ETH Price: $2,412.93 (-1.09%)

Transaction Decoder

Block:
20266609 at Jul-09-2024 04:39:35 AM +UTC
Transaction Fee:
0.000155788732668656 ETH $0.38
Gas Used:
76,108 Gas / 2.046942932 Gwei

Emitted Events:

172 LinearERC20Voting.Voted( voter=[Sender] 0x18c529e97297c7d7da79779714b288f5c034ebe1, proposalId=1, voteType=1, weight=115702000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x18C529e9...5C034EBE1
5.462824919229695319 Eth
Nonce: 513
5.462669130497026663 Eth
Nonce: 514
0.000155788732668656
3.023964625993437064 Eth3.024002751533358796 Eth0.000038125539921732
0x555cFBfD...ad65710f8

Execution Trace

LinearERC20Voting.vote( _proposalId=1, _voteType=1 )
  • LinearERC20Voting.vote( _proposalId=1, _voteType=1 )
    • LockRelease.getPastVotes( account=0x18C529e97297C7d7da79779714B288F5C034EBE1, blockNumber=20227582 ) => ( 115702000000000000000000 )
      • DCNTToken.getPastVotes( account=0x18C529e97297C7d7da79779714B288F5C034EBE1, timepoint=20227582 ) => ( 0 )
        File 1 of 4: LinearERC20Voting
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity =0.8.19;
        import { IVotes } from "@openzeppelin/contracts/governance/utils/IVotes.sol";
        import { BaseStrategy, IBaseStrategy } from "./BaseStrategy.sol";
        import { BaseQuorumPercent } from "./BaseQuorumPercent.sol";
        import { BaseVotingBasisPercent } from "./BaseVotingBasisPercent.sol";
         /**
          * An [Azorius](./Azorius.md) [BaseStrategy](./BaseStrategy.md) implementation that 
          * enables linear (i.e. 1 to 1) token voting. Each token delegated to a given address 
          * in an `ERC20Votes` token equals 1 vote for a Proposal.
          */
        contract LinearERC20Voting is BaseStrategy, BaseQuorumPercent, BaseVotingBasisPercent {
            /**
             * The voting options for a Proposal.
             */
            enum VoteType {
                NO,     // disapproves of executing the Proposal
                YES,    // approves of executing the Proposal
                ABSTAIN // neither YES nor NO, i.e. voting "present"
            }
            /**
             * Defines the current state of votes on a particular Proposal.
             */
            struct ProposalVotes {
                uint32 votingStartBlock; // block that voting starts at
                uint32 votingEndBlock; // block that voting ends
                uint256 noVotes; // current number of NO votes for the Proposal
                uint256 yesVotes; // current number of YES votes for the Proposal
                uint256 abstainVotes; // current number of ABSTAIN votes for the Proposal
                mapping(address => bool) hasVoted; // whether a given address has voted yet or not
            }
            IVotes public governanceToken;
            /** Number of blocks a new Proposal can be voted on. */
            uint32 public votingPeriod;
            /** Voting weight required to be able to submit Proposals. */
            uint256 public requiredProposerWeight;
            /** `proposalId` to `ProposalVotes`, the voting state of a Proposal. */
            mapping(uint256 => ProposalVotes) internal proposalVotes;
            event VotingPeriodUpdated(uint32 votingPeriod);
            event RequiredProposerWeightUpdated(uint256 requiredProposerWeight);
            event ProposalInitialized(uint32 proposalId, uint32 votingEndBlock);
            event Voted(address voter, uint32 proposalId, uint8 voteType, uint256 weight);
            error InvalidProposal();
            error VotingEnded();
            error AlreadyVoted();
            error InvalidVote();
            error InvalidTokenAddress();
            /**
             * Sets up the contract with its initial parameters.
             *
             * @param initializeParams encoded initialization parameters: `address _owner`,
             * `ERC20Votes _governanceToken`, `address _azoriusModule`, `uint256 _votingPeriod`,
             * `uint256 _quorumNumerator`, `uint256 _basisNumerator`
             */
            function setUp(bytes memory initializeParams) public override initializer {
                (
                    address _owner,
                    IVotes _governanceToken,
                    address _azoriusModule,
                    uint32 _votingPeriod,
                    uint256 _requiredProposerWeight,
                    uint256 _quorumNumerator,
                    uint256 _basisNumerator
                ) = abi.decode(
                        initializeParams,
                        (address, IVotes, address, uint32, uint256, uint256, uint256)
                    );
                if (address(_governanceToken) == address(0))
                    revert InvalidTokenAddress();
                governanceToken = _governanceToken;
                __Ownable_init();
                transferOwnership(_owner);
                _setAzorius(_azoriusModule);
                _updateQuorumNumerator(_quorumNumerator);
                _updateBasisNumerator(_basisNumerator);
                _updateVotingPeriod(_votingPeriod);
                _updateRequiredProposerWeight(_requiredProposerWeight);
                emit StrategySetUp(_azoriusModule, _owner);
            }
            /**
             * Updates the voting time period for new Proposals.
             *
             * @param _votingPeriod voting time period (in blocks)
             */
            function updateVotingPeriod(uint32 _votingPeriod) external onlyOwner {
                _updateVotingPeriod(_votingPeriod);
            }
            /**
             * Updates the voting weight required to submit new Proposals.
             *
             * @param _requiredProposerWeight required token voting weight
             */
            function updateRequiredProposerWeight(uint256 _requiredProposerWeight) external onlyOwner {
                _updateRequiredProposerWeight(_requiredProposerWeight);
            }
            /**
             * Casts votes for a Proposal, equal to the caller's token delegation.
             *
             * @param _proposalId id of the Proposal to vote on
             * @param _voteType Proposal support as defined in VoteType (NO, YES, ABSTAIN)
             */
            function vote(uint32 _proposalId, uint8 _voteType) external {
                _vote(
                    _proposalId,
                    msg.sender,
                    _voteType,
                    getVotingWeight(msg.sender, _proposalId)
                );
            }
            /**
             * Returns the current state of the specified Proposal.
             *
             * @param _proposalId id of the Proposal
             * @return noVotes current count of "NO" votes
             * @return yesVotes current count of "YES" votes
             * @return abstainVotes current count of "ABSTAIN" votes
             * @return startBlock block number voting starts
             * @return endBlock block number voting ends
             */
            function getProposalVotes(uint32 _proposalId) external view
                returns (
                    uint256 noVotes,
                    uint256 yesVotes,
                    uint256 abstainVotes,
                    uint32 startBlock,
                    uint32 endBlock,
                    uint256 votingSupply
                )
            {
                noVotes = proposalVotes[_proposalId].noVotes;
                yesVotes = proposalVotes[_proposalId].yesVotes;
                abstainVotes = proposalVotes[_proposalId].abstainVotes;
                startBlock = proposalVotes[_proposalId].votingStartBlock;
                endBlock = proposalVotes[_proposalId].votingEndBlock;
                votingSupply = getProposalVotingSupply(_proposalId);
            }
            /** @inheritdoc BaseStrategy*/
            function initializeProposal(bytes memory _data) public virtual override onlyAzorius {
                uint32 proposalId = abi.decode(_data, (uint32));
                uint32 _votingEndBlock = uint32(block.number) + votingPeriod;
                proposalVotes[proposalId].votingEndBlock = _votingEndBlock;
                proposalVotes[proposalId].votingStartBlock = uint32(block.number);
                emit ProposalInitialized(proposalId, _votingEndBlock);
            }
            
            /**
             * Returns whether an address has voted on the specified Proposal.
             *
             * @param _proposalId id of the Proposal to check
             * @param _address address to check
             * @return bool true if the address has voted on the Proposal, otherwise false
             */
            function hasVoted(uint32 _proposalId, address _address) public view returns (bool) {
                return proposalVotes[_proposalId].hasVoted[_address];
            }
            /** @inheritdoc BaseStrategy*/
            function isPassed(uint32 _proposalId) public view override returns (bool) {
                return (
                    block.number > proposalVotes[_proposalId].votingEndBlock && // voting period has ended
                    meetsQuorum(getProposalVotingSupply(_proposalId), proposalVotes[_proposalId].yesVotes, proposalVotes[_proposalId].abstainVotes) && // yes + abstain votes meets the quorum
                    meetsBasis(proposalVotes[_proposalId].yesVotes, proposalVotes[_proposalId].noVotes) // yes votes meets the basis
                );
            }
            /**
             * Returns a snapshot of total voting supply for a given Proposal.  Because token supplies can change,
             * it is necessary to calculate quorum from the supply available at the time of the Proposal's creation,
             * not when it is being voted on passes / fails.
             *
             * @param _proposalId id of the Proposal
             * @return uint256 voting supply snapshot for the given _proposalId
             */
            function getProposalVotingSupply(uint32 _proposalId) public view virtual returns (uint256) {
                return governanceToken.getPastTotalSupply(proposalVotes[_proposalId].votingStartBlock);
            }
            /**
             * Calculates the voting weight an address has for a specific Proposal.
             *
             * @param _voter address of the voter
             * @param _proposalId id of the Proposal
             * @return uint256 the address' voting weight
             */
            function getVotingWeight(address _voter, uint32 _proposalId) public view returns (uint256) {
                return
                    governanceToken.getPastVotes(
                        _voter,
                        proposalVotes[_proposalId].votingStartBlock
                    );
            }
            /** @inheritdoc BaseStrategy*/
            function isProposer(address _address) public view override returns (bool) {
                return governanceToken.getPastVotes(
                    _address,
                    block.number - 1
                ) >= requiredProposerWeight;
            }
            /** @inheritdoc BaseStrategy*/
            function votingEndBlock(uint32 _proposalId) public view override returns (uint32) {
              return proposalVotes[_proposalId].votingEndBlock;
            }
            /** Internal implementation of `updateVotingPeriod`. */
            function _updateVotingPeriod(uint32 _votingPeriod) internal {
                votingPeriod = _votingPeriod;
                emit VotingPeriodUpdated(_votingPeriod);
            }
            /** Internal implementation of `updateRequiredProposerWeight`. */
            function _updateRequiredProposerWeight(uint256 _requiredProposerWeight) internal {
                requiredProposerWeight = _requiredProposerWeight;
                emit RequiredProposerWeightUpdated(_requiredProposerWeight);
            }
            /**
             * Internal function for casting a vote on a Proposal.
             *
             * @param _proposalId id of the Proposal
             * @param _voter address casting the vote
             * @param _voteType vote support, as defined in VoteType
             * @param _weight amount of voting weight cast, typically the
             *          total number of tokens delegated
             */
            function _vote(uint32 _proposalId, address _voter, uint8 _voteType, uint256 _weight) internal {
                if (proposalVotes[_proposalId].votingEndBlock == 0)
                    revert InvalidProposal();
                if (block.number > proposalVotes[_proposalId].votingEndBlock)
                    revert VotingEnded();
                if (proposalVotes[_proposalId].hasVoted[_voter]) revert AlreadyVoted();
                proposalVotes[_proposalId].hasVoted[_voter] = true;
                if (_voteType == uint8(VoteType.NO)) {
                    proposalVotes[_proposalId].noVotes += _weight;
                } else if (_voteType == uint8(VoteType.YES)) {
                    proposalVotes[_proposalId].yesVotes += _weight;
                } else if (_voteType == uint8(VoteType.ABSTAIN)) {
                    proposalVotes[_proposalId].abstainVotes += _weight;
                } else {
                    revert InvalidVote();
                }
                emit Voted(_voter, _proposalId, _voteType, _weight);
            }
            /** @inheritdoc BaseQuorumPercent*/
            function quorumVotes(uint32 _proposalId) public view override returns (uint256) {
                return quorumNumerator * getProposalVotingSupply(_proposalId) / QUORUM_DENOMINATOR;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (governance/utils/IVotes.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
         *
         * _Available since v4.5._
         */
        interface IVotes {
            /**
             * @dev Emitted when an account changes their delegate.
             */
            event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
            /**
             * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of votes.
             */
            event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);
            /**
             * @dev Returns the current amount of votes that `account` has.
             */
            function getVotes(address account) external view returns (uint256);
            /**
             * @dev Returns the amount of votes that `account` had at the end of a past block (`blockNumber`).
             */
            function getPastVotes(address account, uint256 blockNumber) external view returns (uint256);
            /**
             * @dev Returns the total supply of votes available at the end of a past block (`blockNumber`).
             *
             * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
             * Votes that have not been delegated are still part of total supply, even though they would not participate in a
             * vote.
             */
            function getPastTotalSupply(uint256 blockNumber) external view returns (uint256);
            /**
             * @dev Returns the delegate that `account` has chosen.
             */
            function delegates(address account) external view returns (address);
            /**
             * @dev Delegates votes from the sender to `delegatee`.
             */
            function delegate(address delegatee) external;
            /**
             * @dev Delegates votes from signer to `delegatee`.
             */
            function delegateBySig(
                address delegatee,
                uint256 nonce,
                uint256 expiry,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity =0.8.19;
        import { IAzorius } from "./interfaces/IAzorius.sol";
        import { IBaseStrategy } from "./interfaces/IBaseStrategy.sol";
        import { FactoryFriendly } from "@gnosis.pm/zodiac/contracts/factory/FactoryFriendly.sol";
        import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        /**
         * The base abstract contract for all voting strategies in Azorius.
         */
        abstract contract BaseStrategy is OwnableUpgradeable, FactoryFriendly, IBaseStrategy {
            event AzoriusSet(address indexed azoriusModule);
            event StrategySetUp(address indexed azoriusModule, address indexed owner);
            error OnlyAzorius();
            IAzorius public azoriusModule;
            /**
             * Ensures that only the [Azorius](./Azorius.md) contract that pertains to this 
             * [BaseStrategy](./BaseStrategy.md) can call functions on it.
             */
            modifier onlyAzorius() {
                if (msg.sender != address(azoriusModule)) revert OnlyAzorius();
                _;
            }
            constructor() {
              _disableInitializers();
            }
            /** @inheritdoc IBaseStrategy*/
            function setAzorius(address _azoriusModule) external onlyOwner {
                azoriusModule = IAzorius(_azoriusModule);
                emit AzoriusSet(_azoriusModule);
            }
            /** @inheritdoc IBaseStrategy*/
            function initializeProposal(bytes memory _data) external virtual;
            /** @inheritdoc IBaseStrategy*/
            function isPassed(uint32 _proposalId) external view virtual returns (bool);
            /** @inheritdoc IBaseStrategy*/
            function isProposer(address _address) external view virtual returns (bool);
            /** @inheritdoc IBaseStrategy*/
            function votingEndBlock(uint32 _proposalId) external view virtual returns (uint32);
            /**
             * Sets the address of the [Azorius](Azorius.md) module contract.
             *
             * @param _azoriusModule address of the Azorius module
             */
            function _setAzorius(address _azoriusModule) internal {
                azoriusModule = IAzorius(_azoriusModule);
                emit AzoriusSet(_azoriusModule);
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity =0.8.19;
        import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        /**
         * An Azorius extension contract that enables percent based quorums.
         * Intended to be implemented by [BaseStrategy](./BaseStrategy.md) implementations.
         */
        abstract contract BaseQuorumPercent is OwnableUpgradeable {
            
            /** The numerator to use when calculating quorum (adjustable). */
            uint256 public quorumNumerator;
            /** The denominator to use when calculating quorum (1,000,000). */
            uint256 public constant QUORUM_DENOMINATOR = 1_000_000;
            /** Ensures the numerator cannot be larger than the denominator. */
            error InvalidQuorumNumerator();
            event QuorumNumeratorUpdated(uint256 quorumNumerator);
            /** 
             * Updates the quorum required for future Proposals.
             *
             * @param _quorumNumerator numerator to use when calculating quorum (over 1,000,000)
             */
            function updateQuorumNumerator(uint256 _quorumNumerator) public virtual onlyOwner {
                _updateQuorumNumerator(_quorumNumerator);
            }
            /** Internal implementation of `updateQuorumNumerator`. */
            function _updateQuorumNumerator(uint256 _quorumNumerator) internal virtual {
                if (_quorumNumerator > QUORUM_DENOMINATOR)
                    revert InvalidQuorumNumerator();
                quorumNumerator = _quorumNumerator;
                emit QuorumNumeratorUpdated(_quorumNumerator);
            }
            /**
             * Calculates whether a vote meets quorum. This is calculated based on yes votes + abstain
             * votes.
             *
             * @param _totalSupply the total supply of tokens
             * @param _yesVotes number of votes in favor
             * @param _abstainVotes number of votes abstaining
             * @return bool whether the total number of yes votes + abstain meets the quorum
             */
            function meetsQuorum(uint256 _totalSupply, uint256 _yesVotes, uint256 _abstainVotes) public view returns (bool) {
                return _yesVotes + _abstainVotes >= (_totalSupply * quorumNumerator) / QUORUM_DENOMINATOR;
            }
            /**
             * Calculates the total number of votes required for a proposal to meet quorum.
             * 
             * @param _proposalId The ID of the proposal to get quorum votes for
             * @return uint256 The quantity of votes required to meet quorum
             */
            function quorumVotes(uint32 _proposalId) public view virtual returns (uint256);
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity =0.8.19;
        import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        /**
         * An Azorius extension contract that enables percent based voting basis calculations.
         *
         * Intended to be implemented by BaseStrategy implementations, this allows for voting strategies
         * to dictate any basis strategy for passing a Proposal between >50% (simple majority) to 100%.
         *
         * See https://en.wikipedia.org/wiki/Voting#Voting_basis.
         * See https://en.wikipedia.org/wiki/Supermajority.
         */
        abstract contract BaseVotingBasisPercent is OwnableUpgradeable {
            
            /** The numerator to use when calculating basis (adjustable). */
            uint256 public basisNumerator;
            /** The denominator to use when calculating basis (1,000,000). */
            uint256 public constant BASIS_DENOMINATOR = 1_000_000;
            error InvalidBasisNumerator();
            event BasisNumeratorUpdated(uint256 basisNumerator);
            /**
             * Updates the `basisNumerator` for future Proposals.
             *
             * @param _basisNumerator numerator to use
             */
            function updateBasisNumerator(uint256 _basisNumerator) public virtual onlyOwner {
                _updateBasisNumerator(_basisNumerator);
            }
            /** Internal implementation of `updateBasisNumerator`. */
            function _updateBasisNumerator(uint256 _basisNumerator) internal virtual {
                if (_basisNumerator > BASIS_DENOMINATOR || _basisNumerator < BASIS_DENOMINATOR / 2)
                    revert InvalidBasisNumerator();
                basisNumerator = _basisNumerator;
                emit BasisNumeratorUpdated(_basisNumerator);
            }
            /**
             * Calculates whether a vote meets its basis.
             *
             * @param _yesVotes number of votes in favor
             * @param _noVotes number of votes against
             * @return bool whether the yes votes meets the set basis
             */
            function meetsBasis(uint256 _yesVotes, uint256 _noVotes) public view returns (bool) {
                return _yesVotes > (_yesVotes + _noVotes) * basisNumerator / BASIS_DENOMINATOR;
            }
        }
        //SPDX-License-Identifier: MIT
        pragma solidity =0.8.19;
        import { Enum } from "@gnosis.pm/safe-contracts/contracts/common/Enum.sol";
        /**
         * The base interface for the Azorius governance Safe module.
         * Azorius conforms to the Zodiac pattern for Safe modules: https://github.com/gnosis/zodiac
         *
         * Azorius manages the state of Proposals submitted to a DAO, along with the associated strategies
         * ([BaseStrategy](../BaseStrategy.md)) for voting that are enabled on the DAO.
         *
         * Any given DAO can support multiple voting BaseStrategies, and these strategies are intended to be
         * as customizable as possible.
         *
         * Proposals begin in the `ACTIVE` state and will ultimately end in either
         * the `EXECUTED`, `EXPIRED`, or `FAILED` state.
         *
         * `ACTIVE` - a new proposal begins in this state, and stays in this state
         *          for the duration of its voting period.
         *
         * `TIMELOCKED` - A proposal that passes enters the `TIMELOCKED` state, during which
         *          it cannot yet be executed.  This is to allow time for token holders
         *          to potentially exit their position, as well as parent DAOs time to
         *          initiate a freeze, if they choose to do so. A proposal stays timelocked
         *          for the duration of its `timelockPeriod`.
         *
         * `EXECUTABLE` - Following the `TIMELOCKED` state, a passed proposal becomes `EXECUTABLE`,
         *          and can then finally be executed on chain by anyone.
         *
         * `EXECUTED` - the final state for a passed proposal.  The proposal has been executed
         *          on the blockchain.
         *
         * `EXPIRED` - a passed proposal which is not executed before its `executionPeriod` has
         *          elapsed will be `EXPIRED`, and can no longer be executed.
         *
         * `FAILED` - a failed proposal (as defined by its [BaseStrategy](../BaseStrategy.md) 
         *          `isPassed` function). For a basic strategy, this would mean it received more 
         *          NO votes than YES or did not achieve quorum. 
         */
        interface IAzorius {
            /** Represents a transaction to perform on the blockchain. */
            struct Transaction {
                address to; // destination address of the transaction
                uint256 value; // amount of ETH to transfer with the transaction
                bytes data; // encoded function call data of the transaction
                Enum.Operation operation; // Operation type, Call or DelegateCall
            }
            /** Holds details pertaining to a single proposal. */
            struct Proposal {
                uint32 executionCounter; // count of transactions that have been executed within the proposal
                uint32 timelockPeriod; // time (in blocks) this proposal will be timelocked for if it passes
                uint32 executionPeriod; // time (in blocks) this proposal has to be executed after timelock ends before it is expired
                address strategy; // BaseStrategy contract this proposal was created on
                bytes32[] txHashes; // hashes of the transactions that are being proposed
            }
            /** The list of states in which a Proposal can be in at any given time. */
            enum ProposalState {
                ACTIVE,
                TIMELOCKED,
                EXECUTABLE,
                EXECUTED,
                EXPIRED,
                FAILED
            }
            /**
             * Enables a [BaseStrategy](../BaseStrategy.md) implementation for newly created Proposals.
             *
             * Multiple strategies can be enabled, and new Proposals will be able to be
             * created using any of the currently enabled strategies.
             *
             * @param _strategy contract address of the BaseStrategy to be enabled
             */
            function enableStrategy(address _strategy) external;
            /**
             * Disables a previously enabled [BaseStrategy](../BaseStrategy.md) implementation for new proposals.
             * This has no effect on existing Proposals, either `ACTIVE` or completed.
             *
             * @param _prevStrategy BaseStrategy address that pointed in the linked list to the strategy to be removed
             * @param _strategy address of the BaseStrategy to be removed
             */
            function disableStrategy(address _prevStrategy, address _strategy) external;
            /**
             * Updates the `timelockPeriod` for newly created Proposals.
             * This has no effect on existing Proposals, either `ACTIVE` or completed.
             *
             * @param _timelockPeriod timelockPeriod (in blocks) to be used for new Proposals
             */
            function updateTimelockPeriod(uint32 _timelockPeriod) external;
            /**
             * Updates the execution period for future Proposals.
             *
             * @param _executionPeriod new execution period (in blocks)
             */
            function updateExecutionPeriod(uint32 _executionPeriod) external;
            /**
             * Submits a new Proposal, using one of the enabled [BaseStrategies](../BaseStrategy.md).
             * New Proposals begin immediately in the `ACTIVE` state.
             *
             * @param _strategy address of the BaseStrategy implementation which the Proposal will use
             * @param _data arbitrary data passed to the BaseStrategy implementation. This may not be used by all strategies, 
             * but is included in case future strategy contracts have a need for it
             * @param _transactions array of transactions to propose
             * @param _metadata additional data such as a title/description to submit with the proposal
             */
            function submitProposal(
                address _strategy,
                bytes memory _data,
                Transaction[] calldata _transactions,
                string calldata _metadata
            ) external;
            /**
             * Executes all transactions within a Proposal.
             * This will only be able to be called if the Proposal passed.
             *
             * @param _proposalId identifier of the Proposal
             * @param _targets target contracts for each transaction
             * @param _values ETH values to be sent with each transaction
             * @param _data transaction data to be executed
             * @param _operations Calls or Delegatecalls
             */
            function executeProposal(
                uint32 _proposalId,
                address[] memory _targets,
                uint256[] memory _values,
                bytes[] memory _data,
                Enum.Operation[] memory _operations
            ) external;
            /**
             * Returns whether a [BaseStrategy](../BaseStrategy.md) implementation is enabled.
             *
             * @param _strategy contract address of the BaseStrategy to check
             * @return bool True if the strategy is enabled, otherwise False
             */
            function isStrategyEnabled(address _strategy) external view returns (bool);
            /**
             * Returns an array of enabled [BaseStrategy](../BaseStrategy.md) contract addresses.
             * Because the list of BaseStrategies is technically unbounded, this
             * requires the address of the first strategy you would like, along
             * with the total count of strategies to return, rather than
             * returning the whole list at once.
             *
             * @param _startAddress contract address of the BaseStrategy to start with
             * @param _count maximum number of BaseStrategies that should be returned
             * @return _strategies array of BaseStrategies
             * @return _next next BaseStrategy contract address in the linked list
             */
            function getStrategies(
                address _startAddress,
                uint256 _count
            ) external view returns (address[] memory _strategies, address _next);
            /**
             * Gets the state of a Proposal.
             *
             * @param _proposalId identifier of the Proposal
             * @return ProposalState uint256 ProposalState enum value representing the
             *         current state of the proposal
             */
            function proposalState(uint32 _proposalId) external view returns (ProposalState);
            /**
             * Generates the data for the module transaction hash (required for signing).
             *
             * @param _to target address of the transaction
             * @param _value ETH value to send with the transaction
             * @param _data encoded function call data of the transaction
             * @param _operation Enum.Operation to use for the transaction
             * @param _nonce Safe nonce of the transaction
             * @return bytes hashed transaction data
             */
            function generateTxHashData(
                address _to,
                uint256 _value,
                bytes memory _data,
                Enum.Operation _operation,
                uint256 _nonce
            ) external view returns (bytes memory);
            /**
             * Returns the `keccak256` hash of the specified transaction.
             *
             * @param _to target address of the transaction
             * @param _value ETH value to send with the transaction
             * @param _data encoded function call data of the transaction
             * @param _operation Enum.Operation to use for the transaction
             * @return bytes32 transaction hash
             */
            function getTxHash(
                address _to,
                uint256 _value,
                bytes memory _data,
                Enum.Operation _operation
            ) external view returns (bytes32);
            /**
             * Returns the hash of a transaction in a Proposal.
             *
             * @param _proposalId identifier of the Proposal
             * @param _txIndex index of the transaction within the Proposal
             * @return bytes32 hash of the specified transaction
             */
            function getProposalTxHash(uint32 _proposalId, uint32 _txIndex) external view returns (bytes32);
            /**
             * Returns the transaction hashes associated with a given `proposalId`.
             *
             * @param _proposalId identifier of the Proposal to get transaction hashes for
             * @return bytes32[] array of transaction hashes
             */
            function getProposalTxHashes(uint32 _proposalId) external view returns (bytes32[] memory);
            /**
             * Returns details about the specified Proposal.
             *
             * @param _proposalId identifier of the Proposal
             * @return _strategy address of the BaseStrategy contract the Proposal is on
             * @return _txHashes hashes of the transactions the Proposal contains
             * @return _timelockPeriod time (in blocks) the Proposal is timelocked for
             * @return _executionPeriod time (in blocks) the Proposal must be executed within, after timelock ends
             * @return _executionCounter counter of how many of the Proposals transactions have been executed
             */
            function getProposal(uint32 _proposalId) external view
                returns (
                    address _strategy,
                    bytes32[] memory _txHashes,
                    uint32 _timelockPeriod,
                    uint32 _executionPeriod,
                    uint32 _executionCounter
                );
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity =0.8.19;
        /**
         * The specification for a voting strategy in Azorius.
         *
         * Each IBaseStrategy implementation need only implement the given functions here,
         * which allows for highly composable but simple or complex voting strategies.
         *
         * It should be noted that while many voting strategies make use of parameters such as
         * voting period or quorum, that is a detail of the individual strategy itself, and not
         * a requirement for the Azorius protocol.
         */
        interface IBaseStrategy {
            /**
             * Sets the address of the [Azorius](../Azorius.md) contract this 
             * [BaseStrategy](../BaseStrategy.md) is being used on.
             *
             * @param _azoriusModule address of the Azorius Safe module
             */
            function setAzorius(address _azoriusModule) external;
            /**
             * Called by the [Azorius](../Azorius.md) module. This notifies this 
             * [BaseStrategy](../BaseStrategy.md) that a new Proposal has been created.
             *
             * @param _data arbitrary data to pass to this BaseStrategy
             */
            function initializeProposal(bytes memory _data) external;
            /**
             * Returns whether a Proposal has been passed.
             *
             * @param _proposalId proposalId to check
             * @return bool true if the proposal has passed, otherwise false
             */
            function isPassed(uint32 _proposalId) external view returns (bool);
            /**
             * Returns whether the specified address can submit a Proposal with
             * this [BaseStrategy](../BaseStrategy.md).
             *
             * This allows a BaseStrategy to place any limits it would like on
             * who can create new Proposals, such as requiring a minimum token
             * delegation.
             *
             * @param _address address to check
             * @return bool true if the address can submit a Proposal, otherwise false
             */
            function isProposer(address _address) external view returns (bool);
            /**
             * Returns the block number voting ends on a given Proposal.
             *
             * @param _proposalId proposalId to check
             * @return uint32 block number when voting ends on the Proposal
             */
            function votingEndBlock(uint32 _proposalId) external view returns (uint32);
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        /// @title Zodiac FactoryFriendly - A contract that allows other contracts to be initializable and pass bytes as arguments to define contract state
        pragma solidity >=0.7.0 <0.9.0;
        import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        abstract contract FactoryFriendly is OwnableUpgradeable {
            function setUp(bytes memory initializeParams) public virtual;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/ContextUpgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            function __Ownable_init() internal onlyInitializing {
                __Ownable_init_unchained();
            }
            function __Ownable_init_unchained() internal onlyInitializing {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        /// @title Enum - Collection of enums
        /// @author Richard Meissner - <[email protected]>
        contract Enum {
            enum Operation {Call, DelegateCall}
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        

