ETH Price: $1,817.05 (+0.37%)

Transaction Decoder

Block:
17909428 at Aug-14-2023 12:10:59 AM +UTC
Transaction Fee:
0.002879303250849498 ETH $5.23
Gas Used:
217,998 Gas / 13.207934251 Gwei

Emitted Events:

151 TransparentUpgradeableProxy.0x7724394874fdd8ad13292ec739b441f85c6559f10dc4141b8d4c0fa4cbf55bdb( 0x7724394874fdd8ad13292ec739b441f85c6559f10dc4141b8d4c0fa4cbf55bdb, 0000000000000000000000000000000000000000000000000000000000000000 )
152 MemesZoo.Transfer( from=[Sender] 0x4a25848d8c456bcede2586d78b8a7ea27a4544d0, to=MemesZoo, value=25473185617201755667310388 )
153 MemesZoo.Transfer( from=[Sender] 0x4a25848d8c456bcede2586d78b8a7ea27a4544d0, to=UniswapV2Pair, value=2521845376102973811063728508 )
154 WETH9.Transfer( src=UniswapV2Pair, dst=[Receiver] TransparentUpgradeableProxy, wad=170917416865708854 )
155 UniswapV2Pair.Sync( reserve0=263554272861015270861507421513, reserve1=17744639047162003605 )
156 UniswapV2Pair.Swap( sender=0x031f1ad10547b8deb43a36e5491c06a93812023a, amount0In=2521845376102973811063728508, amount1In=0, amount0Out=0, amount1Out=170917416865708854, to=[Receiver] TransparentUpgradeableProxy )
157 WETH9.Transfer( src=[Receiver] TransparentUpgradeableProxy, dst=0x5703B683c7F928b721CA95Da988d73a3299d4757, wad=170917416865708854 )
158 WETH9.Withdrawal( src=0x5703B683c7F928b721CA95Da988d73a3299d4757, wad=170917416865708854 )
159 TransparentUpgradeableProxy.0x1bb43f2da90e35f7b0cf38521ca95a49e68eb42fac49924930a5bd73cdf7576c( 0x1bb43f2da90e35f7b0cf38521ca95a49e68eb42fac49924930a5bd73cdf7576c, 000000000000000000000000af530f9c676bbcef483db8d7a3794907f715ae97, 000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 0000000000000000000000004a25848d8c456bcede2586d78b8a7ea27a4544d0, 0000000000000000000000000000000000000000083b17afee75af91eecf50b0, 000000000000000000000000000000000000000000000000025f387c2e353b36 )

Account State Difference:

  Address   Before After State Difference Code
0x10394EcD...C6b68Df4b
2.884961146609763702 Eth2.885085405469763702 Eth0.00012425886
0x4A25848D...27a4544d0
0.195775004039029978 Eth
Nonce: 115
0.363813117653889334 Eth
Nonce: 116
0.168038113614859356
0xaF530F9C...7f715Ae97
0xC02aaA39...83C756Cc2 3,353,025.784536258400339145 Eth3,353,025.613618841534630291 Eth0.170917416865708854

Execution Trace

TransparentUpgradeableProxy.b80c2f09( )
  • 0xd2f0ac2012c8433f235c8e5e97f2368197dd06c7.b80c2f09( )
    • OKX: Dex Aggregator.0a5ea466( )
      • TokenApprove.claimTokens( _token=0xaF530F9C676bbcef483dB8D7a3794907f715Ae97, _who=0x4A25848D8c456BcEDE2586D78B8a7ea27a4544d0, _dest=0x10394EcD10c245daad8126593379c56C6b68Df4b, _amount=2547318561720175566731038896 )
        • MemesZoo.transferFrom( from=0x4A25848D8c456BcEDE2586D78B8a7ea27a4544d0, to=0x10394EcD10c245daad8126593379c56C6b68Df4b, amount=2547318561720175566731038896 ) => ( True )
        • 0x031f1ad10547b8deb43a36e5491c06a93812023a.30e6ae31( )
          • UniswapV2Pair.STATICCALL( )
          • UniswapV2Pair.STATICCALL( )
          • MemesZoo.balanceOf( account=0x10394EcD10c245daad8126593379c56C6b68Df4b ) => ( 263554272861015270861507421513 )
          • UniswapV2Pair.swap( amount0Out=0, amount1Out=170917416865708854, to=0x3b3ae790Df4F312e745D270119c6052904FB6790, data=0x )
            • WETH9.transfer( dst=0x3b3ae790Df4F312e745D270119c6052904FB6790, wad=170917416865708854 ) => ( True )
            • MemesZoo.balanceOf( account=0x10394EcD10c245daad8126593379c56C6b68Df4b ) => ( 263554272861015270861507421513 )
            • WETH9.balanceOf( 0x10394EcD10c245daad8126593379c56C6b68Df4b ) => ( 17744639047162003605 )
            • WETH9.balanceOf( 0x3b3ae790Df4F312e745D270119c6052904FB6790 ) => ( 170917416865708854 )
            • WETH9.transfer( dst=0x5703B683c7F928b721CA95Da988d73a3299d4757, wad=170917416865708854 ) => ( True )
            • 0x5703b683c7f928b721ca95da988d73a3299d4757.2e1a7d4d( )
              • WETH9.withdraw( wad=170917416865708854 )
                • ETH 0.170917416865708854 0x5703b683c7f928b721ca95da988d73a3299d4757.CALL( )
                • ETH 0.170917416865708854 TransparentUpgradeableProxy.CALL( )
                  • ETH 0.170917416865708854 0xd2f0ac2012c8433f235c8e5e97f2368197dd06c7.DELEGATECALL( )
                  • ETH 0.170917416865708854 0x4a25848d8c456bcede2586d78b8a7ea27a4544d0.CALL( )
                    File 1 of 5: TransparentUpgradeableProxy
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
                    import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol";
                    import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol";
                    // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins.
                    contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy {
                        constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {}
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    import "../Proxy.sol";
                    import "./ERC1967Upgrade.sol";
                    /**
                     * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
                     * implementation address that can be changed. This address is stored in storage in the location specified by
                     * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
                     * implementation behind the proxy.
                     */
                    contract ERC1967Proxy is Proxy, ERC1967Upgrade {
                        /**
                         * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
                         *
                         * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
                         * function call, and allows initializating the storage of the proxy like a Solidity constructor.
                         */
                        constructor(address _logic, bytes memory _data) payable {
                            assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                            _upgradeToAndCall(_logic, _data, false);
                        }
                        /**
                         * @dev Returns the current implementation address.
                         */
                        function _implementation() internal view virtual override returns (address impl) {
                            return ERC1967Upgrade._getImplementation();
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    import "../ERC1967/ERC1967Proxy.sol";
                    /**
                     * @dev This contract implements a proxy that is upgradeable by an admin.
                     *
                     * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
                     * clashing], which can potentially be used in an attack, this contract uses the
                     * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
                     * things that go hand in hand:
                     *
                     * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
                     * that call matches one of the admin functions exposed by the proxy itself.
                     * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
                     * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
                     * "admin cannot fallback to proxy target".
                     *
                     * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
                     * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
                     * to sudden errors when trying to call a function from the proxy implementation.
                     *
                     * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
                     * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
                     */
                    contract TransparentUpgradeableProxy is ERC1967Proxy {
                        /**
                         * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
                         * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
                         */
                        constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                            assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                            _changeAdmin(admin_);
                        }
                        /**
                         * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
                         */
                        modifier ifAdmin() {
                            if (msg.sender == _getAdmin()) {
                                _;
                            } else {
                                _fallback();
                            }
                        }
                        /**
                         * @dev Returns the current admin.
                         *
                         * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
                         *
                         * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                         * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                         * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
                         */
                        function admin() external ifAdmin returns (address admin_) {
                            admin_ = _getAdmin();
                        }
                        /**
                         * @dev Returns the current implementation.
                         *
                         * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
                         *
                         * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                         * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                         * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
                         */
                        function implementation() external ifAdmin returns (address implementation_) {
                            implementation_ = _implementation();
                        }
                        /**
                         * @dev Changes the admin of the proxy.
                         *
                         * Emits an {AdminChanged} event.
                         *
                         * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
                         */
                        function changeAdmin(address newAdmin) external virtual ifAdmin {
                            _changeAdmin(newAdmin);
                        }
                        /**
                         * @dev Upgrade the implementation of the proxy.
                         *
                         * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
                         */
                        function upgradeTo(address newImplementation) external ifAdmin {
                            _upgradeToAndCall(newImplementation, bytes(""), false);
                        }
                        /**
                         * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
                         * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
                         * proxied contract.
                         *
                         * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
                         */
                        function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
                            _upgradeToAndCall(newImplementation, data, true);
                        }
                        /**
                         * @dev Returns the current admin.
                         */
                        function _admin() internal view virtual returns (address) {
                            return _getAdmin();
                        }
                        /**
                         * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
                         */
                        function _beforeFallback() internal virtual override {
                            require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                            super._beforeFallback();
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    import "./TransparentUpgradeableProxy.sol";
                    import "../../access/Ownable.sol";
                    /**
                     * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
                     * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
                     */
                    contract ProxyAdmin is Ownable {
                        /**
                         * @dev Returns the current implementation of `proxy`.
                         *
                         * Requirements:
                         *
                         * - This contract must be the admin of `proxy`.
                         */
                        function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                            // We need to manually run the static call since the getter cannot be flagged as view
                            // bytes4(keccak256("implementation()")) == 0x5c60da1b
                            (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
                            require(success);
                            return abi.decode(returndata, (address));
                        }
                        /**
                         * @dev Returns the current admin of `proxy`.
                         *
                         * Requirements:
                         *
                         * - This contract must be the admin of `proxy`.
                         */
                        function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                            // We need to manually run the static call since the getter cannot be flagged as view
                            // bytes4(keccak256("admin()")) == 0xf851a440
                            (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
                            require(success);
                            return abi.decode(returndata, (address));
                        }
                        /**
                         * @dev Changes the admin of `proxy` to `newAdmin`.
                         *
                         * Requirements:
                         *
                         * - This contract must be the current admin of `proxy`.
                         */
                        function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
                            proxy.changeAdmin(newAdmin);
                        }
                        /**
                         * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
                         *
                         * Requirements:
                         *
                         * - This contract must be the admin of `proxy`.
                         */
                        function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
                            proxy.upgradeTo(implementation);
                        }
                        /**
                         * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
                         * {TransparentUpgradeableProxy-upgradeToAndCall}.
                         *
                         * Requirements:
                         *
                         * - This contract must be the admin of `proxy`.
                         */
                        function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner {
                            proxy.upgradeToAndCall{value: msg.value}(implementation, data);
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    /**
                     * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
                     * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
                     * be specified by overriding the virtual {_implementation} function.
                     *
                     * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
                     * different contract through the {_delegate} function.
                     *
                     * The success and return data of the delegated call will be returned back to the caller of the proxy.
                     */
                    abstract contract Proxy {
                        /**
                         * @dev Delegates the current call to `implementation`.
                         *
                         * This function does not return to its internall call site, it will return directly to the external caller.
                         */
                        function _delegate(address implementation) internal virtual {
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                // Copy msg.data. We take full control of memory in this inline assembly
                                // block because it will not return to Solidity code. We overwrite the
                                // Solidity scratch pad at memory position 0.
                                calldatacopy(0, 0, calldatasize())
                                // Call the implementation.
                                // out and outsize are 0 because we don't know the size yet.
                                let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                                // Copy the returned data.
                                returndatacopy(0, 0, returndatasize())
                                switch result
                                // delegatecall returns 0 on error.
                                case 0 { revert(0, returndatasize()) }
                                default { return(0, returndatasize()) }
                            }
                        }
                        /**
                         * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
                         * and {_fallback} should delegate.
                         */
                        function _implementation() internal view virtual returns (address);
                        /**
                         * @dev Delegates the current call to the address returned by `_implementation()`.
                         *
                         * This function does not return to its internall call site, it will return directly to the external caller.
                         */
                        function _fallback() internal virtual {
                            _beforeFallback();
                            _delegate(_implementation());
                        }
                        /**
                         * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
                         * function in the contract matches the call data.
                         */
                        fallback () external payable virtual {
                            _fallback();
                        }
                        /**
                         * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
                         * is empty.
                         */
                        receive () external payable virtual {
                            _fallback();
                        }
                        /**
                         * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
                         * call, or as part of the Solidity `fallback` or `receive` functions.
                         *
                         * If overriden should call `super._beforeFallback()`.
                         */
                        function _beforeFallback() internal virtual {
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.2;
                    import "../beacon/IBeacon.sol";
                    import "../../utils/Address.sol";
                    import "../../utils/StorageSlot.sol";
                    /**
                     * @dev This abstract contract provides getters and event emitting update functions for
                     * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
                     *
                     * _Available since v4.1._
                     *
                     * @custom:oz-upgrades-unsafe-allow delegatecall
                     */
                    abstract contract ERC1967Upgrade {
                        // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
                        bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
                        /**
                         * @dev Storage slot with the address of the current implementation.
                         * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                         * validated in the constructor.
                         */
                        bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                        /**
                         * @dev Emitted when the implementation is upgraded.
                         */
                        event Upgraded(address indexed implementation);
                        /**
                         * @dev Returns the current implementation address.
                         */
                        function _getImplementation() internal view returns (address) {
                            return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                        }
                        /**
                         * @dev Stores a new address in the EIP1967 implementation slot.
                         */
                        function _setImplementation(address newImplementation) private {
                            require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                            StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                        }
                        /**
                         * @dev Perform implementation upgrade
                         *
                         * Emits an {Upgraded} event.
                         */
                        function _upgradeTo(address newImplementation) internal {
                            _setImplementation(newImplementation);
                            emit Upgraded(newImplementation);
                        }
                        /**
                         * @dev Perform implementation upgrade with additional setup call.
                         *
                         * Emits an {Upgraded} event.
                         */
                        function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                            _setImplementation(newImplementation);
                            emit Upgraded(newImplementation);
                            if (data.length > 0 || forceCall) {
                                Address.functionDelegateCall(newImplementation, data);
                            }
                        }
                        /**
                         * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
                         *
                         * Emits an {Upgraded} event.
                         */
                        function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal {
                            address oldImplementation = _getImplementation();
                            // Initial upgrade and setup call
                            _setImplementation(newImplementation);
                            if (data.length > 0 || forceCall) {
                                Address.functionDelegateCall(newImplementation, data);
                            }
                            // Perform rollback test if not already in progress
                            StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT);
                            if (!rollbackTesting.value) {
                                // Trigger rollback using upgradeTo from the new implementation
                                rollbackTesting.value = true;
                                Address.functionDelegateCall(
                                    newImplementation,
                                    abi.encodeWithSignature(
                                        "upgradeTo(address)",
                                        oldImplementation
                                    )
                                );
                                rollbackTesting.value = false;
                                // Check rollback was effective
                                require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades");
                                // Finally reset to the new implementation and log the upgrade
                                _setImplementation(newImplementation);
                                emit Upgraded(newImplementation);
                            }
                        }
                        /**
                         * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
                         * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
                         *
                         * Emits a {BeaconUpgraded} event.
                         */
                        function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                            _setBeacon(newBeacon);
                            emit BeaconUpgraded(newBeacon);
                            if (data.length > 0 || forceCall) {
                                Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                            }
                        }
                        /**
                         * @dev Storage slot with the admin of the contract.
                         * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
                         * validated in the constructor.
                         */
                        bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                        /**
                         * @dev Emitted when the admin account has changed.
                         */
                        event AdminChanged(address previousAdmin, address newAdmin);
                        /**
                         * @dev Returns the current admin.
                         */
                        function _getAdmin() internal view returns (address) {
                            return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
                        }
                        /**
                         * @dev Stores a new address in the EIP1967 admin slot.
                         */
                        function _setAdmin(address newAdmin) private {
                            require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                            StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
                        }
                        /**
                         * @dev Changes the admin of the proxy.
                         *
                         * Emits an {AdminChanged} event.
                         */
                        function _changeAdmin(address newAdmin) internal {
                            emit AdminChanged(_getAdmin(), newAdmin);
                            _setAdmin(newAdmin);
                        }
                        /**
                         * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
                         * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
                         */
                        bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
                        /**
                         * @dev Emitted when the beacon is upgraded.
                         */
                        event BeaconUpgraded(address indexed beacon);
                        /**
                         * @dev Returns the current beacon.
                         */
                        function _getBeacon() internal view returns (address) {
                            return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
                        }
                        /**
                         * @dev Stores a new beacon in the EIP1967 beacon slot.
                         */
                        function _setBeacon(address newBeacon) private {
                            require(
                                Address.isContract(newBeacon),
                                "ERC1967: new beacon is not a contract"
                            );
                            require(
                                Address.isContract(IBeacon(newBeacon).implementation()),
                                "ERC1967: beacon implementation is not a contract"
                            );
                            StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    /**
                     * @dev This is the interface that {BeaconProxy} expects of its beacon.
                     */
                    interface IBeacon {
                        /**
                         * @dev Must return an address that can be used as a delegate call target.
                         *
                         * {BeaconProxy} will check that this address is a contract.
                         */
                        function implementation() external view returns (address);
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    /**
                     * @dev Collection of functions related to the address type
                     */
                    library Address {
                        /**
                         * @dev Returns true if `account` is a contract.
                         *
                         * [IMPORTANT]
                         * ====
                         * It is unsafe to assume that an address for which this function returns
                         * false is an externally-owned account (EOA) and not a contract.
                         *
                         * Among others, `isContract` will return false for the following
                         * types of addresses:
                         *
                         *  - an externally-owned account
                         *  - a contract in construction
                         *  - an address where a contract will be created
                         *  - an address where a contract lived, but was destroyed
                         * ====
                         */
                        function isContract(address account) internal view returns (bool) {
                            // This method relies on extcodesize, which returns 0 for contracts in
                            // construction, since the code is only stored at the end of the
                            // constructor execution.
                            uint256 size;
                            // solhint-disable-next-line no-inline-assembly
                            assembly { size := extcodesize(account) }
                            return size > 0;
                        }
                        /**
                         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                         * `recipient`, forwarding all available gas and reverting on errors.
                         *
                         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                         * of certain opcodes, possibly making contracts go over the 2300 gas limit
                         * imposed by `transfer`, making them unable to receive funds via
                         * `transfer`. {sendValue} removes this limitation.
                         *
                         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                         *
                         * IMPORTANT: because control is transferred to `recipient`, care must be
                         * taken to not create reentrancy vulnerabilities. Consider using
                         * {ReentrancyGuard} or the
                         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                         */
                        function sendValue(address payable recipient, uint256 amount) internal {
                            require(address(this).balance >= amount, "Address: insufficient balance");
                            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                            (bool success, ) = recipient.call{ value: amount }("");
                            require(success, "Address: unable to send value, recipient may have reverted");
                        }
                        /**
                         * @dev Performs a Solidity function call using a low level `call`. A
                         * plain`call` is an unsafe replacement for a function call: use this
                         * function instead.
                         *
                         * If `target` reverts with a revert reason, it is bubbled up by this
                         * function (like regular Solidity function calls).
                         *
                         * Returns the raw returned data. To convert to the expected return value,
                         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                         *
                         * Requirements:
                         *
                         * - `target` must be a contract.
                         * - calling `target` with `data` must not revert.
                         *
                         * _Available since v3.1._
                         */
                        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionCall(target, data, "Address: low-level call failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                         * `errorMessage` as a fallback revert reason when `target` reverts.
                         *
                         * _Available since v3.1._
                         */
                        function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                            return functionCallWithValue(target, data, 0, errorMessage);
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but also transferring `value` wei to `target`.
                         *
                         * Requirements:
                         *
                         * - the calling contract must have an ETH balance of at least `value`.
                         * - the called Solidity function must be `payable`.
                         *
                         * _Available since v3.1._
                         */
                        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                         * with `errorMessage` as a fallback revert reason when `target` reverts.
                         *
                         * _Available since v3.1._
                         */
                        function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                            require(address(this).balance >= value, "Address: insufficient balance for call");
                            require(isContract(target), "Address: call to non-contract");
                            // solhint-disable-next-line avoid-low-level-calls
                            (bool success, bytes memory returndata) = target.call{ value: value }(data);
                            return _verifyCallResult(success, returndata, errorMessage);
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but performing a static call.
                         *
                         * _Available since v3.3._
                         */
                        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                            return functionStaticCall(target, data, "Address: low-level static call failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                         * but performing a static call.
                         *
                         * _Available since v3.3._
                         */
                        function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                            require(isContract(target), "Address: static call to non-contract");
                            // solhint-disable-next-line avoid-low-level-calls
                            (bool success, bytes memory returndata) = target.staticcall(data);
                            return _verifyCallResult(success, returndata, errorMessage);
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but performing a delegate call.
                         *
                         * _Available since v3.4._
                         */
                        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                        }
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                         * but performing a delegate call.
                         *
                         * _Available since v3.4._
                         */
                        function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                            require(isContract(target), "Address: delegate call to non-contract");
                            // solhint-disable-next-line avoid-low-level-calls
                            (bool success, bytes memory returndata) = target.delegatecall(data);
                            return _verifyCallResult(success, returndata, errorMessage);
                        }
                        function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                            if (success) {
                                return returndata;
                            } else {
                                // Look for revert reason and bubble it up if present
                                if (returndata.length > 0) {
                                    // The easiest way to bubble the revert reason is using memory via assembly
                                    // solhint-disable-next-line no-inline-assembly
                                    assembly {
                                        let returndata_size := mload(returndata)
                                        revert(add(32, returndata), returndata_size)
                                    }
                                } else {
                                    revert(errorMessage);
                                }
                            }
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    /**
                     * @dev Library for reading and writing primitive types to specific storage slots.
                     *
                     * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
                     * This library helps with reading and writing to such slots without the need for inline assembly.
                     *
                     * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
                     *
                     * Example usage to set ERC1967 implementation slot:
                     * ```
                     * contract ERC1967 {
                     *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                     *
                     *     function _getImplementation() internal view returns (address) {
                     *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                     *     }
                     *
                     *     function _setImplementation(address newImplementation) internal {
                     *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                     *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                     *     }
                     * }
                     * ```
                     *
                     * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
                     */
                    library StorageSlot {
                        struct AddressSlot {
                            address value;
                        }
                        struct BooleanSlot {
                            bool value;
                        }
                        struct Bytes32Slot {
                            bytes32 value;
                        }
                        struct Uint256Slot {
                            uint256 value;
                        }
                        /**
                         * @dev Returns an `AddressSlot` with member `value` located at `slot`.
                         */
                        function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                            assembly {
                                r.slot := slot
                            }
                        }
                        /**
                         * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
                         */
                        function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                            assembly {
                                r.slot := slot
                            }
                        }
                        /**
                         * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
                         */
                        function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                            assembly {
                                r.slot := slot
                            }
                        }
                        /**
                         * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
                         */
                        function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                            assembly {
                                r.slot := slot
                            }
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    import "../utils/Context.sol";
                    /**
                     * @dev Contract module which provides a basic access control mechanism, where
                     * there is an account (an owner) that can be granted exclusive access to
                     * specific functions.
                     *
                     * By default, the owner account will be the one that deploys the contract. This
                     * can later be changed with {transferOwnership}.
                     *
                     * This module is used through inheritance. It will make available the modifier
                     * `onlyOwner`, which can be applied to your functions to restrict their use to
                     * the owner.
                     */
                    abstract contract Ownable is Context {
                        address private _owner;
                        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                        /**
                         * @dev Initializes the contract setting the deployer as the initial owner.
                         */
                        constructor () {
                            address msgSender = _msgSender();
                            _owner = msgSender;
                            emit OwnershipTransferred(address(0), msgSender);
                        }
                        /**
                         * @dev Returns the address of the current owner.
                         */
                        function owner() public view virtual returns (address) {
                            return _owner;
                        }
                        /**
                         * @dev Throws if called by any account other than the owner.
                         */
                        modifier onlyOwner() {
                            require(owner() == _msgSender(), "Ownable: caller is not the owner");
                            _;
                        }
                        /**
                         * @dev Leaves the contract without owner. It will not be possible to call
                         * `onlyOwner` functions anymore. Can only be called by the current owner.
                         *
                         * NOTE: Renouncing ownership will leave the contract without an owner,
                         * thereby removing any functionality that is only available to the owner.
                         */
                        function renounceOwnership() public virtual onlyOwner {
                            emit OwnershipTransferred(_owner, address(0));
                            _owner = address(0);
                        }
                        /**
                         * @dev Transfers ownership of the contract to a new account (`newOwner`).
                         * Can only be called by the current owner.
                         */
                        function transferOwnership(address newOwner) public virtual onlyOwner {
                            require(newOwner != address(0), "Ownable: new owner is the zero address");
                            emit OwnershipTransferred(_owner, newOwner);
                            _owner = newOwner;
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    /*
                     * @dev Provides information about the current execution context, including the
                     * sender of the transaction and its data. While these are generally available
                     * via msg.sender and msg.data, they should not be accessed in such a direct
                     * manner, since when dealing with meta-transactions the account sending and
                     * paying for execution may not be the actual sender (as far as an application
                     * is concerned).
                     *
                     * This contract is only required for intermediate, library-like contracts.
                     */
                    abstract contract Context {
                        function _msgSender() internal view virtual returns (address) {
                            return msg.sender;
                        }
                        function _msgData() internal view virtual returns (bytes calldata) {
                            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                            return msg.data;
                        }
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    import "../ERC1967/ERC1967Upgrade.sol";
                    /**
                     * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes
                     * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify
                     * continuation of the upgradability.
                     *
                     * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism.
                     *
                     * _Available since v4.1._
                     */
                    abstract contract UUPSUpgradeable is ERC1967Upgrade {
                        function upgradeTo(address newImplementation) external virtual {
                            _authorizeUpgrade(newImplementation);
                            _upgradeToAndCallSecure(newImplementation, bytes(""), false);
                        }
                        function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual {
                            _authorizeUpgrade(newImplementation);
                            _upgradeToAndCallSecure(newImplementation, data, true);
                        }
                        function _authorizeUpgrade(address newImplementation) internal virtual;
                    }
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.2;
                    import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol";
                    abstract contract Proxiable is UUPSUpgradeable {
                        function _authorizeUpgrade(address newImplementation) internal override {
                            _beforeUpgrade(newImplementation);
                        }
                        function _beforeUpgrade(address newImplementation) internal virtual;
                    }
                    contract ChildOfProxiable is Proxiable {
                        function _beforeUpgrade(address newImplementation) internal virtual override {}
                    }
                    

