ETH Price: $2,521.28 (-0.51%)

Transaction Decoder

Block:
16037868 at Nov-24-2022 05:51:35 AM +UTC
Transaction Fee:
0.00257737505867604 ETH $6.50
Gas Used:
210,060 Gas / 12.269708934 Gwei

Emitted Events:

70 MaticToken.Transfer( from=[Sender] 0x832c9d63afb52ba4890bf106fdd16728b266d6d7, to=0xe6e3F947CCd0ADd1eFFde3Bf3D210e5D711bEAce, value=1299000000000000000000 )
71 MaticToken.Approval( owner=[Sender] 0x832c9d63afb52ba4890bf106fdd16728b266d6d7, spender=[Receiver] MetaBridge, value=0 )
72 0xe6e3f947ccd0add1effde3bf3d210e5d711beace.0x6ded982279c8387ad8a63e73385031a3807c1862e633f06e09d11bcb6e282f60( 0x6ded982279c8387ad8a63e73385031a3807c1862e633f06e09d11bcb6e282f60, 0000000000000000000000007d1afa7b718fb893db30a3abc0cfc608aacfebb0, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
73 MaticToken.Transfer( from=0xe6e3F947CCd0ADd1eFFde3Bf3D210e5D711bEAce, to=LiFiDiamond, value=1299000000000000000000 )
74 MaticToken.Approval( owner=0xe6e3F947CCd0ADd1eFFde3Bf3D210e5D711bEAce, spender=LiFiDiamond, value=115792089237316195423570985008687907853269984665640563972051462253913129639935 )
75 MaticToken.Transfer( from=LiFiDiamond, to=L1_ERC20_Bridge, value=1299000000000000000000 )
76 MaticToken.Approval( owner=LiFiDiamond, spender=L1_ERC20_Bridge, value=115792089237316195423570985008687907853269984665640563960059208904369838960960 )
77 StateSender.StateSynced( id=2447793, contractAddress=0x8397259c...a11afa28a, data=0x000000000000000000000000E6BFE2AC487EA9A6C58108FBCB6D2DB96B667CC00000000000000000000000002B7CF93D722BB716468194373254125B7F5DD4B80000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000014000000000000000000000000022B1CBB8D98A01A3B71D034BB899775A76EB1CC2000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000C4CC29A306000000000000000000000000832C9D63AFB52BA4890BF106FDD16728B266D6D70000000000000000000000000000000000000000000000466B3F119A606C0000000000000000000000000000000000000000000000000042CC36C7C0C7DEDEF600000000000000000000000000000000000000000000000000000000638057D00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
78 L1_ERC20_Bridge.TransferSentToL2( chainId=137, recipient=[Sender] 0x832c9d63afb52ba4890bf106fdd16728b266d6d7, amount=1299000000000000000000, amountOutMin=1232200277328111001334, deadline=1669355472, relayer=0x00000000...000000000, relayerFee=0 )
79 LiFiDiamond.0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1( 0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1, 0000000000000000000000000000000000000000000000000000000000000020, bab8d839dbdeb2be683b97d996f8585b736fd904e407c60648e37a7b8608c4f6, 0000000000000000000000000000000000000000000000000000000000000140, 0000000000000000000000000000000000000000000000000000000000000180, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000007d1afa7b718fb893db30a3abc0cfc608aacfebb0, 000000000000000000000000832c9d63afb52ba4890bf106fdd16728b266d6d7, 0000000000000000000000000000000000000000000000466b3f119a606c0000, 0000000000000000000000000000000000000000000000000000000000000089, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000003, 686f700000000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000000f, 6d6574616d61736b2d6272696467650000000000000000000000000000000000 )
80 0xe6e3f947ccd0add1effde3bf3d210e5d711beace.0x831bac9533a2034226daa21109dbd4f887674f0fe4877e1a8b35b3ffe1bdce76( 0x831bac9533a2034226daa21109dbd4f887674f0fe4877e1a8b35b3ffe1bdce76, 000000000000000000000000832c9d63afb52ba4890bf106fdd16728b266d6d7, 0000000000000000000000001231deb6f5749ef6ce6943a275a1d3e7486f4eae, 0000000000000000000000000000000000000000000000000000000000000089, 0000000000000000000000007d1afa7b718fb893db30a3abc0cfc608aacfebb0, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000466b3f119a606c0000 )

Account State Difference:

  Address   Before After State Difference Code
0x22B1Cbb8...A76Eb1cc2
(Hop Protocol: MATIC Bridge)
0x28e4F3a7...189A5bFbE
(Polygon (Matic): State Syncer)
0x7D1AfA7B...8AaCfeBB0
0x832C9d63...8B266D6d7
0.04408820669867721 Eth
Nonce: 48
0.04151083164000117 Eth
Nonce: 49
0.00257737505867604
(eth-builder)
7.592603544034863026 Eth7.592918634034863026 Eth0.00031509

Execution Trace

MetaBridge.bridge( adapterId=lifiAdapter, srcToken=0x7D1AfA7B718fb893dB30A3aBc0Cfc608AaCfeBB0, amount=1299000000000000000000, data=0x0000000000000000000000001231DEB6F5749EF6CE6943A275A1D3E7486F4EAE0000000000000000000000001231DEB6F5749EF6CE6943A275A1D3E7486F4EAE00000000000000000000000000000000000000000000000000000000000000890000000000000000000000007D1AFA7B718FB893DB30A3ABC0CFC608AACFEBB000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000466B3F119A606C00000000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000284FA904C1200000000000000000000000000000000000000000000000000000000000000C00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000042CC36C7C0C7DEDEF600000000000000000000000000000000000000000000000000000000638057D0000000000000000000000000000000000000000000000042CC36C7C0C7DEDEF600000000000000000000000000000000000000000000000000000000638057D0BAB8D839DBDEB2BE683B97D996F8585B736FD904E407C60648E37A7B8608C4F60000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007D1AFA7B718FB893DB30A3ABC0CFC608AACFEBB0000000000000000000000000832C9D63AFB52BA4890BF106FDD16728B266D6D70000000000000000000000000000000000000000000000466B3F119A606C00000000000000000000000000000000000000000000000000000000000000000089000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003686F700000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000F6D6574616D61736B2D627269646765000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
  • MaticToken.transferFrom( from=0x832C9d63AFb52BA4890bf106fDd16728B266D6d7, to=0xe6e3F947CCd0ADd1eFFde3Bf3D210e5D711bEAce, value=1299000000000000000000 ) => ( True )
  • 0xe6e3f947ccd0add1effde3bf3d210e5d711beace.4cfee326( )
    • 0x04c76710f64ab714bbf803f011a132481084a131.ab138240( )
      • MaticToken.allowance( owner=0xe6e3F947CCd0ADd1eFFde3Bf3D210e5D711bEAce, spender=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 115792089237316195423570985008687907853269984665640563973350462253913129639935 )
      • LiFiDiamond.fa904c12( )
        • HopFacet.startBridgeTokensViaHop( _bridgeData=[{name:transactionId, type:bytes32, order:1, indexed:false, value:BAB8D839DBDEB2BE683B97D996F8585B736FD904E407C60648E37A7B8608C4F6, valueString:BAB8D839DBDEB2BE683B97D996F8585B736FD904E407C60648E37A7B8608C4F6}, {name:bridge, type:string, order:2, indexed:false, value:hop, valueString:hop}, {name:integrator, type:string, order:3, indexed:false, value:metamask-bridge, valueString:metamask-bridge}, {name:referrer, type:address, order:4, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:sendingAssetId, type:address, order:5, indexed:false, value:0x7D1AfA7B718fb893dB30A3aBc0Cfc608AaCfeBB0, valueString:0x7D1AfA7B718fb893dB30A3aBc0Cfc608AaCfeBB0}, {name:receiver, type:address, order:6, indexed:false, value:0x832C9d63AFb52BA4890bf106fDd16728B266D6d7, valueString:0x832C9d63AFb52BA4890bf106fDd16728B266D6d7}, {name:minAmount, type:uint256, order:7, indexed:false, value:1299000000000000000000, valueString:1299000000000000000000}, {name:destinationChainId, type:uint256, order:8, indexed:false, value:137, valueString:137}, {name:hasSourceSwaps, type:bool, order:9, indexed:false, value:false, valueString:False}, {name:hasDestinationCall, type:bool, order:10, indexed:false, value:false, valueString:False}], _hopData=[{name:bonderFee, type:uint256, order:1, indexed:false, value:0, valueString:0}, {name:amountOutMin, type:uint256, order:2, indexed:false, value:1232200277328111001334, valueString:1232200277328111001334}, {name:deadline, type:uint256, order:3, indexed:false, value:1669355472, valueString:1669355472}, {name:destinationAmountOutMin, type:uint256, order:4, indexed:false, value:1232200277328111001334, valueString:1232200277328111001334}, {name:destinationDeadline, type:uint256, order:5, indexed:false, value:1669355472, valueString:1669355472}] )
          • MaticToken.balanceOf( owner=0xe6e3F947CCd0ADd1eFFde3Bf3D210e5D711bEAce ) => ( 1299000000000000000000 )
          • MaticToken.balanceOf( owner=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 0 )
          • MaticToken.transferFrom( from=0xe6e3F947CCd0ADd1eFFde3Bf3D210e5D711bEAce, to=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, value=1299000000000000000000 ) => ( True )
          • MaticToken.balanceOf( owner=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 1299000000000000000000 )
          • MaticToken.allowance( owner=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, spender=0x22B1Cbb8D98a01a3B71D034BB899775A76Eb1cc2 ) => ( 115792089237316195423570985008687907853269984665640563961358208904369838960960 )
          • L1_ERC20_Bridge.sendToL2( chainId=137, recipient=0x832C9d63AFb52BA4890bf106fDd16728B266D6d7, amount=1299000000000000000000, amountOutMin=1232200277328111001334, deadline=1669355472, relayer=0x0000000000000000000000000000000000000000, relayerFee=0 )
            • MaticToken.transferFrom( from=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, to=0x22B1Cbb8D98a01a3B71D034BB899775A76Eb1cc2, value=1299000000000000000000 ) => ( True )
            • PolygonMessengerWrapper.sendCrossDomainMessage( _calldata=0xCC29A306000000000000000000000000832C9D63AFB52BA4890BF106FDD16728B266D6D70000000000000000000000000000000000000000000000466B3F119A606C0000000000000000000000000000000000000000000000000042CC36C7C0C7DEDEF600000000000000000000000000000000000000000000000000000000638057D000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
              File 1 of 7: MetaBridge
              pragma solidity ^0.8.0;
              import "@openzeppelin/contracts/access/Ownable.sol";
              import "@openzeppelin/contracts/security/Pausable.sol";
              import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
              import "@openzeppelin/contracts/utils/Address.sol";
              import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
              import {IAdapter, IBridge, ISpender} from "contracts/interfaces/Exports.sol";
              import {Constants} from "contracts/utils/Exports.sol";
              import "./Spender.sol";
              contract MetaBridge is IBridge, Ownable, Pausable, ReentrancyGuard {
                  using SafeERC20 for IERC20;
                  using Address for address;
                  ISpender public immutable spender;
                  // Mapping of adapterId to adapter
                  mapping(string => address) public adapters;
                  mapping(string => bool) public adapterRemoved;
                  constructor() {
                      spender = new Spender();
                  }
                  /**
                   * @notice Sets the adapter for an aggregator. It can't be changed later.
                   * @param adapterId Aggregator's identifier
                   * @param adapterAddress Address of the contract that contains the logic for this aggregator
                   */
                  function setAdapter(string calldata adapterId, address adapterAddress)
                      external
                      override
                      onlyOwner
                  {
                      require(adapterAddress.isContract(), "ADAPTER_IS_NOT_A_CONTRACT");
                      require(!adapterRemoved[adapterId], "ADAPTER_REMOVED");
                      require(adapters[adapterId] == address(0), "ADAPTER_EXISTS");
                      require(bytes(adapterId).length > 0, "INVALID_ADAPTED_ID");
                      adapters[adapterId] = adapterAddress;
                      emit AdapterSet(adapterId, adapterAddress);
                  }
                  /**
                   * @notice Removes the adapter for an existing aggregator. This can't be undone.
                   * @param adapterId Adapter's identifier
                   */
                  function removeAdapter(string calldata adapterId)
                      external
                      override
                      onlyOwner
                  {
                      require(adapters[adapterId] != address(0), "ADAPTER_DOES_NOT_EXIST");
                      delete adapters[adapterId];
                      adapterRemoved[adapterId] = true;
                      emit AdapterRemoved(adapterId);
                  }
                  /**
                   * @notice Performs a bridge
                   * @param adapterId Identifier of the aggregator to be used for the bridge
                   * @param srcToken Identifier of the source chain
                   * @param amount Amount of tokens to be transferred from the destination chain
                   * @param data Dynamic data which is passed in to the delegatecall made to the adapter
                   */
                  function bridge(
                      string calldata adapterId,
                      address srcToken,
                      uint256 amount,
                      bytes calldata data
                  ) external payable override whenNotPaused nonReentrant {
                      address adapter = adapters[adapterId];
                      require(adapter != address(0), "ADAPTER_NOT_FOUND");
                      // Move ERC20 funds to the spender
                      if (srcToken != Constants.NATIVE_TOKEN) {
                          require(msg.value == 0, "NATIVE_ASSET_SENT");
                          IERC20(srcToken).safeTransferFrom(
                              msg.sender,
                              address(spender),
                              amount
                          );
                      } else {
                          require(msg.value == amount, "MSGVALUE_AMOUNT_MISMATCH");
                      }
                      spender.bridge{value: msg.value}(
                          adapter,
                          abi.encodePacked(
                              // bridge signature
                              IAdapter.bridge.selector,
                              abi.encode(msg.sender),
                              data
                          )
                      );
                  }
                  /**
                   * @notice Prevents the bridge function from being executed until the contract is unpaused.
                   */
                  function pauseBridge() external onlyOwner {
                      _pause();
                  }
                  /**
                   * @notice Unpauses the contract to make the bridge function callable by owner.
                   */
                  function unpauseBridge() external onlyOwner {
                      _unpause();
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
              pragma solidity ^0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor() {
                      _transferOwnership(_msgSender());
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                      _;
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      _transferOwnership(address(0));
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      _transferOwnership(newOwner);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Internal function without access restriction.
                   */
                  function _transferOwnership(address newOwner) internal virtual {
                      address oldOwner = _owner;
                      _owner = newOwner;
                      emit OwnershipTransferred(oldOwner, newOwner);
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (security/Pausable.sol)
              pragma solidity ^0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which allows children to implement an emergency stop
               * mechanism that can be triggered by an authorized account.
               *
               * This module is used through inheritance. It will make available the
               * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
               * the functions of your contract. Note that they will not be pausable by
               * simply including this module, only once the modifiers are put in place.
               */
              abstract contract Pausable is Context {
                  /**
                   * @dev Emitted when the pause is triggered by `account`.
                   */
                  event Paused(address account);
                  /**
                   * @dev Emitted when the pause is lifted by `account`.
                   */
                  event Unpaused(address account);
                  bool private _paused;
                  /**
                   * @dev Initializes the contract in unpaused state.
                   */
                  constructor() {
                      _paused = false;
                  }
                  /**
                   * @dev Returns true if the contract is paused, and false otherwise.
                   */
                  function paused() public view virtual returns (bool) {
                      return _paused;
                  }
                  /**
                   * @dev Modifier to make a function callable only when the contract is not paused.
                   *
                   * Requirements:
                   *
                   * - The contract must not be paused.
                   */
                  modifier whenNotPaused() {
                      require(!paused(), "Pausable: paused");
                      _;
                  }
                  /**
                   * @dev Modifier to make a function callable only when the contract is paused.
                   *
                   * Requirements:
                   *
                   * - The contract must be paused.
                   */
                  modifier whenPaused() {
                      require(paused(), "Pausable: not paused");
                      _;
                  }
                  /**
                   * @dev Triggers stopped state.
                   *
                   * Requirements:
                   *
                   * - The contract must not be paused.
                   */
                  function _pause() internal virtual whenNotPaused {
                      _paused = true;
                      emit Paused(_msgSender());
                  }
                  /**
                   * @dev Returns to normal state.
                   *
                   * Requirements:
                   *
                   * - The contract must be paused.
                   */
                  function _unpause() internal virtual whenPaused {
                      _paused = false;
                      emit Unpaused(_msgSender());
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Contract module that helps prevent reentrant calls to a function.
               *
               * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
               * available, which can be applied to functions to make sure there are no nested
               * (reentrant) calls to them.
               *
               * Note that because there is a single `nonReentrant` guard, functions marked as
               * `nonReentrant` may not call one another. This can be worked around by making
               * those functions `private`, and then adding `external` `nonReentrant` entry
               * points to them.
               *
               * TIP: If you would like to learn more about reentrancy and alternative ways
               * to protect against it, check out our blog post
               * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
               */
              abstract contract ReentrancyGuard {
                  // Booleans are more expensive than uint256 or any type that takes up a full
                  // word because each write operation emits an extra SLOAD to first read the
                  // slot's contents, replace the bits taken up by the boolean, and then write
                  // back. This is the compiler's defense against contract upgrades and
                  // pointer aliasing, and it cannot be disabled.
                  // The values being non-zero value makes deployment a bit more expensive,
                  // but in exchange the refund on every call to nonReentrant will be lower in
                  // amount. Since refunds are capped to a percentage of the total
                  // transaction's gas, it is best to keep them low in cases like this one, to
                  // increase the likelihood of the full refund coming into effect.
                  uint256 private constant _NOT_ENTERED = 1;
                  uint256 private constant _ENTERED = 2;
                  uint256 private _status;
                  constructor() {
                      _status = _NOT_ENTERED;
                  }
                  /**
                   * @dev Prevents a contract from calling itself, directly or indirectly.
                   * Calling a `nonReentrant` function from another `nonReentrant`
                   * function is not supported. It is possible to prevent this from happening
                   * by making the `nonReentrant` function external, and making it call a
                   * `private` function that does the actual work.
                   */
                  modifier nonReentrant() {
                      // On the first call to nonReentrant, _notEntered will be true
                      require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                      // Any calls to nonReentrant after this point will fail
                      _status = _ENTERED;
                      _;
                      // By storing the original value once again, a refund is triggered (see
                      // https://eips.ethereum.org/EIPS/eip-2200)
                      _status = _NOT_ENTERED;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) external returns (bool);
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              import "../../../utils/Address.sol";
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using Address for address;
                  function safeTransfer(
                      IERC20 token,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
                  function safeTransferFrom(
                      IERC20 token,
                      address from,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      require(
                          (value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
                  function safeIncreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      uint256 newAllowance = token.allowance(address(this), spender) + value;
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
                  function safeDecreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      unchecked {
                          uint256 oldAllowance = token.allowance(address(this), spender);
                          require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                          uint256 newAllowance = oldAllowance - value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      if (returndata.length > 0) {
                          // Return data is optional
                          require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                      }
                  }
              }
              pragma solidity ^0.8.0;
              import { IAdapter } from "./IAdapter.sol";
              import { IBridge } from "./IBridge.sol";
              import { ISpender } from "./ISpender.sol";pragma solidity ^0.8.0;
              import { Constants } from "./Constants.sol";pragma solidity ^0.8.0;
              import "@openzeppelin/contracts/utils/Address.sol";
              import {IBridge, ISpender} from "contracts/interfaces/Exports.sol";
              contract Spender is ISpender {
                  using Address for address;
                  IBridge public immutable metabridge;
                  constructor() public {
                      metabridge = IBridge(msg.sender);
                  }
                  /**
                   * @notice Performs a bridge
                   * @param adapter Address of the aggregator to be used for the bridge
                   * @param data Dynamic data which is passed in to the delegatecall made to the adapter
                   */
                  function bridge(address adapter, bytes calldata data)
                      external
                      payable
                      override
                  {
                      require(msg.sender == address(metabridge), "FORBIDDEN");
                      adapter.functionDelegateCall(data, "ADAPTER_DELEGATECALL_FAILED");
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
              }
              pragma solidity ^0.8.0;
              interface IAdapter {
                  event Bridge(
                      address recipient,
                      address aggregator,
                      uint256 destChain,
                      address srcToken,
                      address destToken,
                      uint256 srcAmount
                  );
                  event Fee(address srcToken, address feeWallet, uint256 fee);
                  function bridge(
                      address recipient,
                      address aggregator,
                      address spender,
                      uint256 destChain,
                      address srcToken,
                      address destToken,
                      uint256 srcAmount,
                      bytes calldata data,
                      uint256 fee,
                      address payable feeWallet
                  ) external payable;
              }
              pragma solidity ^0.8.0;
              interface IBridge {
                  event AdapterSet(
                      string adapterId,
                      address addr
                  );
                  event AdapterRemoved(string adapterId);
                  function setAdapter(string calldata adapterId, address adapterAddress) external;
                  function removeAdapter(string calldata adapterId) external;
                  function bridge(
                      string calldata adapterId,
                      address tokenFrom,
                      uint256 amount,
                      bytes calldata data
                  ) external payable;
              }pragma solidity ^0.8.0;
              interface ISpender {
                  function bridge(address adapterAddress, bytes calldata data) external payable;
              }pragma solidity ^0.8.0;
              library Constants {
                  address internal constant NATIVE_TOKEN = 0x0000000000000000000000000000000000000000;
              }
              

              File 2 of 7: MaticToken
              pragma solidity 0.5.2;
              
              // File: openzeppelin-solidity/contracts/token/ERC20/IERC20.sol
              
              /**
               * @title ERC20 interface
               * @dev see https://github.com/ethereum/EIPs/issues/20
               */
              interface IERC20 {
                  function transfer(address to, uint256 value) external returns (bool);
              
                  function approve(address spender, uint256 value) external returns (bool);
              
                  function transferFrom(address from, address to, uint256 value) external returns (bool);
              
                  function totalSupply() external view returns (uint256);
              
                  function balanceOf(address who) external view returns (uint256);
              
                  function allowance(address owner, address spender) external view returns (uint256);
              
                  event Transfer(address indexed from, address indexed to, uint256 value);
              
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              }
              
              // File: openzeppelin-solidity/contracts/math/SafeMath.sol
              
              /**
               * @title SafeMath
               * @dev Unsigned math operations with safety checks that revert on error
               */
              library SafeMath {
                  /**
                  * @dev Multiplies two unsigned integers, reverts on overflow.
                  */
                  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                      // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                      // benefit is lost if 'b' is also tested.
                      // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
                      if (a == 0) {
                          return 0;
                      }
              
                      uint256 c = a * b;
                      require(c / a == b);
              
                      return c;
                  }
              
                  /**
                  * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero.
                  */
                  function div(uint256 a, uint256 b) internal pure returns (uint256) {
                      // Solidity only automatically asserts when dividing by 0
                      require(b > 0);
                      uint256 c = a / b;
                      // assert(a == b * c + a % b); // There is no case in which this doesn't hold
              
                      return c;
                  }
              
                  /**
                  * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend).
                  */
                  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                      require(b <= a);
                      uint256 c = a - b;
              
                      return c;
                  }
              
                  /**
                  * @dev Adds two unsigned integers, reverts on overflow.
                  */
                  function add(uint256 a, uint256 b) internal pure returns (uint256) {
                      uint256 c = a + b;
                      require(c >= a);
              
                      return c;
                  }
              
                  /**
                  * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo),
                  * reverts when dividing by zero.
                  */
                  function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                      require(b != 0);
                      return a % b;
                  }
              }
              
