Transaction Hash:
Block:
13087531 at Aug-24-2021 10:39:20 AM +UTC
Transaction Fee:
0.0040328324844966 ETH
$10.19
Gas Used:
46,506 Gas / 86.7163911 Gwei
Emitted Events:
22 |
eNear.Approval( owner=[Sender] 0x1e0246b4c4261a6179a12f63e5c97734d761b7db, spender=0x11111112...Cff4fAa26, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1E0246B4...4D761B7dB |
299.554854333213660529 Eth
Nonce: 86
|
299.550821500729163929 Eth
Nonce: 87
| 0.0040328324844966 | ||
0x85F17Cf9...bD4B9f6a4 | |||||
0xEA674fdD...16B898ec8
Miner
| (Ethermine) | 2,975.340508319158009503 Eth | 2,975.342541800996047569 Eth | 0.002033481838038066 |
Execution Trace
eNear.approve( spender=0x11111112542D85B3EF69AE05771c2dCCff4fAa26, amount=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
approve[ERC20 (ln:518)]
_approve[ERC20 (ln:519)]
Approval[ERC20 (ln:647)]
_msgSender[ERC20 (ln:519)]
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "rainbow-bridge/contracts/eth/nearprover/contracts/ProofDecoder.sol"; import "rainbow-bridge/contracts/eth/nearbridge/contracts/Borsh.sol"; import "rainbow-bridge/contracts/eth/nearbridge/contracts/AdminControlled.sol"; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { Bridge, INearProver } from "./Bridge.sol"; contract eNear is ERC20, Bridge, AdminControlled { uint constant PAUSE_FINALISE_FROM_NEAR = 1 << 0; uint constant PAUSE_TRANSFER_TO_NEAR = 1 << 1; event TransferToNearInitiated ( address indexed sender, uint256 amount, string accountId ); event NearToEthTransferFinalised ( uint128 amount, address indexed recipient ); struct BridgeResult { uint128 amount; address recipient; } /// @param _tokenName Name given to the token (can be admin updated) /// @param _tokenSymbol Symbol given to the token (can be admin updated) /// @param _nearConnector Near account ID of the near connector bridge /// @param _prover Address of the prover contract on ETH /// @param _minBlockAcceptanceHeight The contract will accept proofs from this block onwards /// @param _admin Address that can make admin changes to the contract /// @param _pausedFlags Flag settings which controls whether certain methods are paused or active constructor( string memory _tokenName, string memory _tokenSymbol, bytes memory _nearConnector, INearProver _prover, uint64 _minBlockAcceptanceHeight, address _admin, uint256 _pausedFlags ) public ERC20(_tokenName, _tokenSymbol) AdminControlled(_admin, _pausedFlags) Bridge(_prover, _nearConnector, _minBlockAcceptanceHeight) { // Match yocto Near _setupDecimals(24); } function finaliseNearToEthTransfer(bytes memory proofData, uint64 proofBlockHeight) external pausable (PAUSE_FINALISE_FROM_NEAR) { ProofDecoder.ExecutionStatus memory status = _parseAndConsumeProof(proofData, proofBlockHeight); BridgeResult memory result = _decodeBridgeResult(status.successValue); _mint(result.recipient, result.amount); emit NearToEthTransferFinalised(result.amount, result.recipient); } function transferToNear(uint256 _amount, string memory _nearReceiverAccountId) external pausable (PAUSE_TRANSFER_TO_NEAR) { _burn(msg.sender, _amount); emit TransferToNearInitiated(msg.sender, _amount, _nearReceiverAccountId); } function _decodeBridgeResult(bytes memory data) internal pure returns(BridgeResult memory result) { Borsh.Data memory borshData = Borsh.from(data); uint8 flag = borshData.decodeU8(); require(flag == 0, "ERR_NOT_WITHDRAW_RESULT"); result.amount = borshData.decodeU128(); bytes20 recipient = borshData.decodeBytes20(); result.recipient = address(uint160(recipient)); } } pragma solidity ^0.6; import "../../nearbridge/contracts/Borsh.sol"; import "../../nearbridge/contracts/NearDecoder.sol"; library ProofDecoder { using Borsh for Borsh.Data; using ProofDecoder for Borsh.Data; using NearDecoder for Borsh.Data; struct