        File 2 of 4: LinearERC20Voting
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity =0.8.19;
        import { IVotes } from "@openzeppelin/contracts/governance/utils/IVotes.sol";
        import { BaseStrategy, IBaseStrategy } from "./BaseStrategy.sol";
        import { BaseQuorumPercent } from "./BaseQuorumPercent.sol";
        import { BaseVotingBasisPercent } from "./BaseVotingBasisPercent.sol";
         /**
          * An [Azorius](./Azorius.md) [BaseStrategy](./BaseStrategy.md) implementation that 
          * enables linear (i.e. 1 to 1) token voting. Each token delegated to a given address 
          * in an `ERC20Votes` token equals 1 vote for a Proposal.
          */
        contract LinearERC20Voting is BaseStrategy, BaseQuorumPercent, BaseVotingBasisPercent {
            /**
             * The voting options for a Proposal.
             */
            enum VoteType {
                NO,     // disapproves of executing the Proposal
                YES,    // approves of executing the Proposal
                ABSTAIN // neither YES nor NO, i.e. voting "present"
            }
            /**
             * Defines the current state of votes on a particular Proposal.
             */
            struct ProposalVotes {
                uint32 votingStartBlock; // block that voting starts at
                uint32 votingEndBlock; // block that voting ends
                uint256 noVotes; // current number of NO votes for the Proposal
                uint256 yesVotes; // current number of YES votes for the Proposal
                uint256 abstainVotes; // current number of ABSTAIN votes for the Proposal
                mapping(address => bool) hasVoted; // whether a given address has voted yet or not
            }
            IVotes public governanceToken;
            /** Number of blocks a new Proposal can be voted on. */
            uint32 public votingPeriod;
            /** Voting weight required to be able to submit Proposals. */
            uint256 public requiredProposerWeight;
            /** `proposalId` to `ProposalVotes`, the voting state of a Proposal. */
            mapping(uint256 => ProposalVotes) internal proposalVotes;
            event VotingPeriodUpdated(uint32 votingPeriod);
            event RequiredProposerWeightUpdated(uint256 requiredProposerWeight);
            event ProposalInitialized(uint32 proposalId, uint32 votingEndBlock);
            event Voted(address voter, uint32 proposalId, uint8 voteType, uint256 weight);
            error InvalidProposal();
            error VotingEnded();
            error AlreadyVoted();
            error InvalidVote();
            error InvalidTokenAddress();
            /**
             * Sets up the contract with its initial parameters.
             *
             * @param initializeParams encoded initialization parameters: `address _owner`,
             * `ERC20Votes _governanceToken`, `address _azoriusModule`, `uint256 _votingPeriod`,
             * `uint256 _quorumNumerator`, `uint256 _basisNumerator`
             */
            function setUp(bytes memory initializeParams) public override initializer {
                (
                    address _owner,
                    IVotes _governanceToken,
                    address _azoriusModule,
                    uint32 _votingPeriod,
                    uint256 _requiredProposerWeight,
                    uint256 _quorumNumerator,
                    uint256 _basisNumerator
                ) = abi.decode(
                        initializeParams,
                        (address, IVotes, address, uint32, uint256, uint256, uint256)
                    );
                if (address(_governanceToken) == address(0))
                    revert InvalidTokenAddress();
                governanceToken = _governanceToken;
                __Ownable_init();
                transferOwnership(_owner);
                _setAzorius(_azoriusModule);
                _updateQuorumNumerator(_quorumNumerator);
                _updateBasisNumerator(_basisNumerator);
                _updateVotingPeriod(_votingPeriod);
                _updateRequiredProposerWeight(_requiredProposerWeight);
                emit StrategySetUp(_azoriusModule, _owner);
            }
            /**
             * Updates the voting time period for new Proposals.
             *
             * @param _votingPeriod voting time period (in blocks)
             */
            function updateVotingPeriod(uint32 _votingPeriod) external onlyOwner {
                _updateVotingPeriod(_votingPeriod);
            }
            /**
             * Updates the voting weight required to submit new Proposals.
             *
             * @param _requiredProposerWeight required token voting weight
             */
            function updateRequiredProposerWeight(uint256 _requiredProposerWeight) external onlyOwner {
                _updateRequiredProposerWeight(_requiredProposerWeight);
            }
            /**
             * Casts votes for a Proposal, equal to the caller's token delegation.
             *
             * @param _proposalId id of the Proposal to vote on
             * @param _voteType Proposal support as defined in VoteType (NO, YES, ABSTAIN)
             */
            function vote(uint32 _proposalId, uint8 _voteType) external {
                _vote(
                    _proposalId,
                    msg.sender,
                    _voteType,
                    getVotingWeight(msg.sender, _proposalId)
                );
            }
            /**
             * Returns the current state of the specified Proposal.
             *
             * @param _proposalId id of the Proposal
             * @return noVotes current count of "NO" votes
             * @return yesVotes current count of "YES" votes
             * @return abstainVotes current count of "ABSTAIN" votes
             * @return startBlock block number voting starts
             * @return endBlock block number voting ends
             */
            function getProposalVotes(uint32 _proposalId) external view
                returns (
                    uint256 noVotes,
                    uint256 yesVotes,
                    uint256 abstainVotes,
                    uint32 startBlock,
                    uint32 endBlock,
                    uint256 votingSupply
                )
            {
                noVotes = proposalVotes[_proposalId].noVotes;
                yesVotes = proposalVotes[_proposalId].yesVotes;
                abstainVotes = proposalVotes[_proposalId].abstainVotes;
                startBlock = proposalVotes[_proposalId].votingStartBlock;
                endBlock = proposalVotes[_proposalId].votingEndBlock;
                votingSupply = getProposalVotingSupply(_proposalId);
            }
            /** @inheritdoc BaseStrategy*/
            function initializeProposal(bytes memory _data) public virtual override onlyAzorius {
                uint32 proposalId = abi.decode(_data, (uint32));
                uint32 _votingEndBlock = uint32(block.number) + votingPeriod;
                proposalVotes[proposalId].votingEndBlock = _votingEndBlock;
                proposalVotes[proposalId].votingStartBlock = uint32(block.number);
                emit ProposalInitialized(proposalId, _votingEndBlock);
            }
            
            /**
             * Returns whether an address has voted on the specified Proposal.
             *
             * @param _proposalId id of the Proposal to check
             * @param _address address to check
             * @return bool true if the address has voted on the Proposal, otherwise false
             */
            function hasVoted(uint32 _proposalId, address _address) public view returns (bool) {
                return proposalVotes[_proposalId].hasVoted[_address];
            }
            /** @inheritdoc BaseStrategy*/
            function isPassed(uint32 _proposalId) public view override returns (bool) {
                return (
                    block.number > proposalVotes[_proposalId].votingEndBlock && // voting period has ended
                    meetsQuorum(getProposalVotingSupply(_proposalId), proposalVotes[_proposalId].yesVotes, proposalVotes[_proposalId].abstainVotes) && // yes + abstain votes meets the quorum
                    meetsBasis(proposalVotes[_proposalId].yesVotes, proposalVotes[_proposalId].noVotes) // yes votes meets the basis
                );
            }
            /**
             * Returns a snapshot of total voting supply for a given Proposal.  Because token supplies can change,
             * it is necessary to calculate quorum from the supply available at the time of the Proposal's creation,
             * not when it is being voted on passes / fails.
             *
             * @param _proposalId id of the Proposal
             * @return uint256 voting supply snapshot for the given _proposalId
             */
            function getProposalVotingSupply(uint32 _proposalId) public view virtual returns (uint256) {
                return governanceToken.getPastTotalSupply(proposalVotes[_proposalId].votingStartBlock);
            }
            /**
             * Calculates the voting weight an address has for a specific Proposal.
             *
             * @param _voter address of the voter
             * @param _proposalId id of the Proposal
             * @return uint256 the address' voting weight
             */
            function getVotingWeight(address _voter, uint32 _proposalId) public view returns (uint256) {
                return
                    governanceToken.getPastVotes(
                        _voter,
                        proposalVotes[_proposalId].votingStartBlock
                    );
            }
            /** @inheritdoc BaseStrategy*/
            function isProposer(address _address) public view override returns (bool) {
                return governanceToken.getPastVotes(
                    _address,
                    block.number - 1
                ) >= requiredProposerWeight;
            }
            /** @inheritdoc BaseStrategy*/
            function votingEndBlock(uint32 _proposalId) public view override returns (uint32) {
              return proposalVotes[_proposalId].votingEndBlock;
            }
            /** Internal implementation of `updateVotingPeriod`. */
            function _updateVotingPeriod(uint32 _votingPeriod) internal {
                votingPeriod = _votingPeriod;
                emit VotingPeriodUpdated(_votingPeriod);
            }
            /** Internal implementation of `updateRequiredProposerWeight`. */
            function _updateRequiredProposerWeight(uint256 _requiredProposerWeight) internal {
                requiredProposerWeight = _requiredProposerWeight;
                emit RequiredProposerWeightUpdated(_requiredProposerWeight);
            }
            /**
             * Internal function for casting a vote on a Proposal.
             *
             * @param _proposalId id of the Proposal
             * @param _voter address casting the vote
             * @param _voteType vote support, as defined in VoteType
             * @param _weight amount of voting weight cast, typically the
             *          total number of tokens delegated
             */
            function _vote(uint32 _proposalId, address _voter, uint8 _voteType, uint256 _weight) internal {
                if (proposalVotes[_proposalId].votingEndBlock == 0)
                    revert InvalidProposal();
                if (block.number > proposalVotes[_proposalId].votingEndBlock)
                    revert VotingEnded();
                if (proposalVotes[_proposalId].hasVoted[_voter]) revert AlreadyVoted();
                proposalVotes[_proposalId].hasVoted[_voter] = true;
                if (_voteType == uint8(VoteType.NO)) {
                    proposalVotes[_proposalId].noVotes += _weight;
                } else if (_voteType == uint8(VoteType.YES)) {
                    proposalVotes[_proposalId].yesVotes += _weight;
                } else if (_voteType == uint8(VoteType.ABSTAIN)) {
                    proposalVotes[_proposalId].abstainVotes += _weight;
                } else {
                    revert InvalidVote();
                }
                emit Voted(_voter, _proposalId, _voteType, _weight);
            }
            /** @inheritdoc BaseQuorumPercent*/
            function quorumVotes(uint32 _proposalId) public view override returns (uint256) {
                return quorumNumerator * getProposalVotingSupply(_proposalId) / QUORUM_DENOMINATOR;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (governance/utils/IVotes.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
         *
         * _Available since v4.5._
         */
        interface IVotes {
            /**
             * @dev Emitted when an account changes their delegate.
             */
            event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
            /**
             * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of votes.
             */
            event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);
            /**
             * @dev Returns the current amount of votes that `account` has.
             */
            function getVotes(address account) external view returns (uint256);
            /**
             * @dev Returns the amount of votes that `account` had at the end of a past block (`blockNumber`).
             */
            function getPastVotes(address account, uint256 blockNumber) external view returns (uint256);
            /**
             * @dev Returns the total supply of votes available at the end of a past block (`blockNumber`).
             *
             * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
             * Votes that have not been delegated are still part of total supply, even though they would not participate in a
             * vote.
             */
            function getPastTotalSupply(uint256 blockNumber) external view returns (uint256);
            /**
             * @dev Returns the delegate that `account` has chosen.
             */
            function delegates(address account) external view returns (address);
            /**
             * @dev Delegates votes from the sender to `delegatee`.
             */
            function delegate(address delegatee) external;
            /**
             * @dev Delegates votes from signer to `delegatee`.
             */
            function delegateBySig(
                address delegatee,
                uint256 nonce,
                uint256 expiry,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity =0.8.19;
        import { IAzorius } from "./interfaces/IAzorius.sol";
        import { IBaseStrategy } from "./interfaces/IBaseStrategy.sol";
        import { FactoryFriendly } from "@gnosis.pm/zodiac/contracts/factory/FactoryFriendly.sol";
        import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        /**
         * The base abstract contract for all voting strategies in Azorius.
         */
        abstract contract BaseStrategy is OwnableUpgradeable, FactoryFriendly, IBaseStrategy {
            event AzoriusSet(address indexed azoriusModule);
            event StrategySetUp(address indexed azoriusModule, address indexed owner);
            error OnlyAzorius();
            IAzorius public azoriusModule;
            /**
             * Ensures that only the [Azorius](./Azorius.md) contract that pertains to this 
             * [BaseStrategy](./BaseStrategy.md) can call functions on it.
             */
            modifier onlyAzorius() {
                if (msg.sender != address(azoriusModule)) revert OnlyAzorius();
                _;
            }
            constructor() {
              _disableInitializers();
            }
            /** @inheritdoc IBaseStrategy*/
            function setAzorius(address _azoriusModule) external onlyOwner {
                azoriusModule = IAzorius(_azoriusModule);
                emit AzoriusSet(_azoriusModule);
            }
            /** @inheritdoc IBaseStrategy*/
            function initializeProposal(bytes memory _data) external virtual;
            /** @inheritdoc IBaseStrategy*/
            function isPassed(uint32 _proposalId) external view virtual returns (bool);
            /** @inheritdoc IBaseStrategy*/
            function isProposer(address _address) external view virtual returns (bool);
            /** @inheritdoc IBaseStrategy*/
            function votingEndBlock(uint32 _proposalId) external view virtual returns (uint32);
            /**
             * Sets the address of the [Azorius](Azorius.md) module contract.
             *
             * @param _azoriusModule address of the Azorius module
             */
            function _setAzorius(address _azoriusModule) internal {
                azoriusModule = IAzorius(_azoriusModule);
                emit AzoriusSet(_azoriusModule);
            }
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity =0.8.19;
        import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        /**
         * An Azorius extension contract that enables percent based quorums.
         * Intended to be implemented by [BaseStrategy](./BaseStrategy.md) implementations.
         */
        abstract contract BaseQuorumPercent is OwnableUpgradeable {
            
            /** The numerator to use when calculating quorum (adjustable). */
            uint256 public quorumNumerator;
            /** The denominator to use when calculating quorum (1,000,000). */
            uint256 public constant QUORUM_DENOMINATOR = 1_000_000;
            /** Ensures the numerator cannot be larger than the denominator. */
            error InvalidQuorumNumerator();
            event QuorumNumeratorUpdated(uint256 quorumNumerator);
            /** 
             * Updates the quorum required for future Proposals.
             *
             * @param _quorumNumerator numerator to use when calculating quorum (over 1,000,000)
             */
            function updateQuorumNumerator(uint256 _quorumNumerator) public virtual onlyOwner {
                _updateQuorumNumerator(_quorumNumerator);
            }
            /** Internal implementation of `updateQuorumNumerator`. */
            function _updateQuorumNumerator(uint256 _quorumNumerator) internal virtual {
                if (_quorumNumerator > QUORUM_DENOMINATOR)
                    revert InvalidQuorumNumerator();
                quorumNumerator = _quorumNumerator;
                emit QuorumNumeratorUpdated(_quorumNumerator);
            }
            /**
             * Calculates whether a vote meets quorum. This is calculated based on yes votes + abstain
             * votes.
             *
             * @param _totalSupply the total supply of tokens
             * @param _yesVotes number of votes in favor
             * @param _abstainVotes number of votes abstaining
             * @return bool whether the total number of yes votes + abstain meets the quorum
             */
            function meetsQuorum(uint256 _totalSupply, uint256 _yesVotes, uint256 _abstainVotes) public view returns (bool) {
                return _yesVotes + _abstainVotes >= (_totalSupply * quorumNumerator) / QUORUM_DENOMINATOR;
            }
            /**
             * Calculates the total number of votes required for a proposal to meet quorum.
             * 
             * @param _proposalId The ID of the proposal to get quorum votes for
             * @return uint256 The quantity of votes required to meet quorum
             */
            function quorumVotes(uint32 _proposalId) public view virtual returns (uint256);
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity =0.8.19;
        import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        /**
         * An Azorius extension contract that enables percent based voting basis calculations.
         *
         * Intended to be implemented by BaseStrategy implementations, this allows for voting strategies
         * to dictate any basis strategy for passing a Proposal between >50% (simple majority) to 100%.
         *
         * See https://en.wikipedia.org/wiki/Voting#Voting_basis.
         * See https://en.wikipedia.org/wiki/Supermajority.
         */
        abstract contract BaseVotingBasisPercent is OwnableUpgradeable {
            
            /** The numerator to use when calculating basis (adjustable). */
            uint256 public basisNumerator;
            /** The denominator to use when calculating basis (1,000,000). */
            uint256 public constant BASIS_DENOMINATOR = 1_000_000;
            error InvalidBasisNumerator();
            event BasisNumeratorUpdated(uint256 basisNumerator);
            /**
             * Updates the `basisNumerator` for future Proposals.
             *
             * @param _basisNumerator numerator to use
             */
            function updateBasisNumerator(uint256 _basisNumerator) public virtual onlyOwner {
                _updateBasisNumerator(_basisNumerator);
            }
            /** Internal implementation of `updateBasisNumerator`. */
            function _updateBasisNumerator(uint256 _basisNumerator) internal virtual {
                if (_basisNumerator > BASIS_DENOMINATOR || _basisNumerator < BASIS_DENOMINATOR / 2)
                    revert InvalidBasisNumerator();
                basisNumerator = _basisNumerator;
                emit BasisNumeratorUpdated(_basisNumerator);
            }
            /**
             * Calculates whether a vote meets its basis.
             *
             * @param _yesVotes number of votes in favor
             * @param _noVotes number of votes against
             * @return bool whether the yes votes meets the set basis
             */
            function meetsBasis(uint256 _yesVotes, uint256 _noVotes) public view returns (bool) {
                return _yesVotes > (_yesVotes + _noVotes) * basisNumerator / BASIS_DENOMINATOR;
            }
        }
        //SPDX-License-Identifier: MIT
        pragma solidity =0.8.19;
        import { Enum } from "@gnosis.pm/safe-contracts/contracts/common/Enum.sol";
        /**
         * The base interface for the Azorius governance Safe module.
         * Azorius conforms to the Zodiac pattern for Safe modules: https://github.com/gnosis/zodiac
         *
         * Azorius manages the state of Proposals submitted to a DAO, along with the associated strategies
         * ([BaseStrategy](../BaseStrategy.md)) for voting that are enabled on the DAO.
         *
         * Any given DAO can support multiple voting BaseStrategies, and these strategies are intended to be
         * as customizable as possible.
         *
         * Proposals begin in the `ACTIVE` state and will ultimately end in either
         * the `EXECUTED`, `EXPIRED`, or `FAILED` state.
         *
         * `ACTIVE` - a new proposal begins in this state, and stays in this state
         *          for the duration of its voting period.
         *
         * `TIMELOCKED` - A proposal that passes enters the `TIMELOCKED` state, during which
         *          it cannot yet be executed.  This is to allow time for token holders
         *          to potentially exit their position, as well as parent DAOs time to
         *          initiate a freeze, if they choose to do so. A proposal stays timelocked
         *          for the duration of its `timelockPeriod`.
         *
         * `EXECUTABLE` - Following the `TIMELOCKED` state, a passed proposal becomes `EXECUTABLE`,
         *          and can then finally be executed on chain by anyone.
         *
         * `EXECUTED` - the final state for a passed proposal.  The proposal has been executed
         *          on the blockchain.
         *
         * `EXPIRED` - a passed proposal which is not executed before its `executionPeriod` has
         *          elapsed will be `EXPIRED`, and can no longer be executed.
         *
         * `FAILED` - a failed proposal (as defined by its [BaseStrategy](../BaseStrategy.md) 
         *          `isPassed` function). For a basic strategy, this would mean it received more 
         *          NO votes than YES or did not achieve quorum. 
         */
        interface IAzorius {
            /** Represents a transaction to perform on the blockchain. */
            struct Transaction {
                address to; // destination address of the transaction
                uint256 value; // amount of ETH to transfer with the transaction
                bytes data; // encoded function call data of the transaction
                Enum.Operation operation; // Operation type, Call or DelegateCall
            }
            /** Holds details pertaining to a single proposal. */
            struct Proposal {
                uint32 executionCounter; // count of transactions that have been executed within the proposal
                uint32 timelockPeriod; // time (in blocks) this proposal will be timelocked for if it passes
                uint32 executionPeriod; // time (in blocks) this proposal has to be executed after timelock ends before it is expired
                address strategy; // BaseStrategy contract this proposal was created on
                bytes32[] txHashes; // hashes of the transactions that are being proposed
            }
            /** The list of states in which a Proposal can be in at any given time. */
            enum ProposalState {
                ACTIVE,
                TIMELOCKED,
                EXECUTABLE,
                EXECUTED,
                EXPIRED,
                FAILED
            }
            /**
             * Enables a [BaseStrategy](../BaseStrategy.md) implementation for newly created Proposals.
             *
             * Multiple strategies can be enabled, and new Proposals will be able to be
             * created using any of the currently enabled strategies.
             *
             * @param _strategy contract address of the BaseStrategy to be enabled
             */
            function enableStrategy(address _strategy) external;
            /**
             * Disables a previously enabled [BaseStrategy](../BaseStrategy.md) implementation for new proposals.
             * This has no effect on existing Proposals, either `ACTIVE` or completed.
             *
             * @param _prevStrategy BaseStrategy address that pointed in the linked list to the strategy to be removed
             * @param _strategy address of the BaseStrategy to be removed
             */
            function disableStrategy(address _prevStrategy, address _strategy) external;
            /**
             * Updates the `timelockPeriod` for newly created Proposals.
             * This has no effect on existing Proposals, either `ACTIVE` or completed.
             *
             * @param _timelockPeriod timelockPeriod (in blocks) to be used for new Proposals
             */
            function updateTimelockPeriod(uint32 _timelockPeriod) external;
            /**
             * Updates the execution period for future Proposals.
             *
             * @param _executionPeriod new execution period (in blocks)
             */
            function updateExecutionPeriod(uint32 _executionPeriod) external;
            /**
             * Submits a new Proposal, using one of the enabled [BaseStrategies](../BaseStrategy.md).
             * New Proposals begin immediately in the `ACTIVE` state.
             *
             * @param _strategy address of the BaseStrategy implementation which the Proposal will use
             * @param _data arbitrary data passed to the BaseStrategy implementation. This may not be used by all strategies, 
             * but is included in case future strategy contracts have a need for it
             * @param _transactions array of transactions to propose
             * @param _metadata additional data such as a title/description to submit with the proposal
             */
            function submitProposal(
                address _strategy,
                bytes memory _data,
                Transaction[] calldata _transactions,
                string calldata _metadata
            ) external;
            /**
             * Executes all transactions within a Proposal.
             * This will only be able to be called if the Proposal passed.
             *
             * @param _proposalId identifier of the Proposal
             * @param _targets target contracts for each transaction
             * @param _values ETH values to be sent with each transaction
             * @param _data transaction data to be executed
             * @param _operations Calls or Delegatecalls
             */
            function executeProposal(
                uint32 _proposalId,
                address[] memory _targets,
                uint256[] memory _values,
                bytes[] memory _data,
                Enum.Operation[] memory _operations
            ) external;
            /**
             * Returns whether a [BaseStrategy](../BaseStrategy.md) implementation is enabled.
             *
             * @param _strategy contract address of the BaseStrategy to check
             * @return bool True if the strategy is enabled, otherwise False
             */
            function isStrategyEnabled(address _strategy) external view returns (bool);
            /**
             * Returns an array of enabled [BaseStrategy](../BaseStrategy.md) contract addresses.
             * Because the list of BaseStrategies is technically unbounded, this
             * requires the address of the first strategy you would like, along
             * with the total count of strategies to return, rather than
             * returning the whole list at once.
             *
             * @param _startAddress contract address of the BaseStrategy to start with
             * @param _count maximum number of BaseStrategies that should be returned
             * @return _strategies array of BaseStrategies
             * @return _next next BaseStrategy contract address in the linked list
             */
            function getStrategies(
                address _startAddress,
                uint256 _count
            ) external view returns (address[] memory _strategies, address _next);
            /**
             * Gets the state of a Proposal.
             *
             * @param _proposalId identifier of the Proposal
             * @return ProposalState uint256 ProposalState enum value representing the
             *         current state of the proposal
             */
            function proposalState(uint32 _proposalId) external view returns (ProposalState);
            /**
             * Generates the data for the module transaction hash (required for signing).
             *
             * @param _to target address of the transaction
             * @param _value ETH value to send with the transaction
             * @param _data encoded function call data of the transaction
             * @param _operation Enum.Operation to use for the transaction
             * @param _nonce Safe nonce of the transaction
             * @return bytes hashed transaction data
             */
            function generateTxHashData(
                address _to,
                uint256 _value,
                bytes memory _data,
                Enum.Operation _operation,
                uint256 _nonce
            ) external view returns (bytes memory);
            /**
             * Returns the `keccak256` hash of the specified transaction.
             *
             * @param _to target address of the transaction
             * @param _value ETH value to send with the transaction
             * @param _data encoded function call data of the transaction
             * @param _operation Enum.Operation to use for the transaction
             * @return bytes32 transaction hash
             */
            function getTxHash(
                address _to,
                uint256 _value,
                bytes memory _data,
                Enum.Operation _operation
            ) external view returns (bytes32);
            /**
             * Returns the hash of a transaction in a Proposal.
             *
             * @param _proposalId identifier of the Proposal
             * @param _txIndex index of the transaction within the Proposal
             * @return bytes32 hash of the specified transaction
             */
            function getProposalTxHash(uint32 _proposalId, uint32 _txIndex) external view returns (bytes32);
            /**
             * Returns the transaction hashes associated with a given `proposalId`.
             *
             * @param _proposalId identifier of the Proposal to get transaction hashes for
             * @return bytes32[] array of transaction hashes
             */
            function getProposalTxHashes(uint32 _proposalId) external view returns (bytes32[] memory);
            /**
             * Returns details about the specified Proposal.
             *
             * @param _proposalId identifier of the Proposal
             * @return _strategy address of the BaseStrategy contract the Proposal is on
             * @return _txHashes hashes of the transactions the Proposal contains
             * @return _timelockPeriod time (in blocks) the Proposal is timelocked for
             * @return _executionPeriod time (in blocks) the Proposal must be executed within, after timelock ends
             * @return _executionCounter counter of how many of the Proposals transactions have been executed
             */
            function getProposal(uint32 _proposalId) external view
                returns (
                    address _strategy,
                    bytes32[] memory _txHashes,
                    uint32 _timelockPeriod,
                    uint32 _executionPeriod,
                    uint32 _executionCounter
                );
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity =0.8.19;
        /**
         * The specification for a voting strategy in Azorius.
         *
         * Each IBaseStrategy implementation need only implement the given functions here,
         * which allows for highly composable but simple or complex voting strategies.
         *
         * It should be noted that while many voting strategies make use of parameters such as
         * voting period or quorum, that is a detail of the individual strategy itself, and not
         * a requirement for the Azorius protocol.
         */
        interface IBaseStrategy {
            /**
             * Sets the address of the [Azorius](../Azorius.md) contract this 
             * [BaseStrategy](../BaseStrategy.md) is being used on.
             *
             * @param _azoriusModule address of the Azorius Safe module
             */
            function setAzorius(address _azoriusModule) external;
            /**
             * Called by the [Azorius](../Azorius.md) module. This notifies this 
             * [BaseStrategy](../BaseStrategy.md) that a new Proposal has been created.
             *
             * @param _data arbitrary data to pass to this BaseStrategy
             */
            function initializeProposal(bytes memory _data) external;
            /**
             * Returns whether a Proposal has been passed.
             *
             * @param _proposalId proposalId to check
             * @return bool true if the proposal has passed, otherwise false
             */
            function isPassed(uint32 _proposalId) external view returns (bool);
            /**
             * Returns whether the specified address can submit a Proposal with
             * this [BaseStrategy](../BaseStrategy.md).
             *
             * This allows a BaseStrategy to place any limits it would like on
             * who can create new Proposals, such as requiring a minimum token
             * delegation.
             *
             * @param _address address to check
             * @return bool true if the address can submit a Proposal, otherwise false
             */
            function isProposer(address _address) external view returns (bool);
            /**
             * Returns the block number voting ends on a given Proposal.
             *
             * @param _proposalId proposalId to check
             * @return uint32 block number when voting ends on the Proposal
             */
            function votingEndBlock(uint32 _proposalId) external view returns (uint32);
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        /// @title Zodiac FactoryFriendly - A contract that allows other contracts to be initializable and pass bytes as arguments to define contract state
        pragma solidity >=0.7.0 <0.9.0;
        import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        abstract contract FactoryFriendly is OwnableUpgradeable {
            function setUp(bytes memory initializeParams) public virtual;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/ContextUpgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            function __Ownable_init() internal onlyInitializing {
                __Ownable_init_unchained();
            }
            function __Ownable_init_unchained() internal onlyInitializing {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: LGPL-3.0-only
        pragma solidity >=0.7.0 <0.9.0;
        /// @title Enum - Collection of enums
        /// @author Richard Meissner - <[email protected]>
        contract Enum {
            enum Operation {Call, DelegateCall}
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        

