ETH Price: $1,901.86 (-0.50%)

Transaction Decoder

Block:
22019341 at Mar-10-2025 10:05:59 PM +UTC
Transaction Fee:
0.000255165290828744 ETH $0.49
Gas Used:
142,283 Gas / 1.793364568 Gwei

Emitted Events:

243 WETH9.Transfer( src=Proxy, dst=0x1d933Fd71FF07E69f066d50B39a7C34EB3b69F05, wad=20000000000000000000 )
244 Proxy.0x442e715f626346e8c54381002da614f62bee8d27386535b2521ec8540898556e( 0x442e715f626346e8c54381002da614f62bee8d27386535b2521ec8540898556e, d83083e1126ff0c7d89ea0c83ee732511364fc888a8b6dea1fed5f3f83a0c1c0, 0000000000000000000000000000000000000000000000000000000000000000 )
245 VotingToken.Transfer( from=Proxy, to=0x774bFF0CCD2f7546B67D4071DEF9Ba154bA549B1, value=19000000000000000000000 )
246 Proxy.0x442e715f626346e8c54381002da614f62bee8d27386535b2521ec8540898556e( 0x442e715f626346e8c54381002da614f62bee8d27386535b2521ec8540898556e, a689c3ee6417f5e0f76b3bf503227f8ef86d415fa4ffbce932eb8d63494228eb, 0000000000000000000000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x04Fa0d23...E572eF828
0x8180D59b...aBFFdA44a
0x837219D7...804E5c5fe
0.159318797743283177 Eth
Nonce: 474
0.159063632452454433 Eth
Nonce: 475
0.000255165290828744
(beaverbuild)
15.944822549232398347 Eth15.944836777532398347 Eth0.0000142283
0xC02aaA39...83C756Cc2

Execution Trace

MultiSendCallOnly.multiSend( transactions=0x008180D59B7175D4064BDFA8138A58E9BABFFDA44A000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002846A761202000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001C00000000000000000000000000000000000000000000000000000000000000044A9059CBB0000000000000000000000001D933FD71FF07E69F066D50B39A7C34EB3B69F05000000000000000000000000000000000000000000000001158E460913D000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000823627486003B8DCD0CC26FECFAE57FF7925BCFC72BD4401E077BDB90AAE9471E810E0004B8A46B839CC25BB016C76C3B542EADE705289DC877DFCEAA223860D071C4EF0822F986B5DD380F5BF9D972DB0DA0E4843EDD0E0E3E283C67D8A066D66E248AF8CA8E64224513F6B49A6A9AE09C105FA615AC8B39BC00515AAF939BE88221C000000000000000000000000000000000000000000000000000000000000008180D59B7175D4064BDFA8138A58E9BABFFDA44A000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002846A76120200000000000000000000000004FA0D235C4ABF4BCF4787AF4CF447DE572EF8280000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001C00000000000000000000000000000000000000000000000000000000000000044A9059CBB000000000000000000000000774BFF0CCD2F7546B67D4071DEF9BA154BA549B1000000000000000000000000000000000000000000000405FDF7E5AF85E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000829D2773B5A5F635FDD9616538450744F3C69483EB0BF1411222E89F395C8C794F7732217CFC497D0D8D4710A8923684B56605E2BE59452B79FFF0ECAE9635C5FF1B9E840FE845BDFC532652639FD2138E184198C4EA579EE5D56B39454E7A3D87A348B50D347AE2FA17DDC2AFE894A2CCFDC8854755E34DA9A937D757507CD0AB3D1B000000000000000000000000000000000000000000000000000000000000 )
  • Proxy.6a761202( )
    • GnosisSafe.execTransaction( to=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, value=0, data=0xA9059CBB0000000000000000000000001D933FD71FF07E69F066D50B39A7C34EB3B69F05000000000000000000000000000000000000000000000001158E460913D00000, operation=0, safeTxGas=0, baseGas=0, gasPrice=0, gasToken=0x0000000000000000000000000000000000000000, refundReceiver=0x0000000000000000000000000000000000000000, signatures=0x3627486003B8DCD0CC26FECFAE57FF7925BCFC72BD4401E077BDB90AAE9471E810E0004B8A46B839CC25BB016C76C3B542EADE705289DC877DFCEAA223860D071C4EF0822F986B5DD380F5BF9D972DB0DA0E4843EDD0E0E3E283C67D8A066D66E248AF8CA8E64224513F6B49A6A9AE09C105FA615AC8B39BC00515AAF939BE88221C ) => ( success=True )
      • Null: 0x000...001.d83083e1( )
      • Null: 0x000...001.d83083e1( )
      • WETH9.transfer( dst=0x1d933Fd71FF07E69f066d50B39a7C34EB3b69F05, wad=20000000000000000000 ) => ( True )
      • Proxy.6a761202( )
        • GnosisSafe.execTransaction( to=0x04Fa0d235C4abf4BcF4787aF4CF447DE572eF828, value=0, data=0xA9059CBB000000000000000000000000774BFF0CCD2F7546B67D4071DEF9BA154BA549B1000000000000000000000000000000000000000000000405FDF7E5AF85E00000, operation=0, safeTxGas=0, baseGas=0, gasPrice=0, gasToken=0x0000000000000000000000000000000000000000, refundReceiver=0x0000000000000000000000000000000000000000, signatures=0x9D2773B5A5F635FDD9616538450744F3C69483EB0BF1411222E89F395C8C794F7732217CFC497D0D8D4710A8923684B56605E2BE59452B79FFF0ECAE9635C5FF1B9E840FE845BDFC532652639FD2138E184198C4EA579EE5D56B39454E7A3D87A348B50D347AE2FA17DDC2AFE894A2CCFDC8854755E34DA9A937D757507CD0AB3D1B ) => ( success=True )
          • Null: 0x000...001.a689c3ee( )
          • Null: 0x000...001.a689c3ee( )
          • VotingToken.transfer( recipient=0x774bFF0CCD2f7546B67D4071DEF9Ba154bA549B1, amount=19000000000000000000000 ) => ( True )
            File 1 of 5: MultiSendCallOnly
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            /// @title Multi Send Call Only - Allows to batch multiple transactions into one, but only calls
            /// @author Stefan George - <[email protected]>
            /// @author Richard Meissner - <[email protected]>
            /// @notice The guard logic is not required here as this contract doesn't support nested delegate calls
            contract MultiSendCallOnly {
                /// @dev Sends multiple transactions and reverts all if one fails.
                /// @param transactions Encoded transactions. Each transaction is encoded as a packed bytes of
                ///                     operation has to be uint8(0) in this version (=> 1 byte),
                ///                     to as a address (=> 20 bytes),
                ///                     value as a uint256 (=> 32 bytes),
                ///                     data length as a uint256 (=> 32 bytes),
                ///                     data as bytes.
                ///                     see abi.encodePacked for more information on packed encoding
                /// @notice The code is for most part the same as the normal MultiSend (to keep compatibility),
                ///         but reverts if a transaction tries to use a delegatecall.
                /// @notice This method is payable as delegatecalls keep the msg.value from the previous call
                ///         If the calling method (e.g. execTransaction) received ETH this would revert otherwise
                function multiSend(bytes memory transactions) public payable {
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let length := mload(transactions)
                        let i := 0x20
                        for {
                            // Pre block is not used in "while mode"
                        } lt(i, length) {
                            // Post block is not used in "while mode"
                        } {
                            // First byte of the data is the operation.
                            // We shift by 248 bits (256 - 8 [operation byte]) it right since mload will always load 32 bytes (a word).
                            // This will also zero out unused data.
                            let operation := shr(0xf8, mload(add(transactions, i)))
                            // We offset the load address by 1 byte (operation byte)
                            // We shift it right by 96 bits (256 - 160 [20 address bytes]) to right-align the data and zero out unused data.
                            let to := shr(0x60, mload(add(transactions, add(i, 0x01))))
                            // We offset the load address by 21 byte (operation byte + 20 address bytes)
                            let value := mload(add(transactions, add(i, 0x15)))
                            // We offset the load address by 53 byte (operation byte + 20 address bytes + 32 value bytes)
                            let dataLength := mload(add(transactions, add(i, 0x35)))
                            // We offset the load address by 85 byte (operation byte + 20 address bytes + 32 value bytes + 32 data length bytes)
                            let data := add(transactions, add(i, 0x55))
                            let success := 0
                            switch operation
                                case 0 {
                                    success := call(gas(), to, value, data, dataLength, 0, 0)
                                }
                                // This version does not allow delegatecalls
                                case 1 {
                                    revert(0, 0)
                                }
                            if eq(success, 0) {
                                revert(0, 0)
                            }
                            // Next entry starts at 85 byte + data length
                            i := add(i, add(0x55, dataLength))
                        }
                    }
                }
            }
            

            File 2 of 5: Proxy
            pragma solidity ^0.5.3;
            
            /// @title Proxy - Generic proxy contract allows to execute all transactions applying the code of a master contract.
            /// @author Stefan George - <[email protected]>
            /// @author Richard Meissner - <[email protected]>
            contract Proxy {
            
                // masterCopy always needs to be first declared variable, to ensure that it is at the same location in the contracts to which calls are delegated.
                // To reduce deployment costs this variable is internal and needs to be retrieved via `getStorageAt`
                address internal masterCopy;
            
                /// @dev Constructor function sets address of master copy contract.
                /// @param _masterCopy Master copy address.
                constructor(address _masterCopy)
                    public
                {
                    require(_masterCopy != address(0), "Invalid master copy address provided");
                    masterCopy = _masterCopy;
                }
            
                /// @dev Fallback function forwards all transactions and returns all received return data.
                function ()
                    external
                    payable
                {
                    // solium-disable-next-line security/no-inline-assembly
                    assembly {
                        let masterCopy := and(sload(0), 0xffffffffffffffffffffffffffffffffffffffff)
                        // 0xa619486e == keccak("masterCopy()"). The value is right padded to 32-bytes with 0s
                        if eq(calldataload(0), 0xa619486e00000000000000000000000000000000000000000000000000000000) {
                            mstore(0, masterCopy)
                            return(0, 0x20)
                        }
                        calldatacopy(0, 0, calldatasize())
                        let success := delegatecall(gas, masterCopy, 0, calldatasize(), 0, 0)
                        returndatacopy(0, 0, returndatasize())
                        if eq(success, 0) { revert(0, returndatasize()) }
                        return(0, returndatasize())
                    }
                }
            }

            File 3 of 5: WETH9
            // Copyright (C) 2015, 2016, 2017 Dapphub
            
            // This program is free software: you can redistribute it and/or modify
            // it under the terms of the GNU General Public License as published by
            // the Free Software Foundation, either version 3 of the License, or
            // (at your option) any later version.
            
            // This program is distributed in the hope that it will be useful,
            // but WITHOUT ANY WARRANTY; without even the implied warranty of
            // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
            // GNU General Public License for more details.
            
            // You should have received a copy of the GNU General Public License
            // along with this program.  If not, see <http://www.gnu.org/licenses/>.
            
            pragma solidity ^0.4.18;
            
            contract WETH9 {
                string public name     = "Wrapped Ether";
                string public symbol   = "WETH";
                uint8  public decimals = 18;
            
                event  Approval(address indexed src, address indexed guy, uint wad);
                event  Transfer(address indexed src, address indexed dst, uint wad);
                event  Deposit(address indexed dst, uint wad);
                event  Withdrawal(address indexed src, uint wad);
            
                mapping (address => uint)                       public  balanceOf;
                mapping (address => mapping (address => uint))  public  allowance;
            
                function() public payable {
                    deposit();
                }
                function deposit() public payable {
                    balanceOf[msg.sender] += msg.value;
                    Deposit(msg.sender, msg.value);
                }
                function withdraw(uint wad) public {
                    require(balanceOf[msg.sender] >= wad);
                    balanceOf[msg.sender] -= wad;
                    msg.sender.transfer(wad);
                    Withdrawal(msg.sender, wad);
                }
            
                function totalSupply() public view returns (uint) {
                    return this.balance;
                }
            
                function approve(address guy, uint wad) public returns (bool) {
                    allowance[msg.sender][guy] = wad;
                    Approval(msg.sender, guy, wad);
                    return true;
                }
            
                function transfer(address dst, uint wad) public returns (bool) {
                    return transferFrom(msg.sender, dst, wad);
                }
            
                function transferFrom(address src, address dst, uint wad)
                    public
                    returns (bool)
                {
                    require(balanceOf[src] >= wad);
            
                    if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                        require(allowance[src][msg.sender] >= wad);
                        allowance[src][msg.sender] -= wad;
                    }
            
                    balanceOf[src] -= wad;
                    balanceOf[dst] += wad;
            
                    Transfer(src, dst, wad);
            
                    return true;
                }
            }
            
            
            /*
                                GNU GENERAL PUBLIC LICENSE
                                   Version 3, 29 June 2007
            
             Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
             Everyone is permitted to copy and distribute verbatim copies
             of this license document, but changing it is not allowed.
            
                                        Preamble
            
              The GNU General Public License is a free, copyleft license for
            software and other kinds of works.
            
              The licenses for most software and other practical works are designed
            to take away your freedom to share and change the works.  By contrast,
            the GNU General Public License is intended to guarantee your freedom to
            share and change all versions of a program--to make sure it remains free
            software for all its users.  We, the Free Software Foundation, use the
            GNU General Public License for most of our software; it applies also to
            any other work released this way by its authors.  You can apply it to
            your programs, too.
            
