice Unpauses withdrawals.
                  function unpause() external {
                      require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
                      Storage.setBool(PAUSED_SLOT, false);
                      emit Unpaused();
                  }
                  /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
                  ///         will be required to change the guardian.
                  /// @param _guardian The new guardian address.
                  function _setGuardian(address _guardian) internal {
                      Storage.setAddress(GUARDIAN_SLOT, _guardian);
                      emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { ResourceMetering } from "src/L1/ResourceMetering.sol";
              /// @title Constants
              /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
              ///         the stuff used in multiple contracts. Constants that only apply to a single contract
              ///         should be defined in that contract instead.
              library Constants {
                  /// @notice Special address to be used as the tx origin for gas estimation calls in the
                  ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                  ///         the minimum gas limit specified by the user is not actually enough to execute the
                  ///         given message and you're attempting to estimate the actual necessary gas limit. We
                  ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                  ///         never have any code on any EVM chain.
                  address internal constant ESTIMATION_ADDRESS = address(1);
                  /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                  ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                  ///         non-zero to reduce the gas cost of message passing transactions.
                  address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                  /// @notice The storage slot that holds the address of a proxy implementation.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                  bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /// @notice The storage slot that holds the address of the owner.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                  bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                  ///         for a production network.
                  function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                      ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                          maxResourceLimit: 20_000_000,
                          elasticityMultiplier: 10,
                          baseFeeMaxChangeDenominator: 8,
                          minimumBaseFee: 1 gwei,
                          systemTxMaxGas: 1_000_000,
                          maximumBaseFee: type(uint128).max
                      });
                      return config;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Types
              /// @notice Contains various types used throughout the Optimism contract system.
              library Types {
                  /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                  ///         timestamp that the output root is posted. This timestamp is used to verify that the
                  ///         finalization period has passed since the output root was submitted.
                  /// @custom:field outputRoot    Hash of the L2 output.
                  /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                  /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                  struct OutputProposal {
                      bytes32 outputRoot;
                      uint128 timestamp;
                      uint128 l2BlockNumber;
                  }
                  /// @notice Struct representing the elements that are hashed together to generate an output root
                  ///         which itself represents a snapshot of the L2 state.
                  /// @custom:field version                  Version of the output root.
                  /// @custom:field stateRoot                Root of the state trie at the block of this output.
                  /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                  /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                  struct OutputRootProof {
                      bytes32 version;
                      bytes32 stateRoot;
                      bytes32 messagePasserStorageRoot;
                      bytes32 latestBlockhash;
                  }
                  /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                  ///         user (as opposed to a system deposit transaction generated by the system).
                  /// @custom:field from        Address of the sender of the transaction.
                  /// @custom:field to          Address of the recipient of the transaction.
                  /// @custom:field isCreation  True if the transaction is a contract creation.
                  /// @custom:field value       Value to send to the recipient.
                  /// @custom:field mint        Amount of ETH to mint.
                  /// @custom:field gasLimit    Gas limit of the transaction.
                  /// @custom:field data        Data of the transaction.
                  /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                  /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                  struct UserDepositTransaction {
                      address from;
                      address to;
                      bool isCreation;
                      uint256 value;
                      uint256 mint;
                      uint64 gasLimit;
                      bytes data;
                      bytes32 l1BlockHash;
                      uint256 logIndex;
                  }
                  /// @notice Struct representing a withdrawal transaction.
                  /// @custom:field nonce    Nonce of the withdrawal transaction
                  /// @custom:field sender   Address of the sender of the transaction.
                  /// @custom:field target   Address of the recipient of the transaction.
                  /// @custom:field value    Value to send to the recipient.
                  /// @custom:field gasLimit Gas limit of the transaction.
                  /// @custom:field data     Data of the transaction.
                  struct WithdrawalTransaction {
                      uint256 nonce;
                      address sender;
                      address target;
                      uint256 value;
                      uint256 gasLimit;
                      bytes data;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { Types } from "src/libraries/Types.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              /// @title Hashing
              /// @notice Hashing handles Optimism's various different hashing schemes.
              library Hashing {
                  /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                  ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                  ///         system.
                  /// @param _tx User deposit transaction to hash.
                  /// @return Hash of the RLP encoded L2 deposit transaction.
                  function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(Encoding.encodeDepositTransaction(_tx));
                  }
                  /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                  ///         of the L2 transaction that corresponds to a deposit is unique and is
                  ///         deterministically generated from L1 transaction data.
                  /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                  /// @param _logIndex    The index of the log that created the deposit transaction.
                  /// @return Hash of the deposit transaction's "source hash".
                  function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                      bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                      return keccak256(abi.encode(bytes32(0), depositId));
                  }
                  /// @notice Hashes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Hashing: unknown cross domain message version");
                      }
                  }
                  /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                  }
                  /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                  }
                  /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                  /// @param _tx Withdrawal transaction to hash.
                  /// @return Hashed withdrawal transaction.
                  function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                  }
                  /// @notice Hashes the various elements of an output root proof into an output root hash which
                  ///         can be used to check if the proof is valid.
                  /// @param _outputRootProof Output root proof which should hash to an output root.
                  /// @return Hashed output root proof.
                  function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                      return keccak256(
                          abi.encode(
                              _outputRootProof.version,
                              _outputRootProof.stateRoot,
                              _outputRootProof.messagePasserStorageRoot,
                              _outputRootProof.latestBlockhash
                          )
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { MerkleTrie } from "./MerkleTrie.sol";
              /// @title SecureMerkleTrie
              /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
              ///         keys. Ethereum's state trie hashes input keys before storing them.
              library SecureMerkleTrie {
                  /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
                  /// @param _key   Key of the node to search for, as a hex string.
                  /// @param _value Value of the node to search for, as a hex string.
                  /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                  ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                  ///               nodes that make a path down to the target node.
                  /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                  ///               correctly constructed.
                  /// @return valid_ Whether or not the proof is valid.
                  function verifyInclusionProof(
                      bytes memory _key,
                      bytes memory _value,
                      bytes[] memory _proof,
                      bytes32 _root
                  )
                      internal
                      pure
                      returns (bool valid_)
                  {
                      bytes memory key = _getSecureKey(_key);
                      valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
                  }
                  /// @notice Retrieves the value associated with a given key.
                  /// @param _key   Key to search for, as hex bytes.
                  /// @param _proof Merkle trie inclusion proof for the key.
                  /// @param _root  Known root of the Merkle trie.
                  /// @return value_ Value of the key if it exists.
                  function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                      bytes memory key = _getSecureKey(_key);
                      value_ = MerkleTrie.get(key, _proof, _root);
                  }
                  /// @notice Computes the hashed version of the input key.
                  /// @param _key Key to hash.
                  /// @return hash_ Hashed version of the key.
                  function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
                      hash_ = abi.encodePacked(keccak256(_key));
                  }
              }
              // SPDX-License-Identifier: Apache-2.0
              /*
               * Copyright 2019-2021, Offchain Labs, Inc.
               *
               * Licensed under the Apache License, Version 2.0 (the "License");
               * you may not use this file except in compliance with the License.
               * You may obtain a copy of the License at
               *
               *    http://www.apache.org/licenses/LICENSE-2.0
               *
               * Unless required by applicable law or agreed to in writing, software
               * distributed under the License is distributed on an "AS IS" BASIS,
               * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
               * See the License for the specific language governing permissions and
               * limitations under the License.
               */
              pragma solidity ^0.8.0;
              library AddressAliasHelper {
                  uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
                  /// @notice Utility function that converts the address in the L1 that submitted a tx to
                  /// the inbox to the msg.sender viewed in the L2
                  /// @param l1Address the address in the L1 that triggered the tx to L2
                  /// @return l2Address L2 address as viewed in msg.sender
                  function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                      unchecked {
                          l2Address = address(uint160(l1Address) + offset);
                      }
                  }
                  /// @notice Utility function that converts the msg.sender viewed in the L2 to the
                  /// address in the L1 that submitted a tx to the inbox
                  /// @param l2Address L2 address as viewed in msg.sender
                  /// @return l1Address the address in the L1 that triggered the tx to L2
                  function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                      unchecked {
                          l1Address = address(uint160(l2Address) - offset);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
              import { Burn } from "src/libraries/Burn.sol";
              import { Arithmetic } from "src/libraries/Arithmetic.sol";
              /// @custom:upgradeable
              /// @title ResourceMetering
              /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
              ///         updates automatically based on current demand.
              abstract contract ResourceMetering is Initializable {
                  /// @notice Error returned when too much gas resource is consumed.
                  error OutOfGas();
                  /// @notice Represents the various parameters that control the way in which resources are
                  ///         metered. Corresponds to the EIP-1559 resource metering system.
                  /// @custom:field prevBaseFee   Base fee from the previous block(s).
                  /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                  /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                  ///         market. These values should be set with care as it is possible to set them in
                  ///         a way that breaks the deposit gas market. The target resource limit is defined as
                  ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                  ///         single word. There is additional space for additions in the future.
                  /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                  ///                                            can be purchased per block.
                  /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                  ///                                            the resource limit.
                  /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                  /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                  ///                                            value.
                  /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                  ///                                            transaction. This should be set to the same
                  ///                                            number that the op-node sets as the gas limit
                  ///                                            for the system transaction.
                  /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                  ///                                            value.
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  /// @notice EIP-1559 style gas parameters.
                  ResourceParams public params;
                  /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                  uint256[48] private __gap;
                  /// @notice Meters access to a function based an amount of a requested resource.
                  /// @param _amount Amount of the resource requested.
                  modifier metered(uint64 _amount) {
                      // Record initial gas amount so we can refund for it later.
                      uint256 initialGas = gasleft();
                      // Run the underlying function.
                      _;
                      // Run the metering function.
                      _metered(_amount, initialGas);
                  }
                  /// @notice An internal function that holds all of the logic for metering a resource.
                  /// @param _amount     Amount of the resource requested.
                  /// @param _initialGas The amount of gas before any modifier execution.
                  function _metered(uint64 _amount, uint256 _initialGas) internal {
                      // Update block number and base fee if necessary.
                      uint256 blockDiff = block.number - params.prevBlockNum;
                      ResourceConfig memory config = _resourceConfig();
                      int256 targetResourceLimit =
                          int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                      if (blockDiff > 0) {
                          // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                          // at which deposits can be created and therefore limit the potential for deposits to
                          // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                          int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                          int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                              / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                          // Update base fee by adding the base fee delta and clamp the resulting value between
                          // min and max.
                          int256 newBaseFee = Arithmetic.clamp({
                              _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                          // If we skipped more than one block, we also need to account for every empty block.
                          // Empty block means there was no demand for deposits in that block, so we should
                          // reflect this lack of demand in the fee.
                          if (blockDiff > 1) {
                              // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                              // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                              // between min and max.
                              newBaseFee = Arithmetic.clamp({
                                  _value: Arithmetic.cdexp({
                                      _coefficient: newBaseFee,
                                      _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                      _exponent: int256(blockDiff - 1)
                                  }),
                                  _min: int256(uint256(config.minimumBaseFee)),
                                  _max: int256(uint256(config.maximumBaseFee))
                              });
                          }
                          // Update new base fee, reset bought gas, and update block number.
                          params.prevBaseFee = uint128(uint256(newBaseFee));
                          params.prevBoughtGas = 0;
                          params.prevBlockNum = uint64(block.number);
                      }
                      // Make sure we can actually buy the resource amount requested by the user.
                      params.prevBoughtGas += _amount;
                      if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) {
                          revert OutOfGas();
                      }
                      // Determine the amount of ETH to be paid.
                      uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                      // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                      // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                      // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                      // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                      // during any 1 day period in the last 5 years, so should be fine.
                      uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                      // Give the user a refund based on the amount of gas they used to do all of the work up to
                      // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                      // effectively like a dynamic stipend (with a minimum value).
                      uint256 usedGas = _initialGas - gasleft();
                      if (gasCost > usedGas) {
                          Burn.gas(gasCost - usedGas);
                      }
                  }
                  /// @notice Virtual function that returns the resource config.
                  ///         Contracts that inherit this contract must implement this function.
                  /// @return ResourceConfig
                  function _resourceConfig() internal virtual returns (ResourceConfig memory);
                  /// @notice Sets initial resource parameter values.
                  ///         This function must either be called by the initializer function of an upgradeable
                  ///         child contract.
                  function __ResourceMetering_init() internal onlyInitializing {
                      if (params.prevBlockNum == 0) {
                          params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title ISemver
              /// @notice ISemver is a simple contract for ensuring that contracts are
              ///         versioned using semantic versioning.
              interface ISemver {
                  /// @notice Getter for the semantic version of the contract. This is not
                  ///         meant to be used onchain but instead meant to be used by offchain
                  ///         tooling.
                  /// @return Semver contract version as a string.
                  function version() external view returns (string memory);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @notice Error for when a deposit or withdrawal is to a bad target.
              error BadTarget();
              /// @notice Error for when a deposit has too much calldata.
              error LargeCalldata();
              /// @notice Error for when a deposit has too small of a gas limit.
              error SmallGasLimit();
              /// @notice Error for when a withdrawal transfer fails.
              error TransferFailed();
              /// @notice Error for when a method is called that only works when using a custom gas token.
              error OnlyCustomGasToken();
              /// @notice Error for when a method cannot be called with non zero CALLVALUE.
              error NoValue();
              /// @notice Error for an unauthorized CALLER.
              error Unauthorized();
              /// @notice Error for when a method cannot be called when paused. This could be renamed
              ///         to `Paused` in the future, but it collides with the `Paused` event.
              error CallPaused();
              /// @notice Error for special gas estimation.
              error GasEstimation();
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              import "src/dispute/lib/LibUDT.sol";
              /// @notice The current status of the dispute game.
              enum GameStatus {
                  // The game is currently in progress, and has not been resolved.
                  IN_PROGRESS,
                  // The game has concluded, and the `rootClaim` was challenged successfully.
                  CHALLENGER_WINS,
                  // The game has concluded, and the `rootClaim` could not be contested.
                  DEFENDER_WINS
              }
              /// @notice Represents an L2 output root and the L2 block number at which it was generated.
              /// @custom:field root The output root.
              /// @custom:field l2BlockNumber The L2 block number at which the output root was generated.
              struct OutputRoot {
                  Hash root;
                  uint256 l2BlockNumber;
              }
              /// @title GameTypes
              /// @notice A library that defines the IDs of games that can be played.
              library GameTypes {
                  /// @dev A dispute game type the uses the cannon vm.
                  GameType internal constant CANNON = GameType.wrap(0);
                  /// @dev A permissioned dispute game type the uses the cannon vm.
                  GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
                  /// @notice A dispute game type the uses the asterisc VM
                  GameType internal constant ASTERISC = GameType.wrap(2);
                  /// @notice A dispute game type that uses an alphabet vm.
                  ///         Not intended for production use.
                  GameType internal constant ALPHABET = GameType.wrap(255);
              }
              /// @title VMStatuses
              /// @notice Named type aliases for the various valid VM status bytes.
              library VMStatuses {
                  /// @notice The VM has executed successfully and the outcome is valid.
                  VMStatus internal constant VALID = VMStatus.wrap(0);
                  /// @notice The VM has executed successfully and the outcome is invalid.
                  VMStatus internal constant INVALID = VMStatus.wrap(1);
                  /// @notice The VM has paniced.
                  VMStatus internal constant PANIC = VMStatus.wrap(2);
                  /// @notice The VM execution is still in progress.
                  VMStatus internal constant UNFINISHED = VMStatus.wrap(3);
              }
              /// @title LocalPreimageKey
              /// @notice Named type aliases for local `PreimageOracle` key identifiers.
              library LocalPreimageKey {
                  /// @notice The identifier for the L1 head hash.
                  uint256 internal constant L1_HEAD_HASH = 0x01;
                  /// @notice The identifier for the starting output root.
                  uint256 internal constant STARTING_OUTPUT_ROOT = 0x02;
                  /// @notice The identifier for the disputed output root.
                  uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03;
                  /// @notice The identifier for the disputed L2 block number.
                  uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04;
                  /// @notice The identifier for the chain ID.
                  uint256 internal constant CHAIN_ID = 0x05;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.4;
              /// @notice Minimal proxy library.
              /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibClone.sol)
              /// @author Minimal proxy by 0age (https://github.com/0age)
              /// @author Clones with immutable args by wighawag, zefram.eth, Saw-mon & Natalie
              /// (https://github.com/Saw-mon-and-Natalie/clones-with-immutable-args)
              /// @author Minimal ERC1967 proxy by jtriley-eth (https://github.com/jtriley-eth/minimum-viable-proxy)
              ///
              /// @dev Minimal proxy:
              /// Although the sw0nt pattern saves 5 gas over the erc-1167 pattern during runtime,
              /// it is not supported out-of-the-box on Etherscan. Hence, we choose to use the 0age pattern,
              /// which saves 4 gas over the erc-1167 pattern during runtime, and has the smallest bytecode.
              ///
              /// @dev Minimal proxy (PUSH0 variant):
              /// This is a new minimal proxy that uses the PUSH0 opcode introduced during Shanghai.
              /// It is optimized first for minimal runtime gas, then for minimal bytecode.
              /// The PUSH0 clone functions are intentionally postfixed with a jarring "_PUSH0" as
              /// many EVM chains may not support the PUSH0 opcode in the early months after Shanghai.
              /// Please use with caution.
              ///
              /// @dev Clones with immutable args (CWIA):
              /// The implementation of CWIA here implements a `receive()` method that emits the
              /// `ReceiveETH(uint256)` event. This skips the `DELEGATECALL` when there is no calldata,
              /// enabling us to accept hard gas-capped `sends` & `transfers` for maximum backwards
              /// composability. The minimal proxy implementation does not offer this feature.
              ///
              /// @dev Minimal ERC1967 proxy:
              /// An minimal ERC1967 proxy, intended to be upgraded with UUPS.