        File 3 of 4: LockRelease
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
        pragma solidity ^0.8.20;
        import {Context} from "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * The initial owner is set to the address provided by the deployer. This can
         * later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            /**
             * @dev The caller account is not authorized to perform an operation.
             */
            error OwnableUnauthorizedAccount(address account);
            /**
             * @dev The owner is not a valid owner account. (eg. `address(0)`)
             */
            error OwnableInvalidOwner(address owner);
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
             */
            constructor(address initialOwner) {
                if (initialOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(initialOwner);
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                if (owner() != _msgSender()) {
                    revert OwnableUnauthorizedAccount(_msgSender());
                }
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby disabling any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                if (newOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
        pragma solidity ^0.8.20;
        import {Ownable} from "./Ownable.sol";
        /**
         * @dev Contract module which provides access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * The initial owner is specified at deployment time in the constructor for `Ownable`. This
         * can later be changed with {transferOwnership} and {acceptOwnership}.
         *
         * This module is used through inheritance. It will make available all functions
         * from parent (Ownable).
         */
        abstract contract Ownable2Step is Ownable {
            address private _pendingOwner;
            event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Returns the address of the pending owner.
             */
            function pendingOwner() public view virtual returns (address) {
                return _pendingOwner;
            }
            /**
             * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual override onlyOwner {
                _pendingOwner = newOwner;
                emit OwnershipTransferStarted(owner(), newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual override {
                delete _pendingOwner;
                super._transferOwnership(newOwner);
            }
            /**
             * @dev The new owner accepts the ownership transfer.
             */
            function acceptOwnership() public virtual {
                address sender = _msgSender();
                if (pendingOwner() != sender) {
                    revert OwnableUnauthorizedAccount(sender);
                }
                _transferOwnership(sender);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
         */
        interface IVotes {
            /**
             * @dev The signature used has expired.
             */
            error VotesExpiredSignature(uint256 expiry);
            /**
             * @dev Emitted when an account changes their delegate.
             */
            event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
            /**
             * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
             */
            event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);
            /**
             * @dev Returns the current amount of votes that `account` has.
             */
            function getVotes(address account) external view returns (uint256);
            /**
             * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
             * configured to use block numbers, this will return the value at the end of the corresponding block.
             */
            function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
            /**
             * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
             * configured to use block numbers, this will return the value at the end of the corresponding block.
             *
             * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
             * Votes that have not been delegated are still part of total supply, even though they would not participate in a
             * vote.
             */
            function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
            /**
             * @dev Returns the delegate that `account` has chosen.
             */
            function delegates(address account) external view returns (address);
            /**
             * @dev Delegates votes from the sender to `delegatee`.
             */
            function delegate(address delegatee) external;
            /**
             * @dev Delegates votes from signer to `delegatee`.
             */
            function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/Votes.sol)
        pragma solidity ^0.8.20;
        import {IERC5805} from "../../interfaces/IERC5805.sol";
        import {Context} from "../../utils/Context.sol";
        import {Nonces} from "../../utils/Nonces.sol";
        import {EIP712} from "../../utils/cryptography/EIP712.sol";
        import {Checkpoints} from "../../utils/structs/Checkpoints.sol";
        import {SafeCast} from "../../utils/math/SafeCast.sol";
        import {ECDSA} from "../../utils/cryptography/ECDSA.sol";
        import {Time} from "../../utils/types/Time.sol";
        /**
         * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be
         * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of
         * "representative" that will pool delegated voting units from different accounts and can then use it to vote in
         * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to
         * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative.
         *
         * This contract is often combined with a token contract such that voting units correspond to token units. For an
         * example, see {ERC721Votes}.
         *
         * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed
         * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the
         * cost of this history tracking optional.
         *
         * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return
         * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the
         * previous example, it would be included in {ERC721-_update}).
         */
        abstract contract Votes is Context, EIP712, Nonces, IERC5805 {
            using Checkpoints for Checkpoints.Trace208;
            bytes32 private constant DELEGATION_TYPEHASH =
                keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
            mapping(address account => address) private _delegatee;
            mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints;
            Checkpoints.Trace208 private _totalCheckpoints;
            /**
             * @dev The clock was incorrectly modified.
             */
            error ERC6372InconsistentClock();
            /**
             * @dev Lookup to future votes is not available.
             */
            error ERC5805FutureLookup(uint256 timepoint, uint48 clock);
            /**
             * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based
             * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match.
             */
            function clock() public view virtual returns (uint48) {
                return Time.blockNumber();
            }
            /**
             * @dev Machine-readable description of the clock as specified in EIP-6372.
             */
            // solhint-disable-next-line func-name-mixedcase
            function CLOCK_MODE() public view virtual returns (string memory) {
                // Check that the clock was not modified
                if (clock() != Time.blockNumber()) {
                    revert ERC6372InconsistentClock();
                }
                return "mode=blocknumber&from=default";
            }
            /**
             * @dev Returns the current amount of votes that `account` has.
             */
            function getVotes(address account) public view virtual returns (uint256) {
                return _delegateCheckpoints[account].latest();
            }
            /**
             * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
             * configured to use block numbers, this will return the value at the end of the corresponding block.
             *
             * Requirements:
             *
             * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
             */
            function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
                uint48 currentTimepoint = clock();
                if (timepoint >= currentTimepoint) {
                    revert ERC5805FutureLookup(timepoint, currentTimepoint);
                }
                return _delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint));
            }
            /**
             * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
             * configured to use block numbers, this will return the value at the end of the corresponding block.
             *
             * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
             * Votes that have not been delegated are still part of total supply, even though they would not participate in a
             * vote.
             *
             * Requirements:
             *
             * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
             */
            function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) {
                uint48 currentTimepoint = clock();
                if (timepoint >= currentTimepoint) {
                    revert ERC5805FutureLookup(timepoint, currentTimepoint);
                }
                return _totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint));
            }
            /**
             * @dev Returns the current total supply of votes.
             */
            function _getTotalSupply() internal view virtual returns (uint256) {
                return _totalCheckpoints.latest();
            }
            /**
             * @dev Returns the delegate that `account` has chosen.
             */
            function delegates(address account) public view virtual returns (address) {
                return _delegatee[account];
            }
            /**
             * @dev Delegates votes from the sender to `delegatee`.
             */
            function delegate(address delegatee) public virtual {
                address account = _msgSender();
                _delegate(account, delegatee);
            }
            /**
             * @dev Delegates votes from signer to `delegatee`.
             */
            function delegateBySig(
                address delegatee,
                uint256 nonce,
                uint256 expiry,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) public virtual {
                if (block.timestamp > expiry) {
                    revert VotesExpiredSignature(expiry);
                }
                address signer = ECDSA.recover(
                    _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
                    v,
                    r,
                    s
                );
                _useCheckedNonce(signer, nonce);
                _delegate(signer, delegatee);
            }
            /**
             * @dev Delegate all of `account`'s voting units to `delegatee`.
             *
             * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}.
             */
            function _delegate(address account, address delegatee) internal virtual {
                address oldDelegate = delegates(account);
                _delegatee[account] = delegatee;
                emit DelegateChanged(account, oldDelegate, delegatee);
                _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account));
            }
            /**
             * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to`
             * should be zero. Total supply of voting units will be adjusted with mints and burns.
             */
            function _transferVotingUnits(address from, address to, uint256 amount) internal virtual {
                if (from == address(0)) {
                    _push(_totalCheckpoints, _add, SafeCast.toUint208(amount));
                }
                if (to == address(0)) {
                    _push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount));
                }
                _moveDelegateVotes(delegates(from), delegates(to), amount);
            }
            /**
             * @dev Moves delegated votes from one delegate to another.
             */
            function _moveDelegateVotes(address from, address to, uint256 amount) private {
                if (from != to && amount > 0) {
                    if (from != address(0)) {
                        (uint256 oldValue, uint256 newValue) = _push(
                            _delegateCheckpoints[from],
                            _subtract,
                            SafeCast.toUint208(amount)
                        );
                        emit DelegateVotesChanged(from, oldValue, newValue);
                    }
                    if (to != address(0)) {
                        (uint256 oldValue, uint256 newValue) = _push(
                            _delegateCheckpoints[to],
                            _add,
                            SafeCast.toUint208(amount)
                        );
                        emit DelegateVotesChanged(to, oldValue, newValue);
                    }
                }
            }
            /**
             * @dev Get number of checkpoints for `account`.
             */
            function _numCheckpoints(address account) internal view virtual returns (uint32) {
                return SafeCast.toUint32(_delegateCheckpoints[account].length());
            }
            /**
             * @dev Get the `pos`-th checkpoint for `account`.
             */
            function _checkpoints(
                address account,
                uint32 pos
            ) internal view virtual returns (Checkpoints.Checkpoint208 memory) {
                return _delegateCheckpoints[account].at(pos);
            }
            function _push(
                Checkpoints.Trace208 storage store,
                function(uint208, uint208) view returns (uint208) op,
                uint208 delta
            ) private returns (uint208, uint208) {
                return store.push(clock(), op(store.latest(), delta));
            }
            function _add(uint208 a, uint208 b) private pure returns (uint208) {
                return a + b;
            }
            function _subtract(uint208 a, uint208 b) private pure returns (uint208) {
                return a - b;
            }
            /**
             * @dev Must return the voting units held by an account.
             */
            function _getVotingUnits(address) internal view virtual returns (uint256);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
        pragma solidity ^0.8.20;
        interface IERC5267 {
            /**
             * @dev MAY be emitted to signal that the domain could have changed.
             */
            event EIP712DomainChanged();
            /**
             * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
             * signature.
             */
            function eip712Domain()
                external
                view
                returns (
                    bytes1 fields,
                    string memory name,
                    string memory version,
                    uint256 chainId,
                    address verifyingContract,
                    bytes32 salt,
                    uint256[] memory extensions
                );
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol)
        pragma solidity ^0.8.20;
        import {IVotes} from "../governance/utils/IVotes.sol";
        import {IERC6372} from "./IERC6372.sol";
        interface IERC5805 is IERC6372, IVotes {}
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol)
        pragma solidity ^0.8.20;
        interface IERC6372 {
            /**
             * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
             */
            function clock() external view returns (uint48);
            /**
             * @dev Description of the clock
             */
            // solhint-disable-next-line func-name-mixedcase
            function CLOCK_MODE() external view returns (string memory);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the value of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the value of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 value) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the
             * allowance mechanism. `value` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 value) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
         *
         * These functions can be used to verify that a message was signed by the holder
         * of the private keys of a given address.
         */
        library ECDSA {
            enum RecoverError {
                NoError,
                InvalidSignature,
                InvalidSignatureLength,
                InvalidSignatureS
            }
            /**
             * @dev The signature derives the `address(0)`.
             */
            error ECDSAInvalidSignature();
            /**
             * @dev The signature has an invalid length.
             */
            error ECDSAInvalidSignatureLength(uint256 length);
            /**
             * @dev The signature has an S value that is in the upper half order.
             */
            error ECDSAInvalidSignatureS(bytes32 s);
            /**
             * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
             * return address(0) without also returning an error description. Errors are documented using an enum (error type)
             * and a bytes32 providing additional information about the error.
             *
             * If no error is returned, then the address can be used for verification purposes.
             *
             * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
             * this function rejects them by requiring the `s` value to be in the lower
             * half order, and the `v` value to be either 27 or 28.
             *
             * IMPORTANT: `hash` _must_ be the result of a hash operation for the
             * verification to be secure: it is possible to craft signatures that
             * recover to arbitrary addresses for non-hashed data. A safe way to ensure
             * this is by receiving a hash of the original message (which may otherwise
             * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
             *
             * Documentation for signature generation:
             * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
             * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
             */
            function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
                if (signature.length == 65) {
                    bytes32 r;
                    bytes32 s;
                    uint8 v;
                    // ecrecover takes the signature parameters, and the only way to get them
                    // currently is to use assembly.
                    /// @solidity memory-safe-assembly
                    assembly {
                        r := mload(add(signature, 0x20))
                        s := mload(add(signature, 0x40))
                        v := byte(0, mload(add(signature, 0x60)))
                    }
                    return tryRecover(hash, v, r, s);
                } else {
                    return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
                }
            }
            /**
             * @dev Returns the address that signed a hashed message (`hash`) with
             * `signature`. This address can then be used for verification purposes.
             *
             * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
             * this function rejects them by requiring the `s` value to be in the lower
             * half order, and the `v` value to be either 27 or 28.
             *
             * IMPORTANT: `hash` _must_ be the result of a hash operation for the
             * verification to be secure: it is possible to craft signatures that
             * recover to arbitrary addresses for non-hashed data. A safe way to ensure
             * this is by receiving a hash of the original message (which may otherwise
             * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
             */
            function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
             *
             * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
             */
            function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
                unchecked {
                    bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                    // We do not check for an overflow here since the shift operation results in 0 or 1.
                    uint8 v = uint8((uint256(vs) >> 255) + 27);
                    return tryRecover(hash, v, r, s);
                }
            }
            /**
             * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
             */
            function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
             * `r` and `s` signature fields separately.
             */
            function tryRecover(
                bytes32 hash,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal pure returns (address, RecoverError, bytes32) {
                // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
                // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                //
                // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                // these malleable signatures as well.
                if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                    return (address(0), RecoverError.InvalidSignatureS, s);
                }
                // If the signature is valid (and not malleable), return the signer address
                address signer = ecrecover(hash, v, r, s);
                if (signer == address(0)) {
                    return (address(0), RecoverError.InvalidSignature, bytes32(0));
                }
                return (signer, RecoverError.NoError, bytes32(0));
            }
            /**
             * @dev Overload of {ECDSA-recover} that receives the `v`,
             * `r` and `s` signature fields separately.
             */
            function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
             */
            function _throwError(RecoverError error, bytes32 errorArg) private pure {
                if (error == RecoverError.NoError) {
                    return; // no error: do nothing
                } else if (error == RecoverError.InvalidSignature) {
                    revert ECDSAInvalidSignature();
                } else if (error == RecoverError.InvalidSignatureLength) {
                    revert ECDSAInvalidSignatureLength(uint256(errorArg));
                } else if (error == RecoverError.InvalidSignatureS) {
                    revert ECDSAInvalidSignatureS(errorArg);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
        pragma solidity ^0.8.20;
        import {MessageHashUtils} from "./MessageHashUtils.sol";
        import {ShortStrings, ShortString} from "../ShortStrings.sol";
        import {IERC5267} from "../../interfaces/IERC5267.sol";
        /**
         * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
         *
         * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
         * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
         * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
         * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
         *
         * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
         * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
         * ({_hashTypedDataV4}).
         *
         * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
         * the chain id to protect against replay attacks on an eventual fork of the chain.
         *
         * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
         * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
         *
         * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
         * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
         * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
         *
         * @custom:oz-upgrades-unsafe-allow state-variable-immutable
         */
        abstract contract EIP712 is IERC5267 {
            using ShortStrings for *;
            bytes32 private constant TYPE_HASH =
                keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
            // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
            // invalidate the cached domain separator if the chain id changes.
            bytes32 private immutable _cachedDomainSeparator;
            uint256 private immutable _cachedChainId;
            address private immutable _cachedThis;
            bytes32 private immutable _hashedName;
            bytes32 private immutable _hashedVersion;
            ShortString private immutable _name;
            ShortString private immutable _version;
            string private _nameFallback;
            string private _versionFallback;
            /**
             * @dev Initializes the domain separator and parameter caches.
             *
             * The meaning of `name` and `version` is specified in
             * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
             *
             * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
             * - `version`: the current major version of the signing domain.
             *
             * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
             * contract upgrade].
             */
            constructor(string memory name, string memory version) {
                _name = name.toShortStringWithFallback(_nameFallback);
                _version = version.toShortStringWithFallback(_versionFallback);
                _hashedName = keccak256(bytes(name));
                _hashedVersion = keccak256(bytes(version));
                _cachedChainId = block.chainid;
                _cachedDomainSeparator = _buildDomainSeparator();
                _cachedThis = address(this);
            }
            /**
             * @dev Returns the domain separator for the current chain.
             */
            function _domainSeparatorV4() internal view returns (bytes32) {
                if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
                    return _cachedDomainSeparator;
                } else {
                    return _buildDomainSeparator();
                }
            }
            function _buildDomainSeparator() private view returns (bytes32) {
                return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
            }
            /**
             * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
             * function returns the hash of the fully encoded EIP712 message for this domain.
             *
             * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
             *
             * ```solidity
             * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
             *     keccak256("Mail(address to,string contents)"),
             *     mailTo,
             *     keccak256(bytes(mailContents))
             * )));
             * address signer = ECDSA.recover(digest, signature);
             * ```
             */
            function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
                return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
            }
            /**
             * @dev See {IERC-5267}.
             */
            function eip712Domain()
                public
                view
                virtual
                returns (
                    bytes1 fields,
                    string memory name,
                    string memory version,
                    uint256 chainId,
                    address verifyingContract,
                    bytes32 salt,
                    uint256[] memory extensions
                )
            {
                return (
                    hex"0f", // 01111
                    _EIP712Name(),
                    _EIP712Version(),
                    block.chainid,
                    address(this),
                    bytes32(0),
                    new uint256[](0)
                );
            }
            /**
             * @dev The name parameter for the EIP712 domain.
             *
             * NOTE: By default this function reads _name which is an immutable value.
             * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
             */
            // solhint-disable-next-line func-name-mixedcase
            function _EIP712Name() internal view returns (string memory) {
                return _name.toStringWithFallback(_nameFallback);
            }
            /**
             * @dev The version parameter for the EIP712 domain.
             *
             * NOTE: By default this function reads _version which is an immutable value.
             * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
             */
            // solhint-disable-next-line func-name-mixedcase
            function _EIP712Version() internal view returns (string memory) {
                return _version.toStringWithFallback(_versionFallback);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
        pragma solidity ^0.8.20;
        import {Strings} from "../Strings.sol";
        /**
         * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
         *
         * The library provides methods for generating a hash of a message that conforms to the
         * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
         * specifications.
         */
        library MessageHashUtils {
            /**
             * @dev Returns the keccak256 digest of an EIP-191 signed data with version
             * `0x45` (`personal_sign` messages).
             *
             * The digest is calculated by prefixing a bytes32 `messageHash` with
             * `"\\x19Ethereum Signed Message:\
        32"` and hashing the result. It corresponds with the
             * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
             *
             * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
             * keccak256, although any bytes32 value can be safely used because the final digest will
             * be re-hashed.
             *
             * See {ECDSA-recover}.
             */
            function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x00, "\\x19Ethereum Signed Message:\
        32") // 32 is the bytes-length of messageHash
                    mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                    digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
                }
            }
            /**
             * @dev Returns the keccak256 digest of an EIP-191 signed data with version
             * `0x45` (`personal_sign` messages).
             *
             * The digest is calculated by prefixing an arbitrary `message` with
             * `"\\x19Ethereum Signed Message:\
        " + len(message)` and hashing the result. It corresponds with the
             * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
             *
             * See {ECDSA-recover}.
             */
            function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
                return
                    keccak256(bytes.concat("\\x19Ethereum Signed Message:\
        ", bytes(Strings.toString(message.length)), message));
            }
            /**
             * @dev Returns the keccak256 digest of an EIP-191 signed data with version
             * `0x00` (data with intended validator).
             *
             * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
             * `validator` address. Then hashing the result.
             *
             * See {ECDSA-recover}.
             */
            function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
                return keccak256(abi.encodePacked(hex"19_00", validator, data));
            }
            /**
             * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
             *
             * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
             * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
             * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
             *
             * See {ECDSA-recover}.
             */
            function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
                /// @solidity memory-safe-assembly
                assembly {
                    let ptr := mload(0x40)
                    mstore(ptr, hex"19_01")
                    mstore(add(ptr, 0x02), domainSeparator)
                    mstore(add(ptr, 0x22), structHash)
                    digest := keccak256(ptr, 0x42)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            /**
             * @dev Muldiv operation overflow.
             */
            error MathOverflowedMulDiv();
            enum Rounding {
                Floor, // Toward negative infinity
                Ceil, // Toward positive infinity
                Trunc, // Toward zero
                Expand // Away from zero
            }
            /**
             * @dev Returns the addition of two unsigned integers, with an overflow flag.
             */
            function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    uint256 c = a + b;
                    if (c < a) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
             */
            function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b > a) return (false, 0);
                    return (true, a - b);
                }
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
             */
            function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                    // benefit is lost if 'b' is also tested.
                    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                    if (a == 0) return (true, 0);
                    uint256 c = a * b;
                    if (c / a != b) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the division of two unsigned integers, with a division by zero flag.
             */
            function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a / b);
                }
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
             */
            function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a % b);
                }
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds towards infinity instead
             * of rounding towards zero.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                if (b == 0) {
                    // Guarantee the same behavior as in a regular Solidity division.
                    return a / b;
                }
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
             * denominator == 0.
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
             * Uniswap Labs also under MIT license.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0 = x * y; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                        // The surrounding unchecked block does not change this fact.
                        // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    if (denominator <= prod1) {
                        revert MathOverflowedMulDiv();
                    }
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                    // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                    uint256 twos = denominator & (0 - denominator);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                    // works in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
             * towards zero.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                //
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                //
                // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                //
                // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1 << (log2(a) >> 1);
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 2 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 128;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 64;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 32;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 16;
                    }
                    if (value >> 8 > 0) {
                        value >>= 8;
                        result += 8;
                    }
                    if (value >> 4 > 0) {
                        value >>= 4;
                        result += 4;
                    }
                    if (value >> 2 > 0) {
                        value >>= 2;
                        result += 2;
                    }
                    if (value >> 1 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 10 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10 ** 64) {
                        value /= 10 ** 64;
                        result += 64;
                    }
                    if (value >= 10 ** 32) {
                        value /= 10 ** 32;
                        result += 32;
                    }
                    if (value >= 10 ** 16) {
                        value /= 10 ** 16;
                        result += 16;
                    }
                    if (value >= 10 ** 8) {
                        value /= 10 ** 8;
                        result += 8;
                    }
                    if (value >= 10 ** 4) {
                        value /= 10 ** 4;
                        result += 4;
                    }
                    if (value >= 10 ** 2) {
                        value /= 10 ** 2;
                        result += 2;
                    }
                    if (value >= 10 ** 1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 256 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 16;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 8;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 4;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 2;
                    }
                    if (value >> 8 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
                }
            }
            /**
             * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
             */
            function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
                return uint8(rounding) % 2 == 1;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
        // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
        pragma solidity ^0.8.20;
        /**
         * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
         * checks.
         *
         * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
         * easily result in undesired exploitation or bugs, since developers usually
         * assume that overflows raise errors. `SafeCast` restores this intuition by
         * reverting the transaction when such an operation overflows.