              When we speak of free software, we are referring to freedom, not
            price.  Our General Public Licenses are designed to make sure that you
            have the freedom to distribute copies of free software (and charge for
            them if you wish), that you receive source code or can get it if you
            want it, that you can change the software or use pieces of it in new
            free programs, and that you know you can do these things.
            
              To protect your rights, we need to prevent others from denying you
            these rights or asking you to surrender the rights.  Therefore, you have
            certain responsibilities if you distribute copies of the software, or if
            you modify it: responsibilities to respect the freedom of others.
            
              For example, if you distribute copies of such a program, whether
            gratis or for a fee, you must pass on to the recipients the same
            freedoms that you received.  You must make sure that they, too, receive
            or can get the source code.  And you must show them these terms so they
            know their rights.
            
              Developers that use the GNU GPL protect your rights with two steps:
            (1) assert copyright on the software, and (2) offer you this License
            giving you legal permission to copy, distribute and/or modify it.
            
              For the developers' and authors' protection, the GPL clearly explains
            that there is no warranty for this free software.  For both users' and
            authors' sake, the GPL requires that modified versions be marked as
            changed, so that their problems will not be attributed erroneously to
            authors of previous versions.
            
              Some devices are designed to deny users access to install or run
            modified versions of the software inside them, although the manufacturer
            can do so.  This is fundamentally incompatible with the aim of
            protecting users' freedom to change the software.  The systematic
            pattern of such abuse occurs in the area of products for individuals to
            use, which is precisely where it is most unacceptable.  Therefore, we
            have designed this version of the GPL to prohibit the practice for those
            products.  If such problems arise substantially in other domains, we
            stand ready to extend this provision to those domains in future versions
            of the GPL, as needed to protect the freedom of users.
            
              Finally, every program is threatened constantly by software patents.
            States should not allow patents to restrict development and use of
            software on general-purpose computers, but in those that do, we wish to
            avoid the special danger that patents applied to a free program could
            make it effectively proprietary.  To prevent this, the GPL assures that
            patents cannot be used to render the program non-free.
            
              The precise terms and conditions for copying, distribution and
            modification follow.
            
                                   TERMS AND CONDITIONS
            
              0. Definitions.
            
              "This License" refers to version 3 of the GNU General Public License.
            
              "Copyright" also means copyright-like laws that apply to other kinds of
            works, such as semiconductor masks.
            
              "The Program" refers to any copyrightable work licensed under this
            License.  Each licensee is addressed as "you".  "Licensees" and
            "recipients" may be individuals or organizations.
            
              To "modify" a work means to copy from or adapt all or part of the work
            in a fashion requiring copyright permission, other than the making of an
            exact copy.  The resulting work is called a "modified version" of the
            earlier work or a work "based on" the earlier work.
            
              A "covered work" means either the unmodified Program or a work based
            on the Program.
            
              To "propagate" a work means to do anything with it that, without
            permission, would make you directly or secondarily liable for
            infringement under applicable copyright law, except executing it on a
            computer or modifying a private copy.  Propagation includes copying,
            distribution (with or without modification), making available to the
            public, and in some countries other activities as well.
            
              To "convey" a work means any kind of propagation that enables other
            parties to make or receive copies.  Mere interaction with a user through
            a computer network, with no transfer of a copy, is not conveying.
            
              An interactive user interface displays "Appropriate Legal Notices"
            to the extent that it includes a convenient and prominently visible
            feature that (1) displays an appropriate copyright notice, and (2)
            tells the user that there is no warranty for the work (except to the
            extent that warranties are provided), that licensees may convey the
            work under this License, and how to view a copy of this License.  If
            the interface presents a list of user commands or options, such as a
            menu, a prominent item in the list meets this criterion.
            
              1. Source Code.
            
              The "source code" for a work means the preferred form of the work
            for making modifications to it.  "Object code" means any non-source
            form of a work.
            
              A "Standard Interface" means an interface that either is an official
            standard defined by a recognized standards body, or, in the case of
            interfaces specified for a particular programming language, one that
            is widely used among developers working in that language.
            
              The "System Libraries" of an executable work include anything, other
            than the work as a whole, that (a) is included in the normal form of
            packaging a Major Component, but which is not part of that Major
            Component, and (b) serves only to enable use of the work with that
            Major Component, or to implement a Standard Interface for which an
            implementation is available to the public in source code form.  A
            "Major Component", in this context, means a major essential component
            (kernel, window system, and so on) of the specific operating system
            (if any) on which the executable work runs, or a compiler used to
            produce the work, or an object code interpreter used to run it.
            
              The "Corresponding Source" for a work in object code form means all
            the source code needed to generate, install, and (for an executable
            work) run the object code and to modify the work, including scripts to
            control those activities.  However, it does not include the work's
            System Libraries, or general-purpose tools or generally available free
            programs which are used unmodified in performing those activities but
            which are not part of the work.  For example, Corresponding Source
            includes interface definition files associated with source files for
            the work, and the source code for shared libraries and dynamically
            linked subprograms that the work is specifically designed to require,
            such as by intimate data communication or control flow between those
            subprograms and other parts of the work.
            
              The Corresponding Source need not include anything that users
            can regenerate automatically from other parts of the Corresponding
            Source.
            
              The Corresponding Source for a work in source code form is that
            same work.
            
              2. Basic Permissions.
            
              All rights granted under this License are granted for the term of
            copyright on the Program, and are irrevocable provided the stated
            conditions are met.  This License explicitly affirms your unlimited
            permission to run the unmodified Program.  The output from running a
            covered work is covered by this License only if the output, given its
            content, constitutes a covered work.  This License acknowledges your
            rights of fair use or other equivalent, as provided by copyright law.
            
              You may make, run and propagate covered works that you do not
            convey, without conditions so long as your license otherwise remains
            in force.  You may convey covered works to others for the sole purpose
            of having them make modifications exclusively for you, or provide you
            with facilities for running those works, provided that you comply with
            the terms of this License in conveying all material for which you do
            not control copyright.  Those thus making or running the covered works
            for you must do so exclusively on your behalf, under your direction
            and control, on terms that prohibit them from making any copies of
            your copyrighted material outside their relationship with you.
            
              Conveying under any other circumstances is permitted solely under
            the conditions stated below.  Sublicensing is not allowed; section 10
            makes it unnecessary.
            
              3. Protecting Users' Legal Rights From Anti-Circumvention Law.
            
              No covered work shall be deemed part of an effective technological
            measure under any applicable law fulfilling obligations under article
            11 of the WIPO copyright treaty adopted on 20 December 1996, or
            similar laws prohibiting or restricting circumvention of such
            measures.
            
              When you convey a covered work, you waive any legal power to forbid
            circumvention of technological measures to the extent such circumvention
            is effected by exercising rights under this License with respect to
            the covered work, and you disclaim any intention to limit operation or
            modification of the work as a means of enforcing, against the work's
            users, your or third parties' legal rights to forbid circumvention of
            technological measures.
            
              4. Conveying Verbatim Copies.
            
              You may convey verbatim copies of the Program's source code as you
            receive it, in any medium, provided that you conspicuously and
            appropriately publish on each copy an appropriate copyright notice;
            keep intact all notices stating that this License and any
            non-permissive terms added in accord with section 7 apply to the code;
            keep intact all notices of the absence of any warranty; and give all
            recipients a copy of this License along with the Program.
            
              You may charge any price or no price for each copy that you convey,
            and you may offer support or warranty protection for a fee.
            
              5. Conveying Modified Source Versions.
            
              You may convey a work based on the Program, or the modifications to
            produce it from the Program, in the form of source code under the
            terms of section 4, provided that you also meet all of these conditions:
            
                a) The work must carry prominent notices stating that you modified
                it, and giving a relevant date.
            
                b) The work must carry prominent notices stating that it is
                released under this License and any conditions added under section
                7.  This requirement modifies the requirement in section 4 to
                "keep intact all notices".
            
                c) You must license the entire work, as a whole, under this
                License to anyone who comes into possession of a copy.  This
                License will therefore apply, along with any applicable section 7
                additional terms, to the whole of the work, and all its parts,
                regardless of how they are packaged.  This License gives no
                permission to license the work in any other way, but it does not
                invalidate such permission if you have separately received it.
            
                d) If the work has interactive user interfaces, each must display
                Appropriate Legal Notices; however, if the Program has interactive
                interfaces that do not display Appropriate Legal Notices, your
                work need not make them do so.
            
              A compilation of a covered work with other separate and independent
            works, which are not by their nature extensions of the covered work,
            and which are not combined with it such as to form a larger program,
            in or on a volume of a storage or distribution medium, is called an
            "aggregate" if the compilation and its resulting copyright are not
            used to limit the access or legal rights of the compilation's users
            beyond what the individual works permit.  Inclusion of a covered work
            in an aggregate does not cause this License to apply to the other
            parts of the aggregate.
            
              6. Conveying Non-Source Forms.
            
              You may convey a covered work in object code form under the terms
            of sections 4 and 5, provided that you also convey the
            machine-readable Corresponding Source under the terms of this License,
            in one of these ways:
            
                a) Convey the object code in, or embodied in, a physical product
                (including a physical distribution medium), accompanied by the
                Corresponding Source fixed on a durable physical medium
                customarily used for software interchange.
            
                b) Convey the object code in, or embodied in, a physical product
                (including a physical distribution medium), accompanied by a
                written offer, valid for at least three years and valid for as
                long as you offer spare parts or customer support for that product
                model, to give anyone who possesses the object code either (1) a
                copy of the Corresponding Source for all the software in the
                product that is covered by this License, on a durable physical
                medium customarily used for software interchange, for a price no
                more than your reasonable cost of physically performing this
                conveying of source, or (2) access to copy the
                Corresponding Source from a network server at no charge.
            
                c) Convey individual copies of the object code with a copy of the
                written offer to provide the Corresponding Source.  This
                alternative is allowed only occasionally and noncommercially, and
                only if you received the object code with such an offer, in accord
                with subsection 6b.
            
                d) Convey the object code by offering access from a designated
                place (gratis or for a charge), and offer equivalent access to the
                Corresponding Source in the same way through the same place at no
                further charge.  You need not require recipients to copy the
                Corresponding Source along with the object code.  If the place to
                copy the object code is a network server, the Corresponding Source
                may be on a different server (operated by you or a third party)
                that supports equivalent copying facilities, provided you maintain
                clear directions next to the object code saying where to find the
                Corresponding Source.  Regardless of what server hosts the
                Corresponding Source, you remain obligated to ensure that it is
                available for as long as needed to satisfy these requirements.
            
                e) Convey the object code using peer-to-peer transmission, provided
                you inform other peers where the object code and Corresponding
                Source of the work are being offered to the general public at no
                charge under subsection 6d.
            
              A separable portion of the object code, whose source code is excluded
            from the Corresponding Source as a System Library, need not be
            included in conveying the object code work.
            
              A "User Product" is either (1) a "consumer product", which means any
            tangible personal property which is normally used for personal, family,
            or household purposes, or (2) anything designed or sold for incorporation
            into a dwelling.  In determining whether a product is a consumer product,
            doubtful cases shall be resolved in favor of coverage.  For a particular
            product received by a particular user, "normally used" refers to a
            typical or common use of that class of product, regardless of the status
            of the particular user or of the way in which the particular user
            actually uses, or expects or is expected to use, the product.  A product
            is a consumer product regardless of whether the product has substantial
            commercial, industrial or non-consumer uses, unless such uses represent
            the only significant mode of use of the product.
            
              "Installation Information" for a User Product means any methods,
            procedures, authorization keys, or other information required to install
            and execute modified versions of a covered work in that User Product from
            a modified version of its Corresponding Source.  The information must
            suffice to ensure that the continued functioning of the modified object
            code is in no case prevented or interfered with solely because
            modification has been made.
            
              If you convey an object code work under this section in, or with, or
            specifically for use in, a User Product, and the conveying occurs as
            part of a transaction in which the right of possession and use of the
            User Product is transferred to the recipient in perpetuity or for a
            fixed term (regardless of how the transaction is characterized), the
            Corresponding Source conveyed under this section must be accompanied
            by the Installation Information.  But this requirement does not apply
            if neither you nor any third party retains the ability to install
            modified object code on the User Product (for example, the work has
            been installed in ROM).
            
              The requirement to provide Installation Information does not include a
            requirement to continue to provide support service, warranty, or updates
            for a work that has been modified or installed by the recipient, or for
            the User Product in which it has been modified or installed.  Access to a
            network may be denied when the modification itself materially and
            adversely affects the operation of the network or violates the rules and
            protocols for communication across the network.
            
              Corresponding Source conveyed, and Installation Information provided,
            in accord with this section must be in a format that is publicly
            documented (and with an implementation available to the public in
            source code form), and must require no special password or key for
            unpacking, reading or copying.
            
              7. Additional Terms.
            
              "Additional permissions" are terms that supplement the terms of this
            License by making exceptions from one or more of its conditions.
            Additional permissions that are applicable to the entire Program shall
            be treated as though they were included in this License, to the extent
            that they are valid under applicable law.  If additional permissions
            apply only to part of the Program, that part may be used separately
            under those permissions, but the entire Program remains governed by
            this License without regard to the additional permissions.
            
              When you convey a copy of a covered work, you may at your option
            remove any additional permissions from that copy, or from any part of
            it.  (Additional permissions may be written to require their own
            removal in certain cases when you modify the work.)  You may place
            additional permissions on material, added by you to a covered work,
            for which you have or can give appropriate copyright permission.
            