                    File 2 of 5: MemesZoo
                    // https://t.me/memeszoo_erc20
                    // https://twitter.com/memeszoo_erc20
                    
                    
                    // SPDX-License-Identifier: MIT
                    
                    pragma solidity 0.8.20;
                    pragma experimental ABIEncoderV2;
                    
                    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                    
                    /**
                     * @dev Provides information about the current execution context, including the
                     * sender of the transaction and its data. While these are generally available
                     * via msg.sender and msg.data, they should not be accessed in such a direct
                     * manner, since when dealing with meta-transactions the account sending and
                     * paying for execution may not be the actual sender (as far as an application
                     * is concerned).
                     *
                     * This contract is only required for intermediate, library-like contracts.
                     */
                    abstract contract Context {
                        function _msgSender() internal view virtual returns (address) {
                            return msg.sender;
                        }
                    
                        function _msgData() internal view virtual returns (bytes calldata) {
                            return msg.data;
                        }
                    }
                    
                    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
                    
                    // pragma solidity ^0.8.0;
                    
                    // import "../utils/Context.sol";
                    
                    /**
                     * @dev Contract module which provides a basic access control mechanism, where
                     * there is an account (an owner) that can be granted exclusive access to
                     * specific functions.
                     *
                     * By default, the owner account will be the one that deploys the contract. This
                     * can later be changed with {transferOwnership}.
                     *
                     * This module is used through inheritance. It will make available the modifier
                     * `onlyOwner`, which can be applied to your functions to restrict their use to
                     * the owner.
                     */
                    abstract contract Ownable is Context {
                        address private _owner;
                    
                        event OwnershipTransferred(
                            address indexed previousOwner,
                            address indexed newOwner
                        );
                    
                        /**
                         * @dev Initializes the contract setting the deployer as the initial owner.
                         */
                        constructor() {
                            _transferOwnership(_msgSender());
                        }
                    
                        /**
                         * @dev Throws if called by any account other than the owner.
                         */
                        modifier onlyOwner() {
                            _checkOwner();
                            _;
                        }
                    
                        /**
                         * @dev Returns the address of the current owner.
                         */
                        function owner() public view virtual returns (address) {
                            return _owner;
                        }
                    
                        /**
                         * @dev Throws if the sender is not the owner.
                         */
                        function _checkOwner() internal view virtual {
                            require(owner() == _msgSender(), "Ownable: caller is not the owner");
                        }
                    
                    
                        function renounceOwnership() public virtual onlyOwner {
                            _transferOwnership(address(0));
                        }
                        
                        /**
                         * @dev Transfers ownership of the contract to a new account (`newOwner`).
                         * Can only be called by the current owner.
                         */
                        function transferOwnership(address newOwner) public virtual onlyOwner {
                            require(
                                newOwner != address(0),
                                "Ownable: new owner is the zero address"
                            );
                            _transferOwnership(newOwner);
                        }
                    
                        /**
                         * @dev Transfers ownership of the contract to a new account (`newOwner`).
                         * Internal function without access restriction.
                         */
                        function _transferOwnership(address newOwner) internal virtual {
                            address oldOwner = _owner;
                            _owner = newOwner;
                            emit OwnershipTransferred(oldOwner, newOwner);
                        }
                    }
                    
                    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                    
                    // pragma solidity ^0.8.0;
                    
                    /**
                     * @dev Interface of the ERC20 standard as defined in the EIP.
                     */
                    interface IERC20 {
                        /**
                         * @dev Emitted when `value` tokens are moved from one account (`from`) to
                         * another (`to`).
                         *
                         * Note that `value` may be zero.
                         */
                        event Transfer(address indexed from, address indexed to, uint256 value);
                    
                        /**
                         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                         * a call to {approve}. `value` is the new allowance.
                         */
                        event Approval(
                            address indexed owner,
                            address indexed spender,
                            uint256 value
                        );
                    
                        /**
                         * @dev Returns the amount of tokens in existence.
                         */
                        function totalSupply() external view returns (uint256);
                    
                        /**
                         * @dev Returns the amount of tokens owned by `account`.
                         */
                        function balanceOf(address account) external view returns (uint256);
                    
                        /**
                         * @dev Moves `amount` tokens from the caller's account to `to`.
                         *
                         * Returns a boolean value indicating whether the operation succeeded.
                         *
                         * Emits a {Transfer} event.
                         */
                        function transfer(address to, uint256 amount) external returns (bool);
                    
                        /**
                         * @dev Returns the remaining number of tokens that `spender` will be
                         * allowed to spend on behalf of `owner` through {transferFrom}. This is
                         * zero by default.
                         *
                         * This value changes when {approve} or {transferFrom} are called.
                         */
                        function allowance(address owner, address spender)
                            external
                            view
                            returns (uint256);
                    
                        /**
                         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                         *
                         * Returns a boolean value indicating whether the operation succeeded.
                         *
                         * IMPORTANT: Beware that changing an allowance with this method brings the risk
                         * that someone may use both the old and the new allowance by unfortunate
                         * transaction ordering. One possible solution to mitigate this race
                         * condition is to first reduce the spender's allowance to 0 and set the
                         * desired value afterwards:
                         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                         *
                         * Emits an {Approval} event.
                         */
                        function approve(address spender, uint256 amount) external returns (bool);
                    
                        /**
                         * @dev Moves `amount` tokens from `from` to `to` using the
                         * allowance mechanism. `amount` is then deducted from the caller's
                         * allowance.
                         *
                         * Returns a boolean value indicating whether the operation succeeded.
                         *
                         * Emits a {Transfer} event.
                         */
                        function transferFrom(
                            address from,
                            address to,
                            uint256 amount
                        ) external returns (bool);
                    }
                    
                    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
                    
                    // pragma solidity ^0.8.0;
                    
                    // import "../IERC20.sol";
                    
                    /**
                     * @dev Interface for the optional metadata functions from the ERC20 standard.
                     *
                     * _Available since v4.1._
                     */
                    interface IERC20Metadata is IERC20 {
                        /**
                         * @dev Returns the name of the token.
                         */
                        function name() external view returns (string memory);
                    
                        /**
                         * @dev Returns the symbol of the token.
                         */
                        function symbol() external view returns (string memory);
                    
                        /**
                         * @dev Returns the decimals places of the token.
                         */
                        function decimals() external view returns (uint8);
                    }
                    
                    // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
                    
                    // pragma solidity ^0.8.0;
                    
                    // import "./IERC20.sol";
                    // import "./extensions/IERC20Metadata.sol";
                    // import "../../utils/Context.sol";
                    
                    /**
                     * @dev Implementation of the {IERC20} interface.
                     *
                     * This implementation is agnostic to the way tokens are created. This means
                     * that a supply mechanism has to be added in a derived contract using {_mint}.
                     * For a generic mechanism see {ERC20PresetMinterPauser}.
                     *
                     * TIP: For a detailed writeup see our guide
                     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
                     * to implement supply mechanisms].
                     *
                     * The default value of {decimals} is 18. To change this, you should override
                     * this function so it returns a different value.
                     *
                     * We have followed general OpenZeppelin Contracts guidelines: functions revert
                     * instead returning `false` on failure. This behavior is nonetheless
                     * conventional and does not conflict with the expectations of ERC20
                     * applications.
                     *
                     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
                     * This allows applications to reconstruct the allowance for all accounts just
                     * by listening to said events. Other implementations of the EIP may not emit
                     * these events, as it isn't required by the specification.
                     *
                     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
                     * functions have been added to mitigate the well-known issues around setting
                     * allowances. See {IERC20-approve}.
                     */
                    contract ERC20 is Context, IERC20, IERC20Metadata {
                        mapping(address => uint256) private _balances;
                    