              // File: openzeppelin-solidity/contracts/token/ERC20/ERC20.sol
              
              /**
               * @title Standard ERC20 token
               *
               * @dev Implementation of the basic standard token.
               * https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
               * Originally based on code by FirstBlood:
               * https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
               *
               * This implementation emits additional Approval events, allowing applications to reconstruct the allowance status for
               * all accounts just by listening to said events. Note that this isn't required by the specification, and other
               * compliant implementations may not do it.
               */
              contract ERC20 is IERC20 {
                  using SafeMath for uint256;
              
                  mapping (address => uint256) private _balances;
              
                  mapping (address => mapping (address => uint256)) private _allowed;
              
                  uint256 private _totalSupply;
              
                  /**
                  * @dev Total number of tokens in existence
                  */
                  function totalSupply() public view returns (uint256) {
                      return _totalSupply;
                  }
              
                  /**
                  * @dev Gets the balance of the specified address.
                  * @param owner The address to query the balance of.
                  * @return An uint256 representing the amount owned by the passed address.
                  */
                  function balanceOf(address owner) public view returns (uint256) {
                      return _balances[owner];
                  }
              
                  /**
                   * @dev Function to check the amount of tokens that an owner allowed to a spender.
                   * @param owner address The address which owns the funds.
                   * @param spender address The address which will spend the funds.
                   * @return A uint256 specifying the amount of tokens still available for the spender.
                   */
                  function allowance(address owner, address spender) public view returns (uint256) {
                      return _allowed[owner][spender];
                  }
              
                  /**
                  * @dev Transfer token for a specified address
                  * @param to The address to transfer to.
                  * @param value The amount to be transferred.
                  */
                  function transfer(address to, uint256 value) public returns (bool) {
                      _transfer(msg.sender, to, value);
                      return true;
                  }
              
                  /**
                   * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
                   * Beware that changing an allowance with this method brings the risk that someone may use both the old
                   * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
                   * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   * @param spender The address which will spend the funds.
                   * @param value The amount of tokens to be spent.
                   */
                  function approve(address spender, uint256 value) public returns (bool) {
                      require(spender != address(0));
              
                      _allowed[msg.sender][spender] = value;
                      emit Approval(msg.sender, spender, value);
                      return true;
                  }
              
                  /**
                   * @dev Transfer tokens from one address to another.
                   * Note that while this function emits an Approval event, this is not required as per the specification,
                   * and other compliant implementations may not emit the event.
                   * @param from address The address which you want to send tokens from
                   * @param to address The address which you want to transfer to
                   * @param value uint256 the amount of tokens to be transferred
                   */
                  function transferFrom(address from, address to, uint256 value) public returns (bool) {
                      _allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value);
                      _transfer(from, to, value);
                      emit Approval(from, msg.sender, _allowed[from][msg.sender]);
                      return true;
                  }
              
                  /**
                   * @dev Increase the amount of tokens that an owner allowed to a spender.
                   * approve should be called when allowed_[_spender] == 0. To increment
                   * allowed value is better to use this function to avoid 2 calls (and wait until
                   * the first transaction is mined)
                   * From MonolithDAO Token.sol
                   * Emits an Approval event.
                   * @param spender The address which will spend the funds.
                   * @param addedValue The amount of tokens to increase the allowance by.
                   */
                  function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
                      require(spender != address(0));
              
                      _allowed[msg.sender][spender] = _allowed[msg.sender][spender].add(addedValue);
                      emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);
                      return true;
                  }
              
                  /**
                   * @dev Decrease the amount of tokens that an owner allowed to a spender.
                   * approve should be called when allowed_[_spender] == 0. To decrement
                   * allowed value is better to use this function to avoid 2 calls (and wait until
                   * the first transaction is mined)
                   * From MonolithDAO Token.sol
                   * Emits an Approval event.
                   * @param spender The address which will spend the funds.
                   * @param subtractedValue The amount of tokens to decrease the allowance by.
                   */
                  function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
                      require(spender != address(0));
              
                      _allowed[msg.sender][spender] = _allowed[msg.sender][spender].sub(subtractedValue);
                      emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);
                      return true;
                  }
              
                  /**
                  * @dev Transfer token for a specified addresses
                  * @param from The address to transfer from.
                  * @param to The address to transfer to.
                  * @param value The amount to be transferred.
                  */
                  function _transfer(address from, address to, uint256 value) internal {
                      require(to != address(0));
              
                      _balances[from] = _balances[from].sub(value);
                      _balances[to] = _balances[to].add(value);
                      emit Transfer(from, to, value);
                  }
              
                  /**
                   * @dev Internal function that mints an amount of the token and assigns it to
                   * an account. This encapsulates the modification of balances such that the
                   * proper events are emitted.
                   * @param account The account that will receive the created tokens.
                   * @param value The amount that will be created.
                   */
                  function _mint(address account, uint256 value) internal {
                      require(account != address(0));
              
                      _totalSupply = _totalSupply.add(value);
                      _balances[account] = _balances[account].add(value);
                      emit Transfer(address(0), account, value);
                  }
              
                  /**
                   * @dev Internal function that burns an amount of the token of a given
                   * account.
                   * @param account The account whose tokens will be burnt.
                   * @param value The amount that will be burnt.
                   */
                  function _burn(address account, uint256 value) internal {
                      require(account != address(0));
              
                      _totalSupply = _totalSupply.sub(value);
                      _balances[account] = _balances[account].sub(value);
                      emit Transfer(account, address(0), value);
                  }
              
                  /**
                   * @dev Internal function that burns an amount of the token of a given
                   * account, deducting from the sender's allowance for said account. Uses the
                   * internal burn function.
                   * Emits an Approval event (reflecting the reduced allowance).
                   * @param account The account whose tokens will be burnt.
                   * @param value The amount that will be burnt.
                   */
                  function _burnFrom(address account, uint256 value) internal {
                      _allowed[account][msg.sender] = _allowed[account][msg.sender].sub(value);
                      _burn(account, value);
                      emit Approval(account, msg.sender, _allowed[account][msg.sender]);
                  }
              }
              
              // File: openzeppelin-solidity/contracts/access/Roles.sol
              
              /**
               * @title Roles
               * @dev Library for managing addresses assigned to a Role.
               */
              library Roles {
                  struct Role {
                      mapping (address => bool) bearer;
                  }
              
                  /**
                   * @dev give an account access to this role
                   */
                  function add(Role storage role, address account) internal {
                      require(account != address(0));
                      require(!has(role, account));
              
                      role.bearer[account] = true;
                  }
              
                  /**
                   * @dev remove an account's access to this role
                   */
                  function remove(Role storage role, address account) internal {
                      require(account != address(0));
                      require(has(role, account));
              
                      role.bearer[account] = false;
                  }
              
                  /**
                   * @dev check if an account has this role
                   * @return bool
                   */
                  function has(Role storage role, address account) internal view returns (bool) {
                      require(account != address(0));
                      return role.bearer[account];
                  }
              }
              
              // File: openzeppelin-solidity/contracts/access/roles/PauserRole.sol
              
              contract PauserRole {
                  using Roles for Roles.Role;
              
                  event PauserAdded(address indexed account);
                  event PauserRemoved(address indexed account);
              
                  Roles.Role private _pausers;
              
                  constructor () internal {
                      _addPauser(msg.sender);
                  }
              
                  modifier onlyPauser() {
                      require(isPauser(msg.sender));
                      _;
                  }
              
                  function isPauser(address account) public view returns (bool) {
                      return _pausers.has(account);
                  }
              
                  function addPauser(address account) public onlyPauser {
                      _addPauser(account);
                  }
              
                  function renouncePauser() public {
                      _removePauser(msg.sender);
                  }
              
                  function _addPauser(address account) internal {
                      _pausers.add(account);
                      emit PauserAdded(account);
                  }
              
                  function _removePauser(address account) internal {
                      _pausers.remove(account);
                      emit PauserRemoved(account);
                  }
              }
              
              // File: openzeppelin-solidity/contracts/lifecycle/Pausable.sol
              
              /**
               * @title Pausable
               * @dev Base contract which allows children to implement an emergency stop mechanism.
               */
              contract Pausable is PauserRole {
                  event Paused(address account);
                  event Unpaused(address account);
              
                  bool private _paused;
              
                  constructor () internal {
                      _paused = false;
                  }
              
                  /**
                   * @return true if the contract is paused, false otherwise.
                   */
                  function paused() public view returns (bool) {
                      return _paused;
                  }
              
                  /**
                   * @dev Modifier to make a function callable only when the contract is not paused.
                   */
                  modifier whenNotPaused() {
                      require(!_paused);
                      _;
                  }
              
                  /**
                   * @dev Modifier to make a function callable only when the contract is paused.
                   */
                  modifier whenPaused() {
                      require(_paused);
                      _;
                  }
              
                  /**
                   * @dev called by the owner to pause, triggers stopped state
                   */
                  function pause() public onlyPauser whenNotPaused {
                      _paused = true;
                      emit Paused(msg.sender);
                  }
              
                  /**
                   * @dev called by the owner to unpause, returns to normal state
                   */
                  function unpause() public onlyPauser whenPaused {
                      _paused = false;
                      emit Unpaused(msg.sender);
                  }
              }
              
              // File: openzeppelin-solidity/contracts/token/ERC20/ERC20Pausable.sol
              
              /**
               * @title Pausable token
               * @dev ERC20 modified with pausable transfers.
               **/
              contract ERC20Pausable is ERC20, Pausable {
                  function transfer(address to, uint256 value) public whenNotPaused returns (bool) {
                      return super.transfer(to, value);
                  }
              
                  function transferFrom(address from, address to, uint256 value) public whenNotPaused returns (bool) {
                      return super.transferFrom(from, to, value);
                  }
              
                  function approve(address spender, uint256 value) public whenNotPaused returns (bool) {
                      return super.approve(spender, value);
                  }
              
                  function increaseAllowance(address spender, uint addedValue) public whenNotPaused returns (bool success) {
                      return super.increaseAllowance(spender, addedValue);
                  }
              
                  function decreaseAllowance(address spender, uint subtractedValue) public whenNotPaused returns (bool success) {
                      return super.decreaseAllowance(spender, subtractedValue);
                  }
              }
              
              // File: openzeppelin-solidity/contracts/token/ERC20/ERC20Detailed.sol
              
              /**
               * @title ERC20Detailed token
               * @dev The decimals are only for visualization purposes.
               * All the operations are done using the smallest and indivisible token unit,
               * just as on Ethereum all the operations are done in wei.
               */
              contract ERC20Detailed is IERC20 {
                  string private _name;
                  string private _symbol;
                  uint8 private _decimals;
              
                  constructor (string memory name, string memory symbol, uint8 decimals) public {
                      _name = name;
                      _symbol = symbol;
                      _decimals = decimals;
                  }
              
                  /**
                   * @return the name of the token.
                   */
                  function name() public view returns (string memory) {
                      return _name;
                  }
              
                  /**
                   * @return the symbol of the token.
                   */
                  function symbol() public view returns (string memory) {
                      return _symbol;
                  }
              
                  /**
                   * @return the number of decimals of the token.
                   */
                  function decimals() public view returns (uint8) {
                      return _decimals;
                  }
              }
              
              // File: contracts/MaticToken.sol
              
              contract MaticToken is ERC20Pausable, ERC20Detailed {
                  constructor (string memory name, string memory symbol, uint8 decimals, uint256 totalSupply)
                  public
                  ERC20Detailed (name, symbol, decimals) {
                      _mint(msg.sender, totalSupply);
                  }
              }