              /// This is NOT the same as ERC1967Factory's transparent proxy, which includes admin logic.
              library LibClone {
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                       CUSTOM ERRORS                        */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Unable to deploy the clone.
                  error DeploymentFailed();
                  /// @dev The salt must start with either the zero address or `by`.
                  error SaltDoesNotStartWith();
                  /// @dev The ETH transfer has failed.
                  error ETHTransferFailed();
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                  MINIMAL PROXY OPERATIONS                  */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Deploys a clone of `implementation`.
                  function clone(address implementation) internal returns (address instance) {
                      instance = clone(0, implementation);
                  }
                  /// @dev Deploys a clone of `implementation`.
                  function clone(uint256 value, address implementation) internal returns (address instance) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          /**
                           * --------------------------------------------------------------------------+
                           * CREATION (9 bytes)                                                        |
                           * --------------------------------------------------------------------------|
                           * Opcode     | Mnemonic          | Stack     | Memory                       |
                           * --------------------------------------------------------------------------|
                           * 60 runSize | PUSH1 runSize     | r         |                              |
                           * 3d         | RETURNDATASIZE    | 0 r       |                              |
                           * 81         | DUP2              | r 0 r     |                              |
                           * 60 offset  | PUSH1 offset      | o r 0 r   |                              |
                           * 3d         | RETURNDATASIZE    | 0 o r 0 r |                              |
                           * 39         | CODECOPY          | 0 r       | [0..runSize): runtime code   |
                           * f3         | RETURN            |           | [0..runSize): runtime code   |
                           * --------------------------------------------------------------------------|
                           * RUNTIME (44 bytes)                                                        |
                           * --------------------------------------------------------------------------|
                           * Opcode  | Mnemonic       | Stack                  | Memory                |
                           * --------------------------------------------------------------------------|
                           *                                                                           |
                           * ::: keep some values in stack ::::::::::::::::::::::::::::::::::::::::::: |
                           * 3d      | RETURNDATASIZE | 0                      |                       |
                           * 3d      | RETURNDATASIZE | 0 0                    |                       |
                           * 3d      | RETURNDATASIZE | 0 0 0                  |                       |
                           * 3d      | RETURNDATASIZE | 0 0 0 0                |                       |
                           *                                                                           |
                           * ::: copy calldata to memory ::::::::::::::::::::::::::::::::::::::::::::: |
                           * 36      | CALLDATASIZE   | cds 0 0 0 0            |                       |
                           * 3d      | RETURNDATASIZE | 0 cds 0 0 0 0          |                       |
                           * 3d      | RETURNDATASIZE | 0 0 cds 0 0 0 0        |                       |
                           * 37      | CALLDATACOPY   | 0 0 0 0                | [0..cds): calldata    |
                           *                                                                           |
                           * ::: delegate call to the implementation contract :::::::::::::::::::::::: |
                           * 36      | CALLDATASIZE   | cds 0 0 0 0            | [0..cds): calldata    |
                           * 3d      | RETURNDATASIZE | 0 cds 0 0 0 0          | [0..cds): calldata    |
                           * 73 addr | PUSH20 addr    | addr 0 cds 0 0 0 0     | [0..cds): calldata    |
                           * 5a      | GAS            | gas addr 0 cds 0 0 0 0 | [0..cds): calldata    |
                           * f4      | DELEGATECALL   | success 0 0            | [0..cds): calldata    |
                           *                                                                           |
                           * ::: copy return data to memory :::::::::::::::::::::::::::::::::::::::::: |
                           * 3d      | RETURNDATASIZE | rds success 0 0        | [0..cds): calldata    |
                           * 3d      | RETURNDATASIZE | rds rds success 0 0    | [0..cds): calldata    |
                           * 93      | SWAP4          | 0 rds success 0 rds    | [0..cds): calldata    |
                           * 80      | DUP1           | 0 0 rds success 0 rds  | [0..cds): calldata    |
                           * 3e      | RETURNDATACOPY | success 0 rds          | [0..rds): returndata  |
                           *                                                                           |
                           * 60 0x2a | PUSH1 0x2a     | 0x2a success 0 rds     | [0..rds): returndata  |
                           * 57      | JUMPI          | 0 rds                  | [0..rds): returndata  |
                           *                                                                           |
                           * ::: revert :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * fd      | REVERT         |                        | [0..rds): returndata  |
                           *                                                                           |
                           * ::: return :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 5b      | JUMPDEST       | 0 rds                  | [0..rds): returndata  |
                           * f3      | RETURN         |                        | [0..rds): returndata  |
                           * --------------------------------------------------------------------------+
                           */
                          mstore(0x21, 0x5af43d3d93803e602a57fd5bf3)
                          mstore(0x14, implementation)
                          mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73)
                          instance := create(value, 0x0c, 0x35)
                          if iszero(instance) {
                              mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                              revert(0x1c, 0x04)
                          }
                          mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
                      }
                  }
                  /// @dev Deploys a deterministic clone of `implementation` with `salt`.
                  function cloneDeterministic(address implementation, bytes32 salt)
                      internal
                      returns (address instance)
                  {
                      instance = cloneDeterministic(0, implementation, salt);
                  }
                  /// @dev Deploys a deterministic clone of `implementation` with `salt`.
                  function cloneDeterministic(uint256 value, address implementation, bytes32 salt)
                      internal
                      returns (address instance)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore(0x21, 0x5af43d3d93803e602a57fd5bf3)
                          mstore(0x14, implementation)
                          mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73)
                          instance := create2(value, 0x0c, 0x35, salt)
                          if iszero(instance) {
                              mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                              revert(0x1c, 0x04)
                          }
                          mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
                      }
                  }
                  /// @dev Returns the initialization code hash of the clone of `implementation`.
                  /// Used for mining vanity addresses with create2crunch.
                  function initCodeHash(address implementation) internal pure returns (bytes32 hash) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore(0x21, 0x5af43d3d93803e602a57fd5bf3)
                          mstore(0x14, implementation)
                          mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73)
                          hash := keccak256(0x0c, 0x35)
                          mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
                      }
                  }
                  /// @dev Returns the address of the deterministic clone of `implementation`,
                  /// with `salt` by `deployer`.
                  /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
                  function predictDeterministicAddress(address implementation, bytes32 salt, address deployer)
                      internal
                      pure
                      returns (address predicted)
                  {
                      bytes32 hash = initCodeHash(implementation);
                      predicted = predictDeterministicAddress(hash, salt, deployer);
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*          MINIMAL PROXY OPERATIONS (PUSH0 VARIANT)          */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Deploys a PUSH0 clone of `implementation`.
                  function clone_PUSH0(address implementation) internal returns (address instance) {
                      instance = clone_PUSH0(0, implementation);
                  }
                  /// @dev Deploys a PUSH0 clone of `implementation`.
                  function clone_PUSH0(uint256 value, address implementation)
                      internal
                      returns (address instance)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          /**
                           * --------------------------------------------------------------------------+
                           * CREATION (9 bytes)                                                        |
                           * --------------------------------------------------------------------------|
                           * Opcode     | Mnemonic          | Stack     | Memory                       |
                           * --------------------------------------------------------------------------|
                           * 60 runSize | PUSH1 runSize     | r         |                              |
                           * 5f         | PUSH0             | 0 r       |                              |
                           * 81         | DUP2              | r 0 r     |                              |
                           * 60 offset  | PUSH1 offset      | o r 0 r   |                              |
                           * 5f         | PUSH0             | 0 o r 0 r |                              |
                           * 39         | CODECOPY          | 0 r       | [0..runSize): runtime code   |
                           * f3         | RETURN            |           | [0..runSize): runtime code   |
                           * --------------------------------------------------------------------------|
                           * RUNTIME (45 bytes)                                                        |
                           * --------------------------------------------------------------------------|
                           * Opcode  | Mnemonic       | Stack                  | Memory                |
                           * --------------------------------------------------------------------------|
                           *                                                                           |
                           * ::: keep some values in stack ::::::::::::::::::::::::::::::::::::::::::: |
                           * 5f      | PUSH0          | 0                      |                       |
                           * 5f      | PUSH0          | 0 0                    |                       |
                           *                                                                           |
                           * ::: copy calldata to memory ::::::::::::::::::::::::::::::::::::::::::::: |
                           * 36      | CALLDATASIZE   | cds 0 0                |                       |
                           * 5f      | PUSH0          | 0 cds 0 0              |                       |
                           * 5f      | PUSH0          | 0 0 cds 0 0            |                       |
                           * 37      | CALLDATACOPY   | 0 0                    | [0..cds): calldata    |
                           *                                                                           |
                           * ::: delegate call to the implementation contract :::::::::::::::::::::::: |
                           * 36      | CALLDATASIZE   | cds 0 0                | [0..cds): calldata    |
                           * 5f      | PUSH0          | 0 cds 0 0              | [0..cds): calldata    |
                           * 73 addr | PUSH20 addr    | addr 0 cds 0 0         | [0..cds): calldata    |
                           * 5a      | GAS            | gas addr 0 cds 0 0     | [0..cds): calldata    |
                           * f4      | DELEGATECALL   | success                | [0..cds): calldata    |
                           *                                                                           |
                           * ::: copy return data to memory :::::::::::::::::::::::::::::::::::::::::: |
                           * 3d      | RETURNDATASIZE | rds success            | [0..cds): calldata    |
                           * 5f      | PUSH0          | 0 rds success          | [0..cds): calldata    |
                           * 5f      | PUSH0          | 0 0 rds success        | [0..cds): calldata    |
                           * 3e      | RETURNDATACOPY | success                | [0..rds): returndata  |
                           *                                                                           |
                           * 60 0x29 | PUSH1 0x29     | 0x29 success           | [0..rds): returndata  |
                           * 57      | JUMPI          |                        | [0..rds): returndata  |
                           *                                                                           |
                           * ::: revert :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 3d      | RETURNDATASIZE | rds                    | [0..rds): returndata  |
                           * 5f      | PUSH0          | 0 rds                  | [0..rds): returndata  |
                           * fd      | REVERT         |                        | [0..rds): returndata  |
                           *                                                                           |
                           * ::: return :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 5b      | JUMPDEST       |                        | [0..rds): returndata  |
                           * 3d      | RETURNDATASIZE | rds                    | [0..rds): returndata  |
                           * 5f      | PUSH0          | 0 rds                  | [0..rds): returndata  |
                           * f3      | RETURN         |                        | [0..rds): returndata  |
                           * --------------------------------------------------------------------------+
                           */
                          mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16
                          mstore(0x14, implementation) // 20
                          mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9
                          instance := create(value, 0x0e, 0x36)
                          if iszero(instance) {
                              mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                              revert(0x1c, 0x04)
                          }
                          mstore(0x24, 0) // Restore the overwritten part of the free memory pointer.
                      }
                  }
                  /// @dev Deploys a deterministic PUSH0 clone of `implementation` with `salt`.
                  function cloneDeterministic_PUSH0(address implementation, bytes32 salt)
                      internal
                      returns (address instance)
                  {
                      instance = cloneDeterministic_PUSH0(0, implementation, salt);
                  }
                  /// @dev Deploys a deterministic PUSH0 clone of `implementation` with `salt`.
                  function cloneDeterministic_PUSH0(uint256 value, address implementation, bytes32 salt)
                      internal
                      returns (address instance)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16
                          mstore(0x14, implementation) // 20
                          mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9
                          instance := create2(value, 0x0e, 0x36, salt)
                          if iszero(instance) {
                              mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                              revert(0x1c, 0x04)
                          }
                          mstore(0x24, 0) // Restore the overwritten part of the free memory pointer.
                      }
                  }
                  /// @dev Returns the initialization code hash of the PUSH0 clone of `implementation`.
                  /// Used for mining vanity addresses with create2crunch.
                  function initCodeHash_PUSH0(address implementation) internal pure returns (bytes32 hash) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16
                          mstore(0x14, implementation) // 20
                          mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9
                          hash := keccak256(0x0e, 0x36)
                          mstore(0x24, 0) // Restore the overwritten part of the free memory pointer.
                      }
                  }
                  /// @dev Returns the address of the deterministic PUSH0 clone of `implementation`,
                  /// with `salt` by `deployer`.
                  /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
                  function predictDeterministicAddress_PUSH0(
                      address implementation,
                      bytes32 salt,
                      address deployer
                  ) internal pure returns (address predicted) {
                      bytes32 hash = initCodeHash_PUSH0(implementation);
                      predicted = predictDeterministicAddress(hash, salt, deployer);
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*           CLONES WITH IMMUTABLE ARGS OPERATIONS            */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  // Note: This implementation of CWIA differs from the original implementation.
                  // If the calldata is empty, it will emit a `ReceiveETH(uint256)` event and skip the `DELEGATECALL`.
                  /// @dev Deploys a clone of `implementation` with immutable arguments encoded in `data`.
                  function clone(address implementation, bytes memory data) internal returns (address instance) {
                      instance = clone(0, implementation, data);
                  }
                  /// @dev Deploys a clone of `implementation` with immutable arguments encoded in `data`.
                  function clone(uint256 value, address implementation, bytes memory data)
                      internal
                      returns (address instance)
                  {
                      assembly {
                          // Compute the boundaries of the data and cache the memory slots around it.
                          let mBefore3 := mload(sub(data, 0x60))
                          let mBefore2 := mload(sub(data, 0x40))
                          let mBefore1 := mload(sub(data, 0x20))
                          let dataLength := mload(data)
                          let dataEnd := add(add(data, 0x20), dataLength)
                          let mAfter1 := mload(dataEnd)
                          // +2 bytes for telling how much data there is appended to the call.
                          let extraLength := add(dataLength, 2)
                          // The `creationSize` is `extraLength + 108`
                          // The `runSize` is `creationSize - 10`.
                          /**
                           * ---------------------------------------------------------------------------------------------------+
                           * CREATION (10 bytes)                                                                                |
                           * ---------------------------------------------------------------------------------------------------|
                           * Opcode     | Mnemonic          | Stack     | Memory                                                |
                           * ---------------------------------------------------------------------------------------------------|
                           * 61 runSize | PUSH2 runSize     | r         |                                                       |
                           * 3d         | RETURNDATASIZE    | 0 r       |                                                       |
                           * 81         | DUP2              | r 0 r     |                                                       |
                           * 60 offset  | PUSH1 offset      | o r 0 r   |                                                       |
                           * 3d         | RETURNDATASIZE    | 0 o r 0 r |                                                       |
                           * 39         | CODECOPY          | 0 r       | [0..runSize): runtime code                            |
                           * f3         | RETURN            |           | [0..runSize): runtime code                            |
                           * ---------------------------------------------------------------------------------------------------|
                           * RUNTIME (98 bytes + extraLength)                                                                   |
                           * ---------------------------------------------------------------------------------------------------|
                           * Opcode   | Mnemonic       | Stack                    | Memory                                      |
                           * ---------------------------------------------------------------------------------------------------|
                           *                                                                                                    |
                           * ::: if no calldata, emit event & return w/o `DELEGATECALL` ::::::::::::::::::::::::::::::::::::::: |
                           * 36       | CALLDATASIZE   | cds                      |                                             |
                           * 60 0x2c  | PUSH1 0x2c     | 0x2c cds                 |                                             |
                           * 57       | JUMPI          |                          |                                             |
                           * 34       | CALLVALUE      | cv                       |                                             |
                           * 3d       | RETURNDATASIZE | 0 cv                     |                                             |
                           * 52       | MSTORE         |                          | [0..0x20): callvalue                        |
                           * 7f sig   | PUSH32 0x9e..  | sig                      | [0..0x20): callvalue                        |
                           * 59       | MSIZE          | 0x20 sig                 | [0..0x20): callvalue                        |
                           * 3d       | RETURNDATASIZE | 0 0x20 sig               | [0..0x20): callvalue                        |
                           * a1       | LOG1           |                          | [0..0x20): callvalue                        |
                           * 00       | STOP           |                          | [0..0x20): callvalue                        |
                           * 5b       | JUMPDEST       |                          |                                             |
                           *                                                                                                    |
                           * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 36       | CALLDATASIZE   | cds                      |                                             |
                           * 3d       | RETURNDATASIZE | 0 cds                    |                                             |
                           * 3d       | RETURNDATASIZE | 0 0 cds                  |                                             |
                           * 37       | CALLDATACOPY   |                          | [0..cds): calldata                          |
                           *                                                                                                    |
                           * ::: keep some values in stack :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 3d       | RETURNDATASIZE | 0                        | [0..cds): calldata                          |
                           * 3d       | RETURNDATASIZE | 0 0                      | [0..cds): calldata                          |
                           * 3d       | RETURNDATASIZE | 0 0 0                    | [0..cds): calldata                          |
                           * 3d       | RETURNDATASIZE | 0 0 0 0                  | [0..cds): calldata                          |
                           * 61 extra | PUSH2 extra    | e 0 0 0 0                | [0..cds): calldata                          |
                           *                                                                                                    |
                           * ::: copy extra data to memory :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 80       | DUP1           | e e 0 0 0 0              | [0..cds): calldata                          |
                           * 60 0x62  | PUSH1 0x62     | 0x62 e e 0 0 0 0         | [0..cds): calldata                          |
                           * 36       | CALLDATASIZE   | cds 0x62 e e 0 0 0 0     | [0..cds): calldata                          |
                           * 39       | CODECOPY       | e 0 0 0 0                | [0..cds): calldata, [cds..cds+e): extraData |
                           *                                                                                                    |
                           * ::: delegate call to the implementation contract ::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 36       | CALLDATASIZE   | cds e 0 0 0 0            | [0..cds): calldata, [cds..cds+e): extraData |
                           * 01       | ADD            | cds+e 0 0 0 0            | [0..cds): calldata, [cds..cds+e): extraData |
                           * 3d       | RETURNDATASIZE | 0 cds+e 0 0 0 0          | [0..cds): calldata, [cds..cds+e): extraData |
                           * 73 addr  | PUSH20 addr    | addr 0 cds+e 0 0 0 0     | [0..cds): calldata, [cds..cds+e): extraData |
                           * 5a       | GAS            | gas addr 0 cds+e 0 0 0 0 | [0..cds): calldata, [cds..cds+e): extraData |
                           * f4       | DELEGATECALL   | success 0 0              | [0..cds): calldata, [cds..cds+e): extraData |
                           *                                                                                                    |
                           * ::: copy return data to memory ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 3d       | RETURNDATASIZE | rds success 0 0          | [0..cds): calldata, [cds..cds+e): extraData |
                           * 3d       | RETURNDATASIZE | rds rds success 0 0      | [0..cds): calldata, [cds..cds+e): extraData |
                           * 93       | SWAP4          | 0 rds success 0 rds      | [0..cds): calldata, [cds..cds+e): extraData |
                           * 80       | DUP1           | 0 0 rds success 0 rds    | [0..cds): calldata, [cds..cds+e): extraData |
                           * 3e       | RETURNDATACOPY | success 0 rds            | [0..rds): returndata                        |
                           *                                                                                                    |
                           * 60 0x60  | PUSH1 0x60     | 0x60 success 0 rds       | [0..rds): returndata                        |
                           * 57       | JUMPI          | 0 rds                    | [0..rds): returndata                        |
                           *                                                                                                    |
                           * ::: revert ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * fd       | REVERT         |                          | [0..rds): returndata                        |
                           *                                                                                                    |
                           * ::: return ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 5b       | JUMPDEST       | 0 rds                    | [0..rds): returndata                        |
                           * f3       | RETURN         |                          | [0..rds): returndata                        |
                           * ---------------------------------------------------------------------------------------------------+
                           */
                          mstore(data, 0x5af43d3d93803e606057fd5bf3) // Write the bytecode before the data.
                          mstore(sub(data, 0x0d), implementation) // Write the address of the implementation.
                          // Write the rest of the bytecode.
                          mstore(
                              sub(data, 0x21),
                              or(shl(0x48, extraLength), 0x593da1005b363d3d373d3d3d3d610000806062363936013d73)
                          )
                          // `keccak256("ReceiveETH(uint256)")`
                          mstore(
                              sub(data, 0x3a), 0x9e4ac34f21c619cefc926c8bd93b54bf5a39c7ab2127a895af1cc0691d7e3dff
                          )
                          mstore(
                              // Do a out-of-gas revert if `extraLength` is too big. 0xffff - 0x62 + 0x01 = 0xff9e.