FullOutcomeProof { ExecutionOutcomeWithIdAndProof outcome_proof; MerklePath outcome_root_proof; // TODO: now empty array BlockHeaderLight block_header_lite; MerklePath block_proof; } function decodeFullOutcomeProof(Borsh.Data memory data) internal view returns (FullOutcomeProof memory proof) { proof.outcome_proof = data.decodeExecutionOutcomeWithIdAndProof(); proof.outcome_root_proof = data.decodeMerklePath(); proof.block_header_lite = data.decodeBlockHeaderLight(); proof.block_proof = data.decodeMerklePath(); } struct BlockHeaderLight { bytes32 prev_block_hash; bytes32 inner_rest_hash; NearDecoder.BlockHeaderInnerLite inner_lite; bytes32 hash; // Computable } function decodeBlockHeaderLight(Borsh.Data memory data) internal view returns (BlockHeaderLight memory header) { header.prev_block_hash = data.decodeBytes32(); header.inner_rest_hash = data.decodeBytes32(); header.inner_lite = data.decodeBlockHeaderInnerLite(); header.hash = sha256( abi.encodePacked( sha256(abi.encodePacked(header.inner_lite.hash, header.inner_rest_hash)), header.prev_block_hash ) ); } struct ExecutionStatus { uint8 enumIndex; bool unknown; bool failed; bytes successValue; /// The final action succeeded and returned some value or an empty vec. bytes32 successReceiptId; /// The final action of the receipt returned a promise or the signed /// transaction was converted to a receipt. Contains the receipt_id of the generated receipt. } function decodeExecutionStatus(Borsh.Data memory data) internal pure returns (ExecutionStatus memory executionStatus) { executionStatus.enumIndex = data.decodeU8(); if (executionStatus.enumIndex == 0) { executionStatus.unknown = true; } else if (executionStatus.enumIndex == 1) { //revert("NearDecoder: decodeExecutionStatus failure case not implemented yet"); // Can avoid revert since ExecutionStatus is latest field in all parent structures executionStatus.failed = true; } else if (executionStatus.enumIndex == 2) { executionStatus.successValue = data.decodeBytes(); } else if (executionStatus.enumIndex == 3) { executionStatus.successReceiptId = data.decodeBytes32(); } else { revert("NearDecoder: decodeExecutionStatus index out of range"); } } struct ExecutionOutcome { bytes[] logs; /// Logs from this transaction or receipt. bytes32[] receipt_ids; /// Receipt IDs generated by this transaction or receipt. uint64 gas_burnt; /// The amount of the gas burnt by the given transaction or receipt. uint128 tokens_burnt; /// The total number of the tokens burnt by the given transaction or receipt. bytes executor_id; /// Hash of the transaction or receipt id that produced this outcome. ExecutionStatus status; /// Execution status. Contains the result in case of successful execution. bytes32[] merkelization_hashes; } function decodeExecutionOutcome(Borsh.Data memory data) internal view returns (ExecutionOutcome memory outcome) { outcome.logs = new bytes[](data.decodeU32()); for (uint i = 0; i < outcome.logs.length; i++) { outcome.logs[i] = data.decodeBytes(); } uint256 start = data.offset; outcome.receipt_ids = new bytes32[](data.decodeU32()); for (uint i = 0; i < outcome.receipt_ids.length; i++) { outcome.receipt_ids[i] = data.decodeBytes32(); } outcome.gas_burnt = data.decodeU64(); outcome.tokens_burnt = data.decodeU128(); outcome.executor_id = data.decodeBytes(); outcome.status = data.decodeExecutionStatus(); uint256 stop = data.offset; outcome.merkelization_hashes = new bytes32[](1 + outcome.logs.length); data.offset = start; outcome.merkelization_hashes[0] = data.peekSha256(stop - start); data.offset = stop; for (uint i = 0; i < outcome.logs.length; i++) { outcome.merkelization_hashes[i + 1] = sha256(outcome.logs[i]); } } struct ExecutionOutcomeWithId { bytes32 id; /// The transaction hash or the