         *
         * Using this library instead of the unchecked operations eliminates an entire
         * class of bugs, so it's recommended to use it always.
         */
        library SafeCast {
            /**
             * @dev Value doesn't fit in an uint of `bits` size.
             */
            error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
            /**
             * @dev An int value doesn't fit in an uint of `bits` size.
             */
            error SafeCastOverflowedIntToUint(int256 value);
            /**
             * @dev Value doesn't fit in an int of `bits` size.
             */
            error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
            /**
             * @dev An uint value doesn't fit in an int of `bits` size.
             */
            error SafeCastOverflowedUintToInt(uint256 value);
            /**
             * @dev Returns the downcasted uint248 from uint256, reverting on
             * overflow (when the input is greater than largest uint248).
             *
             * Counterpart to Solidity's `uint248` operator.
             *
             * Requirements:
             *
             * - input must fit into 248 bits
             */
            function toUint248(uint256 value) internal pure returns (uint248) {
                if (value > type(uint248).max) {
                    revert SafeCastOverflowedUintDowncast(248, value);
                }
                return uint248(value);
            }
            /**
             * @dev Returns the downcasted uint240 from uint256, reverting on
             * overflow (when the input is greater than largest uint240).
             *
             * Counterpart to Solidity's `uint240` operator.
             *
             * Requirements:
             *
             * - input must fit into 240 bits
             */
            function toUint240(uint256 value) internal pure returns (uint240) {
                if (value > type(uint240).max) {
                    revert SafeCastOverflowedUintDowncast(240, value);
                }
                return uint240(value);
            }
            /**
             * @dev Returns the downcasted uint232 from uint256, reverting on
             * overflow (when the input is greater than largest uint232).
             *
             * Counterpart to Solidity's `uint232` operator.
             *
             * Requirements:
             *
             * - input must fit into 232 bits
             */
            function toUint232(uint256 value) internal pure returns (uint232) {
                if (value > type(uint232).max) {
                    revert SafeCastOverflowedUintDowncast(232, value);
                }
                return uint232(value);
            }
            /**
             * @dev Returns the downcasted uint224 from uint256, reverting on
             * overflow (when the input is greater than largest uint224).
             *
             * Counterpart to Solidity's `uint224` operator.
             *
             * Requirements:
             *
             * - input must fit into 224 bits
             */
            function toUint224(uint256 value) internal pure returns (uint224) {
                if (value > type(uint224).max) {
                    revert SafeCastOverflowedUintDowncast(224, value);
                }
                return uint224(value);
            }
            /**
             * @dev Returns the downcasted uint216 from uint256, reverting on
             * overflow (when the input is greater than largest uint216).
             *
             * Counterpart to Solidity's `uint216` operator.
             *
             * Requirements:
             *
             * - input must fit into 216 bits
             */
            function toUint216(uint256 value) internal pure returns (uint216) {
                if (value > type(uint216).max) {
                    revert SafeCastOverflowedUintDowncast(216, value);
                }
                return uint216(value);
            }
            /**
             * @dev Returns the downcasted uint208 from uint256, reverting on
             * overflow (when the input is greater than largest uint208).
             *
             * Counterpart to Solidity's `uint208` operator.
             *
             * Requirements:
             *
             * - input must fit into 208 bits
             */
            function toUint208(uint256 value) internal pure returns (uint208) {
                if (value > type(uint208).max) {
                    revert SafeCastOverflowedUintDowncast(208, value);
                }
                return uint208(value);
            }
            /**
             * @dev Returns the downcasted uint200 from uint256, reverting on
             * overflow (when the input is greater than largest uint200).
             *
             * Counterpart to Solidity's `uint200` operator.
             *
             * Requirements:
             *
             * - input must fit into 200 bits
             */
            function toUint200(uint256 value) internal pure returns (uint200) {
                if (value > type(uint200).max) {
                    revert SafeCastOverflowedUintDowncast(200, value);
                }
                return uint200(value);
            }
            /**
             * @dev Returns the downcasted uint192 from uint256, reverting on
             * overflow (when the input is greater than largest uint192).
             *
             * Counterpart to Solidity's `uint192` operator.
             *
             * Requirements:
             *
             * - input must fit into 192 bits
             */
            function toUint192(uint256 value) internal pure returns (uint192) {
                if (value > type(uint192).max) {
                    revert SafeCastOverflowedUintDowncast(192, value);
                }
                return uint192(value);
            }
            /**
             * @dev Returns the downcasted uint184 from uint256, reverting on
             * overflow (when the input is greater than largest uint184).
             *
             * Counterpart to Solidity's `uint184` operator.
             *
             * Requirements:
             *
             * - input must fit into 184 bits
             */
            function toUint184(uint256 value) internal pure returns (uint184) {
                if (value > type(uint184).max) {
                    revert SafeCastOverflowedUintDowncast(184, value);
                }
                return uint184(value);
            }
            /**
             * @dev Returns the downcasted uint176 from uint256, reverting on
             * overflow (when the input is greater than largest uint176).
             *
             * Counterpart to Solidity's `uint176` operator.
             *
             * Requirements:
             *
             * - input must fit into 176 bits
             */
            function toUint176(uint256 value) internal pure returns (uint176) {
                if (value > type(uint176).max) {
                    revert SafeCastOverflowedUintDowncast(176, value);
                }
                return uint176(value);
            }
            /**
             * @dev Returns the downcasted uint168 from uint256, reverting on
             * overflow (when the input is greater than largest uint168).
             *
             * Counterpart to Solidity's `uint168` operator.
             *
             * Requirements:
             *
             * - input must fit into 168 bits
             */
            function toUint168(uint256 value) internal pure returns (uint168) {
                if (value > type(uint168).max) {
                    revert SafeCastOverflowedUintDowncast(168, value);
                }
                return uint168(value);
            }
            /**
             * @dev Returns the downcasted uint160 from uint256, reverting on
             * overflow (when the input is greater than largest uint160).
             *
             * Counterpart to Solidity's `uint160` operator.
             *
             * Requirements:
             *
             * - input must fit into 160 bits
             */
            function toUint160(uint256 value) internal pure returns (uint160) {
                if (value > type(uint160).max) {
                    revert SafeCastOverflowedUintDowncast(160, value);
                }
                return uint160(value);
            }
            /**
             * @dev Returns the downcasted uint152 from uint256, reverting on
             * overflow (when the input is greater than largest uint152).
             *
             * Counterpart to Solidity's `uint152` operator.
             *
             * Requirements:
             *
             * - input must fit into 152 bits
             */
            function toUint152(uint256 value) internal pure returns (uint152) {
                if (value > type(uint152).max) {
                    revert SafeCastOverflowedUintDowncast(152, value);
                }
                return uint152(value);
            }
            /**
             * @dev Returns the downcasted uint144 from uint256, reverting on
             * overflow (when the input is greater than largest uint144).
             *
             * Counterpart to Solidity's `uint144` operator.
             *
             * Requirements:
             *
             * - input must fit into 144 bits
             */
            function toUint144(uint256 value) internal pure returns (uint144) {
                if (value > type(uint144).max) {
                    revert SafeCastOverflowedUintDowncast(144, value);
                }
                return uint144(value);
            }
            /**
             * @dev Returns the downcasted uint136 from uint256, reverting on
             * overflow (when the input is greater than largest uint136).
             *
             * Counterpart to Solidity's `uint136` operator.
             *
             * Requirements:
             *
             * - input must fit into 136 bits
             */
            function toUint136(uint256 value) internal pure returns (uint136) {
                if (value > type(uint136).max) {
                    revert SafeCastOverflowedUintDowncast(136, value);
                }
                return uint136(value);
            }
            /**
             * @dev Returns the downcasted uint128 from uint256, reverting on
             * overflow (when the input is greater than largest uint128).
             *
             * Counterpart to Solidity's `uint128` operator.
             *
             * Requirements:
             *
             * - input must fit into 128 bits
             */
            function toUint128(uint256 value) internal pure returns (uint128) {
                if (value > type(uint128).max) {
                    revert SafeCastOverflowedUintDowncast(128, value);
                }
                return uint128(value);
            }
            /**
             * @dev Returns the downcasted uint120 from uint256, reverting on
             * overflow (when the input is greater than largest uint120).
             *
             * Counterpart to Solidity's `uint120` operator.
             *
             * Requirements:
             *
             * - input must fit into 120 bits
             */
            function toUint120(uint256 value) internal pure returns (uint120) {
                if (value > type(uint120).max) {
                    revert SafeCastOverflowedUintDowncast(120, value);
                }
                return uint120(value);
            }
            /**
             * @dev Returns the downcasted uint112 from uint256, reverting on
             * overflow (when the input is greater than largest uint112).
             *
             * Counterpart to Solidity's `uint112` operator.
             *
             * Requirements:
             *
             * - input must fit into 112 bits
             */
            function toUint112(uint256 value) internal pure returns (uint112) {
                if (value > type(uint112).max) {
                    revert SafeCastOverflowedUintDowncast(112, value);
                }
                return uint112(value);
            }
            /**
             * @dev Returns the downcasted uint104 from uint256, reverting on
             * overflow (when the input is greater than largest uint104).
             *
             * Counterpart to Solidity's `uint104` operator.
             *
             * Requirements:
             *
             * - input must fit into 104 bits
             */
            function toUint104(uint256 value) internal pure returns (uint104) {
                if (value > type(uint104).max) {
                    revert SafeCastOverflowedUintDowncast(104, value);
                }
                return uint104(value);
            }
            /**
             * @dev Returns the downcasted uint96 from uint256, reverting on
             * overflow (when the input is greater than largest uint96).
             *
             * Counterpart to Solidity's `uint96` operator.
             *
             * Requirements:
             *
             * - input must fit into 96 bits
             */
            function toUint96(uint256 value) internal pure returns (uint96) {
                if (value > type(uint96).max) {
                    revert SafeCastOverflowedUintDowncast(96, value);
                }
                return uint96(value);
            }
            /**
             * @dev Returns the downcasted uint88 from uint256, reverting on
             * overflow (when the input is greater than largest uint88).
             *
             * Counterpart to Solidity's `uint88` operator.
             *
             * Requirements:
             *
             * - input must fit into 88 bits
             */
            function toUint88(uint256 value) internal pure returns (uint88) {
                if (value > type(uint88).max) {
                    revert SafeCastOverflowedUintDowncast(88, value);
                }
                return uint88(value);
            }
            /**
             * @dev Returns the downcasted uint80 from uint256, reverting on
             * overflow (when the input is greater than largest uint80).
             *
             * Counterpart to Solidity's `uint80` operator.
             *
             * Requirements:
             *
             * - input must fit into 80 bits
             */
            function toUint80(uint256 value) internal pure returns (uint80) {
                if (value > type(uint80).max) {
                    revert SafeCastOverflowedUintDowncast(80, value);
                }
                return uint80(value);
            }
            /**
             * @dev Returns the downcasted uint72 from uint256, reverting on
             * overflow (when the input is greater than largest uint72).
             *
             * Counterpart to Solidity's `uint72` operator.
             *
             * Requirements:
             *
             * - input must fit into 72 bits
             */
            function toUint72(uint256 value) internal pure returns (uint72) {
                if (value > type(uint72).max) {
                    revert SafeCastOverflowedUintDowncast(72, value);
                }
                return uint72(value);
            }
            /**
             * @dev Returns the downcasted uint64 from uint256, reverting on
             * overflow (when the input is greater than largest uint64).
             *
             * Counterpart to Solidity's `uint64` operator.
             *
             * Requirements:
             *
             * - input must fit into 64 bits
             */
            function toUint64(uint256 value) internal pure returns (uint64) {
                if (value > type(uint64).max) {
                    revert SafeCastOverflowedUintDowncast(64, value);
                }
                return uint64(value);
            }
            /**
             * @dev Returns the downcasted uint56 from uint256, reverting on
             * overflow (when the input is greater than largest uint56).
             *
             * Counterpart to Solidity's `uint56` operator.
             *
             * Requirements:
             *
             * - input must fit into 56 bits
             */
            function toUint56(uint256 value) internal pure returns (uint56) {
                if (value > type(uint56).max) {
                    revert SafeCastOverflowedUintDowncast(56, value);
                }
                return uint56(value);
            }
            /**
             * @dev Returns the downcasted uint48 from uint256, reverting on
             * overflow (when the input is greater than largest uint48).
             *
             * Counterpart to Solidity's `uint48` operator.
             *
             * Requirements:
             *
             * - input must fit into 48 bits
             */
            function toUint48(uint256 value) internal pure returns (uint48) {
                if (value > type(uint48).max) {
                    revert SafeCastOverflowedUintDowncast(48, value);
                }
                return uint48(value);
            }
            /**
             * @dev Returns the downcasted uint40 from uint256, reverting on
             * overflow (when the input is greater than largest uint40).
             *
             * Counterpart to Solidity's `uint40` operator.
             *
             * Requirements:
             *
             * - input must fit into 40 bits
             */
            function toUint40(uint256 value) internal pure returns (uint40) {
                if (value > type(uint40).max) {
                    revert SafeCastOverflowedUintDowncast(40, value);
                }
                return uint40(value);
            }
            /**
             * @dev Returns the downcasted uint32 from uint256, reverting on
             * overflow (when the input is greater than largest uint32).
             *
             * Counterpart to Solidity's `uint32` operator.
             *
             * Requirements:
             *
             * - input must fit into 32 bits
             */
            function toUint32(uint256 value) internal pure returns (uint32) {
                if (value > type(uint32).max) {
                    revert SafeCastOverflowedUintDowncast(32, value);
                }
                return uint32(value);
            }
            /**
             * @dev Returns the downcasted uint24 from uint256, reverting on
             * overflow (when the input is greater than largest uint24).
             *
             * Counterpart to Solidity's `uint24` operator.
             *
             * Requirements:
             *
             * - input must fit into 24 bits
             */
            function toUint24(uint256 value) internal pure returns (uint24) {
                if (value > type(uint24).max) {
                    revert SafeCastOverflowedUintDowncast(24, value);
                }
                return uint24(value);
            }
            /**
             * @dev Returns the downcasted uint16 from uint256, reverting on
             * overflow (when the input is greater than largest uint16).
             *
             * Counterpart to Solidity's `uint16` operator.
             *
             * Requirements:
             *
             * - input must fit into 16 bits
             */
            function toUint16(uint256 value) internal pure returns (uint16) {
                if (value > type(uint16).max) {
                    revert SafeCastOverflowedUintDowncast(16, value);
                }
                return uint16(value);
            }
            /**
             * @dev Returns the downcasted uint8 from uint256, reverting on
             * overflow (when the input is greater than largest uint8).
             *
             * Counterpart to Solidity's `uint8` operator.
             *
             * Requirements:
             *
             * - input must fit into 8 bits
             */
            function toUint8(uint256 value) internal pure returns (uint8) {
                if (value > type(uint8).max) {
                    revert SafeCastOverflowedUintDowncast(8, value);
                }
                return uint8(value);
            }
            /**
             * @dev Converts a signed int256 into an unsigned uint256.
             *
             * Requirements:
             *
             * - input must be greater than or equal to 0.
             */
            function toUint256(int256 value) internal pure returns (uint256) {
                if (value < 0) {
                    revert SafeCastOverflowedIntToUint(value);
                }
                return uint256(value);
            }
            /**
             * @dev Returns the downcasted int248 from int256, reverting on
             * overflow (when the input is less than smallest int248 or
             * greater than largest int248).
             *
             * Counterpart to Solidity's `int248` operator.
             *
             * Requirements:
             *
             * - input must fit into 248 bits
             */
            function toInt248(int256 value) internal pure returns (int248 downcasted) {
                downcasted = int248(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(248, value);
                }
            }
            /**
             * @dev Returns the downcasted int240 from int256, reverting on
             * overflow (when the input is less than smallest int240 or
             * greater than largest int240).
             *
             * Counterpart to Solidity's `int240` operator.
             *
             * Requirements:
             *
             * - input must fit into 240 bits
             */
            function toInt240(int256 value) internal pure returns (int240 downcasted) {
                downcasted = int240(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(240, value);
                }
            }
            /**
             * @dev Returns the downcasted int232 from int256, reverting on
             * overflow (when the input is less than smallest int232 or
             * greater than largest int232).
             *
             * Counterpart to Solidity's `int232` operator.
             *
             * Requirements:
             *
             * - input must fit into 232 bits
             */
            function toInt232(int256 value) internal pure returns (int232 downcasted) {
                downcasted = int232(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(232, value);
                }
            }
            /**
             * @dev Returns the downcasted int224 from int256, reverting on
             * overflow (when the input is less than smallest int224 or
             * greater than largest int224).
             *
             * Counterpart to Solidity's `int224` operator.
             *
             * Requirements:
             *
             * - input must fit into 224 bits
             */
            function toInt224(int256 value) internal pure returns (int224 downcasted) {
                downcasted = int224(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(224, value);
                }
            }
            /**
             * @dev Returns the downcasted int216 from int256, reverting on
             * overflow (when the input is less than smallest int216 or
             * greater than largest int216).
             *
             * Counterpart to Solidity's `int216` operator.
             *
             * Requirements:
             *
             * - input must fit into 216 bits
             */
            function toInt216(int256 value) internal pure returns (int216 downcasted) {
                downcasted = int216(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(216, value);
                }
            }
            /**
             * @dev Returns the downcasted int208 from int256, reverting on
             * overflow (when the input is less than smallest int208 or
             * greater than largest int208).
             *
             * Counterpart to Solidity's `int208` operator.
             *
             * Requirements:
             *
             * - input must fit into 208 bits
             */
            function toInt208(int256 value) internal pure returns (int208 downcasted) {
                downcasted = int208(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(208, value);
                }
            }
            /**
             * @dev Returns the downcasted int200 from int256, reverting on
             * overflow (when the input is less than smallest int200 or
             * greater than largest int200).
             *
             * Counterpart to Solidity's `int200` operator.
             *
             * Requirements:
             *
             * - input must fit into 200 bits
             */
            function toInt200(int256 value) internal pure returns (int200 downcasted) {
                downcasted = int200(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(200, value);
                }
            }
            /**
             * @dev Returns the downcasted int192 from int256, reverting on
             * overflow (when the input is less than smallest int192 or
             * greater than largest int192).
             *
             * Counterpart to Solidity's `int192` operator.
             *
             * Requirements:
             *
             * - input must fit into 192 bits
             */
            function toInt192(int256 value) internal pure returns (int192 downcasted) {
                downcasted = int192(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(192, value);
                }
            }
            /**
             * @dev Returns the downcasted int184 from int256, reverting on
             * overflow (when the input is less than smallest int184 or
             * greater than largest int184).
             *
             * Counterpart to Solidity's `int184` operator.
             *
             * Requirements:
             *
             * - input must fit into 184 bits
             */
            function toInt184(int256 value) internal pure returns (int184 downcasted) {
                downcasted = int184(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(184, value);
                }
            }
            /**
             * @dev Returns the downcasted int176 from int256, reverting on
             * overflow (when the input is less than smallest int176 or
             * greater than largest int176).
             *
             * Counterpart to Solidity's `int176` operator.
             *
             * Requirements:
             *
             * - input must fit into 176 bits
             */
            function toInt176(int256 value) internal pure returns (int176 downcasted) {
                downcasted = int176(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(176, value);
                }
            }
            /**
             * @dev Returns the downcasted int168 from int256, reverting on
             * overflow (when the input is less than smallest int168 or
             * greater than largest int168).
             *
             * Counterpart to Solidity's `int168` operator.
             *
             * Requirements:
             *
             * - input must fit into 168 bits
             */
            function toInt168(int256 value) internal pure returns (int168 downcasted) {
                downcasted = int168(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(168, value);
                }
            }
            /**
             * @dev Returns the downcasted int160 from int256, reverting on
             * overflow (when the input is less than smallest int160 or
             * greater than largest int160).
             *
             * Counterpart to Solidity's `int160` operator.
             *
             * Requirements:
             *
             * - input must fit into 160 bits
             */
            function toInt160(int256 value) internal pure returns (int160 downcasted) {
                downcasted = int160(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(160, value);
                }
            }
            /**
             * @dev Returns the downcasted int152 from int256, reverting on
             * overflow (when the input is less than smallest int152 or
             * greater than largest int152).
             *
             * Counterpart to Solidity's `int152` operator.
             *
             * Requirements:
             *
             * - input must fit into 152 bits
             */
            function toInt152(int256 value) internal pure returns (int152 downcasted) {
                downcasted = int152(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(152, value);
                }
            }
            /**
             * @dev Returns the downcasted int144 from int256, reverting on
             * overflow (when the input is less than smallest int144 or
             * greater than largest int144).
             *
             * Counterpart to Solidity's `int144` operator.
             *
             * Requirements:
             *
             * - input must fit into 144 bits
             */
            function toInt144(int256 value) internal pure returns (int144 downcasted) {
                downcasted = int144(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(144, value);
                }
            }
            /**
             * @dev Returns the downcasted int136 from int256, reverting on
             * overflow (when the input is less than smallest int136 or
             * greater than largest int136).
             *
             * Counterpart to Solidity's `int136` operator.
             *
             * Requirements:
             *
             * - input must fit into 136 bits
             */
            function toInt136(int256 value) internal pure returns (int136 downcasted) {
                downcasted = int136(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(136, value);
                }
            }
            /**
             * @dev Returns the downcasted int128 from int256, reverting on
             * overflow (when the input is less than smallest int128 or
             * greater than largest int128).
             *
             * Counterpart to Solidity's `int128` operator.
             *
             * Requirements:
             *
             * - input must fit into 128 bits
             */
            function toInt128(int256 value) internal pure returns (int128 downcasted) {
                downcasted = int128(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(128, value);
                }
            }
            /**
             * @dev Returns the downcasted int120 from int256, reverting on
             * overflow (when the input is less than smallest int120 or
             * greater than largest int120).
             *
             * Counterpart to Solidity's `int120` operator.
             *
             * Requirements:
             *
             * - input must fit into 120 bits
             */
            function toInt120(int256 value) internal pure returns (int120 downcasted) {
                downcasted = int120(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(120, value);
                }
            }
            /**
             * @dev Returns the downcasted int112 from int256, reverting on
             * overflow (when the input is less than smallest int112 or
             * greater than largest int112).
             *
             * Counterpart to Solidity's `int112` operator.
             *
             * Requirements:
             *
             * - input must fit into 112 bits
             */
            function toInt112(int256 value) internal pure returns (int112 downcasted) {
                downcasted = int112(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(112, value);
                }
            }
            /**
             * @dev Returns the downcasted int104 from int256, reverting on
             * overflow (when the input is less than smallest int104 or
             * greater than largest int104).
             *
             * Counterpart to Solidity's `int104` operator.
             *
             * Requirements:
             *
             * - input must fit into 104 bits
             */
            function toInt104(int256 value) internal pure returns (int104 downcasted) {
                downcasted = int104(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(104, value);
                }
            }
            /**
             * @dev Returns the downcasted int96 from int256, reverting on
             * overflow (when the input is less than smallest int96 or
             * greater than largest int96).
             *
             * Counterpart to Solidity's `int96` operator.
             *
             * Requirements:
             *
             * - input must fit into 96 bits
             */
            function toInt96(int256 value) internal pure returns (int96 downcasted) {
                downcasted = int96(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(96, value);
                }
            }
            /**
             * @dev Returns the downcasted int88 from int256, reverting on
             * overflow (when the input is less than smallest int88 or
             * greater than largest int88).
             *
             * Counterpart to Solidity's `int88` operator.
             *
             * Requirements:
             *
             * - input must fit into 88 bits
             */
            function toInt88(int256 value) internal pure returns (int88 downcasted) {
                downcasted = int88(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(88, value);
                }
            }
            /**
             * @dev Returns the downcasted int80 from int256, reverting on
             * overflow (when the input is less than smallest int80 or
             * greater than largest int80).
             *
             * Counterpart to Solidity's `int80` operator.
             *
             * Requirements:
             *
             * - input must fit into 80 bits
             */
            function toInt80(int256 value) internal pure returns (int80 downcasted) {
                downcasted = int80(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(80, value);
                }
            }
            /**
             * @dev Returns the downcasted int72 from int256, reverting on
             * overflow (when the input is less than smallest int72 or
             * greater than largest int72).
             *
             * Counterpart to Solidity's `int72` operator.
             *
             * Requirements:
             *
             * - input must fit into 72 bits
             */
            function toInt72(int256 value) internal pure returns (int72 downcasted) {
                downcasted = int72(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(72, value);
                }
            }
            /**
             * @dev Returns the downcasted int64 from int256, reverting on
             * overflow (when the input is less than smallest int64 or
             * greater than largest int64).
             *
             * Counterpart to Solidity's `int64` operator.
             *
             * Requirements:
             *
             * - input must fit into 64 bits
             */
            function toInt64(int256 value) internal pure returns (int64 downcasted) {
                downcasted = int64(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(64, value);
                }
            }
            /**
             * @dev Returns the downcasted int56 from int256, reverting on
             * overflow (when the input is less than smallest int56 or
             * greater than largest int56).
             *
             * Counterpart to Solidity's `int56` operator.
             *
             * Requirements:
             *
             * - input must fit into 56 bits
             */
            function toInt56(int256 value) internal pure returns (int56 downcasted) {
                downcasted = int56(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(56, value);
                }
            }
            /**
             * @dev Returns the downcasted int48 from int256, reverting on
             * overflow (when the input is less than smallest int48 or
             * greater than largest int48).
             *
             * Counterpart to Solidity's `int48` operator.
             *
             * Requirements:
             *
             * - input must fit into 48 bits
             */
            function toInt48(int256 value) internal pure returns (int48 downcasted) {
                downcasted = int48(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(48, value);
                }
            }
            /**
             * @dev Returns the downcasted int40 from int256, reverting on
             * overflow (when the input is less than smallest int40 or
             * greater than largest int40).
             *
             * Counterpart to Solidity's `int40` operator.
             *
             * Requirements:
             *
             * - input must fit into 40 bits
             */
            function toInt40(int256 value) internal pure returns (int40 downcasted) {
                downcasted = int40(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(40, value);
                }
            }
            /**
             * @dev Returns the downcasted int32 from int256, reverting on
             * overflow (when the input is less than smallest int32 or
             * greater than largest int32).
             *
             * Counterpart to Solidity's `int32` operator.
             *
             * Requirements:
             *
             * - input must fit into 32 bits
             */
            function toInt32(int256 value) internal pure returns (int32 downcasted) {
                downcasted = int32(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(32, value);
                }
            }
            /**
             * @dev Returns the downcasted int24 from int256, reverting on
             * overflow (when the input is less than smallest int24 or
             * greater than largest int24).
             *
             * Counterpart to Solidity's `int24` operator.
             *
             * Requirements:
             *
             * - input must fit into 24 bits
             */
            function toInt24(int256 value) internal pure returns (int24 downcasted) {
                downcasted = int24(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(24, value);
                }
            }
            /**
             * @dev Returns the downcasted int16 from int256, reverting on
             * overflow (when the input is less than smallest int16 or
             * greater than largest int16).
             *
             * Counterpart to Solidity's `int16` operator.
             *
             * Requirements:
             *
             * - input must fit into 16 bits
             */
            function toInt16(int256 value) internal pure returns (int16 downcasted) {
                downcasted = int16(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(16, value);
                }
            }
            /**
             * @dev Returns the downcasted int8 from int256, reverting on
             * overflow (when the input is less than smallest int8 or
             * greater than largest int8).