                              // The actual EVM limit may be smaller and may change over time.
                              sub(data, add(0x59, lt(extraLength, 0xff9e))),
                              or(shl(0x78, add(extraLength, 0x62)), 0xfd6100003d81600a3d39f336602c57343d527f)
                          )
                          mstore(dataEnd, shl(0xf0, extraLength))
                          instance := create(value, sub(data, 0x4c), add(extraLength, 0x6c))
                          if iszero(instance) {
                              mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                              revert(0x1c, 0x04)
                          }
                          // Restore the overwritten memory surrounding `data`.
                          mstore(dataEnd, mAfter1)
                          mstore(data, dataLength)
                          mstore(sub(data, 0x20), mBefore1)
                          mstore(sub(data, 0x40), mBefore2)
                          mstore(sub(data, 0x60), mBefore3)
                      }
                  }
                  /// @dev Deploys a deterministic clone of `implementation`
                  /// with immutable arguments encoded in `data` and `salt`.
                  function cloneDeterministic(address implementation, bytes memory data, bytes32 salt)
                      internal
                      returns (address instance)
                  {
                      instance = cloneDeterministic(0, implementation, data, salt);
                  }
                  /// @dev Deploys a deterministic clone of `implementation`
                  /// with immutable arguments encoded in `data` and `salt`.
                  function cloneDeterministic(
                      uint256 value,
                      address implementation,
                      bytes memory data,
                      bytes32 salt
                  ) internal returns (address instance) {
                      assembly {
                          // Compute the boundaries of the data and cache the memory slots around it.
                          let mBefore3 := mload(sub(data, 0x60))
                          let mBefore2 := mload(sub(data, 0x40))
                          let mBefore1 := mload(sub(data, 0x20))
                          let dataLength := mload(data)
                          let dataEnd := add(add(data, 0x20), dataLength)
                          let mAfter1 := mload(dataEnd)
                          // +2 bytes for telling how much data there is appended to the call.
                          let extraLength := add(dataLength, 2)
                          mstore(data, 0x5af43d3d93803e606057fd5bf3) // Write the bytecode before the data.
                          mstore(sub(data, 0x0d), implementation) // Write the address of the implementation.
                          // Write the rest of the bytecode.
                          mstore(
                              sub(data, 0x21),
                              or(shl(0x48, extraLength), 0x593da1005b363d3d373d3d3d3d610000806062363936013d73)
                          )
                          // `keccak256("ReceiveETH(uint256)")`
                          mstore(
                              sub(data, 0x3a), 0x9e4ac34f21c619cefc926c8bd93b54bf5a39c7ab2127a895af1cc0691d7e3dff
                          )
                          mstore(
                              // Do a out-of-gas revert if `extraLength` is too big. 0xffff - 0x62 + 0x01 = 0xff9e.
                              // The actual EVM limit may be smaller and may change over time.
                              sub(data, add(0x59, lt(extraLength, 0xff9e))),
                              or(shl(0x78, add(extraLength, 0x62)), 0xfd6100003d81600a3d39f336602c57343d527f)
                          )
                          mstore(dataEnd, shl(0xf0, extraLength))
                          instance := create2(value, sub(data, 0x4c), add(extraLength, 0x6c), salt)
                          if iszero(instance) {
                              mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                              revert(0x1c, 0x04)
                          }
                          // Restore the overwritten memory surrounding `data`.
                          mstore(dataEnd, mAfter1)
                          mstore(data, dataLength)
                          mstore(sub(data, 0x20), mBefore1)
                          mstore(sub(data, 0x40), mBefore2)
                          mstore(sub(data, 0x60), mBefore3)
                      }
                  }
                  /// @dev Returns the initialization code hash of the clone of `implementation`
                  /// using immutable arguments encoded in `data`.
                  /// Used for mining vanity addresses with create2crunch.
                  function initCodeHash(address implementation, bytes memory data)
                      internal
                      pure
                      returns (bytes32 hash)
                  {
                      assembly {
                          // Compute the boundaries of the data and cache the memory slots around it.
                          let mBefore3 := mload(sub(data, 0x60))
                          let mBefore2 := mload(sub(data, 0x40))
                          let mBefore1 := mload(sub(data, 0x20))
                          let dataLength := mload(data)
                          let dataEnd := add(add(data, 0x20), dataLength)
                          let mAfter1 := mload(dataEnd)
                          // Do a out-of-gas revert if `dataLength` is too big. 0xffff - 0x02 - 0x62 = 0xff9b.
                          // The actual EVM limit may be smaller and may change over time.
                          returndatacopy(returndatasize(), returndatasize(), gt(dataLength, 0xff9b))
                          // +2 bytes for telling how much data there is appended to the call.
                          let extraLength := add(dataLength, 2)
                          mstore(data, 0x5af43d3d93803e606057fd5bf3) // Write the bytecode before the data.
                          mstore(sub(data, 0x0d), implementation) // Write the address of the implementation.
                          // Write the rest of the bytecode.
                          mstore(
                              sub(data, 0x21),
                              or(shl(0x48, extraLength), 0x593da1005b363d3d373d3d3d3d610000806062363936013d73)
                          )
                          // `keccak256("ReceiveETH(uint256)")`
                          mstore(
                              sub(data, 0x3a), 0x9e4ac34f21c619cefc926c8bd93b54bf5a39c7ab2127a895af1cc0691d7e3dff
                          )
                          mstore(
                              sub(data, 0x5a),
                              or(shl(0x78, add(extraLength, 0x62)), 0x6100003d81600a3d39f336602c57343d527f)
                          )
                          mstore(dataEnd, shl(0xf0, extraLength))
                          hash := keccak256(sub(data, 0x4c), add(extraLength, 0x6c))
                          // Restore the overwritten memory surrounding `data`.
                          mstore(dataEnd, mAfter1)
                          mstore(data, dataLength)
                          mstore(sub(data, 0x20), mBefore1)
                          mstore(sub(data, 0x40), mBefore2)
                          mstore(sub(data, 0x60), mBefore3)
                      }
                  }
                  /// @dev Returns the address of the deterministic clone of
                  /// `implementation` using immutable arguments encoded in `data`, with `salt`, by `deployer`.
                  /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
                  function predictDeterministicAddress(
                      address implementation,
                      bytes memory data,
                      bytes32 salt,
                      address deployer
                  ) internal pure returns (address predicted) {
                      bytes32 hash = initCodeHash(implementation, data);
                      predicted = predictDeterministicAddress(hash, salt, deployer);
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*              MINIMAL ERC1967 PROXY OPERATIONS              */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  // Note: The ERC1967 proxy here is intended to be upgraded with UUPS.
                  // This is NOT the same as ERC1967Factory's transparent proxy, which includes admin logic.
                  /// @dev Deploys a minimal ERC1967 proxy with `implementation`.
                  function deployERC1967(address implementation) internal returns (address instance) {
                      instance = deployERC1967(0, implementation);
                  }
                  /// @dev Deploys a minimal ERC1967 proxy with `implementation`.
                  function deployERC1967(uint256 value, address implementation)
                      internal
                      returns (address instance)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          /**
                           * ---------------------------------------------------------------------------------+
                           * CREATION (34 bytes)                                                              |
                           * ---------------------------------------------------------------------------------|
                           * Opcode     | Mnemonic       | Stack            | Memory                          |
                           * ---------------------------------------------------------------------------------|
                           * 60 runSize | PUSH1 runSize  | r                |                                 |
                           * 3d         | RETURNDATASIZE | 0 r              |                                 |
                           * 81         | DUP2           | r 0 r            |                                 |
                           * 60 offset  | PUSH1 offset   | o r 0 r          |                                 |
                           * 3d         | RETURNDATASIZE | 0 o r 0 r        |                                 |
                           * 39         | CODECOPY       | 0 r              | [0..runSize): runtime code      |
                           * 73 impl    | PUSH20 impl    | impl 0 r         | [0..runSize): runtime code      |
                           * 60 slotPos | PUSH1 slotPos  | slotPos impl 0 r | [0..runSize): runtime code      |
                           * 51         | MLOAD          | slot impl 0 r    | [0..runSize): runtime code      |
                           * 55         | SSTORE         | 0 r              | [0..runSize): runtime code      |
                           * f3         | RETURN         |                  | [0..runSize): runtime code      |
                           * ---------------------------------------------------------------------------------|
                           * RUNTIME (62 bytes)                                                               |
                           * ---------------------------------------------------------------------------------|
                           * Opcode     | Mnemonic       | Stack            | Memory                          |
                           * ---------------------------------------------------------------------------------|
                           *                                                                                  |
                           * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 36         | CALLDATASIZE   | cds              |                                 |
                           * 3d         | RETURNDATASIZE | 0 cds            |                                 |
                           * 3d         | RETURNDATASIZE | 0 0 cds          |                                 |
                           * 37         | CALLDATACOPY   |                  | [0..calldatasize): calldata     |
                           *                                                                                  |
                           * ::: delegatecall to implementation ::::::::::::::::::::::::::::::::::::::::::::: |
                           * 3d         | RETURNDATASIZE | 0                |                                 |
                           * 3d         | RETURNDATASIZE | 0 0              |                                 |
                           * 36         | CALLDATASIZE   | cds 0 0          | [0..calldatasize): calldata     |
                           * 3d         | RETURNDATASIZE | 0 cds 0 0        | [0..calldatasize): calldata     |
                           * 7f slot    | PUSH32 slot    | s 0 cds 0 0      | [0..calldatasize): calldata     |
                           * 54         | SLOAD          | i 0 cds 0 0      | [0..calldatasize): calldata     |
                           * 5a         | GAS            | g i 0 cds 0 0    | [0..calldatasize): calldata     |
                           * f4         | DELEGATECALL   | succ             | [0..calldatasize): calldata     |
                           *                                                                                  |
                           * ::: copy returndata to memory :::::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 3d         | RETURNDATASIZE | rds succ         | [0..calldatasize): calldata     |
                           * 60 0x00    | PUSH1 0x00     | 0 rds succ       | [0..calldatasize): calldata     |
                           * 80         | DUP1           | 0 0 rds succ     | [0..calldatasize): calldata     |
                           * 3e         | RETURNDATACOPY | succ             | [0..returndatasize): returndata |
                           *                                                                                  |
                           * ::: branch on delegatecall status :::::::::::::::::::::::::::::::::::::::::::::: |
                           * 60 0x38    | PUSH1 0x38     | dest succ        | [0..returndatasize): returndata |
                           * 57         | JUMPI          |                  | [0..returndatasize): returndata |
                           *                                                                                  |
                           * ::: delegatecall failed, revert :::::::::::::::::::::::::::::::::::::::::::::::: |
                           * 3d         | RETURNDATASIZE | rds              | [0..returndatasize): returndata |
                           * 60 0x00    | PUSH1 0x00     | 0 rds            | [0..returndatasize): returndata |
                           * fd         | REVERT         |                  | [0..returndatasize): returndata |
                           *                                                                                  |
                           * ::: delegatecall succeeded, return ::::::::::::::::::::::::::::::::::::::::::::: |
                           * 5b         | JUMPDEST       |                  | [0..returndatasize): returndata |
                           * 3d         | RETURNDATASIZE | rds              | [0..returndatasize): returndata |
                           * 60 0x00    | PUSH1 0x00     | 0 rds            | [0..returndatasize): returndata |
                           * f3         | RETURN         |                  | [0..returndatasize): returndata |
                           * ---------------------------------------------------------------------------------+
                           */
                          let m := mload(0x40) // Cache the free memory pointer.
                          mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
                          mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
                          mstore(0x20, 0x6009)
                          mstore(0x1e, implementation)
                          mstore(0x0a, 0x603d3d8160223d3973)
                          instance := create(value, 0x21, 0x5f)
                          if iszero(instance) {
                              mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                              revert(0x1c, 0x04)
                          }
                          mstore(0x40, m) // Restore the free memory pointer.
                          mstore(0x60, 0) // Restore the zero slot.
                      }
                  }
                  /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
                  function deployDeterministicERC1967(address implementation, bytes32 salt)
                      internal
                      returns (address instance)
                  {
                      instance = deployDeterministicERC1967(0, implementation, salt);
                  }
                  /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
                  function deployDeterministicERC1967(uint256 value, address implementation, bytes32 salt)
                      internal
                      returns (address instance)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40) // Cache the free memory pointer.
                          mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
                          mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
                          mstore(0x20, 0x6009)
                          mstore(0x1e, implementation)
                          mstore(0x0a, 0x603d3d8160223d3973)
                          instance := create2(value, 0x21, 0x5f, salt)
                          if iszero(instance) {
                              mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                              revert(0x1c, 0x04)
                          }
                          mstore(0x40, m) // Restore the free memory pointer.
                          mstore(0x60, 0) // Restore the zero slot.
                      }
                  }
                  /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
                  /// Note: This method is intended for use in ERC4337 factories,
                  /// which are expected to NOT revert if the proxy is already deployed.
                  function createDeterministicERC1967(address implementation, bytes32 salt)
                      internal
                      returns (bool alreadyDeployed, address instance)
                  {
                      return createDeterministicERC1967(0, implementation, salt);
                  }
                  /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
                  /// Note: This method is intended for use in ERC4337 factories,
                  /// which are expected to NOT revert if the proxy is already deployed.
                  function createDeterministicERC1967(uint256 value, address implementation, bytes32 salt)
                      internal
                      returns (bool alreadyDeployed, address instance)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40) // Cache the free memory pointer.
                          mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
                          mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
                          mstore(0x20, 0x6009)
                          mstore(0x1e, implementation)
                          mstore(0x0a, 0x603d3d8160223d3973)
                          // Compute and store the bytecode hash.
                          mstore(add(m, 0x35), keccak256(0x21, 0x5f))
                          mstore(m, shl(88, address()))
                          mstore8(m, 0xff) // Write the prefix.
                          mstore(add(m, 0x15), salt)
                          instance := keccak256(m, 0x55)
                          for {} 1 {} {
                              if iszero(extcodesize(instance)) {
                                  instance := create2(value, 0x21, 0x5f, salt)
                                  if iszero(instance) {
                                      mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                                      revert(0x1c, 0x04)
                                  }
                                  break
                              }
                              alreadyDeployed := 1
                              if iszero(value) { break }
                              if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                                  mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                  revert(0x1c, 0x04)
                              }
                              break
                          }
                          mstore(0x40, m) // Restore the free memory pointer.
                          mstore(0x60, 0) // Restore the zero slot.
                      }
                  }
                  /// @dev Returns the initialization code hash of the clone of `implementation`
                  /// using immutable arguments encoded in `data`.
                  /// Used for mining vanity addresses with create2crunch.
                  function initCodeHashERC1967(address implementation) internal pure returns (bytes32 hash) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40) // Cache the free memory pointer.
                          mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
                          mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
                          mstore(0x20, 0x6009)
                          mstore(0x1e, implementation)
                          mstore(0x0a, 0x603d3d8160223d3973)
                          hash := keccak256(0x21, 0x5f)
                          mstore(0x40, m) // Restore the free memory pointer.
                          mstore(0x60, 0) // Restore the zero slot.
                      }
                  }
                  /// @dev Returns the address of the deterministic clone of
                  /// `implementation` using immutable arguments encoded in `data`, with `salt`, by `deployer`.
                  /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
                  function predictDeterministicAddressERC1967(
                      address implementation,
                      bytes32 salt,
                      address deployer
                  ) internal pure returns (address predicted) {
                      bytes32 hash = initCodeHashERC1967(implementation);
                      predicted = predictDeterministicAddress(hash, salt, deployer);
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                      OTHER OPERATIONS                      */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Returns the address when a contract with initialization code hash,
                  /// `hash`, is deployed with `salt`, by `deployer`.
                  /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
                  function predictDeterministicAddress(bytes32 hash, bytes32 salt, address deployer)
                      internal
                      pure
                      returns (address predicted)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // Compute and store the bytecode hash.
                          mstore8(0x00, 0xff) // Write the prefix.
                          mstore(0x35, hash)
                          mstore(0x01, shl(96, deployer))
                          mstore(0x15, salt)
                          predicted := keccak256(0x00, 0x55)
                          mstore(0x35, 0) // Restore the overwritten part of the free memory pointer.
                      }
                  }
                  /// @dev Requires that `salt` starts with either the zero address or `by`.
                  function checkStartsWith(bytes32 salt, address by) internal pure {
                      /// @solidity memory-safe-assembly
                      assembly {
                          // If the salt does not start with the zero address or `by`.
                          if iszero(or(iszero(shr(96, salt)), eq(shr(96, shl(96, by)), shr(96, salt)))) {
                              mstore(0x00, 0x0c4549ef) // `SaltDoesNotStartWith()`.
                              revert(0x1c, 0x04)
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
              pragma solidity ^0.8.0;
              import "../utils/ContextUpgradeable.sol";
              import "../proxy/utils/Initializable.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  function __Ownable_init() internal onlyInitializing {
                      __Ownable_init_unchained();
                  }
                  function __Ownable_init_unchained() internal onlyInitializing {
                      _transferOwnership(_msgSender());
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      _checkOwner();
                      _;
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if the sender is not the owner.
                   */
                  function _checkOwner() internal view virtual {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      _transferOwnership(address(0));
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      _transferOwnership(newOwner);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Internal function without access restriction.
                   */
                  function _transferOwnership(address newOwner) internal virtual {
                      address oldOwner = _owner;
                      _owner = newOwner;
                      emit OwnershipTransferred(oldOwner, newOwner);
                  }
                  /**
                   * @dev This empty reserved space is put in place to allow future versions to add new
                   * variables without shifting down storage in the inheritance chain.
                   * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                   */
                  uint256[49] private __gap;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IInitializable } from "src/dispute/interfaces/IInitializable.sol";
              import "src/dispute/lib/Types.sol";
              /// @title IDisputeGame
              /// @notice The generic interface for a DisputeGame contract.
              interface IDisputeGame is IInitializable {
                  /// @notice Emitted when the game is resolved.
                  /// @param status The status of the game after resolution.
                  event Resolved(GameStatus indexed status);
                  /// @notice Returns the timestamp that the DisputeGame contract was created at.
                  /// @return createdAt_ The timestamp that the DisputeGame contract was created at.
                  function createdAt() external view returns (Timestamp createdAt_);
                  /// @notice Returns the timestamp that the DisputeGame contract was resolved at.
                  /// @return resolvedAt_ The timestamp that the DisputeGame contract was resolved at.
                  function resolvedAt() external view returns (Timestamp resolvedAt_);
                  /// @notice Returns the current status of the game.
                  /// @return status_ The current status of the game.
                  function status() external view returns (GameStatus status_);
                  /// @notice Getter for the game type.
                  /// @dev The reference impl should be entirely different depending on the type (fault, validity)
                  ///      i.e. The game type should indicate the security model.