                        mapping(address => mapping(address => uint256)) private _allowances;
                    
                        uint256 private _totalSupply;
                    
                        string private _name;
                        string private _symbol;
                    
                        /**
                         * @dev Sets the values for {name} and {symbol}.
                         *
                         * All two of these values are immutable: they can only be set once during
                         * construction.
                         */
                        constructor(string memory name_, string memory symbol_) {
                            _name = name_;
                            _symbol = symbol_;
                        }
                    
                        /**
                         * @dev Returns the name of the token.
                         */
                        function name() public view virtual override returns (string memory) {
                            return _name;
                        }
                    
                        /**
                         * @dev Returns the symbol of the token, usually a shorter version of the
                         * name.
                         */
                        function symbol() public view virtual override returns (string memory) {
                            return _symbol;
                        }
                    
                        /**
                         * @dev Returns the number of decimals used to get its user representation.
                         * For example, if `decimals` equals `2`, a balance of `505` tokens should
                         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
                         *
                         * Tokens usually opt for a value of 18, imitating the relationship between
                         * Ether and Wei. This is the default value returned by this function, unless
                         * it's overridden.
                         *
                         * NOTE: This information is only used for _display_ purposes: it in
                         * no way affects any of the arithmetic of the contract, including
                         * {IERC20-balanceOf} and {IERC20-transfer}.
                         */
                        function decimals() public view virtual override returns (uint8) {
                            return 18;
                        }
                    
                        /**
                         * @dev See {IERC20-totalSupply}.
                         */
                        function totalSupply() public view virtual override returns (uint256) {
                            return _totalSupply;
                        }
                    
                        /**
                         * @dev See {IERC20-balanceOf}.
                         */
                        function balanceOf(address account)
                            public
                            view
                            virtual
                            override
                            returns (uint256)
                        {
                            return _balances[account];
                        }
                    
                        /**
                         * @dev See {IERC20-transfer}.
                         *
                         * Requirements:
                         *
                         * - `to` cannot be the zero address.
                         * - the caller must have a balance of at least `amount`.
                         */
                        function transfer(address to, uint256 amount)
                            public
                            virtual
                            override
                            returns (bool)
                        {
                            address owner = _msgSender();
                            _transfer(owner, to, amount);
                            return true;
                        }
                    
                        /**
                         * @dev See {IERC20-allowance}.
                         */
                        function allowance(address owner, address spender)
                            public
                            view
                            virtual
                            override
                            returns (uint256)
                        {
                            return _allowances[owner][spender];
                        }
                    
                        /**
                         * @dev See {IERC20-approve}.
                         *
                         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
                         * `transferFrom`. This is semantically equivalent to an infinite approval.
                         *
                         * Requirements:
                         *
                         * - `spender` cannot be the zero address.
                         */
                        function approve(address spender, uint256 amount)
                            public
                            virtual
                            override
                            returns (bool)
                        {
                            address owner = _msgSender();
                            _approve(owner, spender, amount);
                            return true;
                        }
                    
                        /**
                         * @dev See {IERC20-transferFrom}.
                         *
                         * Emits an {Approval} event indicating the updated allowance. This is not
                         * required by the EIP. See the note at the beginning of {ERC20}.
                         *
                         * NOTE: Does not update the allowance if the current allowance
                         * is the maximum `uint256`.
                         *
                         * Requirements:
                         *
                         * - `from` and `to` cannot be the zero address.
                         * - `from` must have a balance of at least `amount`.
                         * - the caller must have allowance for ``from``'s tokens of at least
                         * `amount`.
                         */
                        function transferFrom(
                            address from,
                            address to,
                            uint256 amount
                        ) public virtual override returns (bool) {
                            address spender = _msgSender();
                            _spendAllowance(from, spender, amount);
                            _transfer(from, to, amount);
                            return true;
                        }
                    
                        /**
                         * @dev Atomically increases the allowance granted to `spender` by the caller.
                         *
                         * This is an alternative to {approve} that can be used as a mitigation for
                         * problems described in {IERC20-approve}.
                         *
                         * Emits an {Approval} event indicating the updated allowance.
                         *
                         * Requirements:
                         *
                         * - `spender` cannot be the zero address.
                         */
                        function increaseAllowance(address spender, uint256 addedValue)
                            public
                            virtual
                            returns (bool)
                        {
                            address owner = _msgSender();
                            _approve(owner, spender, allowance(owner, spender) + addedValue);
                            return true;
                        }
                    
                        /**
                         * @dev Atomically decreases the allowance granted to `spender` by the caller.
                         *
                         * This is an alternative to {approve} that can be used as a mitigation for
                         * problems described in {IERC20-approve}.
                         *
                         * Emits an {Approval} event indicating the updated allowance.
                         *
                         * Requirements:
                         *
                         * - `spender` cannot be the zero address.
                         * - `spender` must have allowance for the caller of at least
                         * `subtractedValue`.
                         */
                        function decreaseAllowance(address spender, uint256 subtractedValue)
                            public
                            virtual
                            returns (bool)
                        {
                            address owner = _msgSender();
                            uint256 currentAllowance = allowance(owner, spender);
                            require(
                                currentAllowance >= subtractedValue,
                                "ERC20: decreased allowance below zero"
                            );
                            unchecked {
                                _approve(owner, spender, currentAllowance - subtractedValue);
                            }
                    
                            return true;
                        }
                    
                        /**
                         * @dev Moves `amount` of tokens from `from` to `to`.
                         *
                         * This internal function is equivalent to {transfer}, and can be used to
                         * e.g. implement automatic token fees, slashing mechanisms, etc.
                         *
                         * Emits a {Transfer} event.
                         *
                         * Requirements:
                         *
                         * - `from` cannot be the zero address.
                         * - `to` cannot be the zero address.
                         * - `from` must have a balance of at least `amount`.
                         */
                        function _transfer(
                            address from,
                            address to,
                            uint256 amount
                        ) internal virtual {
                            require(from != address(0), "ERC20: transfer from the zero address");
                            require(to != address(0), "ERC20: transfer to the zero address");
                    
                            _beforeTokenTransfer(from, to, amount);
                    
                            uint256 fromBalance = _balances[from];
                            require(
                                fromBalance >= amount,
                                "ERC20: transfer amount exceeds balance"
                            );
                            unchecked {
                                _balances[from] = fromBalance - amount;
                                // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                                // decrementing then incrementing.
                                _balances[to] += amount;
                            }
                    
                            emit Transfer(from, to, amount);
                    
                            _afterTokenTransfer(from, to, amount);
                        }
                    
                        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                         * the total supply.
                         *
                         * Emits a {Transfer} event with `from` set to the zero address.
                         *
                         * Requirements:
                         *
                         * - `account` cannot be the zero address.
                         */
                        function _mint(address account, uint256 amount) internal virtual {
                            require(account != address(0), "ERC20: mint to the zero address");
                    
                            _beforeTokenTransfer(address(0), account, amount);
                    
                            _totalSupply += amount;
                            unchecked {
                                // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                                _balances[account] += amount;
                            }
                            emit Transfer(address(0), account, amount);
                    
                            _afterTokenTransfer(address(0), account, amount);
                        }
                    
                        /**
                         * @dev Destroys `amount` tokens from `account`, reducing the
                         * total supply.
                         *
                         * Emits a {Transfer} event with `to` set to the zero address.
                         *
                         * Requirements:
                         *
                         * - `account` cannot be the zero address.
                         * - `account` must have at least `amount` tokens.
                         */
                        function _burn(address account, uint256 amount) internal virtual {
                            require(account != address(0), "ERC20: burn from the zero address");
                    
                            _beforeTokenTransfer(account, address(0), amount);
                    
                            uint256 accountBalance = _balances[account];
                            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                            unchecked {
                                _balances[account] = accountBalance - amount;
                                // Overflow not possible: amount <= accountBalance <= totalSupply.
                                _totalSupply -= amount;
                            }
                    
                            emit Transfer(account, address(0), amount);
                    
                            _afterTokenTransfer(account, address(0), amount);
                        }
                    
                        /**
                         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
                         *
                         * This internal function is equivalent to `approve`, and can be used to
                         * e.g. set automatic allowances for certain subsystems, etc.
                         *
                         * Emits an {Approval} event.
                         *
                         * Requirements:
                         *
                         * - `owner` cannot be the zero address.
                         * - `spender` cannot be the zero address.
                         */
                        function _approve(
                            address owner,
                            address spender,
                            uint256 amount
                        ) internal virtual {
                            require(owner != address(0), "ERC20: approve from the zero address");
                            require(spender != address(0), "ERC20: approve to the zero address");
                    
                            _allowances[owner][spender] = amount;
                            emit Approval(owner, spender, amount);
                        }
                    
                        /**
                         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
                         *
                         * Does not update the allowance amount in case of infinite allowance.
                         * Revert if not enough allowance is available.
                         *
                         * Might emit an {Approval} event.
                         */
                        function _spendAllowance(
                            address owner,
                            address spender,
                            uint256 amount
                        ) internal virtual {
                            uint256 currentAllowance = allowance(owner, spender);
                            if (currentAllowance != type(uint256).max) {
                                require(
                                    currentAllowance >= amount,
                                    "ERC20: insufficient allowance"
                                );
                                unchecked {
                                    _approve(owner, spender, currentAllowance - amount);
                                }
                            }
                        }
                    
                        /**
                         * @dev Hook that is called before any transfer of tokens. This includes
                         * minting and burning.
                         *
                         * Calling conditions:
                         *
                         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                         * will be transferred to `to`.
                         * - when `from` is zero, `amount` tokens will be minted for `to`.
                         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                         * - `from` and `to` are never both zero.
                         *
                         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                         */
                        function _beforeTokenTransfer(
                            address from,
                            address to,
                            uint256 amount
                        ) internal virtual {}
                    
                        /**
                         * @dev Hook that is called after any transfer of tokens. This includes
                         * minting and burning.
                         *
                         * Calling conditions:
                         *
                         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                         * has been transferred to `to`.
                         * - when `from` is zero, `amount` tokens have been minted for `to`.
                         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
                         * - `from` and `to` are never both zero.
                         *
                         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                         */
                        function _afterTokenTransfer(
                            address from,
                            address to,
                            uint256 amount
                        ) internal virtual {}
                    }
                    
                    // OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol)
                    
                    // pragma solidity ^0.8.0;
                    
                    // CAUTION
                    // This version of SafeMath should only be used with Solidity 0.8 or later,
                    // because it relies on the compiler's built in overflow checks.
                    
                    /**
                     * @dev Wrappers over Solidity's arithmetic operations.
                     *
                     * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
                     * now has built in overflow checking.
                     */
                    library SafeMath {
                        /**
                         * @dev Returns the addition of two unsigned integers, with an overflow flag.
                         *
                         * _Available since v3.4._
                         */
                        function tryAdd(uint256 a, uint256 b)
                            internal
                            pure
                            returns (bool, uint256)
                        {
                            unchecked {
                                uint256 c = a + b;
                                if (c < a) return (false, 0);
                                return (true, c);
                            }
                        }
                    
                        /**
                         * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
                         *
                         * _Available since v3.4._
                         */
                        function trySub(uint256 a, uint256 b)
                            internal
                            pure
                            returns (bool, uint256)
                        {
                            unchecked {
                                if (b > a) return (false, 0);
                                return (true, a - b);
                            }
                        }
                    
                        /**
                         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
                         *
                         * _Available since v3.4._
                         */
                        function tryMul(uint256 a, uint256 b)
                            internal
                            pure
                            returns (bool, uint256)
                        {
                            unchecked {
                                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                                // benefit is lost if 'b' is also tested.
                                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                                if (a == 0) return (true, 0);
                                uint256 c = a * b;
                                if (c / a != b) return (false, 0);
                                return (true, c);
                            }
                        }
                    
                        /**
                         * @dev Returns the division of two unsigned integers, with a division by zero flag.
                         *
                         * _Available since v3.4._
                         */
                        function tryDiv(uint256 a, uint256 b)
                            internal
                            pure
                            returns (bool, uint256)
                        {
                            unchecked {
                                if (b == 0) return (false, 0);
                                return (true, a / b);
                            }
                        }
                    
                        /**
                         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
                         *
                         * _Available since v3.4._
                         */
                        function tryMod(uint256 a, uint256 b)
                            internal
                            pure
                            returns (bool, uint256)
                        {
                            unchecked {
                                if (b == 0) return (false, 0);
                                return (true, a % b);
                            }
                        }
                    
                        /**
                         * @dev Returns the addition of two unsigned integers, reverting on
                         * overflow.
                         *
                         * Counterpart to Solidity's `+` operator.
                         *
                         * Requirements:
                         *
                         * - Addition cannot overflow.
                         */
                        function add(uint256 a, uint256 b) internal pure returns (uint256) {
                            return a + b;
                        }
                    
                        /**
                         * @dev Returns the subtraction of two unsigned integers, reverting on
                         * overflow (when the result is negative).
                         *
                         * Counterpart to Solidity's `-` operator.
                         *
                         * Requirements:
                         *
                         * - Subtraction cannot overflow.
                         */
                        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                            return a - b;
                        }
                    
                        /**
                         * @dev Returns the multiplication of two unsigned integers, reverting on
                         * overflow.
                         *
                         * Counterpart to Solidity's `*` operator.
                         *
                         * Requirements:
                         *
                         * - Multiplication cannot overflow.
                         */
                        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                            return a * b;
                        }
                    
                        /**
                         * @dev Returns the integer division of two unsigned integers, reverting on
                         * division by zero. The result is rounded towards zero.
                         *
                         * Counterpart to Solidity's `/` operator.
                         *
                         * Requirements:
                         *
                         * - The divisor cannot be zero.
                         */
                        function div(uint256 a, uint256 b) internal pure returns (uint256) {
                            return a / b;
                        }
                    
                        /**
                         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                         * reverting when dividing by zero.
                         *
                         * Counterpart to Solidity's `%` operator. This function uses a `revert`
                         * opcode (which leaves remaining gas untouched) while Solidity uses an
                         * invalid opcode to revert (consuming all remaining gas).
                         *
                         * Requirements:
                         *
                         * - The divisor cannot be zero.
                         */
                        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                            return a % b;
                        }
                    
                        /**
                         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                         * overflow (when the result is negative).
                         *
                         * CAUTION: This function is deprecated because it requires allocating memory for the error
                         * message unnecessarily. For custom revert reasons use {trySub}.
                         *
                         * Counterpart to Solidity's `-` operator.
                         *
                         * Requirements:
                         *
                         * - Subtraction cannot overflow.
                         */
                        function sub(
                            uint256 a,
                            uint256 b,
                            string memory errorMessage
                        ) internal pure returns (uint256) {
                            unchecked {
                                require(b <= a, errorMessage);
                                return a - b;
                            }
                        }
                    
                        /**
                         * @dev Returns the integer division of two unsigned integers, reverting with custom message on
                         * division by zero. The result is rounded towards zero.
                         *
                         * Counterpart to Solidity's `/` operator. Note: this function uses a
                         * `revert` opcode (which leaves remaining gas untouched) while Solidity
                         * uses an invalid opcode to revert (consuming all remaining gas).
                         *
                         * Requirements:
                         *
                         * - The divisor cannot be zero.
                         */
                        function div(
                            uint256 a,
                            uint256 b,
                            string memory errorMessage
                        ) internal pure returns (uint256) {
                            unchecked {
                                require(b > 0, errorMessage);
                                return a / b;
                            }
                        }
                    
                        /**
                         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                         * reverting with custom message when dividing by zero.
                         *
                         * CAUTION: This function is deprecated because it requires allocating memory for the error
                         * message unnecessarily. For custom revert reasons use {tryMod}.
                         *
                         * Counterpart to Solidity's `%` operator. This function uses a `revert`
                         * opcode (which leaves remaining gas untouched) while Solidity uses an
                         * invalid opcode to revert (consuming all remaining gas).
                         *
                         * Requirements:
                         *
                         * - The divisor cannot be zero.
                         */
                        function mod(
                            uint256 a,
                            uint256 b,
                            string memory errorMessage
                        ) internal pure returns (uint256) {
                            unchecked {
                                require(b > 0, errorMessage);
                                return a % b;
                            }
                        }
                    }
                    
                    // pragma solidity >=0.5.0;
                    
                    interface IUniswapV2Factory {
                        event PairCreated(
                            address indexed token0,
                            address indexed token1,
                            address pair,
                            uint256
                        );
                    
                        function feeTo() external view returns (address);
                    
                        function feeToSetter() external view returns (address);
                    
                        function getPair(address tokenA, address tokenB)
                            external
                            view
                            returns (address pair);
                    
                        function allPairs(uint256) external view returns (address pair);
                    
                        function allPairsLength() external view returns (uint256);
                    
                        function createPair(address tokenA, address tokenB)
                            external
                            returns (address pair);
                    
                        function setFeeTo(address) external;
                    