              Notwithstanding any other provision of this License, for material you
            add to a covered work, you may (if authorized by the copyright holders of
            that material) supplement the terms of this License with terms:
            
                a) Disclaiming warranty or limiting liability differently from the
                terms of sections 15 and 16 of this License; or
            
                b) Requiring preservation of specified reasonable legal notices or
                author attributions in that material or in the Appropriate Legal
                Notices displayed by works containing it; or
            
                c) Prohibiting misrepresentation of the origin of that material, or
                requiring that modified versions of such material be marked in
                reasonable ways as different from the original version; or
            
                d) Limiting the use for publicity purposes of names of licensors or
                authors of the material; or
            
                e) Declining to grant rights under trademark law for use of some
                trade names, trademarks, or service marks; or
            
                f) Requiring indemnification of licensors and authors of that
                material by anyone who conveys the material (or modified versions of
                it) with contractual assumptions of liability to the recipient, for
                any liability that these contractual assumptions directly impose on
                those licensors and authors.
            
              All other non-permissive additional terms are considered "further
            restrictions" within the meaning of section 10.  If the Program as you
            received it, or any part of it, contains a notice stating that it is
            governed by this License along with a term that is a further
            restriction, you may remove that term.  If a license document contains
            a further restriction but permits relicensing or conveying under this
            License, you may add to a covered work material governed by the terms
            of that license document, provided that the further restriction does
            not survive such relicensing or conveying.
            
              If you add terms to a covered work in accord with this section, you
            must place, in the relevant source files, a statement of the
            additional terms that apply to those files, or a notice indicating
            where to find the applicable terms.
            
              Additional terms, permissive or non-permissive, may be stated in the
            form of a separately written license, or stated as exceptions;
            the above requirements apply either way.
            
              8. Termination.
            
              You may not propagate or modify a covered work except as expressly
            provided under this License.  Any attempt otherwise to propagate or
            modify it is void, and will automatically terminate your rights under
            this License (including any patent licenses granted under the third
            paragraph of section 11).
            
              However, if you cease all violation of this License, then your
            license from a particular copyright holder is reinstated (a)
            provisionally, unless and until the copyright holder explicitly and
            finally terminates your license, and (b) permanently, if the copyright
            holder fails to notify you of the violation by some reasonable means
            prior to 60 days after the cessation.
            
              Moreover, your license from a particular copyright holder is
            reinstated permanently if the copyright holder notifies you of the
            violation by some reasonable means, this is the first time you have
            received notice of violation of this License (for any work) from that
            copyright holder, and you cure the violation prior to 30 days after
            your receipt of the notice.
            
              Termination of your rights under this section does not terminate the
            licenses of parties who have received copies or rights from you under
            this License.  If your rights have been terminated and not permanently
            reinstated, you do not qualify to receive new licenses for the same
            material under section 10.
            
              9. Acceptance Not Required for Having Copies.
            
              You are not required to accept this License in order to receive or
            run a copy of the Program.  Ancillary propagation of a covered work
            occurring solely as a consequence of using peer-to-peer transmission
            to receive a copy likewise does not require acceptance.  However,
            nothing other than this License grants you permission to propagate or
            modify any covered work.  These actions infringe copyright if you do
            not accept this License.  Therefore, by modifying or propagating a
            covered work, you indicate your acceptance of this License to do so.
            
              10. Automatic Licensing of Downstream Recipients.
            
              Each time you convey a covered work, the recipient automatically
            receives a license from the original licensors, to run, modify and
            propagate that work, subject to this License.  You are not responsible
            for enforcing compliance by third parties with this License.
            
              An "entity transaction" is a transaction transferring control of an
            organization, or substantially all assets of one, or subdividing an
            organization, or merging organizations.  If propagation of a covered
            work results from an entity transaction, each party to that
            transaction who receives a copy of the work also receives whatever
            licenses to the work the party's predecessor in interest had or could
            give under the previous paragraph, plus a right to possession of the
            Corresponding Source of the work from the predecessor in interest, if
            the predecessor has it or can get it with reasonable efforts.
            
              You may not impose any further restrictions on the exercise of the
            rights granted or affirmed under this License.  For example, you may
            not impose a license fee, royalty, or other charge for exercise of
            rights granted under this License, and you may not initiate litigation
            (including a cross-claim or counterclaim in a lawsuit) alleging that
            any patent claim is infringed by making, using, selling, offering for
            sale, or importing the Program or any portion of it.
            
              11. Patents.
            
              A "contributor" is a copyright holder who authorizes use under this
            License of the Program or a work on which the Program is based.  The
            work thus licensed is called the contributor's "contributor version".
            
              A contributor's "essential patent claims" are all patent claims
            owned or controlled by the contributor, whether already acquired or
            hereafter acquired, that would be infringed by some manner, permitted
            by this License, of making, using, or selling its contributor version,
            but do not include claims that would be infringed only as a
            consequence of further modification of the contributor version.  For
            purposes of this definition, "control" includes the right to grant
            patent sublicenses in a manner consistent with the requirements of
            this License.
            
              Each contributor grants you a non-exclusive, worldwide, royalty-free
            patent license under the contributor's essential patent claims, to
            make, use, sell, offer for sale, import and otherwise run, modify and
            propagate the contents of its contributor version.
            
              In the following three paragraphs, a "patent license" is any express
            agreement or commitment, however denominated, not to enforce a patent
            (such as an express permission to practice a patent or covenant not to
            sue for patent infringement).  To "grant" such a patent license to a
            party means to make such an agreement or commitment not to enforce a
            patent against the party.
            
              If you convey a covered work, knowingly relying on a patent license,
            and the Corresponding Source of the work is not available for anyone
            to copy, free of charge and under the terms of this License, through a
            publicly available network server or other readily accessible means,
            then you must either (1) cause the Corresponding Source to be so
            available, or (2) arrange to deprive yourself of the benefit of the
            patent license for this particular work, or (3) arrange, in a manner
            consistent with the requirements of this License, to extend the patent
            license to downstream recipients.  "Knowingly relying" means you have
            actual knowledge that, but for the patent license, your conveying the
            covered work in a country, or your recipient's use of the covered work
            in a country, would infringe one or more identifiable patents in that
            country that you have reason to believe are valid.
            
              If, pursuant to or in connection with a single transaction or
            arrangement, you convey, or propagate by procuring conveyance of, a
            covered work, and grant a patent license to some of the parties
            receiving the covered work authorizing them to use, propagate, modify
            or convey a specific copy of the covered work, then the patent license
            you grant is automatically extended to all recipients of the covered
            work and works based on it.
            
              A patent license is "discriminatory" if it does not include within
            the scope of its coverage, prohibits the exercise of, or is
            conditioned on the non-exercise of one or more of the rights that are
            specifically granted under this License.  You may not convey a covered
            work if you are a party to an arrangement with a third party that is
            in the business of distributing software, under which you make payment
            to the third party based on the extent of your activity of conveying
            the work, and under which the third party grants, to any of the
            parties who would receive the covered work from you, a discriminatory
            patent license (a) in connection with copies of the covered work
            conveyed by you (or copies made from those copies), or (b) primarily
            for and in connection with specific products or compilations that
            contain the covered work, unless you entered into that arrangement,
            or that patent license was granted, prior to 28 March 2007.
            
              Nothing in this License shall be construed as excluding or limiting
            any implied license or other defenses to infringement that may
            otherwise be available to you under applicable patent law.
            
              12. No Surrender of Others' Freedom.
            
              If conditions are imposed on you (whether by court order, agreement or
            otherwise) that contradict the conditions of this License, they do not
            excuse you from the conditions of this License.  If you cannot convey a
            covered work so as to satisfy simultaneously your obligations under this
            License and any other pertinent obligations, then as a consequence you may
            not convey it at all.  For example, if you agree to terms that obligate you
            to collect a royalty for further conveying from those to whom you convey
            the Program, the only way you could satisfy both those terms and this
            License would be to refrain entirely from conveying the Program.
            
              13. Use with the GNU Affero General Public License.
            
              Notwithstanding any other provision of this License, you have
            permission to link or combine any covered work with a work licensed
            under version 3 of the GNU Affero General Public License into a single
            combined work, and to convey the resulting work.  The terms of this
            License will continue to apply to the part which is the covered work,
            but the special requirements of the GNU Affero General Public License,
            section 13, concerning interaction through a network will apply to the
            combination as such.
            
              14. Revised Versions of this License.
            
              The Free Software Foundation may publish revised and/or new versions of
            the GNU General Public License from time to time.  Such new versions will
            be similar in spirit to the present version, but may differ in detail to
            address new problems or concerns.
            
              Each version is given a distinguishing version number.  If the
            Program specifies that a certain numbered version of the GNU General
            Public License "or any later version" applies to it, you have the
            option of following the terms and conditions either of that numbered
            version or of any later version published by the Free Software
            Foundation.  If the Program does not specify a version number of the
            GNU General Public License, you may choose any version ever published
            by the Free Software Foundation.
            
              If the Program specifies that a proxy can decide which future
            versions of the GNU General Public License can be used, that proxy's
            public statement of acceptance of a version permanently authorizes you
            to choose that version for the Program.
            
              Later license versions may give you additional or different
            permissions.  However, no additional obligations are imposed on any
            author or copyright holder as a result of your choosing to follow a
            later version.
            
              15. Disclaimer of Warranty.
            
              THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
            APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
            HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
            OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
            THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
            PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
            IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
            ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
            
              16. Limitation of Liability.
            
              IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
            WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
            THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
            GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
            USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
            DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
            PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
            EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
            SUCH DAMAGES.
            
              17. Interpretation of Sections 15 and 16.
            
              If the disclaimer of warranty and limitation of liability provided
            above cannot be given local legal effect according to their terms,
            reviewing courts shall apply local law that most closely approximates
            an absolute waiver of all civil liability in connection with the
            Program, unless a warranty or assumption of liability accompanies a
            copy of the Program in return for a fee.
            
                                 END OF TERMS AND CONDITIONS
            
                        How to Apply These Terms to Your New Programs
            
              If you develop a new program, and you want it to be of the greatest
            possible use to the public, the best way to achieve this is to make it
            free software which everyone can redistribute and change under these terms.
            
              To do so, attach the following notices to the program.  It is safest
            to attach them to the start of each source file to most effectively
            state the exclusion of warranty; and each file should have at least
            the "copyright" line and a pointer to where the full notice is found.
            
                <one line to give the program's name and a brief idea of what it does.>
                Copyright (C) <year>  <name of author>
            
                This program is free software: you can redistribute it and/or modify
                it under the terms of the GNU General Public License as published by
                the Free Software Foundation, either version 3 of the License, or
                (at your option) any later version.
            
                This program is distributed in the hope that it will be useful,
                but WITHOUT ANY WARRANTY; without even the implied warranty of
                MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                GNU General Public License for more details.
            
                You should have received a copy of the GNU General Public License
                along with this program.  If not, see <http://www.gnu.org/licenses/>.
            
            Also add information on how to contact you by electronic and paper mail.
            
              If the program does terminal interaction, make it output a short
            notice like this when it starts in an interactive mode:
            
                <program>  Copyright (C) <year>  <name of author>
                This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                This is free software, and you are welcome to redistribute it
                under certain conditions; type `show c' for details.
            
            The hypothetical commands `show w' and `show c' should show the appropriate
            parts of the General Public License.  Of course, your program's commands
            might be different; for a GUI interface, you would use an "about box".
            
              You should also get your employer (if you work as a programmer) or school,
            if any, to sign a "copyright disclaimer" for the program, if necessary.
            For more information on this, and how to apply and follow the GNU GPL, see
            <http://www.gnu.org/licenses/>.
            
              The GNU General Public License does not permit incorporating your program
            into proprietary programs.  If your program is a subroutine library, you
            may consider it more useful to permit linking proprietary applications with
            the library.  If this is what you want to do, use the GNU Lesser General
            Public License instead of this License.  But first, please read
            <http://www.gnu.org/philosophy/why-not-lgpl.html>.
            