              File 3 of 7: LiFiDiamond
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              error TokenAddressIsZero();
              error TokenNotSupported();
              error CannotBridgeToSameNetwork();
              error ZeroPostSwapBalance();
              error NoSwapDataProvided();
              error NativeValueWithERC();
              error ContractCallNotAllowed();
              error NullAddrIsNotAValidSpender();
              error NullAddrIsNotAnERC20Token();
              error NoTransferToNullAddress();
              error NativeAssetTransferFailed();
              error InvalidBridgeConfigLength();
              error InvalidAmount();
              error InvalidContract();
              error InvalidConfig();
              error UnsupportedChainId(uint256 chainId);
              error InvalidReceiver();
              error InvalidDestinationChain();
              error InvalidSendingToken();
              error InvalidCaller();
              error AlreadyInitialized();
              error NotInitialized();
              error OnlyContractOwner();
              error CannotAuthoriseSelf();
              error RecoveryAddressCannotBeZero();
              error CannotDepositNativeToken();
              error InvalidCallData();
              error NativeAssetNotSupported();
              error UnAuthorized();
              error NoSwapFromZeroBalance();
              error InvalidFallbackAddress();
              error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
              error InsufficientBalance(uint256 required, uint256 balance);
              error ZeroAmount();
              error InvalidFee();
              error InformationMismatch();
              error NotAContract();
              error NotEnoughBalance(uint256 requested, uint256 available);
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              interface IDiamondCut {
                  enum FacetCutAction {
                      Add,
                      Replace,
                      Remove
                  }
                  // Add=0, Replace=1, Remove=2
                  struct FacetCut {
                      address facetAddress;
                      FacetCutAction action;
                      bytes4[] functionSelectors;
                  }
                  /// @notice Add/replace/remove any number of functions and optionally execute
                  ///         a function with delegatecall
                  /// @param _diamondCut Contains the facet addresses and function selectors
                  /// @param _init The address of the contract or facet to execute _calldata
                  /// @param _calldata A function call, including function selector and arguments
                  ///                  _calldata is executed with delegatecall on _init
                  function diamondCut(
                      FacetCut[] calldata _diamondCut,
                      address _init,
                      bytes calldata _calldata
                  ) external;
                  event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import { LibDiamond } from "./Libraries/LibDiamond.sol";
              import { IDiamondCut } from "./Interfaces/IDiamondCut.sol";
              import { LibUtil } from "./Libraries/LibUtil.sol";
              contract LiFiDiamond {
                  constructor(address _contractOwner, address _diamondCutFacet) payable {
                      LibDiamond.setContractOwner(_contractOwner);
                      // Add the diamondCut external function from the diamondCutFacet
                      IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
                      bytes4[] memory functionSelectors = new bytes4[](1);
                      functionSelectors[0] = IDiamondCut.diamondCut.selector;
                      cut[0] = IDiamondCut.FacetCut({
                          facetAddress: _diamondCutFacet,
                          action: IDiamondCut.FacetCutAction.Add,
                          functionSelectors: functionSelectors
                      });
                      LibDiamond.diamondCut(cut, address(0), "");
                  }
                  // Find facet for function that is called and execute the
                  // function if a facet is found and return any value.
                  // solhint-disable-next-line no-complex-fallback
                  fallback() external payable {
                      LibDiamond.DiamondStorage storage ds;
                      bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
                      // get diamond storage
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          ds.slot := position
                      }
                      // get facet from function selector
                      address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
                      if (facet == address(0)) {
                          revert LibDiamond.FunctionDoesNotExist();
                      }
                      // Execute external function from facet using delegatecall and return any value.
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          // copy function selector and any arguments
                          calldatacopy(0, 0, calldatasize())
                          // execute function call using the facet
                          let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
                          // get any return value
                          returndatacopy(0, 0, returndatasize())
                          // return any return value or error back to the caller
                          switch result
                          case 0 {
                              revert(0, returndatasize())
                          }
                          default {
                              return(0, returndatasize())
                          }
                      }
                  }
                  // Able to receive ether
                  // solhint-disable-next-line no-empty-blocks
                  receive() external payable {}
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              library LibBytes {
                  // solhint-disable no-inline-assembly
                  // LibBytes specific errors
                  error SliceOverflow();
                  error SliceOutOfBounds();
                  error AddressOutOfBounds();
                  error UintOutOfBounds();
                  // -------------------------
                  function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
                      bytes memory tempBytes;
                      assembly {
                          // Get a location of some free memory and store it in tempBytes as
                          // Solidity does for memory variables.
                          tempBytes := mload(0x40)
                          // Store the length of the first bytes array at the beginning of
                          // the memory for tempBytes.
                          let length := mload(_preBytes)
                          mstore(tempBytes, length)
                          // Maintain a memory counter for the current write location in the
                          // temp bytes array by adding the 32 bytes for the array length to
                          // the starting location.
                          let mc := add(tempBytes, 0x20)
                          // Stop copying when the memory counter reaches the length of the
                          // first bytes array.
                          let end := add(mc, length)
                          for {
                              // Initialize a copy counter to the start of the _preBytes data,
                              // 32 bytes into its memory.
                              let cc := add(_preBytes, 0x20)
                          } lt(mc, end) {
                              // Increase both counters by 32 bytes each iteration.
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              // Write the _preBytes data into the tempBytes memory 32 bytes
                              // at a time.
                              mstore(mc, mload(cc))
                          }
                          // Add the length of _postBytes to the current length of tempBytes
                          // and store it as the new length in the first 32 bytes of the
                          // tempBytes memory.
                          length := mload(_postBytes)
                          mstore(tempBytes, add(length, mload(tempBytes)))
                          // Move the memory counter back from a multiple of 0x20 to the
                          // actual end of the _preBytes data.
                          mc := end
                          // Stop copying when the memory counter reaches the new combined
                          // length of the arrays.
                          end := add(mc, length)
                          for {
                              let cc := add(_postBytes, 0x20)
                          } lt(mc, end) {
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              mstore(mc, mload(cc))
                          }
                          // Update the free-memory pointer by padding our last write location
                          // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                          // next 32 byte block, then round down to the nearest multiple of
                          // 32. If the sum of the length of the two arrays is zero then add
                          // one before rounding down to leave a blank 32 bytes (the length block with 0).
                          mstore(
                              0x40,
                              and(
                                  add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                                  not(31) // Round down to the nearest 32 bytes.
                              )
                          )
                      }
                      return tempBytes;
                  }
                  function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
                      assembly {
                          // Read the first 32 bytes of _preBytes storage, which is the length
                          // of the array. (We don't need to use the offset into the slot
                          // because arrays use the entire slot.)
                          let fslot := sload(_preBytes.slot)
                          // Arrays of 31 bytes or less have an even value in their slot,
                          // while longer arrays have an odd value. The actual length is
                          // the slot divided by two for odd values, and the lowest order
                          // byte divided by two for even values.
                          // If the slot is even, bitwise and the slot with 255 and divide by
                          // two to get the length. If the slot is odd, bitwise and the slot
                          // with -1 and divide by two.
                          let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                          let mlength := mload(_postBytes)
                          let newlength := add(slength, mlength)
                          // slength can contain both the length and contents of the array
                          // if length < 32 bytes so let's prepare for that
                          // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                          switch add(lt(slength, 32), lt(newlength, 32))
                          case 2 {
                              // Since the new array still fits in the slot, we just need to
                              // update the contents of the slot.
                              // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                              sstore(
                                  _preBytes.slot,
                                  // all the modifications to the slot are inside this
                                  // next block
                                  add(
                                      // we can just add to the slot contents because the
                                      // bytes we want to change are the LSBs
                                      fslot,
                                      add(
                                          mul(
                                              div(
                                                  // load the bytes from memory
                                                  mload(add(_postBytes, 0x20)),
                                                  // zero all bytes to the right
                                                  exp(0x100, sub(32, mlength))
                                              ),
                                              // and now shift left the number of bytes to
                                              // leave space for the length in the slot
                                              exp(0x100, sub(32, newlength))
                                          ),
                                          // increase length by the double of the memory
                                          // bytes length
                                          mul(mlength, 2)
                                      )
                                  )
                              )
                          }
                          case 1 {
                              // The stored value fits in the slot, but the combined value
                              // will exceed it.
                              // get the keccak hash to get the contents of the array
                              mstore(0x0, _preBytes.slot)
                              let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                              // save new length
                              sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                              // The contents of the _postBytes array start 32 bytes into
                              // the structure. Our first read should obtain the `submod`
                              // bytes that can fit into the unused space in the last word
                              // of the stored array. To get this, we read 32 bytes starting
                              // from `submod`, so the data we read overlaps with the array
                              // contents by `submod` bytes. Masking the lowest-order
                              // `submod` bytes allows us to add that value directly to the
                              // stored value.
                              let submod := sub(32, slength)
                              let mc := add(_postBytes, submod)
                              let end := add(_postBytes, mlength)
                              let mask := sub(exp(0x100, submod), 1)
                              sstore(
                                  sc,
                                  add(
                                      and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                                      and(mload(mc), mask)
                                  )
                              )
                              for {
                                  mc := add(mc, 0x20)
                                  sc := add(sc, 1)
                              } lt(mc, end) {
                                  sc := add(sc, 1)
                                  mc := add(mc, 0x20)
                              } {
                                  sstore(sc, mload(mc))
                              }
                              mask := exp(0x100, sub(mc, end))
                              sstore(sc, mul(div(mload(mc), mask), mask))
                          }
                          default {
                              // get the keccak hash to get the contents of the array
                              mstore(0x0, _preBytes.slot)
                              // Start copying to the last used word of the stored array.
                              let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                              // save new length
                              sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                              // Copy over the first `submod` bytes of the new data as in
                              // case 1 above.
                              let slengthmod := mod(slength, 32)
                              let submod := sub(32, slengthmod)
                              let mc := add(_postBytes, submod)
                              let end := add(_postBytes, mlength)
                              let mask := sub(exp(0x100, submod), 1)
                              sstore(sc, add(sload(sc), and(mload(mc), mask)))
                              for {
                                  sc := add(sc, 1)
                                  mc := add(mc, 0x20)
                              } lt(mc, end) {
                                  sc := add(sc, 1)
                                  mc := add(mc, 0x20)
                              } {
                                  sstore(sc, mload(mc))
                              }
                              mask := exp(0x100, sub(mc, end))
                              sstore(sc, mul(div(mload(mc), mask), mask))
                          }
                      }
                  }
                  function slice(
                      bytes memory _bytes,
                      uint256 _start,
                      uint256 _length
                  ) internal pure returns (bytes memory) {
                      if (_length + 31 < _length) revert SliceOverflow();
                      if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                      bytes memory tempBytes;
                      assembly {
                          switch iszero(_length)
                          case 0 {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // The first word of the slice result is potentially a partial
                              // word read from the original array. To read it, we calculate
                              // the length of that partial word and start copying that many
                              // bytes into the array. The first word we copy will start with
                              // data we don't care about, but the last `lengthmod` bytes will
                              // land at the beginning of the contents of the new array. When
                              // we're done copying, we overwrite the full first word with
                              // the actual length of the slice.
                              let lengthmod := and(_length, 31)
                              // The multiplication in the next line is necessary
                              // because when slicing multiples of 32 bytes (lengthmod == 0)
                              // the following copy loop was copying the origin's length
                              // and then ending prematurely not copying everything it should.
                              let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                              let end := add(mc, _length)
                              for {
                                  // The multiplication in the next line has the same exact purpose
                                  // as the one above.
                                  let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  mstore(mc, mload(cc))
                              }
                              mstore(tempBytes, _length)
                              //update free-memory pointer
                              //allocating the array padded to 32 bytes like the compiler does now
                              mstore(0x40, and(add(mc, 31), not(31)))
                          }
                          //if we want a zero-length slice let's just return a zero-length array
                          default {
                              tempBytes := mload(0x40)
                              //zero out the 32 bytes slice we are about to return
                              //we need to do it because Solidity does not garbage collect
                              mstore(tempBytes, 0)
                              mstore(0x40, add(tempBytes, 0x20))
                          }
                      }
                      return tempBytes;
                  }
                  function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                      if (_bytes.length < _start + 20) {
                          revert AddressOutOfBounds();
                      }
                      address tempAddress;
                      assembly {
                          tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                      }
                      return tempAddress;
                  }
                  function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
                      if (_bytes.length < _start + 1) {
                          revert UintOutOfBounds();
                      }
                      uint8 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x1), _start))
                      }
                      return tempUint;
                  }
                  function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
                      if (_bytes.length < _start + 2) {
                          revert UintOutOfBounds();
                      }
                      uint16 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x2), _start))
                      }
                      return tempUint;
                  }
                  function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
                      if (_bytes.length < _start + 4) {
                          revert UintOutOfBounds();
                      }
                      uint32 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x4), _start))
                      }
                      return tempUint;
                  }
                  function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
                      if (_bytes.length < _start + 8) {
                          revert UintOutOfBounds();
                      }
                      uint64 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x8), _start))
                      }
                      return tempUint;
                  }
                  function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
                      if (_bytes.length < _start + 12) {
                          revert UintOutOfBounds();
                      }
                      uint96 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0xc), _start))
                      }
                      return tempUint;
                  }
                  function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
                      if (_bytes.length < _start + 16) {
                          revert UintOutOfBounds();
                      }
                      uint128 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x10), _start))
                      }
                      return tempUint;
                  }
                  function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
                      if (_bytes.length < _start + 32) {
                          revert UintOutOfBounds();
                      }
                      uint256 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x20), _start))
                      }
                      return tempUint;
                  }
                  function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
                      if (_bytes.length < _start + 32) {
                          revert UintOutOfBounds();
                      }
                      bytes32 tempBytes32;
                      assembly {
                          tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                      }
                      return tempBytes32;
                  }
                  function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
                      bool success = true;
                      assembly {
                          let length := mload(_preBytes)
                          // if lengths don't match the arrays are not equal
                          switch eq(length, mload(_postBytes))
                          case 1 {
                              // cb is a circuit breaker in the for loop since there's
                              //  no said feature for inline assembly loops
                              // cb = 1 - don't breaker
                              // cb = 0 - break
                              let cb := 1
                              let mc := add(_preBytes, 0x20)
                              let end := add(mc, length)
                              for {
                                  let cc := add(_postBytes, 0x20)
                                  // the next line is the loop condition:
                                  // while(uint256(mc < end) + cb == 2)
                              } eq(add(lt(mc, end), cb), 2) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  // if any of these checks fails then arrays are not equal
                                  if iszero(eq(mload(mc), mload(cc))) {
                                      // unsuccess:
                                      success := 0
                                      cb := 0
                                  }
                              }
                          }
                          default {
                              // unsuccess:
                              success := 0
                          }
                      }
                      return success;
                  }
                  function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
                      bool success = true;
                      assembly {
                          // we know _preBytes_offset is 0
                          let fslot := sload(_preBytes.slot)
                          // Decode the length of the stored array like in concatStorage().
                          let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                          let mlength := mload(_postBytes)
                          // if lengths don't match the arrays are not equal
                          switch eq(slength, mlength)
                          case 1 {
                              // slength can contain both the length and contents of the array
                              // if length < 32 bytes so let's prepare for that
                              // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                              if iszero(iszero(slength)) {
                                  switch lt(slength, 32)
                                  case 1 {
                                      // blank the last byte which is the length
                                      fslot := mul(div(fslot, 0x100), 0x100)
                                      if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                          // unsuccess:
                                          success := 0
                                      }
                                  }
                                  default {
                                      // cb is a circuit breaker in the for loop since there's
                                      //  no said feature for inline assembly loops
                                      // cb = 1 - don't breaker
                                      // cb = 0 - break
                                      let cb := 1
                                      // get the keccak hash to get the contents of the array
                                      mstore(0x0, _preBytes.slot)
                                      let sc := keccak256(0x0, 0x20)
                                      let mc := add(_postBytes, 0x20)
                                      let end := add(mc, mlength)
                                      // the next line is the loop condition:
                                      // while(uint256(mc < end) + cb == 2)
                                      // solhint-disable-next-line no-empty-blocks
                                      for {
                                      } eq(add(lt(mc, end), cb), 2) {
                                          sc := add(sc, 1)
                                          mc := add(mc, 0x20)
                                      } {
                                          if iszero(eq(sload(sc), mload(mc))) {
                                              // unsuccess:
                                              success := 0
                                              cb := 0
                                          }
                                      }
                                  }
                              }
                          }
                          default {
                              // unsuccess:
                              success := 0
                          }
                      }
                      return success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
              import { LibUtil } from "../Libraries/LibUtil.sol";
              import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
              /// Implementation of EIP-2535 Diamond Standard
              /// https://eips.ethereum.org/EIPS/eip-2535
              library LibDiamond {
                  bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
                  // Diamond specific errors
                  error IncorrectFacetCutAction();
                  error NoSelectorsInFace();
                  error FunctionAlreadyExists();
                  error FacetAddressIsZero();
                  error FacetAddressIsNotZero();
                  error FacetContainsNoCode();
                  error FunctionDoesNotExist();
                  error FunctionIsImmutable();
                  error InitZeroButCalldataNotEmpty();
                  error CalldataEmptyButInitNotZero();
                  error InitReverted();
                  // ----------------
                  struct FacetAddressAndPosition {
                      address facetAddress;
                      uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
                  }
                  struct FacetFunctionSelectors {
                      bytes4[] functionSelectors;
                      uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
                  }
                  struct DiamondStorage {
                      // maps function selector to the facet address and
                      // the position of the selector in the facetFunctionSelectors.selectors array
                      mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
                      // maps facet addresses to function selectors
                      mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
                      // facet addresses
                      address[] facetAddresses;
                      // Used to query if a contract implements an interface.
                      // Used to implement ERC-165.
                      mapping(bytes4 => bool) supportedInterfaces;
                      // owner of the contract
                      address contractOwner;
                  }
                  function diamondStorage() internal pure returns (DiamondStorage storage ds) {
                      bytes32 position = DIAMOND_STORAGE_POSITION;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          ds.slot := position
                      }
                  }
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function setContractOwner(address _newOwner) internal {
                      DiamondStorage storage ds = diamondStorage();
                      address previousOwner = ds.contractOwner;
                      ds.contractOwner = _newOwner;
                      emit OwnershipTransferred(previousOwner, _newOwner);
                  }
                  function contractOwner() internal view returns (address contractOwner_) {
                      contractOwner_ = diamondStorage().contractOwner;
                  }
                  function enforceIsContractOwner() internal view {
                      if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
                  }
                  event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
                  // Internal function version of diamondCut
                  function diamondCut(
                      IDiamondCut.FacetCut[] memory _diamondCut,
                      address _init,
                      bytes memory _calldata
                  ) internal {
                      for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
                          IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
                          if (action == IDiamondCut.FacetCutAction.Add) {
                              addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                          } else if (action == IDiamondCut.FacetCutAction.Replace) {
                              replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                          } else if (action == IDiamondCut.FacetCutAction.Remove) {
                              removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                          } else {
                              revert IncorrectFacetCutAction();
                          }
                          unchecked {
                              ++facetIndex;
                          }
                      }
                      emit DiamondCut(_diamondCut, _init, _calldata);
                      initializeDiamondCut(_init, _calldata);
                  }
                  function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                      if (_functionSelectors.length == 0) {
                          revert NoSelectorsInFace();
                      }
                      DiamondStorage storage ds = diamondStorage();
                      if (LibUtil.isZeroAddress(_facetAddress)) {
                          revert FacetAddressIsZero();
                      }
                      uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                      // add new facet address if it does not exist
                      if (selectorPosition == 0) {
                          addFacet(ds, _facetAddress);
                      }
                      for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                          bytes4 selector = _functionSelectors[selectorIndex];
                          address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                          if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                              revert FunctionAlreadyExists();
                          }
                          addFunction(ds, selector, selectorPosition, _facetAddress);
                          unchecked {
                              ++selectorPosition;
                              ++selectorIndex;
                          }
                      }
                  }
                  function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                      if (_functionSelectors.length == 0) {
                          revert NoSelectorsInFace();
                      }
                      DiamondStorage storage ds = diamondStorage();
                      if (LibUtil.isZeroAddress(_facetAddress)) {
                          revert FacetAddressIsZero();
                      }
                      uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                      // add new facet address if it does not exist
                      if (selectorPosition == 0) {
                          addFacet(ds, _facetAddress);
                      }
                      for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                          bytes4 selector = _functionSelectors[selectorIndex];
                          address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                          if (oldFacetAddress == _facetAddress) {
                              revert FunctionAlreadyExists();
                          }
                          removeFunction(ds, oldFacetAddress, selector);
                          addFunction(ds, selector, selectorPosition, _facetAddress);
                          unchecked {
                              ++selectorPosition;
                              ++selectorIndex;
                          }
                      }
                  }
                  function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                      if (_functionSelectors.length == 0) {
                          revert NoSelectorsInFace();
                      }
                      DiamondStorage storage ds = diamondStorage();
                      // if function does not exist then do nothing and return
                      if (!LibUtil.isZeroAddress(_facetAddress)) {
                          revert FacetAddressIsNotZero();
                      }
                      for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                          bytes4 selector = _functionSelectors[selectorIndex];
                          address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                          removeFunction(ds, oldFacetAddress, selector);
                          unchecked {
                              ++selectorIndex;
                          }
                      }
                  }
                  function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
                      enforceHasContractCode(_facetAddress);
                      ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
                      ds.facetAddresses.push(_facetAddress);
                  }
                  function addFunction(
                      DiamondStorage storage ds,
                      bytes4 _selector,
                      uint96 _selectorPosition,
                      address _facetAddress
                  ) internal {
                      ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
                      ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
                      ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
                  }
                  function removeFunction(
                      DiamondStorage storage ds,
                      address _facetAddress,
                      bytes4 _selector
                  ) internal {
                      if (LibUtil.isZeroAddress(_facetAddress)) {
                          revert FunctionDoesNotExist();
                      }
                      // an immutable function is a function defined directly in a diamond
                      if (_facetAddress == address(this)) {
                          revert FunctionIsImmutable();
                      }
                      // replace selector with last selector, then delete last selector
                      uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
                      uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
                      // if not the same then replace _selector with lastSelector
                      if (selectorPosition != lastSelectorPosition) {
                          bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
                          ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
                          ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
                      }
                      // delete the last selector
                      ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
                      delete ds.selectorToFacetAndPosition[_selector];
                      // if no more selectors for facet address then delete the facet address
                      if (lastSelectorPosition == 0) {
                          // replace facet address with last facet address and delete last facet address
                          uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
                          uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                          if (facetAddressPosition != lastFacetAddressPosition) {
                              address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                              ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                              ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
                          }
                          ds.facetAddresses.pop();
                          delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                      }
                  }
                  function initializeDiamondCut(address _init, bytes memory _calldata) internal {
                      if (LibUtil.isZeroAddress(_init)) {
                          if (_calldata.length != 0) {
                              revert InitZeroButCalldataNotEmpty();
                          }
                      } else {
                          if (_calldata.length == 0) {
                              revert CalldataEmptyButInitNotZero();
                          }
                          if (_init != address(this)) {
                              enforceHasContractCode(_init);
                          }
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory error) = _init.delegatecall(_calldata);
                          if (!success) {
                              if (error.length > 0) {
                                  // bubble up the error
                                  revert(string(error));
                              } else {
                                  revert InitReverted();
                              }
                          }
                      }
                  }
                  function enforceHasContractCode(address _contract) internal view {
                      uint256 contractSize;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          contractSize := extcodesize(_contract)
                      }
                      if (contractSize == 0) {
                          revert FacetContainsNoCode();
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import "./LibBytes.sol";
              library LibUtil {
                  using LibBytes for bytes;
                  function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
                      // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                      if (_res.length < 68) return "Transaction reverted silently";
                      bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                      return abi.decode(revertData, (string)); // All that remains is the revert string
                  }
                  /// @notice Determines whether the given address is the zero address
                  /// @param addr The address to verify
                  /// @return Boolean indicating if the address is the zero address
                  function isZeroAddress(address addr) internal pure returns (bool) {
                      return addr == address(0);
                  }
              }
              

              File 4 of 7: L1_ERC20_Bridge
              // SPDX-License-Identifier: MIT
              pragma solidity 0.6.12;
              pragma experimental ABIEncoderV2;
              import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
              import "./L1_Bridge.sol";
              /**
               * @dev A L1_Bridge that uses an ERC20 as the canonical token
               */
              contract L1_ERC20_Bridge is L1_Bridge {
                  using SafeERC20 for IERC20;
                  IERC20 public immutable l1CanonicalToken;
                  constructor (IERC20 _l1CanonicalToken, address[] memory bonders, address _governance) public L1_Bridge(bonders, _governance) {
                      l1CanonicalToken = _l1CanonicalToken;
                  }
                  /* ========== Override Functions ========== */
                  function _transferFromBridge(address recipient, uint256 amount) internal override {
                      l1CanonicalToken.safeTransfer(recipient, amount);
                  }
                  function _transferToBridge(address from, uint256 amount) internal override {
                      l1CanonicalToken.safeTransferFrom(from, address(this), amount);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `recipient`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address recipient, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `sender` to `recipient` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              import "./IERC20.sol";
              import "../../math/SafeMath.sol";
              import "../../utils/Address.sol";
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using SafeMath for uint256;
                  using Address for address;
                  function safeTransfer(IERC20 token, address to, uint256 value) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
                  function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(IERC20 token, address spender, uint256 value) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      // solhint-disable-next-line max-line-length
                      require((value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
                  function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                      uint256 newAllowance = token.allowance(address(this), spender).add(value);
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
                  function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                      uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      if (returndata.length > 0) { // Return data is optional
                          // solhint-disable-next-line max-line-length
                          require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.6.12;
              pragma experimental ABIEncoderV2;
              import "./Bridge.sol";
              import "../interfaces/IMessengerWrapper.sol";
              /**
               * @dev L1_Bridge is responsible for the bonding and challenging of TransferRoots. All TransferRoots
               * originate in the L1_Bridge through `bondTransferRoot` and are propagated up to destination L2s.
               */
              abstract contract L1_Bridge is Bridge {
                  struct TransferBond {
                      address bonder;
                      uint256 createdAt;
                      uint256 totalAmount;
                      uint256 challengeStartTime;
                      address challenger;
                      bool challengeResolved;
                  }
                  /* ========== State ========== */
                  mapping(uint256 => mapping(bytes32 => uint256)) public transferRootCommittedAt;
                  mapping(bytes32 => TransferBond) public transferBonds;
                  mapping(uint256 => mapping(address => uint256)) public timeSlotToAmountBonded;
                  mapping(uint256 => uint256) public chainBalance;
                  /* ========== Config State ========== */
                  address public governance;
                  mapping(uint256 => IMessengerWrapper) public crossDomainMessengerWrappers;
                  mapping(uint256 => bool) public isChainIdPaused;
                  uint256 public challengePeriod = 1 days;
                  uint256 public challengeResolutionPeriod = 10 days;
                  uint256 public minTransferRootBondDelay = 15 minutes;
                  