                        function setFeeToSetter(address) external;
                    }
                    
                    // pragma solidity >=0.5.0;
                    
                    interface IUniswapV2Pair {
                        event Approval(
                            address indexed owner,
                            address indexed spender,
                            uint256 value
                        );
                        event Transfer(address indexed from, address indexed to, uint256 value);
                    
                        function name() external pure returns (string memory);
                    
                        function symbol() external pure returns (string memory);
                    
                        function decimals() external pure returns (uint8);
                    
                        function totalSupply() external view returns (uint256);
                    
                        function balanceOf(address owner) external view returns (uint256);
                    
                        function allowance(address owner, address spender)
                            external
                            view
                            returns (uint256);
                    
                        function approve(address spender, uint256 value) external returns (bool);
                    
                        function transfer(address to, uint256 value) external returns (bool);
                    
                        function transferFrom(
                            address from,
                            address to,
                            uint256 value
                        ) external returns (bool);
                    
                        function DOMAIN_SEPARATOR() external view returns (bytes32);
                    
                        function PERMIT_TYPEHASH() external pure returns (bytes32);
                    
                        function nonces(address owner) external view returns (uint256);
                    
                        function permit(
                            address owner,
                            address spender,
                            uint256 value,
                            uint256 deadline,
                            uint8 v,
                            bytes32 r,
                            bytes32 s
                        ) external;
                    
                        event Mint(address indexed sender, uint256 amount0, uint256 amount1);
                        event Burn(
                            address indexed sender,
                            uint256 amount0,
                            uint256 amount1,
                            address indexed to
                        );
                        event Swap(
                            address indexed sender,
                            uint256 amount0In,
                            uint256 amount1In,
                            uint256 amount0Out,
                            uint256 amount1Out,
                            address indexed to
                        );
                        event Sync(uint112 reserve0, uint112 reserve1);
                    
                        function MINIMUM_LIQUIDITY() external pure returns (uint256);
                    
                        function factory() external view returns (address);
                    
                        function token0() external view returns (address);
                    
                        function token1() external view returns (address);
                    
                        function getReserves()
                            external
                            view
                            returns (
                                uint112 reserve0,
                                uint112 reserve1,
                                uint32 blockTimestampLast
                            );
                    
                        function price0CumulativeLast() external view returns (uint256);
                    
                        function price1CumulativeLast() external view returns (uint256);
                    
                        function kLast() external view returns (uint256);
                    
                        function mint(address to) external returns (uint256 liquidity);
                    
                        function burn(address to)
                            external
                            returns (uint256 amount0, uint256 amount1);
                    
                        function swap(
                            uint256 amount0Out,
                            uint256 amount1Out,
                            address to,
                            bytes calldata data
                        ) external;
                    
                        function skim(address to) external;
                    
                        function sync() external;
                    
                        function initialize(address, address) external;
                    }
                    
                    // pragma solidity >=0.6.2;
                    
                    interface IUniswapV2Router01 {
                        function factory() external pure returns (address);
                    
                        function WETH() external pure returns (address);
                    
                        function addLiquidity(
                            address tokenA,
                            address tokenB,
                            uint256 amountADesired,
                            uint256 amountBDesired,
                            uint256 amountAMin,
                            uint256 amountBMin,
                            address to,
                            uint256 deadline
                        )
                            external
                            returns (
                                uint256 amountA,
                                uint256 amountB,
                                uint256 liquidity
                            );
                    
                        function addLiquidityETH(
                            address token,
                            uint256 amountTokenDesired,
                            uint256 amountTokenMin,
                            uint256 amountETHMin,
                            address to,
                            uint256 deadline
                        )
                            external
                            payable
                            returns (
                                uint256 amountToken,
                                uint256 amountETH,
                                uint256 liquidity
                            );
                    
                        function removeLiquidity(
                            address tokenA,
                            address tokenB,
                            uint256 liquidity,
                            uint256 amountAMin,
                            uint256 amountBMin,
                            address to,
                            uint256 deadline
                        ) external returns (uint256 amountA, uint256 amountB);
                    
                        function removeLiquidityETH(
                            address token,
                            uint256 liquidity,
                            uint256 amountTokenMin,
                            uint256 amountETHMin,
                            address to,
                            uint256 deadline
                        ) external returns (uint256 amountToken, uint256 amountETH);
                    
                        function removeLiquidityWithPermit(
                            address tokenA,
                            address tokenB,
                            uint256 liquidity,
                            uint256 amountAMin,
                            uint256 amountBMin,
                            address to,
                            uint256 deadline,
                            bool approveMax,
                            uint8 v,
                            bytes32 r,
                            bytes32 s
                        ) external returns (uint256 amountA, uint256 amountB);
                    
                        function removeLiquidityETHWithPermit(
                            address token,
                            uint256 liquidity,
                            uint256 amountTokenMin,
                            uint256 amountETHMin,
                            address to,
                            uint256 deadline,
                            bool approveMax,
                            uint8 v,
                            bytes32 r,
                            bytes32 s
                        ) external returns (uint256 amountToken, uint256 amountETH);
                    
                        function swapExactTokensForTokens(
                            uint256 amountIn,
                            uint256 amountOutMin,
                            address[] calldata path,
                            address to,
                            uint256 deadline
                        ) external returns (uint256[] memory amounts);
                    
                        function swapTokensForExactTokens(
                            uint256 amountOut,
                            uint256 amountInMax,
                            address[] calldata path,
                            address to,
                            uint256 deadline
                        ) external returns (uint256[] memory amounts);
                    
                        function swapExactETHForTokens(
                            uint256 amountOutMin,
                            address[] calldata path,
                            address to,
                            uint256 deadline
                        ) external payable returns (uint256[] memory amounts);
                    
                        function swapTokensForExactETH(
                            uint256 amountOut,
                            uint256 amountInMax,
                            address[] calldata path,
                            address to,
                            uint256 deadline
                        ) external returns (uint256[] memory amounts);
                    
                        function swapExactTokensForETH(
                            uint256 amountIn,
                            uint256 amountOutMin,
                            address[] calldata path,
                            address to,
                            uint256 deadline
                        ) external returns (uint256[] memory amounts);
                    
                        function swapETHForExactTokens(
                            uint256 amountOut,
                            address[] calldata path,
                            address to,
                            uint256 deadline
                        ) external payable returns (uint256[] memory amounts);
                    
                        function quote(
                            uint256 amountA,
                            uint256 reserveA,
                            uint256 reserveB
                        ) external pure returns (uint256 amountB);
                    
                        function getAmountOut(
                            uint256 amountIn,
                            uint256 reserveIn,
                            uint256 reserveOut
                        ) external pure returns (uint256 amountOut);
                    
                        function getAmountIn(
                            uint256 amountOut,
                            uint256 reserveIn,
                            uint256 reserveOut
                        ) external pure returns (uint256 amountIn);
                    
                        function getAmountsOut(uint256 amountIn, address[] calldata path)
                            external
                            view
                            returns (uint256[] memory amounts);
                    
                        function getAmountsIn(uint256 amountOut, address[] calldata path)
                            external
                            view
                            returns (uint256[] memory amounts);
                    }
                    
                    // pragma solidity >=0.6.2;
                    
                    // import './IUniswapV2Router01.sol';
                    
                    interface IUniswapV2Router02 is IUniswapV2Router01 {
                        function removeLiquidityETHSupportingFeeOnTransferTokens(
                            address token,
                            uint256 liquidity,
                            uint256 amountTokenMin,
                            uint256 amountETHMin,
                            address to,
                            uint256 deadline
                        ) external returns (uint256 amountETH);
                    
                        function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
                            address token,
                            uint256 liquidity,
                            uint256 amountTokenMin,
                            uint256 amountETHMin,
                            address to,
                            uint256 deadline,
                            bool approveMax,
                            uint8 v,
                            bytes32 r,
                            bytes32 s
                        ) external returns (uint256 amountETH);
                    
                        function swapExactTokensForTokensSupportingFeeOnTransferTokens(
                            uint256 amountIn,
                            uint256 amountOutMin,
                            address[] calldata path,
                            address to,
                            uint256 deadline
                        ) external;
                    
                        function swapExactETHForTokensSupportingFeeOnTransferTokens(
                            uint256 amountOutMin,
                            address[] calldata path,
                            address to,
                            uint256 deadline
                        ) external payable;
                    
                        function swapExactTokensForETHSupportingFeeOnTransferTokens(
                            uint256 amountIn,
                            uint256 amountOutMin,
                            address[] calldata path,
                            address to,
                            uint256 deadline
                        ) external;
                    }
                    
                    contract MemesZoo is ERC20, Ownable {
                        using SafeMath for uint256;
                    
                        IUniswapV2Router02 public immutable uniswapV2Router;
                        address public immutable uniswapV2Pair;
                        address public constant deadAddress = address(0xdead);
                    
                        bool private swapping;
                    
                        address public marketingWallet;
                    
                        uint256 public maxTransactionAmount;
                        uint256 public swapTokensAtAmount;
                        uint256 public maxWallet;
                    
                        uint256 public buyTotalFees;
                        uint256 private buyMarketingFee;
                        uint256 private buyLiquidityFee;
                    
                        uint256 public sellTotalFees;
                        uint256 private sellMarketingFee;
                        uint256 private sellLiquidityFee;
                    
                        uint256 private tokensForMarketing;
                        uint256 private tokensForLiquidity;
                        uint256 private previousFee;
                    
                        mapping(address => bool) private _isExcludedFromFees;
                        mapping(address => bool) private _isExcludedMaxTransactionAmount;
                        mapping(address => bool) private automatedMarketMakerPairs;
                    
                        event ExcludeFromFees(address indexed account, bool isExcluded);
                    
                        event SetAutomatedMarketMakerPair(address indexed pair, bool indexed value);
                    
                        event marketingWalletUpdated(
                            address indexed newWallet,
                            address indexed oldWallet
                        );
                    
                        event SwapAndLiquify(
                            uint256 tokensSwapped,
                            uint256 ethReceived,
                            uint256 tokensIntoLiquidity
                        );
                    
                        constructor() ERC20(unicode"🐸🐵🐶🐱🐰🦊🐔🐧🐦🐤🦅🦉🦇🐺🐗🐴🦄🐝🐻🐼🐨🐯🦁🐮🐷🐽🐛🪱🦋🐌🐞🐜🪰🪲🕷🦂🐢🐍🦎🦣🐘🦛🦏🦮🐕‍🦺🐈🐈‍⬛🐓🦤🦚🦜🦢🦩🕊🐇🦝🦨🦡🦫🦦🦥�", "Memes") {
                            uniswapV2Router = IUniswapV2Router02(
                                0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
                            );
                            uniswapV2Pair = IUniswapV2Factory(uniswapV2Router.factory()).createPair(
                                address(this),
                                uniswapV2Router.WETH()
                            );
                    
                            uint256 totalSupply = 777_000_777_000 ether;
                    
                            maxTransactionAmount = totalSupply;
                            maxWallet = totalSupply;
                            swapTokensAtAmount = (totalSupply * 1) / 1000;
                    
                            buyMarketingFee = 1;
                            buyLiquidityFee = 0;
                            buyTotalFees = buyMarketingFee + buyLiquidityFee;
                    
                            sellMarketingFee = 15;    // will change back to 1 along with ownership renounced
                            sellLiquidityFee = 0;
                            sellTotalFees = sellMarketingFee + sellLiquidityFee;
                            previousFee = sellTotalFees;
                    
                            marketingWallet = owner();
                    
                            excludeFromFees(owner(), true);
                            excludeFromFees(address(this), true);
                            excludeFromFees(deadAddress, true);
                    
                            excludeFromMaxTransaction(owner(), true);
                            excludeFromMaxTransaction(address(this), true);
                            excludeFromMaxTransaction(deadAddress, true);
                            excludeFromMaxTransaction(address(uniswapV2Router), true);
                            excludeFromMaxTransaction(address(uniswapV2Pair), true);
                    
                            _setAutomatedMarketMakerPair(address(uniswapV2Pair), true);
                    
                            _mint(msg.sender, totalSupply);
                        }
                    
                        receive() external payable {}
                    
                        function updateSwapTokensAtAmount(uint256 newAmount)
                            external
                            onlyOwner
                            returns (bool)
                        {
                            require(
                                newAmount >= (totalSupply() * 1) / 100000,
                                "ERC20: Swap amount cannot be lower than 0.001% total supply."
                            );
                            require(
                                newAmount <= (totalSupply() * 5) / 1000,
                                "ERC20: Swap amount cannot be higher than 0.5% total supply."
                            );
                            swapTokensAtAmount = newAmount;
                            return true;
                        }
                    
                        function updateMaxWalletAndTxnAmount(
                            uint256 newTxnNum,
                            uint256 newMaxWalletNum
                        ) external onlyOwner {
                            require(
                                newTxnNum >= ((totalSupply() * 5) / 1000),
                                "ERC20: Cannot set maxTxn lower than 0.5%"
                            );
                            require(
                                newMaxWalletNum >= ((totalSupply() * 5) / 1000),
                                "ERC20: Cannot set maxWallet lower than 0.5%"
                            );
                            maxWallet = newMaxWalletNum;
                            maxTransactionAmount = newTxnNum;
                        }
                    
                        function excludeFromMaxTransaction(address updAds, bool isEx)
                            public
                            onlyOwner
                        {
                            _isExcludedMaxTransactionAmount[updAds] = isEx;
                        }
                    
                        function updateSellFees(uint256 _marketingFee, uint256 _liquidityFee)
                            public
                            onlyOwner
                        {
                            sellMarketingFee = _marketingFee;
                            sellLiquidityFee = _liquidityFee;
                            sellTotalFees = sellMarketingFee + sellLiquidityFee;
                            previousFee = sellTotalFees;
                            require(sellTotalFees <= 10, "ERC20: Must keep fees at 10% or less");
                        }
                    
                        function excludeFromFees(address account, bool excluded) public onlyOwner {
                            _isExcludedFromFees[account] = excluded;
                            emit ExcludeFromFees(account, excluded);
                        }
                    
                        function withdrawStuckETH() public onlyOwner {
                            bool success;
                            (success, ) = address(msg.sender).call{value: address(this).balance}(
                                ""
                            );
                        }
                    
                        function _setAutomatedMarketMakerPair(address pair, bool value) private {
                            automatedMarketMakerPairs[pair] = value;
                    
                            emit SetAutomatedMarketMakerPair(pair, value);
                        }
                    
                        function isExcludedFromFees(address account) public view returns (bool) {
                            return _isExcludedFromFees[account];
                        }
                    
                        function _transfer(
                            address from,
                            address to,
                            uint256 amount
                        ) internal override {
                            require(from != address(0), "ERC20: transfer from the zero address");
                            require(to != address(0), "ERC20: transfer to the zero address");
                    
                            if (amount == 0) {
                                super._transfer(from, to, 0);
                                return;
                            }
                    
                            if (
                                from != owner() &&
                                to != owner() &&
                                to != address(0) &&
                                to != deadAddress &&
                                !swapping
                            ) {
                                //when buy
                                if (
                                    automatedMarketMakerPairs[from] &&
                                    !_isExcludedMaxTransactionAmount[to]
                                ) {
                                    require(
                                        amount <= maxTransactionAmount,
                                        "ERC20: Buy transfer amount exceeds the maxTransactionAmount."
                                    );
                                    require(
                                        amount + balanceOf(to) <= maxWallet,
                                        "ERC20: Max wallet exceeded"
                                    );
                                }
                                //when sell
                                else if (
                                    automatedMarketMakerPairs[to] &&
                                    !_isExcludedMaxTransactionAmount[from]
                                ) {
                                    require(
                                        amount <= maxTransactionAmount,
                                        "ERC20: Sell transfer amount exceeds the maxTransactionAmount."
                                    );
                                } else if (!_isExcludedMaxTransactionAmount[to]) {
                                    require(
                                        amount + balanceOf(to) <= maxWallet,
                                        "ERC20: Max wallet exceeded"
                                    );
                                }
                            }
                    
                            uint256 contractTokenBalance = balanceOf(address(this));
                    
                            bool canSwap = contractTokenBalance >= swapTokensAtAmount;
                    
                            if (
                                canSwap &&
                                !swapping &&
                                !automatedMarketMakerPairs[from] &&
                                !_isExcludedFromFees[from] &&
                                !_isExcludedFromFees[to]
                            ) {
                                swapping = true;
                    
                                swapBack();
                    
                                swapping = false;
                            }
                    
                            bool takeFee = !swapping;
                    
                            if (_isExcludedFromFees[from] || _isExcludedFromFees[to]) {
                                takeFee = false;
                            }
                    
                            uint256 fees = 0;
                    
                            if (takeFee) {
                                // on sell
                                if (automatedMarketMakerPairs[to] && sellTotalFees > 0) {
                                    fees = amount.mul(sellTotalFees).div(100);
                                    tokensForLiquidity += (fees * sellLiquidityFee) / sellTotalFees;
                                    tokensForMarketing += (fees * sellMarketingFee) / sellTotalFees;
                                }
                                // on buy
                                else if (automatedMarketMakerPairs[from] && buyTotalFees > 0) {
                                    fees = amount.mul(buyTotalFees).div(100);
                                    tokensForLiquidity += (fees * buyLiquidityFee) / buyTotalFees;
                                    tokensForMarketing += (fees * buyMarketingFee) / buyTotalFees;
                                }
                    