            */

            File 4 of 5: VotingToken
            pragma solidity ^0.5.0;
            
            
            /**
             * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
             * the optional functions; to access them see {ERC20Detailed}.
             */
            interface IERC20 {
                /**
                 * @dev Returns the amount of tokens in existence.
                 */
                function totalSupply() external view returns (uint256);
            
                /**
                 * @dev Returns the amount of tokens owned by `account`.
                 */
                function balanceOf(address account) external view returns (uint256);
            
                /**
                 * @dev Moves `amount` tokens from the caller's account to `recipient`.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transfer(address recipient, uint256 amount) external returns (bool);
            
                /**
                 * @dev Returns the remaining number of tokens that `spender` will be
                 * allowed to spend on behalf of `owner` through {transferFrom}. This is
                 * zero by default.
                 *
                 * This value changes when {approve} or {transferFrom} are called.
                 */
                function allowance(address owner, address spender) external view returns (uint256);
            
                /**
                 * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * IMPORTANT: Beware that changing an allowance with this method brings the risk
                 * that someone may use both the old and the new allowance by unfortunate
                 * transaction ordering. One possible solution to mitigate this race
                 * condition is to first reduce the spender's allowance to 0 and set the
                 * desired value afterwards:
                 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                 *
                 * Emits an {Approval} event.
                 */
                function approve(address spender, uint256 amount) external returns (bool);
            
                /**
                 * @dev Moves `amount` tokens from `sender` to `recipient` using the
                 * allowance mechanism. `amount` is then deducted from the caller's
                 * allowance.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
            
                /**
                 * @dev Emitted when `value` tokens are moved from one account (`from`) to
                 * another (`to`).
                 *
                 * Note that `value` may be zero.
                 */
                event Transfer(address indexed from, address indexed to, uint256 value);
            
                /**
                 * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                 * a call to {approve}. `value` is the new allowance.
                 */
                event Approval(address indexed owner, address indexed spender, uint256 value);
            }
            
            /**
             * @dev Wrappers over Solidity's arithmetic operations with added overflow
             * checks.
             *
             * Arithmetic operations in Solidity wrap on overflow. This can easily result
             * in bugs, because programmers usually assume that an overflow raises an
             * error, which is the standard behavior in high level programming languages.
             * `SafeMath` restores this intuition by reverting the transaction when an
             * operation overflows.
             *
             * Using this library instead of the unchecked operations eliminates an entire
             * class of bugs, so it's recommended to use it always.
             */
            library SafeMath {
                /**
                 * @dev Returns the addition of two unsigned integers, reverting on
                 * overflow.
                 *
                 * Counterpart to Solidity's `+` operator.
                 *
                 * Requirements:
                 * - Addition cannot overflow.
                 */
                function add(uint256 a, uint256 b) internal pure returns (uint256) {
                    uint256 c = a + b;
                    require(c >= a, "SafeMath: addition overflow");
            
                    return c;
                }
            
                /**
                 * @dev Returns the subtraction of two unsigned integers, reverting on
                 * overflow (when the result is negative).
                 *
                 * Counterpart to Solidity's `-` operator.
                 *
                 * Requirements:
                 * - Subtraction cannot overflow.
                 */
                function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                    return sub(a, b, "SafeMath: subtraction overflow");
                }
            
                /**
                 * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                 * overflow (when the result is negative).
                 *
                 * Counterpart to Solidity's `-` operator.
                 *
                 * Requirements:
                 * - Subtraction cannot overflow.
                 *
                 * _Available since v2.4.0._
                 */
                function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                    require(b <= a, errorMessage);
                    uint256 c = a - b;
            
                    return c;
                }
            
                /**
                 * @dev Returns the multiplication of two unsigned integers, reverting on
                 * overflow.
                 *
                 * Counterpart to Solidity's `*` operator.
                 *
                 * Requirements:
                 * - Multiplication cannot overflow.
                 */
                function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                    // benefit is lost if 'b' is also tested.
                    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                    if (a == 0) {
                        return 0;
                    }
            
                    uint256 c = a * b;
                    require(c / a == b, "SafeMath: multiplication overflow");
            
                    return c;
                }
            
                /**
                 * @dev Returns the integer division of two unsigned integers. Reverts on
                 * division by zero. The result is rounded towards zero.
                 *
                 * Counterpart to Solidity's `/` operator. Note: this function uses a
                 * `revert` opcode (which leaves remaining gas untouched) while Solidity
                 * uses an invalid opcode to revert (consuming all remaining gas).
                 *
                 * Requirements:
                 * - The divisor cannot be zero.
                 */
                function div(uint256 a, uint256 b) internal pure returns (uint256) {
                    return div(a, b, "SafeMath: division by zero");
                }
            
                /**
                 * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
                 * division by zero. The result is rounded towards zero.
                 *
                 * Counterpart to Solidity's `/` operator. Note: this function uses a
                 * `revert` opcode (which leaves remaining gas untouched) while Solidity
                 * uses an invalid opcode to revert (consuming all remaining gas).
                 *
                 * Requirements:
                 * - The divisor cannot be zero.
                 *
                 * _Available since v2.4.0._
                 */
                function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                    // Solidity only automatically asserts when dividing by 0
                    require(b > 0, errorMessage);
                    uint256 c = a / b;
                    // assert(a == b * c + a % b); // There is no case in which this doesn't hold
            
                    return c;
                }
            
                /**
                 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                 * Reverts when dividing by zero.
                 *
                 * Counterpart to Solidity's `%` operator. This function uses a `revert`
                 * opcode (which leaves remaining gas untouched) while Solidity uses an
                 * invalid opcode to revert (consuming all remaining gas).
                 *
                 * Requirements:
                 * - The divisor cannot be zero.
                 */
                function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                    return mod(a, b, "SafeMath: modulo by zero");
                }
            
                /**
                 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                 * Reverts with custom message when dividing by zero.
                 *
                 * Counterpart to Solidity's `%` operator. This function uses a `revert`
                 * opcode (which leaves remaining gas untouched) while Solidity uses an
                 * invalid opcode to revert (consuming all remaining gas).
                 *
                 * Requirements:
                 * - The divisor cannot be zero.
                 *
                 * _Available since v2.4.0._
                 */
                function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                    require(b != 0, errorMessage);
                    return a % b;
                }
            }
            
            
            /**
             * @dev Standard math utilities missing in the Solidity language.
             */
            library Math {
                /**
                 * @dev Returns the largest of two numbers.
                 */
                function max(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a >= b ? a : b;
                }
            
                /**
                 * @dev Returns the smallest of two numbers.
                 */
                function min(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a < b ? a : b;
                }
            
                /**
                 * @dev Returns the average of two numbers. The result is rounded towards
                 * zero.
                 */
                function average(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b) / 2 can overflow, so we distribute
                    return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
                }
            }
            
            
            /**
             * @dev Collection of functions related to array types.
             */
            library Arrays {
               /**
                 * @dev Searches a sorted `array` and returns the first index that contains
                 * a value greater or equal to `element`. If no such index exists (i.e. all
                 * values in the array are strictly less than `element`), the array length is
                 * returned. Time complexity O(log n).
                 *
                 * `array` is expected to be sorted in ascending order, and to contain no
                 * repeated elements.
                 */
                function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
                    if (array.length == 0) {
                        return 0;
                    }
            
                    uint256 low = 0;
                    uint256 high = array.length;
            
                    while (low < high) {
                        uint256 mid = Math.average(low, high);
            
                        // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
                        // because Math.average rounds down (it does integer division with truncation).
                        if (array[mid] > element) {
                            high = mid;
                        } else {
                            low = mid + 1;
                        }
                    }
            
                    // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
                    if (low > 0 && array[low - 1] == element) {
                        return low - 1;
                    } else {
                        return low;
                    }
                }
            }
            
            
            /**
             * @title Counters
             * @author Matt Condon (@shrugs)
             * @dev Provides counters that can only be incremented or decremented by one. This can be used e.g. to track the number
             * of elements in a mapping, issuing ERC721 ids, or counting request ids.
             *
             * Include with `using Counters for Counters.Counter;`
             * Since it is not possible to overflow a 256 bit integer with increments of one, `increment` can skip the {SafeMath}
             * overflow check, thereby saving gas. This does assume however correct usage, in that the underlying `_value` is never
             * directly accessed.
             */
            library Counters {
                using SafeMath for uint256;
            
                struct Counter {
                    // This variable should never be directly accessed by users of the library: interactions must be restricted to
                    // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
                    // this feature: see https://github.com/ethereum/solidity/issues/4637
                    uint256 _value; // default: 0
                }
            
                function current(Counter storage counter) internal view returns (uint256) {
                    return counter._value;
                }
            
                function increment(Counter storage counter) internal {
                    counter._value += 1;
                }
            
                function decrement(Counter storage counter) internal {
                    counter._value = counter._value.sub(1);
                }
            }
            
            
            /*
             * @dev Provides information about the current execution context, including the
             * sender of the transaction and its data. While these are generally available
             * via msg.sender and msg.data, they should not be accessed in such a direct
             * manner, since when dealing with GSN meta-transactions the account sending and
             * paying for execution may not be the actual sender (as far as an application
             * is concerned).
             *
             * This contract is only required for intermediate, library-like contracts.
             */
            contract Context {
                // Empty internal constructor, to prevent people from mistakenly deploying
                // an instance of this contract, which should be used via inheritance.
                constructor () internal { }
                // solhint-disable-previous-line no-empty-blocks
            
                function _msgSender() internal view returns (address payable) {
                    return msg.sender;
                }
            
                function _msgData() internal view returns (bytes memory) {
                    this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                    return msg.data;
                }
            }
            
            
            /**
             * @dev Implementation of the {IERC20} interface.
             *
             * This implementation is agnostic to the way tokens are created. This means
             * that a supply mechanism has to be added in a derived contract using {_mint}.
             * For a generic mechanism see {ERC20Mintable}.
             *
             * TIP: For a detailed writeup see our guide
             * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
             * to implement supply mechanisms].
             *
             * We have followed general OpenZeppelin guidelines: functions revert instead
             * of returning `false` on failure. This behavior is nonetheless conventional
             * and does not conflict with the expectations of ERC20 applications.
             *
             * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
             * This allows applications to reconstruct the allowance for all accounts just
             * by listening to said events. Other implementations of the EIP may not emit
             * these events, as it isn't required by the specification.
             *
             * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
             * functions have been added to mitigate the well-known issues around setting
             * allowances. See {IERC20-approve}.
             */
            contract ERC20 is Context, IERC20 {
                using SafeMath for uint256;
            
                mapping (address => uint256) private _balances;
            
                mapping (address => mapping (address => uint256)) private _allowances;
            
                uint256 private _totalSupply;
            
                /**
                 * @dev See {IERC20-totalSupply}.
                 */
                function totalSupply() public view returns (uint256) {
                    return _totalSupply;
                }
            
                /**
                 * @dev See {IERC20-balanceOf}.
                 */
                function balanceOf(address account) public view returns (uint256) {
                    return _balances[account];
                }
            
                /**
                 * @dev See {IERC20-transfer}.
                 *
                 * Requirements:
                 *
                 * - `recipient` cannot be the zero address.
                 * - the caller must have a balance of at least `amount`.
                 */
                function transfer(address recipient, uint256 amount) public returns (bool) {
                    _transfer(_msgSender(), recipient, amount);
                    return true;
                }
            
                /**
                 * @dev See {IERC20-allowance}.
                 */
                function allowance(address owner, address spender) public view returns (uint256) {
                    return _allowances[owner][spender];
                }
            
                /**
                 * @dev See {IERC20-approve}.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 */
                function approve(address spender, uint256 amount) public returns (bool) {
                    _approve(_msgSender(), spender, amount);
                    return true;
                }
            
                /**
                 * @dev See {IERC20-transferFrom}.
                 *
                 * Emits an {Approval} event indicating the updated allowance. This is not
                 * required by the EIP. See the note at the beginning of {ERC20};
                 *
                 * Requirements:
                 * - `sender` and `recipient` cannot be the zero address.
                 * - `sender` must have a balance of at least `amount`.
                 * - the caller must have allowance for `sender`'s tokens of at least
                 * `amount`.
                 */
                function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
                    _transfer(sender, recipient, amount);
                    _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
                    return true;
                }
            
                /**
                 * @dev Atomically increases the allowance granted to `spender` by the caller.
                 *
                 * This is an alternative to {approve} that can be used as a mitigation for
                 * problems described in {IERC20-approve}.
                 *
                 * Emits an {Approval} event indicating the updated allowance.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 */
                function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
                    _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
                    return true;
                }
            
                /**
                 * @dev Atomically decreases the allowance granted to `spender` by the caller.
                 *
                 * This is an alternative to {approve} that can be used as a mitigation for
                 * problems described in {IERC20-approve}.
                 *
                 * Emits an {Approval} event indicating the updated allowance.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 * - `spender` must have allowance for the caller of at least
                 * `subtractedValue`.
                 */
                function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
                    _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
                    return true;
                }
            
                /**
                 * @dev Moves tokens `amount` from `sender` to `recipient`.
                 *
                 * This is internal function is equivalent to {transfer}, and can be used to
                 * e.g. implement automatic token fees, slashing mechanisms, etc.
                 *
                 * Emits a {Transfer} event.
                 *
                 * Requirements:
                 *
                 * - `sender` cannot be the zero address.
                 * - `recipient` cannot be the zero address.
                 * - `sender` must have a balance of at least `amount`.
                 */
                function _transfer(address sender, address recipient, uint256 amount) internal {
                    require(sender != address(0), "ERC20: transfer from the zero address");
                    require(recipient != address(0), "ERC20: transfer to the zero address");
            
                    _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
                    _balances[recipient] = _balances[recipient].add(amount);
                    emit Transfer(sender, recipient, amount);
                }
            
                /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                 * the total supply.
                 *
                 * Emits a {Transfer} event with `from` set to the zero address.
                 *
                 * Requirements
                 *
                 * - `to` cannot be the zero address.
                 */
                function _mint(address account, uint256 amount) internal {
                    require(account != address(0), "ERC20: mint to the zero address");
            
                    _totalSupply = _totalSupply.add(amount);
                    _balances[account] = _balances[account].add(amount);
                    emit Transfer(address(0), account, amount);
                }
            
                 /**
                 * @dev Destroys `amount` tokens from `account`, reducing the
                 * total supply.
                 *
                 * Emits a {Transfer} event with `to` set to the zero address.
                 *
                 * Requirements
                 *
                 * - `account` cannot be the zero address.
                 * - `account` must have at least `amount` tokens.
                 */
                function _burn(address account, uint256 amount) internal {
                    require(account != address(0), "ERC20: burn from the zero address");
            
                    _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
                    _totalSupply = _totalSupply.sub(amount);
                    emit Transfer(account, address(0), amount);
                }
            