                  uint256 public constant CHALLENGE_AMOUNT_DIVISOR = 10;
                  uint256 public constant TIME_SLOT_SIZE = 4 hours;
                  /* ========== Events ========== */
                  event TransferSentToL2(
                      uint256 indexed chainId,
                      address indexed recipient,
                      uint256 amount,
                      uint256 amountOutMin,
                      uint256 deadline,
                      address indexed relayer,
                      uint256 relayerFee
                  );
                  event TransferRootBonded (
                      bytes32 indexed root,
                      uint256 amount
                  );
                  event TransferRootConfirmed(
                      uint256 indexed originChainId,
                      uint256 indexed destinationChainId,
                      bytes32 indexed rootHash,
                      uint256 totalAmount
                  );
                  event TransferBondChallenged(
                      bytes32 indexed transferRootId,
                      bytes32 indexed rootHash,
                      uint256 originalAmount
                  );
                  event ChallengeResolved(
                      bytes32 indexed transferRootId,
                      bytes32 indexed rootHash,
                      uint256 originalAmount
                  );
                  /* ========== Modifiers ========== */
                  modifier onlyL2Bridge(uint256 chainId) {
                      IMessengerWrapper messengerWrapper = crossDomainMessengerWrappers[chainId];
                      messengerWrapper.verifySender(msg.sender, msg.data);
                      _;
                  }
                  constructor (address[] memory bonders, address _governance) public Bridge(bonders) {
                      governance = _governance;
                  }
                  /* ========== Send Functions ========== */
                  /**
                   * @notice `amountOutMin` and `deadline` should be 0 when no swap is intended at the destination.
                   * @notice `amount` is the total amount the user wants to send including the relayer fee
                   * @dev Send tokens to a supported layer-2 to mint hToken and optionally swap the hToken in the
                   * AMM at the destination.
                   * @param chainId The chainId of the destination chain
                   * @param recipient The address receiving funds at the destination
                   * @param amount The amount being sent
                   * @param amountOutMin The minimum amount received after attempting to swap in the destination
                   * AMM market. 0 if no swap is intended.
                   * @param deadline The deadline for swapping in the destination AMM market. 0 if no
                   * swap is intended.
                   * @param relayer The address of the relayer at the destination.
                   * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`.
                   */
                  function sendToL2(
                      uint256 chainId,
                      address recipient,
                      uint256 amount,
                      uint256 amountOutMin,
                      uint256 deadline,
                      address relayer,
                      uint256 relayerFee
                  )
                      external
                      payable
                  {
                      IMessengerWrapper messengerWrapper = crossDomainMessengerWrappers[chainId];
                      require(messengerWrapper != IMessengerWrapper(0), "L1_BRG: chainId not supported");
                      require(isChainIdPaused[chainId] == false, "L1_BRG: Sends to this chainId are paused");
                      require(amount > 0, "L1_BRG: Must transfer a non-zero amount");
                      require(amount >= relayerFee, "L1_BRG: Relayer fee cannot exceed amount");
                      _transferToBridge(msg.sender, amount);
                      bytes memory message = abi.encodeWithSignature(
                          "distribute(address,uint256,uint256,uint256,address,uint256)",
                          recipient,
                          amount,
                          amountOutMin,
                          deadline,
                          relayer,
                          relayerFee
                      );
                      chainBalance[chainId] = chainBalance[chainId].add(amount);
                      messengerWrapper.sendCrossDomainMessage(message);
                      emit TransferSentToL2(
                          chainId,
                          recipient,
                          amount,
                          amountOutMin,
                          deadline,
                          relayer,
                          relayerFee
                      );
                  }
                  /* ========== TransferRoot Functions ========== */
                  /**
                   * @dev Setting a TransferRoot is a two step process.
                   * @dev   1. The TransferRoot is bonded with `bondTransferRoot`. Withdrawals can now begin on L1
                   * @dev      and recipient L2's
                   * @dev   2. The TransferRoot is confirmed after `confirmTransferRoot` is called by the l2 bridge
                   * @dev      where the TransferRoot originated.
                   */
                  /**
                   * @dev Used by the Bonder to bond a TransferRoot and propagate it up to destination L2s
                   * @param rootHash The Merkle root of the TransferRoot Merkle tree
                   * @param destinationChainId The id of the destination chain
                   * @param totalAmount The amount destined for the destination chain
                   */
                  function bondTransferRoot(
                      bytes32 rootHash,
                      uint256 destinationChainId,
                      uint256 totalAmount
                  )
                      external
                      onlyBonder
                      requirePositiveBalance
                  {
                      bytes32 transferRootId = getTransferRootId(rootHash, totalAmount);
                      require(transferRootCommittedAt[destinationChainId][transferRootId] == 0, "L1_BRG: TransferRoot has already been confirmed");
                      require(transferBonds[transferRootId].createdAt == 0, "L1_BRG: TransferRoot has already been bonded");
                      uint256 currentTimeSlot = getTimeSlot(block.timestamp);
                      uint256 bondAmount = getBondForTransferAmount(totalAmount);
                      timeSlotToAmountBonded[currentTimeSlot][msg.sender] = timeSlotToAmountBonded[currentTimeSlot][msg.sender].add(bondAmount);
                      transferBonds[transferRootId] = TransferBond(
                          msg.sender,
                          block.timestamp,
                          totalAmount,
                          uint256(0),
                          address(0),
                          false
                      );
                      _distributeTransferRoot(rootHash, destinationChainId, totalAmount);
                      emit TransferRootBonded(rootHash, totalAmount);
                  }
                  /**
                   * @dev Used by an L2 bridge to confirm a TransferRoot via cross-domain message. Once a TransferRoot
                   * has been confirmed, any challenge against that TransferRoot can be resolved as unsuccessful.
                   * @param originChainId The id of the origin chain
                   * @param rootHash The Merkle root of the TransferRoot Merkle tree
                   * @param destinationChainId The id of the destination chain
                   * @param totalAmount The amount destined for each destination chain
                   * @param rootCommittedAt The block timestamp when the TransferRoot was committed on its origin chain
                   */
                  function confirmTransferRoot(
                      uint256 originChainId,
                      bytes32 rootHash,
                      uint256 destinationChainId,
                      uint256 totalAmount,
                      uint256 rootCommittedAt
                  )
                      external
                      onlyL2Bridge(originChainId)
                  {
                      bytes32 transferRootId = getTransferRootId(rootHash, totalAmount);
                      require(transferRootCommittedAt[destinationChainId][transferRootId] == 0, "L1_BRG: TransferRoot already confirmed");
                      require(rootCommittedAt > 0, "L1_BRG: rootCommittedAt must be greater than 0");
                      transferRootCommittedAt[destinationChainId][transferRootId] = rootCommittedAt;
                      chainBalance[originChainId] = chainBalance[originChainId].sub(totalAmount, "L1_BRG: Amount exceeds chainBalance. This indicates a layer-2 failure.");
                      // If the TransferRoot was never bonded, distribute the TransferRoot.
                      TransferBond storage transferBond = transferBonds[transferRootId];
                      if (transferBond.createdAt == 0) {
                          _distributeTransferRoot(rootHash, destinationChainId, totalAmount);
                      }
                      emit TransferRootConfirmed(originChainId, destinationChainId, rootHash, totalAmount);
                  }
                  function _distributeTransferRoot(
                      bytes32 rootHash,
                      uint256 chainId,
                      uint256 totalAmount
                  )
                      internal
                  {
                      // Set TransferRoot on recipient Bridge
                      if (chainId == getChainId()) {
                          // Set L1 TransferRoot
                          _setTransferRoot(rootHash, totalAmount);
                      } else {
                          chainBalance[chainId] = chainBalance[chainId].add(totalAmount);
                          IMessengerWrapper messengerWrapper = crossDomainMessengerWrappers[chainId];
                          require(messengerWrapper != IMessengerWrapper(0), "L1_BRG: chainId not supported");
                          // Set L2 TransferRoot
                          bytes memory setTransferRootMessage = abi.encodeWithSignature(
                              "setTransferRoot(bytes32,uint256)",
                              rootHash,
                              totalAmount
                          );
                          messengerWrapper.sendCrossDomainMessage(setTransferRootMessage);
                      }
                  }
                  /* ========== External TransferRoot Challenges ========== */
                  /**
                   * @dev Challenge a TransferRoot believed to be fraudulent
                   * @param rootHash The Merkle root of the TransferRoot Merkle tree
                   * @param originalAmount The total amount bonded for this TransferRoot
                   * @param destinationChainId The id of the destination chain
                   */
                  function challengeTransferBond(bytes32 rootHash, uint256 originalAmount, uint256 destinationChainId) external payable {
                      bytes32 transferRootId = getTransferRootId(rootHash, originalAmount);
                      TransferBond storage transferBond = transferBonds[transferRootId];
                      require(transferRootCommittedAt[destinationChainId][transferRootId] == 0, "L1_BRG: TransferRoot has already been confirmed");
                      require(transferBond.createdAt != 0, "L1_BRG: TransferRoot has not been bonded");
                      uint256 challengePeriodEnd = transferBond.createdAt.add(challengePeriod);
                      require(challengePeriodEnd >= block.timestamp, "L1_BRG: TransferRoot cannot be challenged after challenge period");
                      require(transferBond.challengeStartTime == 0, "L1_BRG: TransferRoot already challenged");
                      transferBond.challengeStartTime = block.timestamp;
                      transferBond.challenger = msg.sender;
                      // Move amount from timeSlotToAmountBonded to debit
                      uint256 timeSlot = getTimeSlot(transferBond.createdAt);
                      uint256 bondAmount = getBondForTransferAmount(originalAmount);
                      address bonder = transferBond.bonder;
                      timeSlotToAmountBonded[timeSlot][bonder] = timeSlotToAmountBonded[timeSlot][bonder].sub(bondAmount);
                      _addDebit(transferBond.bonder, bondAmount);
                      // Get stake for challenge
                      uint256 challengeStakeAmount = getChallengeAmountForTransferAmount(originalAmount);
                      _transferToBridge(msg.sender, challengeStakeAmount);
                      emit TransferBondChallenged(transferRootId, rootHash, originalAmount);
                  }
                  /**
                   * @dev Resolve a challenge after the `challengeResolutionPeriod` has passed
                   * @param rootHash The Merkle root of the TransferRoot Merkle tree
                   * @param originalAmount The total amount originally bonded for this TransferRoot
                   * @param destinationChainId The id of the destination chain
                   */
                  function resolveChallenge(bytes32 rootHash, uint256 originalAmount, uint256 destinationChainId) external {
                      bytes32 transferRootId = getTransferRootId(rootHash, originalAmount);
                      TransferBond storage transferBond = transferBonds[transferRootId];
                      require(transferBond.challengeStartTime != 0, "L1_BRG: TransferRoot has not been challenged");
                      require(block.timestamp > transferBond.challengeStartTime.add(challengeResolutionPeriod), "L1_BRG: Challenge period has not ended");
                      require(transferBond.challengeResolved == false, "L1_BRG: TransferRoot already resolved");
                      transferBond.challengeResolved = true;
                      uint256 challengeStakeAmount = getChallengeAmountForTransferAmount(originalAmount);
                      if (transferRootCommittedAt[destinationChainId][transferRootId] > 0) {
                          // Invalid challenge
                          if (transferBond.createdAt > transferRootCommittedAt[destinationChainId][transferRootId].add(minTransferRootBondDelay)) {
                              // Credit the bonder back with the bond amount plus the challenger's stake
                              _addCredit(transferBond.bonder, getBondForTransferAmount(originalAmount).add(challengeStakeAmount));
                          } else {
                              // If the TransferRoot was bonded before it was committed, the challenger and Bonder
                              // get their stake back. This discourages Bonders from tricking challengers into
                              // challenging a valid TransferRoots that haven't yet been committed. It also ensures
                              // that Bonders are not punished if a TransferRoot is bonded too soon in error.
                              // Return the challenger's stake
                              _addCredit(transferBond.challenger, challengeStakeAmount);
                              // Credit the bonder back with the bond amount
                              _addCredit(transferBond.bonder, getBondForTransferAmount(originalAmount));
                          }
                      } else {
                          // Valid challenge
                          // Burn 25% of the challengers stake
                          _transferFromBridge(address(0xdead), challengeStakeAmount.mul(1).div(4));
                          // Reward challenger with the remaining 75% of their stake plus 100% of the Bonder's stake
                          _addCredit(transferBond.challenger, challengeStakeAmount.mul(7).div(4));
                      }
                      emit ChallengeResolved(transferRootId, rootHash, originalAmount);
                  }
                  /* ========== Override Functions ========== */
                  function _additionalDebit(address bonder) internal view override returns (uint256) {
                      uint256 currentTimeSlot = getTimeSlot(block.timestamp);
                      uint256 bonded = 0;
                      uint256 numTimeSlots = challengePeriod / TIME_SLOT_SIZE;
                      for (uint256 i = 0; i < numTimeSlots; i++) {
                          bonded = bonded.add(timeSlotToAmountBonded[currentTimeSlot - i][bonder]);
                      }
                      return bonded;
                  }
                  function _requireIsGovernance() internal override {
                      require(governance == msg.sender, "L1_BRG: Caller is not the owner");
                  }
                  /* ========== External Config Management Setters ========== */
                  function setGovernance(address _newGovernance) external onlyGovernance {
                      require(_newGovernance != address(0), "L1_BRG: _newGovernance cannot be address(0)");
                      governance = _newGovernance;
                  }
                  function setCrossDomainMessengerWrapper(uint256 chainId, IMessengerWrapper _crossDomainMessengerWrapper) external onlyGovernance {
                      crossDomainMessengerWrappers[chainId] = _crossDomainMessengerWrapper;
                  }
                  function setChainIdDepositsPaused(uint256 chainId, bool isPaused) external onlyGovernance {
                      isChainIdPaused[chainId] = isPaused;
                  }
                  function setChallengePeriod(uint256 _challengePeriod) external onlyGovernance {
                      require(_challengePeriod % TIME_SLOT_SIZE == 0, "L1_BRG: challengePeriod must be divisible by TIME_SLOT_SIZE");
                      challengePeriod = _challengePeriod;
                  }
                  function setChallengeResolutionPeriod(uint256 _challengeResolutionPeriod) external onlyGovernance {
                      challengeResolutionPeriod = _challengeResolutionPeriod;
                  }
                  function setMinTransferRootBondDelay(uint256 _minTransferRootBondDelay) external onlyGovernance {
                      minTransferRootBondDelay = _minTransferRootBondDelay;
                  }
                  /* ========== Public Getters ========== */
                  function getBondForTransferAmount(uint256 amount) public pure returns (uint256) {
                      // Bond covers amount plus a bounty to pay a potential challenger
                      return amount.add(getChallengeAmountForTransferAmount(amount));
                  }
                  function getChallengeAmountForTransferAmount(uint256 amount) public pure returns (uint256) {
                      // Bond covers amount plus a bounty to pay a potential challenger
                      return amount.div(CHALLENGE_AMOUNT_DIVISOR);
                  }
                  function getTimeSlot(uint256 time) public pure returns (uint256) {
                      return time / TIME_SLOT_SIZE;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              /**
               * @dev Wrappers over Solidity's arithmetic operations with added overflow
               * checks.
               *
               * Arithmetic operations in Solidity wrap on overflow. This can easily result
               * in bugs, because programmers usually assume that an overflow raises an
               * error, which is the standard behavior in high level programming languages.
               * `SafeMath` restores this intuition by reverting the transaction when an
               * operation overflows.
               *
               * Using this library instead of the unchecked operations eliminates an entire
               * class of bugs, so it's recommended to use it always.
               */
              library SafeMath {
                  /**
                   * @dev Returns the addition of two unsigned integers, with an overflow flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      uint256 c = a + b;
                      if (c < a) return (false, 0);
                      return (true, c);
                  }
                  /**
                   * @dev Returns the substraction of two unsigned integers, with an overflow flag.
                   *
                   * _Available since v3.4._
                   */
                  function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      if (b > a) return (false, 0);
                      return (true, a - b);
                  }
                  /**
                   * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                      // benefit is lost if 'b' is also tested.
                      // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                      if (a == 0) return (true, 0);
                      uint256 c = a * b;
                      if (c / a != b) return (false, 0);
                      return (true, c);
                  }
                  /**
                   * @dev Returns the division of two unsigned integers, with a division by zero flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      if (b == 0) return (false, 0);
                      return (true, a / b);
                  }
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      if (b == 0) return (false, 0);
                      return (true, a % b);
                  }
                  /**
                   * @dev Returns the addition of two unsigned integers, reverting on
                   * overflow.
                   *
                   * Counterpart to Solidity's `+` operator.
                   *
                   * Requirements:
                   *
                   * - Addition cannot overflow.
                   */
                  function add(uint256 a, uint256 b) internal pure returns (uint256) {
                      uint256 c = a + b;
                      require(c >= a, "SafeMath: addition overflow");
                      return c;
                  }
                  /**
                   * @dev Returns the subtraction of two unsigned integers, reverting on
                   * overflow (when the result is negative).
                   *
                   * Counterpart to Solidity's `-` operator.
                   *
                   * Requirements:
                   *
                   * - Subtraction cannot overflow.
                   */
                  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                      require(b <= a, "SafeMath: subtraction overflow");
                      return a - b;
                  }
                  /**
                   * @dev Returns the multiplication of two unsigned integers, reverting on
                   * overflow.
                   *
                   * Counterpart to Solidity's `*` operator.
                   *
                   * Requirements:
                   *
                   * - Multiplication cannot overflow.
                   */
                  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                      if (a == 0) return 0;
                      uint256 c = a * b;
                      require(c / a == b, "SafeMath: multiplication overflow");
                      return c;
                  }
                  /**
                   * @dev Returns the integer division of two unsigned integers, reverting on
                   * division by zero. The result is rounded towards zero.
                   *
                   * Counterpart to Solidity's `/` operator. Note: this function uses a
                   * `revert` opcode (which leaves remaining gas untouched) while Solidity
                   * uses an invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function div(uint256 a, uint256 b) internal pure returns (uint256) {
                      require(b > 0, "SafeMath: division by zero");
                      return a / b;
                  }
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                   * reverting when dividing by zero.
                   *
                   * Counterpart to Solidity's `%` operator. This function uses a `revert`
                   * opcode (which leaves remaining gas untouched) while Solidity uses an
                   * invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                      require(b > 0, "SafeMath: modulo by zero");
                      return a % b;
                  }
                  /**
                   * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                   * overflow (when the result is negative).
                   *
                   * CAUTION: This function is deprecated because it requires allocating memory for the error
                   * message unnecessarily. For custom revert reasons use {trySub}.
                   *
                   * Counterpart to Solidity's `-` operator.
                   *
                   * Requirements:
                   *
                   * - Subtraction cannot overflow.
                   */
                  function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b <= a, errorMessage);
                      return a - b;
                  }
                  /**
                   * @dev Returns the integer division of two unsigned integers, reverting with custom message on
                   * division by zero. The result is rounded towards zero.
                   *
                   * CAUTION: This function is deprecated because it requires allocating memory for the error
                   * message unnecessarily. For custom revert reasons use {tryDiv}.
                   *
                   * Counterpart to Solidity's `/` operator. Note: this function uses a
                   * `revert` opcode (which leaves remaining gas untouched) while Solidity
                   * uses an invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b > 0, errorMessage);
                      return a / b;
                  }
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                   * reverting with custom message when dividing by zero.
                   *
                   * CAUTION: This function is deprecated because it requires allocating memory for the error
                   * message unnecessarily. For custom revert reasons use {tryMod}.
                   *
                   * Counterpart to Solidity's `%` operator. This function uses a `revert`
                   * opcode (which leaves remaining gas untouched) while Solidity uses an
                   * invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b > 0, errorMessage);
                      return a % b;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.2 <0.8.0;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize, which returns 0 for contracts in
                      // construction, since the code is only stored at the end of the
                      // constructor execution.
                      uint256 size;
                      // solhint-disable-next-line no-inline-assembly
                      assembly { size := extcodesize(account) }
                      return size > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                      (bool success, ) = recipient.call{ value: amount }("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain`call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.call{ value: value }(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
                  function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              // solhint-disable-next-line no-inline-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.6.12;
              pragma experimental ABIEncoderV2;
              import "./Accounting.sol";
              import "../libraries/Lib_MerkleTree.sol";
              /**
               * @dev Bridge extends the accounting system and encapsulates the logic that is shared by both the
               * L1 and L2 Bridges. It allows to TransferRoots to be set by parent contracts and for those
               * TransferRoots to be withdrawn against. It also allows the bonder to bond and withdraw Transfers
               * directly through `bondWithdrawal` and then settle those bonds against their TransferRoot once it
               * has been set.
               */
              abstract contract Bridge is Accounting {
                  using Lib_MerkleTree for bytes32;
                  struct TransferRoot {
                      uint256 total;
                      uint256 amountWithdrawn;
                      uint256 createdAt;
                  }
                  /* ========== Events ========== */
                  event Withdrew(
                      bytes32 indexed transferId,
                      address indexed recipient,
                      uint256 amount,
                      bytes32 transferNonce
                  );
                  event WithdrawalBonded(
                      bytes32 indexed transferId,
                      uint256 amount
                  );
                  event WithdrawalBondSettled(
                      address indexed bonder,
                      bytes32 indexed transferId,
                      bytes32 indexed rootHash
                  );
                  event MultipleWithdrawalsSettled(
                      address indexed bonder,
                      bytes32 indexed rootHash,
                      uint256 totalBondsSettled
                  );
                  event TransferRootSet(
                      bytes32 indexed rootHash,
                      uint256 totalAmount
                  );
                  /* ========== State ========== */
                  mapping(bytes32 => TransferRoot) private _transferRoots;
                  mapping(bytes32 => bool) private _spentTransferIds;
                  mapping(address => mapping(bytes32 => uint256)) private _bondedWithdrawalAmounts;
                  uint256 constant RESCUE_DELAY = 8 weeks;
                  constructor(address[] memory bonders) public Accounting(bonders) {}
                  /* ========== Public Getters ========== */
                  /**
                   * @dev Get the hash that represents an individual Transfer.
                   * @param chainId The id of the destination chain
                   * @param recipient The address receiving the Transfer
                   * @param amount The amount being transferred including the `_bonderFee`
                   * @param transferNonce Used to avoid transferId collisions
                   * @param bonderFee The amount paid to the address that withdraws the Transfer
                   * @param amountOutMin The minimum amount received after attempting to swap in the destination
                   * AMM market. 0 if no swap is intended.
                   * @param deadline The deadline for swapping in the destination AMM market. 0 if no
                   * swap is intended.
                   */
                  function getTransferId(
                      uint256 chainId,
                      address recipient,
                      uint256 amount,
                      bytes32 transferNonce,
                      uint256 bonderFee,
                      uint256 amountOutMin,
                      uint256 deadline
                  )
                      public
                      pure
                      returns (bytes32)
                  {
                      return keccak256(abi.encode(
                          chainId,
                          recipient,
                          amount,
                          transferNonce,
                          bonderFee,
                          amountOutMin,
                          deadline
                      ));
                  }
                  /**
                   * @notice getChainId can be overridden by subclasses if needed for compatibility or testing purposes.
                   * @dev Get the current chainId
                   * @return chainId The current chainId
                   */
                  function getChainId() public virtual view returns (uint256 chainId) {
                      this; // Silence state mutability warning without generating any additional byte code
                      assembly {
                          chainId := chainid()
                      }
                  }
                  /**
                   * @dev Get the TransferRoot id for a given rootHash and totalAmount
                   * @param rootHash The Merkle root of the TransferRoot
                   * @param totalAmount The total of all Transfers in the TransferRoot
                   * @return The calculated transferRootId
                   */
                  function getTransferRootId(bytes32 rootHash, uint256 totalAmount) public pure returns (bytes32) {
                      return keccak256(abi.encodePacked(rootHash, totalAmount));
                  }
                  /**
                   * @dev Get the TransferRoot for a given rootHash and totalAmount
                   * @param rootHash The Merkle root of the TransferRoot
                   * @param totalAmount The total of all Transfers in the TransferRoot
                   * @return The TransferRoot with the calculated transferRootId
                   */
                  function getTransferRoot(bytes32 rootHash, uint256 totalAmount) public view returns (TransferRoot memory) {
                      return _transferRoots[getTransferRootId(rootHash, totalAmount)];
                  }
                  /**
                   * @dev Get the amount bonded for the withdrawal of a transfer
                   * @param bonder The Bonder of the withdrawal
                   * @param transferId The Transfer's unique identifier
                   * @return The amount bonded for a Transfer withdrawal
                   */
                  function getBondedWithdrawalAmount(address bonder, bytes32 transferId) external view returns (uint256) {
                      return _bondedWithdrawalAmounts[bonder][transferId];
                  }
                  /**
                   * @dev Get the spent status of a transfer ID
                   * @param transferId The transfer's unique identifier
                   * @return True if the transferId has been spent
                   */
                  function isTransferIdSpent(bytes32 transferId) external view returns (bool) {
                      return _spentTransferIds[transferId];
                  }
                  /* ========== User/Relayer External Functions ========== */
                  /**
                   * @notice Can be called by anyone (recipient or relayer)
                   * @dev Withdraw a Transfer from its destination bridge
                   * @param recipient The address receiving the Transfer
                   * @param amount The amount being transferred including the `_bonderFee`
                   * @param transferNonce Used to avoid transferId collisions
                   * @param bonderFee The amount paid to the address that withdraws the Transfer
                   * @param amountOutMin The minimum amount received after attempting to swap in the destination
                   * AMM market. 0 if no swap is intended. (only used to calculate `transferId` in this function)
                   * @param deadline The deadline for swapping in the destination AMM market. 0 if no
                   * swap is intended. (only used to calculate `transferId` in this function)
                   * @param rootHash The Merkle root of the TransferRoot
                   * @param transferRootTotalAmount The total amount being transferred in a TransferRoot
                   * @param transferIdTreeIndex The index of the transferId in the Merkle tree
                   * @param siblings The siblings of the transferId in the Merkle tree
                   * @param totalLeaves The total number of leaves in the Merkle tree
                   */
                  function withdraw(
                      address recipient,
                      uint256 amount,
                      bytes32 transferNonce,
                      uint256 bonderFee,
                      uint256 amountOutMin,
                      uint256 deadline,
                      bytes32 rootHash,
                      uint256 transferRootTotalAmount,
                      uint256 transferIdTreeIndex,
                      bytes32[] calldata siblings,
                      uint256 totalLeaves
                  )
                      external
                      nonReentrant
                  {
                      bytes32 transferId = getTransferId(
                          getChainId(),
                          recipient,
                          amount,
                          transferNonce,
                          bonderFee,
                          amountOutMin,
                          deadline
                      );
                      require(
                          rootHash.verify(
                              transferId,
                              transferIdTreeIndex,
                              siblings,
                              totalLeaves
                          )
                      , "BRG: Invalid transfer proof");
                      bytes32 transferRootId = getTransferRootId(rootHash, transferRootTotalAmount);
                      _addToAmountWithdrawn(transferRootId, amount);
                      _fulfillWithdraw(transferId, recipient, amount, uint256(0));
                      emit Withdrew(transferId, recipient, amount, transferNonce);
                  }
                  /**
                   * @dev Allows the bonder to bond individual withdrawals before their TransferRoot has been committed.
                   * @param recipient The address receiving the Transfer
                   * @param amount The amount being transferred including the `_bonderFee`
                   * @param transferNonce Used to avoid transferId collisions
                   * @param bonderFee The amount paid to the address that withdraws the Transfer
                   */
                  function bondWithdrawal(
                      address recipient,
                      uint256 amount,
                      bytes32 transferNonce,
                      uint256 bonderFee
                  )
                      external
                      onlyBonder
                      requirePositiveBalance
                      nonReentrant
                  {
                      bytes32 transferId = getTransferId(
                          getChainId(),
                          recipient,
                          amount,
                          transferNonce,
                          bonderFee,
                          0,
                          0
                      );
                      _bondWithdrawal(transferId, amount);
                      _fulfillWithdraw(transferId, recipient, amount, bonderFee);
                  }
                  /**
                   * @dev Refunds the Bonder's stake from a bonded withdrawal and counts that withdrawal against
                   * its TransferRoot.
                   * @param bonder The Bonder of the withdrawal
                   * @param transferId The Transfer's unique identifier
                   * @param rootHash The Merkle root of the TransferRoot
                   * @param transferRootTotalAmount The total amount being transferred in a TransferRoot
                   * @param transferIdTreeIndex The index of the transferId in the Merkle tree
                   * @param siblings The siblings of the transferId in the Merkle tree
                   * @param totalLeaves The total number of leaves in the Merkle tree
                   */
                  function settleBondedWithdrawal(
                      address bonder,
                      bytes32 transferId,
                      bytes32 rootHash,
                      uint256 transferRootTotalAmount,
                      uint256 transferIdTreeIndex,
                      bytes32[] calldata siblings,
                      uint256 totalLeaves
                  )
                      external
                  {
                      require(
                          rootHash.verify(
                              transferId,
                              transferIdTreeIndex,
                              siblings,
                              totalLeaves
                          )
                      , "BRG: Invalid transfer proof");
                      bytes32 transferRootId = getTransferRootId(rootHash, transferRootTotalAmount);
                      uint256 amount = _bondedWithdrawalAmounts[bonder][transferId];
                      require(amount > 0, "L2_BRG: transferId has no bond");
                      _bondedWithdrawalAmounts[bonder][transferId] = 0;
                      _addToAmountWithdrawn(transferRootId, amount);
                      _addCredit(bonder, amount);
                      emit WithdrawalBondSettled(bonder, transferId, rootHash);
                  }
                  /**
                   * @dev Refunds the Bonder for all withdrawals that they bonded in a TransferRoot.
                   * @param bonder The address of the Bonder being refunded
                   * @param transferIds All transferIds in the TransferRoot in order
                   * @param totalAmount The totalAmount of the TransferRoot
                   */
                  function settleBondedWithdrawals(
                      address bonder,
                      // transferIds _must_ be calldata or it will be mutated by Lib_MerkleTree.getMerkleRoot
                      bytes32[] calldata transferIds,
                      uint256 totalAmount
                  )
                      external
                  {
                      bytes32 rootHash = Lib_MerkleTree.getMerkleRoot(transferIds);
                      bytes32 transferRootId = getTransferRootId(rootHash, totalAmount);
                      uint256 totalBondsSettled = 0;
                      for(uint256 i = 0; i < transferIds.length; i++) {
                          uint256 transferBondAmount = _bondedWithdrawalAmounts[bonder][transferIds[i]];
                          if (transferBondAmount > 0) {
                              totalBondsSettled = totalBondsSettled.add(transferBondAmount);
                              _bondedWithdrawalAmounts[bonder][transferIds[i]] = 0;
                          }
                      }
                      _addToAmountWithdrawn(transferRootId, totalBondsSettled);
                      _addCredit(bonder, totalBondsSettled);
                      emit MultipleWithdrawalsSettled(bonder, rootHash, totalBondsSettled);
                  }
                  /* ========== External TransferRoot Rescue ========== */
                  /**
                   * @dev Allows governance to withdraw the remaining amount from a TransferRoot after the rescue delay has passed.
                   * @param rootHash the Merkle root of the TransferRoot
                   * @param originalAmount The TransferRoot's recorded total
                   * @param recipient The address receiving the remaining balance
                   */
                  function rescueTransferRoot(bytes32 rootHash, uint256 originalAmount, address recipient) external onlyGovernance {
                      bytes32 transferRootId = getTransferRootId(rootHash, originalAmount);
                      TransferRoot memory transferRoot = getTransferRoot(rootHash, originalAmount);
                      require(transferRoot.createdAt != 0, "BRG: TransferRoot not found");
                      assert(transferRoot.total == originalAmount);
                      uint256 rescueDelayEnd = transferRoot.createdAt.add(RESCUE_DELAY);
                      require(block.timestamp >= rescueDelayEnd, "BRG: TransferRoot cannot be rescued before the Rescue Delay");
                      uint256 remainingAmount = transferRoot.total.sub(transferRoot.amountWithdrawn);
                      _addToAmountWithdrawn(transferRootId, remainingAmount);
                      _transferFromBridge(recipient, remainingAmount);
                  }
                  /* ========== Internal Functions ========== */
                  function _markTransferSpent(bytes32 transferId) internal {
                      require(!_spentTransferIds[transferId], "BRG: The transfer has already been withdrawn");
                      _spentTransferIds[transferId] = true;
                  }
                  function _addToAmountWithdrawn(bytes32 transferRootId, uint256 amount) internal {
                      TransferRoot storage transferRoot = _transferRoots[transferRootId];
                      require(transferRoot.total > 0, "BRG: Transfer root not found");
                      uint256 newAmountWithdrawn = transferRoot.amountWithdrawn.add(amount);
                      require(newAmountWithdrawn <= transferRoot.total, "BRG: Withdrawal exceeds TransferRoot total");
                      transferRoot.amountWithdrawn = newAmountWithdrawn;
                  }
                  function _setTransferRoot(bytes32 rootHash, uint256 totalAmount) internal {
                      bytes32 transferRootId = getTransferRootId(rootHash, totalAmount);
                      require(_transferRoots[transferRootId].total == 0, "BRG: Transfer root already set");
                      require(totalAmount > 0, "BRG: Cannot set TransferRoot totalAmount of 0");
                      _transferRoots[transferRootId] = TransferRoot(totalAmount, 0, block.timestamp);
                      emit TransferRootSet(rootHash, totalAmount);
                  }
                  function _bondWithdrawal(bytes32 transferId, uint256 amount) internal {
                      require(_bondedWithdrawalAmounts[msg.sender][transferId] == 0, "BRG: Withdrawal has already been bonded");
                      _addDebit(msg.sender, amount);
                      _bondedWithdrawalAmounts[msg.sender][transferId] = amount;
                      emit WithdrawalBonded(transferId, amount);
                  }
                  /* ========== Private Functions ========== */
                  /// @dev Completes the Transfer, distributes the Bonder fee and marks the Transfer as spent.
                  function _fulfillWithdraw(
                      bytes32 transferId,
                      address recipient,
                      uint256 amount,
                      uint256 bonderFee
                  ) private {
                      _markTransferSpent(transferId);
                      _transferFromBridge(recipient, amount.sub(bonderFee));
                      if (bonderFee > 0) {
                          _transferFromBridge(msg.sender, bonderFee);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.12 <0.8.0;
              pragma experimental ABIEncoderV2;
              interface IMessengerWrapper {
                  function sendCrossDomainMessage(bytes memory _calldata) external;
                  function verifySender(address l1BridgeCaller, bytes memory _data) external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.6.12;
              pragma experimental ABIEncoderV2;
              import "@openzeppelin/contracts/math/SafeMath.sol";
              import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
              /**
               * @dev Accounting is an abstract contract that encapsulates the most critical logic in the Hop contracts.
               * The accounting system works by using two balances that can only increase `_credit` and `_debit`.
               * A bonder's available balance is the total credit minus the total debit. The contract exposes
               * two external functions that allows a bonder to stake and unstake and exposes two internal
               * functions to its child contracts that allow the child contract to add to the credit 
               * and debit balance. In addition, child contracts can override `_additionalDebit` to account
               * for any additional debit balance in an alternative way. Lastly, it exposes a modifier,
               * `requirePositiveBalance`, that can be used by child contracts to ensure the bonder does not
               * use more than its available stake.
               */
              abstract contract Accounting is ReentrancyGuard {
                  using SafeMath for uint256;
                  mapping(address => bool) private _isBonder;
                  mapping(address => uint256) private _credit;
                  mapping(address => uint256) private _debit;
                  event Stake (
                      address indexed account,
                      uint256 amount
                  );
                  event Unstake (
                      address indexed account,
                      uint256 amount
                  );
                  event BonderAdded (
                      address indexed newBonder
                  );
                  event BonderRemoved (
                      address indexed previousBonder
                  );
                  /* ========== Modifiers ========== */
                  modifier onlyBonder {
                      require(_isBonder[msg.sender], "ACT: Caller is not bonder");
                      _;
                  }
                  modifier onlyGovernance {
                      _requireIsGovernance();
                      _;
                  }
                  /// @dev Used by parent contract to ensure that the Bonder is solvent at the end of the transaction.
                  modifier requirePositiveBalance {
                      _;
                      require(getCredit(msg.sender) >= getDebitAndAdditionalDebit(msg.sender), "ACT: Not enough available credit");
                  }
                  /// @dev Sets the Bonder addresses
                  constructor(address[] memory bonders) public {
                      for (uint256 i = 0; i < bonders.length; i++) {
                          require(_isBonder[bonders[i]] == false, "ACT: Cannot add duplicate bonder");
                          _isBonder[bonders[i]] = true;
                          emit BonderAdded(bonders[i]);
                      }
                  }
                  /* ========== Virtual functions ========== */
                  /**
                   * @dev The following functions are overridden in L1_Bridge and L2_Bridge
                   */
                  function _transferFromBridge(address recipient, uint256 amount) internal virtual;
                  function _transferToBridge(address from, uint256 amount) internal virtual;
                  function _requireIsGovernance() internal virtual;
                  /**
                   * @dev This function can be optionally overridden by a parent contract to track any additional
                   * debit balance in an alternative way.
                   */
                  function _additionalDebit(address /*bonder*/) internal view virtual returns (uint256) {
                      this; // Silence state mutability warning without generating any additional byte code
                      return 0;
                  }
                  /* ========== Public/external getters ========== */
                  /**
                   * @dev Check if address is a Bonder
                   * @param maybeBonder The address being checked
                   * @return true if address is a Bonder
                   */
                  function getIsBonder(address maybeBonder) public view returns (bool) {
                      return _isBonder[maybeBonder];
                  }
                  /**
                   * @dev Get the Bonder's credit balance
                   * @param bonder The owner of the credit balance being checked
                   * @return The credit balance for the Bonder
                   */
                  function getCredit(address bonder) public view returns (uint256) {
                      return _credit[bonder];
                  }
                  /**
                   * @dev Gets the debit balance tracked by `_debit` and does not include `_additionalDebit()`
                   * @param bonder The owner of the debit balance being checked
                   * @return The debit amount for the Bonder
                   */
                  function getRawDebit(address bonder) external view returns (uint256) {
                      return _debit[bonder];
                  }
                  /**
                   * @dev Get the Bonder's total debit
                   * @param bonder The owner of the debit balance being checked
                   * @return The Bonder's total debit balance
                   */
                  function getDebitAndAdditionalDebit(address bonder) public view returns (uint256) {
                      return _debit[bonder].add(_additionalDebit(bonder));
                  }
                  /* ========== Bonder external functions ========== */
                  /** 
                   * @dev Allows the Bonder to deposit tokens and increase its credit balance
                   * @param bonder The address being staked on
                   * @param amount The amount being staked
                   */
                  function stake(address bonder, uint256 amount) external payable nonReentrant {
                      require(_isBonder[bonder] == true, "ACT: Address is not bonder");
                      _transferToBridge(msg.sender, amount);
                      _addCredit(bonder, amount);
                      emit Stake(bonder, amount);
                  }
                  /**
                   * @dev Allows the caller to withdraw any available balance and add to their debit balance
                   * @param amount The amount being unstaked
                   */
                  function unstake(uint256 amount) external requirePositiveBalance nonReentrant {
                      _addDebit(msg.sender, amount);
                      _transferFromBridge(msg.sender, amount);
                      emit Unstake(msg.sender, amount);
                  }
                  /**
                   * @dev Add Bonder to allowlist
                   * @param bonder The address being added as a Bonder
                   */
                  function addBonder(address bonder) external onlyGovernance {
                      require(_isBonder[bonder] == false, "ACT: Address is already bonder");
                      _isBonder[bonder] = true;
                      emit BonderAdded(bonder);
                  }
                  /**
                   * @dev Remove Bonder from allowlist
                   * @param bonder The address being removed as a Bonder
                   */
                  function removeBonder(address bonder) external onlyGovernance {
                      require(_isBonder[bonder] == true, "ACT: Address is not bonder");
                      _isBonder[bonder] = false;
                      emit BonderRemoved(bonder);
                  }
                  /* ========== Internal functions ========== */
                  function _addCredit(address bonder, uint256 amount) internal {
                      _credit[bonder] = _credit[bonder].add(amount);
                  }
                  function _addDebit(address bonder, uint256 amount) internal {
                      _debit[bonder] = _debit[bonder].add(amount);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              /**
               * @title Lib_MerkleTree
               * @author River Keefer
               */
              library Lib_MerkleTree {
                  /**********************
                   * Internal Functions *
                   **********************/
                  /**
                   * Calculates a merkle root for a list of 32-byte leaf hashes.  WARNING: If the number
                   * of leaves passed in is not a power of two, it pads out the tree with zero hashes.
                   * If you do not know the original length of elements for the tree you are verifying,
                   * then this may allow empty leaves past _elements.length to pass a verification check down the line.
                   * Note that the _elements argument is modified, therefore it must not be used again afterwards
                   * @param _elements Array of hashes from which to generate a merkle root.
                   * @return Merkle root of the leaves, with zero hashes for non-powers-of-two (see above).
                   */
                  function getMerkleRoot(
                      bytes32[] memory _elements
                  )
                      internal
                      pure
                      returns (
                          bytes32
                      )
                  {
                      require(
                          _elements.length > 0,
                          "Lib_MerkleTree: Must provide at least one leaf hash."
                      );
                      if (_elements.length == 1) {
                          return _elements[0];
                      }
                      uint256[16] memory defaults = [
                          0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563,
                          0x633dc4d7da7256660a892f8f1604a44b5432649cc8ec5cb3ced4c4e6ac94dd1d,
                          0x890740a8eb06ce9be422cb8da5cdafc2b58c0a5e24036c578de2a433c828ff7d,
                          0x3b8ec09e026fdc305365dfc94e189a81b38c7597b3d941c279f042e8206e0bd8,
                          0xecd50eee38e386bd62be9bedb990706951b65fe053bd9d8a521af753d139e2da,
                          0xdefff6d330bb5403f63b14f33b578274160de3a50df4efecf0e0db73bcdd3da5,
                          0x617bdd11f7c0a11f49db22f629387a12da7596f9d1704d7465177c63d88ec7d7,
                          0x292c23a9aa1d8bea7e2435e555a4a60e379a5a35f3f452bae60121073fb6eead,
                          0xe1cea92ed99acdcb045a6726b2f87107e8a61620a232cf4d7d5b5766b3952e10,
                          0x7ad66c0a68c72cb89e4fb4303841966e4062a76ab97451e3b9fb526a5ceb7f82,
                          0xe026cc5a4aed3c22a58cbd3d2ac754c9352c5436f638042dca99034e83636516,
                          0x3d04cffd8b46a874edf5cfae63077de85f849a660426697b06a829c70dd1409c,
                          0xad676aa337a485e4728a0b240d92b3ef7b3c372d06d189322bfd5f61f1e7203e,
                          0xa2fca4a49658f9fab7aa63289c91b7c7b6c832a6d0e69334ff5b0a3483d09dab,
                          0x4ebfd9cd7bca2505f7bef59cc1c12ecc708fff26ae4af19abe852afe9e20c862,
                          0x2def10d13dd169f550f578bda343d9717a138562e0093b380a1120789d53cf10
                      ];
                      // Reserve memory space for our hashes.
                      bytes memory buf = new bytes(64);
                      // We'll need to keep track of left and right siblings.
                      bytes32 leftSibling;
                      bytes32 rightSibling;
                      // Number of non-empty nodes at the current depth.
                      uint256 rowSize = _elements.length;
                      // Current depth, counting from 0 at the leaves
                      uint256 depth = 0;
                      // Common sub-expressions
                      uint256 halfRowSize;         // rowSize / 2
                      bool rowSizeIsOdd;           // rowSize % 2 == 1
                      while (rowSize > 1) {
                          halfRowSize = rowSize / 2;
                          rowSizeIsOdd = rowSize % 2 == 1;
                          for (uint256 i = 0; i < halfRowSize; i++) {
                              leftSibling  = _elements[(2 * i)    ];
                              rightSibling = _elements[(2 * i) + 1];
                              assembly {
                                  mstore(add(buf, 32), leftSibling )
                                  mstore(add(buf, 64), rightSibling)
                              }
                              _elements[i] = keccak256(buf);
                          }
                          if (rowSizeIsOdd) {
                              leftSibling  = _elements[rowSize - 1];
                              rightSibling = bytes32(defaults[depth]);
                              assembly {
                                  mstore(add(buf, 32), leftSibling)
                                  mstore(add(buf, 64), rightSibling)
                              }
                              _elements[halfRowSize] = keccak256(buf);
                          }
                          rowSize = halfRowSize + (rowSizeIsOdd ? 1 : 0);
                          depth++;
                      }
                      return _elements[0];
                  }
                  /**
                   * Verifies a merkle branch for the given leaf hash.  Assumes the original length
                   * of leaves generated is a known, correct input, and does not return true for indices
                   * extending past that index (even if _siblings would be otherwise valid.)
                   * @param _root The Merkle root to verify against.
                   * @param _leaf The leaf hash to verify inclusion of.
                   * @param _index The index in the tree of this leaf.
                   * @param _siblings Array of sibline nodes in the inclusion proof, starting from depth 0 (bottom of the tree).
                   * @param _totalLeaves The total number of leaves originally passed into.
                   * @return Whether or not the merkle branch and leaf passes verification.
                   */
                  function verify(
                      bytes32 _root,
                      bytes32 _leaf,
                      uint256 _index,
                      bytes32[] memory _siblings,
                      uint256 _totalLeaves
                  )
                      internal
                      pure
                      returns (
                          bool
                      )
                  {
                      require(
                          _totalLeaves > 0,
                          "Lib_MerkleTree: Total leaves must be greater than zero."
                      );
                      require(
                          _index < _totalLeaves,
                          "Lib_MerkleTree: Index out of bounds."
                      );
                      require(
                          _siblings.length == _ceilLog2(_totalLeaves),
                          "Lib_MerkleTree: Total siblings does not correctly correspond to total leaves."
                      );
                      bytes32 computedRoot = _leaf;
                      for (uint256 i = 0; i < _siblings.length; i++) {
                          if ((_index & 1) == 1) {
                              computedRoot = keccak256(
                                  abi.encodePacked(
                                      _siblings[i],
                                      computedRoot
                                  )
                              );
                          } else {
                              computedRoot = keccak256(
                                  abi.encodePacked(
                                      computedRoot,
                                      _siblings[i]
                                  )
                              );
                          }
                          _index >>= 1;
                      }
                      return _root == computedRoot;
                  }
                  /*********************
                   * Private Functions *
                   *********************/
                  /**
                   * Calculates the integer ceiling of the log base 2 of an input.
                   * @param _in Unsigned input to calculate the log.
                   * @return ceil(log_base_2(_in))
                   */
                  function _ceilLog2(
                      uint256 _in
                  )
                      private
                      pure
                      returns (
                          uint256
                      )
                  {
                      require(
                          _in > 0,
                          "Lib_MerkleTree: Cannot compute ceil(log_2) of 0."
                      );
                      if (_in == 1) {
                          return 0;
                      }
                      // Find the highest set bit (will be floor(log_2)).
                      // Borrowed with <3 from https://github.com/ethereum/solidity-examples
                      uint256 val = _in;
                      uint256 highest = 0;
                      for (uint256 i = 128; i >= 1; i >>= 1) {
                          if (val & (uint(1) << i) - 1 << i != 0) {
                              highest += i;
                              val >>= i;
                          }
                      }
                      // Increment by one if this is not a perfect logarithm.
                      if ((uint(1) << highest) != _in) {
                          highest += 1;
                      }
                      return highest;
                  }
              }// SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              /**
               * @dev Contract module that helps prevent reentrant calls to a function.
               *
               * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
               * available, which can be applied to functions to make sure there are no nested
               * (reentrant) calls to them.
               *
               * Note that because there is a single `nonReentrant` guard, functions marked as
               * `nonReentrant` may not call one another. This can be worked around by making
               * those functions `private`, and then adding `external` `nonReentrant` entry
               * points to them.
               *
               * TIP: If you would like to learn more about reentrancy and alternative ways
               * to protect against it, check out our blog post
               * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
               */
              abstract contract ReentrancyGuard {
                  // Booleans are more expensive than uint256 or any type that takes up a full
                  // word because each write operation emits an extra SLOAD to first read the
                  // slot's contents, replace the bits taken up by the boolean, and then write
                  // back. This is the compiler's defense against contract upgrades and
                  // pointer aliasing, and it cannot be disabled.
                  // The values being non-zero value makes deployment a bit more expensive,
                  // but in exchange the refund on every call to nonReentrant will be lower in
                  // amount. Since refunds are capped to a percentage of the total
                  // transaction's gas, it is best to keep them low in cases like this one, to
                  // increase the likelihood of the full refund coming into effect.
                  uint256 private constant _NOT_ENTERED = 1;
                  uint256 private constant _ENTERED = 2;
                  uint256 private _status;
                  constructor () internal {
                      _status = _NOT_ENTERED;
                  }
                  /**
                   * @dev Prevents a contract from calling itself, directly or indirectly.
                   * Calling a `nonReentrant` function from another `nonReentrant`
                   * function is not supported. It is possible to prevent this from happening
                   * by making the `nonReentrant` function external, and make it call a
                   * `private` function that does the actual work.
                   */
                  modifier nonReentrant() {
                      // On the first call to nonReentrant, _notEntered will be true
                      require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                      // Any calls to nonReentrant after this point will fail
                      _status = _ENTERED;
                      _;
                      // By storing the original value once again, a refund is triggered (see
                      // https://eips.ethereum.org/EIPS/eip-2200)
                      _status = _NOT_ENTERED;
                  }
              }
              