                                if (fees > 0) {
                                    super._transfer(from, address(this), fees);
                                }
                    
                                amount -= fees;
                            }
                    
                            super._transfer(from, to, amount);
                            sellTotalFees = previousFee;
                        }
                    
                        function swapTokensForEth(uint256 tokenAmount) private {
                            address[] memory path = new address[](2);
                            path[0] = address(this);
                            path[1] = uniswapV2Router.WETH();
                    
                            _approve(address(this), address(uniswapV2Router), tokenAmount);
                    
                            // make the swap
                            uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
                                tokenAmount,
                                0,
                                path,
                                address(this),
                                block.timestamp
                            );
                        }
                    
                        function addLiquidity(uint256 tokenAmount, uint256 ethAmount) private {
                            _approve(address(this), address(uniswapV2Router), tokenAmount);
                    
                            uniswapV2Router.addLiquidityETH{value: ethAmount}(
                                address(this),
                                tokenAmount,
                                0,
                                0,
                                owner(),
                                block.timestamp
                            );
                        }
                    
                        function swapBack() private {
                            uint256 contractBalance = balanceOf(address(this));
                            uint256 totalTokensToSwap = tokensForLiquidity + tokensForMarketing;
                            bool success;
                    
                            if (contractBalance == 0 || totalTokensToSwap == 0) {
                                return;
                            }
                    
                            if (contractBalance > swapTokensAtAmount * 20) {
                                contractBalance = swapTokensAtAmount * 20;
                            }
                    
                            uint256 liquidityTokens = (contractBalance * tokensForLiquidity) /
                                totalTokensToSwap /
                                2;
                            uint256 amountToSwapForETH = contractBalance.sub(liquidityTokens);
                    
                            uint256 initialETHBalance = address(this).balance;
                    
                            swapTokensForEth(amountToSwapForETH);
                    
                            uint256 ethBalance = address(this).balance.sub(initialETHBalance);
                    
                            uint256 ethForMarketing = ethBalance.mul(tokensForMarketing).div(
                                totalTokensToSwap
                            );
                    
                            uint256 ethForLiquidity = ethBalance - ethForMarketing;
                    
                            tokensForLiquidity = 0;
                            tokensForMarketing = 0;
                    
                            if (liquidityTokens > 0 && ethForLiquidity > 0) {
                                addLiquidity(liquidityTokens, ethForLiquidity);
                                emit SwapAndLiquify(
                                    amountToSwapForETH,
                                    ethForLiquidity,
                                    tokensForLiquidity
                                );
                            }
                    
                            (success, ) = address(marketingWallet).call{value: address(this).balance}(
                                ""
                            );
                        }
                    }

                    File 3 of 5: UniswapV2Pair
                    // File: contracts/interfaces/IUniswapV2Pair.sol
                    
                    pragma solidity >=0.5.0;
                    
                    interface IUniswapV2Pair {
                        event Approval(address indexed owner, address indexed spender, uint value);
                        event Transfer(address indexed from, address indexed to, uint value);
                    
                        function name() external pure returns (string memory);
                        function symbol() external pure returns (string memory);
                        function decimals() external pure returns (uint8);
                        function totalSupply() external view returns (uint);
                        function balanceOf(address owner) external view returns (uint);
                        function allowance(address owner, address spender) external view returns (uint);
                    
                        function approve(address spender, uint value) external returns (bool);
                        function transfer(address to, uint value) external returns (bool);
                        function transferFrom(address from, address to, uint value) external returns (bool);
                    
                        function DOMAIN_SEPARATOR() external view returns (bytes32);
                        function PERMIT_TYPEHASH() external pure returns (bytes32);
                        function nonces(address owner) external view returns (uint);
                    
                        function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
                    
                        event Mint(address indexed sender, uint amount0, uint amount1);
                        event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
                        event Swap(
                            address indexed sender,
                            uint amount0In,
                            uint amount1In,
                            uint amount0Out,
                            uint amount1Out,
                            address indexed to
                        );
                        event Sync(uint112 reserve0, uint112 reserve1);
                    
                        function MINIMUM_LIQUIDITY() external pure returns (uint);
                        function factory() external view returns (address);
                        function token0() external view returns (address);
                        function token1() external view returns (address);
                        function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
                        function price0CumulativeLast() external view returns (uint);
                        function price1CumulativeLast() external view returns (uint);
                        function kLast() external view returns (uint);
                    
                        function mint(address to) external returns (uint liquidity);
                        function burn(address to) external returns (uint amount0, uint amount1);
                        function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
                        function skim(address to) external;
                        function sync() external;
                    
                        function initialize(address, address) external;
                    }
                    
                    // File: contracts/interfaces/IUniswapV2ERC20.sol
                    
                    pragma solidity >=0.5.0;
                    
                    interface IUniswapV2ERC20 {
                        event Approval(address indexed owner, address indexed spender, uint value);
                        event Transfer(address indexed from, address indexed to, uint value);
                    
                        function name() external pure returns (string memory);
                        function symbol() external pure returns (string memory);
                        function decimals() external pure returns (uint8);
                        function totalSupply() external view returns (uint);
                        function balanceOf(address owner) external view returns (uint);
                        function allowance(address owner, address spender) external view returns (uint);
                    
                        function approve(address spender, uint value) external returns (bool);
                        function transfer(address to, uint value) external returns (bool);
                        function transferFrom(address from, address to, uint value) external returns (bool);
                    
                        function DOMAIN_SEPARATOR() external view returns (bytes32);
                        function PERMIT_TYPEHASH() external pure returns (bytes32);
                        function nonces(address owner) external view returns (uint);
                    
                        function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
                    }
                    
                    // File: contracts/libraries/SafeMath.sol
                    
                    pragma solidity =0.5.16;
                    
                    // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
                    
                    library SafeMath {
                        function add(uint x, uint y) internal pure returns (uint z) {
                            require((z = x + y) >= x, 'ds-math-add-overflow');
                        }
                    
                        function sub(uint x, uint y) internal pure returns (uint z) {
                            require((z = x - y) <= x, 'ds-math-sub-underflow');
                        }
                    
                        function mul(uint x, uint y) internal pure returns (uint z) {
                            require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
                        }
                    }
                    
                    // File: contracts/UniswapV2ERC20.sol
                    
                    pragma solidity =0.5.16;
                    
                    
                    
                    contract UniswapV2ERC20 is IUniswapV2ERC20 {
                        using SafeMath for uint;
                    
                        string public constant name = 'Uniswap V2';
                        string public constant symbol = 'UNI-V2';
                        uint8 public constant decimals = 18;
                        uint  public totalSupply;
                        mapping(address => uint) public balanceOf;
                        mapping(address => mapping(address => uint)) public allowance;
                    
                        bytes32 public DOMAIN_SEPARATOR;
                        // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
                        bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
                        mapping(address => uint) public nonces;
                    
                        event Approval(address indexed owner, address indexed spender, uint value);
                        event Transfer(address indexed from, address indexed to, uint value);
                    
                        constructor() public {
                            uint chainId;
                            assembly {
                                chainId := chainid
                            }
                            DOMAIN_SEPARATOR = keccak256(
                                abi.encode(
                                    keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                                    keccak256(bytes(name)),
                                    keccak256(bytes('1')),
                                    chainId,
                                    address(this)
                                )
                            );
                        }
                    
                        function _mint(address to, uint value) internal {
                            totalSupply = totalSupply.add(value);
                            balanceOf[to] = balanceOf[to].add(value);
                            emit Transfer(address(0), to, value);
                        }
                    
                        function _burn(address from, uint value) internal {
                            balanceOf[from] = balanceOf[from].sub(value);
                            totalSupply = totalSupply.sub(value);
                            emit Transfer(from, address(0), value);
                        }
                    
                        function _approve(address owner, address spender, uint value) private {
                            allowance[owner][spender] = value;
                            emit Approval(owner, spender, value);
                        }
                    
                        function _transfer(address from, address to, uint value) private {
                            balanceOf[from] = balanceOf[from].sub(value);
                            balanceOf[to] = balanceOf[to].add(value);
                            emit Transfer(from, to, value);
                        }
                    
                        function approve(address spender, uint value) external returns (bool) {
                            _approve(msg.sender, spender, value);
                            return true;
                        }
                    
                        function transfer(address to, uint value) external returns (bool) {
                            _transfer(msg.sender, to, value);
                            return true;
                        }
                    
                        function transferFrom(address from, address to, uint value) external returns (bool) {
                            if (allowance[from][msg.sender] != uint(-1)) {
                                allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
                            }
                            _transfer(from, to, value);
                            return true;
                        }
                    
                        function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
                            require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
                            bytes32 digest = keccak256(
                                abi.encodePacked(
                                    '\x19\x01',
                                    DOMAIN_SEPARATOR,
                                    keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                                )
                            );
                            address recoveredAddress = ecrecover(digest, v, r, s);
                            require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
                            _approve(owner, spender, value);
                        }
                    }
                    
                    // File: contracts/libraries/Math.sol
                    
                    pragma solidity =0.5.16;
                    
                    // a library for performing various math operations
                    
                    library Math {
                        function min(uint x, uint y) internal pure returns (uint z) {
                            z = x < y ? x : y;
                        }
                    
                        // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
                        function sqrt(uint y) internal pure returns (uint z) {
                            if (y > 3) {
                                z = y;
                                uint x = y / 2 + 1;
                                while (x < z) {
                                    z = x;
                                    x = (y / x + x) / 2;
                                }
                            } else if (y != 0) {
                                z = 1;
                            }
                        }
                    }
                    
                    // File: contracts/libraries/UQ112x112.sol
                    
                    pragma solidity =0.5.16;
                    
                    // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
                    
                    // range: [0, 2**112 - 1]
                    // resolution: 1 / 2**112
                    
                    library UQ112x112 {
                        uint224 constant Q112 = 2**112;
                    
                        // encode a uint112 as a UQ112x112
                        function encode(uint112 y) internal pure returns (uint224 z) {
                            z = uint224(y) * Q112; // never overflows
                        }
                    
                        // divide a UQ112x112 by a uint112, returning a UQ112x112
                        function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
                            z = x / uint224(y);
                        }
                    }
                    
                    // File: contracts/interfaces/IERC20.sol
                    
                    pragma solidity >=0.5.0;
                    
                    interface IERC20 {
                        event Approval(address indexed owner, address indexed spender, uint value);
                        event Transfer(address indexed from, address indexed to, uint value);
                    
                        function name() external view returns (string memory);
                        function symbol() external view returns (string memory);
                        function decimals() external view returns (uint8);
                        function totalSupply() external view returns (uint);
                        function balanceOf(address owner) external view returns (uint);
                        function allowance(address owner, address spender) external view returns (uint);
                    
                        function approve(address spender, uint value) external returns (bool);
                        function transfer(address to, uint value) external returns (bool);
                        function transferFrom(address from, address to, uint value) external returns (bool);
                    }
                    
                    // File: contracts/interfaces/IUniswapV2Factory.sol
                    
                    pragma solidity >=0.5.0;
                    
                    interface IUniswapV2Factory {
                        event PairCreated(address indexed token0, address indexed token1, address pair, uint);
                    
                        function feeTo() external view returns (address);
                        function feeToSetter() external view returns (address);
                    
                        function getPair(address tokenA, address tokenB) external view returns (address pair);
                        function allPairs(uint) external view returns (address pair);
                        function allPairsLength() external view returns (uint);
                    
                        function createPair(address tokenA, address tokenB) external returns (address pair);
                    
                        function setFeeTo(address) external;
                        function setFeeToSetter(address) external;
                    }
                    
                    // File: contracts/interfaces/IUniswapV2Callee.sol
                    
                    pragma solidity >=0.5.0;
                    
                    interface IUniswapV2Callee {
                        function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
                    }
                    
                    // File: contracts/UniswapV2Pair.sol
                    
                    pragma solidity =0.5.16;
                    
                    
                    
                    
                    
                    
                    
                    
                    contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
                        using SafeMath  for uint;
                        using UQ112x112 for uint224;
                    
                        uint public constant MINIMUM_LIQUIDITY = 10**3;
                        bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
                    
                        address public factory;
                        address public token0;
                        address public token1;
                    
                        uint112 private reserve0;           // uses single storage slot, accessible via getReserves
                        uint112 private reserve1;           // uses single storage slot, accessible via getReserves
                        uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves
                    
                        uint public price0CumulativeLast;
                        uint public price1CumulativeLast;
                        uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
                    
                        uint private unlocked = 1;
                        modifier lock() {
                            require(unlocked == 1, 'UniswapV2: LOCKED');
                            unlocked = 0;
                            _;
                            unlocked = 1;
                        }
                    
                        function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
                            _reserve0 = reserve0;
                            _reserve1 = reserve1;
                            _blockTimestampLast = blockTimestampLast;
                        }
                    
                        function _safeTransfer(address token, address to, uint value) private {
                            (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
                            require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
                        }
                    
                        event Mint(address indexed sender, uint amount0, uint amount1);
                        event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
                        event Swap(
                            address indexed sender,
                            uint amount0In,
                            uint amount1In,
                            uint amount0Out,
                            uint amount1Out,
                            address indexed to
                        );
                        event Sync(uint112 reserve0, uint112 reserve1);
                    
                        constructor() public {
                            factory = msg.sender;
                        }
                    
                        // called once by the factory at time of deployment
                        function initialize(address _token0, address _token1) external {
                            require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
                            token0 = _token0;
                            token1 = _token1;
                        }
                    
                        // update reserves and, on the first call per block, price accumulators
                        function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
                            require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
                            uint32 blockTimestamp = uint32(block.timestamp % 2**32);
                            uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
                            if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                                // * never overflows, and + overflow is desired
                                price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                                price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
                            }
                            reserve0 = uint112(balance0);
                            reserve1 = uint112(balance1);
                            blockTimestampLast = blockTimestamp;
                            emit Sync(reserve0, reserve1);
                        }
                    
                        // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
                        function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
                            address feeTo = IUniswapV2Factory(factory).feeTo();
                            feeOn = feeTo != address(0);
                            uint _kLast = kLast; // gas savings
                            if (feeOn) {
                                if (_kLast != 0) {
                                    uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                                    uint rootKLast = Math.sqrt(_kLast);
                                    if (rootK > rootKLast) {
                                        uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                                        uint denominator = rootK.mul(5).add(rootKLast);
                                        uint liquidity = numerator / denominator;
                                        if (liquidity > 0) _mint(feeTo, liquidity);
                                    }
                                }
                            } else if (_kLast != 0) {
                                kLast = 0;
                            }
                        }
                    
                        // this low-level function should be called from a contract which performs important safety checks
                        function mint(address to) external lock returns (uint liquidity) {
                            (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                            uint balance0 = IERC20(token0).balanceOf(address(this));
                            uint balance1 = IERC20(token1).balanceOf(address(this));
                            uint amount0 = balance0.sub(_reserve0);
                            uint amount1 = balance1.sub(_reserve1);
                    
                            bool feeOn = _mintFee(_reserve0, _reserve1);
                            uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                            if (_totalSupply == 0) {
                                liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
                               _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
                            } else {
                                liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
                            }
                            require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
                            _mint(to, liquidity);
                    
                            _update(balance0, balance1, _reserve0, _reserve1);
                            if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                            emit Mint(msg.sender, amount0, amount1);
                        }
                    
                        // this low-level function should be called from a contract which performs important safety checks
                        function burn(address to) external lock returns (uint amount0, uint amount1) {
                            (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                            address _token0 = token0;                                // gas savings
                            address _token1 = token1;                                // gas savings
                            uint balance0 = IERC20(_token0).balanceOf(address(this));
                            uint balance1 = IERC20(_token1).balanceOf(address(this));
                            uint liquidity = balanceOf[address(this)];
                    
                            bool feeOn = _mintFee(_reserve0, _reserve1);
                            uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                            amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
                            amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
                            require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
                            _burn(address(this), liquidity);
                            _safeTransfer(_token0, to, amount0);
                            _safeTransfer(_token1, to, amount1);
                            balance0 = IERC20(_token0).balanceOf(address(this));
                            balance1 = IERC20(_token1).balanceOf(address(this));
                    
                            _update(balance0, balance1, _reserve0, _reserve1);
                            if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                            emit Burn(msg.sender, amount0, amount1, to);
                        }
                    
                        // this low-level function should be called from a contract which performs important safety checks
                        function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
                            require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
                            (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                            require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
                    
                            uint balance0;
                            uint balance1;
                            { // scope for _token{0,1}, avoids stack too deep errors
                            address _token0 = token0;
                            address _token1 = token1;
                            require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
                            if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
                            if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
                            if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
                            balance0 = IERC20(_token0).balanceOf(address(this));
                            balance1 = IERC20(_token1).balanceOf(address(this));
                            }
                            uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
                            uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
                            require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
                            { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
                            uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
                            uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
                            require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
                            }
                    
                            _update(balance0, balance1, _reserve0, _reserve1);
                            emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
                        }
                    
                        // force balances to match reserves
                        function skim(address to) external lock {
                            address _token0 = token0; // gas savings
                            address _token1 = token1; // gas savings
                            _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
                            _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
                        }
                    
                        // force reserves to match balances
                        function sync() external lock {
                            _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
                        }
                    }

                    File 4 of 5: WETH9
                    // Copyright (C) 2015, 2016, 2017 Dapphub
                    
                    // This program is free software: you can redistribute it and/or modify
                    // it under the terms of the GNU General Public License as published by
                    // the Free Software Foundation, either version 3 of the License, or
                    // (at your option) any later version.
                    