                /**
                 * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
                 *
                 * This is internal function is equivalent to `approve`, and can be used to
                 * e.g. set automatic allowances for certain subsystems, etc.
                 *
                 * Emits an {Approval} event.
                 *
                 * Requirements:
                 *
                 * - `owner` cannot be the zero address.
                 * - `spender` cannot be the zero address.
                 */
                function _approve(address owner, address spender, uint256 amount) internal {
                    require(owner != address(0), "ERC20: approve from the zero address");
                    require(spender != address(0), "ERC20: approve to the zero address");
            
                    _allowances[owner][spender] = amount;
                    emit Approval(owner, spender, amount);
                }
            
                /**
                 * @dev Destroys `amount` tokens from `account`.`amount` is then deducted
                 * from the caller's allowance.
                 *
                 * See {_burn} and {_approve}.
                 */
                function _burnFrom(address account, uint256 amount) internal {
                    _burn(account, amount);
                    _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
                }
            }
            
            
            /**
             * @title ERC20 token with snapshots.
             * @dev Inspired by Jordi Baylina's
             * https://github.com/Giveth/minimd/blob/ea04d950eea153a04c51fa510b068b9dded390cb/contracts/MiniMeToken.sol[MiniMeToken]
             * to record historical balances.
             *
             * When a snapshot is made, the balances and total supply at the time of the snapshot are recorded for later
             * access.
             *
             * To make a snapshot, call the {snapshot} function, which will emit the {Snapshot} event and return a snapshot id.
             * To get the total supply from a snapshot, call the function {totalSupplyAt} with the snapshot id.
             * To get the balance of an account from a snapshot, call the {balanceOfAt} function with the snapshot id and the
             * account address.
             * @author Validity Labs AG <[email protected]>
             */
            contract ERC20Snapshot is ERC20 {
                using SafeMath for uint256;
                using Arrays for uint256[];
                using Counters for Counters.Counter;
            
                // Snapshotted values have arrays of ids and the value corresponding to that id. These could be an array of a
                // Snapshot struct, but that would impede usage of functions that work on an array.
                struct Snapshots {
                    uint256[] ids;
                    uint256[] values;
                }
            
                mapping (address => Snapshots) private _accountBalanceSnapshots;
                Snapshots private _totalSupplySnapshots;
            
                // Snapshot ids increase monotonically, with the first value being 1. An id of 0 is invalid.
                Counters.Counter private _currentSnapshotId;
            
                event Snapshot(uint256 id);
            
                // Creates a new snapshot id. Balances are only stored in snapshots on demand: unless a snapshot was taken, a
                // balance change will not be recorded. This means the extra added cost of storing snapshotted balances is only paid
                // when required, but is also flexible enough that it allows for e.g. daily snapshots.
                function snapshot() public returns (uint256) {
                    _currentSnapshotId.increment();
            
                    uint256 currentId = _currentSnapshotId.current();
                    emit Snapshot(currentId);
                    return currentId;
                }
            
                function balanceOfAt(address account, uint256 snapshotId) public view returns (uint256) {
                    (bool snapshotted, uint256 value) = _valueAt(snapshotId, _accountBalanceSnapshots[account]);
            
                    return snapshotted ? value : balanceOf(account);
                }
            
                function totalSupplyAt(uint256 snapshotId) public view returns(uint256) {
                    (bool snapshotted, uint256 value) = _valueAt(snapshotId, _totalSupplySnapshots);
            
                    return snapshotted ? value : totalSupply();
                }
            
                // _transfer, _mint and _burn are the only functions where the balances are modified, so it is there that the
                // snapshots are updated. Note that the update happens _before_ the balance change, with the pre-modified value.
                // The same is true for the total supply and _mint and _burn.
                function _transfer(address from, address to, uint256 value) internal {
                    _updateAccountSnapshot(from);
                    _updateAccountSnapshot(to);
            
                    super._transfer(from, to, value);
                }
            
                function _mint(address account, uint256 value) internal {
                    _updateAccountSnapshot(account);
                    _updateTotalSupplySnapshot();
            
                    super._mint(account, value);
                }
            
                function _burn(address account, uint256 value) internal {
                    _updateAccountSnapshot(account);
                    _updateTotalSupplySnapshot();
            
                    super._burn(account, value);
                }
            
                // When a valid snapshot is queried, there are three possibilities:
                //  a) The queried value was not modified after the snapshot was taken. Therefore, a snapshot entry was never
                //  created for this id, and all stored snapshot ids are smaller than the requested one. The value that corresponds
                //  to this id is the current one.
                //  b) The queried value was modified after the snapshot was taken. Therefore, there will be an entry with the
                //  requested id, and its value is the one to return.
                //  c) More snapshots were created after the requested one, and the queried value was later modified. There will be
                //  no entry for the requested id: the value that corresponds to it is that of the smallest snapshot id that is
                //  larger than the requested one.
                //
                // In summary, we need to find an element in an array, returning the index of the smallest value that is larger if
                // it is not found, unless said value doesn't exist (e.g. when all values are smaller). Arrays.findUpperBound does
                // exactly this.
                function _valueAt(uint256 snapshotId, Snapshots storage snapshots)
                    private view returns (bool, uint256)
                {
                    require(snapshotId > 0, "ERC20Snapshot: id is 0");
                    // solhint-disable-next-line max-line-length
                    require(snapshotId <= _currentSnapshotId.current(), "ERC20Snapshot: nonexistent id");
            
                    uint256 index = snapshots.ids.findUpperBound(snapshotId);
            
                    if (index == snapshots.ids.length) {
                        return (false, 0);
                    } else {
                        return (true, snapshots.values[index]);
                    }
                }
            
                function _updateAccountSnapshot(address account) private {
                    _updateSnapshot(_accountBalanceSnapshots[account], balanceOf(account));
                }
            
                function _updateTotalSupplySnapshot() private {
                    _updateSnapshot(_totalSupplySnapshots, totalSupply());
                }
            
                function _updateSnapshot(Snapshots storage snapshots, uint256 currentValue) private {
                    uint256 currentId = _currentSnapshotId.current();
                    if (_lastSnapshotId(snapshots.ids) < currentId) {
                        snapshots.ids.push(currentId);
                        snapshots.values.push(currentValue);
                    }
                }
            
                function _lastSnapshotId(uint256[] storage ids) private view returns (uint256) {
                    if (ids.length == 0) {
                        return 0;
                    } else {
                        return ids[ids.length - 1];
                    }
                }
            }
            
            /**
             * @title ERC20 interface that includes burn and mint methods.
             */
            contract ExpandedIERC20 is IERC20 {
                /**
                 * @notice Burns a specific amount of the caller's tokens.
                 * @dev Only burns the caller's tokens, so it is safe to leave this method permissionless.
                 */
                function burn(uint value) external;
            
                /**
                 * @notice Mints tokens and adds them to the balance of the `to` address.
                 * @dev This method should be permissioned to only allow designated parties to mint tokens.
                 */
                function mint(address to, uint value) external returns (bool);
            }
            
            
            library Exclusive {
                struct RoleMembership {
                    address member;
                }
            
                function isMember(RoleMembership storage roleMembership, address memberToCheck) internal view returns (bool) {
                    return roleMembership.member == memberToCheck;
                }
            
                function resetMember(RoleMembership storage roleMembership, address newMember) internal {
                    require(newMember != address(0x0), "Cannot set an exclusive role to 0x0");
                    roleMembership.member = newMember;
                }
            
                function getMember(RoleMembership storage roleMembership) internal view returns (address) {
                    return roleMembership.member;
                }
            
                function init(RoleMembership storage roleMembership, address initialMember) internal {
                    resetMember(roleMembership, initialMember);
                }
            }
            
            
            library Shared {
                struct RoleMembership {
                    mapping(address => bool) members;
                }
            
                function isMember(RoleMembership storage roleMembership, address memberToCheck) internal view returns (bool) {
                    return roleMembership.members[memberToCheck];
                }
            
                function addMember(RoleMembership storage roleMembership, address memberToAdd) internal {
                    roleMembership.members[memberToAdd] = true;
                }
            
                function removeMember(RoleMembership storage roleMembership, address memberToRemove) internal {
                    roleMembership.members[memberToRemove] = false;
                }
            
                function init(RoleMembership storage roleMembership, address[] memory initialMembers) internal {
                    for (uint i = 0; i < initialMembers.length; i++) {
                        addMember(roleMembership, initialMembers[i]);
                    }
                }
            }
            
            
            /**
             * @title Base class to manage permissions for the derived class.
             */
            contract MultiRole {
                using Exclusive for Exclusive.RoleMembership;
                using Shared for Shared.RoleMembership;
            
                enum RoleType { Invalid, Exclusive, Shared }
            
                struct Role {
                    uint managingRole;
                    RoleType roleType;
                    Exclusive.RoleMembership exclusiveRoleMembership;
                    Shared.RoleMembership sharedRoleMembership;
                }
            
                mapping(uint => Role) private roles;
            
                /**
                 * @notice Reverts unless the caller is a member of the specified roleId.
                 */
                modifier onlyRoleHolder(uint roleId) {
                    require(holdsRole(roleId, msg.sender), "Sender does not hold required role");
                    _;
                }
            
                /**
                 * @notice Reverts unless the caller is a member of the manager role for the specified roleId.
                 */
                modifier onlyRoleManager(uint roleId) {
                    require(holdsRole(roles[roleId].managingRole, msg.sender), "Can only be called by a role manager");
                    _;
                }
            
                /**
                 * @notice Reverts unless the roleId represents an initialized, exclusive roleId.
                 */
                modifier onlyExclusive(uint roleId) {
                    require(roles[roleId].roleType == RoleType.Exclusive, "Must be called on an initialized Exclusive role");
                    _;
                }
            
                /**
                 * @notice Reverts unless the roleId represents an initialized, shared roleId.
                 */
                modifier onlyShared(uint roleId) {
                    require(roles[roleId].roleType == RoleType.Shared, "Must be called on an initialized Shared role");
                    _;
                }
            
                /**
                 * @notice Whether `memberToCheck` is a member of roleId.
                 * @dev Reverts if roleId does not correspond to an initialized role.
                 */
                function holdsRole(uint roleId, address memberToCheck) public view returns (bool) {
                    Role storage role = roles[roleId];
                    if (role.roleType == RoleType.Exclusive) {
                        return role.exclusiveRoleMembership.isMember(memberToCheck);
                    } else if (role.roleType == RoleType.Shared) {
                        return role.sharedRoleMembership.isMember(memberToCheck);
                    }
                    require(false, "Invalid roleId");
                }
            
                /**
                 * @notice Changes the exclusive role holder of `roleId` to `newMember`.
                 * @dev Reverts if the caller is not a member of the managing role for `roleId` or if `roleId` is not an
                 * initialized, exclusive role.
                 */
                function resetMember(uint roleId, address newMember) public onlyExclusive(roleId) onlyRoleManager(roleId) {
                    roles[roleId].exclusiveRoleMembership.resetMember(newMember);
                }
            
                /**
                 * @notice Gets the current holder of the exclusive role, `roleId`.
                 * @dev Reverts if `roleId` does not represent an initialized, exclusive role.
                 */
                function getMember(uint roleId) public view onlyExclusive(roleId) returns (address) {
                    return roles[roleId].exclusiveRoleMembership.getMember();
                }
            
                /**
                 * @notice Adds `newMember` to the shared role, `roleId`.
                 * @dev Reverts if `roleId` does not represent an initialized, shared role or if the caller is not a member of the
                 * managing role for `roleId`.
                 */
                function addMember(uint roleId, address newMember) public onlyShared(roleId) onlyRoleManager(roleId) {
                    roles[roleId].sharedRoleMembership.addMember(newMember);
                }
            
                /**
                 * @notice Removes `memberToRemove` from the shared role, `roleId`.
                 * @dev Reverts if `roleId` does not represent an initialized, shared role or if the caller is not a member of the
                 * managing role for `roleId`.
                 */
                function removeMember(uint roleId, address memberToRemove) public onlyShared(roleId) onlyRoleManager(roleId) {
                    roles[roleId].sharedRoleMembership.removeMember(memberToRemove);
                }
            
                /**
                 * @notice Reverts if `roleId` is not initialized.
                 */
                modifier onlyValidRole(uint roleId) {
                    require(roles[roleId].roleType != RoleType.Invalid, "Attempted to use an invalid roleId");
                    _;
                }
            
                /**
                 * @notice Reverts if `roleId` is initialized.
                 */
                modifier onlyInvalidRole(uint roleId) {
                    require(roles[roleId].roleType == RoleType.Invalid, "Cannot use a pre-existing role");
                    _;
                }
            
                /**
                 * @notice Internal method to initialize a shared role, `roleId`, which will be managed by `managingRoleId`.
                 * `initialMembers` will be immediately added to the role.
                 * @dev Should be called by derived contracts, usually at construction time. Will revert if the role is already
                 * initialized.
                 */
                function _createSharedRole(uint roleId, uint managingRoleId, address[] memory initialMembers)
                    internal
                    onlyInvalidRole(roleId)
                {
                    Role storage role = roles[roleId];
                    role.roleType = RoleType.Shared;
                    role.managingRole = managingRoleId;
                    role.sharedRoleMembership.init(initialMembers);
                    require(roles[managingRoleId].roleType != RoleType.Invalid,
                        "Attempted to use an invalid role to manage a shared role");
                }
            