                  /// @return gameType_ The type of proof system being used.
                  function gameType() external view returns (GameType gameType_);
                  /// @notice Getter for the creator of the dispute game.
                  /// @dev `clones-with-immutable-args` argument #1
                  /// @return creator_ The creator of the dispute game.
                  function gameCreator() external pure returns (address creator_);
                  /// @notice Getter for the root claim.
                  /// @dev `clones-with-immutable-args` argument #2
                  /// @return rootClaim_ The root claim of the DisputeGame.
                  function rootClaim() external pure returns (Claim rootClaim_);
                  /// @notice Getter for the parent hash of the L1 block when the dispute game was created.
                  /// @dev `clones-with-immutable-args` argument #3
                  /// @return l1Head_ The parent hash of the L1 block when the dispute game was created.
                  function l1Head() external pure returns (Hash l1Head_);
                  /// @notice Getter for the extra data.
                  /// @dev `clones-with-immutable-args` argument #4
                  /// @return extraData_ Any extra data supplied to the dispute game contract by the creator.
                  function extraData() external pure returns (bytes memory extraData_);
                  /// @notice If all necessary information has been gathered, this function should mark the game
                  ///         status as either `CHALLENGER_WINS` or `DEFENDER_WINS` and return the status of
                  ///         the resolved game. It is at this stage that the bonds should be awarded to the
                  ///         necessary parties.
                  /// @dev May only be called if the `status` is `IN_PROGRESS`.
                  /// @return status_ The status of the game after resolution.
                  function resolve() external returns (GameStatus status_);
                  /// @notice A compliant implementation of this interface should return the components of the
                  ///         game UUID's preimage provided in the cwia payload. The preimage of the UUID is
                  ///         constructed as `keccak256(gameType . rootClaim . extraData)` where `.` denotes
                  ///         concatenation.
                  /// @return gameType_ The type of proof system being used.
                  /// @return rootClaim_ The root claim of the DisputeGame.
                  /// @return extraData_ Any extra data supplied to the dispute game contract by the creator.
                  function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IDisputeGame } from "./IDisputeGame.sol";
              import "src/dispute/lib/Types.sol";
              /// @title IDisputeGameFactory
              /// @notice The interface for a DisputeGameFactory contract.
              interface IDisputeGameFactory {
                  /// @notice Emitted when a new dispute game is created
                  /// @param disputeProxy The address of the dispute game proxy
                  /// @param gameType The type of the dispute game proxy's implementation
                  /// @param rootClaim The root claim of the dispute game
                  event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim);
                  /// @notice Emitted when a new game implementation added to the factory
                  /// @param impl The implementation contract for the given `GameType`.
                  /// @param gameType The type of the DisputeGame.
                  event ImplementationSet(address indexed impl, GameType indexed gameType);
                  /// @notice Emitted when a game type's initialization bond is updated
                  /// @param gameType The type of the DisputeGame.
                  /// @param newBond The new bond (in wei) for initializing the game type.
                  event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond);
                  /// @notice Information about a dispute game found in a `findLatestGames` search.
                  struct GameSearchResult {
                      uint256 index;
                      GameId metadata;
                      Timestamp timestamp;
                      Claim rootClaim;
                      bytes extraData;
                  }
                  /// @notice The total number of dispute games created by this factory.
                  /// @return gameCount_ The total number of dispute games created by this factory.
                  function gameCount() external view returns (uint256 gameCount_);
                  /// @notice `games` queries an internal mapping that maps the hash of
                  ///         `gameType ++ rootClaim ++ extraData` to the deployed `DisputeGame` clone.
                  /// @dev `++` equates to concatenation.
                  /// @param _gameType The type of the DisputeGame - used to decide the proxy implementation
                  /// @param _rootClaim The root claim of the DisputeGame.
                  /// @param _extraData Any extra data that should be provided to the created dispute game.
                  /// @return proxy_ The clone of the `DisputeGame` created with the given parameters.
                  ///         Returns `address(0)` if nonexistent.
                  /// @return timestamp_ The timestamp of the creation of the dispute game.
                  function games(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes calldata _extraData
                  )
                      external
                      view
                      returns (IDisputeGame proxy_, Timestamp timestamp_);
                  /// @notice `gameAtIndex` returns the dispute game contract address and its creation timestamp
                  ///          at the given index. Each created dispute game increments the underlying index.
                  /// @param _index The index of the dispute game.
                  /// @return gameType_ The type of the DisputeGame - used to decide the proxy implementation.
                  /// @return timestamp_ The timestamp of the creation of the dispute game.
                  /// @return proxy_ The clone of the `DisputeGame` created with the given parameters.
                  ///         Returns `address(0)` if nonexistent.
                  function gameAtIndex(uint256 _index)
                      external
                      view
                      returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_);
                  /// @notice `gameImpls` is a mapping that maps `GameType`s to their respective
                  ///         `IDisputeGame` implementations.
                  /// @param _gameType The type of the dispute game.
                  /// @return impl_ The address of the implementation of the game type.
                  ///         Will be cloned on creation of a new dispute game with the given `gameType`.
                  function gameImpls(GameType _gameType) external view returns (IDisputeGame impl_);
                  /// @notice Returns the required bonds for initializing a dispute game of the given type.
                  /// @param _gameType The type of the dispute game.
                  /// @return bond_ The required bond for initializing a dispute game of the given type.
                  function initBonds(GameType _gameType) external view returns (uint256 bond_);
                  /// @notice Creates a new DisputeGame proxy contract.
                  /// @param _gameType The type of the DisputeGame - used to decide the proxy implementation.
                  /// @param _rootClaim The root claim of the DisputeGame.
                  /// @param _extraData Any extra data that should be provided to the created dispute game.
                  /// @return proxy_ The address of the created DisputeGame proxy.
                  function create(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes calldata _extraData
                  )
                      external
                      payable
                      returns (IDisputeGame proxy_);
                  /// @notice Sets the implementation contract for a specific `GameType`.
                  /// @dev May only be called by the `owner`.
                  /// @param _gameType The type of the DisputeGame.
                  /// @param _impl The implementation contract for the given `GameType`.
                  function setImplementation(GameType _gameType, IDisputeGame _impl) external;
                  /// @notice Sets the bond (in wei) for initializing a game type.
                  /// @dev May only be called by the `owner`.
                  /// @param _gameType The type of the DisputeGame.
                  /// @param _initBond The bond (in wei) for initializing a game type.
                  function setInitBond(GameType _gameType, uint256 _initBond) external;
                  /// @notice Returns a unique identifier for the given dispute game parameters.
                  /// @dev Hashes the concatenation of `gameType . rootClaim . extraData`
                  ///      without expanding memory.
                  /// @param _gameType The type of the DisputeGame.
                  /// @param _rootClaim The root claim of the DisputeGame.
                  /// @param _extraData Any extra data that should be provided to the created dispute game.
                  /// @return uuid_ The unique identifier for the given dispute game parameters.
                  function getGameUUID(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      pure
                      returns (Hash uuid_);
                  /// @notice Finds the `_n` most recent `GameId`'s of type `_gameType` starting at `_start`. If there are less than
                  ///         `_n` games of type `_gameType` starting at `_start`, then the returned array will be shorter than `_n`.
                  /// @param _gameType The type of game to find.
                  /// @param _start The index to start the reverse search from.
                  /// @param _n The number of games to find.
                  function findLatestGames(
                      GameType _gameType,
                      uint256 _start,
                      uint256 _n
                  )
                      external
                      view
                      returns (GameSearchResult[] memory games_);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              import "src/dispute/lib/LibUDT.sol";
              ////////////////////////////////////////////////////////////////
              //                `DisputeGameFactory` Errors                 //
              ////////////////////////////////////////////////////////////////
              /// @notice Thrown when a dispute game is attempted to be created with an unsupported game type.
              /// @param gameType The unsupported game type.
              error NoImplementation(GameType gameType);
              /// @notice Thrown when a dispute game that already exists is attempted to be created.
              /// @param uuid The UUID of the dispute game that already exists.
              error GameAlreadyExists(Hash uuid);
              /// @notice Thrown when the root claim has an unexpected VM status.
              ///         Some games can only start with a root-claim with a specific status.
              /// @param rootClaim is the claim that was unexpected.
              error UnexpectedRootClaim(Claim rootClaim);
              ////////////////////////////////////////////////////////////////
              //                 `FaultDisputeGame` Errors                  //
              ////////////////////////////////////////////////////////////////
              /// @notice Thrown when a dispute game has already been initialized.
              error AlreadyInitialized();
              /// @notice Thrown when a supplied bond is not equal to the required bond amount to cover the cost of the interaction.
              error IncorrectBondAmount();
              /// @notice Thrown when a credit claim is attempted for a value of 0.
              error NoCreditToClaim();
              /// @notice Thrown when the transfer of credit to a recipient account reverts.
              error BondTransferFailed();
              /// @notice Thrown when the `extraData` passed to the CWIA proxy is of improper length, or contains invalid information.
              error BadExtraData();
              /// @notice Thrown when a defense against the root claim is attempted.
              error CannotDefendRootClaim();
              /// @notice Thrown when a claim is attempting to be made that already exists.
              error ClaimAlreadyExists();
              /// @notice Thrown when a disputed claim does not match its index in the game.
              error InvalidDisputedClaimIndex();
              /// @notice Thrown when an action that requires the game to be `IN_PROGRESS` is invoked when
              ///         the game is not in progress.
              error GameNotInProgress();
              /// @notice Thrown when a move is attempted to be made after the clock has timed out.
              error ClockTimeExceeded();
              /// @notice Thrown when the game is attempted to be resolved too early.
              error ClockNotExpired();
              /// @notice Thrown when a move is attempted to be made at or greater than the max depth of the game.
              error GameDepthExceeded();
              /// @notice Thrown when a step is attempted above the maximum game depth.
              error InvalidParent();
              /// @notice Thrown when an invalid prestate is supplied to `step`.
              error InvalidPrestate();
              /// @notice Thrown when a step is made that computes the expected post state correctly.
              error ValidStep();
              /// @notice Thrown when a game is attempted to be initialized with an L1 head that does
              ///         not contain the disputed output root.
              error L1HeadTooOld();
              /// @notice Thrown when an invalid local identifier is passed to the `addLocalData` function.
              error InvalidLocalIdent();
              /// @notice Thrown when resolving claims out of order.
              error OutOfOrderResolution();
              /// @notice Thrown when resolving a claim that has already been resolved.
              error ClaimAlreadyResolved();
              /// @notice Thrown when a parent output root is attempted to be found on a claim that is in
              ///         the output root portion of the tree.
              error ClaimAboveSplit();
              /// @notice Thrown on deployment if the split depth is greater than or equal to the max
              ///         depth of the game.
              error InvalidSplitDepth();
              /// @notice Thrown on deployment if the max clock duration is less than or equal to the clock extension.
              error InvalidClockExtension();
              /// @notice Thrown on deployment if the max depth is greater than `LibPosition.`
              error MaxDepthTooLarge();
              /// @notice Thrown when trying to step against a claim for a second time, after it has already been countered with
              ///         an instruction step.
              error DuplicateStep();
              /// @notice Thrown when an anchor root is not found for a given game type.
              error AnchorRootNotFound();
              /// @notice Thrown when an output root proof is invalid.
              error InvalidOutputRootProof();
              /// @notice Thrown when header RLP is invalid with respect to the block hash in an output root proof.
              error InvalidHeaderRLP();
              /// @notice Thrown when there is a match between the block number in the output root proof and the block number
              ///         claimed in the dispute game.
              error BlockNumberMatches();
              /// @notice Thrown when the L2 block number claim has already been challenged.
              error L2BlockNumberChallenged();
              ////////////////////////////////////////////////////////////////
              //              `PermissionedDisputeGame` Errors              //
              ////////////////////////////////////////////////////////////////
              /// @notice Thrown when an unauthorized address attempts to interact with the game.
              error BadAuth();
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Storage
              /// @notice Storage handles reading and writing to arbitary storage locations
              library Storage {
                  /// @notice Returns an address stored in an arbitrary storage slot.
                  ///         These storage slots decouple the storage layout from
                  ///         solc's automation.
                  /// @param _slot The storage slot to retrieve the address from.
                  function getAddress(bytes32 _slot) internal view returns (address addr_) {
                      assembly {
                          addr_ := sload(_slot)
                      }
                  }
                  /// @notice Stores an address in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the address in.
                  /// @param _address The protocol version to store
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
                  ///      in arbitrary storage slots.
                  function setAddress(bytes32 _slot, address _address) internal {
                      assembly {
                          sstore(_slot, _address)
                      }
                  }
                  /// @notice Returns a uint256 stored in an arbitrary storage slot.
                  ///         These storage slots decouple the storage layout from
                  ///         solc's automation.
                  /// @param _slot The storage slot to retrieve the address from.
                  function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                      assembly {
                          value_ := sload(_slot)
                      }
                  }
                  /// @notice Stores a value in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the address in.
                  /// @param _value The protocol version to store
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                  ///      in arbitrary storage slots.
                  function setUint(bytes32 _slot, uint256 _value) internal {
                      assembly {
                          sstore(_slot, _value)
                      }
                  }
                  /// @notice Returns a bytes32 stored in an arbitrary storage slot.
                  ///         These storage slots decouple the storage layout from
                  ///         solc's automation.
                  /// @param _slot The storage slot to retrieve the address from.
                  function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                      assembly {
                          value_ := sload(_slot)
                      }
                  }
                  /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the address in.
                  /// @param _value The bytes32 value to store.
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                  ///      in arbitrary storage slots.
                  function setBytes32(bytes32 _slot, bytes32 _value) internal {
                      assembly {
                          sstore(_slot, _value)
                      }
                  }
                  /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
                  /// @param _slot The storage slot to store the bool in.
                  /// @param _value The bool value to store
                  /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                  ///      in arbitrary storage slots.
                  function setBool(bytes32 _slot, bool _value) internal {
                      assembly {
                          sstore(_slot, _value)
                      }
                  }
                  /// @notice Returns a bool stored in an arbitrary storage slot.
                  /// @param _slot The storage slot to retrieve the bool from.
                  function getBool(bytes32 _slot) internal view returns (bool value_) {
                      assembly {
                          value_ := sload(_slot)
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
              /// @title Encoding
              /// @notice Encoding handles Optimism's various different encoding schemes.
              library Encoding {
                  /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                  ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                  ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                  /// @param _tx User deposit transaction to encode.
                  /// @return RLP encoded L2 deposit transaction.
                  function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                      bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                      bytes[] memory raw = new bytes[](8);
                      raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                      raw[1] = RLPWriter.writeAddress(_tx.from);
                      raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                      raw[3] = RLPWriter.writeUint(_tx.mint);
                      raw[4] = RLPWriter.writeUint(_tx.value);
                      raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                      raw[6] = RLPWriter.writeBool(false);
                      raw[7] = RLPWriter.writeBytes(_tx.data);
                      return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                  }
                  /// @notice Encodes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      (, uint16 version) = decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Encoding: unknown cross domain message version");
                      }
                  }
                  /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                  }
                  /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      return abi.encodeWithSignature(
                          "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                          _nonce,
                          _sender,
                          _target,
                          _value,
                          _gasLimit,
                          _data
                      );
                  }
                  /// @notice Adds a version number into the first two bytes of a message nonce.
                  /// @param _nonce   Message nonce to encode into.
                  /// @param _version Version number to encode into the message nonce.
                  /// @return Message nonce with version encoded into the first two bytes.
                  function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                      uint256 nonce;
                      assembly {
                          nonce := or(shl(240, _version), _nonce)
                      }
                      return nonce;
                  }
                  /// @notice Pulls the version out of a version-encoded nonce.
                  /// @param _nonce Message nonce with version encoded into the first two bytes.
                  /// @return Nonce without encoded version.
                  /// @return Version of the message.
                  function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                      uint240 nonce;
                      uint16 version;
                      assembly {
                          nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                          version := shr(240, _nonce)
                      }
                      return (nonce, version);
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                  /// @param baseFeeScalar       L1 base fee Scalar
                  /// @param blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param timestamp           L1 timestamp.
                  /// @param number              L1 blocknumber.
                  /// @param baseFee             L1 base fee.
                  /// @param blobBaseFee         L1 blob base fee.
                  /// @param hash                L1 blockhash.
                  /// @param batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesEcotone(
                      uint32 baseFeeScalar,
                      uint32 blobBaseFeeScalar,
                      uint64 sequenceNumber,
                      uint64 timestamp,
                      uint64 number,
                      uint256 baseFee,
                      uint256 blobBaseFee,
                      bytes32 hash,
                      bytes32 batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                      return abi.encodePacked(
                          functionSignature,
                          baseFeeScalar,
                          blobBaseFeeScalar,
                          sequenceNumber,
                          timestamp,
                          number,
                          baseFee,
                          blobBaseFee,
                          hash,
                          batcherHash
                      );
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  /// @param _dependencySet       Array of the chain IDs in the interop dependency set.
                  function encodeSetL1BlockValuesInterop(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash,
                      uint256[] memory _dependencySet
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      require(_dependencySet.length <= type(uint8).max, "Encoding: dependency set length is too large");
                      // Check that the batcher hash is just the address with 0 padding to the left for version 0.
                      require(uint160(uint256(_batcherHash)) == uint256(_batcherHash), "Encoding: invalid batcher hash");
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash,
                          uint8(_dependencySet.length),
                          _dependencySet
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { Bytes } from "../Bytes.sol";
              import { RLPReader } from "../rlp/RLPReader.sol";
              /// @title MerkleTrie
              /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
              ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
              ///         trie radix constant to support other trie radixes.
              library MerkleTrie {
                  /// @notice Struct representing a node in the trie.
                  /// @custom:field encoded The RLP-encoded node.
                  /// @custom:field decoded The RLP-decoded node.
                  struct TrieNode {
                      bytes encoded;
                      RLPReader.RLPItem[] decoded;
                  }
                  /// @notice Determines the number of elements per branch node.
                  uint256 internal constant TREE_RADIX = 16;
                  /// @notice Branch nodes have TREE_RADIX elements and one value element.
                  uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
                  /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
                  uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
                  /// @notice Prefix for even-nibbled extension node paths.
                  uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
                  /// @notice Prefix for odd-nibbled extension node paths.
                  uint8 internal constant PREFIX_EXTENSION_ODD = 1;
                  /// @notice Prefix for even-nibbled leaf node paths.
                  uint8 internal constant PREFIX_LEAF_EVEN = 2;
                  /// @notice Prefix for odd-nibbled leaf node paths.
                  uint8 internal constant PREFIX_LEAF_ODD = 3;
                  /// @notice Verifies a proof that a given key/value pair is present in the trie.
                  /// @param _key   Key of the node to search for, as a hex string.
                  /// @param _value Value of the node to search for, as a hex string.
                  /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                  ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                  ///               nodes that make a path down to the target node.
                  /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                  ///               correctly constructed.