              File 5 of 7: StateSender
              /**
              Matic network contracts
              */
              
              pragma solidity ^0.5.2;
              
              
              contract Ownable {
                  address private _owner;
              
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              
                  /**
                   * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                   * account.
                   */
                  constructor () internal {
                      _owner = msg.sender;
                      emit OwnershipTransferred(address(0), _owner);
                  }
              
                  /**
                   * @return the address of the owner.
                   */
                  function owner() public view returns (address) {
                      return _owner;
                  }
              
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      require(isOwner());
                      _;
                  }
              
                  /**
                   * @return true if `msg.sender` is the owner of the contract.
                   */
                  function isOwner() public view returns (bool) {
                      return msg.sender == _owner;
                  }
              
                  /**
                   * @dev Allows the current owner to relinquish control of the contract.
                   * It will not be possible to call the functions with the `onlyOwner`
                   * modifier anymore.
                   * @notice Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public onlyOwner {
                      emit OwnershipTransferred(_owner, address(0));
                      _owner = address(0);
                  }
              
                  /**
                   * @dev Allows the current owner to transfer control of the contract to a newOwner.
                   * @param newOwner The address to transfer ownership to.
                   */
                  function transferOwnership(address newOwner) public onlyOwner {
                      _transferOwnership(newOwner);
                  }
              
                  /**
                   * @dev Transfers control of the contract to a newOwner.
                   * @param newOwner The address to transfer ownership to.
                   */
                  function _transferOwnership(address newOwner) internal {
                      require(newOwner != address(0));
                      emit OwnershipTransferred(_owner, newOwner);
                      _owner = newOwner;
                  }
              }
              
              library SafeMath {
                  /**
                   * @dev Multiplies two unsigned integers, reverts on overflow.
                   */
                  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                      // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                      // benefit is lost if 'b' is also tested.
                      // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
                      if (a == 0) {
                          return 0;
                      }
              
                      uint256 c = a * b;
                      require(c / a == b);
              
                      return c;
                  }
              
                  /**
                   * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero.
                   */
                  function div(uint256 a, uint256 b) internal pure returns (uint256) {
                      // Solidity only automatically asserts when dividing by 0
                      require(b > 0);
                      uint256 c = a / b;
                      // assert(a == b * c + a % b); // There is no case in which this doesn't hold
              
                      return c;
                  }
              
                  /**
                   * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend).
                   */
                  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                      require(b <= a);
                      uint256 c = a - b;
              
                      return c;
                  }
              
                  /**
                   * @dev Adds two unsigned integers, reverts on overflow.
                   */
                  function add(uint256 a, uint256 b) internal pure returns (uint256) {
                      uint256 c = a + b;
                      require(c >= a);
              
                      return c;
                  }
              
                  /**
                   * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo),
                   * reverts when dividing by zero.
                   */
                  function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                      require(b != 0);
                      return a % b;
                  }
              }
              
              contract StateSender is Ownable {
                  using SafeMath for uint256;
              
                  uint256 public counter;
                  mapping(address => address) public registrations;
              
                  event NewRegistration(
                      address indexed user,
                      address indexed sender,
                      address indexed receiver
                  );
                  event RegistrationUpdated(
                      address indexed user,
                      address indexed sender,
                      address indexed receiver
                  );
                  event StateSynced(
                      uint256 indexed id,
                      address indexed contractAddress,
                      bytes data
                  );
              
                  modifier onlyRegistered(address receiver) {
                      require(registrations[receiver] == msg.sender, "Invalid sender");
                      _;
                  }
              
                  function syncState(address receiver, bytes calldata data)
                      external
                      onlyRegistered(receiver)
                  {
                      counter = counter.add(1);
                      emit StateSynced(counter, receiver, data);
                  }
              