                /**
                 * @notice Internal method to initialize a exclusive role, `roleId`, which will be managed by `managingRoleId`.
                 * `initialMembers` will be immediately added to the role.
                 * @dev Should be called by derived contracts, usually at construction time. Will revert if the role is already
                 * initialized.
                 */
                function _createExclusiveRole(uint roleId, uint managingRoleId, address initialMember)
                    internal
                    onlyInvalidRole(roleId)
                {
                    Role storage role = roles[roleId];
                    role.roleType = RoleType.Exclusive;
                    role.managingRole = managingRoleId;
                    role.exclusiveRoleMembership.init(initialMember);
                    require(roles[managingRoleId].roleType != RoleType.Invalid,
                        "Attempted to use an invalid role to manage an exclusive role");
                }
            }
            
            
            /**
             * @title Ownership of this token allows a voter to respond to price requests.
             * @dev Supports snapshotting and allows the Oracle to mint new tokens as rewards.
             */
            contract VotingToken is ExpandedIERC20, ERC20Snapshot, MultiRole {
            
                enum Roles {
                    // Can set the minter and burner.
                    Owner,
                    // Addresses that can mint new tokens.
                    Minter,
                    // Addresses that can burn tokens that address owns.
                    Burner
                }
            
                // Standard ERC20 metadata.
                string public constant name = "UMA Voting Token v1"; // solhint-disable-line const-name-snakecase
                string public constant symbol = "UMA"; // solhint-disable-line const-name-snakecase
                uint8 public constant decimals = 18; // solhint-disable-line const-name-snakecase
            
                constructor() public {
                    _createExclusiveRole(uint(Roles.Owner), uint(Roles.Owner), msg.sender);
                    _createSharedRole(uint(Roles.Minter), uint(Roles.Owner), new address[](0));
                    _createSharedRole(uint(Roles.Burner), uint(Roles.Owner), new address[](0));
                }
            
                /**
                 * @dev Mints `value` tokens to `recipient`, returning true on success.
                 */
                function mint(address recipient, uint value) external onlyRoleHolder(uint(Roles.Minter)) returns (bool) {
                    _mint(recipient, value);
                    return true;
                }
            
                /**
                 * @dev Burns `value` tokens owned by `msg.sender`.
                 */
                function burn(uint value) external onlyRoleHolder(uint(Roles.Burner)) {
                    _burn(msg.sender, value);
                }
            }