                  /// @return valid_ Whether or not the proof is valid.
                  function verifyInclusionProof(
                      bytes memory _key,
                      bytes memory _value,
                      bytes[] memory _proof,
                      bytes32 _root
                  )
                      internal
                      pure
                      returns (bool valid_)
                  {
                      valid_ = Bytes.equal(_value, get(_key, _proof, _root));
                  }
                  /// @notice Retrieves the value associated with a given key.
                  /// @param _key   Key to search for, as hex bytes.
                  /// @param _proof Merkle trie inclusion proof for the key.
                  /// @param _root  Known root of the Merkle trie.
                  /// @return value_ Value of the key if it exists.
                  function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                      require(_key.length > 0, "MerkleTrie: empty key");
                      TrieNode[] memory proof = _parseProof(_proof);
                      bytes memory key = Bytes.toNibbles(_key);
                      bytes memory currentNodeID = abi.encodePacked(_root);
                      uint256 currentKeyIndex = 0;
                      // Proof is top-down, so we start at the first element (root).
                      for (uint256 i = 0; i < proof.length; i++) {
                          TrieNode memory currentNode = proof[i];
                          // Key index should never exceed total key length or we'll be out of bounds.
                          require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                          if (currentKeyIndex == 0) {
                              // First proof element is always the root node.
                              require(
                                  Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                  "MerkleTrie: invalid root hash"
                              );
                          } else if (currentNode.encoded.length >= 32) {
                              // Nodes 32 bytes or larger are hashed inside branch nodes.
                              require(
                                  Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                  "MerkleTrie: invalid large internal hash"
                              );
                          } else {
                              // Nodes smaller than 32 bytes aren't hashed.
                              require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                          }
                          if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                              if (currentKeyIndex == key.length) {
                                  // Value is the last element of the decoded list (for branch nodes). There's
                                  // some ambiguity in the Merkle trie specification because bytes(0) is a
                                  // valid value to place into the trie, but for branch nodes bytes(0) can exist
                                  // even when the value wasn't explicitly placed there. Geth treats a value of
                                  // bytes(0) as "key does not exist" and so we do the same.
                                  value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                                  require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                                  // Extra proof elements are not allowed.
                                  require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                                  return value_;
                              } else {
                                  // We're not at the end of the key yet.
                                  // Figure out what the next node ID should be and continue.
                                  uint8 branchKey = uint8(key[currentKeyIndex]);
                                  RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                                  currentNodeID = _getNodeID(nextNode);
                                  currentKeyIndex += 1;
                              }
                          } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                              bytes memory path = _getNodePath(currentNode);
                              uint8 prefix = uint8(path[0]);
                              uint8 offset = 2 - (prefix % 2);
                              bytes memory pathRemainder = Bytes.slice(path, offset);
                              bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                              uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                              // Whether this is a leaf node or an extension node, the path remainder MUST be a
                              // prefix of the key remainder (or be equal to the key remainder) or the proof is
                              // considered invalid.
                              require(
                                  pathRemainder.length == sharedNibbleLength,
                                  "MerkleTrie: path remainder must share all nibbles with key"
                              );
                              if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                                  // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                                  // the key remainder must be exactly equal to the path remainder. We already
                                  // did the necessary byte comparison, so it's more efficient here to check that
                                  // the key remainder length equals the shared nibble length, which implies
                                  // equality with the path remainder (since we already did the same check with
                                  // the path remainder and the shared nibble length).
                                  require(
                                      keyRemainder.length == sharedNibbleLength,
                                      "MerkleTrie: key remainder must be identical to path remainder"
                                  );
                                  // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                                  // state trie. Empty values are not allowed in the state trie, so we can safely
                                  // say that if the value is empty, the key should not exist and the proof is
                                  // invalid.
                                  value_ = RLPReader.readBytes(currentNode.decoded[1]);
                                  require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                                  // Extra proof elements are not allowed.
                                  require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                                  return value_;
                              } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                                  // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                                  // in the proof and increment the key index by the length of the path remainder
                                  // which is equal to the shared nibble length.
                                  currentNodeID = _getNodeID(currentNode.decoded[1]);
                                  currentKeyIndex += sharedNibbleLength;
                              } else {
                                  revert("MerkleTrie: received a node with an unknown prefix");
                              }
                          } else {
                              revert("MerkleTrie: received an unparseable node");
                          }
                      }
                      revert("MerkleTrie: ran out of proof elements");
                  }
                  /// @notice Parses an array of proof elements into a new array that contains both the original
                  ///         encoded element and the RLP-decoded element.
                  /// @param _proof Array of proof elements to parse.
                  /// @return proof_ Proof parsed into easily accessible structs.
                  function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
                      uint256 length = _proof.length;
                      proof_ = new TrieNode[](length);
                      for (uint256 i = 0; i < length;) {
                          proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                          unchecked {
                              ++i;
                          }
                      }
                  }
                  /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
                  ///         specification, but nodes < 32 bytes are not actually hashed.
                  /// @param _node Node to pull an ID for.
                  /// @return id_ ID for the node, depending on the size of its contents.
                  function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
                      id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
                  }
                  /// @notice Gets the path for a leaf or extension node.
                  /// @param _node Node to get a path for.
                  /// @return nibbles_ Node path, converted to an array of nibbles.
                  function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
                      nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
                  }
                  /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
                  /// @param _a First nibble array.
                  /// @param _b Second nibble array.
                  /// @return shared_ Number of shared nibbles.
                  function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
                      uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                      for (; shared_ < max && _a[shared_] == _b[shared_];) {
                          unchecked {
                              ++shared_;
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard math utilities missing in the Solidity language.
               */
              library Math {
                  enum Rounding {
                      Down, // Toward negative infinity
                      Up, // Toward infinity
                      Zero // Toward zero
                  }
                  /**
                   * @dev Returns the largest of two numbers.
                   */
                  function max(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two numbers.
                   */
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two numbers. The result is rounded towards
                   * zero.
                   */
                  function average(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b) / 2 can overflow.
                      return (a & b) + (a ^ b) / 2;
                  }
                  /**
                   * @dev Returns the ceiling of the division of two numbers.
                   *
                   * This differs from standard division with `/` in that it rounds up instead
                   * of rounding down.
                   */
                  function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b - 1) / b can overflow on addition, so we distribute.
                      return a == 0 ? 0 : (a - 1) / b + 1;
                  }
                  /**
                   * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                   * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                   * with further edits by Uniswap Labs also under MIT license.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 result) {
                      unchecked {
                          // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                          // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                          // variables such that product = prod1 * 2^256 + prod0.
                          uint256 prod0; // Least significant 256 bits of the product
                          uint256 prod1; // Most significant 256 bits of the product
                          assembly {
                              let mm := mulmod(x, y, not(0))
                              prod0 := mul(x, y)
                              prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                          }
                          // Handle non-overflow cases, 256 by 256 division.
                          if (prod1 == 0) {
                              return prod0 / denominator;
                          }
                          // Make sure the result is less than 2^256. Also prevents denominator == 0.
                          require(denominator > prod1);
                          ///////////////////////////////////////////////
                          // 512 by 256 division.
                          ///////////////////////////////////////////////
                          // Make division exact by subtracting the remainder from [prod1 prod0].
                          uint256 remainder;
                          assembly {
                              // Compute remainder using mulmod.
                              remainder := mulmod(x, y, denominator)
                              // Subtract 256 bit number from 512 bit number.
                              prod1 := sub(prod1, gt(remainder, prod0))
                              prod0 := sub(prod0, remainder)
                          }
                          // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                          // See https://cs.stackexchange.com/q/138556/92363.
                          // Does not overflow because the denominator cannot be zero at this stage in the function.
                          uint256 twos = denominator & (~denominator + 1);
                          assembly {
                              // Divide denominator by twos.
                              denominator := div(denominator, twos)
                              // Divide [prod1 prod0] by twos.
                              prod0 := div(prod0, twos)
                              // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                              twos := add(div(sub(0, twos), twos), 1)
                          }
                          // Shift in bits from prod1 into prod0.
                          prod0 |= prod1 * twos;
                          // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                          // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                          // four bits. That is, denominator * inv = 1 mod 2^4.
                          uint256 inverse = (3 * denominator) ^ 2;
                          // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                          // in modular arithmetic, doubling the correct bits in each step.
                          inverse *= 2 - denominator * inverse; // inverse mod 2^8
                          inverse *= 2 - denominator * inverse; // inverse mod 2^16
                          inverse *= 2 - denominator * inverse; // inverse mod 2^32
                          inverse *= 2 - denominator * inverse; // inverse mod 2^64
                          inverse *= 2 - denominator * inverse; // inverse mod 2^128
                          inverse *= 2 - denominator * inverse; // inverse mod 2^256
                          // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                          // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                          // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                          // is no longer required.
                          result = prod0 * inverse;
                          return result;
                      }
                  }
                  /**
                   * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator,
                      Rounding rounding
                  ) internal pure returns (uint256) {
                      uint256 result = mulDiv(x, y, denominator);
                      if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                          result += 1;
                      }
                      return result;
                  }
                  /**
                   * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                   *
                   * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                   */
                  function sqrt(uint256 a) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                      // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                      // `msb(a) <= a < 2*msb(a)`.
                      // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                      // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                      // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                      // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                      uint256 result = 1;
                      uint256 x = a;
                      if (x >> 128 > 0) {
                          x >>= 128;
                          result <<= 64;
                      }
                      if (x >> 64 > 0) {
                          x >>= 64;
                          result <<= 32;
                      }
                      if (x >> 32 > 0) {
                          x >>= 32;
                          result <<= 16;
                      }
                      if (x >> 16 > 0) {
                          x >>= 16;
                          result <<= 8;
                      }
                      if (x >> 8 > 0) {
                          x >>= 8;
                          result <<= 4;
                      }
                      if (x >> 4 > 0) {
                          x >>= 4;
                          result <<= 2;
                      }
                      if (x >> 2 > 0) {
                          result <<= 1;
                      }
                      // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                      // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                      // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                      // into the expected uint128 result.
                      unchecked {
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          return min(result, a / result);
                      }
                  }
                  /**
                   * @notice Calculates sqrt(a), following the selected rounding direction.
                   */
                  function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                      uint256 result = sqrt(a);
                      if (rounding == Rounding.Up && result * result < a) {
                          result += 1;
                      }
                      return result;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @title Burn
              /// @notice Utilities for burning stuff.
              library Burn {
                  /// @notice Burns a given amount of ETH.
                  /// @param _amount Amount of ETH to burn.
                  function eth(uint256 _amount) internal {
                      new Burner{ value: _amount }();
                  }
                  /// @notice Burns a given amount of gas.
                  /// @param _amount Amount of gas to burn.
                  function gas(uint256 _amount) internal view {
                      uint256 i = 0;
                      uint256 initialGas = gasleft();
                      while (initialGas - gasleft() < _amount) {
                          ++i;
                      }
                  }
              }
              /// @title Burner
              /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
              ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
              ///         from the circulating supply.
              contract Burner {
                  constructor() payable {
                      selfdestruct(payable(address(this)));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
              import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
              /// @title Arithmetic
              /// @notice Even more math than before.
              library Arithmetic {
                  /// @notice Clamps a value between a minimum and maximum.
                  /// @param _value The value to clamp.
                  /// @param _min   The minimum value.
                  /// @param _max   The maximum value.
                  /// @return The clamped value.
                  function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                      return SignedMath.min(SignedMath.max(_value, _min), _max);
                  }
                  /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                  ///         Returns the result of: c * (1 - 1/d)^exp.
                  /// @param _coefficient Coefficient of the function.
                  /// @param _denominator Fractional denominator.
                  /// @param _exponent    Power function exponent.
                  /// @return Result of c * (1 - 1/d)^exp.
                  function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                      return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              import "src/dispute/lib/LibPosition.sol";
              using LibClaim for Claim global;
              using LibHash for Hash global;
              using LibDuration for Duration global;
              using LibClock for Clock global;
              using LibGameId for GameId global;
              using LibTimestamp for Timestamp global;
              using LibVMStatus for VMStatus global;
              using LibGameType for GameType global;
              /// @notice A `Clock` represents a packed `Duration` and `Timestamp`
              /// @dev The packed layout of this type is as follows:
              /// ┌────────────┬────────────────┐
              /// │    Bits    │     Value      │
              /// ├────────────┼────────────────┤
              /// │ [0, 64)    │ Duration       │
              /// │ [64, 128)  │ Timestamp      │
              /// └────────────┴────────────────┘
              type Clock is uint128;
              /// @title LibClock
              /// @notice This library contains helper functions for working with the `Clock` type.
              library LibClock {
                  /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type.
                  /// @param _duration The `Duration` to pack into the `Clock` type.
                  /// @param _timestamp The `Timestamp` to pack into the `Clock` type.
                  /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`.
                  function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) {
                      assembly {
                          clock_ := or(shl(0x40, _duration), _timestamp)
                      }
                  }
                  /// @notice Pull the `Duration` out of a `Clock` type.
                  /// @param _clock The `Clock` type to pull the `Duration` out of.
                  /// @return duration_ The `Duration` pulled out of `_clock`.
                  function duration(Clock _clock) internal pure returns (Duration duration_) {
                      // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`.
                      assembly {
                          duration_ := shr(0x40, _clock)
                      }
                  }
                  /// @notice Pull the `Timestamp` out of a `Clock` type.
                  /// @param _clock The `Clock` type to pull the `Timestamp` out of.
                  /// @return timestamp_ The `Timestamp` pulled out of `_clock`.
                  function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) {
                      // Clean the high-order 192 bits by shifting the clock left and then right again, leaving
                      // only the `timestamp`.
                      assembly {
                          timestamp_ := shr(0xC0, shl(0xC0, _clock))
                      }
                  }
                  /// @notice Get the value of a `Clock` type in the form of the underlying uint128.
                  /// @param _clock The `Clock` type to get the value of.
                  /// @return clock_ The value of the `Clock` type as a uint128 type.
                  function raw(Clock _clock) internal pure returns (uint128 clock_) {
                      assembly {
                          clock_ := _clock
                      }
                  }
              }
              /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address.
              /// @dev The packed layout of this type is as follows:
              /// ┌───────────┬───────────┐
              /// │   Bits    │   Value   │
              /// ├───────────┼───────────┤
              /// │ [0, 32)   │ Game Type │
              /// │ [32, 96)  │ Timestamp │
              /// │ [96, 256) │ Address   │
              /// └───────────┴───────────┘
              type GameId is bytes32;
              /// @title LibGameId
              /// @notice Utility functions for packing and unpacking GameIds.
              library LibGameId {
                  /// @notice Packs values into a 32 byte GameId type.
                  /// @param _gameType The game type.
                  /// @param _timestamp The timestamp of the game's creation.
                  /// @param _gameProxy The game proxy address.
                  /// @return gameId_ The packed GameId.
                  function pack(
                      GameType _gameType,
                      Timestamp _timestamp,
                      address _gameProxy
                  )
                      internal
                      pure
                      returns (GameId gameId_)
                  {
                      assembly {
                          gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy)
                      }
                  }
                  /// @notice Unpacks values from a 32 byte GameId type.
                  /// @param _gameId The packed GameId.
                  /// @return gameType_ The game type.
                  /// @return timestamp_ The timestamp of the game's creation.
                  /// @return gameProxy_ The game proxy address.
                  function unpack(GameId _gameId)
                      internal
                      pure
                      returns (GameType gameType_, Timestamp timestamp_, address gameProxy_)
                  {
                      assembly {
                          gameType_ := shr(224, _gameId)
                          timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF)
                          gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                      }
                  }
              }
              /// @notice A claim represents an MPT root representing the state of the fault proof program.
              type Claim is bytes32;
              /// @title LibClaim
              /// @notice This library contains helper functions for working with the `Claim` type.
              library LibClaim {
                  /// @notice Get the value of a `Claim` type in the form of the underlying bytes32.
                  /// @param _claim The `Claim` type to get the value of.
                  /// @return claim_ The value of the `Claim` type as a bytes32 type.
                  function raw(Claim _claim) internal pure returns (bytes32 claim_) {
                      assembly {
                          claim_ := _claim
                      }
                  }
                  /// @notice Hashes a claim and a position together.
                  /// @param _claim A Claim type.
                  /// @param _position The position of `claim`.
                  /// @param _challengeIndex The index of the claim being moved against.
                  /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex);
                  function hashClaimPos(
                      Claim _claim,
                      Position _position,
                      uint256 _challengeIndex
                  )
                      internal
                      pure
                      returns (Hash claimHash_)
                  {
                      assembly {
                          mstore(0x00, _claim)
                          mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex)))
                          claimHash_ := keccak256(0x00, 0x40)
                      }
                  }
              }
              /// @notice A dedicated duration type.
              /// @dev Unit: seconds
              type Duration is uint64;
              /// @title LibDuration
              /// @notice This library contains helper functions for working with the `Duration` type.
              library LibDuration {
                  /// @notice Get the value of a `Duration` type in the form of the underlying uint64.
                  /// @param _duration The `Duration` type to get the value of.
                  /// @return duration_ The value of the `Duration` type as a uint64 type.
                  function raw(Duration _duration) internal pure returns (uint64 duration_) {
                      assembly {
                          duration_ := _duration
                      }
                  }
              }
              /// @notice A custom type for a generic hash.
              type Hash is bytes32;
              /// @title LibHash
              /// @notice This library contains helper functions for working with the `Hash` type.
              library LibHash {
                  /// @notice Get the value of a `Hash` type in the form of the underlying bytes32.
                  /// @param _hash The `Hash` type to get the value of.
                  /// @return hash_ The value of the `Hash` type as a bytes32 type.
                  function raw(Hash _hash) internal pure returns (bytes32 hash_) {
                      assembly {
                          hash_ := _hash
                      }
                  }
              }
              /// @notice A dedicated timestamp type.
              type Timestamp is uint64;
              /// @title LibTimestamp
              /// @notice This library contains helper functions for working with the `Timestamp` type.
              library LibTimestamp {
                  /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64.
                  /// @param _timestamp The `Timestamp` type to get the value of.
                  /// @return timestamp_ The value of the `Timestamp` type as a uint64 type.
                  function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) {
                      assembly {
                          timestamp_ := _timestamp
                      }
                  }
              }
              /// @notice A `VMStatus` represents the status of a VM execution.
              type VMStatus is uint8;
              /// @title LibVMStatus
              /// @notice This library contains helper functions for working with the `VMStatus` type.
              library LibVMStatus {
                  /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8.
                  /// @param _vmstatus The `VMStatus` type to get the value of.
                  /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type.
                  function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) {
                      assembly {
                          vmstatus_ := _vmstatus
                      }
                  }
              }
              /// @notice A `GameType` represents the type of game being played.
              type GameType is uint32;
              /// @title LibGameType
              /// @notice This library contains helper functions for working with the `GameType` type.
              library LibGameType {
                  /// @notice Get the value of a `GameType` type in the form of the underlying uint32.
                  /// @param _gametype The `GameType` type to get the value of.