             *
             * Counterpart to Solidity's `int8` operator.
             *
             * Requirements:
             *
             * - input must fit into 8 bits
             */
            function toInt8(int256 value) internal pure returns (int8 downcasted) {
                downcasted = int8(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(8, value);
                }
            }
            /**
             * @dev Converts an unsigned uint256 into a signed int256.
             *
             * Requirements:
             *
             * - input must be less than or equal to maxInt256.
             */
            function toInt256(uint256 value) internal pure returns (int256) {
                // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
                if (value > uint256(type(int256).max)) {
                    revert SafeCastOverflowedUintToInt(value);
                }
                return int256(value);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMath {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides tracking nonces for addresses. Nonces will only increment.
         */
        abstract contract Nonces {
            /**
             * @dev The nonce used for an `account` is not the expected current nonce.
             */
            error InvalidAccountNonce(address account, uint256 currentNonce);
            mapping(address account => uint256) private _nonces;
            /**
             * @dev Returns the next unused nonce for an address.
             */
            function nonces(address owner) public view virtual returns (uint256) {
                return _nonces[owner];
            }
            /**
             * @dev Consumes a nonce.
             *
             * Returns the current value and increments nonce.
             */
            function _useNonce(address owner) internal virtual returns (uint256) {
                // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
                // decremented or reset. This guarantees that the nonce never overflows.
                unchecked {
                    // It is important to do x++ and not ++x here.
                    return _nonces[owner]++;
                }
            }
            /**
             * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
             */
            function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
                uint256 current = _useNonce(owner);
                if (nonce != current) {
                    revert InvalidAccountNonce(owner, current);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
        pragma solidity ^0.8.20;
        import {StorageSlot} from "./StorageSlot.sol";
        // | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
        // | length  | 0x                                                              BB |
        type ShortString is bytes32;
        /**
         * @dev This library provides functions to convert short memory strings
         * into a `ShortString` type that can be used as an immutable variable.
         *
         * Strings of arbitrary length can be optimized using this library if
         * they are short enough (up to 31 bytes) by packing them with their
         * length (1 byte) in a single EVM word (32 bytes). Additionally, a
         * fallback mechanism can be used for every other case.
         *
         * Usage example:
         *
         * ```solidity
         * contract Named {
         *     using ShortStrings for *;
         *
         *     ShortString private immutable _name;
         *     string private _nameFallback;
         *
         *     constructor(string memory contractName) {
         *         _name = contractName.toShortStringWithFallback(_nameFallback);
         *     }
         *
         *     function name() external view returns (string memory) {
         *         return _name.toStringWithFallback(_nameFallback);
         *     }
         * }
         * ```
         */
        library ShortStrings {
            // Used as an identifier for strings longer than 31 bytes.
            bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
            error StringTooLong(string str);
            error InvalidShortString();
            /**
             * @dev Encode a string of at most 31 chars into a `ShortString`.
             *
             * This will trigger a `StringTooLong` error is the input string is too long.
             */
            function toShortString(string memory str) internal pure returns (ShortString) {
                bytes memory bstr = bytes(str);
                if (bstr.length > 31) {
                    revert StringTooLong(str);
                }
                return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
            }
            /**
             * @dev Decode a `ShortString` back to a "normal" string.
             */
            function toString(ShortString sstr) internal pure returns (string memory) {
                uint256 len = byteLength(sstr);
                // using `new string(len)` would work locally but is not memory safe.
                string memory str = new string(32);
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(str, len)
                    mstore(add(str, 0x20), sstr)
                }
                return str;
            }
            /**
             * @dev Return the length of a `ShortString`.
             */
            function byteLength(ShortString sstr) internal pure returns (uint256) {
                uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
                if (result > 31) {
                    revert InvalidShortString();
                }
                return result;
            }
            /**
             * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
             */
            function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
                if (bytes(value).length < 32) {
                    return toShortString(value);
                } else {
                    StorageSlot.getStringSlot(store).value = value;
                    return ShortString.wrap(FALLBACK_SENTINEL);
                }
            }
            /**
             * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
             */
            function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
                if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                    return toString(value);
                } else {
                    return store;
                }
            }
            /**
             * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
             * {setWithFallback}.
             *
             * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
             * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
             */
            function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
                if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                    return byteLength(value);
                } else {
                    return bytes(store).length;
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.20;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(newImplementation.code.length > 0);
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
        pragma solidity ^0.8.20;
        import {Math} from "./math/Math.sol";
        import {SignedMath} from "./math/SignedMath.sol";
        /**
         * @dev String operations.
         */
        library Strings {
            bytes16 private constant HEX_DIGITS = "0123456789abcdef";
            uint8 private constant ADDRESS_LENGTH = 20;
            /**
             * @dev The `value` string doesn't fit in the specified `length`.
             */
            error StringsInsufficientHexLength(uint256 value, uint256 length);
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    uint256 length = Math.log10(value) + 1;
                    string memory buffer = new string(length);
                    uint256 ptr;
                    /// @solidity memory-safe-assembly
                    assembly {
                        ptr := add(buffer, add(32, length))
                    }
                    while (true) {
                        ptr--;
                        /// @solidity memory-safe-assembly
                        assembly {
                            mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                        }
                        value /= 10;
                        if (value == 0) break;
                    }
                    return buffer;
                }
            }
            /**
             * @dev Converts a `int256` to its ASCII `string` decimal representation.
             */
            function toStringSigned(int256 value) internal pure returns (string memory) {
                return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    return toHexString(value, Math.log256(value) + 1);
                }
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                uint256 localValue = value;
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = HEX_DIGITS[localValue & 0xf];
                    localValue >>= 4;
                }
                if (localValue != 0) {
                    revert StringsInsufficientHexLength(value, length);
                }
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
             * representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
            }
            /**
             * @dev Returns true if the two strings are equal.
             */
            function equal(string memory a, string memory b) internal pure returns (bool) {
                return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)
        // This file was procedurally generated from scripts/generate/templates/Checkpoints.js.
        pragma solidity ^0.8.20;
        import {Math} from "../math/Math.sol";
        /**
         * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
         * time, and later looking up past values by block number. See {Votes} as an example.
         *
         * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
         * checkpoint for the current transaction block using the {push} function.
         */
        library Checkpoints {
            /**
             * @dev A value was attempted to be inserted on a past checkpoint.
             */
            error CheckpointUnorderedInsertion();
            struct Trace224 {
                Checkpoint224[] _checkpoints;
            }
            struct Checkpoint224 {
                uint32 _key;
                uint224 _value;
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
             *
             * Returns previous value and new value.
             *
             * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
             * library.
             */
            function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) {
                return _insert(self._checkpoints, key, value);
            }
            /**
             * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
             * there is none.
             */
            function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
                return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             */
            function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             *
             * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
             * keys).
             */
            function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
                uint256 len = self._checkpoints.length;
                uint256 low = 0;
                uint256 high = len;
                if (len > 5) {
                    uint256 mid = len - Math.sqrt(len);
                    if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
             */
            function latest(Trace224 storage self) internal view returns (uint224) {
                uint256 pos = self._checkpoints.length;
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
             * in the most recent checkpoint.
             */
            function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
                uint256 pos = self._checkpoints.length;
                if (pos == 0) {
                    return (false, 0, 0);
                } else {
                    Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                    return (true, ckpt._key, ckpt._value);
                }
            }
            /**
             * @dev Returns the number of checkpoint.
             */
            function length(Trace224 storage self) internal view returns (uint256) {
                return self._checkpoints.length;
            }
            /**
             * @dev Returns checkpoint at given position.
             */
            function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
                return self._checkpoints[pos];
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
             * or by updating the last one.
             */
            function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
                uint256 pos = self.length;
                if (pos > 0) {
                    // Copying to memory is important here.
                    Checkpoint224 memory last = _unsafeAccess(self, pos - 1);
                    // Checkpoint keys must be non-decreasing.
                    if (last._key > key) {
                        revert CheckpointUnorderedInsertion();
                    }
                    // Update or push new checkpoint
                    if (last._key == key) {
                        _unsafeAccess(self, pos - 1)._value = value;
                    } else {
                        self.push(Checkpoint224({_key: key, _value: value}));
                    }
                    return (last._value, value);
                } else {
                    self.push(Checkpoint224({_key: key, _value: value}));
                    return (0, value);
                }
            }
            /**
             * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
             * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
             * `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _upperBinaryLookup(
                Checkpoint224[] storage self,
                uint32 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key > key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                return high;
            }
            /**
             * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
             * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
             * exclusive `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _lowerBinaryLookup(
                Checkpoint224[] storage self,
                uint32 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key < key) {
                        low = mid + 1;
                    } else {
                        high = mid;
                    }
                }
                return high;
            }
            /**
             * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
             */
            function _unsafeAccess(
                Checkpoint224[] storage self,
                uint256 pos
            ) private pure returns (Checkpoint224 storage result) {
                assembly {
                    mstore(0, self.slot)
                    result.slot := add(keccak256(0, 0x20), pos)
                }
            }
            struct Trace208 {
                Checkpoint208[] _checkpoints;
            }
            struct Checkpoint208 {
                uint48 _key;
                uint208 _value;
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
             *
             * Returns previous value and new value.
             *
             * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
             * library.
             */
            function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
                return _insert(self._checkpoints, key, value);
            }
            /**
             * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
             * there is none.
             */
            function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
                return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             */
            function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             *
             * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
             * keys).
             */
            function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
                uint256 len = self._checkpoints.length;
                uint256 low = 0;
                uint256 high = len;
                if (len > 5) {
                    uint256 mid = len - Math.sqrt(len);
                    if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
             */
            function latest(Trace208 storage self) internal view returns (uint208) {
                uint256 pos = self._checkpoints.length;
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
             * in the most recent checkpoint.
             */
            function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
                uint256 pos = self._checkpoints.length;
                if (pos == 0) {
                    return (false, 0, 0);
                } else {
                    Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                    return (true, ckpt._key, ckpt._value);
                }
            }
            /**
             * @dev Returns the number of checkpoint.
             */
            function length(Trace208 storage self) internal view returns (uint256) {
                return self._checkpoints.length;
            }
            /**
             * @dev Returns checkpoint at given position.
             */
            function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
                return self._checkpoints[pos];
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
             * or by updating the last one.
             */
            function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) {
                uint256 pos = self.length;
                if (pos > 0) {
                    // Copying to memory is important here.
                    Checkpoint208 memory last = _unsafeAccess(self, pos - 1);
                    // Checkpoint keys must be non-decreasing.
                    if (last._key > key) {
                        revert CheckpointUnorderedInsertion();
                    }
                    // Update or push new checkpoint
                    if (last._key == key) {
                        _unsafeAccess(self, pos - 1)._value = value;
                    } else {
                        self.push(Checkpoint208({_key: key, _value: value}));
                    }
                    return (last._value, value);
                } else {
                    self.push(Checkpoint208({_key: key, _value: value}));
                    return (0, value);
                }
            }
            /**
             * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
             * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
             * `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _upperBinaryLookup(
                Checkpoint208[] storage self,
                uint48 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key > key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                return high;
            }
            /**
             * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
             * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
             * exclusive `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _lowerBinaryLookup(
                Checkpoint208[] storage self,
                uint48 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key < key) {
                        low = mid + 1;
                    } else {
                        high = mid;
                    }
                }
                return high;
            }
            /**
             * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
             */
            function _unsafeAccess(
                Checkpoint208[] storage self,
                uint256 pos
            ) private pure returns (Checkpoint208 storage result) {
                assembly {
                    mstore(0, self.slot)
                    result.slot := add(keccak256(0, 0x20), pos)
                }
            }
            struct Trace160 {
                Checkpoint160[] _checkpoints;
            }
            struct Checkpoint160 {
                uint96 _key;
                uint160 _value;
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
             *
             * Returns previous value and new value.
             *
             * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
             * library.
             */
            function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) {
                return _insert(self._checkpoints, key, value);
            }
            /**
             * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
             * there is none.
             */
            function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
                return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             */
            function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             *
             * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
             * keys).
             */
            function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
                uint256 len = self._checkpoints.length;
                uint256 low = 0;
                uint256 high = len;
                if (len > 5) {
                    uint256 mid = len - Math.sqrt(len);
                    if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
             */
            function latest(Trace160 storage self) internal view returns (uint160) {
                uint256 pos = self._checkpoints.length;
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
             * in the most recent checkpoint.
             */
            function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
                uint256 pos = self._checkpoints.length;
                if (pos == 0) {
                    return (false, 0, 0);
                } else {
                    Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                    return (true, ckpt._key, ckpt._value);
                }
            }
            /**
             * @dev Returns the number of checkpoint.
             */
            function length(Trace160 storage self) internal view returns (uint256) {
                return self._checkpoints.length;
            }
            /**
             * @dev Returns checkpoint at given position.
             */
            function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
                return self._checkpoints[pos];
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
             * or by updating the last one.
             */
            function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) {
                uint256 pos = self.length;
                if (pos > 0) {
                    // Copying to memory is important here.
                    Checkpoint160 memory last = _unsafeAccess(self, pos - 1);
                    // Checkpoint keys must be non-decreasing.
                    if (last._key > key) {
                        revert CheckpointUnorderedInsertion();
                    }
                    // Update or push new checkpoint
                    if (last._key == key) {
                        _unsafeAccess(self, pos - 1)._value = value;
                    } else {
                        self.push(Checkpoint160({_key: key, _value: value}));
                    }
                    return (last._value, value);
                } else {
                    self.push(Checkpoint160({_key: key, _value: value}));
                    return (0, value);
                }
            }
            /**
             * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
             * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
             * `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _upperBinaryLookup(
                Checkpoint160[] storage self,
                uint96 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key > key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                return high;
            }
            /**
             * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
             * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
             * exclusive `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _lowerBinaryLookup(
                Checkpoint160[] storage self,
                uint96 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key < key) {
                        low = mid + 1;
                    } else {
                        high = mid;
                    }
                }
                return high;
            }
            /**
             * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
             */
            function _unsafeAccess(
                Checkpoint160[] storage self,
                uint256 pos
            ) private pure returns (Checkpoint160 storage result) {
                assembly {
                    mstore(0, self.slot)
                    result.slot := add(keccak256(0, 0x20), pos)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)
        pragma solidity ^0.8.20;
        import {Math} from "../math/Math.sol";
        import {SafeCast} from "../math/SafeCast.sol";
        /**
         * @dev This library provides helpers for manipulating time-related objects.
         *
         * It uses the following types:
         * - `uint48` for timepoints
         * - `uint32` for durations
         *
         * While the library doesn't provide specific types for timepoints and duration, it does provide:
         * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
         * - additional helper functions
         */
        library Time {
            using Time for *;
            /**
             * @dev Get the block timestamp as a Timepoint.
             */
            function timestamp() internal view returns (uint48) {
                return SafeCast.toUint48(block.timestamp);
            }
            /**
             * @dev Get the block number as a Timepoint.
             */
            function blockNumber() internal view returns (uint48) {
                return SafeCast.toUint48(block.number);
            }
            // ==================================================== Delay =====================================================
            /**
             * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
             * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
             * This allows updating the delay applied to some operation while keeping some guarantees.
             *
             * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
             * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
             * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
             * still apply for some time.
             *
             *
             * The `Delay` type is 112 bits long, and packs the following:
             *
             * ```
             *   | [uint48]: effect date (timepoint)
             *   |           | [uint32]: value before (duration)
             *   ↓           ↓       ↓ [uint32]: value after (duration)
             * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
             * ```
             *
             * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
             * supported.
             */
            type Delay is uint112;
            /**
             * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
             */
            function toDelay(uint32 duration) internal pure returns (Delay) {
                return Delay.wrap(duration);
            }
            /**
             * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
             * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
             */
            function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
                (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
                return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
            }
            /**
             * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
             * effect timepoint is 0, then the pending value should not be considered.
             */
            function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
                return _getFullAt(self, timestamp());
            }
            /**
             * @dev Get the current value.
             */
            function get(Delay self) internal view returns (uint32) {
                (uint32 delay, , ) = self.getFull();
                return delay;
            }
            /**
             * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
             * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
             * new delay becomes effective.
             */
            function withUpdate(
                Delay self,
                uint32 newValue,
                uint32 minSetback
            ) internal view returns (Delay updatedDelay, uint48 effect) {
                uint32 value = self.get();
                uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
                effect = timestamp() + setback;
                return (pack(value, newValue, effect), effect);
            }
            /**
             * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
             */
            function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
                uint112 raw = Delay.unwrap(self);
                valueAfter = uint32(raw);
                valueBefore = uint32(raw >> 32);
                effect = uint48(raw >> 64);
                return (valueBefore, valueAfter, effect);
            }
            /**
             * @dev pack the components into a Delay object.
             */
            function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
                return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import "@openzeppelin/contracts/access/Ownable2Step.sol";
        import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import "@openzeppelin/contracts/governance/utils/Votes.sol";
        /**
         * @notice This contract creates token release schedules to linearly release those tokens over the defined duration.
         */
        contract LockRelease is Votes, Ownable2Step {
            /** Represents a release schedule for a specific beneficiary. */
            struct Schedule {
                uint256 total; // total tokens that the beneficiary will receive over the duration
                uint256 released; // already released tokens to the beneficiary
            }
            address public immutable token; // address of the token being released
            uint128 public immutable start; // start timestamp of the release schedule
            uint128 public immutable duration; // duration of the release schedule in seconds
            /** Represents a release schedule for a specific beneficiary. */
            mapping(address => Schedule) private schedules;
            /** Emitted when a group of release schedules is created. */
            event ScheduleStarted(address[] beneficiaries, uint256[] amounts);
            /** Emitted when tokens are released to a recipient. */
            event TokensReleased(address indexed beneficiary, uint256 amount);
            error InvalidArrayLengths();
            error ZeroDuration();
            error InvalidBeneficiary();
            error InvalidToken();
            error InvalidAmount();
            error DuplicateBeneficiary();
            error NothingToRelease();
            /**
             * @notice Deploys the LockRelease contract and sets up all beneficiary release schedules.
             * @param _token address of the beneficiary
             * @param _start the timestamp that the release schedule begins releasing tokens at
             * @param _duration the time period in seconds that tokens are released over
             * @param _beneficiaries array of beneficiary addresses to create release schedules for
             * @param _amounts array of the amount of tokens to be locked and released for each beneficiary
             */
            constructor(
                address _owner,
                address _token,
                uint128 _start,
                uint128 _duration,
                address[] memory _beneficiaries,
                uint256[] memory _amounts
            ) EIP712("DecentLockRelease", "1") Ownable(_owner) {
                if (_token == address(0)) revert InvalidToken();
                if (_duration == 0) revert ZeroDuration();
                token = _token;
                start = _start;
                duration = _duration;
                _addSchedules(_beneficiaries, _amounts);
            }
            /**
             * @notice Add new schedules to the contract, utilizing existing token, start, and duration
             * @dev Tokens are pulled from msg.sender directly in this function call
             * @param _beneficiaries array of beneficiary addresses to create release schedules for
             * @param _amounts array of the amount of tokens to be locked and released for each beneficiary
             */
            function addSchedules(
                address[] memory _beneficiaries,
                uint256[] memory _amounts
            ) public onlyOwner {
                uint256 totalAmount = _addSchedules(_beneficiaries, _amounts);
                IERC20(token).transferFrom(msg.sender, address(this), totalAmount);
            }
            function _addSchedules(
                address[] memory _beneficiaries,
                uint256[] memory _amounts
            ) private returns (uint256 totalAmount) {
                if (_beneficiaries.length != _amounts.length)
                    revert InvalidArrayLengths();
                for (uint16 i; i < _beneficiaries.length; ) {
                    uint256 amount = _amounts[i];
                    if (amount == 0) revert InvalidAmount();
                    address beneficiary = _beneficiaries[i];
                    if (beneficiary == address(0)) revert InvalidBeneficiary();
                    if (getTotal(beneficiary) != 0) revert DuplicateBeneficiary();
                    schedules[beneficiary] = Schedule(amount, 0);
                    // mint the beneficiary voting units
                    _transferVotingUnits(address(0), beneficiary, amount);
                    // beneficiary delegates to themself
                    _delegate(beneficiary, beneficiary);
                    // increase total
                    totalAmount += amount;
                    unchecked {
                        ++i;
                    }
                }
                emit ScheduleStarted(_beneficiaries, _amounts);
            }
            /**
             * @notice Release all releasable tokens to the caller.
             */
            function release() external {
                uint256 releasable = getReleasable(msg.sender);
                if (releasable == 0) revert NothingToRelease();
                // Update released amount
                schedules[msg.sender].released += releasable;
                // Burn the released voting units
                _transferVotingUnits(msg.sender, address(0), releasable);
                // Transfer tokens to recipient
                IERC20(token).transfer(msg.sender, releasable);
                emit TokensReleased(msg.sender, releasable);
            }
            /**
             * @notice Returns the total tokens that will be released to the beneficiary over the duration.
             * @param beneficiary address of the beneficiary
             * @return uint256 total tokens that will be released to the beneficiary
             */
            function getTotal(address beneficiary) public view returns (uint256) {
                return schedules[beneficiary].total;
            }
            /**
             * @notice Returns the total tokens already released to the beneficiary.
             * @param beneficiary address of the beneficiary
             * @return uint256 total tokens already released to the beneficiary
             */
            function getReleased(address beneficiary) public view returns (uint256) {
                return schedules[beneficiary].released;
            }
            /**
             * @notice Returns the total tokens that have matured until now according to the release schedule.
             * @param beneficiary address of the beneficiary
             * @return uint256 total tokens that have matured
             */
            function getTotalMatured(
                address beneficiary
            ) public view returns (uint256) {
                if (block.timestamp < start) return 0;
                uint256 total = getTotal(beneficiary);
                if (block.timestamp >= start + duration) return total;
                return (total * (block.timestamp - start)) / duration;
            }
            /**
             * @notice Returns the total tokens that can be released now.
             * @param beneficiary address of the beneficiary
             * @return uint256 the total tokens that can be released now
             */
            function getReleasable(address beneficiary) public view returns (uint256) {
                return getTotalMatured(beneficiary) - getReleased(beneficiary);
            }
            /**
             * @notice Returns the current amount of votes that the account has.
             * @param account the address to check current votes for
             * @return uint256 the current amount of votes that the account has
             */
            function getVotes(address account) public view override returns (uint256) {
                return super.getVotes(account) + IERC5805(token).getVotes(account);
            }
            /**
             * @notice Returns the amount of votes that the account had at a specific moment in the past.
             * @param account the address to check current votes for
             * @param blockNumber the past block number to check the account's votes at
             * @return uint256 the amount of votes
             */
            function getPastVotes(
                address account,
                uint256 blockNumber
            ) public view virtual override returns (uint256) {
                return
                    super.getPastVotes(account, blockNumber) +
                    IERC5805(token).getPastVotes(account, blockNumber);
            }
            /**
             * @notice Returns the current number of voting units held by an account.
             * @param account the address to check voting units for
             * @return uint256 the amount of voting units
             */
            function _getVotingUnits(
                address account
            ) internal view override returns (uint256) {
                return getTotal(account) - getReleased(account);
            }
        }
        