            File 5 of 5: GnosisSafe
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            import "./base/ModuleManager.sol";
            import "./base/OwnerManager.sol";
            import "./base/FallbackManager.sol";
            import "./base/GuardManager.sol";
            import "./common/EtherPaymentFallback.sol";
            import "./common/Singleton.sol";
            import "./common/SignatureDecoder.sol";
            import "./common/SecuredTokenTransfer.sol";
            import "./common/StorageAccessible.sol";
            import "./interfaces/ISignatureValidator.sol";
            import "./external/GnosisSafeMath.sol";
            /// @title Gnosis Safe - A multisignature wallet with support for confirmations using signed messages based on ERC191.
            /// @author Stefan George - <[email protected]>
            /// @author Richard Meissner - <[email protected]>
            contract GnosisSafe is
                EtherPaymentFallback,
                Singleton,
                ModuleManager,
                OwnerManager,
                SignatureDecoder,
                SecuredTokenTransfer,
                ISignatureValidatorConstants,
                FallbackManager,
                StorageAccessible,
                GuardManager
            {
                using GnosisSafeMath for uint256;
                string public constant VERSION = "1.3.0";
                // keccak256(
                //     "EIP712Domain(uint256 chainId,address verifyingContract)"
                // );
                bytes32 private constant DOMAIN_SEPARATOR_TYPEHASH = 0x47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a79469218;
                // keccak256(
                //     "SafeTx(address to,uint256 value,bytes data,uint8 operation,uint256 safeTxGas,uint256 baseGas,uint256 gasPrice,address gasToken,address refundReceiver,uint256 nonce)"
                // );
                bytes32 private constant SAFE_TX_TYPEHASH = 0xbb8310d486368db6bd6f849402fdd73ad53d316b5a4b2644ad6efe0f941286d8;
                event SafeSetup(address indexed initiator, address[] owners, uint256 threshold, address initializer, address fallbackHandler);
                event ApproveHash(bytes32 indexed approvedHash, address indexed owner);
                event SignMsg(bytes32 indexed msgHash);
                event ExecutionFailure(bytes32 txHash, uint256 payment);
                event ExecutionSuccess(bytes32 txHash, uint256 payment);
                uint256 public nonce;
                bytes32 private _deprecatedDomainSeparator;
                // Mapping to keep track of all message hashes that have been approve by ALL REQUIRED owners
                mapping(bytes32 => uint256) public signedMessages;
                // Mapping to keep track of all hashes (message or transaction) that have been approve by ANY owners
                mapping(address => mapping(bytes32 => uint256)) public approvedHashes;
                // This constructor ensures that this contract can only be used as a master copy for Proxy contracts
                constructor() {
                    // By setting the threshold it is not possible to call setup anymore,
                    // so we create a Safe with 0 owners and threshold 1.
                    // This is an unusable Safe, perfect for the singleton
                    threshold = 1;
                }
                /// @dev Setup function sets initial storage of contract.
                /// @param _owners List of Safe owners.
                /// @param _threshold Number of required confirmations for a Safe transaction.
                /// @param to Contract address for optional delegate call.
                /// @param data Data payload for optional delegate call.
                /// @param fallbackHandler Handler for fallback calls to this contract
                /// @param paymentToken Token that should be used for the payment (0 is ETH)
                /// @param payment Value that should be paid
                /// @param paymentReceiver Adddress that should receive the payment (or 0 if tx.origin)
                function setup(
                    address[] calldata _owners,
                    uint256 _threshold,
                    address to,
                    bytes calldata data,
                    address fallbackHandler,
                    address paymentToken,
                    uint256 payment,
                    address payable paymentReceiver
                ) external {
                    // setupOwners checks if the Threshold is already set, therefore preventing that this method is called twice
                    setupOwners(_owners, _threshold);
                    if (fallbackHandler != address(0)) internalSetFallbackHandler(fallbackHandler);
                    // As setupOwners can only be called if the contract has not been initialized we don't need a check for setupModules
                    setupModules(to, data);
                    if (payment > 0) {
                        // To avoid running into issues with EIP-170 we reuse the handlePayment function (to avoid adjusting code of that has been verified we do not adjust the method itself)
                        // baseGas = 0, gasPrice = 1 and gas = payment => amount = (payment + 0) * 1 = payment
                        handlePayment(payment, 0, 1, paymentToken, paymentReceiver);
                    }
                    emit SafeSetup(msg.sender, _owners, _threshold, to, fallbackHandler);
                }
                /// @dev Allows to execute a Safe transaction confirmed by required number of owners and then pays the account that submitted the transaction.
                ///      Note: The fees are always transferred, even if the user transaction fails.
                /// @param to Destination address of Safe transaction.
                /// @param value Ether value of Safe transaction.
                /// @param data Data payload of Safe transaction.
                /// @param operation Operation type of Safe transaction.
                /// @param safeTxGas Gas that should be used for the Safe transaction.
                /// @param baseGas Gas costs that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
                /// @param gasPrice Gas price that should be used for the payment calculation.
                /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
                /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
                /// @param signatures Packed signature data ({bytes32 r}{bytes32 s}{uint8 v})
                function execTransaction(
                    address to,
                    uint256 value,
                    bytes calldata data,
                    Enum.Operation operation,
                    uint256 safeTxGas,
                    uint256 baseGas,
                    uint256 gasPrice,
                    address gasToken,
                    address payable refundReceiver,
                    bytes memory signatures
                ) public payable virtual returns (bool success) {
                    bytes32 txHash;
                    // Use scope here to limit variable lifetime and prevent `stack too deep` errors
                    {
                        bytes memory txHashData =
                            encodeTransactionData(
                                // Transaction info
                                to,
                                value,
                                data,
                                operation,
                                safeTxGas,
                                // Payment info
                                baseGas,
                                gasPrice,
                                gasToken,
                                refundReceiver,
                                // Signature info
                                nonce
                            );
                        // Increase nonce and execute transaction.
                        nonce++;
                        txHash = keccak256(txHashData);
                        checkSignatures(txHash, txHashData, signatures);
                    }
                    address guard = getGuard();
                    {
                        if (guard != address(0)) {
                            Guard(guard).checkTransaction(
                                // Transaction info
                                to,
                                value,
                                data,
                                operation,
                                safeTxGas,
                                // Payment info
                                baseGas,
                                gasPrice,
                                gasToken,
                                refundReceiver,
                                // Signature info
                                signatures,
                                msg.sender
                            );
                        }
                    }
                    // We require some gas to emit the events (at least 2500) after the execution and some to perform code until the execution (500)
                    // We also include the 1/64 in the check that is not send along with a call to counteract potential shortings because of EIP-150
                    require(gasleft() >= ((safeTxGas * 64) / 63).max(safeTxGas + 2500) + 500, "GS010");
                    // Use scope here to limit variable lifetime and prevent `stack too deep` errors
                    {
                        uint256 gasUsed = gasleft();
                        // If the gasPrice is 0 we assume that nearly all available gas can be used (it is always more than safeTxGas)
                        // We only substract 2500 (compared to the 3000 before) to ensure that the amount passed is still higher than safeTxGas
                        success = execute(to, value, data, operation, gasPrice == 0 ? (gasleft() - 2500) : safeTxGas);
                        gasUsed = gasUsed.sub(gasleft());
                        // If no safeTxGas and no gasPrice was set (e.g. both are 0), then the internal tx is required to be successful
                        // This makes it possible to use `estimateGas` without issues, as it searches for the minimum gas where the tx doesn't revert
                        require(success || safeTxGas != 0 || gasPrice != 0, "GS013");
                        // We transfer the calculated tx costs to the tx.origin to avoid sending it to intermediate contracts that have made calls
                        uint256 payment = 0;
                        if (gasPrice > 0) {
                            payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken, refundReceiver);
                        }
                        if (success) emit ExecutionSuccess(txHash, payment);
                        else emit ExecutionFailure(txHash, payment);
                    }
                    {
                        if (guard != address(0)) {
                            Guard(guard).checkAfterExecution(txHash, success);
                        }
                    }
                }
                function handlePayment(
                    uint256 gasUsed,
                    uint256 baseGas,
                    uint256 gasPrice,
                    address gasToken,
                    address payable refundReceiver
                ) private returns (uint256 payment) {
                    // solhint-disable-next-line avoid-tx-origin
                    address payable receiver = refundReceiver == address(0) ? payable(tx.origin) : refundReceiver;
                    if (gasToken == address(0)) {
                        // For ETH we will only adjust the gas price to not be higher than the actual used gas price
                        payment = gasUsed.add(baseGas).mul(gasPrice < tx.gasprice ? gasPrice : tx.gasprice);
                        require(receiver.send(payment), "GS011");
                    } else {
                        payment = gasUsed.add(baseGas).mul(gasPrice);
                        require(transferToken(gasToken, receiver, payment), "GS012");
                    }
                }
                /**
                 * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise.
                 * @param dataHash Hash of the data (could be either a message hash or transaction hash)
                 * @param data That should be signed (this is passed to an external validator contract)
                 * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash.
                 */
                function checkSignatures(
                    bytes32 dataHash,
                    bytes memory data,
                    bytes memory signatures
                ) public view {
                    // Load threshold to avoid multiple storage loads
                    uint256 _threshold = threshold;
                    // Check that a threshold is set
                    require(_threshold > 0, "GS001");
                    checkNSignatures(dataHash, data, signatures, _threshold);
                }
                /**
                 * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise.
                 * @param dataHash Hash of the data (could be either a message hash or transaction hash)
                 * @param data That should be signed (this is passed to an external validator contract)
                 * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash.
                 * @param requiredSignatures Amount of required valid signatures.
                 */
                function checkNSignatures(
                    bytes32 dataHash,
                    bytes memory data,
                    bytes memory signatures,
                    uint256 requiredSignatures
                ) public view {
                    // Check that the provided signature data is not too short
                    require(signatures.length >= requiredSignatures.mul(65), "GS020");
                    // There cannot be an owner with address 0.
                    address lastOwner = address(0);
                    address currentOwner;
                    uint8 v;
                    bytes32 r;
                    bytes32 s;
                    uint256 i;
                    for (i = 0; i < requiredSignatures; i++) {
                        (v, r, s) = signatureSplit(signatures, i);
                        if (v == 0) {
                            // If v is 0 then it is a contract signature
                            // When handling contract signatures the address of the contract is encoded into r
                            currentOwner = address(uint160(uint256(r)));
                            // Check that signature data pointer (s) is not pointing inside the static part of the signatures bytes
                            // This check is not completely accurate, since it is possible that more signatures than the threshold are send.
                            // Here we only check that the pointer is not pointing inside the part that is being processed
                            require(uint256(s) >= requiredSignatures.mul(65), "GS021");
                            // Check that signature data pointer (s) is in bounds (points to the length of data -> 32 bytes)
                            require(uint256(s).add(32) <= signatures.length, "GS022");
                            // Check if the contract signature is in bounds: start of data is s + 32 and end is start + signature length
                            uint256 contractSignatureLen;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                contractSignatureLen := mload(add(add(signatures, s), 0x20))
                            }
                            require(uint256(s).add(32).add(contractSignatureLen) <= signatures.length, "GS023");
                            // Check signature
                            bytes memory contractSignature;
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                // The signature data for contract signatures is appended to the concatenated signatures and the offset is stored in s
                                contractSignature := add(add(signatures, s), 0x20)
                            }
                            require(ISignatureValidator(currentOwner).isValidSignature(data, contractSignature) == EIP1271_MAGIC_VALUE, "GS024");
                        } else if (v == 1) {
                            // If v is 1 then it is an approved hash
                            // When handling approved hashes the address of the approver is encoded into r
                            currentOwner = address(uint160(uint256(r)));
                            // Hashes are automatically approved by the sender of the message or when they have been pre-approved via a separate transaction
                            require(msg.sender == currentOwner || approvedHashes[currentOwner][dataHash] != 0, "GS025");
                        } else if (v > 30) {
                            // If v > 30 then default va (27,28) has been adjusted for eth_sign flow
                            // To support eth_sign and similar we adjust v and hash the messageHash with the Ethereum message prefix before applying ecrecover
                            currentOwner = ecrecover(keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
            32", dataHash)), v - 4, r, s);
                        } else {
                            // Default is the ecrecover flow with the provided data hash
                            // Use ecrecover with the messageHash for EOA signatures
                            currentOwner = ecrecover(dataHash, v, r, s);
                        }
                        require(currentOwner > lastOwner && owners[currentOwner] != address(0) && currentOwner != SENTINEL_OWNERS, "GS026");
                        lastOwner = currentOwner;
                    }
                }
                /// @dev Allows to estimate a Safe transaction.
                ///      This method is only meant for estimation purpose, therefore the call will always revert and encode the result in the revert data.
                ///      Since the `estimateGas` function includes refunds, call this method to get an estimated of the costs that are deducted from the safe with `execTransaction`
                /// @param to Destination address of Safe transaction.
                /// @param value Ether value of Safe transaction.
                /// @param data Data payload of Safe transaction.
                /// @param operation Operation type of Safe transaction.
                /// @return Estimate without refunds and overhead fees (base transaction and payload data gas costs).
                /// @notice Deprecated in favor of common/StorageAccessible.sol and will be removed in next version.
                function requiredTxGas(
                    address to,
                    uint256 value,
                    bytes calldata data,
                    Enum.Operation operation
                ) external returns (uint256) {
                    uint256 startGas = gasleft();
                    // We don't provide an error message here, as we use it to return the estimate
                    require(execute(to, value, data, operation, gasleft()));
                    uint256 requiredGas = startGas - gasleft();
                    // Convert response to string and return via error message
                    revert(string(abi.encodePacked(requiredGas)));
                }
                /**
                 * @dev Marks a hash as approved. This can be used to validate a hash that is used by a signature.
                 * @param hashToApprove The hash that should be marked as approved for signatures that are verified by this contract.
                 */
                function approveHash(bytes32 hashToApprove) external {
                    require(owners[msg.sender] != address(0), "GS030");
                    approvedHashes[msg.sender][hashToApprove] = 1;
                    emit ApproveHash(hashToApprove, msg.sender);
                }
                /// @dev Returns the chain id used by this contract.
                function getChainId() public view returns (uint256) {
                    uint256 id;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        id := chainid()
                    }
                    return id;
                }
                function domainSeparator() public view returns (bytes32) {
                    return keccak256(abi.encode(DOMAIN_SEPARATOR_TYPEHASH, getChainId(), this));
                }
                /// @dev Returns the bytes that are hashed to be signed by owners.
                /// @param to Destination address.
                /// @param value Ether value.
                /// @param data Data payload.
                /// @param operation Operation type.
                /// @param safeTxGas Gas that should be used for the safe transaction.
                /// @param baseGas Gas costs for that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
                /// @param gasPrice Maximum gas price that should be used for this transaction.
                /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
                /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
                /// @param _nonce Transaction nonce.
                /// @return Transaction hash bytes.
                function encodeTransactionData(
                    address to,
                    uint256 value,
                    bytes calldata data,
                    Enum.Operation operation,
                    uint256 safeTxGas,
                    uint256 baseGas,
                    uint256 gasPrice,
                    address gasToken,
                    address refundReceiver,
                    uint256 _nonce
                ) public view returns (bytes memory) {
                    bytes32 safeTxHash =
                        keccak256(
                            abi.encode(
                                SAFE_TX_TYPEHASH,
                                to,
                                value,
                                keccak256(data),
                                operation,
                                safeTxGas,
                                baseGas,
                                gasPrice,
                                gasToken,
                                refundReceiver,
                                _nonce
                            )
                        );
                    return abi.encodePacked(bytes1(0x19), bytes1(0x01), domainSeparator(), safeTxHash);
                }
                /// @dev Returns hash to be signed by owners.
                /// @param to Destination address.
                /// @param value Ether value.
                /// @param data Data payload.
                /// @param operation Operation type.
                /// @param safeTxGas Fas that should be used for the safe transaction.
                /// @param baseGas Gas costs for data used to trigger the safe transaction.
                /// @param gasPrice Maximum gas price that should be used for this transaction.
                /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
                /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
                /// @param _nonce Transaction nonce.
                /// @return Transaction hash.
                function getTransactionHash(
                    address to,
                    uint256 value,
                    bytes calldata data,
                    Enum.Operation operation,
                    uint256 safeTxGas,
                    uint256 baseGas,
                    uint256 gasPrice,
                    address gasToken,
                    address refundReceiver,
                    uint256 _nonce
                ) public view returns (bytes32) {
                    return keccak256(encodeTransactionData(to, value, data, operation, safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, _nonce));
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            import "../common/Enum.sol";
            /// @title Executor - A contract that can execute transactions
            /// @author Richard Meissner - <[email protected]>
            contract Executor {
                function execute(
                    address to,
                    uint256 value,
                    bytes memory data,
                    Enum.Operation operation,
                    uint256 txGas
                ) internal returns (bool success) {
                    if (operation == Enum.Operation.DelegateCall) {
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0)
                        }
                    } else {
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0)
                        }
                    }
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            import "../common/SelfAuthorized.sol";
            /// @title Fallback Manager - A contract that manages fallback calls made to this contract
            /// @author Richard Meissner - <[email protected]>
            contract FallbackManager is SelfAuthorized {
                event ChangedFallbackHandler(address handler);
                // keccak256("fallback_manager.handler.address")
                bytes32 internal constant FALLBACK_HANDLER_STORAGE_SLOT = 0x6c9a6c4a39284e37ed1cf53d337577d14212a4870fb976a4366c693b939918d5;
                function internalSetFallbackHandler(address handler) internal {
                    bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        sstore(slot, handler)
                    }
                }
                /// @dev Allows to add a contract to handle fallback calls.
                ///      Only fallback calls without value and with data will be forwarded.
                ///      This can only be done via a Safe transaction.
                /// @param handler contract to handle fallbacks calls.
                function setFallbackHandler(address handler) public authorized {
                    internalSetFallbackHandler(handler);
                    emit ChangedFallbackHandler(handler);
                }
                // solhint-disable-next-line payable-fallback,no-complex-fallback
                fallback() external {
                    bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let handler := sload(slot)
                        if iszero(handler) {
                            return(0, 0)
                        }
                        calldatacopy(0, 0, calldatasize())
                        // The msg.sender address is shifted to the left by 12 bytes to remove the padding
                        // Then the address without padding is stored right after the calldata
                        mstore(calldatasize(), shl(96, caller()))
                        // Add 20 bytes for the address appended add the end
                        let success := call(gas(), handler, 0, 0, add(calldatasize(), 20), 0, 0)
                        returndatacopy(0, 0, returndatasize())
                        if iszero(success) {
                            revert(0, returndatasize())
                        }
                        return(0, returndatasize())
                    }
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            import "../common/Enum.sol";
            import "../common/SelfAuthorized.sol";
            interface Guard {
                function checkTransaction(
                    address to,
                    uint256 value,
                    bytes memory data,
                    Enum.Operation operation,