                  /// @return gametype_ The value of the `GameType` type as a uint32 type.
                  function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
                      assembly {
                          gametype_ := _gametype
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
              pragma solidity ^0.8.0;
              import "../proxy/utils/Initializable.sol";
              /**
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract ContextUpgradeable is Initializable {
                  function __Context_init() internal onlyInitializing {
                  }
                  function __Context_init_unchained() internal onlyInitializing {
                  }
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
                  /**
                   * @dev This empty reserved space is put in place to allow future versions to add new
                   * variables without shifting down storage in the inheritance chain.
                   * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                   */
                  uint256[50] private __gap;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/AddressUpgradeable.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title IInitializable
              /// @notice An interface for initializable contracts.
              interface IInitializable {
                  /// @notice Initializes the contract.
                  /// @dev This function may only be called once.
                  function initialize() external payable;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
              /// @title RLPWriter
              /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
              ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
              ///         modifications to improve legibility.
              library RLPWriter {
                  /// @notice RLP encodes a byte string.
                  /// @param _in The byte string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      if (_in.length == 1 && uint8(_in[0]) < 128) {
                          out_ = _in;
                      } else {
                          out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                      }
                  }
                  /// @notice RLP encodes a list of RLP encoded byte byte strings.
                  /// @param _in The list of RLP encoded byte strings.
                  /// @return list_ The RLP encoded list of items in bytes.
                  function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                      list_ = _flatten(_in);
                      list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                  }
                  /// @notice RLP encodes a string.
                  /// @param _in The string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeString(string memory _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(bytes(_in));
                  }
                  /// @notice RLP encodes an address.
                  /// @param _in The address to encode.
                  /// @return out_ The RLP encoded address in bytes.
                  function writeAddress(address _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(abi.encodePacked(_in));
                  }
                  /// @notice RLP encodes a uint.
                  /// @param _in The uint256 to encode.
                  /// @return out_ The RLP encoded uint256 in bytes.
                  function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(_toBinary(_in));
                  }
                  /// @notice RLP encodes a bool.
                  /// @param _in The bool to encode.
                  /// @return out_ The RLP encoded bool in bytes.
                  function writeBool(bool _in) internal pure returns (bytes memory out_) {
                      out_ = new bytes(1);
                      out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                  }
                  /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                  /// @param _len    The length of the string or the payload.
                  /// @param _offset 128 if item is string, 192 if item is list.
                  /// @return out_ RLP encoded bytes.
                  function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                      if (_len < 56) {
                          out_ = new bytes(1);
                          out_[0] = bytes1(uint8(_len) + uint8(_offset));
                      } else {
                          uint256 lenLen;
                          uint256 i = 1;
                          while (_len / i != 0) {
                              lenLen++;
                              i *= 256;
                          }
                          out_ = new bytes(lenLen + 1);
                          out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                          for (i = 1; i <= lenLen; i++) {
                              out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                          }
                      }
                  }
                  /// @notice Encode integer in big endian binary form with no leading zeroes.
                  /// @param _x The integer to encode.
                  /// @return out_ RLP encoded bytes.
                  function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                      bytes memory b = abi.encodePacked(_x);
                      uint256 i = 0;
                      for (; i < 32; i++) {
                          if (b[i] != 0) {
                              break;
                          }
                      }
                      out_ = new bytes(32 - i);
                      for (uint256 j = 0; j < out_.length; j++) {
                          out_[j] = b[i++];
                      }
                  }
                  /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                  /// @notice Copies a piece of memory to another location.
                  /// @param _dest Destination location.
                  /// @param _src  Source location.
                  /// @param _len  Length of memory to copy.
                  function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                      uint256 dest = _dest;
                      uint256 src = _src;
                      uint256 len = _len;
                      for (; len >= 32; len -= 32) {
                          assembly {
                              mstore(dest, mload(src))
                          }
                          dest += 32;
                          src += 32;
                      }
                      uint256 mask;
                      unchecked {
                          mask = 256 ** (32 - len) - 1;
                      }
                      assembly {
                          let srcpart := and(mload(src), not(mask))
                          let destpart := and(mload(dest), mask)
                          mstore(dest, or(destpart, srcpart))
                      }
                  }
                  /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                  /// @notice Flattens a list of byte strings into one byte string.
                  /// @param _list List of byte strings to flatten.
                  /// @return out_ The flattened byte string.
                  function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                      if (_list.length == 0) {
                          return new bytes(0);
                      }
                      uint256 len;
                      uint256 i = 0;
                      for (; i < _list.length; i++) {
                          len += _list[i].length;
                      }
                      out_ = new bytes(len);
                      uint256 flattenedPtr;
                      assembly {
                          flattenedPtr := add(out_, 0x20)
                      }
                      for (i = 0; i < _list.length; i++) {
                          bytes memory item = _list[i];
                          uint256 listPtr;
                          assembly {
                              listPtr := add(item, 0x20)
                          }
                          _memcpy(flattenedPtr, listPtr, item.length);
                          flattenedPtr += _list[i].length;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Bytes
              /// @notice Bytes is a library for manipulating byte arrays.
              library Bytes {
                  /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
                  /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
                  ///         as opposed to a pointer to the original array. Will throw if trying to slice more
                  ///         bytes than exist in the array.
                  /// @param _bytes Byte array to slice.
                  /// @param _start Starting index of the slice.
                  /// @param _length Length of the slice.
                  /// @return Slice of the input byte array.
                  function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                      unchecked {
                          require(_length + 31 >= _length, "slice_overflow");
                          require(_start + _length >= _start, "slice_overflow");
                          require(_bytes.length >= _start + _length, "slice_outOfBounds");
                      }
                      bytes memory tempBytes;
                      assembly {
                          switch iszero(_length)
                          case 0 {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // The first word of the slice result is potentially a partial
                              // word read from the original array. To read it, we calculate
                              // the length of that partial word and start copying that many
                              // bytes into the array. The first word we copy will start with
                              // data we don't care about, but the last `lengthmod` bytes will
                              // land at the beginning of the contents of the new array. When
                              // we're done copying, we overwrite the full first word with
                              // the actual length of the slice.
                              let lengthmod := and(_length, 31)
                              // The multiplication in the next line is necessary
                              // because when slicing multiples of 32 bytes (lengthmod == 0)
                              // the following copy loop was copying the origin's length
                              // and then ending prematurely not copying everything it should.
                              let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                              let end := add(mc, _length)
                              for {
                                  // The multiplication in the next line has the same exact purpose
                                  // as the one above.
                                  let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } { mstore(mc, mload(cc)) }
                              mstore(tempBytes, _length)
                              //update free-memory pointer
                              //allocating the array padded to 32 bytes like the compiler does now
                              mstore(0x40, and(add(mc, 31), not(31)))
                          }
                          //if we want a zero-length slice let's just return a zero-length array
                          default {
                              tempBytes := mload(0x40)
                              //zero out the 32 bytes slice we are about to return
                              //we need to do it because Solidity does not garbage collect
                              mstore(tempBytes, 0)
                              mstore(0x40, add(tempBytes, 0x20))
                          }
                      }
                      return tempBytes;
                  }
                  /// @notice Slices a byte array with a given starting index up to the end of the original byte
                  ///         array. Returns a new array rathern than a pointer to the original.
                  /// @param _bytes Byte array to slice.
                  /// @param _start Starting index of the slice.
                  /// @return Slice of the input byte array.
                  function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                      if (_start >= _bytes.length) {
                          return bytes("");
                      }
                      return slice(_bytes, _start, _bytes.length - _start);
                  }
                  /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
                  ///         Resulting nibble array will be exactly twice as long as the input byte array.
                  /// @param _bytes Input byte array to convert.
                  /// @return Resulting nibble array.
                  function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                      bytes memory _nibbles;
                      assembly {
                          // Grab a free memory offset for the new array
                          _nibbles := mload(0x40)
                          // Load the length of the passed bytes array from memory
                          let bytesLength := mload(_bytes)
                          // Calculate the length of the new nibble array
                          // This is the length of the input array times 2
                          let nibblesLength := shl(0x01, bytesLength)
                          // Update the free memory pointer to allocate memory for the new array.
                          // To do this, we add the length of the new array + 32 bytes for the array length
                          // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                          mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                          // Store the length of the new array in memory
                          mstore(_nibbles, nibblesLength)
                          // Store the memory offset of the _bytes array's contents on the stack
                          let bytesStart := add(_bytes, 0x20)
                          // Store the memory offset of the nibbles array's contents on the stack
                          let nibblesStart := add(_nibbles, 0x20)
                          // Loop through each byte in the input array
                          for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                              // Get the starting offset of the next 2 bytes in the nibbles array
                              let offset := add(nibblesStart, shl(0x01, i))
                              // Load the byte at the current index within the `_bytes` array
                              let b := byte(0x00, mload(add(bytesStart, i)))
                              // Pull out the first nibble and store it in the new array
                              mstore8(offset, shr(0x04, b))
                              // Pull out the second nibble and store it in the new array
                              mstore8(add(offset, 0x01), and(b, 0x0F))
                          }
                      }
                      return _nibbles;
                  }
                  /// @notice Compares two byte arrays by comparing their keccak256 hashes.
                  /// @param _bytes First byte array to compare.
                  /// @param _other Second byte array to compare.
                  /// @return True if the two byte arrays are equal, false otherwise.
                  function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                      return keccak256(_bytes) == keccak256(_other);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.8;
              import "./RLPErrors.sol";
              /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
              /// @title RLPReader
              /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
              ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
              ///         various tweaks to improve readability.
              library RLPReader {
                  /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
                  type MemoryPointer is uint256;
                  /// @notice RLP item types.
                  /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
                  /// @custom:value LIST_ITEM Represents an RLP list item.
                  enum RLPItemType {
                      DATA_ITEM,
                      LIST_ITEM
                  }
                  /// @notice Struct representing an RLP item.
                  /// @custom:field length Length of the RLP item.
                  /// @custom:field ptr    Pointer to the RLP item in memory.
                  struct RLPItem {
                      uint256 length;
                      MemoryPointer ptr;
                  }
                  /// @notice Max list length that this library will accept.
                  uint256 internal constant MAX_LIST_LENGTH = 32;
                  /// @notice Converts bytes to a reference to memory position and length.
                  /// @param _in Input bytes to convert.
                  /// @return out_ Output memory reference.
                  function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
                      // Empty arrays are not RLP items.
                      if (_in.length == 0) revert EmptyItem();
                      MemoryPointer ptr;
                      assembly {
                          ptr := add(_in, 32)
                      }
                      out_ = RLPItem({ length: _in.length, ptr: ptr });
                  }
                  /// @notice Reads an RLP list value into a list of RLP items.
                  /// @param _in RLP list value.
                  /// @return out_ Decoded RLP list items.
                  function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
                      (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                      if (itemType != RLPItemType.LIST_ITEM) revert UnexpectedString();
                      if (listOffset + listLength != _in.length) revert InvalidDataRemainder();
                      // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                      // writing to the length. Since we can't know the number of RLP items without looping over
                      // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                      // simply set a reasonable maximum list length and decrease the size before we finish.
                      out_ = new RLPItem[](MAX_LIST_LENGTH);
                      uint256 itemCount = 0;
                      uint256 offset = listOffset;
                      while (offset < _in.length) {
                          (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                              RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                          );
                          // We don't need to check itemCount < out.length explicitly because Solidity already
                          // handles this check on our behalf, we'd just be wasting gas.
                          out_[itemCount] = RLPItem({
                              length: itemLength + itemOffset,
                              ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                          });
                          itemCount += 1;
                          offset += itemOffset + itemLength;
                      }
                      // Decrease the array size to match the actual item count.
                      assembly {
                          mstore(out_, itemCount)
                      }
                  }
                  /// @notice Reads an RLP list value into a list of RLP items.
                  /// @param _in RLP list value.
                  /// @return out_ Decoded RLP list items.
                  function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
                      out_ = readList(toRLPItem(_in));
                  }
                  /// @notice Reads an RLP bytes value into bytes.
                  /// @param _in RLP bytes value.
                  /// @return out_ Decoded bytes.
                  function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                      (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                      if (itemType != RLPItemType.DATA_ITEM) revert UnexpectedList();
                      if (_in.length != itemOffset + itemLength) revert InvalidDataRemainder();
                      out_ = _copy(_in.ptr, itemOffset, itemLength);
                  }
                  /// @notice Reads an RLP bytes value into bytes.
                  /// @param _in RLP bytes value.
                  /// @return out_ Decoded bytes.
                  function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      out_ = readBytes(toRLPItem(_in));
                  }
                  /// @notice Reads the raw bytes of an RLP item.
                  /// @param _in RLP item to read.
                  /// @return out_ Raw RLP bytes.
                  function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                      out_ = _copy(_in.ptr, 0, _in.length);
                  }
                  /// @notice Decodes the length of an RLP item.
                  /// @param _in RLP item to decode.
                  /// @return offset_ Offset of the encoded data.
                  /// @return length_ Length of the encoded data.
                  /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
                  function _decodeLength(RLPItem memory _in)
                      private
                      pure
                      returns (uint256 offset_, uint256 length_, RLPItemType type_)
                  {
                      // Short-circuit if there's nothing to decode, note that we perform this check when
                      // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                      // that function and create an RLP item directly. So we need to check this anyway.
                      if (_in.length == 0) revert EmptyItem();
                      MemoryPointer ptr = _in.ptr;
                      uint256 prefix;
                      assembly {
                          prefix := byte(0, mload(ptr))
                      }
                      if (prefix <= 0x7f) {
                          // Single byte.
                          return (0, 1, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xb7) {
                          // Short string.
                          // slither-disable-next-line variable-scope
                          uint256 strLen = prefix - 0x80;
                          if (_in.length <= strLen) revert ContentLengthMismatch();
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          if (strLen == 1 && firstByteOfContent < 0x80) revert InvalidHeader();
                          return (1, strLen, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xbf) {
                          // Long string.
                          uint256 lenOfStrLen = prefix - 0xb7;
                          if (_in.length <= lenOfStrLen) revert ContentLengthMismatch();
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          if (firstByteOfContent == 0x00) revert InvalidHeader();
                          uint256 strLen;
                          assembly {
                              strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                          }
                          if (strLen <= 55) revert InvalidHeader();
                          if (_in.length <= lenOfStrLen + strLen) revert ContentLengthMismatch();
                          return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xf7) {
                          // Short list.
                          // slither-disable-next-line variable-scope
                          uint256 listLen = prefix - 0xc0;
                          if (_in.length <= listLen) revert ContentLengthMismatch();
                          return (1, listLen, RLPItemType.LIST_ITEM);
                      } else {
                          // Long list.
                          uint256 lenOfListLen = prefix - 0xf7;
                          if (_in.length <= lenOfListLen) revert ContentLengthMismatch();
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          if (firstByteOfContent == 0x00) revert InvalidHeader();
                          uint256 listLen;
                          assembly {
                              listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                          }
                          if (listLen <= 55) revert InvalidHeader();
                          if (_in.length <= lenOfListLen + listLen) revert ContentLengthMismatch();
                          return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                      }
                  }
                  /// @notice Copies the bytes from a memory location.
                  /// @param _src    Pointer to the location to read from.
                  /// @param _offset Offset to start reading from.
                  /// @param _length Number of bytes to read.
                  /// @return out_ Copied bytes.
                  function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
                      out_ = new bytes(_length);
                      if (_length == 0) {
                          return out_;
                      }
                      // Mostly based on Solidity's copy_memory_to_memory:
                      // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                      uint256 src = MemoryPointer.unwrap(_src) + _offset;
                      assembly {
                          let dest := add(out_, 32)
                          let i := 0
                          for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                          if gt(i, _length) { mstore(add(dest, _length), 0) }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard signed math utilities missing in the Solidity language.
               */
              library SignedMath {
                  /**
                   * @dev Returns the largest of two signed numbers.
                   */
                  function max(int256 a, int256 b) internal pure returns (int256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two signed numbers.
                   */
                  function min(int256 a, int256 b) internal pure returns (int256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two signed numbers without overflow.
                   * The result is rounded towards zero.
                   */
                  function average(int256 a, int256 b) internal pure returns (int256) {
                      // Formula from the book "Hacker's Delight"
                      int256 x = (a & b) + ((a ^ b) >> 1);
                      return x + (int256(uint256(x) >> 255) & (a ^ b));
                  }
                  /**
                   * @dev Returns the absolute unsigned value of a signed value.
                   */
                  function abs(int256 n) internal pure returns (uint256) {
                      unchecked {
                          // must be unchecked in order to support `n = type(int256).min`
                          return uint256(n >= 0 ? n : -n);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.8.0;
              /// @notice Arithmetic library with operations for fixed-point numbers.
              /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
              library FixedPointMathLib {
                  /*//////////////////////////////////////////////////////////////
                                  SIMPLIFIED FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                  function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                  }
                  function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                  }
                  function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                  }
                  function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                  }
                  function powWad(int256 x, int256 y) internal pure returns (int256) {
                      // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                      return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                  }
                  function expWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          // When the result is < 0.5 we return zero. This happens when
                          // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                          if (x <= -42139678854452767551) return 0;
                          // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                          // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                          if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                          // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                          // for more intermediate precision and a binary basis. This base conversion
                          // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                          x = (x << 78) / 5**18;
                          // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                          // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                          // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                          int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                          x = x - k * 54916777467707473351141471128;
                          // k is in the range [-61, 195].
                          // Evaluate using a (6, 7)-term rational approximation.
                          // p is made monic, we'll multiply by a scale factor later.
                          int256 y = x + 1346386616545796478920950773328;
                          y = ((y * x) >> 96) + 57155421227552351082224309758442;
                          int256 p = y + x - 94201549194550492254356042504812;
                          p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                          p = p * x + (4385272521454847904659076985693276 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          int256 q = x - 2855989394907223263936484059900;
                          q = ((q * x) >> 96) + 50020603652535783019961831881945;
                          q = ((q * x) >> 96) - 533845033583426703283633433725380;
                          q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                          q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                          q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial won't have zeros in the domain as all its roots are complex.
                              // No scaling is necessary because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r should be in the range (0.09, 0.25) * 2**96.
                          // We now need to multiply r by:
                          // * the scale factor s = ~6.031367120.
                          // * the 2**k factor from the range reduction.
                          // * the 1e18 / 2**96 factor for base conversion.
                          // We do this all at once, with an intermediate result in 2**213
                          // basis, so the final right shift is always by a positive amount.
                          r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                      }
                  }
                  function lnWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          require(x > 0, "UNDEFINED");
                          // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                          // We do this by multiplying by 2**96 / 10**18. But since
                          // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                          // and add ln(2**96 / 10**18) at the end.
                          // Reduce range of x to (1, 2) * 2**96
                          // ln(2^k * x) = k * ln(2) + ln(x)
                          int256 k = int256(log2(uint256(x))) - 96;
                          x <<= uint256(159 - k);
                          x = int256(uint256(x) >> 159);
                          // Evaluate using a (8, 8)-term rational approximation.
                          // p is made monic, we will multiply by a scale factor later.