        File 4 of 4: DCNTToken
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
        pragma solidity ^0.8.20;
        import {IAccessControl} from "./IAccessControl.sol";
        import {Context} from "../utils/Context.sol";
        import {ERC165} from "../utils/introspection/ERC165.sol";
        /**
         * @dev Contract module that allows children to implement role-based access
         * control mechanisms. This is a lightweight version that doesn't allow enumerating role
         * members except through off-chain means by accessing the contract event logs. Some
         * applications may benefit from on-chain enumerability, for those cases see
         * {AccessControlEnumerable}.
         *
         * Roles are referred to by their `bytes32` identifier. These should be exposed
         * in the external API and be unique. The best way to achieve this is by
         * using `public constant` hash digests:
         *
         * ```solidity
         * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
         * ```
         *
         * Roles can be used to represent a set of permissions. To restrict access to a
         * function call, use {hasRole}:
         *
         * ```solidity
         * function foo() public {
         *     require(hasRole(MY_ROLE, msg.sender));
         *     ...
         * }
         * ```
         *
         * Roles can be granted and revoked dynamically via the {grantRole} and
         * {revokeRole} functions. Each role has an associated admin role, and only
         * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
         *
         * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
         * that only accounts with this role will be able to grant or revoke other
         * roles. More complex role relationships can be created by using
         * {_setRoleAdmin}.
         *
         * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
         * grant and revoke this role. Extra precautions should be taken to secure
         * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
         * to enforce additional security measures for this role.
         */
        abstract contract AccessControl is Context, IAccessControl, ERC165 {
            struct RoleData {
                mapping(address account => bool) hasRole;
                bytes32 adminRole;
            }
            mapping(bytes32 role => RoleData) private _roles;
            bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
            /**
             * @dev Modifier that checks that an account has a specific role. Reverts
             * with an {AccessControlUnauthorizedAccount} error including the required role.
             */
            modifier onlyRole(bytes32 role) {
                _checkRole(role);
                _;
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
            }
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) public view virtual returns (bool) {
                return _roles[role].hasRole[account];
            }
            /**
             * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
             * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
             */
            function _checkRole(bytes32 role) internal view virtual {
                _checkRole(role, _msgSender());
            }
            /**
             * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
             * is missing `role`.
             */
            function _checkRole(bytes32 role, address account) internal view virtual {
                if (!hasRole(role, account)) {
                    revert AccessControlUnauthorizedAccount(account, role);
                }
            }
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
                return _roles[role].adminRole;
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleGranted} event.
             */
            function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
                _grantRole(role, account);
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleRevoked} event.
             */
            function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
                _revokeRole(role, account);
            }
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been revoked `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `callerConfirmation`.
             *
             * May emit a {RoleRevoked} event.
             */
            function renounceRole(bytes32 role, address callerConfirmation) public virtual {
                if (callerConfirmation != _msgSender()) {
                    revert AccessControlBadConfirmation();
                }
                _revokeRole(role, callerConfirmation);
            }
            /**
             * @dev Sets `adminRole` as ``role``'s admin role.
             *
             * Emits a {RoleAdminChanged} event.
             */
            function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                bytes32 previousAdminRole = getRoleAdmin(role);
                _roles[role].adminRole = adminRole;
                emit RoleAdminChanged(role, previousAdminRole, adminRole);
            }
            /**
             * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleGranted} event.
             */
            function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
                if (!hasRole(role, account)) {
                    _roles[role].hasRole[account] = true;
                    emit RoleGranted(role, account, _msgSender());
                    return true;
                } else {
                    return false;
                }
            }
            /**
             * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleRevoked} event.
             */
            function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
                if (hasRole(role, account)) {
                    _roles[role].hasRole[account] = false;
                    emit RoleRevoked(role, account, _msgSender());
                    return true;
                } else {
                    return false;
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev External interface of AccessControl declared to support ERC165 detection.
         */
        interface IAccessControl {
            /**
             * @dev The `account` is missing a role.
             */
            error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
            /**
             * @dev The caller of a function is not the expected one.
             *
             * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
             */
            error AccessControlBadConfirmation();
            /**
             * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
             *
             * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
             * {RoleAdminChanged} not being emitted signaling this.
             */
            event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
            /**
             * @dev Emitted when `account` is granted `role`.
             *
             * `sender` is the account that originated the contract call, an admin role
             * bearer except when using {AccessControl-_setupRole}.
             */
            event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Emitted when `account` is revoked `role`.
             *
             * `sender` is the account that originated the contract call:
             *   - if using `revokeRole`, it is the admin role bearer
             *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
             */
            event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) external view returns (bool);
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {AccessControl-_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) external view returns (bytes32);
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function grantRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function revokeRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been granted `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `callerConfirmation`.
             */
            function renounceRole(bytes32 role, address callerConfirmation) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
         */
        interface IVotes {
            /**
             * @dev The signature used has expired.
             */
            error VotesExpiredSignature(uint256 expiry);
            /**
             * @dev Emitted when an account changes their delegate.
             */
            event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
            /**
             * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
             */
            event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);
            /**
             * @dev Returns the current amount of votes that `account` has.
             */
            function getVotes(address account) external view returns (uint256);
            /**
             * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
             * configured to use block numbers, this will return the value at the end of the corresponding block.
             */
            function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
            /**
             * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
             * configured to use block numbers, this will return the value at the end of the corresponding block.
             *
             * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
             * Votes that have not been delegated are still part of total supply, even though they would not participate in a
             * vote.
             */
            function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
            /**
             * @dev Returns the delegate that `account` has chosen.
             */
            function delegates(address account) external view returns (address);
            /**
             * @dev Delegates votes from the sender to `delegatee`.
             */
            function delegate(address delegatee) external;
            /**
             * @dev Delegates votes from signer to `delegatee`.
             */
            function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/Votes.sol)
        pragma solidity ^0.8.20;
        import {IERC5805} from "../../interfaces/IERC5805.sol";
        import {Context} from "../../utils/Context.sol";
        import {Nonces} from "../../utils/Nonces.sol";
        import {EIP712} from "../../utils/cryptography/EIP712.sol";
        import {Checkpoints} from "../../utils/structs/Checkpoints.sol";
        import {SafeCast} from "../../utils/math/SafeCast.sol";
        import {ECDSA} from "../../utils/cryptography/ECDSA.sol";
        import {Time} from "../../utils/types/Time.sol";
        /**
         * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be
         * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of
         * "representative" that will pool delegated voting units from different accounts and can then use it to vote in
         * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to
         * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative.
         *
         * This contract is often combined with a token contract such that voting units correspond to token units. For an
         * example, see {ERC721Votes}.
         *
         * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed
         * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the
         * cost of this history tracking optional.
         *
         * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return
         * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the
         * previous example, it would be included in {ERC721-_update}).
         */
        abstract contract Votes is Context, EIP712, Nonces, IERC5805 {
            using Checkpoints for Checkpoints.Trace208;
            bytes32 private constant DELEGATION_TYPEHASH =
                keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
            mapping(address account => address) private _delegatee;
            mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints;
            Checkpoints.Trace208 private _totalCheckpoints;
            /**
             * @dev The clock was incorrectly modified.
             */
            error ERC6372InconsistentClock();
            /**
             * @dev Lookup to future votes is not available.
             */
            error ERC5805FutureLookup(uint256 timepoint, uint48 clock);
            /**
             * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based
             * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match.
             */
            function clock() public view virtual returns (uint48) {
                return Time.blockNumber();
            }
            /**
             * @dev Machine-readable description of the clock as specified in EIP-6372.
             */
            // solhint-disable-next-line func-name-mixedcase
            function CLOCK_MODE() public view virtual returns (string memory) {
                // Check that the clock was not modified
                if (clock() != Time.blockNumber()) {
                    revert ERC6372InconsistentClock();
                }
                return "mode=blocknumber&from=default";
            }
            /**
             * @dev Returns the current amount of votes that `account` has.
             */
            function getVotes(address account) public view virtual returns (uint256) {
                return _delegateCheckpoints[account].latest();
            }
            /**
             * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
             * configured to use block numbers, this will return the value at the end of the corresponding block.
             *
             * Requirements:
             *
             * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
             */
            function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
                uint48 currentTimepoint = clock();
                if (timepoint >= currentTimepoint) {
                    revert ERC5805FutureLookup(timepoint, currentTimepoint);
                }
                return _delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint));
            }
            /**
             * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
             * configured to use block numbers, this will return the value at the end of the corresponding block.
             *
             * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
             * Votes that have not been delegated are still part of total supply, even though they would not participate in a
             * vote.
             *
             * Requirements:
             *
             * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
             */
            function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) {
                uint48 currentTimepoint = clock();
                if (timepoint >= currentTimepoint) {
                    revert ERC5805FutureLookup(timepoint, currentTimepoint);
                }
                return _totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint));
            }
            /**
             * @dev Returns the current total supply of votes.
             */
            function _getTotalSupply() internal view virtual returns (uint256) {
                return _totalCheckpoints.latest();
            }
            /**
             * @dev Returns the delegate that `account` has chosen.
             */
            function delegates(address account) public view virtual returns (address) {
                return _delegatee[account];
            }
            /**
             * @dev Delegates votes from the sender to `delegatee`.
             */
            function delegate(address delegatee) public virtual {
                address account = _msgSender();
                _delegate(account, delegatee);
            }
            /**
             * @dev Delegates votes from signer to `delegatee`.
             */
            function delegateBySig(
                address delegatee,
                uint256 nonce,
                uint256 expiry,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) public virtual {
                if (block.timestamp > expiry) {
                    revert VotesExpiredSignature(expiry);
                }
                address signer = ECDSA.recover(
                    _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
                    v,
                    r,
                    s
                );
                _useCheckedNonce(signer, nonce);
                _delegate(signer, delegatee);
            }
            /**
             * @dev Delegate all of `account`'s voting units to `delegatee`.
             *
             * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}.
             */
            function _delegate(address account, address delegatee) internal virtual {
                address oldDelegate = delegates(account);
                _delegatee[account] = delegatee;
                emit DelegateChanged(account, oldDelegate, delegatee);
                _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account));
            }
            /**
             * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to`
             * should be zero. Total supply of voting units will be adjusted with mints and burns.
             */
            function _transferVotingUnits(address from, address to, uint256 amount) internal virtual {
                if (from == address(0)) {
                    _push(_totalCheckpoints, _add, SafeCast.toUint208(amount));
                }
                if (to == address(0)) {
                    _push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount));
                }
                _moveDelegateVotes(delegates(from), delegates(to), amount);
            }
            /**
             * @dev Moves delegated votes from one delegate to another.
             */
            function _moveDelegateVotes(address from, address to, uint256 amount) private {
                if (from != to && amount > 0) {
                    if (from != address(0)) {
                        (uint256 oldValue, uint256 newValue) = _push(
                            _delegateCheckpoints[from],
                            _subtract,
                            SafeCast.toUint208(amount)
                        );
                        emit DelegateVotesChanged(from, oldValue, newValue);
                    }
                    if (to != address(0)) {
                        (uint256 oldValue, uint256 newValue) = _push(
                            _delegateCheckpoints[to],
                            _add,
                            SafeCast.toUint208(amount)
                        );
                        emit DelegateVotesChanged(to, oldValue, newValue);
                    }
                }
            }
            /**
             * @dev Get number of checkpoints for `account`.
             */
            function _numCheckpoints(address account) internal view virtual returns (uint32) {
                return SafeCast.toUint32(_delegateCheckpoints[account].length());
            }
            /**
             * @dev Get the `pos`-th checkpoint for `account`.
             */
            function _checkpoints(
                address account,
                uint32 pos
            ) internal view virtual returns (Checkpoints.Checkpoint208 memory) {
                return _delegateCheckpoints[account].at(pos);
            }
            function _push(
                Checkpoints.Trace208 storage store,
                function(uint208, uint208) view returns (uint208) op,
                uint208 delta
            ) private returns (uint208, uint208) {
                return store.push(clock(), op(store.latest(), delta));
            }
            function _add(uint208 a, uint208 b) private pure returns (uint208) {
                return a + b;
            }
            function _subtract(uint208 a, uint208 b) private pure returns (uint208) {
                return a - b;
            }
            /**
             * @dev Must return the voting units held by an account.
             */
            function _getVotingUnits(address) internal view virtual returns (uint256);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Standard ERC20 Errors
         * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
         */
        interface IERC20Errors {
            /**
             * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             * @param balance Current balance for the interacting account.
             * @param needed Minimum amount required to perform a transfer.
             */
            error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
            /**
             * @dev Indicates a failure with the token `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             */
            error ERC20InvalidSender(address sender);
            /**
             * @dev Indicates a failure with the token `receiver`. Used in transfers.
             * @param receiver Address to which tokens are being transferred.
             */
            error ERC20InvalidReceiver(address receiver);
            /**
             * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
             * @param spender Address that may be allowed to operate on tokens without being their owner.
             * @param allowance Amount of tokens a `spender` is allowed to operate with.
             * @param needed Minimum amount required to perform a transfer.
             */
            error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
            /**
             * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
             * @param approver Address initiating an approval operation.
             */
            error ERC20InvalidApprover(address approver);
            /**
             * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
             * @param spender Address that may be allowed to operate on tokens without being their owner.
             */
            error ERC20InvalidSpender(address spender);
        }
        /**
         * @dev Standard ERC721 Errors
         * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
         */
        interface IERC721Errors {
            /**
             * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
             * Used in balance queries.
             * @param owner Address of the current owner of a token.
             */
            error ERC721InvalidOwner(address owner);
            /**
             * @dev Indicates a `tokenId` whose `owner` is the zero address.
             * @param tokenId Identifier number of a token.
             */
            error ERC721NonexistentToken(uint256 tokenId);
            /**
             * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             * @param tokenId Identifier number of a token.
             * @param owner Address of the current owner of a token.
             */
            error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
            /**
             * @dev Indicates a failure with the token `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             */
            error ERC721InvalidSender(address sender);
            /**
             * @dev Indicates a failure with the token `receiver`. Used in transfers.
             * @param receiver Address to which tokens are being transferred.
             */
            error ERC721InvalidReceiver(address receiver);
            /**
             * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             * @param tokenId Identifier number of a token.
             */
            error ERC721InsufficientApproval(address operator, uint256 tokenId);
            /**
             * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
             * @param approver Address initiating an approval operation.
             */
            error ERC721InvalidApprover(address approver);
            /**
             * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             */
            error ERC721InvalidOperator(address operator);
        }
        /**
         * @dev Standard ERC1155 Errors
         * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
         */
        interface IERC1155Errors {
            /**
             * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             * @param balance Current balance for the interacting account.
             * @param needed Minimum amount required to perform a transfer.
             * @param tokenId Identifier number of a token.
             */
            error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
            /**
             * @dev Indicates a failure with the token `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             */
            error ERC1155InvalidSender(address sender);
            /**
             * @dev Indicates a failure with the token `receiver`. Used in transfers.
             * @param receiver Address to which tokens are being transferred.
             */
            error ERC1155InvalidReceiver(address receiver);
            /**
             * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             * @param owner Address of the current owner of a token.
             */
            error ERC1155MissingApprovalForAll(address operator, address owner);
            /**
             * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
             * @param approver Address initiating an approval operation.
             */
            error ERC1155InvalidApprover(address approver);
            /**
             * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             */
            error ERC1155InvalidOperator(address operator);
            /**
             * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
             * Used in batch transfers.
             * @param idsLength Length of the array of token identifiers
             * @param valuesLength Length of the array of token amounts
             */
            error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
        pragma solidity ^0.8.20;
        interface IERC5267 {
            /**
             * @dev MAY be emitted to signal that the domain could have changed.
             */
            event EIP712DomainChanged();
            /**
             * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
             * signature.
             */
            function eip712Domain()
                external
                view
                returns (
                    bytes1 fields,
                    string memory name,
                    string memory version,
                    uint256 chainId,
                    address verifyingContract,
                    bytes32 salt,
                    uint256[] memory extensions
                );
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol)
        pragma solidity ^0.8.20;
        import {IVotes} from "../governance/utils/IVotes.sol";
        import {IERC6372} from "./IERC6372.sol";
        interface IERC5805 is IERC6372, IVotes {}
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol)
        pragma solidity ^0.8.20;
        interface IERC6372 {
            /**
             * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
             */
            function clock() external view returns (uint48);
            /**
             * @dev Description of the clock
             */
            // solhint-disable-next-line func-name-mixedcase
            function CLOCK_MODE() external view returns (string memory);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "./IERC20.sol";
        import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
        import {Context} from "../../utils/Context.sol";
        import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
        /**
         * @dev Implementation of the {IERC20} interface.
         *
         * This implementation is agnostic to the way tokens are created. This means
         * that a supply mechanism has to be added in a derived contract using {_mint}.
         *
         * TIP: For a detailed writeup see our guide
         * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
         * to implement supply mechanisms].
         *
         * The default value of {decimals} is 18. To change this, you should override
         * this function so it returns a different value.
         *
         * We have followed general OpenZeppelin Contracts guidelines: functions revert
         * instead returning `false` on failure. This behavior is nonetheless
         * conventional and does not conflict with the expectations of ERC20
         * applications.
         *
         * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
         * This allows applications to reconstruct the allowance for all accounts just
         * by listening to said events. Other implementations of the EIP may not emit
         * these events, as it isn't required by the specification.
         */
        abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
            mapping(address account => uint256) private _balances;
            mapping(address account => mapping(address spender => uint256)) private _allowances;
            uint256 private _totalSupply;
            string private _name;
            string private _symbol;
            /**
             * @dev Sets the values for {name} and {symbol}.
             *
             * All two of these values are immutable: they can only be set once during
             * construction.
             */
            constructor(string memory name_, string memory symbol_) {
                _name = name_;
                _symbol = symbol_;
            }
            /**
             * @dev Returns the name of the token.
             */
            function name() public view virtual returns (string memory) {
                return _name;
            }
            /**
             * @dev Returns the symbol of the token, usually a shorter version of the
             * name.
             */
            function symbol() public view virtual returns (string memory) {
                return _symbol;
            }
            /**
             * @dev Returns the number of decimals used to get its user representation.
             * For example, if `decimals` equals `2`, a balance of `505` tokens should
             * be displayed to a user as `5.05` (`505 / 10 ** 2`).
             *
             * Tokens usually opt for a value of 18, imitating the relationship between
             * Ether and Wei. This is the default value returned by this function, unless
             * it's overridden.
             *
             * NOTE: This information is only used for _display_ purposes: it in
             * no way affects any of the arithmetic of the contract, including
             * {IERC20-balanceOf} and {IERC20-transfer}.
             */
            function decimals() public view virtual returns (uint8) {
                return 18;
            }
            /**
             * @dev See {IERC20-totalSupply}.
             */
            function totalSupply() public view virtual returns (uint256) {
                return _totalSupply;
            }
            /**
             * @dev See {IERC20-balanceOf}.
             */
            function balanceOf(address account) public view virtual returns (uint256) {
                return _balances[account];
            }
            /**
             * @dev See {IERC20-transfer}.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - the caller must have a balance of at least `value`.
             */
            function transfer(address to, uint256 value) public virtual returns (bool) {
                address owner = _msgSender();
                _transfer(owner, to, value);
                return true;
            }
            /**
             * @dev See {IERC20-allowance}.
             */
            function allowance(address owner, address spender) public view virtual returns (uint256) {
                return _allowances[owner][spender];
            }
            /**
             * @dev See {IERC20-approve}.
             *
             * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
             * `transferFrom`. This is semantically equivalent to an infinite approval.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function approve(address spender, uint256 value) public virtual returns (bool) {
                address owner = _msgSender();
                _approve(owner, spender, value);
                return true;
            }
            /**
             * @dev See {IERC20-transferFrom}.
             *
             * Emits an {Approval} event indicating the updated allowance. This is not
             * required by the EIP. See the note at the beginning of {ERC20}.
             *
             * NOTE: Does not update the allowance if the current allowance
             * is the maximum `uint256`.
             *
             * Requirements:
             *
             * - `from` and `to` cannot be the zero address.
             * - `from` must have a balance of at least `value`.
             * - the caller must have allowance for ``from``'s tokens of at least
             * `value`.
             */
            function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
                address spender = _msgSender();
                _spendAllowance(from, spender, value);
                _transfer(from, to, value);
                return true;
            }
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to`.
             *
             * This internal function is equivalent to {transfer}, and can be used to
             * e.g. implement automatic token fees, slashing mechanisms, etc.
             *
             * Emits a {Transfer} event.
             *
             * NOTE: This function is not virtual, {_update} should be overridden instead.
             */
            function _transfer(address from, address to, uint256 value) internal {
                if (from == address(0)) {
                    revert ERC20InvalidSender(address(0));
                }
                if (to == address(0)) {
                    revert ERC20InvalidReceiver(address(0));
                }
                _update(from, to, value);
            }
            /**
             * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
             * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
             * this function.
             *
             * Emits a {Transfer} event.
             */
            function _update(address from, address to, uint256 value) internal virtual {
                if (from == address(0)) {
                    // Overflow check required: The rest of the code assumes that totalSupply never overflows
                    _totalSupply += value;
                } else {
                    uint256 fromBalance = _balances[from];
                    if (fromBalance < value) {
                        revert ERC20InsufficientBalance(from, fromBalance, value);
                    }
                    unchecked {
                        // Overflow not possible: value <= fromBalance <= totalSupply.
                        _balances[from] = fromBalance - value;
                    }
                }
                if (to == address(0)) {
                    unchecked {
                        // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                        _totalSupply -= value;
                    }
                } else {
                    unchecked {
                        // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                        _balances[to] += value;
                    }
                }
                emit Transfer(from, to, value);
            }
            /**
             * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
             * Relies on the `_update` mechanism
             *
             * Emits a {Transfer} event with `from` set to the zero address.
             *
             * NOTE: This function is not virtual, {_update} should be overridden instead.
             */
            function _mint(address account, uint256 value) internal {
                if (account == address(0)) {
                    revert ERC20InvalidReceiver(address(0));
                }
                _update(address(0), account, value);
            }
            /**
             * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
             * Relies on the `_update` mechanism.
             *
             * Emits a {Transfer} event with `to` set to the zero address.
             *
             * NOTE: This function is not virtual, {_update} should be overridden instead
             */
            function _burn(address account, uint256 value) internal {
                if (account == address(0)) {
                    revert ERC20InvalidSender(address(0));
                }
                _update(account, address(0), value);
            }
            /**
             * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
             *
             * This internal function is equivalent to `approve`, and can be used to
             * e.g. set automatic allowances for certain subsystems, etc.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `owner` cannot be the zero address.
             * - `spender` cannot be the zero address.
             *
             * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
             */
            function _approve(address owner, address spender, uint256 value) internal {
                _approve(owner, spender, value, true);
            }
            /**
             * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
             *
             * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
             * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
             * `Approval` event during `transferFrom` operations.
             *
             * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
             * true using the following override:
             * ```
             * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
             *     super._approve(owner, spender, value, true);
             * }
             * ```
             *
             * Requirements are the same as {_approve}.
             */
            function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
                if (owner == address(0)) {
                    revert ERC20InvalidApprover(address(0));
                }
                if (spender == address(0)) {
                    revert ERC20InvalidSpender(address(0));
                }
                _allowances[owner][spender] = value;
                if (emitEvent) {
                    emit Approval(owner, spender, value);
                }
            }
            /**
             * @dev Updates `owner` s allowance for `spender` based on spent `value`.
             *
             * Does not update the allowance value in case of infinite allowance.
             * Revert if not enough allowance is available.
             *
             * Does not emit an {Approval} event.
             */
            function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
                uint256 currentAllowance = allowance(owner, spender);
                if (currentAllowance != type(uint256).max) {
                    if (currentAllowance < value) {
                        revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                    }
                    unchecked {
                        _approve(owner, spender, currentAllowance - value, false);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol)
        pragma solidity ^0.8.20;
        import {IERC20Permit} from "./IERC20Permit.sol";
        import {ERC20} from "../ERC20.sol";
        import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
        import {EIP712} from "../../../utils/cryptography/EIP712.sol";
        import {Nonces} from "../../../utils/Nonces.sol";
        /**
         * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
         * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
         *
         * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
         * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
         * need to send a transaction, and thus is not required to hold Ether at all.
         */
        abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
            bytes32 private constant PERMIT_TYPEHASH =
                keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
            /**
             * @dev Permit deadline has expired.
             */
            error ERC2612ExpiredSignature(uint256 deadline);
            /**
             * @dev Mismatched signature.
             */
            error ERC2612InvalidSigner(address signer, address owner);
            /**
             * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
             *
             * It's a good idea to use the same `name` that is defined as the ERC20 token name.
             */
            constructor(string memory name) EIP712(name, "1") {}
            /**
             * @inheritdoc IERC20Permit
             */
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) public virtual {
                if (block.timestamp > deadline) {
                    revert ERC2612ExpiredSignature(deadline);
                }
                bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
                bytes32 hash = _hashTypedDataV4(structHash);
                address signer = ECDSA.recover(hash, v, r, s);
                if (signer != owner) {
                    revert ERC2612InvalidSigner(signer, owner);
                }
                _approve(owner, spender, value);
            }
            /**
             * @inheritdoc IERC20Permit
             */
            function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
                return super.nonces(owner);
            }
            /**
             * @inheritdoc IERC20Permit
             */
            // solhint-disable-next-line func-name-mixedcase
            function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
                return _domainSeparatorV4();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Votes.sol)
        pragma solidity ^0.8.20;
        import {ERC20} from "../ERC20.sol";
        import {Votes} from "../../../governance/utils/Votes.sol";
        import {Checkpoints} from "../../../utils/structs/Checkpoints.sol";
        /**
         * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's,
         * and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1.
         *
         * NOTE: This contract does not provide interface compatibility with Compound's COMP token.
         *
         * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
         * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting
         * power can be queried through the public accessors {getVotes} and {getPastVotes}.
         *
         * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
         * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
         */
        abstract contract ERC20Votes is ERC20, Votes {
            /**
             * @dev Total supply cap has been exceeded, introducing a risk of votes overflowing.
             */
            error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap);
            /**
             * @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1).
             *
             * This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256,
             * so that checkpoints can be stored in the Trace208 structure used by {{Votes}}. Increasing this value will not
             * remove the underlying limitation, and will cause {_update} to fail because of a math overflow in
             * {_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if
             * additional logic requires it. When resolving override conflicts on this function, the minimum should be
             * returned.
             */
            function _maxSupply() internal view virtual returns (uint256) {
                return type(uint208).max;
            }
            /**
             * @dev Move voting power when tokens are transferred.
             *
             * Emits a {IVotes-DelegateVotesChanged} event.
             */
            function _update(address from, address to, uint256 value) internal virtual override {
                super._update(from, to, value);
                if (from == address(0)) {
                    uint256 supply = totalSupply();
                    uint256 cap = _maxSupply();
                    if (supply > cap) {
                        revert ERC20ExceededSafeSupply(supply, cap);
                    }
                }
                _transferVotingUnits(from, to, value);
            }
            /**
             * @dev Returns the voting units of an `account`.
             *
             * WARNING: Overriding this function may compromise the internal vote accounting.
             * `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change.
             */
            function _getVotingUnits(address account) internal view virtual override returns (uint256) {
                return balanceOf(account);
            }
            /**
             * @dev Get number of checkpoints for `account`.
             */
            function numCheckpoints(address account) public view virtual returns (uint32) {
                return _numCheckpoints(account);
            }
            /**
             * @dev Get the `pos`-th checkpoint for `account`.
             */
            function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) {
                return _checkpoints(account, pos);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "../IERC20.sol";
        /**
         * @dev Interface for the optional metadata functions from the ERC20 standard.
         */
        interface IERC20Metadata is IERC20 {
            /**
             * @dev Returns the name of the token.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the symbol of the token.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the decimals places of the token.
             */
            function decimals() external view returns (uint8);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
         * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
         *
         * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
         * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
         * need to send a transaction, and thus is not required to hold Ether at all.
         *
         * ==== Security Considerations
         *
         * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
         * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
         * considered as an intention to spend the allowance in any specific way. The second is that because permits have
         * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
         * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
         * generally recommended is:
         *
         * ```solidity
         * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
         *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
         *     doThing(..., value);
         * }
         *
         * function doThing(..., uint256 value) public {
         *     token.safeTransferFrom(msg.sender, address(this), value);
         *     ...
         * }
         * ```
         *
         * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
         * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
         * {SafeERC20-safeTransferFrom}).
         *
         * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
         * contracts should have entry points that don't rely on permit.
         */
        interface IERC20Permit {
            /**
             * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
             * given ``owner``'s signed approval.
             *
             * IMPORTANT: The same issues {IERC20-approve} has related to transaction
             * ordering also apply here.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `deadline` must be a timestamp in the future.
             * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
             * over the EIP712-formatted function arguments.
             * - the signature must use ``owner``'s current nonce (see {nonces}).
             *
             * For more information on the signature format, see the
             * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
             * section].
             *
             * CAUTION: See Security Considerations above.
             */
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
            /**
             * @dev Returns the current nonce for `owner`. This value must be
             * included whenever a signature is generated for {permit}.
             *
             * Every successful call to {permit} increases ``owner``'s nonce by one. This