receipt ID. ExecutionOutcome outcome; bytes32 hash; } function decodeExecutionOutcomeWithId(Borsh.Data memory data) internal view returns (ExecutionOutcomeWithId memory outcome) { outcome.id = data.decodeBytes32(); outcome.outcome = data.decodeExecutionOutcome(); uint256 len = 1 + outcome.outcome.merkelization_hashes.length; outcome.hash = sha256( abi.encodePacked( uint8((len >> 0) & 0xFF), uint8((len >> 8) & 0xFF), uint8((len >> 16) & 0xFF), uint8((len >> 24) & 0xFF), outcome.id, outcome.outcome.merkelization_hashes ) ); } struct MerklePathItem { bytes32 hash; uint8 direction; // 0 = left, 1 = right } function decodeMerklePathItem(Borsh.Data memory data) internal pure returns (MerklePathItem memory item) { item.hash = data.decodeBytes32(); item.direction = data.decodeU8(); require(item.direction < 2, "ProofDecoder: MerklePathItem direction should be 0 or 1"); } struct MerklePath { MerklePathItem[] items; } function decodeMerklePath(Borsh.Data memory data) internal pure returns (MerklePath memory path) { path.items = new MerklePathItem[](data.decodeU32()); for (uint i = 0; i < path.items.length; i++) { path.items[i] = data.decodeMerklePathItem(); } } struct ExecutionOutcomeWithIdAndProof { MerklePath proof; bytes32 block_hash; ExecutionOutcomeWithId outcome_with_id; } function decodeExecutionOutcomeWithIdAndProof(Borsh.Data memory data) internal view returns (ExecutionOutcomeWithIdAndProof memory outcome) { outcome.proof = data.decodeMerklePath(); outcome.block_hash = data.decodeBytes32(); outcome.outcome_with_id = data.decodeExecutionOutcomeWithId(); } } pragma solidity ^0.6; import "@openzeppelin/contracts/math/SafeMath.sol"; library Borsh { using SafeMath for uint256; struct Data { uint256 offset; bytes raw; } function from(bytes memory data) internal pure returns (Data memory) { return Data({offset: 0, raw: data}); } modifier shift(Data memory data, uint256 size) { require(data.raw.length >= data.offset + size, "Borsh: Out of range"); _; data.offset += size; } function finished(Data memory data) internal pure returns (bool) { return data.offset == data.raw.length; } function peekKeccak256(Data memory data, uint256 length) internal pure returns (bytes32 res) { return bytesKeccak256(data.raw, data.offset, length); } function bytesKeccak256( bytes memory ptr, uint256 offset, uint256 length ) internal pure returns (bytes32 res) { // solium-disable-next-line security/no-inline-assembly assembly { res := keccak256(add(add(ptr, 32), offset), length) } } function peekSha256(Data memory data, uint256 length) internal view returns (bytes32) { return bytesSha256(data.raw, data.offset, length); } function bytesSha256( bytes memory ptr, uint256 offset, uint256 length ) internal view returns (bytes32) { bytes32[1] memory result; // solium-disable-next-line security/no-inline-assembly assembly { pop(staticcall(gas(), 0x02, add(add(ptr, 32), offset), length, result, 32)) } return result[0]; } function decodeU8(Data memory data) internal pure shift(data, 1) returns (uint8 value) { value = uint8(data.raw[data.offset]); } function decodeI8(Data memory data) internal pure shift(data, 1) returns (int8 value) { value = int8(data.raw[data.offset]); } function decodeU16(Data memory data) internal pure returns (uint16 value) { value = uint16(decodeU8(data)); value |= (uint16(decodeU8(data)) << 8); } function decodeI16(Data memory data) internal pure returns (int16 value) { value = int16(decodeI8(data)); value |= (int16(decodeI8(data)) << 8); } function decodeU32(Data memory data) internal pure returns (uint32 value) { value = uint32(decodeU16(data)); value |= (uint32(decodeU16(data)) << 16); } function decodeI32(Data memory data) internal pure returns (int32 value) { value = int32(decodeI16(data)); value |= (int32(decodeI16(data)) << 16); } function decodeU64(Data memory data) internal pure returns (uint64 value) { value = uint64(decodeU32(data)); value |= (uint64(decodeU32(data)) << 32); } function decodeI64(Data memory data) internal pure returns (int64 value) { value = int64(decodeI32(data)); value |= (int64(decodeI32(data)) << 32); } function decodeU128(Data memory data) internal pure returns (uint128 value) { value = uint128(decodeU64(data)); value |= (uint128(decodeU64(data)) << 64); } function decodeI128(Data memory data) internal pure returns (int128 value) { value = int128(decodeI64(data)); value |= (int128(decodeI64(data)) << 64); } function decodeU256(Data memory data) internal pure returns (uint256 value) { value = uint256(decodeU128(data)); value |= (uint256(decodeU128(data)) << 128); } function decodeI256(Data memory data) internal pure returns (int256 value) { value = int256(decodeI128(data)); value |= (int256(decodeI128(data)) << 128); } function decodeBool(Data memory data) internal pure returns (bool value) { value = (decodeU8(data) != 0); } function decodeBytes(Data memory data) internal pure returns (bytes memory value) { value = new bytes(decodeU32(data)); for (uint i = 0; i < value.length; i++) { value[i] = byte(decodeU8(data)); } } function decodeBytes32(Data memory data) internal pure shift(data, 32) returns (bytes32 value) { bytes memory raw = data.raw; uint256 offset = data.offset; // solium-disable-next-line security/no-inline-assembly assembly { value := mload(add(add(raw, 32), offset)) } } function decodeBytes20(Data memory data) internal pure returns (bytes20 value) { for (uint i = 0; i < 20; i++) { value |= bytes20(byte(decodeU8(data)) & 0xFF) >> (i * 8); } } // Public key struct SECP256K1PublicKey { uint256 x; uint256 y; } function decodeSECP256K1PublicKey(Borsh.Data memory data) internal pure returns (SECP256K1PublicKey memory key) { key.x = decodeU256(data); key.y = decodeU256(data); } struct ED25519PublicKey { bytes32 xy; } function decodeED25519PublicKey(Borsh.Data memory data) internal pure returns (ED25519PublicKey memory key) { key.xy = decodeBytes32(data); } // Signature struct SECP256K1Signature { bytes32 r; bytes32 s; uint8 v; } function decodeSECP256K1Signature(Borsh.Data memory data) internal pure returns (SECP256K1Signature memory sig) { sig.r = decodeBytes32(data); sig.s = decodeBytes32(data); sig.v = decodeU8(data); } struct ED25519Signature { bytes32[2] rs; } function decodeED25519Signature(Borsh.Data memory data) internal pure returns (ED25519Signature memory sig) { sig.rs[0] = decodeBytes32(data); sig.rs[1] = decodeBytes32(data); } } pragma solidity ^0.6; contract AdminControlled { address public admin; uint public paused; constructor(address _admin, uint flags) public { admin = _admin; // Add the possibility to set pause flags on the initialization paused = flags; } modifier onlyAdmin { require(msg.sender == admin); _; } modifier pausable(uint flag) { require((paused & flag) == 0 || msg.sender == admin); _; } function adminPause(uint flags) public onlyAdmin { paused = flags; } function adminSstore(uint key, uint value) public onlyAdmin { assembly { sstore(key, value) } } function adminSendEth(address payable destination, uint amount) public onlyAdmin { destination.transfer(amount); } function adminReceiveEth() public payable onlyAdmin {} function adminDelegatecall(address target, bytes memory data) public payable onlyAdmin returns (bytes memory) { (bool success, bytes memory rdata) = target.delegatecall(data); require(success); return rdata; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../utils/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name_, string memory symbol_) public { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal virtual { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "rainbow-bridge/contracts/eth/nearprover/contracts/INearProver.sol"; import "rainbow-bridge/contracts/eth/nearprover/contracts/ProofDecoder.sol"; import "rainbow-bridge/contracts/eth/nearbridge/contracts/Borsh.sol"; contract Bridge { using Borsh for Borsh.Data; using ProofDecoder for Borsh.Data; event ConsumedProof(bytes32 indexed _receiptId); INearProver public prover; bytes public nearConnector; /// Proofs from blocks that are below the acceptance height will be rejected. // If `minBlockAcceptanceHeight` value is zero - proofs from block with any height are accepted. uint64 public minBlockAcceptanceHeight; // OutcomeRecieptId -> Used mapping(bytes32 => bool) public usedProofs; constructor(INearProver _prover, bytes memory _nearConnector, uint64 _minBlockAcceptanceHeight) public { prover = _prover; nearConnector = _nearConnector; minBlockAcceptanceHeight = _minBlockAcceptanceHeight; } /// Parses the provided proof and consumes it if it's not already used. /// The consumed event cannot be reused for future calls. function _parseAndConsumeProof(bytes memory proofData, uint64 proofBlockHeight) internal returns (ProofDecoder.ExecutionStatus memory result) { require(prover.proveOutcome(proofData, proofBlockHeight), "Proof should be valid"); // Unpack the proof and extract the execution outcome. Borsh.Data memory borshData = Borsh.from(proofData); ProofDecoder.FullOutcomeProof memory fullOutcomeProof = borshData.decodeFullOutcomeProof(); require( fullOutcomeProof.block_header_lite.inner_lite.height >= minBlockAcceptanceHeight, "Proof is from the ancient block" ); require(borshData.finished(), "Argument should be exact borsh serialization"); bytes32 receiptId = fullOutcomeProof.outcome_proof.outcome_with_id.outcome.receipt_ids[0]; require(!usedProofs[receiptId], "The burn event proof cannot be reused"); usedProofs[receiptId] = true; require(keccak256(fullOutcomeProof.outcome_proof.outcome_with_id.outcome.executor_id) == keccak256(nearConnector), "Can only unlock tokens from the linked proof producer on Near blockchain"); result = fullOutcomeProof.outcome_proof.outcome_with_id.outcome.status; require(!result.failed, "Cannot use failed execution outcome for unlocking the tokens"); require(!result.unknown, "Cannot use unknown execution outcome for unlocking the tokens"); emit ConsumedProof(receiptId); } } pragma solidity ^0.6; import "@openzeppelin/contracts/math/SafeMath.sol"; import "./Borsh.sol"; library NearDecoder { using Borsh for Borsh.Data; using NearDecoder for Borsh.Data; struct PublicKey { uint8 enumIndex; Borsh.ED25519PublicKey ed25519; Borsh.SECP256K1PublicKey secp256k1; } function decodePublicKey(Borsh.Data memory data) internal pure returns (PublicKey memory key) { key.enumIndex = data.decodeU8(); if (key.enumIndex == 0) { key.ed25519 = data.decodeED25519PublicKey(); } else if (key.enumIndex == 1) { key.secp256k1 = data.decodeSECP256K1PublicKey(); } else { revert("NearBridge: Only ED25519 and SECP256K1 public keys are supported"); } } struct ValidatorStake { string account_id; PublicKey public_key; uint128 stake; } function decodeValidatorStake(Borsh.Data memory data) internal pure returns (ValidatorStake memory validatorStake) { validatorStake.account_id = string(data.decodeBytes()); validatorStake.public_key = data.decodePublicKey(); validatorStake.stake = data.decodeU128(); } struct OptionalValidatorStakes { bool none; ValidatorStake[] validatorStakes; bytes32 hash; // Additional computable element } function decodeOptionalValidatorStakes(Borsh.Data memory data) internal view returns (OptionalValidatorStakes memory stakes) { stakes.none = (data.decodeU8() == 0); if (!stakes.none) { uint256 start = data.offset; stakes.validatorStakes = new ValidatorStake[](data.decodeU32()); for (uint i = 0; i < stakes.validatorStakes.length; i++) { stakes.validatorStakes[i] = data.decodeValidatorStake(); } uint256 stop = data.offset; data.offset = start; stakes.hash = data.peekSha256(stop - start); data.offset = stop; } } struct Signature { uint8 enumIndex; Borsh.ED25519Signature ed25519; Borsh.SECP256K1Signature secp256k1; } function decodeSignature(Borsh.Data memory data) internal pure returns (Signature memory sig) { sig.enumIndex = data.decodeU8(); if (sig.enumIndex == 0) { sig.ed25519 = data.decodeED25519Signature(); } else if (sig.enumIndex == 1) { sig.secp256k1 = data.decodeSECP256K1Signature(); } else { revert("NearBridge: Only ED25519 and SECP256K1 signatures are supported"); } } struct OptionalSignature { bool none; Signature signature; } function decodeOptionalSignature(Borsh.Data memory data) internal pure returns (OptionalSignature memory sig) { sig.none = (data.decodeU8() == 0); if (!sig.none) { sig.signature = data.decodeSignature(); } } struct LightClientBlock { bytes32 prev_block_hash; bytes32 next_block_inner_hash; BlockHeaderInnerLite inner_lite; bytes32 inner_rest_hash; OptionalValidatorStakes next_bps; OptionalSignature[] approvals_after_next; bytes32 hash; bytes32 next_hash; } struct InitialValidators { ValidatorStake[] validator_stakes; } function decodeInitialValidators(Borsh.Data memory data) internal view returns (InitialValidators memory validators) { validators.validator_stakes = new ValidatorStake[](data.decodeU32()); for (uint i = 0; i < validators.validator_stakes.length; i++) { validators.validator_stakes[i] = data.decodeValidatorStake(); } } function decodeLightClientBlock(Borsh.Data memory data) internal view returns (LightClientBlock memory header) { header.prev_block_hash = data.decodeBytes32(); header.next_block_inner_hash = data.decodeBytes32(); header.inner_lite = data.decodeBlockHeaderInnerLite(); header.inner_rest_hash = data.decodeBytes32(); header.next_bps = data.decodeOptionalValidatorStakes(); header.approvals_after_next = new OptionalSignature[](data.decodeU32()); for (uint i = 0; i < header.approvals_after_next.length; i++) { header.approvals_after_next[i] = data.decodeOptionalSignature(); } header.hash = sha256( abi.encodePacked( sha256(abi.encodePacked(header.inner_lite.hash, header.inner_rest_hash)), header.prev_block_hash ) ); header.next_hash = sha256(abi.encodePacked(header.next_block_inner_hash, header.hash)); } struct BlockHeaderInnerLite { uint64 height; /// Height of this block since the genesis block (height 0). bytes32 epoch_id; /// Epoch start hash of this block's epoch. Used for retrieving validator information bytes32 next_epoch_id; bytes32 prev_state_root; /// Root hash of the state at the previous block. bytes32 outcome_root; /// Root of the outcomes of transactions and receipts. uint64 timestamp; /// Timestamp at which the block was built. bytes32 next_bp_hash; /// Hash of the next epoch block producers set bytes32 block_merkle_root; bytes32 hash; // Additional computable element } function decodeBlockHeaderInnerLite(Borsh.Data memory data) internal view returns (BlockHeaderInnerLite memory header) { header.hash = data.peekSha256(208); header.height = data.decodeU64(); header.epoch_id = data.decodeBytes32(); header.next_epoch_id = data.decodeBytes32(); header.prev_state_root = data.decodeBytes32(); header.outcome_root = data.decodeBytes32(); header.timestamp = data.decodeU64(); header.next_bp_hash = data.decodeBytes32(); header.block_merkle_root = data.decodeBytes32(); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } pragma solidity ^0.6; interface INearProver { function proveOutcome(bytes calldata proofData, uint64 blockHeight) external view returns (bool); }