                          int256 p = x + 3273285459638523848632254066296;
                          p = ((p * x) >> 96) + 24828157081833163892658089445524;
                          p = ((p * x) >> 96) + 43456485725739037958740375743393;
                          p = ((p * x) >> 96) - 11111509109440967052023855526967;
                          p = ((p * x) >> 96) - 45023709667254063763336534515857;
                          p = ((p * x) >> 96) - 14706773417378608786704636184526;
                          p = p * x - (795164235651350426258249787498 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          // q is monic by convention.
                          int256 q = x + 5573035233440673466300451813936;
                          q = ((q * x) >> 96) + 71694874799317883764090561454958;
                          q = ((q * x) >> 96) + 283447036172924575727196451306956;
                          q = ((q * x) >> 96) + 401686690394027663651624208769553;
                          q = ((q * x) >> 96) + 204048457590392012362485061816622;
                          q = ((q * x) >> 96) + 31853899698501571402653359427138;
                          q = ((q * x) >> 96) + 909429971244387300277376558375;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial is known not to have zeros in the domain.
                              // No scaling required because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r is in the range (0, 0.125) * 2**96
                          // Finalization, we need to:
                          // * multiply by the scale factor s = 5.549…
                          // * add ln(2**96 / 10**18)
                          // * add k * ln(2)
                          // * multiply by 10**18 / 2**96 = 5**18 >> 78
                          // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                          r *= 1677202110996718588342820967067443963516166;
                          // add ln(2) * k * 5e18 * 2**192
                          r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                          // add ln(2**96 / 10**18) * 5e18 * 2**192
                          r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                          // base conversion: mul 2**18 / 2**192
                          r >>= 174;
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                  LOW LEVEL FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  function mulDivDown(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // Divide z by the denominator.
                          z := div(z, denominator)
                      }
                  }
                  function mulDivUp(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // First, divide z - 1 by the denominator and add 1.
                          // We allow z - 1 to underflow if z is 0, because we multiply the
                          // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                          z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                      }
                  }
                  function rpow(
                      uint256 x,
                      uint256 n,
                      uint256 scalar
                  ) internal pure returns (uint256 z) {
                      assembly {
                          switch x
                          case 0 {
                              switch n
                              case 0 {
                                  // 0 ** 0 = 1
                                  z := scalar
                              }
                              default {
                                  // 0 ** n = 0
                                  z := 0
                              }
                          }
                          default {
                              switch mod(n, 2)
                              case 0 {
                                  // If n is even, store scalar in z for now.
                                  z := scalar
                              }
                              default {
                                  // If n is odd, store x in z for now.
                                  z := x
                              }
                              // Shifting right by 1 is like dividing by 2.
                              let half := shr(1, scalar)
                              for {
                                  // Shift n right by 1 before looping to halve it.
                                  n := shr(1, n)
                              } n {
                                  // Shift n right by 1 each iteration to halve it.
                                  n := shr(1, n)
                              } {
                                  // Revert immediately if x ** 2 would overflow.
                                  // Equivalent to iszero(eq(div(xx, x), x)) here.
                                  if shr(128, x) {
                                      revert(0, 0)
                                  }
                                  // Store x squared.
                                  let xx := mul(x, x)
                                  // Round to the nearest number.
                                  let xxRound := add(xx, half)
                                  // Revert if xx + half overflowed.
                                  if lt(xxRound, xx) {
                                      revert(0, 0)
                                  }
                                  // Set x to scaled xxRound.
                                  x := div(xxRound, scalar)
                                  // If n is even:
                                  if mod(n, 2) {
                                      // Compute z * x.
                                      let zx := mul(z, x)
                                      // If z * x overflowed:
                                      if iszero(eq(div(zx, x), z)) {
                                          // Revert if x is non-zero.
                                          if iszero(iszero(x)) {
                                              revert(0, 0)
                                          }
                                      }
                                      // Round to the nearest number.
                                      let zxRound := add(zx, half)
                                      // Revert if zx + half overflowed.
                                      if lt(zxRound, zx) {
                                          revert(0, 0)
                                      }
                                      // Return properly scaled zxRound.
                                      z := div(zxRound, scalar)
                                  }
                              }
                          }
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                      GENERAL NUMBER UTILITIES
                  //////////////////////////////////////////////////////////////*/
                  function sqrt(uint256 x) internal pure returns (uint256 z) {
                      assembly {
                          let y := x // We start y at x, which will help us make our initial estimate.
                          z := 181 // The "correct" value is 1, but this saves a multiplication later.
                          // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                          // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                          // We check y >= 2^(k + 8) but shift right by k bits
                          // each branch to ensure that if x >= 256, then y >= 256.
                          if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                              y := shr(128, y)
                              z := shl(64, z)
                          }
                          if iszero(lt(y, 0x1000000000000000000)) {
                              y := shr(64, y)
                              z := shl(32, z)
                          }
                          if iszero(lt(y, 0x10000000000)) {
                              y := shr(32, y)
                              z := shl(16, z)
                          }
                          if iszero(lt(y, 0x1000000)) {
                              y := shr(16, y)
                              z := shl(8, z)
                          }
                          // Goal was to get z*z*y within a small factor of x. More iterations could
                          // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                          // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                          // That's not possible if x < 256 but we can just verify those cases exhaustively.
                          // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                          // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                          // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                          // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                          // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                          // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                          // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                          // There is no overflow risk here since y < 2^136 after the first branch above.
                          z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                          // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          // If x+1 is a perfect square, the Babylonian method cycles between
                          // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                          // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                          // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                          // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                          z := sub(z, lt(div(x, z), z))
                      }
                  }
                  function log2(uint256 x) internal pure returns (uint256 r) {
                      require(x > 0, "UNDEFINED");
                      assembly {
                          r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                          r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                          r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                          r := or(r, shl(4, lt(0xffff, shr(r, x))))
                          r := or(r, shl(3, lt(0xff, shr(r, x))))
                          r := or(r, shl(2, lt(0xf, shr(r, x))))
                          r := or(r, shl(1, lt(0x3, shr(r, x))))
                          r := or(r, lt(0x1, shr(r, x)))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              using LibPosition for Position global;
              /// @notice A `Position` represents a position of a claim within the game tree.
              /// @dev This is represented as a "generalized index" where the high-order bit
              /// is the level in the tree and the remaining bits is a unique bit pattern, allowing
              /// a unique identifier for each node in the tree. Mathematically, it is calculated
              /// as 2^{depth} + indexAtDepth.
              type Position is uint128;
              /// @title LibPosition
              /// @notice This library contains helper functions for working with the `Position` type.
              library LibPosition {
                  /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of
                  ///         its behavior within this library, can safely support.
                  uint8 internal constant MAX_POSITION_BITLEN = 126;
                  /// @notice Computes a generalized index (2^{depth} + indexAtDepth).
                  /// @param _depth The depth of the position.
                  /// @param _indexAtDepth The index at the depth of the position.
                  /// @return position_ The computed generalized index.
                  function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) {
                      assembly {
                          // gindex = 2^{_depth} + _indexAtDepth
                          position_ := add(shl(_depth, 1), _indexAtDepth)
                      }
                  }
                  /// @notice Pulls the `depth` out of a `Position` type.
                  /// @param _position The generalized index to get the `depth` of.
                  /// @return depth_ The `depth` of the `position` gindex.
                  /// @custom:attribution Solady <https://github.com/Vectorized/Solady>
                  function depth(Position _position) internal pure returns (uint8 depth_) {
                      // Return the most significant bit offset, which signifies the depth of the gindex.
                      assembly {
                          depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position))))
                          depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position))))
                          // For the remaining 32 bits, use a De Bruijn lookup.
                          _position := shr(depth_, _position)
                          _position := or(_position, shr(1, _position))
                          _position := or(_position, shr(2, _position))
                          _position := or(_position, shr(4, _position))
                          _position := or(_position, shr(8, _position))
                          _position := or(_position, shr(16, _position))
                          depth_ :=
                              or(
                                  depth_,
                                  byte(
                                      shr(251, mul(_position, shl(224, 0x07c4acdd))),
                                      0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f
                                  )
                              )
                      }
                  }
                  /// @notice Pulls the `indexAtDepth` out of a `Position` type.
                  ///         The `indexAtDepth` is the left/right index of a position at a specific depth within
                  ///         the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1
                  ///         and the `indexAtDepth` = 0.
                  /// @param _position The generalized index to get the `indexAtDepth` of.
                  /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex.
                  function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) {
                      // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex,
                      // leaving only the `indexAtDepth`.
                      uint256 msb = depth(_position);
                      assembly {
                          indexAtDepth_ := sub(_position, shl(msb, 1))
                      }
                  }
                  /// @notice Get the left child of `_position`.
                  /// @param _position The position to get the left position of.
                  /// @return left_ The position to the left of `position`.
                  function left(Position _position) internal pure returns (Position left_) {
                      assembly {
                          left_ := shl(1, _position)
                      }
                  }
                  /// @notice Get the right child of `_position`
                  /// @param _position The position to get the right position of.
                  /// @return right_ The position to the right of `position`.
                  function right(Position _position) internal pure returns (Position right_) {
                      assembly {
                          right_ := or(1, shl(1, _position))
                      }
                  }
                  /// @notice Get the parent position of `_position`.
                  /// @param _position The position to get the parent position of.
                  /// @return parent_ The parent position of `position`.
                  function parent(Position _position) internal pure returns (Position parent_) {
                      assembly {
                          parent_ := shr(1, _position)
                      }
                  }
                  /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to
                  ///         calling `right` on a position until the maximum depth is reached.
                  /// @param _position The position to get the relative deepest, right most gindex of.
                  /// @param _maxDepth The maximum depth of the game.
                  /// @return rightIndex_ The deepest, right most gindex relative to the `position`.
                  function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) {
                      uint256 msb = depth(_position);
                      assembly {
                          let remaining := sub(_maxDepth, msb)
                          rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1))
                      }
                  }
                  /// @notice Get the deepest, right most trace index relative to the `position`. This is
                  ///         equivalent to calling `right` on a position until the maximum depth is reached and
                  ///         then finding its index at depth.
                  /// @param _position The position to get the relative trace index of.
                  /// @param _maxDepth The maximum depth of the game.
                  /// @return traceIndex_ The trace index relative to the `position`.
                  function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) {
                      uint256 msb = depth(_position);
                      assembly {
                          let remaining := sub(_maxDepth, msb)
                          traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1))
                      }
                  }
                  /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                  ///         trace index.
                  /// @param _position The position to get the highest ancestor of.
                  /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                  function traceAncestor(Position _position) internal pure returns (Position ancestor_) {
                      // Create a field with only the lowest unset bit of `_position` set.
                      Position lsb;
                      assembly {
                          lsb := and(not(_position), add(_position, 1))
                      }
                      // Find the index of the lowest unset bit within the field.
                      uint256 msb = depth(lsb);
                      // The highest ancestor that commits to the same trace index is the original position
                      // shifted right by the index of the lowest unset bit.
                      assembly {
                          let a := shr(msb, _position)
                          // Bound the ancestor to the minimum gindex, 1.
                          ancestor_ := or(a, iszero(a))
                      }
                  }
                  /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                  ///         trace index, while still being below `_upperBoundExclusive`.
                  /// @param _position The position to get the highest ancestor of.
                  /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order
                  ///                             to not escape a sub-tree.
                  /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                  function traceAncestorBounded(
                      Position _position,
                      uint256 _upperBoundExclusive
                  )
                      internal
                      pure
                      returns (Position ancestor_)
                  {
                      // This function only works for positions that are below the upper bound.
                      if (_position.depth() <= _upperBoundExclusive) {
                          assembly {
                              // Revert with `ClaimAboveSplit()`
                              mstore(0x00, 0xb34b5c22)
                              revert(0x1C, 0x04)
                          }
                      }
                      // Grab the global trace ancestor.
                      ancestor_ = traceAncestor(_position);
                      // If the ancestor is above or at the upper bound, shift it to be below the upper bound.
                      // This should be a special case that only covers positions that commit to the final leaf
                      // in a sub-tree.
                      if (ancestor_.depth() <= _upperBoundExclusive) {
                          ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1);
                      }
                  }
                  /// @notice Get the move position of `_position`, which is the left child of:
                  ///         1. `_position` if `_isAttack` is true.
                  ///         2. `_position | 1` if `_isAttack` is false.
                  /// @param _position The position to get the relative attack/defense position of.
                  /// @param _isAttack Whether or not the move is an attack move.
                  /// @return move_ The move position relative to `position`.
                  function move(Position _position, bool _isAttack) internal pure returns (Position move_) {
                      assembly {
                          move_ := shl(1, or(iszero(_isAttack), _position))
                      }
                  }
                  /// @notice Get the value of a `Position` type in the form of the underlying uint128.
                  /// @param _position The position to get the value of.
                  /// @return raw_ The value of the `position` as a uint128 type.
                  function raw(Position _position) internal pure returns (uint128 raw_) {
                      assembly {
                          raw_ := _position
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library AddressUpgradeable {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @notice The length of an RLP item must be greater than zero to be decodable
              error EmptyItem();
              /// @notice The decoded item type for list is not a list item
              error UnexpectedString();
              /// @notice The RLP item has an invalid data remainder
              error InvalidDataRemainder();
              /// @notice Decoded item type for bytes is not a string item
              error UnexpectedList();
              /// @notice The length of the content must be greater than the RLP item length
              error ContentLengthMismatch();
              /// @notice Invalid RLP header for RLP item
              error InvalidHeader();
              

              File 9 of 9: Proxy
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Constants } from "../libraries/Constants.sol";
              /// @title Proxy
              /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
              ///         if the caller is address(0), meaning that the call originated from an off-chain
              ///         simulation.
              contract Proxy {
                  /// @notice An event that is emitted each time the implementation is changed. This event is part
                  ///         of the EIP-1967 specification.
                  /// @param implementation The address of the implementation contract
                  event Upgraded(address indexed implementation);
                  /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
                  ///         EIP-1967 specification.
                  /// @param previousAdmin The previous owner of the contract
                  /// @param newAdmin      The new owner of the contract
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
                  ///         eth_call to interact with this proxy without needing to use low-level storage
                  ///         inspection. We assume that nobody is able to trigger calls from address(0) during
                  ///         normal EVM execution.
                  modifier proxyCallIfNotAdmin() {
                      if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
                  ///         EIP-1967 admin storage slot so that accidental storage collision with the
                  ///         implementation is not possible.
                  /// @param _admin Address of the initial contract admin. Admin as the ability to access the
                  ///               transparent proxy interface.
                  constructor(address _admin) {
                      _changeAdmin(_admin);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /// @notice Set the implementation contract address. The code at the given address will execute
                  ///         when this contract is called.
                  /// @param _implementation Address of the implementation contract.
                  function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                      _setImplementation(_implementation);
                  }
                  /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
                  ///         atomic execution of initialization-based upgrades.
                  /// @param _implementation Address of the implementation contract.
                  /// @param _data           Calldata to delegatecall the new implementation with.
                  function upgradeToAndCall(
                      address _implementation,
                      bytes calldata _data
                  )
                      public
                      payable
                      virtual
                      proxyCallIfNotAdmin
                      returns (bytes memory)
                  {
                      _setImplementation(_implementation);
                      (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                      require(success, "Proxy: delegatecall to new implementation contract failed");
                      return returndata;
                  }
                  /// @notice Changes the owner of the proxy contract. Only callable by the owner.
                  /// @param _admin New owner of the proxy contract.
                  function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                      _changeAdmin(_admin);
                  }
                  /// @notice Gets the owner of the proxy contract.
                  /// @return Owner address.
                  function admin() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getAdmin();
                  }
                  //// @notice Queries the implementation address.
                  /// @return Implementation address.
                  function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getImplementation();
                  }
                  /// @notice Sets the implementation address.
                  /// @param _implementation New implementation address.
                  function _setImplementation(address _implementation) internal {
                      bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                      assembly {
                          sstore(proxyImplementation, _implementation)
                      }
                      emit Upgraded(_implementation);
                  }
                  /// @notice Changes the owner of the proxy contract.
                  /// @param _admin New owner of the proxy contract.
                  function _changeAdmin(address _admin) internal {
                      address previous = _getAdmin();
                      bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                      assembly {
                          sstore(proxyOwner, _admin)
                      }
                      emit AdminChanged(previous, _admin);
                  }
                  /// @notice Performs the proxy call via a delegatecall.
                  function _doProxyCall() internal {
                      address impl = _getImplementation();
                      require(impl != address(0), "Proxy: implementation not initialized");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) { revert(0x0, returndatasize()) }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /// @notice Queries the implementation address.
                  /// @return Implementation address.
                  function _getImplementation() internal view returns (address) {
                      address impl;
                      bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                      assembly {
                          impl := sload(proxyImplementation)
                      }
                      return impl;
                  }
                  /// @notice Queries the owner of the proxy contract.
                  /// @return Owner address.
                  function _getAdmin() internal view returns (address) {
                      address owner;
                      bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                      assembly {
                          owner := sload(proxyOwner)
                      }
                      return owner;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { ResourceMetering } from "../L1/ResourceMetering.sol";
              /// @title Constants
              /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
              ///         the stuff used in multiple contracts. Constants that only apply to a single contract
              ///         should be defined in that contract instead.
              library Constants {
                  /// @notice Special address to be used as the tx origin for gas estimation calls in the
                  ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                  ///         the minimum gas limit specified by the user is not actually enough to execute the
                  ///         given message and you're attempting to estimate the actual necessary gas limit. We
                  ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                  ///         never have any code on any EVM chain.
                  address internal constant ESTIMATION_ADDRESS = address(1);
                  /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                  ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                  ///         non-zero to reduce the gas cost of message passing transactions.
                  address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                  /// @notice The storage slot that holds the address of a proxy implementation.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                  bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /// @notice The storage slot that holds the address of the owner.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                  bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                  ///         for a production network.
                  function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                      ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                          maxResourceLimit: 20_000_000,
                          elasticityMultiplier: 10,
                          baseFeeMaxChangeDenominator: 8,
                          minimumBaseFee: 1 gwei,
                          systemTxMaxGas: 1_000_000,
                          maximumBaseFee: type(uint128).max
                      });
                      return config;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
              import { Burn } from "../libraries/Burn.sol";
              import { Arithmetic } from "../libraries/Arithmetic.sol";
              /// @custom:upgradeable
              /// @title ResourceMetering
              /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
              ///         updates automatically based on current demand.
              abstract contract ResourceMetering is Initializable {
                  /// @notice Represents the various parameters that control the way in which resources are
                  ///         metered. Corresponds to the EIP-1559 resource metering system.
                  /// @custom:field prevBaseFee   Base fee from the previous block(s).
                  /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                  /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                  ///         market. These values should be set with care as it is possible to set them in
                  ///         a way that breaks the deposit gas market. The target resource limit is defined as
                  ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                  ///         single word. There is additional space for additions in the future.
                  /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                  ///                                            can be purchased per block.
                  /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                  ///                                            the resource limit.
                  /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                  /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                  ///                                            value.