                  // register new contract for state sync
                  function register(address sender, address receiver) public {
                      require(
                          isOwner() || registrations[receiver] == msg.sender,
                          "StateSender.register: Not authorized to register"
                      );
                      registrations[receiver] = sender;
                      if (registrations[receiver] == address(0)) {
                          emit NewRegistration(msg.sender, sender, receiver);
                      } else {
                          emit RegistrationUpdated(msg.sender, sender, receiver);
                      }
                  }
              }

              File 6 of 7: HopFacet
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) external returns (bool);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
               * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
               *
               * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
               * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
               * need to send a transaction, and thus is not required to hold Ether at all.
               */
              interface IERC20Permit {
                  /**
                   * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                   * given ``owner``'s signed approval.
                   *
                   * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                   * ordering also apply here.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `deadline` must be a timestamp in the future.
                   * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                   * over the EIP712-formatted function arguments.
                   * - the signature must use ``owner``'s current nonce (see {nonces}).
                   *
                   * For more information on the signature format, see the
                   * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                   * section].
                   */
                  function permit(
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) external;
                  /**
                   * @dev Returns the current nonce for `owner`. This value must be
                   * included whenever a signature is generated for {permit}.
                   *
                   * Every successful call to {permit} increases ``owner``'s nonce by one. This
                   * prevents a signature from being used multiple times.
                   */
                  function nonces(address owner) external view returns (uint256);
                  /**
                   * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                   */
                  // solhint-disable-next-line func-name-mixedcase
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              import "../extensions/draft-IERC20Permit.sol";
              import "../../../utils/Address.sol";
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using Address for address;
                  function safeTransfer(
                      IERC20 token,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
                  function safeTransferFrom(
                      IERC20 token,
                      address from,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      require(
                          (value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
                  function safeIncreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      uint256 newAllowance = token.allowance(address(this), spender) + value;
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
                  function safeDecreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      unchecked {
                          uint256 oldAllowance = token.allowance(address(this), spender);
                          require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                          uint256 newAllowance = oldAllowance - value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                  }
                  function safePermit(
                      IERC20Permit token,
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) internal {
                      uint256 nonceBefore = token.nonces(owner);
                      token.permit(owner, spender, value, deadline, v, r, s);
                      uint256 nonceAfter = token.nonces(owner);
                      require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      if (returndata.length > 0) {
                          // Return data is optional
                          require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              error TokenAddressIsZero();
              error TokenNotSupported();
              error CannotBridgeToSameNetwork();
              error ZeroPostSwapBalance();
              error NoSwapDataProvided();
              error NativeValueWithERC();
              error ContractCallNotAllowed();
              error NullAddrIsNotAValidSpender();
              error NullAddrIsNotAnERC20Token();
              error NoTransferToNullAddress();
              error NativeAssetTransferFailed();
              error InvalidBridgeConfigLength();
              error InvalidAmount();
              error InvalidContract();
              error InvalidConfig();
              error UnsupportedChainId(uint256 chainId);
              error InvalidReceiver();
              error InvalidDestinationChain();
              error InvalidSendingToken();
              error InvalidCaller();
              error AlreadyInitialized();
              error NotInitialized();
              error OnlyContractOwner();
              error CannotAuthoriseSelf();
              error RecoveryAddressCannotBeZero();
              error CannotDepositNativeToken();
              error InvalidCallData();
              error NativeAssetNotSupported();
              error UnAuthorized();
              error NoSwapFromZeroBalance();
              error InvalidFallbackAddress();
              error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
              error InsufficientBalance(uint256 required, uint256 balance);
              error ZeroAmount();
              error InvalidFee();
              error InformationMismatch();
              error NotAContract();
              error NotEnoughBalance(uint256 requested, uint256 available);
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import { ILiFi } from "../Interfaces/ILiFi.sol";
              import { IHopBridge } from "../Interfaces/IHopBridge.sol";
              import { LibAsset, IERC20 } from "../Libraries/LibAsset.sol";
              import { LibDiamond } from "../Libraries/LibDiamond.sol";
              import { ReentrancyGuard } from "../Helpers/ReentrancyGuard.sol";
              import { CannotBridgeToSameNetwork, NativeValueWithERC, InvalidReceiver, InvalidAmount, InvalidConfig, InvalidSendingToken, AlreadyInitialized, NotInitialized } from "../Errors/GenericErrors.sol";
              import { SwapperV2, LibSwap } from "../Helpers/SwapperV2.sol";
              import { LibUtil } from "../Libraries/LibUtil.sol";
              import { Validatable } from "../Helpers/Validatable.sol";
              /// @title Hop Facet
              /// @author LI.FI (https://li.fi)
              /// @notice Provides functionality for bridging through Hop
              contract HopFacet is ILiFi, ReentrancyGuard, SwapperV2, Validatable {
                  /// Storage ///
                  bytes32 internal constant NAMESPACE = keccak256("com.lifi.facets.hop");
                  struct Storage {
                      mapping(address => IHopBridge) bridges;
                      bool initialized;
                  }
                  /// Types ///
                  struct Config {
                      address assetId;
                      address bridge;
                  }
                  struct HopData {
                      uint256 bonderFee;
                      uint256 amountOutMin;
                      uint256 deadline;
                      uint256 destinationAmountOutMin;
                      uint256 destinationDeadline;
                  }
                  /// Events ///
                  event HopInitialized(Config[] configs);
                  event HopBridgeRegistered(address indexed assetId, address bridge);
                  /// Init ///
                  /// @notice Initialize local variables for the Hop Facet
                  /// @param configs Bridge configuration data
                  function initHop(Config[] calldata configs) external {
                      LibDiamond.enforceIsContractOwner();
                      Storage storage s = getStorage();
                      if (s.initialized) {
                          revert AlreadyInitialized();
                      }
                      for (uint256 i = 0; i < configs.length; i++) {
                          if (configs[i].bridge == address(0)) {
                              revert InvalidConfig();
                          }
                          s.bridges[configs[i].assetId] = IHopBridge(configs[i].bridge);
                      }
                      s.initialized = true;
                      emit HopInitialized(configs);
                  }
                  /// External Methods ///
                  /// @notice Register token and bridge
                  /// @param assetId Address of token
                  /// @param bridge Address of bridge for asset
                  function registerBridge(address assetId, address bridge) external {
                      LibDiamond.enforceIsContractOwner();
                      Storage storage s = getStorage();
                      if (!s.initialized) {
                          revert NotInitialized();
                      }
                      if (bridge == address(0)) {
                          revert InvalidConfig();
                      }
                      s.bridges[assetId] = IHopBridge(bridge);
                      emit HopBridgeRegistered(assetId, bridge);
                  }
                  /// @notice Bridges tokens via Hop Protocol
                  /// @param _bridgeData the core information needed for bridging
                  /// @param _hopData data specific to Hop Protocol
                  function startBridgeTokensViaHop(ILiFi.BridgeData memory _bridgeData, HopData calldata _hopData)
                      external
                      payable
                      refundExcessNative(payable(msg.sender))
                      doesNotContainSourceSwaps(_bridgeData)
                      doesNotContainDestinationCalls(_bridgeData)
                      validateBridgeData(_bridgeData)
                      nonReentrant
                  {
                      LibAsset.depositAsset(_bridgeData.sendingAssetId, _bridgeData.minAmount);
                      _startBridge(_bridgeData, _hopData);
                  }
                  /// @notice Performs a swap before bridging via Hop Protocol
                  /// @param _bridgeData the core information needed for bridging
                  /// @param _swapData an array of swap related data for performing swaps before bridging
                  /// @param _hopData data specific to Hop Protocol
                  function swapAndStartBridgeTokensViaHop(
                      ILiFi.BridgeData memory _bridgeData,
                      LibSwap.SwapData[] calldata _swapData,
                      HopData memory _hopData
                  )
                      external
                      payable
                      containsSourceSwaps(_bridgeData)
                      doesNotContainDestinationCalls(_bridgeData)
                      validateBridgeData(_bridgeData)
                      nonReentrant
                  {
                      if (!LibAsset.isNativeAsset(address(_bridgeData.sendingAssetId)) && msg.value != 0) revert NativeValueWithERC();
                      _bridgeData.minAmount = _depositAndSwap(
                          _bridgeData.transactionId,
                          _bridgeData.minAmount,
                          _swapData,
                          payable(msg.sender)
                      );
                      _startBridge(_bridgeData, _hopData);
                  }
                  /// private Methods ///
                  /// @dev Contains the business logic for the bridge via Hop Protocol
                  /// @param _bridgeData the core information needed for bridging
                  /// @param _hopData data specific to Hop Protocol
                  function _startBridge(ILiFi.BridgeData memory _bridgeData, HopData memory _hopData) private {
                      // Do HOP stuff
                      if (block.chainid == _bridgeData.destinationChainId) revert CannotBridgeToSameNetwork();
                      address sendingAssetId = _bridgeData.sendingAssetId;
                      Storage storage s = getStorage();
                      IHopBridge bridge = s.bridges[sendingAssetId];
                      // Give Hop approval to bridge tokens
                      LibAsset.maxApproveERC20(IERC20(sendingAssetId), address(bridge), _bridgeData.minAmount);
                      uint256 value = LibAsset.isNativeAsset(address(sendingAssetId)) ? _bridgeData.minAmount : 0;
                      if (block.chainid == 1) {
                          // Ethereum L1
                          bridge.sendToL2{ value: value }(
                              _bridgeData.destinationChainId,
                              _bridgeData.receiver,
                              _bridgeData.minAmount,
                              _hopData.destinationAmountOutMin,
                              _hopData.destinationDeadline,
                              address(0),
                              0
                          );
                      } else {
                          // L2
                          // solhint-disable-next-line check-send-result
                          bridge.swapAndSend{ value: value }(
                              _bridgeData.destinationChainId,
                              _bridgeData.receiver,
                              _bridgeData.minAmount,
                              _hopData.bonderFee,
                              _hopData.amountOutMin,
                              _hopData.deadline,
                              _hopData.destinationAmountOutMin,
                              _hopData.destinationDeadline
                          );
                      }
                      emit LiFiTransferStarted(_bridgeData);
                  }
                  /// @dev fetch local storage
                  function getStorage() private pure returns (Storage storage s) {
                      bytes32 namespace = NAMESPACE;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          s.slot := namespace
                      }
                  }
              }
              // SPDX-License-Identifier: UNLICENSED
              pragma solidity 0.8.17;
              /// @title Reentrancy Guard
              /// @author LI.FI (https://li.fi)
              /// @notice Abstract contract to provide protection against reentrancy
              abstract contract ReentrancyGuard {
                  /// Storage ///
                  bytes32 private constant NAMESPACE = keccak256("com.lifi.reentrancyguard");
                  /// Types ///
                  struct ReentrancyStorage {
                      uint256 status;
                  }
                  /// Errors ///
                  error ReentrancyError();
                  /// Constants ///
                  uint256 private constant _NOT_ENTERED = 0;
                  uint256 private constant _ENTERED = 1;
                  /// Modifiers ///
                  modifier nonReentrant() {
                      ReentrancyStorage storage s = reentrancyStorage();
                      if (s.status == _ENTERED) revert ReentrancyError();
                      s.status = _ENTERED;
                      _;
                      s.status = _NOT_ENTERED;
                  }
                  /// Private Methods ///
                  /// @dev fetch local storage
                  function reentrancyStorage() private pure returns (ReentrancyStorage storage data) {
                      bytes32 position = NAMESPACE;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          data.slot := position
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import { ILiFi } from "../Interfaces/ILiFi.sol";
              import { LibSwap } from "../Libraries/LibSwap.sol";
              import { LibAsset } from "../Libraries/LibAsset.sol";
              import { LibAllowList } from "../Libraries/LibAllowList.sol";
              import { InvalidAmount, ContractCallNotAllowed, NoSwapDataProvided, CumulativeSlippageTooHigh } from "../Errors/GenericErrors.sol";
              /// @title Swapper
              /// @author LI.FI (https://li.fi)
              /// @notice Abstract contract to provide swap functionality
              contract SwapperV2 is ILiFi {
                  /// Types ///
                  /// @dev only used to get around "Stack Too Deep" errors
                  struct ReserveData {
                      bytes32 transactionId;
                      address payable leftoverReceiver;
                      uint256 nativeReserve;
                  }
                  /// Modifiers ///
                  /// @dev Sends any leftover balances back to the user
                  /// @notice Sends any leftover balances to the user
                  /// @param _swaps Swap data array
                  /// @param _leftoverReceiver Address to send leftover tokens to
                  /// @param _initialBalances Array of initial token balances
                  modifier noLeftovers(
                      LibSwap.SwapData[] calldata _swaps,
                      address payable _leftoverReceiver,
                      uint256[] memory _initialBalances
                  ) {
                      uint256 numSwaps = _swaps.length;
                      if (numSwaps != 1) {
                          address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                          uint256 curBalance;
                          _;
                          for (uint256 i = 0; i < numSwaps - 1; ) {
                              address curAsset = _swaps[i].receivingAssetId;
                              // Handle multi-to-one swaps
                              if (curAsset != finalAsset) {
                                  curBalance = LibAsset.getOwnBalance(curAsset) - _initialBalances[i];
                                  if (curBalance > 0) {
                                      LibAsset.transferAsset(curAsset, _leftoverReceiver, curBalance);
                                  }
                              }
                              unchecked {
                                  ++i;
                              }
                          }
                      } else {
                          _;
                      }
                  }
                  /// @dev Sends any leftover balances back to the user reserving native tokens
                  /// @notice Sends any leftover balances to the user
                  /// @param _swaps Swap data array
                  /// @param _leftoverReceiver Address to send leftover tokens to
                  /// @param _initialBalances Array of initial token balances
                  modifier noLeftoversReserve(
                      LibSwap.SwapData[] calldata _swaps,
                      address payable _leftoverReceiver,
                      uint256[] memory _initialBalances,
                      uint256 _nativeReserve
                  ) {
                      uint256 numSwaps = _swaps.length;
                      if (numSwaps != 1) {
                          address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                          uint256 curBalance;
                          _;
                          for (uint256 i = 0; i < numSwaps - 1; ) {
                              address curAsset = _swaps[i].receivingAssetId;
                              // Handle multi-to-one swaps
                              if (curAsset != finalAsset) {
                                  curBalance = LibAsset.getOwnBalance(curAsset) - _initialBalances[i];
                                  uint256 reserve = LibAsset.isNativeAsset(curAsset) ? _nativeReserve : 0;
                                  if (curBalance > 0) {
                                      LibAsset.transferAsset(curAsset, _leftoverReceiver, curBalance - reserve);
                                  }
                              }
                              unchecked {
                                  ++i;
                              }
                          }
                      } else {
                          _;
                      }
                  }
                  /// @dev Refunds any excess native asset sent to the contract after the main function
                  /// @notice Refunds any excess native asset sent to the contract after the main function
                  /// @param _refundReceiver Address to send refunds to
                  modifier refundExcessNative(address payable _refundReceiver) {
                      uint256 initialBalance = address(this).balance - msg.value;
                      _;
                      uint256 finalBalance = address(this).balance;
                      uint256 excess = finalBalance > initialBalance ? finalBalance - initialBalance : 0;
                      if (excess > 0) {
                          LibAsset.transferAsset(LibAsset.NATIVE_ASSETID, _refundReceiver, excess);
                      }
                  }
                  /// Internal Methods ///
                  /// @dev Deposits value, executes swaps, and performs minimum amount check
                  /// @param _transactionId the transaction id associated with the operation
                  /// @param _minAmount the minimum amount of the final asset to receive
                  /// @param _swaps Array of data used to execute swaps
                  /// @param _leftoverReceiver The address to send leftover funds to
                  /// @return uint256 result of the swap
                  function _depositAndSwap(
                      bytes32 _transactionId,
                      uint256 _minAmount,
                      LibSwap.SwapData[] calldata _swaps,
                      address payable _leftoverReceiver
                  ) internal returns (uint256) {
                      uint256 numSwaps = _swaps.length;
                      if (numSwaps == 0) {
                          revert NoSwapDataProvided();
                      }
                      address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                      uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                      if (LibAsset.isNativeAsset(finalTokenId)) {
                          initialBalance -= msg.value;
                      }
                      uint256[] memory initialBalances = _fetchBalances(_swaps);
                      LibAsset.depositAssets(_swaps);
                      _executeSwaps(_transactionId, _swaps, _leftoverReceiver, initialBalances);
                      uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) - initialBalance;
                      if (newBalance < _minAmount) {
                          revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                      }
                      return newBalance;
                  }
                  /// @dev Deposits value, executes swaps, and performs minimum amount check and reserves native token for fees
                  /// @param _transactionId the transaction id associated with the operation
                  /// @param _minAmount the minimum amount of the final asset to receive
                  /// @param _swaps Array of data used to execute swaps
                  /// @param _leftoverReceiver The address to send leftover funds to
                  /// @param _nativeReserve Amount of native token to prevent from being swept back to the caller
                  function _depositAndSwap(
                      bytes32 _transactionId,
                      uint256 _minAmount,
                      LibSwap.SwapData[] calldata _swaps,
                      address payable _leftoverReceiver,
                      uint256 _nativeReserve
                  ) internal returns (uint256) {
                      uint256 numSwaps = _swaps.length;
                      if (numSwaps == 0) {
                          revert NoSwapDataProvided();
                      }
                      address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                      uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                      if (LibAsset.isNativeAsset(finalTokenId)) {
                          initialBalance -= msg.value;
                      }
                      uint256[] memory initialBalances = _fetchBalances(_swaps);
                      LibAsset.depositAssets(_swaps);
                      ReserveData memory rd = ReserveData(_transactionId, _leftoverReceiver, _nativeReserve);
                      _executeSwaps(rd, _swaps, initialBalances);
                      uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) - initialBalance;
                      if (newBalance < _minAmount) {
                          revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                      }
                      return newBalance;
                  }
                  /// Private Methods ///
                  /// @dev Executes swaps and checks that DEXs used are in the allowList
                  /// @param _transactionId the transaction id associated with the operation
                  /// @param _swaps Array of data used to execute swaps
                  /// @param _leftoverReceiver Address to send leftover tokens to
                  /// @param _initialBalances Array of initial balances
                  function _executeSwaps(
                      bytes32 _transactionId,
                      LibSwap.SwapData[] calldata _swaps,
                      address payable _leftoverReceiver,
                      uint256[] memory _initialBalances
                  ) internal noLeftovers(_swaps, _leftoverReceiver, _initialBalances) {
                      uint256 numSwaps = _swaps.length;
                      for (uint256 i = 0; i < numSwaps; ) {
                          LibSwap.SwapData calldata currentSwap = _swaps[i];
                          if (
                              !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                                  LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                                  LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                                  LibAllowList.selectorIsAllowed(bytes4(currentSwap.callData[:4])))
                          ) revert ContractCallNotAllowed();
                          LibSwap.swap(_transactionId, currentSwap);
                          unchecked {
                              ++i;
                          }
                      }
                  }
                  /// @dev Executes swaps and checks that DEXs used are in the allowList
                  /// @param _reserveData Data passed used to reserve native tokens
                  /// @param _swaps Array of data used to execute swaps
                  function _executeSwaps(
                      ReserveData memory _reserveData,
                      LibSwap.SwapData[] calldata _swaps,
                      uint256[] memory _initialBalances
                  ) internal noLeftoversReserve(_swaps, _reserveData.leftoverReceiver, _initialBalances, _reserveData.nativeReserve) {
                      uint256 numSwaps = _swaps.length;
                      for (uint256 i = 0; i < numSwaps; ) {
                          LibSwap.SwapData calldata currentSwap = _swaps[i];
                          if (
                              !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                                  LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                                  LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                                  LibAllowList.selectorIsAllowed(bytes4(currentSwap.callData[:4])))
                          ) revert ContractCallNotAllowed();
                          LibSwap.swap(_reserveData.transactionId, currentSwap);
                          unchecked {
                              ++i;
                          }
                      }
                  }
                  /// @dev Fetches balances of tokens to be swapped before swapping.
                  /// @param _swaps Array of data used to execute swaps
                  /// @return uint256[] Array of token balances.
                  function _fetchBalances(LibSwap.SwapData[] calldata _swaps) private view returns (uint256[] memory) {
                      uint256 numSwaps = _swaps.length;
                      uint256[] memory balances = new uint256[](numSwaps);
                      address asset;
                      for (uint256 i = 0; i < numSwaps; ) {
                          asset = _swaps[i].receivingAssetId;
                          balances[i] = LibAsset.getOwnBalance(asset);
                          if (LibAsset.isNativeAsset(asset)) {
                              balances[i] -= msg.value;
                          }
                          unchecked {
                              ++i;
                          }
                      }
                      return balances;
                  }
              }
              // SPDX-License-Identifier: UNLICENSED
              pragma solidity 0.8.17;
              import { LibAsset } from "../Libraries/LibAsset.sol";
              import { LibUtil } from "../Libraries/LibUtil.sol";
              import { InvalidReceiver, InformationMismatch, InvalidSendingToken, InvalidAmount, NativeAssetNotSupported, InvalidDestinationChain } from "../Errors/GenericErrors.sol";
              import { ILiFi } from "../Interfaces/ILiFi.sol";
              import { LibSwap } from "../Libraries/LibSwap.sol";
              contract Validatable {
                  modifier validateBridgeData(ILiFi.BridgeData memory _bridgeData) {
                      if (LibUtil.isZeroAddress(_bridgeData.receiver)) {
                          revert InvalidReceiver();
                      }
                      if (_bridgeData.minAmount == 0) {
                          revert InvalidAmount();
                      }
                      _;
                  }
                  modifier noNativeAsset(ILiFi.BridgeData memory _bridgeData) {
                      if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                          revert NativeAssetNotSupported();
                      }
                      _;
                  }
                  modifier onlyAllowSourceToken(ILiFi.BridgeData memory _bridgeData, address _token) {
                      if (_bridgeData.sendingAssetId != _token) {
                          revert InvalidSendingToken();
                      }
                      _;
                  }
                  modifier onlyAllowDestinationChain(ILiFi.BridgeData memory _bridgeData, uint256 _chainId) {
                      if (_bridgeData.destinationChainId != _chainId) {
                          revert InvalidDestinationChain();
                      }
                      _;
                  }
                  modifier containsSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                      if (!_bridgeData.hasSourceSwaps) {
                          revert InformationMismatch();
                      }
                      _;
                  }
                  modifier doesNotContainSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                      if (_bridgeData.hasSourceSwaps) {
                          revert InformationMismatch();
                      }
                      _;
                  }
                  modifier doesNotContainDestinationCalls(ILiFi.BridgeData memory _bridgeData) {
                      if (_bridgeData.hasDestinationCall) {
                          revert InformationMismatch();
                      }
                      _;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              interface IDiamondCut {
                  enum FacetCutAction {
                      Add,
                      Replace,
                      Remove
                  }
                  // Add=0, Replace=1, Remove=2
                  struct FacetCut {
                      address facetAddress;
                      FacetCutAction action;
                      bytes4[] functionSelectors;
                  }
                  /// @notice Add/replace/remove any number of functions and optionally execute
                  ///         a function with delegatecall
                  /// @param _diamondCut Contains the facet addresses and function selectors
                  /// @param _init The address of the contract or facet to execute _calldata
                  /// @param _calldata A function call, including function selector and arguments
                  ///                  _calldata is executed with delegatecall on _init
                  function diamondCut(
                      FacetCut[] calldata _diamondCut,
                      address _init,
                      bytes calldata _calldata
                  ) external;
                  event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              interface IHopBridge {
                  function sendToL2(
                      uint256 chainId,
                      address recipient,
                      uint256 amount,
                      uint256 amountOutMin,
                      uint256 deadline,
                      address relayer,
                      uint256 relayerFee
                  ) external payable;
                  function swapAndSend(
                      uint256 chainId,
                      address recipient,
                      uint256 amount,
                      uint256 bonderFee,
                      uint256 amountOutMin,
                      uint256 deadline,
                      uint256 destinationAmountOutMin,
                      uint256 destinationDeadline
                  ) external payable;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              interface ILiFi {
                  /// Structs ///
                  struct BridgeData {
                      bytes32 transactionId;
                      string bridge;
                      string integrator;
                      address referrer;
                      address sendingAssetId;
                      address receiver;
                      uint256 minAmount;
                      uint256 destinationChainId;
                      bool hasSourceSwaps;
                      bool hasDestinationCall;
                  }
                  /// Events ///
                  event LiFiTransferStarted(ILiFi.BridgeData bridgeData);
                  event LiFiTransferCompleted(
                      bytes32 indexed transactionId,
                      address receivingAssetId,
                      address receiver,
                      uint256 amount,
                      uint256 timestamp
                  );
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import { InvalidContract } from "../Errors/GenericErrors.sol";
              /// @title Lib Allow List
              /// @author LI.FI (https://li.fi)
              /// @notice Library for managing and accessing the conract address allow list
              library LibAllowList {
                  /// Storage ///
                  bytes32 internal constant NAMESPACE = keccak256("com.lifi.library.allow.list");
                  struct AllowListStorage {
                      mapping(address => bool) allowlist;
                      mapping(bytes4 => bool) selectorAllowList;
                      address[] contracts;
                  }
                  /// @dev Adds a contract address to the allow list
                  /// @param _contract the contract address to add
                  function addAllowedContract(address _contract) internal {
                      _checkAddress(_contract);
                      AllowListStorage storage als = _getStorage();
                      if (als.allowlist[_contract]) return;
                      als.allowlist[_contract] = true;
                      als.contracts.push(_contract);
                  }
                  /// @dev Checks whether a contract address has been added to the allow list
                  /// @param _contract the contract address to check
                  function contractIsAllowed(address _contract) internal view returns (bool) {
                      return _getStorage().allowlist[_contract];
                  }
                  /// @dev Remove a contract address from the allow list
                  /// @param _contract the contract address to remove
                  function removeAllowedContract(address _contract) internal {
                      AllowListStorage storage als = _getStorage();
                      if (!als.allowlist[_contract]) {
                          return;
                      }
                      als.allowlist[_contract] = false;
                      uint256 length = als.contracts.length;
                      // Find the contract in the list
                      for (uint256 i = 0; i < length; i++) {
                          if (als.contracts[i] == _contract) {
                              // Move the last element into the place to delete
                              als.contracts[i] = als.contracts[length - 1];
                              // Remove the last element
                              als.contracts.pop();
                              break;
                          }
                      }
                  }
                  /// @dev Fetch contract addresses from the allow list
                  function getAllowedContracts() internal view returns (address[] memory) {
                      return _getStorage().contracts;
                  }
                  /// @dev Add a selector to the allow list
                  /// @param _selector the selector to add
                  function addAllowedSelector(bytes4 _selector) internal {
                      _getStorage().selectorAllowList[_selector] = true;
                  }
                  /// @dev Removes a selector from the allow list
                  /// @param _selector the selector to remove
                  function removeAllowedSelector(bytes4 _selector) internal {
                      _getStorage().selectorAllowList[_selector] = false;
                  }
                  /// @dev Returns if selector has been added to the allow list
                  /// @param _selector the selector to check
                  function selectorIsAllowed(bytes4 _selector) internal view returns (bool) {
                      return _getStorage().selectorAllowList[_selector];
                  }
                  /// @dev Fetch local storage struct
                  function _getStorage() internal pure returns (AllowListStorage storage als) {
                      bytes32 position = NAMESPACE;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          als.slot := position
                      }
                  }
                  /// @dev Contains business logic for validating a contract address.
                  /// @param _contract address of the dex to check
                  function _checkAddress(address _contract) private view {
                      if (_contract == address(0)) revert InvalidContract();
                      if (_contract.code.length == 0) revert InvalidContract();
                  }
              }
              // SPDX-License-Identifier: UNLICENSED
              pragma solidity 0.8.17;
              import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
              import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
              import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              import { LibSwap } from "./LibSwap.sol";
              /// @title LibAsset
              /// @notice This library contains helpers for dealing with onchain transfers
              ///         of assets, including accounting for the native asset `assetId`
              ///         conventions and any noncompliant ERC20 transfers
              library LibAsset {
                  uint256 private constant MAX_UINT = type(uint256).max;
                  address internal constant NULL_ADDRESS = address(0);
                  /// @dev All native assets use the empty address for their asset id
                  ///      by convention
                  address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
                  /// @notice Gets the balance of the inheriting contract for the given asset
                  /// @param assetId The asset identifier to get the balance of
                  /// @return Balance held by contracts using this library
                  function getOwnBalance(address assetId) internal view returns (uint256) {
                      return assetId == NATIVE_ASSETID ? address(this).balance : IERC20(assetId).balanceOf(address(this));
                  }
                  /// @notice Transfers ether from the inheriting contract to a given
                  ///         recipient
                  /// @param recipient Address to send ether to
                  /// @param amount Amount to send to given recipient
                  function transferNativeAsset(address payable recipient, uint256 amount) private {
                      if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                      if (amount > address(this).balance) revert InsufficientBalance(amount, address(this).balance);
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, ) = recipient.call{ value: amount }("");
                      if (!success) revert NativeAssetTransferFailed();
                  }
                  /// @notice If the current allowance is insufficient, the allowance for a given spender
                  /// is set to MAX_UINT.
                  /// @param assetId Token address to transfer
                  /// @param spender Address to give spend approval to
                  /// @param amount Amount to approve for spending
                  function maxApproveERC20(
                      IERC20 assetId,
                      address spender,
                      uint256 amount
                  ) internal {
                      if (address(assetId) == NATIVE_ASSETID) return;
                      if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender();
                      uint256 allowance = assetId.allowance(address(this), spender);
                      if (allowance < amount) SafeERC20.safeIncreaseAllowance(IERC20(assetId), spender, MAX_UINT - allowance);
                  }
                  /// @notice Transfers tokens from the inheriting contract to a given
                  ///         recipient
                  /// @param assetId Token address to transfer
                  /// @param recipient Address to send token to
                  /// @param amount Amount to send to given recipient
                  function transferERC20(
                      address assetId,
                      address recipient,
                      uint256 amount
                  ) private {
                      if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token();
                      uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
                      if (amount > assetBalance) revert InsufficientBalance(amount, assetBalance);
                      SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
                  }
                  /// @notice Transfers tokens from a sender to a given recipient