                    // This program is distributed in the hope that it will be useful,
                    // but WITHOUT ANY WARRANTY; without even the implied warranty of
                    // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                    // GNU General Public License for more details.
                    
                    // You should have received a copy of the GNU General Public License
                    // along with this program.  If not, see <http://www.gnu.org/licenses/>.
                    
                    pragma solidity ^0.4.18;
                    
                    contract WETH9 {
                        string public name     = "Wrapped Ether";
                        string public symbol   = "WETH";
                        uint8  public decimals = 18;
                    
                        event  Approval(address indexed src, address indexed guy, uint wad);
                        event  Transfer(address indexed src, address indexed dst, uint wad);
                        event  Deposit(address indexed dst, uint wad);
                        event  Withdrawal(address indexed src, uint wad);
                    
                        mapping (address => uint)                       public  balanceOf;
                        mapping (address => mapping (address => uint))  public  allowance;
                    
                        function() public payable {
                            deposit();
                        }
                        function deposit() public payable {
                            balanceOf[msg.sender] += msg.value;
                            Deposit(msg.sender, msg.value);
                        }
                        function withdraw(uint wad) public {
                            require(balanceOf[msg.sender] >= wad);
                            balanceOf[msg.sender] -= wad;
                            msg.sender.transfer(wad);
                            Withdrawal(msg.sender, wad);
                        }
                    
                        function totalSupply() public view returns (uint) {
                            return this.balance;
                        }
                    
                        function approve(address guy, uint wad) public returns (bool) {
                            allowance[msg.sender][guy] = wad;
                            Approval(msg.sender, guy, wad);
                            return true;
                        }
                    
                        function transfer(address dst, uint wad) public returns (bool) {
                            return transferFrom(msg.sender, dst, wad);
                        }
                    
                        function transferFrom(address src, address dst, uint wad)
                            public
                            returns (bool)
                        {
                            require(balanceOf[src] >= wad);
                    
                            if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                                require(allowance[src][msg.sender] >= wad);
                                allowance[src][msg.sender] -= wad;
                            }
                    
                            balanceOf[src] -= wad;
                            balanceOf[dst] += wad;
                    
                            Transfer(src, dst, wad);
                    
                            return true;
                        }
                    }
                    
                    
                    /*
                                        GNU GENERAL PUBLIC LICENSE
                                           Version 3, 29 June 2007
                    
                     Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
                     Everyone is permitted to copy and distribute verbatim copies
                     of this license document, but changing it is not allowed.
                    
                                                Preamble
                    
                      The GNU General Public License is a free, copyleft license for
                    software and other kinds of works.
                    
                      The licenses for most software and other practical works are designed
                    to take away your freedom to share and change the works.  By contrast,
                    the GNU General Public License is intended to guarantee your freedom to
                    share and change all versions of a program--to make sure it remains free
                    software for all its users.  We, the Free Software Foundation, use the
                    GNU General Public License for most of our software; it applies also to
                    any other work released this way by its authors.  You can apply it to
                    your programs, too.
                    
                      When we speak of free software, we are referring to freedom, not
                    price.  Our General Public Licenses are designed to make sure that you
                    have the freedom to distribute copies of free software (and charge for
                    them if you wish), that you receive source code or can get it if you
                    want it, that you can change the software or use pieces of it in new
                    free programs, and that you know you can do these things.
                    
                      To protect your rights, we need to prevent others from denying you
                    these rights or asking you to surrender the rights.  Therefore, you have
                    certain responsibilities if you distribute copies of the software, or if
                    you modify it: responsibilities to respect the freedom of others.
                    
                      For example, if you distribute copies of such a program, whether
                    gratis or for a fee, you must pass on to the recipients the same
                    freedoms that you received.  You must make sure that they, too, receive
                    or can get the source code.  And you must show them these terms so they
                    know their rights.
                    
                      Developers that use the GNU GPL protect your rights with two steps:
                    (1) assert copyright on the software, and (2) offer you this License
                    giving you legal permission to copy, distribute and/or modify it.
                    
                      For the developers' and authors' protection, the GPL clearly explains
                    that there is no warranty for this free software.  For both users' and
                    authors' sake, the GPL requires that modified versions be marked as
                    changed, so that their problems will not be attributed erroneously to
                    authors of previous versions.
                    
                      Some devices are designed to deny users access to install or run
                    modified versions of the software inside them, although the manufacturer
                    can do so.  This is fundamentally incompatible with the aim of
                    protecting users' freedom to change the software.  The systematic
                    pattern of such abuse occurs in the area of products for individuals to
                    use, which is precisely where it is most unacceptable.  Therefore, we
                    have designed this version of the GPL to prohibit the practice for those
                    products.  If such problems arise substantially in other domains, we
                    stand ready to extend this provision to those domains in future versions
                    of the GPL, as needed to protect the freedom of users.
                    
                      Finally, every program is threatened constantly by software patents.
                    States should not allow patents to restrict development and use of
                    software on general-purpose computers, but in those that do, we wish to
                    avoid the special danger that patents applied to a free program could
                    make it effectively proprietary.  To prevent this, the GPL assures that
                    patents cannot be used to render the program non-free.
                    
                      The precise terms and conditions for copying, distribution and
                    modification follow.
                    
                                           TERMS AND CONDITIONS
                    
                      0. Definitions.
                    
                      "This License" refers to version 3 of the GNU General Public License.
                    
                      "Copyright" also means copyright-like laws that apply to other kinds of
                    works, such as semiconductor masks.
                    
                      "The Program" refers to any copyrightable work licensed under this
                    License.  Each licensee is addressed as "you".  "Licensees" and
                    "recipients" may be individuals or organizations.
                    
                      To "modify" a work means to copy from or adapt all or part of the work
                    in a fashion requiring copyright permission, other than the making of an
                    exact copy.  The resulting work is called a "modified version" of the
                    earlier work or a work "based on" the earlier work.
                    
                      A "covered work" means either the unmodified Program or a work based
                    on the Program.
                    
                      To "propagate" a work means to do anything with it that, without
                    permission, would make you directly or secondarily liable for
                    infringement under applicable copyright law, except executing it on a
                    computer or modifying a private copy.  Propagation includes copying,
                    distribution (with or without modification), making available to the
                    public, and in some countries other activities as well.
                    
                      To "convey" a work means any kind of propagation that enables other
                    parties to make or receive copies.  Mere interaction with a user through
                    a computer network, with no transfer of a copy, is not conveying.
                    
                      An interactive user interface displays "Appropriate Legal Notices"
                    to the extent that it includes a convenient and prominently visible
                    feature that (1) displays an appropriate copyright notice, and (2)
                    tells the user that there is no warranty for the work (except to the
                    extent that warranties are provided), that licensees may convey the
                    work under this License, and how to view a copy of this License.  If
                    the interface presents a list of user commands or options, such as a
                    menu, a prominent item in the list meets this criterion.
                    
                      1. Source Code.
                    
                      The "source code" for a work means the preferred form of the work
                    for making modifications to it.  "Object code" means any non-source
                    form of a work.
                    
                      A "Standard Interface" means an interface that either is an official
                    standard defined by a recognized standards body, or, in the case of
                    interfaces specified for a particular programming language, one that
                    is widely used among developers working in that language.
                    
                      The "System Libraries" of an executable work include anything, other
                    than the work as a whole, that (a) is included in the normal form of
                    packaging a Major Component, but which is not part of that Major
                    Component, and (b) serves only to enable use of the work with that
                    Major Component, or to implement a Standard Interface for which an
                    implementation is available to the public in source code form.  A
                    "Major Component", in this context, means a major essential component
                    (kernel, window system, and so on) of the specific operating system
                    (if any) on which the executable work runs, or a compiler used to
                    produce the work, or an object code interpreter used to run it.
                    
                      The "Corresponding Source" for a work in object code form means all
                    the source code needed to generate, install, and (for an executable
                    work) run the object code and to modify the work, including scripts to
                    control those activities.  However, it does not include the work's
                    System Libraries, or general-purpose tools or generally available free
                    programs which are used unmodified in performing those activities but
                    which are not part of the work.  For example, Corresponding Source
                    includes interface definition files associated with source files for
                    the work, and the source code for shared libraries and dynamically
                    linked subprograms that the work is specifically designed to require,
                    such as by intimate data communication or control flow between those
                    subprograms and other parts of the work.
                    
                      The Corresponding Source need not include anything that users
                    can regenerate automatically from other parts of the Corresponding
                    Source.
                    
                      The Corresponding Source for a work in source code form is that
                    same work.
                    
                      2. Basic Permissions.
                    
                      All rights granted under this License are granted for the term of
                    copyright on the Program, and are irrevocable provided the stated
                    conditions are met.  This License explicitly affirms your unlimited
                    permission to run the unmodified Program.  The output from running a
                    covered work is covered by this License only if the output, given its
                    content, constitutes a covered work.  This License acknowledges your
                    rights of fair use or other equivalent, as provided by copyright law.
                    
                      You may make, run and propagate covered works that you do not
                    convey, without conditions so long as your license otherwise remains
                    in force.  You may convey covered works to others for the sole purpose
                    of having them make modifications exclusively for you, or provide you
                    with facilities for running those works, provided that you comply with
                    the terms of this License in conveying all material for which you do
                    not control copyright.  Those thus making or running the covered works
                    for you must do so exclusively on your behalf, under your direction
                    and control, on terms that prohibit them from making any copies of
                    your copyrighted material outside their relationship with you.
                    
                      Conveying under any other circumstances is permitted solely under
                    the conditions stated below.  Sublicensing is not allowed; section 10
                    makes it unnecessary.
                    
                      3. Protecting Users' Legal Rights From Anti-Circumvention Law.
                    
                      No covered work shall be deemed part of an effective technological
                    measure under any applicable law fulfilling obligations under article
                    11 of the WIPO copyright treaty adopted on 20 December 1996, or
                    similar laws prohibiting or restricting circumvention of such
                    measures.
                    
                      When you convey a covered work, you waive any legal power to forbid
                    circumvention of technological measures to the extent such circumvention
                    is effected by exercising rights under this License with respect to
                    the covered work, and you disclaim any intention to limit operation or
                    modification of the work as a means of enforcing, against the work's
                    users, your or third parties' legal rights to forbid circumvention of
                    technological measures.
                    
                      4. Conveying Verbatim Copies.
                    
                      You may convey verbatim copies of the Program's source code as you
                    receive it, in any medium, provided that you conspicuously and
                    appropriately publish on each copy an appropriate copyright notice;
                    keep intact all notices stating that this License and any
                    non-permissive terms added in accord with section 7 apply to the code;
                    keep intact all notices of the absence of any warranty; and give all
                    recipients a copy of this License along with the Program.
                    
                      You may charge any price or no price for each copy that you convey,
                    and you may offer support or warranty protection for a fee.
                    
                      5. Conveying Modified Source Versions.
                    
                      You may convey a work based on the Program, or the modifications to
                    produce it from the Program, in the form of source code under the
                    terms of section 4, provided that you also meet all of these conditions:
                    
                        a) The work must carry prominent notices stating that you modified
                        it, and giving a relevant date.
                    
                        b) The work must carry prominent notices stating that it is
                        released under this License and any conditions added under section
                        7.  This requirement modifies the requirement in section 4 to
                        "keep intact all notices".
                    
                        c) You must license the entire work, as a whole, under this
                        License to anyone who comes into possession of a copy.  This
                        License will therefore apply, along with any applicable section 7
                        additional terms, to the whole of the work, and all its parts,
                        regardless of how they are packaged.  This License gives no
                        permission to license the work in any other way, but it does not
                        invalidate such permission if you have separately received it.
                    
                        d) If the work has interactive user interfaces, each must display
                        Appropriate Legal Notices; however, if the Program has interactive
                        interfaces that do not display Appropriate Legal Notices, your
                        work need not make them do so.
                    
                      A compilation of a covered work with other separate and independent
                    works, which are not by their nature extensions of the covered work,
                    and which are not combined with it such as to form a larger program,
                    in or on a volume of a storage or distribution medium, is called an
                    "aggregate" if the compilation and its resulting copyright are not
                    used to limit the access or legal rights of the compilation's users
                    beyond what the individual works permit.  Inclusion of a covered work
                    in an aggregate does not cause this License to apply to the other
                    parts of the aggregate.
                    
                      6. Conveying Non-Source Forms.
                    
                      You may convey a covered work in object code form under the terms
                    of sections 4 and 5, provided that you also convey the
                    machine-readable Corresponding Source under the terms of this License,
                    in one of these ways:
                    
                        a) Convey the object code in, or embodied in, a physical product
                        (including a physical distribution medium), accompanied by the
                        Corresponding Source fixed on a durable physical medium
                        customarily used for software interchange.
                    
                        b) Convey the object code in, or embodied in, a physical product
                        (including a physical distribution medium), accompanied by a
                        written offer, valid for at least three years and valid for as
                        long as you offer spare parts or customer support for that product
                        model, to give anyone who possesses the object code either (1) a
                        copy of the Corresponding Source for all the software in the
                        product that is covered by this License, on a durable physical
                        medium customarily used for software interchange, for a price no
                        more than your reasonable cost of physically performing this
                        conveying of source, or (2) access to copy the
                        Corresponding Source from a network server at no charge.
                    
                        c) Convey individual copies of the object code with a copy of the
                        written offer to provide the Corresponding Source.  This
                        alternative is allowed only occasionally and noncommercially, and
                        only if you received the object code with such an offer, in accord
                        with subsection 6b.
                    
                        d) Convey the object code by offering access from a designated
                        place (gratis or for a charge), and offer equivalent access to the
                        Corresponding Source in the same way through the same place at no
                        further charge.  You need not require recipients to copy the
                        Corresponding Source along with the object code.  If the place to
                        copy the object code is a network server, the Corresponding Source
                        may be on a different server (operated by you or a third party)
                        that supports equivalent copying facilities, provided you maintain
                        clear directions next to the object code saying where to find the
                        Corresponding Source.  Regardless of what server hosts the
                        Corresponding Source, you remain obligated to ensure that it is
                        available for as long as needed to satisfy these requirements.
                    
                        e) Convey the object code using peer-to-peer transmission, provided
                        you inform other peers where the object code and Corresponding
                        Source of the work are being offered to the general public at no
                        charge under subsection 6d.
                    
                      A separable portion of the object code, whose source code is excluded
                    from the Corresponding Source as a System Library, need not be
                    included in conveying the object code work.
                    
                      A "User Product" is either (1) a "consumer product", which means any
                    tangible personal property which is normally used for personal, family,
                    or household purposes, or (2) anything designed or sold for incorporation
                    into a dwelling.  In determining whether a product is a consumer product,
                    doubtful cases shall be resolved in favor of coverage.  For a particular
                    product received by a particular user, "normally used" refers to a
                    typical or common use of that class of product, regardless of the status
                    of the particular user or of the way in which the particular user
                    actually uses, or expects or is expected to use, the product.  A product
                    is a consumer product regardless of whether the product has substantial
                    commercial, industrial or non-consumer uses, unless such uses represent
                    the only significant mode of use of the product.
                    
                      "Installation Information" for a User Product means any methods,
                    procedures, authorization keys, or other information required to install
                    and execute modified versions of a covered work in that User Product from
                    a modified version of its Corresponding Source.  The information must
                    suffice to ensure that the continued functioning of the modified object
                    code is in no case prevented or interfered with solely because
                    modification has been made.
                    
                      If you convey an object code work under this section in, or with, or
                    specifically for use in, a User Product, and the conveying occurs as
                    part of a transaction in which the right of possession and use of the
                    User Product is transferred to the recipient in perpetuity or for a
                    fixed term (regardless of how the transaction is characterized), the
                    Corresponding Source conveyed under this section must be accompanied
                    by the Installation Information.  But this requirement does not apply
                    if neither you nor any third party retains the ability to install
                    modified object code on the User Product (for example, the work has
                    been installed in ROM).
                    
                      The requirement to provide Installation Information does not include a
                    requirement to continue to provide support service, warranty, or updates
                    for a work that has been modified or installed by the recipient, or for
                    the User Product in which it has been modified or installed.  Access to a
                    network may be denied when the modification itself materially and
                    adversely affects the operation of the network or violates the rules and
                    protocols for communication across the network.
                    
                      Corresponding Source conveyed, and Installation Information provided,
                    in accord with this section must be in a format that is publicly
                    documented (and with an implementation available to the public in
                    source code form), and must require no special password or key for
                    unpacking, reading or copying.
                    