             * prevents a signature from being used multiple times.
             */
            function nonces(address owner) external view returns (uint256);
            /**
             * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
             */
            // solhint-disable-next-line func-name-mixedcase
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the value of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the value of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 value) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the
             * allowance mechanism. `value` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 value) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
         *
         * These functions can be used to verify that a message was signed by the holder
         * of the private keys of a given address.
         */
        library ECDSA {
            enum RecoverError {
                NoError,
                InvalidSignature,
                InvalidSignatureLength,
                InvalidSignatureS
            }
            /**
             * @dev The signature derives the `address(0)`.
             */
            error ECDSAInvalidSignature();
            /**
             * @dev The signature has an invalid length.
             */
            error ECDSAInvalidSignatureLength(uint256 length);
            /**
             * @dev The signature has an S value that is in the upper half order.
             */
            error ECDSAInvalidSignatureS(bytes32 s);
            /**
             * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
             * return address(0) without also returning an error description. Errors are documented using an enum (error type)
             * and a bytes32 providing additional information about the error.
             *
             * If no error is returned, then the address can be used for verification purposes.
             *
             * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
             * this function rejects them by requiring the `s` value to be in the lower
             * half order, and the `v` value to be either 27 or 28.
             *
             * IMPORTANT: `hash` _must_ be the result of a hash operation for the
             * verification to be secure: it is possible to craft signatures that
             * recover to arbitrary addresses for non-hashed data. A safe way to ensure
             * this is by receiving a hash of the original message (which may otherwise
             * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
             *
             * Documentation for signature generation:
             * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
             * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
             */
            function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
                if (signature.length == 65) {
                    bytes32 r;
                    bytes32 s;
                    uint8 v;
                    // ecrecover takes the signature parameters, and the only way to get them
                    // currently is to use assembly.
                    /// @solidity memory-safe-assembly
                    assembly {
                        r := mload(add(signature, 0x20))
                        s := mload(add(signature, 0x40))
                        v := byte(0, mload(add(signature, 0x60)))
                    }
                    return tryRecover(hash, v, r, s);
                } else {
                    return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
                }
            }
            /**
             * @dev Returns the address that signed a hashed message (`hash`) with
             * `signature`. This address can then be used for verification purposes.
             *
             * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
             * this function rejects them by requiring the `s` value to be in the lower
             * half order, and the `v` value to be either 27 or 28.
             *
             * IMPORTANT: `hash` _must_ be the result of a hash operation for the
             * verification to be secure: it is possible to craft signatures that
             * recover to arbitrary addresses for non-hashed data. A safe way to ensure
             * this is by receiving a hash of the original message (which may otherwise
             * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
             */
            function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
             *
             * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
             */
            function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
                unchecked {
                    bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                    // We do not check for an overflow here since the shift operation results in 0 or 1.
                    uint8 v = uint8((uint256(vs) >> 255) + 27);
                    return tryRecover(hash, v, r, s);
                }
            }
            /**
             * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
             */
            function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
             * `r` and `s` signature fields separately.
             */
            function tryRecover(
                bytes32 hash,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal pure returns (address, RecoverError, bytes32) {
                // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
                // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                //
                // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                // these malleable signatures as well.
                if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                    return (address(0), RecoverError.InvalidSignatureS, s);
                }
                // If the signature is valid (and not malleable), return the signer address
                address signer = ecrecover(hash, v, r, s);
                if (signer == address(0)) {
                    return (address(0), RecoverError.InvalidSignature, bytes32(0));
                }
                return (signer, RecoverError.NoError, bytes32(0));
            }
            /**
             * @dev Overload of {ECDSA-recover} that receives the `v`,
             * `r` and `s` signature fields separately.
             */
            function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
             */
            function _throwError(RecoverError error, bytes32 errorArg) private pure {
                if (error == RecoverError.NoError) {
                    return; // no error: do nothing
                } else if (error == RecoverError.InvalidSignature) {
                    revert ECDSAInvalidSignature();
                } else if (error == RecoverError.InvalidSignatureLength) {
                    revert ECDSAInvalidSignatureLength(uint256(errorArg));
                } else if (error == RecoverError.InvalidSignatureS) {
                    revert ECDSAInvalidSignatureS(errorArg);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
        pragma solidity ^0.8.20;
        import {MessageHashUtils} from "./MessageHashUtils.sol";
        import {ShortStrings, ShortString} from "../ShortStrings.sol";
        import {IERC5267} from "../../interfaces/IERC5267.sol";
        /**
         * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
         *
         * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
         * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
         * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
         * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
         *
         * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
         * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
         * ({_hashTypedDataV4}).
         *
         * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
         * the chain id to protect against replay attacks on an eventual fork of the chain.
         *
         * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
         * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
         *
         * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
         * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
         * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
         *
         * @custom:oz-upgrades-unsafe-allow state-variable-immutable
         */
        abstract contract EIP712 is IERC5267 {
            using ShortStrings for *;
            bytes32 private constant TYPE_HASH =
                keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
            // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
            // invalidate the cached domain separator if the chain id changes.
            bytes32 private immutable _cachedDomainSeparator;
            uint256 private immutable _cachedChainId;
            address private immutable _cachedThis;
            bytes32 private immutable _hashedName;
            bytes32 private immutable _hashedVersion;
            ShortString private immutable _name;
            ShortString private immutable _version;
            string private _nameFallback;
            string private _versionFallback;
            /**
             * @dev Initializes the domain separator and parameter caches.
             *
             * The meaning of `name` and `version` is specified in
             * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
             *
             * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
             * - `version`: the current major version of the signing domain.
             *
             * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
             * contract upgrade].
             */
            constructor(string memory name, string memory version) {
                _name = name.toShortStringWithFallback(_nameFallback);
                _version = version.toShortStringWithFallback(_versionFallback);
                _hashedName = keccak256(bytes(name));
                _hashedVersion = keccak256(bytes(version));
                _cachedChainId = block.chainid;
                _cachedDomainSeparator = _buildDomainSeparator();
                _cachedThis = address(this);
            }
            /**
             * @dev Returns the domain separator for the current chain.
             */
            function _domainSeparatorV4() internal view returns (bytes32) {
                if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
                    return _cachedDomainSeparator;
                } else {
                    return _buildDomainSeparator();
                }
            }
            function _buildDomainSeparator() private view returns (bytes32) {
                return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
            }
            /**
             * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
             * function returns the hash of the fully encoded EIP712 message for this domain.
             *
             * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
             *
             * ```solidity
             * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
             *     keccak256("Mail(address to,string contents)"),
             *     mailTo,
             *     keccak256(bytes(mailContents))
             * )));
             * address signer = ECDSA.recover(digest, signature);
             * ```
             */
            function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
                return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
            }
            /**
             * @dev See {IERC-5267}.
             */
            function eip712Domain()
                public
                view
                virtual
                returns (
                    bytes1 fields,
                    string memory name,
                    string memory version,
                    uint256 chainId,
                    address verifyingContract,
                    bytes32 salt,
                    uint256[] memory extensions
                )
            {
                return (
                    hex"0f", // 01111
                    _EIP712Name(),
                    _EIP712Version(),
                    block.chainid,
                    address(this),
                    bytes32(0),
                    new uint256[](0)
                );
            }
            /**
             * @dev The name parameter for the EIP712 domain.
             *
             * NOTE: By default this function reads _name which is an immutable value.
             * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
             */
            // solhint-disable-next-line func-name-mixedcase
            function _EIP712Name() internal view returns (string memory) {
                return _name.toStringWithFallback(_nameFallback);
            }
            /**
             * @dev The version parameter for the EIP712 domain.
             *
             * NOTE: By default this function reads _version which is an immutable value.
             * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
             */
            // solhint-disable-next-line func-name-mixedcase
            function _EIP712Version() internal view returns (string memory) {
                return _version.toStringWithFallback(_versionFallback);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
        pragma solidity ^0.8.20;
        import {Strings} from "../Strings.sol";
        /**
         * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
         *
         * The library provides methods for generating a hash of a message that conforms to the
         * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
         * specifications.
         */
        library MessageHashUtils {
            /**
             * @dev Returns the keccak256 digest of an EIP-191 signed data with version
             * `0x45` (`personal_sign` messages).
             *
             * The digest is calculated by prefixing a bytes32 `messageHash` with
             * `"\\x19Ethereum Signed Message:\
        32"` and hashing the result. It corresponds with the
             * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
             *
             * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
             * keccak256, although any bytes32 value can be safely used because the final digest will
             * be re-hashed.
             *
             * See {ECDSA-recover}.
             */
            function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x00, "\\x19Ethereum Signed Message:\
        32") // 32 is the bytes-length of messageHash
                    mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                    digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
                }
            }
            /**
             * @dev Returns the keccak256 digest of an EIP-191 signed data with version
             * `0x45` (`personal_sign` messages).
             *
             * The digest is calculated by prefixing an arbitrary `message` with
             * `"\\x19Ethereum Signed Message:\
        " + len(message)` and hashing the result. It corresponds with the
             * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
             *
             * See {ECDSA-recover}.
             */
            function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
                return
                    keccak256(bytes.concat("\\x19Ethereum Signed Message:\
        ", bytes(Strings.toString(message.length)), message));
            }
            /**
             * @dev Returns the keccak256 digest of an EIP-191 signed data with version
             * `0x00` (data with intended validator).
             *
             * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
             * `validator` address. Then hashing the result.
             *
             * See {ECDSA-recover}.
             */
            function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
                return keccak256(abi.encodePacked(hex"19_00", validator, data));
            }
            /**
             * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
             *
             * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
             * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
             * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
             *
             * See {ECDSA-recover}.
             */
            function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
                /// @solidity memory-safe-assembly
                assembly {
                    let ptr := mload(0x40)
                    mstore(ptr, hex"19_01")
                    mstore(add(ptr, 0x02), domainSeparator)
                    mstore(add(ptr, 0x22), structHash)
                    digest := keccak256(ptr, 0x42)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
        pragma solidity ^0.8.20;
        import {IERC165} from "./IERC165.sol";
        /**
         * @dev Implementation of the {IERC165} interface.
         *
         * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
         * for the additional interface id that will be supported. For example:
         *
         * ```solidity
         * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
         *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
         * }
         * ```
         */
        abstract contract ERC165 is IERC165 {
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
                return interfaceId == type(IERC165).interfaceId;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            /**
             * @dev Muldiv operation overflow.
             */
            error MathOverflowedMulDiv();
            enum Rounding {
                Floor, // Toward negative infinity
                Ceil, // Toward positive infinity
                Trunc, // Toward zero
                Expand // Away from zero
            }
            /**
             * @dev Returns the addition of two unsigned integers, with an overflow flag.
             */
            function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    uint256 c = a + b;
                    if (c < a) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
             */
            function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b > a) return (false, 0);
                    return (true, a - b);
                }
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
             */
            function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                    // benefit is lost if 'b' is also tested.
                    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                    if (a == 0) return (true, 0);
                    uint256 c = a * b;
                    if (c / a != b) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the division of two unsigned integers, with a division by zero flag.
             */
            function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a / b);
                }
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
             */
            function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a % b);
                }
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds towards infinity instead
             * of rounding towards zero.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                if (b == 0) {
                    // Guarantee the same behavior as in a regular Solidity division.
                    return a / b;
                }
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
             * denominator == 0.
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
             * Uniswap Labs also under MIT license.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0 = x * y; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                        // The surrounding unchecked block does not change this fact.
                        // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    if (denominator <= prod1) {
                        revert MathOverflowedMulDiv();
                    }
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                    // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                    uint256 twos = denominator & (0 - denominator);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                    // works in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
             * towards zero.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                //
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                //
                // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                //
                // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1 << (log2(a) >> 1);
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 2 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 128;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 64;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 32;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 16;
                    }
                    if (value >> 8 > 0) {
                        value >>= 8;
                        result += 8;
                    }
                    if (value >> 4 > 0) {
                        value >>= 4;
                        result += 4;
                    }
                    if (value >> 2 > 0) {
                        value >>= 2;
                        result += 2;
                    }
                    if (value >> 1 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 10 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10 ** 64) {
                        value /= 10 ** 64;
                        result += 64;
                    }
                    if (value >= 10 ** 32) {
                        value /= 10 ** 32;
                        result += 32;
                    }
                    if (value >= 10 ** 16) {
                        value /= 10 ** 16;
                        result += 16;
                    }
                    if (value >= 10 ** 8) {
                        value /= 10 ** 8;
                        result += 8;
                    }
                    if (value >= 10 ** 4) {
                        value /= 10 ** 4;
                        result += 4;
                    }
                    if (value >= 10 ** 2) {
                        value /= 10 ** 2;
                        result += 2;
                    }
                    if (value >= 10 ** 1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 256 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 16;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 8;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 4;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 2;
                    }
                    if (value >> 8 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
                }
            }
            /**
             * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
             */
            function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
                return uint8(rounding) % 2 == 1;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
        // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
        pragma solidity ^0.8.20;
        /**
         * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
         * checks.
         *
         * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
         * easily result in undesired exploitation or bugs, since developers usually
         * assume that overflows raise errors. `SafeCast` restores this intuition by
         * reverting the transaction when such an operation overflows.
         *
         * Using this library instead of the unchecked operations eliminates an entire
         * class of bugs, so it's recommended to use it always.
         */
        library SafeCast {
            /**
             * @dev Value doesn't fit in an uint of `bits` size.
             */
            error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
            /**
             * @dev An int value doesn't fit in an uint of `bits` size.
             */
            error SafeCastOverflowedIntToUint(int256 value);
            /**
             * @dev Value doesn't fit in an int of `bits` size.
             */
            error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
            /**
             * @dev An uint value doesn't fit in an int of `bits` size.
             */
            error SafeCastOverflowedUintToInt(uint256 value);
            /**
             * @dev Returns the downcasted uint248 from uint256, reverting on
             * overflow (when the input is greater than largest uint248).
             *
             * Counterpart to Solidity's `uint248` operator.
             *
             * Requirements:
             *
             * - input must fit into 248 bits
             */
            function toUint248(uint256 value) internal pure returns (uint248) {
                if (value > type(uint248).max) {
                    revert SafeCastOverflowedUintDowncast(248, value);
                }
                return uint248(value);
            }
            /**
             * @dev Returns the downcasted uint240 from uint256, reverting on
             * overflow (when the input is greater than largest uint240).
             *
             * Counterpart to Solidity's `uint240` operator.
             *
             * Requirements:
             *
             * - input must fit into 240 bits
             */
            function toUint240(uint256 value) internal pure returns (uint240) {
                if (value > type(uint240).max) {
                    revert SafeCastOverflowedUintDowncast(240, value);
                }
                return uint240(value);
            }
            /**
             * @dev Returns the downcasted uint232 from uint256, reverting on
             * overflow (when the input is greater than largest uint232).
             *
             * Counterpart to Solidity's `uint232` operator.
             *
             * Requirements:
             *
             * - input must fit into 232 bits
             */
            function toUint232(uint256 value) internal pure returns (uint232) {
                if (value > type(uint232).max) {
                    revert SafeCastOverflowedUintDowncast(232, value);
                }
                return uint232(value);
            }
            /**
             * @dev Returns the downcasted uint224 from uint256, reverting on
             * overflow (when the input is greater than largest uint224).
             *
             * Counterpart to Solidity's `uint224` operator.
             *
             * Requirements:
             *
             * - input must fit into 224 bits
             */
            function toUint224(uint256 value) internal pure returns (uint224) {
                if (value > type(uint224).max) {
                    revert SafeCastOverflowedUintDowncast(224, value);
                }
                return uint224(value);
            }
            /**
             * @dev Returns the downcasted uint216 from uint256, reverting on
             * overflow (when the input is greater than largest uint216).
             *
             * Counterpart to Solidity's `uint216` operator.
             *
             * Requirements:
             *
             * - input must fit into 216 bits
             */
            function toUint216(uint256 value) internal pure returns (uint216) {
                if (value > type(uint216).max) {
                    revert SafeCastOverflowedUintDowncast(216, value);
                }
                return uint216(value);
            }
            /**
             * @dev Returns the downcasted uint208 from uint256, reverting on
             * overflow (when the input is greater than largest uint208).
             *
             * Counterpart to Solidity's `uint208` operator.
             *
             * Requirements:
             *
             * - input must fit into 208 bits
             */
            function toUint208(uint256 value) internal pure returns (uint208) {
                if (value > type(uint208).max) {
                    revert SafeCastOverflowedUintDowncast(208, value);
                }
                return uint208(value);
            }
            /**
             * @dev Returns the downcasted uint200 from uint256, reverting on
             * overflow (when the input is greater than largest uint200).
             *
             * Counterpart to Solidity's `uint200` operator.
             *
             * Requirements:
             *
             * - input must fit into 200 bits
             */
            function toUint200(uint256 value) internal pure returns (uint200) {
                if (value > type(uint200).max) {
                    revert SafeCastOverflowedUintDowncast(200, value);
                }
                return uint200(value);
            }
            /**
             * @dev Returns the downcasted uint192 from uint256, reverting on
             * overflow (when the input is greater than largest uint192).
             *
             * Counterpart to Solidity's `uint192` operator.
             *
             * Requirements:
             *
             * - input must fit into 192 bits
             */
            function toUint192(uint256 value) internal pure returns (uint192) {
                if (value > type(uint192).max) {
                    revert SafeCastOverflowedUintDowncast(192, value);
                }
                return uint192(value);
            }
            /**
             * @dev Returns the downcasted uint184 from uint256, reverting on
             * overflow (when the input is greater than largest uint184).
             *
             * Counterpart to Solidity's `uint184` operator.
             *
             * Requirements:
             *
             * - input must fit into 184 bits
             */
            function toUint184(uint256 value) internal pure returns (uint184) {
                if (value > type(uint184).max) {
                    revert SafeCastOverflowedUintDowncast(184, value);
                }
                return uint184(value);
            }
            /**
             * @dev Returns the downcasted uint176 from uint256, reverting on
             * overflow (when the input is greater than largest uint176).
             *
             * Counterpart to Solidity's `uint176` operator.
             *
             * Requirements:
             *
             * - input must fit into 176 bits
             */
            function toUint176(uint256 value) internal pure returns (uint176) {
                if (value > type(uint176).max) {
                    revert SafeCastOverflowedUintDowncast(176, value);
                }
                return uint176(value);
            }
            /**
             * @dev Returns the downcasted uint168 from uint256, reverting on
             * overflow (when the input is greater than largest uint168).
             *
             * Counterpart to Solidity's `uint168` operator.
             *
             * Requirements:
             *
             * - input must fit into 168 bits
             */
            function toUint168(uint256 value) internal pure returns (uint168) {
                if (value > type(uint168).max) {
                    revert SafeCastOverflowedUintDowncast(168, value);
                }
                return uint168(value);
            }
            /**
             * @dev Returns the downcasted uint160 from uint256, reverting on
             * overflow (when the input is greater than largest uint160).
             *
             * Counterpart to Solidity's `uint160` operator.
             *
             * Requirements:
             *
             * - input must fit into 160 bits
             */
            function toUint160(uint256 value) internal pure returns (uint160) {
                if (value > type(uint160).max) {
                    revert SafeCastOverflowedUintDowncast(160, value);
                }
                return uint160(value);
            }
            /**
             * @dev Returns the downcasted uint152 from uint256, reverting on
             * overflow (when the input is greater than largest uint152).
             *
             * Counterpart to Solidity's `uint152` operator.
             *
             * Requirements:
             *
             * - input must fit into 152 bits
             */
            function toUint152(uint256 value) internal pure returns (uint152) {
                if (value > type(uint152).max) {
                    revert SafeCastOverflowedUintDowncast(152, value);
                }
                return uint152(value);
            }
            /**
             * @dev Returns the downcasted uint144 from uint256, reverting on
             * overflow (when the input is greater than largest uint144).
             *
             * Counterpart to Solidity's `uint144` operator.
             *
             * Requirements:
             *
             * - input must fit into 144 bits
             */
            function toUint144(uint256 value) internal pure returns (uint144) {
                if (value > type(uint144).max) {
                    revert SafeCastOverflowedUintDowncast(144, value);
                }
                return uint144(value);
            }
            /**
             * @dev Returns the downcasted uint136 from uint256, reverting on
             * overflow (when the input is greater than largest uint136).
             *
             * Counterpart to Solidity's `uint136` operator.
             *
             * Requirements:
             *
             * - input must fit into 136 bits
             */
            function toUint136(uint256 value) internal pure returns (uint136) {
                if (value > type(uint136).max) {
                    revert SafeCastOverflowedUintDowncast(136, value);
                }
                return uint136(value);
            }
            /**
             * @dev Returns the downcasted uint128 from uint256, reverting on
             * overflow (when the input is greater than largest uint128).
             *
             * Counterpart to Solidity's `uint128` operator.
             *
             * Requirements:
             *
             * - input must fit into 128 bits
             */
            function toUint128(uint256 value) internal pure returns (uint128) {
                if (value > type(uint128).max) {
                    revert SafeCastOverflowedUintDowncast(128, value);
                }
                return uint128(value);
            }
            /**
             * @dev Returns the downcasted uint120 from uint256, reverting on
             * overflow (when the input is greater than largest uint120).
             *
             * Counterpart to Solidity's `uint120` operator.
             *
             * Requirements:
             *
             * - input must fit into 120 bits
             */
            function toUint120(uint256 value) internal pure returns (uint120) {
                if (value > type(uint120).max) {
                    revert SafeCastOverflowedUintDowncast(120, value);
                }
                return uint120(value);
            }
            /**
             * @dev Returns the downcasted uint112 from uint256, reverting on
             * overflow (when the input is greater than largest uint112).
             *
             * Counterpart to Solidity's `uint112` operator.
             *
             * Requirements:
             *
             * - input must fit into 112 bits
             */
            function toUint112(uint256 value) internal pure returns (uint112) {
                if (value > type(uint112).max) {
                    revert SafeCastOverflowedUintDowncast(112, value);
                }
                return uint112(value);
            }
            /**
             * @dev Returns the downcasted uint104 from uint256, reverting on
             * overflow (when the input is greater than largest uint104).
             *
             * Counterpart to Solidity's `uint104` operator.
             *
             * Requirements:
             *
             * - input must fit into 104 bits
             */
            function toUint104(uint256 value) internal pure returns (uint104) {
                if (value > type(uint104).max) {
                    revert SafeCastOverflowedUintDowncast(104, value);
                }
                return uint104(value);
            }
            /**
             * @dev Returns the downcasted uint96 from uint256, reverting on
             * overflow (when the input is greater than largest uint96).
             *
             * Counterpart to Solidity's `uint96` operator.
             *
             * Requirements:
             *
             * - input must fit into 96 bits
             */
            function toUint96(uint256 value) internal pure returns (uint96) {
                if (value > type(uint96).max) {
                    revert SafeCastOverflowedUintDowncast(96, value);
                }
                return uint96(value);
            }
            /**
             * @dev Returns the downcasted uint88 from uint256, reverting on
             * overflow (when the input is greater than largest uint88).
             *
             * Counterpart to Solidity's `uint88` operator.
             *
             * Requirements:
             *
             * - input must fit into 88 bits
             */
            function toUint88(uint256 value) internal pure returns (uint88) {
                if (value > type(uint88).max) {
                    revert SafeCastOverflowedUintDowncast(88, value);
                }
                return uint88(value);
            }
            /**
             * @dev Returns the downcasted uint80 from uint256, reverting on
             * overflow (when the input is greater than largest uint80).
             *
             * Counterpart to Solidity's `uint80` operator.
             *
             * Requirements:
             *
             * - input must fit into 80 bits
             */
            function toUint80(uint256 value) internal pure returns (uint80) {
                if (value > type(uint80).max) {
                    revert SafeCastOverflowedUintDowncast(80, value);
                }
                return uint80(value);
            }
            /**
             * @dev Returns the downcasted uint72 from uint256, reverting on
             * overflow (when the input is greater than largest uint72).
             *
             * Counterpart to Solidity's `uint72` operator.
             *
             * Requirements:
             *
             * - input must fit into 72 bits
             */
            function toUint72(uint256 value) internal pure returns (uint72) {
                if (value > type(uint72).max) {
                    revert SafeCastOverflowedUintDowncast(72, value);
                }
                return uint72(value);
            }
            /**
             * @dev Returns the downcasted uint64 from uint256, reverting on
             * overflow (when the input is greater than largest uint64).
             *
             * Counterpart to Solidity's `uint64` operator.
             *
             * Requirements:
             *
             * - input must fit into 64 bits
             */
            function toUint64(uint256 value) internal pure returns (uint64) {
                if (value > type(uint64).max) {
                    revert SafeCastOverflowedUintDowncast(64, value);
                }
                return uint64(value);
            }
            /**
             * @dev Returns the downcasted uint56 from uint256, reverting on
             * overflow (when the input is greater than largest uint56).
             *
             * Counterpart to Solidity's `uint56` operator.
             *
             * Requirements:
             *
             * - input must fit into 56 bits
             */
            function toUint56(uint256 value) internal pure returns (uint56) {
                if (value > type(uint56).max) {
                    revert SafeCastOverflowedUintDowncast(56, value);
                }
                return uint56(value);
            }
            /**
             * @dev Returns the downcasted uint48 from uint256, reverting on
             * overflow (when the input is greater than largest uint48).
             *
             * Counterpart to Solidity's `uint48` operator.
             *
             * Requirements:
             *
             * - input must fit into 48 bits
             */
            function toUint48(uint256 value) internal pure returns (uint48) {
                if (value > type(uint48).max) {
                    revert SafeCastOverflowedUintDowncast(48, value);
                }
                return uint48(value);
            }
            /**
             * @dev Returns the downcasted uint40 from uint256, reverting on
             * overflow (when the input is greater than largest uint40).
             *
             * Counterpart to Solidity's `uint40` operator.
             *
             * Requirements:
             *
             * - input must fit into 40 bits
             */
            function toUint40(uint256 value) internal pure returns (uint40) {
                if (value > type(uint40).max) {
                    revert SafeCastOverflowedUintDowncast(40, value);
                }
                return uint40(value);
            }
            /**
             * @dev Returns the downcasted uint32 from uint256, reverting on
             * overflow (when the input is greater than largest uint32).
             *
             * Counterpart to Solidity's `uint32` operator.
             *
             * Requirements:
             *
             * - input must fit into 32 bits
             */
            function toUint32(uint256 value) internal pure returns (uint32) {
                if (value > type(uint32).max) {
                    revert SafeCastOverflowedUintDowncast(32, value);
                }
                return uint32(value);
            }
            /**
             * @dev Returns the downcasted uint24 from uint256, reverting on
             * overflow (when the input is greater than largest uint24).
             *
             * Counterpart to Solidity's `uint24` operator.
             *
             * Requirements:
             *
             * - input must fit into 24 bits
             */
            function toUint24(uint256 value) internal pure returns (uint24) {
                if (value > type(uint24).max) {
                    revert SafeCastOverflowedUintDowncast(24, value);
                }
                return uint24(value);
            }
            /**
             * @dev Returns the downcasted uint16 from uint256, reverting on
             * overflow (when the input is greater than largest uint16).
             *
             * Counterpart to Solidity's `uint16` operator.
             *
             * Requirements:
             *
             * - input must fit into 16 bits
             */
            function toUint16(uint256 value) internal pure returns (uint16) {
                if (value > type(uint16).max) {
                    revert SafeCastOverflowedUintDowncast(16, value);
                }
                return uint16(value);
            }
            /**
             * @dev Returns the downcasted uint8 from uint256, reverting on
             * overflow (when the input is greater than largest uint8).
             *
             * Counterpart to Solidity's `uint8` operator.
             *
             * Requirements:
             *
             * - input must fit into 8 bits
             */
            function toUint8(uint256 value) internal pure returns (uint8) {
                if (value > type(uint8).max) {
                    revert SafeCastOverflowedUintDowncast(8, value);
                }
                return uint8(value);
            }
            /**
             * @dev Converts a signed int256 into an unsigned uint256.
             *
             * Requirements:
             *
             * - input must be greater than or equal to 0.
             */
            function toUint256(int256 value) internal pure returns (uint256) {
                if (value < 0) {
                    revert SafeCastOverflowedIntToUint(value);
                }
                return uint256(value);
            }
            /**
             * @dev Returns the downcasted int248 from int256, reverting on
             * overflow (when the input is less than smallest int248 or
             * greater than largest int248).
             *
             * Counterpart to Solidity's `int248` operator.
             *
             * Requirements:
             *
             * - input must fit into 248 bits
             */
            function toInt248(int256 value) internal pure returns (int248 downcasted) {
                downcasted = int248(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(248, value);
                }
            }
            /**
             * @dev Returns the downcasted int240 from int256, reverting on
             * overflow (when the input is less than smallest int240 or
             * greater than largest int240).
             *
             * Counterpart to Solidity's `int240` operator.
             *
             * Requirements:
             *
             * - input must fit into 240 bits
             */
            function toInt240(int256 value) internal pure returns (int240 downcasted) {
                downcasted = int240(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(240, value);
                }
            }
            /**
             * @dev Returns the downcasted int232 from int256, reverting on
             * overflow (when the input is less than smallest int232 or
             * greater than largest int232).
             *
             * Counterpart to Solidity's `int232` operator.
             *
             * Requirements:
             *
             * - input must fit into 232 bits
             */
            function toInt232(int256 value) internal pure returns (int232 downcasted) {
                downcasted = int232(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(232, value);
                }
            }
            /**
             * @dev Returns the downcasted int224 from int256, reverting on
             * overflow (when the input is less than smallest int224 or
             * greater than largest int224).
             *
             * Counterpart to Solidity's `int224` operator.
             *
             * Requirements:
             *
             * - input must fit into 224 bits
             */
            function toInt224(int256 value) internal pure returns (int224 downcasted) {
                downcasted = int224(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(224, value);
                }
            }
            /**
             * @dev Returns the downcasted int216 from int256, reverting on
             * overflow (when the input is less than smallest int216 or
             * greater than largest int216).
             *
             * Counterpart to Solidity's `int216` operator.
             *
             * Requirements:
             *
             * - input must fit into 216 bits
             */
            function toInt216(int256 value) internal pure returns (int216 downcasted) {
                downcasted = int216(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(216, value);
                }
            }
            /**
             * @dev Returns the downcasted int208 from int256, reverting on
             * overflow (when the input is less than smallest int208 or
             * greater than largest int208).
             *
             * Counterpart to Solidity's `int208` operator.
             *
             * Requirements:
             *
             * - input must fit into 208 bits
             */
            function toInt208(int256 value) internal pure returns (int208 downcasted) {
                downcasted = int208(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(208, value);
                }
            }
            /**
             * @dev Returns the downcasted int200 from int256, reverting on
             * overflow (when the input is less than smallest int200 or
             * greater than largest int200).
             *
             * Counterpart to Solidity's `int200` operator.
             *
             * Requirements:
             *
             * - input must fit into 200 bits
             */
            function toInt200(int256 value) internal pure returns (int200 downcasted) {
                downcasted = int200(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(200, value);
                }
            }
            /**
             * @dev Returns the downcasted int192 from int256, reverting on