                  /// @param assetId Token address to transfer
                  /// @param from Address of sender/owner
                  /// @param to Address of recipient/spender
                  /// @param amount Amount to transfer from owner to spender
                  function transferFromERC20(
                      address assetId,
                      address from,
                      address to,
                      uint256 amount
                  ) internal {
                      if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token();
                      if (to == NULL_ADDRESS) revert NoTransferToNullAddress();
                      IERC20 asset = IERC20(assetId);
                      uint256 prevBalance = asset.balanceOf(to);
                      SafeERC20.safeTransferFrom(asset, from, to, amount);
                      if (asset.balanceOf(to) - prevBalance != amount) revert InvalidAmount();
                  }
                  function depositAsset(address assetId, uint256 amount) internal {
                      if (isNativeAsset(assetId)) {
                          if (msg.value < amount) revert InvalidAmount();
                      } else {
                          if (amount == 0) revert InvalidAmount();
                          uint256 balance = IERC20(assetId).balanceOf(msg.sender);
                          if (balance < amount) revert InsufficientBalance(amount, balance);
                          transferFromERC20(assetId, msg.sender, address(this), amount);
                      }
                  }
                  function depositAssets(LibSwap.SwapData[] calldata swaps) internal {
                      for (uint256 i = 0; i < swaps.length; ) {
                          LibSwap.SwapData memory swap = swaps[i];
                          if (swap.requiresDeposit) {
                              depositAsset(swap.sendingAssetId, swap.fromAmount);
                          }
                          unchecked {
                              i++;
                          }
                      }
                  }
                  /// @notice Determines whether the given assetId is the native asset
                  /// @param assetId The asset identifier to evaluate
                  /// @return Boolean indicating if the asset is the native asset
                  function isNativeAsset(address assetId) internal pure returns (bool) {
                      return assetId == NATIVE_ASSETID;
                  }
                  /// @notice Wrapper function to transfer a given asset (native or erc20) to
                  ///         some recipient. Should handle all non-compliant return value
                  ///         tokens as well by using the SafeERC20 contract by open zeppelin.
                  /// @param assetId Asset id for transfer (address(0) for native asset,
                  ///                token address for erc20s)
                  /// @param recipient Address to send asset to
                  /// @param amount Amount to send to given recipient
                  function transferAsset(
                      address assetId,
                      address payable recipient,
                      uint256 amount
                  ) internal {
                      (assetId == NATIVE_ASSETID)
                          ? transferNativeAsset(recipient, amount)
                          : transferERC20(assetId, recipient, amount);
                  }
                  /// @dev Checks whether the given address is a contract and contains code
                  function isContract(address _contractAddr) internal view returns (bool) {
                      uint256 size;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          size := extcodesize(_contractAddr)
                      }
                      return size > 0;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              library LibBytes {
                  // solhint-disable no-inline-assembly
                  // LibBytes specific errors
                  error SliceOverflow();
                  error SliceOutOfBounds();
                  error AddressOutOfBounds();
                  error UintOutOfBounds();
                  // -------------------------
                  function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
                      bytes memory tempBytes;
                      assembly {
                          // Get a location of some free memory and store it in tempBytes as
                          // Solidity does for memory variables.
                          tempBytes := mload(0x40)
                          // Store the length of the first bytes array at the beginning of
                          // the memory for tempBytes.
                          let length := mload(_preBytes)
                          mstore(tempBytes, length)
                          // Maintain a memory counter for the current write location in the
                          // temp bytes array by adding the 32 bytes for the array length to
                          // the starting location.
                          let mc := add(tempBytes, 0x20)
                          // Stop copying when the memory counter reaches the length of the
                          // first bytes array.
                          let end := add(mc, length)
                          for {
                              // Initialize a copy counter to the start of the _preBytes data,
                              // 32 bytes into its memory.
                              let cc := add(_preBytes, 0x20)
                          } lt(mc, end) {
                              // Increase both counters by 32 bytes each iteration.
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              // Write the _preBytes data into the tempBytes memory 32 bytes
                              // at a time.
                              mstore(mc, mload(cc))
                          }
                          // Add the length of _postBytes to the current length of tempBytes
                          // and store it as the new length in the first 32 bytes of the
                          // tempBytes memory.
                          length := mload(_postBytes)
                          mstore(tempBytes, add(length, mload(tempBytes)))
                          // Move the memory counter back from a multiple of 0x20 to the
                          // actual end of the _preBytes data.
                          mc := end
                          // Stop copying when the memory counter reaches the new combined
                          // length of the arrays.
                          end := add(mc, length)
                          for {
                              let cc := add(_postBytes, 0x20)
                          } lt(mc, end) {
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              mstore(mc, mload(cc))
                          }
                          // Update the free-memory pointer by padding our last write location
                          // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                          // next 32 byte block, then round down to the nearest multiple of
                          // 32. If the sum of the length of the two arrays is zero then add
                          // one before rounding down to leave a blank 32 bytes (the length block with 0).
                          mstore(
                              0x40,
                              and(
                                  add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                                  not(31) // Round down to the nearest 32 bytes.
                              )
                          )
                      }
                      return tempBytes;
                  }
                  function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
                      assembly {
                          // Read the first 32 bytes of _preBytes storage, which is the length
                          // of the array. (We don't need to use the offset into the slot
                          // because arrays use the entire slot.)
                          let fslot := sload(_preBytes.slot)
                          // Arrays of 31 bytes or less have an even value in their slot,
                          // while longer arrays have an odd value. The actual length is
                          // the slot divided by two for odd values, and the lowest order
                          // byte divided by two for even values.
                          // If the slot is even, bitwise and the slot with 255 and divide by
                          // two to get the length. If the slot is odd, bitwise and the slot
                          // with -1 and divide by two.
                          let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                          let mlength := mload(_postBytes)
                          let newlength := add(slength, mlength)
                          // slength can contain both the length and contents of the array
                          // if length < 32 bytes so let's prepare for that
                          // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                          switch add(lt(slength, 32), lt(newlength, 32))
                          case 2 {
                              // Since the new array still fits in the slot, we just need to
                              // update the contents of the slot.
                              // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                              sstore(
                                  _preBytes.slot,
                                  // all the modifications to the slot are inside this
                                  // next block
                                  add(
                                      // we can just add to the slot contents because the
                                      // bytes we want to change are the LSBs
                                      fslot,
                                      add(
                                          mul(
                                              div(
                                                  // load the bytes from memory
                                                  mload(add(_postBytes, 0x20)),
                                                  // zero all bytes to the right
                                                  exp(0x100, sub(32, mlength))
                                              ),
                                              // and now shift left the number of bytes to
                                              // leave space for the length in the slot
                                              exp(0x100, sub(32, newlength))
                                          ),
                                          // increase length by the double of the memory
                                          // bytes length
                                          mul(mlength, 2)
                                      )
                                  )
                              )
                          }
                          case 1 {
                              // The stored value fits in the slot, but the combined value
                              // will exceed it.
                              // get the keccak hash to get the contents of the array
                              mstore(0x0, _preBytes.slot)
                              let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                              // save new length
                              sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                              // The contents of the _postBytes array start 32 bytes into
                              // the structure. Our first read should obtain the `submod`
                              // bytes that can fit into the unused space in the last word
                              // of the stored array. To get this, we read 32 bytes starting
                              // from `submod`, so the data we read overlaps with the array
                              // contents by `submod` bytes. Masking the lowest-order
                              // `submod` bytes allows us to add that value directly to the
                              // stored value.
                              let submod := sub(32, slength)
                              let mc := add(_postBytes, submod)
                              let end := add(_postBytes, mlength)
                              let mask := sub(exp(0x100, submod), 1)
                              sstore(
                                  sc,
                                  add(
                                      and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                                      and(mload(mc), mask)
                                  )
                              )
                              for {
                                  mc := add(mc, 0x20)
                                  sc := add(sc, 1)
                              } lt(mc, end) {
                                  sc := add(sc, 1)
                                  mc := add(mc, 0x20)
                              } {
                                  sstore(sc, mload(mc))
                              }
                              mask := exp(0x100, sub(mc, end))
                              sstore(sc, mul(div(mload(mc), mask), mask))
                          }
                          default {
                              // get the keccak hash to get the contents of the array
                              mstore(0x0, _preBytes.slot)
                              // Start copying to the last used word of the stored array.
                              let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                              // save new length
                              sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                              // Copy over the first `submod` bytes of the new data as in
                              // case 1 above.
                              let slengthmod := mod(slength, 32)
                              let submod := sub(32, slengthmod)
                              let mc := add(_postBytes, submod)
                              let end := add(_postBytes, mlength)
                              let mask := sub(exp(0x100, submod), 1)
                              sstore(sc, add(sload(sc), and(mload(mc), mask)))
                              for {
                                  sc := add(sc, 1)
                                  mc := add(mc, 0x20)
                              } lt(mc, end) {
                                  sc := add(sc, 1)
                                  mc := add(mc, 0x20)
                              } {
                                  sstore(sc, mload(mc))
                              }
                              mask := exp(0x100, sub(mc, end))
                              sstore(sc, mul(div(mload(mc), mask), mask))
                          }
                      }
                  }
                  function slice(
                      bytes memory _bytes,
                      uint256 _start,
                      uint256 _length
                  ) internal pure returns (bytes memory) {
                      if (_length + 31 < _length) revert SliceOverflow();
                      if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                      bytes memory tempBytes;
                      assembly {
                          switch iszero(_length)
                          case 0 {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // The first word of the slice result is potentially a partial
                              // word read from the original array. To read it, we calculate
                              // the length of that partial word and start copying that many
                              // bytes into the array. The first word we copy will start with
                              // data we don't care about, but the last `lengthmod` bytes will
                              // land at the beginning of the contents of the new array. When
                              // we're done copying, we overwrite the full first word with
                              // the actual length of the slice.
                              let lengthmod := and(_length, 31)
                              // The multiplication in the next line is necessary
                              // because when slicing multiples of 32 bytes (lengthmod == 0)
                              // the following copy loop was copying the origin's length
                              // and then ending prematurely not copying everything it should.
                              let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                              let end := add(mc, _length)
                              for {
                                  // The multiplication in the next line has the same exact purpose
                                  // as the one above.
                                  let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  mstore(mc, mload(cc))
                              }
                              mstore(tempBytes, _length)
                              //update free-memory pointer
                              //allocating the array padded to 32 bytes like the compiler does now
                              mstore(0x40, and(add(mc, 31), not(31)))
                          }
                          //if we want a zero-length slice let's just return a zero-length array
                          default {
                              tempBytes := mload(0x40)
                              //zero out the 32 bytes slice we are about to return
                              //we need to do it because Solidity does not garbage collect
                              mstore(tempBytes, 0)
                              mstore(0x40, add(tempBytes, 0x20))
                          }
                      }
                      return tempBytes;
                  }
                  function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                      if (_bytes.length < _start + 20) {
                          revert AddressOutOfBounds();
                      }
                      address tempAddress;
                      assembly {
                          tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                      }
                      return tempAddress;
                  }
                  function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
                      if (_bytes.length < _start + 1) {
                          revert UintOutOfBounds();
                      }
                      uint8 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x1), _start))
                      }
                      return tempUint;
                  }
                  function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
                      if (_bytes.length < _start + 2) {
                          revert UintOutOfBounds();
                      }
                      uint16 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x2), _start))
                      }
                      return tempUint;
                  }
                  function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
                      if (_bytes.length < _start + 4) {
                          revert UintOutOfBounds();
                      }
                      uint32 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x4), _start))
                      }
                      return tempUint;
                  }
                  function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
                      if (_bytes.length < _start + 8) {
                          revert UintOutOfBounds();
                      }
                      uint64 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x8), _start))
                      }
                      return tempUint;
                  }
                  function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
                      if (_bytes.length < _start + 12) {
                          revert UintOutOfBounds();
                      }
                      uint96 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0xc), _start))
                      }
                      return tempUint;
                  }
                  function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
                      if (_bytes.length < _start + 16) {
                          revert UintOutOfBounds();
                      }
                      uint128 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x10), _start))
                      }
                      return tempUint;
                  }
                  function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
                      if (_bytes.length < _start + 32) {
                          revert UintOutOfBounds();
                      }
                      uint256 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x20), _start))
                      }
                      return tempUint;
                  }
                  function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
                      if (_bytes.length < _start + 32) {
                          revert UintOutOfBounds();
                      }
                      bytes32 tempBytes32;
                      assembly {
                          tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                      }
                      return tempBytes32;
                  }
                  function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
                      bool success = true;
                      assembly {
                          let length := mload(_preBytes)
                          // if lengths don't match the arrays are not equal
                          switch eq(length, mload(_postBytes))
                          case 1 {
                              // cb is a circuit breaker in the for loop since there's
                              //  no said feature for inline assembly loops
                              // cb = 1 - don't breaker
                              // cb = 0 - break
                              let cb := 1
                              let mc := add(_preBytes, 0x20)
                              let end := add(mc, length)
                              for {
                                  let cc := add(_postBytes, 0x20)
                                  // the next line is the loop condition:
                                  // while(uint256(mc < end) + cb == 2)
                              } eq(add(lt(mc, end), cb), 2) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  // if any of these checks fails then arrays are not equal
                                  if iszero(eq(mload(mc), mload(cc))) {
                                      // unsuccess:
                                      success := 0
                                      cb := 0
                                  }
                              }
                          }
                          default {
                              // unsuccess:
                              success := 0
                          }
                      }
                      return success;
                  }
                  function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
                      bool success = true;
                      assembly {
                          // we know _preBytes_offset is 0
                          let fslot := sload(_preBytes.slot)
                          // Decode the length of the stored array like in concatStorage().
                          let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                          let mlength := mload(_postBytes)
                          // if lengths don't match the arrays are not equal
                          switch eq(slength, mlength)
                          case 1 {
                              // slength can contain both the length and contents of the array
                              // if length < 32 bytes so let's prepare for that
                              // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                              if iszero(iszero(slength)) {
                                  switch lt(slength, 32)
                                  case 1 {
                                      // blank the last byte which is the length
                                      fslot := mul(div(fslot, 0x100), 0x100)
                                      if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                          // unsuccess:
                                          success := 0
                                      }
                                  }
                                  default {
                                      // cb is a circuit breaker in the for loop since there's
                                      //  no said feature for inline assembly loops
                                      // cb = 1 - don't breaker
                                      // cb = 0 - break
                                      let cb := 1
                                      // get the keccak hash to get the contents of the array
                                      mstore(0x0, _preBytes.slot)
                                      let sc := keccak256(0x0, 0x20)
                                      let mc := add(_postBytes, 0x20)
                                      let end := add(mc, mlength)
                                      // the next line is the loop condition:
                                      // while(uint256(mc < end) + cb == 2)
                                      // solhint-disable-next-line no-empty-blocks
                                      for {
                                      } eq(add(lt(mc, end), cb), 2) {
                                          sc := add(sc, 1)
                                          mc := add(mc, 0x20)
                                      } {
                                          if iszero(eq(sload(sc), mload(mc))) {
                                              // unsuccess:
                                              success := 0
                                              cb := 0
                                          }
                                      }
                                  }
                              }
                          }
                          default {
                              // unsuccess:
                              success := 0
                          }
                      }
                      return success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
              import { LibUtil } from "../Libraries/LibUtil.sol";
              import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
              /// Implementation of EIP-2535 Diamond Standard
              /// https://eips.ethereum.org/EIPS/eip-2535
              library LibDiamond {
                  bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
                  // Diamond specific errors
                  error IncorrectFacetCutAction();
                  error NoSelectorsInFace();
                  error FunctionAlreadyExists();
                  error FacetAddressIsZero();
                  error FacetAddressIsNotZero();
                  error FacetContainsNoCode();
                  error FunctionDoesNotExist();
                  error FunctionIsImmutable();
                  error InitZeroButCalldataNotEmpty();
                  error CalldataEmptyButInitNotZero();
                  error InitReverted();
                  // ----------------
                  struct FacetAddressAndPosition {
                      address facetAddress;
                      uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
                  }
                  struct FacetFunctionSelectors {
                      bytes4[] functionSelectors;
                      uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
                  }
                  struct DiamondStorage {
                      // maps function selector to the facet address and
                      // the position of the selector in the facetFunctionSelectors.selectors array
                      mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
                      // maps facet addresses to function selectors
                      mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
                      // facet addresses
                      address[] facetAddresses;
                      // Used to query if a contract implements an interface.
                      // Used to implement ERC-165.
                      mapping(bytes4 => bool) supportedInterfaces;
                      // owner of the contract
                      address contractOwner;
                  }
                  function diamondStorage() internal pure returns (DiamondStorage storage ds) {
                      bytes32 position = DIAMOND_STORAGE_POSITION;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          ds.slot := position
                      }
                  }
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function setContractOwner(address _newOwner) internal {
                      DiamondStorage storage ds = diamondStorage();
                      address previousOwner = ds.contractOwner;
                      ds.contractOwner = _newOwner;
                      emit OwnershipTransferred(previousOwner, _newOwner);
                  }
                  function contractOwner() internal view returns (address contractOwner_) {
                      contractOwner_ = diamondStorage().contractOwner;
                  }
                  function enforceIsContractOwner() internal view {
                      if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
                  }
                  event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
                  // Internal function version of diamondCut
                  function diamondCut(
                      IDiamondCut.FacetCut[] memory _diamondCut,
                      address _init,
                      bytes memory _calldata
                  ) internal {
                      for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
                          IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
                          if (action == IDiamondCut.FacetCutAction.Add) {
                              addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                          } else if (action == IDiamondCut.FacetCutAction.Replace) {
                              replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                          } else if (action == IDiamondCut.FacetCutAction.Remove) {
                              removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                          } else {
                              revert IncorrectFacetCutAction();
                          }
                          unchecked {
                              ++facetIndex;
                          }
                      }
                      emit DiamondCut(_diamondCut, _init, _calldata);
                      initializeDiamondCut(_init, _calldata);
                  }
                  function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                      if (_functionSelectors.length == 0) {
                          revert NoSelectorsInFace();
                      }
                      DiamondStorage storage ds = diamondStorage();
                      if (LibUtil.isZeroAddress(_facetAddress)) {
                          revert FacetAddressIsZero();
                      }
                      uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                      // add new facet address if it does not exist
                      if (selectorPosition == 0) {
                          addFacet(ds, _facetAddress);
                      }
                      for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                          bytes4 selector = _functionSelectors[selectorIndex];
                          address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                          if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                              revert FunctionAlreadyExists();
                          }
                          addFunction(ds, selector, selectorPosition, _facetAddress);
                          unchecked {
                              ++selectorPosition;
                              ++selectorIndex;
                          }
                      }
                  }
                  function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                      if (_functionSelectors.length == 0) {
                          revert NoSelectorsInFace();
                      }
                      DiamondStorage storage ds = diamondStorage();
                      if (LibUtil.isZeroAddress(_facetAddress)) {
                          revert FacetAddressIsZero();
                      }
                      uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                      // add new facet address if it does not exist
                      if (selectorPosition == 0) {
                          addFacet(ds, _facetAddress);
                      }
                      for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                          bytes4 selector = _functionSelectors[selectorIndex];
                          address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                          if (oldFacetAddress == _facetAddress) {
                              revert FunctionAlreadyExists();
                          }
                          removeFunction(ds, oldFacetAddress, selector);
                          addFunction(ds, selector, selectorPosition, _facetAddress);
                          unchecked {
                              ++selectorPosition;
                              ++selectorIndex;
                          }
                      }
                  }
                  function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                      if (_functionSelectors.length == 0) {
                          revert NoSelectorsInFace();
                      }
                      DiamondStorage storage ds = diamondStorage();
                      // if function does not exist then do nothing and return
                      if (!LibUtil.isZeroAddress(_facetAddress)) {
                          revert FacetAddressIsNotZero();
                      }
                      for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                          bytes4 selector = _functionSelectors[selectorIndex];
                          address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                          removeFunction(ds, oldFacetAddress, selector);
                          unchecked {
                              ++selectorIndex;
                          }
                      }
                  }
                  function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
                      enforceHasContractCode(_facetAddress);
                      ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
                      ds.facetAddresses.push(_facetAddress);
                  }
                  function addFunction(
                      DiamondStorage storage ds,
                      bytes4 _selector,
                      uint96 _selectorPosition,
                      address _facetAddress
                  ) internal {
                      ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
                      ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
                      ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
                  }
                  function removeFunction(
                      DiamondStorage storage ds,
                      address _facetAddress,
                      bytes4 _selector
                  ) internal {
                      if (LibUtil.isZeroAddress(_facetAddress)) {
                          revert FunctionDoesNotExist();
                      }
                      // an immutable function is a function defined directly in a diamond
                      if (_facetAddress == address(this)) {
                          revert FunctionIsImmutable();
                      }
                      // replace selector with last selector, then delete last selector
                      uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
                      uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
                      // if not the same then replace _selector with lastSelector
                      if (selectorPosition != lastSelectorPosition) {
                          bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
                          ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
                          ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
                      }
                      // delete the last selector
                      ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
                      delete ds.selectorToFacetAndPosition[_selector];
                      // if no more selectors for facet address then delete the facet address
                      if (lastSelectorPosition == 0) {
                          // replace facet address with last facet address and delete last facet address
                          uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
                          uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                          if (facetAddressPosition != lastFacetAddressPosition) {
                              address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                              ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                              ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
                          }
                          ds.facetAddresses.pop();
                          delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                      }
                  }
                  function initializeDiamondCut(address _init, bytes memory _calldata) internal {
                      if (LibUtil.isZeroAddress(_init)) {
                          if (_calldata.length != 0) {
                              revert InitZeroButCalldataNotEmpty();
                          }
                      } else {
                          if (_calldata.length == 0) {
                              revert CalldataEmptyButInitNotZero();
                          }
                          if (_init != address(this)) {
                              enforceHasContractCode(_init);
                          }
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory error) = _init.delegatecall(_calldata);
                          if (!success) {
                              if (error.length > 0) {
                                  // bubble up the error
                                  revert(string(error));
                              } else {
                                  revert InitReverted();
                              }
                          }
                      }
                  }
                  function enforceHasContractCode(address _contract) internal view {
                      uint256 contractSize;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          contractSize := extcodesize(_contract)
                      }
                      if (contractSize == 0) {
                          revert FacetContainsNoCode();
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import { LibAsset } from "./LibAsset.sol";
              import { LibUtil } from "./LibUtil.sol";
              import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance } from "../Errors/GenericErrors.sol";
              import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              library LibSwap {
                  struct SwapData {
                      address callTo;
                      address approveTo;
                      address sendingAssetId;
                      address receivingAssetId;
                      uint256 fromAmount;
                      bytes callData;
                      bool requiresDeposit;
                  }
                  event AssetSwapped(
                      bytes32 transactionId,
                      address dex,
                      address fromAssetId,
                      address toAssetId,
                      uint256 fromAmount,
                      uint256 toAmount,
                      uint256 timestamp
                  );
                  function swap(bytes32 transactionId, SwapData calldata _swap) internal {
                      if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                      uint256 fromAmount = _swap.fromAmount;
                      if (fromAmount == 0) revert NoSwapFromZeroBalance();
                      uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId) ? _swap.fromAmount : 0;
                      uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(_swap.sendingAssetId);
                      uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                      if (nativeValue == 0) {
                          LibAsset.maxApproveERC20(IERC20(_swap.sendingAssetId), _swap.approveTo, _swap.fromAmount);
                      }
                      if (initialSendingAssetBalance < _swap.fromAmount) {
                          revert InsufficientBalance(_swap.fromAmount, initialSendingAssetBalance);
                      }
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory res) = _swap.callTo.call{ value: nativeValue }(_swap.callData);
                      if (!success) {
                          string memory reason = LibUtil.getRevertMsg(res);
                          revert(reason);
                      }
                      uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                      emit AssetSwapped(
                          transactionId,
                          _swap.callTo,
                          _swap.sendingAssetId,
                          _swap.receivingAssetId,
                          _swap.fromAmount,
                          newBalance > initialReceivingAssetBalance ? newBalance - initialReceivingAssetBalance : newBalance,
                          block.timestamp
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import "./LibBytes.sol";
              library LibUtil {
                  using LibBytes for bytes;
                  function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
                      // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                      if (_res.length < 68) return "Transaction reverted silently";
                      bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                      return abi.decode(revertData, (string)); // All that remains is the revert string
                  }
                  /// @notice Determines whether the given address is the zero address
                  /// @param addr The address to verify
                  /// @return Boolean indicating if the address is the zero address
                  function isZeroAddress(address addr) internal pure returns (bool) {
                      return addr == address(0);
                  }
              }
              