                  /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                  ///                                            transaction. This should be set to the same
                  ///                                            number that the op-node sets as the gas limit
                  ///                                            for the system transaction.
                  /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                  ///                                            value.
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  /// @notice EIP-1559 style gas parameters.
                  ResourceParams public params;
                  /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                  uint256[48] private __gap;
                  /// @notice Meters access to a function based an amount of a requested resource.
                  /// @param _amount Amount of the resource requested.
                  modifier metered(uint64 _amount) {
                      // Record initial gas amount so we can refund for it later.
                      uint256 initialGas = gasleft();
                      // Run the underlying function.
                      _;
                      // Run the metering function.
                      _metered(_amount, initialGas);
                  }
                  /// @notice An internal function that holds all of the logic for metering a resource.
                  /// @param _amount     Amount of the resource requested.
                  /// @param _initialGas The amount of gas before any modifier execution.
                  function _metered(uint64 _amount, uint256 _initialGas) internal {
                      // Update block number and base fee if necessary.
                      uint256 blockDiff = block.number - params.prevBlockNum;
                      ResourceConfig memory config = _resourceConfig();
                      int256 targetResourceLimit =
                          int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                      if (blockDiff > 0) {
                          // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                          // at which deposits can be created and therefore limit the potential for deposits to
                          // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                          int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                          int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                              / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                          // Update base fee by adding the base fee delta and clamp the resulting value between
                          // min and max.
                          int256 newBaseFee = Arithmetic.clamp({
                              _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                          // If we skipped more than one block, we also need to account for every empty block.
                          // Empty block means there was no demand for deposits in that block, so we should
                          // reflect this lack of demand in the fee.
                          if (blockDiff > 1) {
                              // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                              // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                              // between min and max.
                              newBaseFee = Arithmetic.clamp({
                                  _value: Arithmetic.cdexp({
                                      _coefficient: newBaseFee,
                                      _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                      _exponent: int256(blockDiff - 1)
                                  }),
                                  _min: int256(uint256(config.minimumBaseFee)),
                                  _max: int256(uint256(config.maximumBaseFee))
                              });
                          }
                          // Update new base fee, reset bought gas, and update block number.
                          params.prevBaseFee = uint128(uint256(newBaseFee));
                          params.prevBoughtGas = 0;
                          params.prevBlockNum = uint64(block.number);
                      }
                      // Make sure we can actually buy the resource amount requested by the user.
                      params.prevBoughtGas += _amount;
                      require(
                          int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                          "ResourceMetering: cannot buy more gas than available gas limit"
                      );
                      // Determine the amount of ETH to be paid.
                      uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                      // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                      // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                      // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                      // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                      // during any 1 day period in the last 5 years, so should be fine.
                      uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                      // Give the user a refund based on the amount of gas they used to do all of the work up to
                      // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                      // effectively like a dynamic stipend (with a minimum value).
                      uint256 usedGas = _initialGas - gasleft();
                      if (gasCost > usedGas) {
                          Burn.gas(gasCost - usedGas);
                      }
                  }
                  /// @notice Virtual function that returns the resource config.
                  ///         Contracts that inherit this contract must implement this function.
                  /// @return ResourceConfig
                  function _resourceConfig() internal virtual returns (ResourceConfig memory);
                  /// @notice Sets initial resource parameter values.
                  ///         This function must either be called by the initializer function of an upgradeable
                  ///         child contract.
                  // solhint-disable-next-line func-name-mixedcase
                  function __ResourceMetering_init() internal onlyInitializing {
                      params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/Address.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard math utilities missing in the Solidity language.
               */
              library Math {
                  enum Rounding {
                      Down, // Toward negative infinity
                      Up, // Toward infinity
                      Zero // Toward zero
                  }
                  /**
                   * @dev Returns the largest of two numbers.
                   */
                  function max(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two numbers.
                   */
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two numbers. The result is rounded towards
                   * zero.
                   */
                  function average(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b) / 2 can overflow.
                      return (a & b) + (a ^ b) / 2;
                  }
                  /**
                   * @dev Returns the ceiling of the division of two numbers.
                   *
                   * This differs from standard division with `/` in that it rounds up instead
                   * of rounding down.
                   */
                  function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b - 1) / b can overflow on addition, so we distribute.
                      return a == 0 ? 0 : (a - 1) / b + 1;
                  }
                  /**
                   * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                   * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                   * with further edits by Uniswap Labs also under MIT license.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 result) {
                      unchecked {
                          // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                          // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                          // variables such that product = prod1 * 2^256 + prod0.
                          uint256 prod0; // Least significant 256 bits of the product
                          uint256 prod1; // Most significant 256 bits of the product
                          assembly {
                              let mm := mulmod(x, y, not(0))
                              prod0 := mul(x, y)
                              prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                          }
                          // Handle non-overflow cases, 256 by 256 division.
                          if (prod1 == 0) {
                              return prod0 / denominator;
                          }
                          // Make sure the result is less than 2^256. Also prevents denominator == 0.
                          require(denominator > prod1);
                          ///////////////////////////////////////////////
                          // 512 by 256 division.
                          ///////////////////////////////////////////////
                          // Make division exact by subtracting the remainder from [prod1 prod0].
                          uint256 remainder;
                          assembly {
                              // Compute remainder using mulmod.
                              remainder := mulmod(x, y, denominator)
                              // Subtract 256 bit number from 512 bit number.
                              prod1 := sub(prod1, gt(remainder, prod0))
                              prod0 := sub(prod0, remainder)
                          }
                          // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                          // See https://cs.stackexchange.com/q/138556/92363.
                          // Does not overflow because the denominator cannot be zero at this stage in the function.
                          uint256 twos = denominator & (~denominator + 1);
                          assembly {
                              // Divide denominator by twos.
                              denominator := div(denominator, twos)
                              // Divide [prod1 prod0] by twos.
                              prod0 := div(prod0, twos)
                              // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                              twos := add(div(sub(0, twos), twos), 1)
                          }
                          // Shift in bits from prod1 into prod0.
                          prod0 |= prod1 * twos;
                          // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                          // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                          // four bits. That is, denominator * inv = 1 mod 2^4.
                          uint256 inverse = (3 * denominator) ^ 2;
                          // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                          // in modular arithmetic, doubling the correct bits in each step.
                          inverse *= 2 - denominator * inverse; // inverse mod 2^8
                          inverse *= 2 - denominator * inverse; // inverse mod 2^16
                          inverse *= 2 - denominator * inverse; // inverse mod 2^32
                          inverse *= 2 - denominator * inverse; // inverse mod 2^64
                          inverse *= 2 - denominator * inverse; // inverse mod 2^128
                          inverse *= 2 - denominator * inverse; // inverse mod 2^256
                          // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                          // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                          // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                          // is no longer required.
                          result = prod0 * inverse;
                          return result;
                      }
                  }
                  /**
                   * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator,
                      Rounding rounding
                  ) internal pure returns (uint256) {
                      uint256 result = mulDiv(x, y, denominator);
                      if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                          result += 1;
                      }
                      return result;
                  }
                  /**
                   * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                   *
                   * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                   */
                  function sqrt(uint256 a) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                      // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                      // `msb(a) <= a < 2*msb(a)`.
                      // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                      // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                      // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                      // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                      uint256 result = 1;
                      uint256 x = a;
                      if (x >> 128 > 0) {
                          x >>= 128;
                          result <<= 64;
                      }
                      if (x >> 64 > 0) {
                          x >>= 64;
                          result <<= 32;
                      }
                      if (x >> 32 > 0) {
                          x >>= 32;
                          result <<= 16;
                      }
                      if (x >> 16 > 0) {
                          x >>= 16;
                          result <<= 8;
                      }
                      if (x >> 8 > 0) {
                          x >>= 8;
                          result <<= 4;
                      }
                      if (x >> 4 > 0) {
                          x >>= 4;
                          result <<= 2;
                      }
                      if (x >> 2 > 0) {
                          result <<= 1;
                      }
                      // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                      // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                      // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                      // into the expected uint128 result.
                      unchecked {
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          return min(result, a / result);
                      }
                  }
                  /**
                   * @notice Calculates sqrt(a), following the selected rounding direction.
                   */
                  function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                      uint256 result = sqrt(a);
                      if (rounding == Rounding.Up && result * result < a) {
                          result += 1;
                      }
                      return result;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @title Burn
              /// @notice Utilities for burning stuff.
              library Burn {
                  /// @notice Burns a given amount of ETH.
                  /// @param _amount Amount of ETH to burn.
                  function eth(uint256 _amount) internal {
                      new Burner{ value: _amount }();
                  }
                  /// @notice Burns a given amount of gas.
                  /// @param _amount Amount of gas to burn.
                  function gas(uint256 _amount) internal view {
                      uint256 i = 0;
                      uint256 initialGas = gasleft();
                      while (initialGas - gasleft() < _amount) {
                          ++i;
                      }
                  }
              }
              /// @title Burner
              /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
              ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
              ///         from the circulating supply.
              contract Burner {
                  constructor() payable {
                      selfdestruct(payable(address(this)));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
              import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
              /// @title Arithmetic
              /// @notice Even more math than before.
              library Arithmetic {
                  /// @notice Clamps a value between a minimum and maximum.
                  /// @param _value The value to clamp.
                  /// @param _min   The minimum value.
                  /// @param _max   The maximum value.
                  /// @return The clamped value.
                  function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                      return SignedMath.min(SignedMath.max(_value, _min), _max);
                  }
                  /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                  ///         Returns the result of: c * (1 - 1/d)^exp.
                  /// @param _coefficient Coefficient of the function.
                  /// @param _denominator Fractional denominator.
                  /// @param _exponent    Power function exponent.
                  /// @return Result of c * (1 - 1/d)^exp.
                  function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                      return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard signed math utilities missing in the Solidity language.
               */
              library SignedMath {
                  /**
                   * @dev Returns the largest of two signed numbers.
                   */
                  function max(int256 a, int256 b) internal pure returns (int256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two signed numbers.
                   */
                  function min(int256 a, int256 b) internal pure returns (int256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two signed numbers without overflow.
                   * The result is rounded towards zero.
                   */
                  function average(int256 a, int256 b) internal pure returns (int256) {
                      // Formula from the book "Hacker's Delight"
                      int256 x = (a & b) + ((a ^ b) >> 1);
                      return x + (int256(uint256(x) >> 255) & (a ^ b));
                  }
                  /**
                   * @dev Returns the absolute unsigned value of a signed value.
                   */
                  function abs(int256 n) internal pure returns (uint256) {
                      unchecked {
                          // must be unchecked in order to support `n = type(int256).min`
                          return uint256(n >= 0 ? n : -n);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.8.0;
              /// @notice Arithmetic library with operations for fixed-point numbers.
              /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
              library FixedPointMathLib {
                  /*//////////////////////////////////////////////////////////////
                                  SIMPLIFIED FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                  function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                  }
                  function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                  }
                  function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                  }
                  function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                  }
                  function powWad(int256 x, int256 y) internal pure returns (int256) {
                      // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                      return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                  }
                  function expWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          // When the result is < 0.5 we return zero. This happens when
                          // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                          if (x <= -42139678854452767551) return 0;
                          // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                          // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                          if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                          // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                          // for more intermediate precision and a binary basis. This base conversion
                          // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                          x = (x << 78) / 5**18;
                          // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                          // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                          // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                          int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                          x = x - k * 54916777467707473351141471128;
                          // k is in the range [-61, 195].
                          // Evaluate using a (6, 7)-term rational approximation.
                          // p is made monic, we'll multiply by a scale factor later.
                          int256 y = x + 1346386616545796478920950773328;
                          y = ((y * x) >> 96) + 57155421227552351082224309758442;
                          int256 p = y + x - 94201549194550492254356042504812;
                          p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                          p = p * x + (4385272521454847904659076985693276 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          int256 q = x - 2855989394907223263936484059900;
                          q = ((q * x) >> 96) + 50020603652535783019961831881945;
                          q = ((q * x) >> 96) - 533845033583426703283633433725380;
                          q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                          q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                          q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial won't have zeros in the domain as all its roots are complex.
                              // No scaling is necessary because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r should be in the range (0.09, 0.25) * 2**96.
                          // We now need to multiply r by:
                          // * the scale factor s = ~6.031367120.
                          // * the 2**k factor from the range reduction.
                          // * the 1e18 / 2**96 factor for base conversion.
                          // We do this all at once, with an intermediate result in 2**213
                          // basis, so the final right shift is always by a positive amount.
                          r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                      }
                  }
                  function lnWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          require(x > 0, "UNDEFINED");
                          // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                          // We do this by multiplying by 2**96 / 10**18. But since
                          // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                          // and add ln(2**96 / 10**18) at the end.
                          // Reduce range of x to (1, 2) * 2**96
                          // ln(2^k * x) = k * ln(2) + ln(x)
                          int256 k = int256(log2(uint256(x))) - 96;
                          x <<= uint256(159 - k);
                          x = int256(uint256(x) >> 159);
                          // Evaluate using a (8, 8)-term rational approximation.
                          // p is made monic, we will multiply by a scale factor later.
                          int256 p = x + 3273285459638523848632254066296;
                          p = ((p * x) >> 96) + 24828157081833163892658089445524;
                          p = ((p * x) >> 96) + 43456485725739037958740375743393;
                          p = ((p * x) >> 96) - 11111509109440967052023855526967;
                          p = ((p * x) >> 96) - 45023709667254063763336534515857;
                          p = ((p * x) >> 96) - 14706773417378608786704636184526;
                          p = p * x - (795164235651350426258249787498 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          // q is monic by convention.
                          int256 q = x + 5573035233440673466300451813936;
                          q = ((q * x) >> 96) + 71694874799317883764090561454958;
                          q = ((q * x) >> 96) + 283447036172924575727196451306956;
                          q = ((q * x) >> 96) + 401686690394027663651624208769553;
                          q = ((q * x) >> 96) + 204048457590392012362485061816622;
                          q = ((q * x) >> 96) + 31853899698501571402653359427138;
                          q = ((q * x) >> 96) + 909429971244387300277376558375;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial is known not to have zeros in the domain.
                              // No scaling required because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r is in the range (0, 0.125) * 2**96
                          // Finalization, we need to:
                          // * multiply by the scale factor s = 5.549…
                          // * add ln(2**96 / 10**18)
                          // * add k * ln(2)
                          // * multiply by 10**18 / 2**96 = 5**18 >> 78
                          // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                          r *= 1677202110996718588342820967067443963516166;
                          // add ln(2) * k * 5e18 * 2**192
                          r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                          // add ln(2**96 / 10**18) * 5e18 * 2**192
                          r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                          // base conversion: mul 2**18 / 2**192
                          r >>= 174;
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                  LOW LEVEL FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  function mulDivDown(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // Divide z by the denominator.
                          z := div(z, denominator)
                      }
                  }
                  function mulDivUp(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // First, divide z - 1 by the denominator and add 1.
                          // We allow z - 1 to underflow if z is 0, because we multiply the
                          // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                          z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                      }
                  }
                  function rpow(
                      uint256 x,
                      uint256 n,
                      uint256 scalar
                  ) internal pure returns (uint256 z) {
                      assembly {
                          switch x
                          case 0 {
                              switch n
                              case 0 {
                                  // 0 ** 0 = 1
                                  z := scalar
                              }
                              default {
                                  // 0 ** n = 0
                                  z := 0
                              }
                          }
                          default {
                              switch mod(n, 2)
                              case 0 {
                                  // If n is even, store scalar in z for now.
                                  z := scalar
                              }
                              default {
                                  // If n is odd, store x in z for now.
                                  z := x
                              }
                              // Shifting right by 1 is like dividing by 2.
                              let half := shr(1, scalar)
                              for {
                                  // Shift n right by 1 before looping to halve it.
                                  n := shr(1, n)
                              } n {
                                  // Shift n right by 1 each iteration to halve it.
                                  n := shr(1, n)
                              } {
                                  // Revert immediately if x ** 2 would overflow.
                                  // Equivalent to iszero(eq(div(xx, x), x)) here.
                                  if shr(128, x) {
                                      revert(0, 0)
                                  }
                                  // Store x squared.
                                  let xx := mul(x, x)
                                  // Round to the nearest number.
                                  let xxRound := add(xx, half)
                                  // Revert if xx + half overflowed.
                                  if lt(xxRound, xx) {
                                      revert(0, 0)
                                  }
                                  // Set x to scaled xxRound.
                                  x := div(xxRound, scalar)
                                  // If n is even:
                                  if mod(n, 2) {
                                      // Compute z * x.
                                      let zx := mul(z, x)
                                      // If z * x overflowed:
                                      if iszero(eq(div(zx, x), z)) {
                                          // Revert if x is non-zero.
                                          if iszero(iszero(x)) {
                                              revert(0, 0)
                                          }
                                      }
                                      // Round to the nearest number.
                                      let zxRound := add(zx, half)
                                      // Revert if zx + half overflowed.
                                      if lt(zxRound, zx) {
                                          revert(0, 0)
                                      }
                                      // Return properly scaled zxRound.
                                      z := div(zxRound, scalar)
                                  }
                              }
                          }
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                      GENERAL NUMBER UTILITIES
                  //////////////////////////////////////////////////////////////*/
                  function sqrt(uint256 x) internal pure returns (uint256 z) {
                      assembly {
                          let y := x // We start y at x, which will help us make our initial estimate.
                          z := 181 // The "correct" value is 1, but this saves a multiplication later.
                          // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                          // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                          // We check y >= 2^(k + 8) but shift right by k bits
                          // each branch to ensure that if x >= 256, then y >= 256.
                          if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                              y := shr(128, y)
                              z := shl(64, z)
                          }
                          if iszero(lt(y, 0x1000000000000000000)) {
                              y := shr(64, y)
                              z := shl(32, z)
                          }
                          if iszero(lt(y, 0x10000000000)) {
                              y := shr(32, y)
                              z := shl(16, z)
                          }
                          if iszero(lt(y, 0x1000000)) {
                              y := shr(16, y)
                              z := shl(8, z)
                          }
                          // Goal was to get z*z*y within a small factor of x. More iterations could
                          // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                          // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                          // That's not possible if x < 256 but we can just verify those cases exhaustively.
                          // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                          // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                          // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                          // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                          // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                          // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                          // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                          // There is no overflow risk here since y < 2^136 after the first branch above.
                          z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                          // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          // If x+1 is a perfect square, the Babylonian method cycles between
                          // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                          // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                          // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                          // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                          z := sub(z, lt(div(x, z), z))
                      }
                  }
                  function log2(uint256 x) internal pure returns (uint256 r) {
                      require(x > 0, "UNDEFINED");
                      assembly {
                          r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                          r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                          r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                          r := or(r, shl(4, lt(0xffff, shr(r, x))))
                          r := or(r, shl(3, lt(0xff, shr(r, x))))
                          r := or(r, shl(2, lt(0xf, shr(r, x))))
                          r := or(r, shl(1, lt(0x3, shr(r, x))))
                          r := or(r, lt(0x1, shr(r, x)))
                      }
                  }
              }