                      7. Additional Terms.
                    
                      "Additional permissions" are terms that supplement the terms of this
                    License by making exceptions from one or more of its conditions.
                    Additional permissions that are applicable to the entire Program shall
                    be treated as though they were included in this License, to the extent
                    that they are valid under applicable law.  If additional permissions
                    apply only to part of the Program, that part may be used separately
                    under those permissions, but the entire Program remains governed by
                    this License without regard to the additional permissions.
                    
                      When you convey a copy of a covered work, you may at your option
                    remove any additional permissions from that copy, or from any part of
                    it.  (Additional permissions may be written to require their own
                    removal in certain cases when you modify the work.)  You may place
                    additional permissions on material, added by you to a covered work,
                    for which you have or can give appropriate copyright permission.
                    
                      Notwithstanding any other provision of this License, for material you
                    add to a covered work, you may (if authorized by the copyright holders of
                    that material) supplement the terms of this License with terms:
                    
                        a) Disclaiming warranty or limiting liability differently from the
                        terms of sections 15 and 16 of this License; or
                    
                        b) Requiring preservation of specified reasonable legal notices or
                        author attributions in that material or in the Appropriate Legal
                        Notices displayed by works containing it; or
                    
                        c) Prohibiting misrepresentation of the origin of that material, or
                        requiring that modified versions of such material be marked in
                        reasonable ways as different from the original version; or
                    
                        d) Limiting the use for publicity purposes of names of licensors or
                        authors of the material; or
                    
                        e) Declining to grant rights under trademark law for use of some
                        trade names, trademarks, or service marks; or
                    
                        f) Requiring indemnification of licensors and authors of that
                        material by anyone who conveys the material (or modified versions of
                        it) with contractual assumptions of liability to the recipient, for
                        any liability that these contractual assumptions directly impose on
                        those licensors and authors.
                    
                      All other non-permissive additional terms are considered "further
                    restrictions" within the meaning of section 10.  If the Program as you
                    received it, or any part of it, contains a notice stating that it is
                    governed by this License along with a term that is a further
                    restriction, you may remove that term.  If a license document contains
                    a further restriction but permits relicensing or conveying under this
                    License, you may add to a covered work material governed by the terms
                    of that license document, provided that the further restriction does
                    not survive such relicensing or conveying.
                    
                      If you add terms to a covered work in accord with this section, you
                    must place, in the relevant source files, a statement of the
                    additional terms that apply to those files, or a notice indicating
                    where to find the applicable terms.
                    
                      Additional terms, permissive or non-permissive, may be stated in the
                    form of a separately written license, or stated as exceptions;
                    the above requirements apply either way.
                    
                      8. Termination.
                    
                      You may not propagate or modify a covered work except as expressly
                    provided under this License.  Any attempt otherwise to propagate or
                    modify it is void, and will automatically terminate your rights under
                    this License (including any patent licenses granted under the third
                    paragraph of section 11).
                    
                      However, if you cease all violation of this License, then your
                    license from a particular copyright holder is reinstated (a)
                    provisionally, unless and until the copyright holder explicitly and
                    finally terminates your license, and (b) permanently, if the copyright
                    holder fails to notify you of the violation by some reasonable means
                    prior to 60 days after the cessation.
                    
                      Moreover, your license from a particular copyright holder is
                    reinstated permanently if the copyright holder notifies you of the
                    violation by some reasonable means, this is the first time you have
                    received notice of violation of this License (for any work) from that
                    copyright holder, and you cure the violation prior to 30 days after
                    your receipt of the notice.
                    
                      Termination of your rights under this section does not terminate the
                    licenses of parties who have received copies or rights from you under
                    this License.  If your rights have been terminated and not permanently
                    reinstated, you do not qualify to receive new licenses for the same
                    material under section 10.
                    
                      9. Acceptance Not Required for Having Copies.
                    
                      You are not required to accept this License in order to receive or
                    run a copy of the Program.  Ancillary propagation of a covered work
                    occurring solely as a consequence of using peer-to-peer transmission
                    to receive a copy likewise does not require acceptance.  However,
                    nothing other than this License grants you permission to propagate or
                    modify any covered work.  These actions infringe copyright if you do
                    not accept this License.  Therefore, by modifying or propagating a
                    covered work, you indicate your acceptance of this License to do so.
                    
                      10. Automatic Licensing of Downstream Recipients.
                    
                      Each time you convey a covered work, the recipient automatically
                    receives a license from the original licensors, to run, modify and
                    propagate that work, subject to this License.  You are not responsible
                    for enforcing compliance by third parties with this License.
                    
                      An "entity transaction" is a transaction transferring control of an
                    organization, or substantially all assets of one, or subdividing an
                    organization, or merging organizations.  If propagation of a covered
                    work results from an entity transaction, each party to that
                    transaction who receives a copy of the work also receives whatever
                    licenses to the work the party's predecessor in interest had or could
                    give under the previous paragraph, plus a right to possession of the
                    Corresponding Source of the work from the predecessor in interest, if
                    the predecessor has it or can get it with reasonable efforts.
                    
                      You may not impose any further restrictions on the exercise of the
                    rights granted or affirmed under this License.  For example, you may
                    not impose a license fee, royalty, or other charge for exercise of
                    rights granted under this License, and you may not initiate litigation
                    (including a cross-claim or counterclaim in a lawsuit) alleging that
                    any patent claim is infringed by making, using, selling, offering for
                    sale, or importing the Program or any portion of it.
                    
                      11. Patents.
                    
                      A "contributor" is a copyright holder who authorizes use under this
                    License of the Program or a work on which the Program is based.  The
                    work thus licensed is called the contributor's "contributor version".
                    
                      A contributor's "essential patent claims" are all patent claims
                    owned or controlled by the contributor, whether already acquired or
                    hereafter acquired, that would be infringed by some manner, permitted
                    by this License, of making, using, or selling its contributor version,
                    but do not include claims that would be infringed only as a
                    consequence of further modification of the contributor version.  For
                    purposes of this definition, "control" includes the right to grant
                    patent sublicenses in a manner consistent with the requirements of
                    this License.
                    
                      Each contributor grants you a non-exclusive, worldwide, royalty-free
                    patent license under the contributor's essential patent claims, to
                    make, use, sell, offer for sale, import and otherwise run, modify and
                    propagate the contents of its contributor version.
                    
                      In the following three paragraphs, a "patent license" is any express
                    agreement or commitment, however denominated, not to enforce a patent
                    (such as an express permission to practice a patent or covenant not to
                    sue for patent infringement).  To "grant" such a patent license to a
                    party means to make such an agreement or commitment not to enforce a
                    patent against the party.
                    
                      If you convey a covered work, knowingly relying on a patent license,
                    and the Corresponding Source of the work is not available for anyone
                    to copy, free of charge and under the terms of this License, through a
                    publicly available network server or other readily accessible means,
                    then you must either (1) cause the Corresponding Source to be so
                    available, or (2) arrange to deprive yourself of the benefit of the
                    patent license for this particular work, or (3) arrange, in a manner
                    consistent with the requirements of this License, to extend the patent
                    license to downstream recipients.  "Knowingly relying" means you have
                    actual knowledge that, but for the patent license, your conveying the
                    covered work in a country, or your recipient's use of the covered work
                    in a country, would infringe one or more identifiable patents in that
                    country that you have reason to believe are valid.
                    
                      If, pursuant to or in connection with a single transaction or
                    arrangement, you convey, or propagate by procuring conveyance of, a
                    covered work, and grant a patent license to some of the parties
                    receiving the covered work authorizing them to use, propagate, modify
                    or convey a specific copy of the covered work, then the patent license
                    you grant is automatically extended to all recipients of the covered
                    work and works based on it.
                    
                      A patent license is "discriminatory" if it does not include within
                    the scope of its coverage, prohibits the exercise of, or is
                    conditioned on the non-exercise of one or more of the rights that are
                    specifically granted under this License.  You may not convey a covered
                    work if you are a party to an arrangement with a third party that is
                    in the business of distributing software, under which you make payment
                    to the third party based on the extent of your activity of conveying
                    the work, and under which the third party grants, to any of the
                    parties who would receive the covered work from you, a discriminatory
                    patent license (a) in connection with copies of the covered work
                    conveyed by you (or copies made from those copies), or (b) primarily
                    for and in connection with specific products or compilations that
                    contain the covered work, unless you entered into that arrangement,
                    or that patent license was granted, prior to 28 March 2007.
                    
                      Nothing in this License shall be construed as excluding or limiting
                    any implied license or other defenses to infringement that may
                    otherwise be available to you under applicable patent law.
                    
                      12. No Surrender of Others' Freedom.
                    
                      If conditions are imposed on you (whether by court order, agreement or
                    otherwise) that contradict the conditions of this License, they do not
                    excuse you from the conditions of this License.  If you cannot convey a
                    covered work so as to satisfy simultaneously your obligations under this
                    License and any other pertinent obligations, then as a consequence you may
                    not convey it at all.  For example, if you agree to terms that obligate you
                    to collect a royalty for further conveying from those to whom you convey
                    the Program, the only way you could satisfy both those terms and this
                    License would be to refrain entirely from conveying the Program.
                    
                      13. Use with the GNU Affero General Public License.
                    
                      Notwithstanding any other provision of this License, you have
                    permission to link or combine any covered work with a work licensed
                    under version 3 of the GNU Affero General Public License into a single
                    combined work, and to convey the resulting work.  The terms of this
                    License will continue to apply to the part which is the covered work,
                    but the special requirements of the GNU Affero General Public License,
                    section 13, concerning interaction through a network will apply to the
                    combination as such.
                    
                      14. Revised Versions of this License.
                    
                      The Free Software Foundation may publish revised and/or new versions of
                    the GNU General Public License from time to time.  Such new versions will
                    be similar in spirit to the present version, but may differ in detail to
                    address new problems or concerns.
                    
                      Each version is given a distinguishing version number.  If the
                    Program specifies that a certain numbered version of the GNU General
                    Public License "or any later version" applies to it, you have the
                    option of following the terms and conditions either of that numbered
                    version or of any later version published by the Free Software
                    Foundation.  If the Program does not specify a version number of the
                    GNU General Public License, you may choose any version ever published
                    by the Free Software Foundation.
                    
                      If the Program specifies that a proxy can decide which future
                    versions of the GNU General Public License can be used, that proxy's
                    public statement of acceptance of a version permanently authorizes you
                    to choose that version for the Program.
                    
                      Later license versions may give you additional or different
                    permissions.  However, no additional obligations are imposed on any
                    author or copyright holder as a result of your choosing to follow a
                    later version.
                    
                      15. Disclaimer of Warranty.
                    
                      THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
                    APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
                    HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
                    OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
                    THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                    PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
                    IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
                    ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
                    
                      16. Limitation of Liability.
                    
                      IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                    WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
                    THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
                    GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
                    USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
                    DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
                    PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
                    EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
                    SUCH DAMAGES.
                    
                      17. Interpretation of Sections 15 and 16.
                    
                      If the disclaimer of warranty and limitation of liability provided
                    above cannot be given local legal effect according to their terms,
                    reviewing courts shall apply local law that most closely approximates
                    an absolute waiver of all civil liability in connection with the
                    Program, unless a warranty or assumption of liability accompanies a
                    copy of the Program in return for a fee.
                    
                                         END OF TERMS AND CONDITIONS
                    
                                How to Apply These Terms to Your New Programs
                    
                      If you develop a new program, and you want it to be of the greatest
                    possible use to the public, the best way to achieve this is to make it
                    free software which everyone can redistribute and change under these terms.
                    
                      To do so, attach the following notices to the program.  It is safest
                    to attach them to the start of each source file to most effectively
                    state the exclusion of warranty; and each file should have at least
                    the "copyright" line and a pointer to where the full notice is found.
                    
                        <one line to give the program's name and a brief idea of what it does.>
                        Copyright (C) <year>  <name of author>
                    
                        This program is free software: you can redistribute it and/or modify
                        it under the terms of the GNU General Public License as published by
                        the Free Software Foundation, either version 3 of the License, or
                        (at your option) any later version.
                    
                        This program is distributed in the hope that it will be useful,
                        but WITHOUT ANY WARRANTY; without even the implied warranty of
                        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                        GNU General Public License for more details.
                    
                        You should have received a copy of the GNU General Public License
                        along with this program.  If not, see <http://www.gnu.org/licenses/>.
                    
                    Also add information on how to contact you by electronic and paper mail.
                    
                      If the program does terminal interaction, make it output a short
                    notice like this when it starts in an interactive mode:
                    
                        <program>  Copyright (C) <year>  <name of author>
                        This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                        This is free software, and you are welcome to redistribute it
                        under certain conditions; type `show c' for details.
                    
                    The hypothetical commands `show w' and `show c' should show the appropriate
                    parts of the General Public License.  Of course, your program's commands
                    might be different; for a GUI interface, you would use an "about box".
                    
                      You should also get your employer (if you work as a programmer) or school,
                    if any, to sign a "copyright disclaimer" for the program, if necessary.
                    For more information on this, and how to apply and follow the GNU GPL, see
                    <http://www.gnu.org/licenses/>.
                    
                      The GNU General Public License does not permit incorporating your program
                    into proprietary programs.  If your program is a subroutine library, you
                    may consider it more useful to permit linking proprietary applications with
                    the library.  If this is what you want to do, use the GNU Lesser General
                    Public License instead of this License.  But first, please read
                    <http://www.gnu.org/philosophy/why-not-lgpl.html>.
                    
                    */

                    File 5 of 5: TokenApprove
                    /**
                     *Submitted for verification at BscScan.com on 2023-06-26
                    */
                    
                    // SPDX-License-Identifier: MIT
                    pragma solidity ^0.8.0;
                    
                    // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
                    
                    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                    
                    // OpenZeppelin Contracts v4.4.1 (proxy/utils/Initializable.sol)
                    
                    // OpenZeppelin Contracts v4.4.1 (utils/Address.sol)
                    
                    /**
                     * @dev Collection of functions related to the address type
                     */
                    library AddressUpgradeable {
                        /**
                         * @dev Returns true if `account` is a contract.
                         *
                         * [IMPORTANT]
                         * ====
                         * It is unsafe to assume that an address for which this function returns
                         * false is an externally-owned account (EOA) and not a contract.
                         *
                         * Among others, `isContract` will return false for the following
                         * types of addresses:
                         *
                         *  - an externally-owned account
                         *  - a contract in construction
                         *  - an address where a contract will be created
                         *  - an address where a contract lived, but was destroyed
                         * ====
                         */
                        function isContract(address account) internal view returns (bool) {
                            // This method relies on extcodesize, which returns 0 for contracts in
                            // construction, since the code is only stored at the end of the
                            // constructor execution.
                    