                    uint256 safeTxGas,
                    uint256 baseGas,
                    uint256 gasPrice,
                    address gasToken,
                    address payable refundReceiver,
                    bytes memory signatures,
                    address msgSender
                ) external;
                function checkAfterExecution(bytes32 txHash, bool success) external;
            }
            /// @title Fallback Manager - A contract that manages fallback calls made to this contract
            /// @author Richard Meissner - <[email protected]>
            contract GuardManager is SelfAuthorized {
                event ChangedGuard(address guard);
                // keccak256("guard_manager.guard.address")
                bytes32 internal constant GUARD_STORAGE_SLOT = 0x4a204f620c8c5ccdca3fd54d003badd85ba500436a431f0cbda4f558c93c34c8;
                /// @dev Set a guard that checks transactions before execution
                /// @param guard The address of the guard to be used or the 0 address to disable the guard
                function setGuard(address guard) external authorized {
                    bytes32 slot = GUARD_STORAGE_SLOT;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        sstore(slot, guard)
                    }
                    emit ChangedGuard(guard);
                }
                function getGuard() internal view returns (address guard) {
                    bytes32 slot = GUARD_STORAGE_SLOT;
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        guard := sload(slot)
                    }
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            import "../common/Enum.sol";
            import "../common/SelfAuthorized.sol";
            import "./Executor.sol";
            /// @title Module Manager - A contract that manages modules that can execute transactions via this contract
            /// @author Stefan George - <[email protected]>
            /// @author Richard Meissner - <[email protected]>
            contract ModuleManager is SelfAuthorized, Executor {
                event EnabledModule(address module);
                event DisabledModule(address module);
                event ExecutionFromModuleSuccess(address indexed module);
                event ExecutionFromModuleFailure(address indexed module);
                address internal constant SENTINEL_MODULES = address(0x1);
                mapping(address => address) internal modules;
                function setupModules(address to, bytes memory data) internal {
                    require(modules[SENTINEL_MODULES] == address(0), "GS100");
                    modules[SENTINEL_MODULES] = SENTINEL_MODULES;
                    if (to != address(0))
                        // Setup has to complete successfully or transaction fails.
                        require(execute(to, 0, data, Enum.Operation.DelegateCall, gasleft()), "GS000");
                }
                /// @dev Allows to add a module to the whitelist.
                ///      This can only be done via a Safe transaction.
                /// @notice Enables the module `module` for the Safe.
                /// @param module Module to be whitelisted.
                function enableModule(address module) public authorized {
                    // Module address cannot be null or sentinel.
                    require(module != address(0) && module != SENTINEL_MODULES, "GS101");
                    // Module cannot be added twice.
                    require(modules[module] == address(0), "GS102");
                    modules[module] = modules[SENTINEL_MODULES];
                    modules[SENTINEL_MODULES] = module;
                    emit EnabledModule(module);
                }
                /// @dev Allows to remove a module from the whitelist.
                ///      This can only be done via a Safe transaction.
                /// @notice Disables the module `module` for the Safe.
                /// @param prevModule Module that pointed to the module to be removed in the linked list
                /// @param module Module to be removed.
                function disableModule(address prevModule, address module) public authorized {
                    // Validate module address and check that it corresponds to module index.
                    require(module != address(0) && module != SENTINEL_MODULES, "GS101");
                    require(modules[prevModule] == module, "GS103");
                    modules[prevModule] = modules[module];
                    modules[module] = address(0);
                    emit DisabledModule(module);
                }
                /// @dev Allows a Module to execute a Safe transaction without any further confirmations.
                /// @param to Destination address of module transaction.
                /// @param value Ether value of module transaction.
                /// @param data Data payload of module transaction.
                /// @param operation Operation type of module transaction.
                function execTransactionFromModule(
                    address to,
                    uint256 value,
                    bytes memory data,
                    Enum.Operation operation
                ) public virtual returns (bool success) {
                    // Only whitelisted modules are allowed.
                    require(msg.sender != SENTINEL_MODULES && modules[msg.sender] != address(0), "GS104");
                    // Execute transaction without further confirmations.
                    success = execute(to, value, data, operation, gasleft());
                    if (success) emit ExecutionFromModuleSuccess(msg.sender);
                    else emit ExecutionFromModuleFailure(msg.sender);
                }
                /// @dev Allows a Module to execute a Safe transaction without any further confirmations and return data
                /// @param to Destination address of module transaction.
                /// @param value Ether value of module transaction.
                /// @param data Data payload of module transaction.
                /// @param operation Operation type of module transaction.
                function execTransactionFromModuleReturnData(
                    address to,
                    uint256 value,
                    bytes memory data,
                    Enum.Operation operation
                ) public returns (bool success, bytes memory returnData) {
                    success = execTransactionFromModule(to, value, data, operation);
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        // Load free memory location
                        let ptr := mload(0x40)
                        // We allocate memory for the return data by setting the free memory location to
                        // current free memory location + data size + 32 bytes for data size value
                        mstore(0x40, add(ptr, add(returndatasize(), 0x20)))
                        // Store the size
                        mstore(ptr, returndatasize())
                        // Store the data
                        returndatacopy(add(ptr, 0x20), 0, returndatasize())
                        // Point the return data to the correct memory location
                        returnData := ptr
                    }
                }
                /// @dev Returns if an module is enabled
                /// @return True if the module is enabled
                function isModuleEnabled(address module) public view returns (bool) {
                    return SENTINEL_MODULES != module && modules[module] != address(0);
                }
                /// @dev Returns array of modules.
                /// @param start Start of the page.
                /// @param pageSize Maximum number of modules that should be returned.
                /// @return array Array of modules.
                /// @return next Start of the next page.
                function getModulesPaginated(address start, uint256 pageSize) external view returns (address[] memory array, address next) {
                    // Init array with max page size
                    array = new address[](pageSize);
                    // Populate return array
                    uint256 moduleCount = 0;
                    address currentModule = modules[start];
                    while (currentModule != address(0x0) && currentModule != SENTINEL_MODULES && moduleCount < pageSize) {
                        array[moduleCount] = currentModule;
                        currentModule = modules[currentModule];
                        moduleCount++;
                    }
                    next = currentModule;
                    // Set correct size of returned array
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        mstore(array, moduleCount)
                    }
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            import "../common/SelfAuthorized.sol";
            /// @title OwnerManager - Manages a set of owners and a threshold to perform actions.
            /// @author Stefan George - <[email protected]>
            /// @author Richard Meissner - <[email protected]>
            contract OwnerManager is SelfAuthorized {
                event AddedOwner(address owner);
                event RemovedOwner(address owner);
                event ChangedThreshold(uint256 threshold);
                address internal constant SENTINEL_OWNERS = address(0x1);
                mapping(address => address) internal owners;
                uint256 internal ownerCount;
                uint256 internal threshold;
                /// @dev Setup function sets initial storage of contract.
                /// @param _owners List of Safe owners.
                /// @param _threshold Number of required confirmations for a Safe transaction.
                function setupOwners(address[] memory _owners, uint256 _threshold) internal {
                    // Threshold can only be 0 at initialization.
                    // Check ensures that setup function can only be called once.
                    require(threshold == 0, "GS200");
                    // Validate that threshold is smaller than number of added owners.
                    require(_threshold <= _owners.length, "GS201");
                    // There has to be at least one Safe owner.
                    require(_threshold >= 1, "GS202");
                    // Initializing Safe owners.
                    address currentOwner = SENTINEL_OWNERS;
                    for (uint256 i = 0; i < _owners.length; i++) {
                        // Owner address cannot be null.
                        address owner = _owners[i];
                        require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this) && currentOwner != owner, "GS203");
                        // No duplicate owners allowed.
                        require(owners[owner] == address(0), "GS204");
                        owners[currentOwner] = owner;
                        currentOwner = owner;
                    }
                    owners[currentOwner] = SENTINEL_OWNERS;
                    ownerCount = _owners.length;
                    threshold = _threshold;
                }
                /// @dev Allows to add a new owner to the Safe and update the threshold at the same time.
                ///      This can only be done via a Safe transaction.
                /// @notice Adds the owner `owner` to the Safe and updates the threshold to `_threshold`.
                /// @param owner New owner address.
                /// @param _threshold New threshold.
                function addOwnerWithThreshold(address owner, uint256 _threshold) public authorized {
                    // Owner address cannot be null, the sentinel or the Safe itself.
                    require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this), "GS203");
                    // No duplicate owners allowed.
                    require(owners[owner] == address(0), "GS204");
                    owners[owner] = owners[SENTINEL_OWNERS];
                    owners[SENTINEL_OWNERS] = owner;
                    ownerCount++;
                    emit AddedOwner(owner);
                    // Change threshold if threshold was changed.
                    if (threshold != _threshold) changeThreshold(_threshold);
                }
                /// @dev Allows to remove an owner from the Safe and update the threshold at the same time.
                ///      This can only be done via a Safe transaction.
                /// @notice Removes the owner `owner` from the Safe and updates the threshold to `_threshold`.
                /// @param prevOwner Owner that pointed to the owner to be removed in the linked list
                /// @param owner Owner address to be removed.
                /// @param _threshold New threshold.
                function removeOwner(
                    address prevOwner,
                    address owner,
                    uint256 _threshold
                ) public authorized {
                    // Only allow to remove an owner, if threshold can still be reached.
                    require(ownerCount - 1 >= _threshold, "GS201");
                    // Validate owner address and check that it corresponds to owner index.
                    require(owner != address(0) && owner != SENTINEL_OWNERS, "GS203");
                    require(owners[prevOwner] == owner, "GS205");
                    owners[prevOwner] = owners[owner];
                    owners[owner] = address(0);
                    ownerCount--;
                    emit RemovedOwner(owner);
                    // Change threshold if threshold was changed.
                    if (threshold != _threshold) changeThreshold(_threshold);
                }
                /// @dev Allows to swap/replace an owner from the Safe with another address.
                ///      This can only be done via a Safe transaction.
                /// @notice Replaces the owner `oldOwner` in the Safe with `newOwner`.
                /// @param prevOwner Owner that pointed to the owner to be replaced in the linked list
                /// @param oldOwner Owner address to be replaced.
                /// @param newOwner New owner address.
                function swapOwner(
                    address prevOwner,
                    address oldOwner,
                    address newOwner
                ) public authorized {
                    // Owner address cannot be null, the sentinel or the Safe itself.
                    require(newOwner != address(0) && newOwner != SENTINEL_OWNERS && newOwner != address(this), "GS203");
                    // No duplicate owners allowed.
                    require(owners[newOwner] == address(0), "GS204");
                    // Validate oldOwner address and check that it corresponds to owner index.
                    require(oldOwner != address(0) && oldOwner != SENTINEL_OWNERS, "GS203");
                    require(owners[prevOwner] == oldOwner, "GS205");
                    owners[newOwner] = owners[oldOwner];
                    owners[prevOwner] = newOwner;
                    owners[oldOwner] = address(0);
                    emit RemovedOwner(oldOwner);
                    emit AddedOwner(newOwner);
                }
                /// @dev Allows to update the number of required confirmations by Safe owners.
                ///      This can only be done via a Safe transaction.
                /// @notice Changes the threshold of the Safe to `_threshold`.
                /// @param _threshold New threshold.
                function changeThreshold(uint256 _threshold) public authorized {
                    // Validate that threshold is smaller than number of owners.
                    require(_threshold <= ownerCount, "GS201");
                    // There has to be at least one Safe owner.
                    require(_threshold >= 1, "GS202");
                    threshold = _threshold;
                    emit ChangedThreshold(threshold);
                }
                function getThreshold() public view returns (uint256) {
                    return threshold;
                }
                function isOwner(address owner) public view returns (bool) {
                    return owner != SENTINEL_OWNERS && owners[owner] != address(0);
                }
                /// @dev Returns array of owners.
                /// @return Array of Safe owners.
                function getOwners() public view returns (address[] memory) {
                    address[] memory array = new address[](ownerCount);
                    // populate return array
                    uint256 index = 0;
                    address currentOwner = owners[SENTINEL_OWNERS];
                    while (currentOwner != SENTINEL_OWNERS) {
                        array[index] = currentOwner;
                        currentOwner = owners[currentOwner];
                        index++;
                    }
                    return array;
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            /// @title Enum - Collection of enums
            /// @author Richard Meissner - <[email protected]>
            contract Enum {
                enum Operation {Call, DelegateCall}
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            /// @title EtherPaymentFallback - A contract that has a fallback to accept ether payments
            /// @author Richard Meissner - <[email protected]>
            contract EtherPaymentFallback {
                event SafeReceived(address indexed sender, uint256 value);
                /// @dev Fallback function accepts Ether transactions.
                receive() external payable {
                    emit SafeReceived(msg.sender, msg.value);
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            /// @title SecuredTokenTransfer - Secure token transfer
            /// @author Richard Meissner - <[email protected]>
            contract SecuredTokenTransfer {
                /// @dev Transfers a token and returns if it was a success
                /// @param token Token that should be transferred
                /// @param receiver Receiver to whom the token should be transferred
                /// @param amount The amount of tokens that should be transferred
                function transferToken(
                    address token,
                    address receiver,
                    uint256 amount
                ) internal returns (bool transferred) {
                    // 0xa9059cbb - keccack("transfer(address,uint256)")
                    bytes memory data = abi.encodeWithSelector(0xa9059cbb, receiver, amount);
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        // We write the return value to scratch space.
                        // See https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory
                        let success := call(sub(gas(), 10000), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                        switch returndatasize()
                            case 0 {
                                transferred := success
                            }
                            case 0x20 {
                                transferred := iszero(or(iszero(success), iszero(mload(0))))
                            }
                            default {
                                transferred := 0
                            }
                    }
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            /// @title SelfAuthorized - authorizes current contract to perform actions
            /// @author Richard Meissner - <[email protected]>
            contract SelfAuthorized {
                function requireSelfCall() private view {
                    require(msg.sender == address(this), "GS031");
                }
                modifier authorized() {
                    // This is a function call as it minimized the bytecode size
                    requireSelfCall();
                    _;
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            /// @title SignatureDecoder - Decodes signatures that a encoded as bytes
            /// @author Richard Meissner - <[email protected]>
            contract SignatureDecoder {
                /// @dev divides bytes signature into `uint8 v, bytes32 r, bytes32 s`.
                /// @notice Make sure to peform a bounds check for @param pos, to avoid out of bounds access on @param signatures
                /// @param pos which signature to read. A prior bounds check of this parameter should be performed, to avoid out of bounds access
                /// @param signatures concatenated rsv signatures
                function signatureSplit(bytes memory signatures, uint256 pos)
                    internal
                    pure
                    returns (
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    )
                {
                    // The signature format is a compact form of:
                    //   {bytes32 r}{bytes32 s}{uint8 v}
                    // Compact means, uint8 is not padded to 32 bytes.
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let signaturePos := mul(0x41, pos)
                        r := mload(add(signatures, add(signaturePos, 0x20)))
                        s := mload(add(signatures, add(signaturePos, 0x40)))
                        // Here we are loading the last 32 bytes, including 31 bytes
                        // of 's'. There is no 'mload8' to do this.
                        //
                        // 'byte' is not working due to the Solidity parser, so lets
                        // use the second best option, 'and'
                        v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff)
                    }
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            /// @title Singleton - Base for singleton contracts (should always be first super contract)
            ///         This contract is tightly coupled to our proxy contract (see `proxies/GnosisSafeProxy.sol`)
            /// @author Richard Meissner - <[email protected]>
            contract Singleton {
                // singleton always needs to be first declared variable, to ensure that it is at the same location as in the Proxy contract.
                // It should also always be ensured that the address is stored alone (uses a full word)
                address private singleton;
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            /// @title StorageAccessible - generic base contract that allows callers to access all internal storage.
            /// @notice See https://github.com/gnosis/util-contracts/blob/bb5fe5fb5df6d8400998094fb1b32a178a47c3a1/contracts/StorageAccessible.sol
            contract StorageAccessible {
                /**
                 * @dev Reads `length` bytes of storage in the currents contract
                 * @param offset - the offset in the current contract's storage in words to start reading from
                 * @param length - the number of words (32 bytes) of data to read
                 * @return the bytes that were read.
                 */
                function getStorageAt(uint256 offset, uint256 length) public view returns (bytes memory) {
                    bytes memory result = new bytes(length * 32);
                    for (uint256 index = 0; index < length; index++) {
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let word := sload(add(offset, index))
                            mstore(add(add(result, 0x20), mul(index, 0x20)), word)
                        }
                    }
                    return result;
                }
                /**
                 * @dev Performs a delegetecall on a targetContract in the context of self.
                 * Internally reverts execution to avoid side effects (making it static).
                 *
                 * This method reverts with data equal to `abi.encode(bool(success), bytes(response))`.
                 * Specifically, the `returndata` after a call to this method will be:
                 * `success:bool || response.length:uint256 || response:bytes`.
                 *
                 * @param targetContract Address of the contract containing the code to execute.
                 * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
                 */
                function simulateAndRevert(address targetContract, bytes memory calldataPayload) external {
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let success := delegatecall(gas(), targetContract, add(calldataPayload, 0x20), mload(calldataPayload), 0, 0)
                        mstore(0x00, success)
                        mstore(0x20, returndatasize())
                        returndatacopy(0x40, 0, returndatasize())
                        revert(0, add(returndatasize(), 0x40))
                    }
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            /**
             * @title GnosisSafeMath
             * @dev Math operations with safety checks that revert on error
             * Renamed from SafeMath to GnosisSafeMath to avoid conflicts
             * TODO: remove once open zeppelin update to solc 0.5.0
             */
            library GnosisSafeMath {
                /**
                 * @dev Multiplies two numbers, reverts on overflow.
                 */
                function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                    // benefit is lost if 'b' is also tested.
                    // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
                    if (a == 0) {
                        return 0;
                    }
                    uint256 c = a * b;
                    require(c / a == b);
                    return c;
                }
                /**
                 * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend).
                 */
                function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                    require(b <= a);
                    uint256 c = a - b;
                    return c;
                }
                /**
                 * @dev Adds two numbers, reverts on overflow.
                 */
                function add(uint256 a, uint256 b) internal pure returns (uint256) {
                    uint256 c = a + b;
                    require(c >= a);
                    return c;
                }
                /**
                 * @dev Returns the largest of two numbers.
                 */
                function max(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a >= b ? a : b;
                }
            }
            // SPDX-License-Identifier: LGPL-3.0-only
            pragma solidity >=0.7.0 <0.9.0;
            contract ISignatureValidatorConstants {
                // bytes4(keccak256("isValidSignature(bytes,bytes)")
                bytes4 internal constant EIP1271_MAGIC_VALUE = 0x20c13b0b;
            }
            abstract contract ISignatureValidator is ISignatureValidatorConstants {
                /**
                 * @dev Should return whether the signature provided is valid for the provided data
                 * @param _data Arbitrary length data signed on the behalf of address(this)
                 * @param _signature Signature byte array associated with _data
                 *
                 * MUST return the bytes4 magic value 0x20c13b0b when function passes.
                 * MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5)
                 * MUST allow external calls
                 */
                function isValidSignature(bytes memory _data, bytes memory _signature) public view virtual returns (bytes4);
            }