             * overflow (when the input is less than smallest int192 or
             * greater than largest int192).
             *
             * Counterpart to Solidity's `int192` operator.
             *
             * Requirements:
             *
             * - input must fit into 192 bits
             */
            function toInt192(int256 value) internal pure returns (int192 downcasted) {
                downcasted = int192(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(192, value);
                }
            }
            /**
             * @dev Returns the downcasted int184 from int256, reverting on
             * overflow (when the input is less than smallest int184 or
             * greater than largest int184).
             *
             * Counterpart to Solidity's `int184` operator.
             *
             * Requirements:
             *
             * - input must fit into 184 bits
             */
            function toInt184(int256 value) internal pure returns (int184 downcasted) {
                downcasted = int184(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(184, value);
                }
            }
            /**
             * @dev Returns the downcasted int176 from int256, reverting on
             * overflow (when the input is less than smallest int176 or
             * greater than largest int176).
             *
             * Counterpart to Solidity's `int176` operator.
             *
             * Requirements:
             *
             * - input must fit into 176 bits
             */
            function toInt176(int256 value) internal pure returns (int176 downcasted) {
                downcasted = int176(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(176, value);
                }
            }
            /**
             * @dev Returns the downcasted int168 from int256, reverting on
             * overflow (when the input is less than smallest int168 or
             * greater than largest int168).
             *
             * Counterpart to Solidity's `int168` operator.
             *
             * Requirements:
             *
             * - input must fit into 168 bits
             */
            function toInt168(int256 value) internal pure returns (int168 downcasted) {
                downcasted = int168(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(168, value);
                }
            }
            /**
             * @dev Returns the downcasted int160 from int256, reverting on
             * overflow (when the input is less than smallest int160 or
             * greater than largest int160).
             *
             * Counterpart to Solidity's `int160` operator.
             *
             * Requirements:
             *
             * - input must fit into 160 bits
             */
            function toInt160(int256 value) internal pure returns (int160 downcasted) {
                downcasted = int160(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(160, value);
                }
            }
            /**
             * @dev Returns the downcasted int152 from int256, reverting on
             * overflow (when the input is less than smallest int152 or
             * greater than largest int152).
             *
             * Counterpart to Solidity's `int152` operator.
             *
             * Requirements:
             *
             * - input must fit into 152 bits
             */
            function toInt152(int256 value) internal pure returns (int152 downcasted) {
                downcasted = int152(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(152, value);
                }
            }
            /**
             * @dev Returns the downcasted int144 from int256, reverting on
             * overflow (when the input is less than smallest int144 or
             * greater than largest int144).
             *
             * Counterpart to Solidity's `int144` operator.
             *
             * Requirements:
             *
             * - input must fit into 144 bits
             */
            function toInt144(int256 value) internal pure returns (int144 downcasted) {
                downcasted = int144(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(144, value);
                }
            }
            /**
             * @dev Returns the downcasted int136 from int256, reverting on
             * overflow (when the input is less than smallest int136 or
             * greater than largest int136).
             *
             * Counterpart to Solidity's `int136` operator.
             *
             * Requirements:
             *
             * - input must fit into 136 bits
             */
            function toInt136(int256 value) internal pure returns (int136 downcasted) {
                downcasted = int136(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(136, value);
                }
            }
            /**
             * @dev Returns the downcasted int128 from int256, reverting on
             * overflow (when the input is less than smallest int128 or
             * greater than largest int128).
             *
             * Counterpart to Solidity's `int128` operator.
             *
             * Requirements:
             *
             * - input must fit into 128 bits
             */
            function toInt128(int256 value) internal pure returns (int128 downcasted) {
                downcasted = int128(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(128, value);
                }
            }
            /**
             * @dev Returns the downcasted int120 from int256, reverting on
             * overflow (when the input is less than smallest int120 or
             * greater than largest int120).
             *
             * Counterpart to Solidity's `int120` operator.
             *
             * Requirements:
             *
             * - input must fit into 120 bits
             */
            function toInt120(int256 value) internal pure returns (int120 downcasted) {
                downcasted = int120(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(120, value);
                }
            }
            /**
             * @dev Returns the downcasted int112 from int256, reverting on
             * overflow (when the input is less than smallest int112 or
             * greater than largest int112).
             *
             * Counterpart to Solidity's `int112` operator.
             *
             * Requirements:
             *
             * - input must fit into 112 bits
             */
            function toInt112(int256 value) internal pure returns (int112 downcasted) {
                downcasted = int112(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(112, value);
                }
            }
            /**
             * @dev Returns the downcasted int104 from int256, reverting on
             * overflow (when the input is less than smallest int104 or
             * greater than largest int104).
             *
             * Counterpart to Solidity's `int104` operator.
             *
             * Requirements:
             *
             * - input must fit into 104 bits
             */
            function toInt104(int256 value) internal pure returns (int104 downcasted) {
                downcasted = int104(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(104, value);
                }
            }
            /**
             * @dev Returns the downcasted int96 from int256, reverting on
             * overflow (when the input is less than smallest int96 or
             * greater than largest int96).
             *
             * Counterpart to Solidity's `int96` operator.
             *
             * Requirements:
             *
             * - input must fit into 96 bits
             */
            function toInt96(int256 value) internal pure returns (int96 downcasted) {
                downcasted = int96(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(96, value);
                }
            }
            /**
             * @dev Returns the downcasted int88 from int256, reverting on
             * overflow (when the input is less than smallest int88 or
             * greater than largest int88).
             *
             * Counterpart to Solidity's `int88` operator.
             *
             * Requirements:
             *
             * - input must fit into 88 bits
             */
            function toInt88(int256 value) internal pure returns (int88 downcasted) {
                downcasted = int88(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(88, value);
                }
            }
            /**
             * @dev Returns the downcasted int80 from int256, reverting on
             * overflow (when the input is less than smallest int80 or
             * greater than largest int80).
             *
             * Counterpart to Solidity's `int80` operator.
             *
             * Requirements:
             *
             * - input must fit into 80 bits
             */
            function toInt80(int256 value) internal pure returns (int80 downcasted) {
                downcasted = int80(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(80, value);
                }
            }
            /**
             * @dev Returns the downcasted int72 from int256, reverting on
             * overflow (when the input is less than smallest int72 or
             * greater than largest int72).
             *
             * Counterpart to Solidity's `int72` operator.
             *
             * Requirements:
             *
             * - input must fit into 72 bits
             */
            function toInt72(int256 value) internal pure returns (int72 downcasted) {
                downcasted = int72(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(72, value);
                }
            }
            /**
             * @dev Returns the downcasted int64 from int256, reverting on
             * overflow (when the input is less than smallest int64 or
             * greater than largest int64).
             *
             * Counterpart to Solidity's `int64` operator.
             *
             * Requirements:
             *
             * - input must fit into 64 bits
             */
            function toInt64(int256 value) internal pure returns (int64 downcasted) {
                downcasted = int64(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(64, value);
                }
            }
            /**
             * @dev Returns the downcasted int56 from int256, reverting on
             * overflow (when the input is less than smallest int56 or
             * greater than largest int56).
             *
             * Counterpart to Solidity's `int56` operator.
             *
             * Requirements:
             *
             * - input must fit into 56 bits
             */
            function toInt56(int256 value) internal pure returns (int56 downcasted) {
                downcasted = int56(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(56, value);
                }
            }
            /**
             * @dev Returns the downcasted int48 from int256, reverting on
             * overflow (when the input is less than smallest int48 or
             * greater than largest int48).
             *
             * Counterpart to Solidity's `int48` operator.
             *
             * Requirements:
             *
             * - input must fit into 48 bits
             */
            function toInt48(int256 value) internal pure returns (int48 downcasted) {
                downcasted = int48(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(48, value);
                }
            }
            /**
             * @dev Returns the downcasted int40 from int256, reverting on
             * overflow (when the input is less than smallest int40 or
             * greater than largest int40).
             *
             * Counterpart to Solidity's `int40` operator.
             *
             * Requirements:
             *
             * - input must fit into 40 bits
             */
            function toInt40(int256 value) internal pure returns (int40 downcasted) {
                downcasted = int40(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(40, value);
                }
            }
            /**
             * @dev Returns the downcasted int32 from int256, reverting on
             * overflow (when the input is less than smallest int32 or
             * greater than largest int32).
             *
             * Counterpart to Solidity's `int32` operator.
             *
             * Requirements:
             *
             * - input must fit into 32 bits
             */
            function toInt32(int256 value) internal pure returns (int32 downcasted) {
                downcasted = int32(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(32, value);
                }
            }
            /**
             * @dev Returns the downcasted int24 from int256, reverting on
             * overflow (when the input is less than smallest int24 or
             * greater than largest int24).
             *
             * Counterpart to Solidity's `int24` operator.
             *
             * Requirements:
             *
             * - input must fit into 24 bits
             */
            function toInt24(int256 value) internal pure returns (int24 downcasted) {
                downcasted = int24(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(24, value);
                }
            }
            /**
             * @dev Returns the downcasted int16 from int256, reverting on
             * overflow (when the input is less than smallest int16 or
             * greater than largest int16).
             *
             * Counterpart to Solidity's `int16` operator.
             *
             * Requirements:
             *
             * - input must fit into 16 bits
             */
            function toInt16(int256 value) internal pure returns (int16 downcasted) {
                downcasted = int16(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(16, value);
                }
            }
            /**
             * @dev Returns the downcasted int8 from int256, reverting on
             * overflow (when the input is less than smallest int8 or
             * greater than largest int8).
             *
             * Counterpart to Solidity's `int8` operator.
             *
             * Requirements:
             *
             * - input must fit into 8 bits
             */
            function toInt8(int256 value) internal pure returns (int8 downcasted) {
                downcasted = int8(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(8, value);
                }
            }
            /**
             * @dev Converts an unsigned uint256 into a signed int256.
             *
             * Requirements:
             *
             * - input must be less than or equal to maxInt256.
             */
            function toInt256(uint256 value) internal pure returns (int256) {
                // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
                if (value > uint256(type(int256).max)) {
                    revert SafeCastOverflowedUintToInt(value);
                }
                return int256(value);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMath {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides tracking nonces for addresses. Nonces will only increment.
         */
        abstract contract Nonces {
            /**
             * @dev The nonce used for an `account` is not the expected current nonce.
             */
            error InvalidAccountNonce(address account, uint256 currentNonce);
            mapping(address account => uint256) private _nonces;
            /**
             * @dev Returns the next unused nonce for an address.
             */
            function nonces(address owner) public view virtual returns (uint256) {
                return _nonces[owner];
            }
            /**
             * @dev Consumes a nonce.
             *
             * Returns the current value and increments nonce.
             */
            function _useNonce(address owner) internal virtual returns (uint256) {
                // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
                // decremented or reset. This guarantees that the nonce never overflows.
                unchecked {
                    // It is important to do x++ and not ++x here.
                    return _nonces[owner]++;
                }
            }
            /**
             * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
             */
            function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
                uint256 current = _useNonce(owner);
                if (nonce != current) {
                    revert InvalidAccountNonce(owner, current);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
        pragma solidity ^0.8.20;
        import {StorageSlot} from "./StorageSlot.sol";
        // | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
        // | length  | 0x                                                              BB |
        type ShortString is bytes32;
        /**
         * @dev This library provides functions to convert short memory strings
         * into a `ShortString` type that can be used as an immutable variable.
         *
         * Strings of arbitrary length can be optimized using this library if
         * they are short enough (up to 31 bytes) by packing them with their
         * length (1 byte) in a single EVM word (32 bytes). Additionally, a
         * fallback mechanism can be used for every other case.
         *
         * Usage example:
         *
         * ```solidity
         * contract Named {
         *     using ShortStrings for *;
         *
         *     ShortString private immutable _name;
         *     string private _nameFallback;
         *
         *     constructor(string memory contractName) {
         *         _name = contractName.toShortStringWithFallback(_nameFallback);
         *     }
         *
         *     function name() external view returns (string memory) {
         *         return _name.toStringWithFallback(_nameFallback);
         *     }
         * }
         * ```
         */
        library ShortStrings {
            // Used as an identifier for strings longer than 31 bytes.
            bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
            error StringTooLong(string str);
            error InvalidShortString();
            /**
             * @dev Encode a string of at most 31 chars into a `ShortString`.
             *
             * This will trigger a `StringTooLong` error is the input string is too long.
             */
            function toShortString(string memory str) internal pure returns (ShortString) {
                bytes memory bstr = bytes(str);
                if (bstr.length > 31) {
                    revert StringTooLong(str);
                }
                return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
            }
            /**
             * @dev Decode a `ShortString` back to a "normal" string.
             */
            function toString(ShortString sstr) internal pure returns (string memory) {
                uint256 len = byteLength(sstr);
                // using `new string(len)` would work locally but is not memory safe.
                string memory str = new string(32);
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(str, len)
                    mstore(add(str, 0x20), sstr)
                }
                return str;
            }
            /**
             * @dev Return the length of a `ShortString`.
             */
            function byteLength(ShortString sstr) internal pure returns (uint256) {
                uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
                if (result > 31) {
                    revert InvalidShortString();
                }
                return result;
            }
            /**
             * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
             */
            function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
                if (bytes(value).length < 32) {
                    return toShortString(value);
                } else {
                    StorageSlot.getStringSlot(store).value = value;
                    return ShortString.wrap(FALLBACK_SENTINEL);
                }
            }
            /**
             * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
             */
            function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
                if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                    return toString(value);
                } else {
                    return store;
                }
            }
            /**
             * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
             * {setWithFallback}.
             *
             * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
             * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
             */
            function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
                if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                    return byteLength(value);
                } else {
                    return bytes(store).length;
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.20;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(newImplementation.code.length > 0);
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
        pragma solidity ^0.8.20;
        import {Math} from "./math/Math.sol";
        import {SignedMath} from "./math/SignedMath.sol";
        /**
         * @dev String operations.
         */
        library Strings {
            bytes16 private constant HEX_DIGITS = "0123456789abcdef";
            uint8 private constant ADDRESS_LENGTH = 20;
            /**
             * @dev The `value` string doesn't fit in the specified `length`.
             */
            error StringsInsufficientHexLength(uint256 value, uint256 length);
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    uint256 length = Math.log10(value) + 1;
                    string memory buffer = new string(length);
                    uint256 ptr;
                    /// @solidity memory-safe-assembly
                    assembly {
                        ptr := add(buffer, add(32, length))
                    }
                    while (true) {
                        ptr--;
                        /// @solidity memory-safe-assembly
                        assembly {
                            mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                        }
                        value /= 10;
                        if (value == 0) break;
                    }
                    return buffer;
                }
            }
            /**
             * @dev Converts a `int256` to its ASCII `string` decimal representation.
             */
            function toStringSigned(int256 value) internal pure returns (string memory) {
                return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    return toHexString(value, Math.log256(value) + 1);
                }
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                uint256 localValue = value;
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = HEX_DIGITS[localValue & 0xf];
                    localValue >>= 4;
                }
                if (localValue != 0) {
                    revert StringsInsufficientHexLength(value, length);
                }
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
             * representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
            }
            /**
             * @dev Returns true if the two strings are equal.
             */
            function equal(string memory a, string memory b) internal pure returns (bool) {
                return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)
        // This file was procedurally generated from scripts/generate/templates/Checkpoints.js.
        pragma solidity ^0.8.20;
        import {Math} from "../math/Math.sol";
        /**
         * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
         * time, and later looking up past values by block number. See {Votes} as an example.
         *
         * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
         * checkpoint for the current transaction block using the {push} function.
         */
        library Checkpoints {
            /**
             * @dev A value was attempted to be inserted on a past checkpoint.
             */
            error CheckpointUnorderedInsertion();
            struct Trace224 {
                Checkpoint224[] _checkpoints;
            }
            struct Checkpoint224 {
                uint32 _key;
                uint224 _value;
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
             *
             * Returns previous value and new value.
             *
             * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
             * library.
             */
            function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) {
                return _insert(self._checkpoints, key, value);
            }
            /**
             * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
             * there is none.
             */
            function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
                return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             */
            function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             *
             * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
             * keys).
             */
            function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
                uint256 len = self._checkpoints.length;
                uint256 low = 0;
                uint256 high = len;
                if (len > 5) {
                    uint256 mid = len - Math.sqrt(len);
                    if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
             */
            function latest(Trace224 storage self) internal view returns (uint224) {
                uint256 pos = self._checkpoints.length;
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
             * in the most recent checkpoint.
             */
            function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
                uint256 pos = self._checkpoints.length;
                if (pos == 0) {
                    return (false, 0, 0);
                } else {
                    Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                    return (true, ckpt._key, ckpt._value);
                }
            }
            /**
             * @dev Returns the number of checkpoint.
             */
            function length(Trace224 storage self) internal view returns (uint256) {
                return self._checkpoints.length;
            }
            /**
             * @dev Returns checkpoint at given position.
             */
            function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
                return self._checkpoints[pos];
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
             * or by updating the last one.
             */
            function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
                uint256 pos = self.length;
                if (pos > 0) {
                    // Copying to memory is important here.
                    Checkpoint224 memory last = _unsafeAccess(self, pos - 1);
                    // Checkpoint keys must be non-decreasing.
                    if (last._key > key) {
                        revert CheckpointUnorderedInsertion();
                    }
                    // Update or push new checkpoint
                    if (last._key == key) {
                        _unsafeAccess(self, pos - 1)._value = value;
                    } else {
                        self.push(Checkpoint224({_key: key, _value: value}));
                    }
                    return (last._value, value);
                } else {
                    self.push(Checkpoint224({_key: key, _value: value}));
                    return (0, value);
                }
            }
            /**
             * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
             * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
             * `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _upperBinaryLookup(
                Checkpoint224[] storage self,
                uint32 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key > key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                return high;
            }
            /**
             * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
             * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
             * exclusive `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _lowerBinaryLookup(
                Checkpoint224[] storage self,
                uint32 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key < key) {
                        low = mid + 1;
                    } else {
                        high = mid;
                    }
                }
                return high;
            }
            /**
             * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
             */
            function _unsafeAccess(
                Checkpoint224[] storage self,
                uint256 pos
            ) private pure returns (Checkpoint224 storage result) {
                assembly {
                    mstore(0, self.slot)
                    result.slot := add(keccak256(0, 0x20), pos)
                }
            }
            struct Trace208 {
                Checkpoint208[] _checkpoints;
            }
            struct Checkpoint208 {
                uint48 _key;
                uint208 _value;
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
             *
             * Returns previous value and new value.
             *
             * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
             * library.
             */
            function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
                return _insert(self._checkpoints, key, value);
            }
            /**
             * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
             * there is none.
             */
            function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
                return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             */
            function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             *
             * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
             * keys).
             */
            function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
                uint256 len = self._checkpoints.length;
                uint256 low = 0;
                uint256 high = len;
                if (len > 5) {
                    uint256 mid = len - Math.sqrt(len);
                    if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
             */
            function latest(Trace208 storage self) internal view returns (uint208) {
                uint256 pos = self._checkpoints.length;
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
             * in the most recent checkpoint.
             */
            function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
                uint256 pos = self._checkpoints.length;
                if (pos == 0) {
                    return (false, 0, 0);
                } else {
                    Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                    return (true, ckpt._key, ckpt._value);
                }
            }
            /**
             * @dev Returns the number of checkpoint.
             */
            function length(Trace208 storage self) internal view returns (uint256) {
                return self._checkpoints.length;
            }
            /**
             * @dev Returns checkpoint at given position.
             */
            function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
                return self._checkpoints[pos];
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
             * or by updating the last one.
             */
            function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) {
                uint256 pos = self.length;
                if (pos > 0) {
                    // Copying to memory is important here.
                    Checkpoint208 memory last = _unsafeAccess(self, pos - 1);
                    // Checkpoint keys must be non-decreasing.
                    if (last._key > key) {
                        revert CheckpointUnorderedInsertion();
                    }
                    // Update or push new checkpoint
                    if (last._key == key) {
                        _unsafeAccess(self, pos - 1)._value = value;
                    } else {
                        self.push(Checkpoint208({_key: key, _value: value}));
                    }
                    return (last._value, value);
                } else {
                    self.push(Checkpoint208({_key: key, _value: value}));
                    return (0, value);
                }
            }
            /**
             * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
             * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
             * `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _upperBinaryLookup(
                Checkpoint208[] storage self,
                uint48 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key > key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                return high;
            }
            /**
             * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
             * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
             * exclusive `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _lowerBinaryLookup(
                Checkpoint208[] storage self,
                uint48 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key < key) {
                        low = mid + 1;
                    } else {
                        high = mid;
                    }
                }
                return high;
            }
            /**
             * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
             */
            function _unsafeAccess(
                Checkpoint208[] storage self,
                uint256 pos
            ) private pure returns (Checkpoint208 storage result) {
                assembly {
                    mstore(0, self.slot)
                    result.slot := add(keccak256(0, 0x20), pos)
                }
            }
            struct Trace160 {
                Checkpoint160[] _checkpoints;
            }
            struct Checkpoint160 {
                uint96 _key;
                uint160 _value;
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
             *
             * Returns previous value and new value.
             *
             * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
             * library.
             */
            function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) {
                return _insert(self._checkpoints, key, value);
            }
            /**
             * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
             * there is none.
             */
            function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
                return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             */
            function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
                uint256 len = self._checkpoints.length;
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
             * if there is none.
             *
             * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
             * keys).
             */
            function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
                uint256 len = self._checkpoints.length;
                uint256 low = 0;
                uint256 high = len;
                if (len > 5) {
                    uint256 mid = len - Math.sqrt(len);
                    if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
             */
            function latest(Trace160 storage self) internal view returns (uint160) {
                uint256 pos = self._checkpoints.length;
                return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
            }
            /**
             * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
             * in the most recent checkpoint.
             */
            function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
                uint256 pos = self._checkpoints.length;
                if (pos == 0) {
                    return (false, 0, 0);
                } else {
                    Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                    return (true, ckpt._key, ckpt._value);
                }
            }
            /**
             * @dev Returns the number of checkpoint.
             */
            function length(Trace160 storage self) internal view returns (uint256) {
                return self._checkpoints.length;
            }
            /**
             * @dev Returns checkpoint at given position.
             */
            function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
                return self._checkpoints[pos];
            }
            /**
             * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
             * or by updating the last one.
             */
            function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) {
                uint256 pos = self.length;
                if (pos > 0) {
                    // Copying to memory is important here.
                    Checkpoint160 memory last = _unsafeAccess(self, pos - 1);
                    // Checkpoint keys must be non-decreasing.
                    if (last._key > key) {
                        revert CheckpointUnorderedInsertion();
                    }
                    // Update or push new checkpoint
                    if (last._key == key) {
                        _unsafeAccess(self, pos - 1)._value = value;
                    } else {
                        self.push(Checkpoint160({_key: key, _value: value}));
                    }
                    return (last._value, value);
                } else {
                    self.push(Checkpoint160({_key: key, _value: value}));
                    return (0, value);
                }
            }
            /**
             * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
             * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
             * `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _upperBinaryLookup(
                Checkpoint160[] storage self,
                uint96 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key > key) {
                        high = mid;
                    } else {
                        low = mid + 1;
                    }
                }
                return high;
            }
            /**
             * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
             * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
             * exclusive `high`.
             *
             * WARNING: `high` should not be greater than the array's length.
             */
            function _lowerBinaryLookup(
                Checkpoint160[] storage self,
                uint96 key,
                uint256 low,
                uint256 high
            ) private view returns (uint256) {
                while (low < high) {
                    uint256 mid = Math.average(low, high);
                    if (_unsafeAccess(self, mid)._key < key) {
                        low = mid + 1;
                    } else {
                        high = mid;
                    }
                }
                return high;
            }
            /**
             * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
             */
            function _unsafeAccess(
                Checkpoint160[] storage self,
                uint256 pos
            ) private pure returns (Checkpoint160 storage result) {
                assembly {
                    mstore(0, self.slot)
                    result.slot := add(keccak256(0, 0x20), pos)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)
        pragma solidity ^0.8.20;
        import {Math} from "../math/Math.sol";
        import {SafeCast} from "../math/SafeCast.sol";
        /**
         * @dev This library provides helpers for manipulating time-related objects.
         *
         * It uses the following types:
         * - `uint48` for timepoints
         * - `uint32` for durations
         *
         * While the library doesn't provide specific types for timepoints and duration, it does provide:
         * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
         * - additional helper functions
         */
        library Time {
            using Time for *;
            /**
             * @dev Get the block timestamp as a Timepoint.
             */
            function timestamp() internal view returns (uint48) {
                return SafeCast.toUint48(block.timestamp);
            }
            /**
             * @dev Get the block number as a Timepoint.
             */
            function blockNumber() internal view returns (uint48) {
                return SafeCast.toUint48(block.number);
            }
            // ==================================================== Delay =====================================================
            /**
             * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
             * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
             * This allows updating the delay applied to some operation while keeping some guarantees.
             *
             * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
             * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
             * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
             * still apply for some time.
             *
             *
             * The `Delay` type is 112 bits long, and packs the following:
             *
             * ```
             *   | [uint48]: effect date (timepoint)
             *   |           | [uint32]: value before (duration)
             *   ↓           ↓       ↓ [uint32]: value after (duration)
             * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
             * ```
             *
             * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
             * supported.
             */
            type Delay is uint112;
            /**
             * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
             */
            function toDelay(uint32 duration) internal pure returns (Delay) {
                return Delay.wrap(duration);
            }
            /**
             * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
             * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
             */
            function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
                (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
                return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
            }
            /**
             * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
             * effect timepoint is 0, then the pending value should not be considered.
             */
            function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
                return _getFullAt(self, timestamp());
            }
            /**
             * @dev Get the current value.
             */
            function get(Delay self) internal view returns (uint32) {
                (uint32 delay, , ) = self.getFull();
                return delay;
            }
            /**
             * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
             * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
             * new delay becomes effective.
             */
            function withUpdate(
                Delay self,
                uint32 newValue,
                uint32 minSetback
            ) internal view returns (Delay updatedDelay, uint48 effect) {
                uint32 value = self.get();
                uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
                effect = timestamp() + setback;
                return (pack(value, newValue, effect), effect);
            }
            /**
             * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
             */
            function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
                uint112 raw = Delay.unwrap(self);
                valueAfter = uint32(raw);
                valueBefore = uint32(raw >> 32);
                effect = uint48(raw >> 64);
                return (valueBefore, valueAfter, effect);
            }
            /**
             * @dev pack the components into a Delay object.
             */
            function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
                return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
        import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
        import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol";
        import "@openzeppelin/contracts/access/AccessControl.sol";
        import "./mint/IDCNTMintAuthorization.sol";
        /// @notice the dcnt token
        contract DCNTToken is ERC20, ERC20Permit, ERC20Votes, AccessControl {
            IDCNTMintAuthorization public mintAuthorization;
            bytes32 public constant MINT_ROLE = keccak256("MINT_ROLE");
            bytes32 public constant UPDATE_MINT_AUTHORIZATION_ROLE =
                keccak256("UPDATE_MINT_AUTHORIZATION_ROLE");
            error UnauthorizedMint();
            constructor(
                uint256 _supply,
                address _owner,
                IDCNTMintAuthorization _mintAuthorization,
                string memory _name,
                string memory _symbol
            ) ERC20(_name, _symbol) ERC20Permit(_name) {
                mintAuthorization = _mintAuthorization;
                _grantRole(DEFAULT_ADMIN_ROLE, _owner);
                _mint(msg.sender, _supply);
            }
            /// @notice public function to be used for minting new tokens
            /// @param dest address to assign newly minted tokens to
            /// @param amount amount of tokens to mint
            /// @dev only accounts with `MINT_ROLE` (the DAO) are authorized to mint more tokens
            function mint(address dest, uint256 amount) external onlyRole(MINT_ROLE) {
                if (!mintAuthorization.authorizeMint(dest, amount)) {
                    revert UnauthorizedMint();
                }
                _mint(dest, amount);
            }
            /// @notice token burn function, with restrictions
            /// @dev only accounts with `MINT_ROLE` (the DAO) are authorized to burn their tokens
            function burn(uint256 amount) external onlyRole(MINT_ROLE) {
                _burn(msg.sender, amount);
            }
            /// @notice public function to update contract used for mint authorization
            /// @param newMintAuthorization address to use for the new mint authorization contract
            /// @dev only accounts with `UPDATE_MINT_AUTHORIZATION_ROLE` (the DAO) are authorized to update mint authorization
            function updateMintAuthorization(
                IDCNTMintAuthorization newMintAuthorization
            ) external onlyRole(UPDATE_MINT_AUTHORIZATION_ROLE) {
                mintAuthorization = newMintAuthorization;
            }
            // The following functions are overrides required by Solidity.
            function _update(
                address from,
                address to,
                uint256 value
            ) internal override(ERC20, ERC20Votes) {
                super._update(from, to, value);
            }
            function nonces(
                address owner
            ) public view override(ERC20Permit, Nonces) returns (uint256) {
                return super.nonces(owner);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        /// @notice interface that all potential mint authorization contracts must conform to
        interface IDCNTMintAuthorization {
            /// @notice function to confirm if a given mint action is authorized or not
            /// @param destination address of the recipient of the new tokens
            /// @param amount amount of tokens being requested
            /// @return bool indicating whether or not the request is authorized or not
            function authorizeMint(
                address destination,
                uint256 amount
            ) external returns (bool);
        }