                            uint256 size;
                            assembly {
                                size := extcodesize(account)
                            }
                            return size > 0;
                        }
                    
                        /**
                         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                         * `recipient`, forwarding all available gas and reverting on errors.
                         *
                         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                         * of certain opcodes, possibly making contracts go over the 2300 gas limit
                         * imposed by `transfer`, making them unable to receive funds via
                         * `transfer`. {sendValue} removes this limitation.
                         *
                         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                         *
                         * IMPORTANT: because control is transferred to `recipient`, care must be
                         * taken to not create reentrancy vulnerabilities. Consider using
                         * {ReentrancyGuard} or the
                         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                         */
                        function sendValue(address payable recipient, uint256 amount) internal {
                            require(address(this).balance >= amount, "Address: insufficient balance");
                    
                            (bool success, ) = recipient.call{value: amount}("");
                            require(success, "Address: unable to send value, recipient may have reverted");
                        }
                    
                        /**
                         * @dev Performs a Solidity function call using a low level `call`. A
                         * plain `call` is an unsafe replacement for a function call: use this
                         * function instead.
                         *
                         * If `target` reverts with a revert reason, it is bubbled up by this
                         * function (like regular Solidity function calls).
                         *
                         * Returns the raw returned data. To convert to the expected return value,
                         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                         *
                         * Requirements:
                         *
                         * - `target` must be a contract.
                         * - calling `target` with `data` must not revert.
                         *
                         * _Available since v3.1._
                         */
                        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                            return functionCall(target, data, "Address: low-level call failed");
                        }
                    
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                         * `errorMessage` as a fallback revert reason when `target` reverts.
                         *
                         * _Available since v3.1._
                         */
                        function functionCall(
                            address target,
                            bytes memory data,
                            string memory errorMessage
                        ) internal returns (bytes memory) {
                            return functionCallWithValue(target, data, 0, errorMessage);
                        }
                    
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but also transferring `value` wei to `target`.
                         *
                         * Requirements:
                         *
                         * - the calling contract must have an ETH balance of at least `value`.
                         * - the called Solidity function must be `payable`.
                         *
                         * _Available since v3.1._
                         */
                        function functionCallWithValue(
                            address target,
                            bytes memory data,
                            uint256 value
                        ) internal returns (bytes memory) {
                            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                        }
                    
                        /**
                         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                         * with `errorMessage` as a fallback revert reason when `target` reverts.
                         *
                         * _Available since v3.1._
                         */
                        function functionCallWithValue(
                            address target,
                            bytes memory data,
                            uint256 value,
                            string memory errorMessage
                        ) internal returns (bytes memory) {
                            require(address(this).balance >= value, "Address: insufficient balance for call");
                            require(isContract(target), "Address: call to non-contract");
                    
                            (bool success, bytes memory returndata) = target.call{value: value}(data);
                            return verifyCallResult(success, returndata, errorMessage);
                        }
                    
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                         * but performing a static call.
                         *
                         * _Available since v3.3._
                         */
                        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                            return functionStaticCall(target, data, "Address: low-level static call failed");
                        }
                    
                        /**
                         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                         * but performing a static call.
                         *
                         * _Available since v3.3._
                         */
                        function functionStaticCall(
                            address target,
                            bytes memory data,
                            string memory errorMessage
                        ) internal view returns (bytes memory) {
                            require(isContract(target), "Address: static call to non-contract");
                    
                            (bool success, bytes memory returndata) = target.staticcall(data);
                            return verifyCallResult(success, returndata, errorMessage);
                        }
                    
                        /**
                         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                         * revert reason using the provided one.
                         *
                         * _Available since v4.3._
                         */
                        function verifyCallResult(
                            bool success,
                            bytes memory returndata,
                            string memory errorMessage
                        ) internal pure returns (bytes memory) {
                            if (success) {
                                return returndata;
                            } else {
                                // Look for revert reason and bubble it up if present
                                if (returndata.length > 0) {
                                    // The easiest way to bubble the revert reason is using memory via assembly
                    
                                    assembly {
                                        let returndata_size := mload(returndata)
                                        revert(add(32, returndata), returndata_size)
                                    }
                                } else {
                                    revert(errorMessage);
                                }
                            }
                        }
                    }
                    
                    /**
                     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                     * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
                     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                     *
                     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                     *
                     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                     *
                     * [CAUTION]
                     * ====
                     * Avoid leaving a contract uninitialized.
                     *
                     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                     * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the
                     * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed:
                     *
                     * [.hljs-theme-light.nopadding]
                     * ```
                     * /// @custom:oz-upgrades-unsafe-allow constructor
                     * constructor() initializer {}
                     * ```
                     * ====
                     */
                    abstract contract Initializable {
                        /**
                         * @dev Indicates that the contract has been initialized.
                         */
                        bool private _initialized;
                    
                        /**
                         * @dev Indicates that the contract is in the process of being initialized.
                         */
                        bool private _initializing;
                    
                        /**
                         * @dev Modifier to protect an initializer function from being invoked twice.
                         */
                        modifier initializer() {
                            // If the contract is initializing we ignore whether _initialized is set in order to support multiple
                            // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the
                            // contract may have been reentered.
                            require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized");
                    
                            bool isTopLevelCall = !_initializing;
                            if (isTopLevelCall) {
                                _initializing = true;
                                _initialized = true;
                            }
                    
                            _;
                    
                            if (isTopLevelCall) {
                                _initializing = false;
                            }
                        }
                    
                        /**
                         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                         * {initializer} modifier, directly or indirectly.
                         */
                        modifier onlyInitializing() {
                            require(_initializing, "Initializable: contract is not initializing");
                            _;
                        }
                    
                        function _isConstructor() private view returns (bool) {
                            return !AddressUpgradeable.isContract(address(this));
                        }
                    }
                    
                    /**
                     * @dev Provides information about the current execution context, including the
                     * sender of the transaction and its data. While these are generally available
                     * via msg.sender and msg.data, they should not be accessed in such a direct
                     * manner, since when dealing with meta-transactions the account sending and
                     * paying for execution may not be the actual sender (as far as an application
                     * is concerned).
                     *
                     * This contract is only required for intermediate, library-like contracts.
                     */
                    abstract contract ContextUpgradeable is Initializable {
                        function __Context_init() internal onlyInitializing {
                            __Context_init_unchained();
                        }
                    
                        function __Context_init_unchained() internal onlyInitializing {
                        }
                        function _msgSender() internal view virtual returns (address) {
                            return msg.sender;
                        }
                    
                        function _msgData() internal view virtual returns (bytes calldata) {
                            return msg.data;
                        }
                        uint256[50] private __gap;
                    }
                    
                    /**
                     * @dev Contract module which provides a basic access control mechanism, where
                     * there is an account (an owner) that can be granted exclusive access to
                     * specific functions.
                     *
                     * By default, the owner account will be the one that deploys the contract. This
                     * can later be changed with {transferOwnership}.
                     *
                     * This module is used through inheritance. It will make available the modifier
                     * `onlyOwner`, which can be applied to your functions to restrict their use to
                     * the owner.
                     */
                    abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
                        address private _owner;
                    
                        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    
                        /**
                         * @dev Initializes the contract setting the deployer as the initial owner.
                         */
                        function __Ownable_init() internal onlyInitializing {
                            __Context_init_unchained();
                            __Ownable_init_unchained();
                        }
                    
                        function __Ownable_init_unchained() internal onlyInitializing {
                            _transferOwnership(_msgSender());
                        }
                    
                        /**
                         * @dev Returns the address of the current owner.
                         */
                        function owner() public view virtual returns (address) {
                            return _owner;
                        }
                    
                        /**
                         * @dev Throws if called by any account other than the owner.
                         */
                        modifier onlyOwner() {
                            require(owner() == _msgSender(), "Ownable: caller is not the owner");
                            _;
                        }
                    
                        /**
                         * @dev Leaves the contract without owner. It will not be possible to call
                         * `onlyOwner` functions anymore. Can only be called by the current owner.
                         *
                         * NOTE: Renouncing ownership will leave the contract without an owner,
                         * thereby removing any functionality that is only available to the owner.
                         */
                        function renounceOwnership() public virtual onlyOwner {
                            _transferOwnership(address(0));
                        }
                    
                        /**
                         * @dev Transfers ownership of the contract to a new account (`newOwner`).
                         * Can only be called by the current owner.
                         */
                        function transferOwnership(address newOwner) public virtual onlyOwner {
                            require(newOwner != address(0), "Ownable: new owner is the zero address");
                            _transferOwnership(newOwner);
                        }
                    
                        /**
                         * @dev Transfers ownership of the contract to a new account (`newOwner`).
                         * Internal function without access restriction.
                         */
                        function _transferOwnership(address newOwner) internal virtual {
                            address oldOwner = _owner;
                            _owner = newOwner;
                            emit OwnershipTransferred(oldOwner, newOwner);
                        }
                        uint256[49] private __gap;
                    }
                    
                    interface IERC20 {
                        event Approval(address indexed owner, address indexed spender, uint value);
                        event Transfer(address indexed from, address indexed to, uint value);
                    
                        function name() external view returns (string memory);
                    
                        function symbol() external view returns (string memory);
                    
                        function decimals() external view returns (uint8);
                    
                        function totalSupply() external view returns (uint);
                    
                        function balanceOf(address owner) external view returns (uint);
                    
                        function allowance(address owner, address spender) external view returns (uint);
                    
                        function approve(address spender, uint value) external returns (bool);
                    
                        function transfer(address to, uint value) external returns (bool);
                    
                        function transferFrom(address from, address to, uint value) external returns (bool);
                    }
                    
                    library SafeMath {
                        uint256 constant WAD = 10 ** 18;
                        uint256 constant RAY = 10 ** 27;
                    
                        function wad() public pure returns (uint256) {
                            return WAD;
                        }
                    
                        function ray() public pure returns (uint256) {
                            return RAY;
                        }
                    
                        function add(uint256 a, uint256 b) internal pure returns (uint256) {
                            uint256 c = a + b;
                            require(c >= a, "SafeMath: addition overflow");
                    
                            return c;
                        }
                    
                        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                            return sub(a, b, "SafeMath: subtraction overflow");
                        }
                    
                        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                            require(b <= a, errorMessage);
                            uint256 c = a - b;
                    
                            return c;
                        }
                    
                        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                            // benefit is lost if 'b' is also tested.
                            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                            if (a == 0) {
                                return 0;
                            }
                    
                            uint256 c = a * b;
                            require(c / a == b, "SafeMath: multiplication overflow");
                    
                            return c;
                        }
                    
                        function div(uint256 a, uint256 b) internal pure returns (uint256) {
                            return div(a, b, "SafeMath: division by zero");
                        }
                    
                        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                            // Solidity only automatically asserts when dividing by 0
                            require(b > 0, errorMessage);
                            uint256 c = a / b;
                            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                    
                            return c;
                        }
                    
                        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                            return mod(a, b, "SafeMath: modulo by zero");
                        }
                    
                        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                            require(b != 0, errorMessage);
                            return a % b;
                        }
                    
                        function min(uint256 a, uint256 b) internal pure returns (uint256) {
                            return a <= b ? a : b;
                        }
                    
                        function max(uint256 a, uint256 b) internal pure returns (uint256) {
                            return a >= b ? a : b;
                        }
                    
                        function sqrt(uint256 a) internal pure returns (uint256 b) {
                            if (a > 3) {
                                b = a;
                                uint256 x = a / 2 + 1;
                                while (x < b) {
                                    b = x;
                                    x = (a / x + x) / 2;
                                }
                            } else if (a != 0) {
                                b = 1;
                            }
                        }
                    
                        function wmul(uint256 a, uint256 b) internal pure returns (uint256) {
                            return mul(a, b) / WAD;
                        }
                    
                        function wmulRound(uint256 a, uint256 b) internal pure returns (uint256) {
                            return add(mul(a, b), WAD / 2) / WAD;
                        }
                    
                        function rmul(uint256 a, uint256 b) internal pure returns (uint256) {
                            return mul(a, b) / RAY;
                        }
                    
                        function rmulRound(uint256 a, uint256 b) internal pure returns (uint256) {
                            return add(mul(a, b), RAY / 2) / RAY;
                        }
                    
                        function wdiv(uint256 a, uint256 b) internal pure returns (uint256) {
                            return div(mul(a, WAD), b);
                        }
                    
                        function wdivRound(uint256 a, uint256 b) internal pure returns (uint256) {
                            return add(mul(a, WAD), b / 2) / b;
                        }
                    
                        function rdiv(uint256 a, uint256 b) internal pure returns (uint256) {
                            return div(mul(a, RAY), b);
                        }
                    
                        function rdivRound(uint256 a, uint256 b) internal pure returns (uint256) {
                            return add(mul(a, RAY), b / 2) / b;
                        }
                    
                        function wpow(uint256 x, uint256 n) internal pure returns (uint256) {
                            uint256 result = WAD;
                            while (n > 0) {
                                if (n % 2 != 0) {
                                    result = wmul(result, x);
                                }
                                x = wmul(x, x);
                                n /= 2;
                            }
                            return result;
                        }
                    
                        function rpow(uint256 x, uint256 n) internal pure returns (uint256) {
                            uint256 result = RAY;
                            while (n > 0) {
                                if (n % 2 != 0) {
                                    result = rmul(result, x);
                                }
                                x = rmul(x, x);
                                n /= 2;
                            }
                            return result;
                        }
                    
                        function divCeil(uint256 a, uint256 b) internal pure returns (uint256) {
                            uint256 quotient = div(a, b);
                            uint256 remainder = a - quotient * b;
                            if (remainder > 0) {
                                return quotient + 1;
                            } else {
                                return quotient;
                            }
                        }
                    }
                    
                    /**
                     * @dev Collection of functions related to the address type
                     */
                    library Address {
                        /**
                         * @dev Returns true if `account` is a contract.
                         *
                         * [IMPORTANT]
                         * ====
                         * It is unsafe to assume that an address for which this function returns
                         * false is an externally-owned account (EOA) and not a contract.
                         *
                         * Among others, `isContract` will return false for the following 
                         * types of addresses:
                         *
                         *  - an externally-owned account
                         *  - a contract in construction
                         *  - an address where a contract will be created
                         *  - an address where a contract lived, but was destroyed
                         * ====
                         */
                        function isContract(address account) internal view returns (bool) {
                            // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
                            // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
                            // for accounts without code, i.e. `keccak256('')`
                            bytes32 codehash;
                            bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
                            // solhint-disable-next-line no-inline-assembly
                            assembly { codehash := extcodehash(account) }
                            return (codehash != accountHash && codehash != 0x0);
                        }
                    
                        /**
                         * @dev Converts an `address` into `address payable`. Note that this is
                         * simply a type cast: the actual underlying value is not changed.
                         *
                         * _Available since v2.4.0._
                         */
                        function toPayable(address account) internal pure returns (address payable) {
                            return payable(account);
                        }
                    
                        /**
                         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                         * `recipient`, forwarding all available gas and reverting on errors.
                         *
                         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                         * of certain opcodes, possibly making contracts go over the 2300 gas limit
                         * imposed by `transfer`, making them unable to receive funds via
                         * `transfer`. {sendValue} removes this limitation.
                         *
                         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                         *
                         * IMPORTANT: because control is transferred to `recipient`, care must be
                         * taken to not create reentrancy vulnerabilities. Consider using
                         * {ReentrancyGuard} or the
                         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                         *
                         * _Available since v2.4.0._
                         */
                        function sendValue(address recipient, uint256 amount) internal {
                            require(address(this).balance >= amount, "Address: insufficient balance");
                    
                            // solhint-disable-next-line avoid-call-value
                            (bool success, ) = recipient.call{ value: amount }("");
                            require(success, "Address: unable to send value, recipient may have reverted");
                        }
                    }
                    
                    /**
                     * @title SafeERC20
                     * @dev Wrappers around ERC20 operations that throw on failure (when the token
                     * contract returns false). Tokens that return no value (and instead revert or
                     * throw on failure) are also supported, non-reverting calls are assumed to be
                     * successful.
                     * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
                     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                     */
                    library SafeERC20 {
                        using SafeMath for uint256;
                        using Address for address;
                    
                        function safeTransfer(IERC20 token, address to, uint256 value) internal {
                            callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                        }
                    
                        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                            callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                        }
                    
                        function safeApprove(IERC20 token, address spender, uint256 value) internal {
                            // safeApprove should only be called when setting an initial allowance,
                            // or when resetting it to zero. To increase and decrease it, use
                            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                            // solhint-disable-next-line max-line-length
                            require((value == 0) || (token.allowance(address(this), spender) == 0),
                                "SafeERC20: approve from non-zero to non-zero allowance"
                            );
                            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                        }
                    
                        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                            uint256 newAllowance = token.allowance(address(this), spender).add(value);
                            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    
                        function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                            uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
                            callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    
                        /**
                         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                         * on the return value: the return value is optional (but if data is returned, it must not be false).
                         * @param token The token targeted by the call.
                         * @param data The call data (encoded using abi.encode or one of its variants).
                         */
                        function callOptionalReturn(IERC20 token, bytes memory data) private {
                            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                            // we're implementing it ourselves.
                    
                            // A Solidity high level call has three parts:
                            //  1. The target address is checked to verify it contains contract code
                            //  2. The call itself is made, and success asserted
                            //  3. The return value is decoded, which in turn checks the size of the returned data.
                            // solhint-disable-next-line max-line-length
                            require(address(token).isContract(), "SafeERC20: call to non-contract");
                    
                            // solhint-disable-next-line avoid-low-level-calls
                            (bool success, bytes memory returndata) = address(token).call(data);
                            require(success, "SafeERC20: low-level call failed");
                    
                            if (returndata.length > 0) { // Return data is optional
                                // solhint-disable-next-line max-line-length
                                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                            }
                        }
                    }
                    
                    /// @title Handle authorizations in dex platform
                    /// @notice Explain to an end user what this does
                    /// @dev Explain to a developer any extra details
                    contract TokenApprove is OwnableUpgradeable {
                      using SafeERC20 for IERC20;
                    
                      address public tokenApproveProxy;
                    
                      function initialize(address _tokenApproveProxy) public initializer {
                        __Ownable_init();
                        tokenApproveProxy = _tokenApproveProxy;
                      }
                    
                      //-------------------------------
                      //------- Events ----------------
                      //-------------------------------
                    
                      event ProxyUpdate(address indexed oldProxy, address indexed newProxy);
                    
                      //-------------------------------
                      //------- Modifier --------------
                      //-------------------------------
                    
                      //--------------------------------
                      //------- Internal Functions -----
                      //--------------------------------
                    
                      //---------------------------------
                      //------- Admin functions ---------
                      //---------------------------------
                    
                      function setApproveProxy(address _newTokenApproveProxy) external onlyOwner {
                        tokenApproveProxy = _newTokenApproveProxy;
                        emit ProxyUpdate(tokenApproveProxy, _newTokenApproveProxy);
                      }
                    
                      //---------------------------------
                      //-------  Users Functions --------
                      //---------------------------------
                    
                      function claimTokens(
                        address _token,
                        address _who,
                        address _dest,
                        uint256 _amount
                      ) external {
                        require(msg.sender == tokenApproveProxy, "TokenApprove: Access restricted");
                        if (_amount > 0) {
                          IERC20(_token).safeTransferFrom(_who, _dest, _amount);
                        }
                      }
                    }