              File 7 of 7: PolygonMessengerWrapper
              // SPDX-License-Identifier: MIT
              // @unsupported: ovm
              pragma solidity 0.8.9;
              pragma experimental ABIEncoderV2;
              import "../polygon/tunnel/FxBaseRootTunnel.sol";
              import "./MessengerWrapper.sol";
              /**
               * @dev A MessengerWrapper for Polygon - https://docs.matic.network/docs
               * @notice Deployed on layer-1
               */
              contract PolygonMessengerWrapper is FxBaseRootTunnel, MessengerWrapper {
                  constructor(
                      address _l1BridgeAddress,
                      address _checkpointManager,
                      address _fxRoot,
                      address _fxChildTunnel
                  )
                      public
                      MessengerWrapper(_l1BridgeAddress)
                      FxBaseRootTunnel(_checkpointManager, _fxRoot)
                  {
                      setFxChildTunnel(_fxChildTunnel);
                  }
                  /** 
                   * @dev Sends a message to the l2MessengerProxy from layer-1
                   * @param _calldata The data that l2MessengerProxy will be called with
                   * @notice The msg.sender is sent to the L2_PolygonMessengerProxy and checked there.
                   */
                  function sendCrossDomainMessage(bytes memory _calldata) public override {
                      _sendMessageToChild(
                          abi.encode(msg.sender, _calldata)
                      );
                  }
                  function verifySender(address l1BridgeCaller, bytes memory /*_data*/) public view override {
                      require(l1BridgeCaller == address(this), "L1_PLGN_WPR: Caller must be this contract");
                  }
                  function _processMessageFromChild(bytes memory message) internal override {
                      (bool success,) = l1BridgeAddress.call(message);
                      require(success, "L1_PLGN_WPR: Call to L1 Bridge failed");
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {RLPReader} from "../lib/RLPReader.sol";
              import {MerklePatriciaProof} from "../lib/MerklePatriciaProof.sol";
              import {Merkle} from "../lib/Merkle.sol";
              import "../lib/ExitPayloadReader.sol";
              interface IFxStateSender {
                  function sendMessageToChild(address _receiver, bytes calldata _data) external;
              }
              contract ICheckpointManager {
                  struct HeaderBlock {
                      bytes32 root;
                      uint256 start;
                      uint256 end;
                      uint256 createdAt;
                      address proposer;
                  }
                  /**
                   * @notice mapping of checkpoint header numbers to block details
                   * @dev These checkpoints are submited by plasma contracts
                   */
                  mapping(uint256 => HeaderBlock) public headerBlocks;
              }
              abstract contract FxBaseRootTunnel {
                  using RLPReader for RLPReader.RLPItem;
                  using Merkle for bytes32;
                  using ExitPayloadReader for bytes;
                  using ExitPayloadReader for ExitPayloadReader.ExitPayload;
                  using ExitPayloadReader for ExitPayloadReader.Log;
                  using ExitPayloadReader for ExitPayloadReader.LogTopics;
                  using ExitPayloadReader for ExitPayloadReader.Receipt;
                  // keccak256(MessageSent(bytes))
                  bytes32 public constant SEND_MESSAGE_EVENT_SIG = 0x8c5261668696ce22758910d05bab8f186d6eb247ceac2af2e82c7dc17669b036;
                  // state sender contract
                  IFxStateSender public fxRoot;
                  // root chain manager
                  ICheckpointManager public checkpointManager;
                  // child tunnel contract which receives and sends messages
                  address public fxChildTunnel;
                  // storage to avoid duplicate exits
                  mapping(bytes32 => bool) public processedExits;
                  constructor(address _checkpointManager, address _fxRoot) {
                      checkpointManager = ICheckpointManager(_checkpointManager);
                      fxRoot = IFxStateSender(_fxRoot);
                  }
                  // set fxChildTunnel if not set already
                  function setFxChildTunnel(address _fxChildTunnel) public {
                      require(fxChildTunnel == address(0x0), "FxBaseRootTunnel: CHILD_TUNNEL_ALREADY_SET");
                      fxChildTunnel = _fxChildTunnel;
                  }
                  /**
                   * @notice Send bytes message to Child Tunnel
                   * @param message bytes message that will be sent to Child Tunnel
                   * some message examples -
                   *   abi.encode(tokenId);
                   *   abi.encode(tokenId, tokenMetadata);
                   *   abi.encode(messageType, messageData);
                   */
                  function _sendMessageToChild(bytes memory message) internal {
                      fxRoot.sendMessageToChild(fxChildTunnel, message);
                  }
                  function _validateAndExtractMessage(bytes memory inputData) internal returns (bytes memory) {
                      ExitPayloadReader.ExitPayload memory payload = inputData.toExitPayload();
                      bytes memory branchMaskBytes = payload.getBranchMaskAsBytes();
                      uint256 blockNumber = payload.getBlockNumber();
                      // checking if exit has already been processed
                      // unique exit is identified using hash of (blockNumber, branchMask, receiptLogIndex)
                      bytes32 exitHash = keccak256(
                          abi.encodePacked(
                              blockNumber,
                              // first 2 nibbles are dropped while generating nibble array
                              // this allows branch masks that are valid but bypass exitHash check (changing first 2 nibbles only)
                              // so converting to nibble array and then hashing it
                              MerklePatriciaProof._getNibbleArray(branchMaskBytes),
                              payload.getReceiptLogIndex()
                          )
                      );
                      require(processedExits[exitHash] == false, "FxRootTunnel: EXIT_ALREADY_PROCESSED");
                      processedExits[exitHash] = true;
                      ExitPayloadReader.Receipt memory receipt = payload.getReceipt();
                      ExitPayloadReader.Log memory log = receipt.getLog();
                      // check child tunnel
                      require(fxChildTunnel == log.getEmitter(), "FxRootTunnel: INVALID_FX_CHILD_TUNNEL");
                      bytes32 receiptRoot = payload.getReceiptRoot();
                      // verify receipt inclusion
                      require(
                          MerklePatriciaProof.verify(receipt.toBytes(), branchMaskBytes, payload.getReceiptProof(), receiptRoot),
                          "FxRootTunnel: INVALID_RECEIPT_PROOF"
                      );
                      // verify checkpoint inclusion
                      _checkBlockMembershipInCheckpoint(
                          blockNumber,
                          payload.getBlockTime(),
                          payload.getTxRoot(),
                          receiptRoot,
                          payload.getHeaderNumber(),
                          payload.getBlockProof()
                      );
                      ExitPayloadReader.LogTopics memory topics = log.getTopics();
                      require(
                          bytes32(topics.getField(0).toUint()) == SEND_MESSAGE_EVENT_SIG, // topic0 is event sig
                          "FxRootTunnel: INVALID_SIGNATURE"
                      );
                      // received message data
                      bytes memory message = abi.decode(log.getData(), (bytes)); // event decodes params again, so decoding bytes to get message
                      return message;
                  }
                  function _checkBlockMembershipInCheckpoint(
                      uint256 blockNumber,
                      uint256 blockTime,
                      bytes32 txRoot,
                      bytes32 receiptRoot,
                      uint256 headerNumber,
                      bytes memory blockProof
                  ) private view returns (uint256) {
                      (bytes32 headerRoot, uint256 startBlock, , uint256 createdAt, ) = checkpointManager.headerBlocks(headerNumber);
                      require(
                          keccak256(abi.encodePacked(blockNumber, blockTime, txRoot, receiptRoot)).checkMembership(
                              blockNumber - startBlock,
                              headerRoot,
                              blockProof
                          ),
                          "FxRootTunnel: INVALID_HEADER"
                      );
                      return createdAt;
                  }
                  /**
                   * @notice receive message from  L2 to L1, validated by proof
                   * @dev This function verifies if the transaction actually happened on child chain
                   *
                   * @param inputData RLP encoded data of the reference tx containing following list of fields
                   *  0 - headerNumber - Checkpoint header block number containing the reference tx
                   *  1 - blockProof - Proof that the block header (in the child chain) is a leaf in the submitted merkle root
                   *  2 - blockNumber - Block number containing the reference tx on child chain
                   *  3 - blockTime - Reference tx block time
                   *  4 - txRoot - Transactions root of block
                   *  5 - receiptRoot - Receipts root of block
                   *  6 - receipt - Receipt of the reference transaction
                   *  7 - receiptProof - Merkle proof of the reference receipt
                   *  8 - branchMask - 32 bits denoting the path of receipt in merkle tree
                   *  9 - receiptLogIndex - Log Index to read from the receipt
                   */
                  function receiveMessage(bytes memory inputData) public virtual {
                      bytes memory message = _validateAndExtractMessage(inputData);
                      _processMessageFromChild(message);
                  }
                  /**
                   * @notice Process message received from Child Tunnel
                   * @dev function needs to be implemented to handle message as per requirement
                   * This is called by onStateReceive function.
                   * Since it is called via a system call, any event will not be emitted during its execution.
                   * @param message bytes message that was sent from Child Tunnel
                   */
                  function _processMessageFromChild(bytes memory message) internal virtual;
              }// SPDX-License-Identifier: MIT
              pragma solidity >=0.6.12 <=0.8.9;
              pragma experimental ABIEncoderV2;
              import "../interfaces/IMessengerWrapper.sol";
              abstract contract MessengerWrapper is IMessengerWrapper {
                  address public immutable l1BridgeAddress;
                  constructor(address _l1BridgeAddress) internal {
                      l1BridgeAddress = _l1BridgeAddress;
                  }
                  modifier onlyL1Bridge {
                      require(msg.sender == l1BridgeAddress, "MW: Sender must be the L1 Bridge");
                      _;
                  }
              }
              /*
               * @author Hamdi Allam [email protected]
               * Please reach out with any questions or concerns
               */
              pragma solidity ^0.8.0;
              library RLPReader {
                  uint8 constant STRING_SHORT_START = 0x80;
                  uint8 constant STRING_LONG_START = 0xb8;
                  uint8 constant LIST_SHORT_START = 0xc0;
                  uint8 constant LIST_LONG_START = 0xf8;
                  uint8 constant WORD_SIZE = 32;
                  struct RLPItem {
                      uint256 len;
                      uint256 memPtr;
                  }
                  struct Iterator {
                      RLPItem item; // Item that's being iterated over.
                      uint256 nextPtr; // Position of the next item in the list.
                  }
                  /*
                   * @dev Returns the next element in the iteration. Reverts if it has not next element.
                   * @param self The iterator.
                   * @return The next element in the iteration.
                   */
                  function next(Iterator memory self) internal pure returns (RLPItem memory) {
                      require(hasNext(self));
                      uint256 ptr = self.nextPtr;
                      uint256 itemLength = _itemLength(ptr);
                      self.nextPtr = ptr + itemLength;
                      return RLPItem(itemLength, ptr);
                  }
                  /*
                   * @dev Returns true if the iteration has more elements.
                   * @param self The iterator.
                   * @return true if the iteration has more elements.
                   */
                  function hasNext(Iterator memory self) internal pure returns (bool) {
                      RLPItem memory item = self.item;
                      return self.nextPtr < item.memPtr + item.len;
                  }
                  /*
                   * @param item RLP encoded bytes
                   */
                  function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) {
                      uint256 memPtr;
                      assembly {
                          memPtr := add(item, 0x20)
                      }
                      return RLPItem(item.length, memPtr);
                  }
                  /*
                   * @dev Create an iterator. Reverts if item is not a list.
                   * @param self The RLP item.
                   * @return An 'Iterator' over the item.
                   */
                  function iterator(RLPItem memory self) internal pure returns (Iterator memory) {
                      require(isList(self));
                      uint256 ptr = self.memPtr + _payloadOffset(self.memPtr);
                      return Iterator(self, ptr);
                  }
                  /*
                   * @param item RLP encoded bytes
                   */
                  function rlpLen(RLPItem memory item) internal pure returns (uint256) {
                      return item.len;
                  }
                  /*
                   * @param item RLP encoded bytes
                   */
                  function payloadLen(RLPItem memory item) internal pure returns (uint256) {
                      return item.len - _payloadOffset(item.memPtr);
                  }
                  /*
                   * @param item RLP encoded list in bytes
                   */
                  function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) {
                      require(isList(item));
                      uint256 items = numItems(item);
                      RLPItem[] memory result = new RLPItem[](items);
                      uint256 memPtr = item.memPtr + _payloadOffset(item.memPtr);
                      uint256 dataLen;
                      for (uint256 i = 0; i < items; i++) {
                          dataLen = _itemLength(memPtr);
                          result[i] = RLPItem(dataLen, memPtr);
                          memPtr = memPtr + dataLen;
                      }
                      return result;
                  }
                  // @return indicator whether encoded payload is a list. negate this function call for isData.
                  function isList(RLPItem memory item) internal pure returns (bool) {
                      if (item.len == 0) return false;
                      uint8 byte0;
                      uint256 memPtr = item.memPtr;
                      assembly {
                          byte0 := byte(0, mload(memPtr))
                      }
                      if (byte0 < LIST_SHORT_START) return false;
                      return true;
                  }
                  /*
                   * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory.
                   * @return keccak256 hash of RLP encoded bytes.
                   */
                  function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) {
                      uint256 ptr = item.memPtr;
                      uint256 len = item.len;
                      bytes32 result;
                      assembly {
                          result := keccak256(ptr, len)
                      }
                      return result;
                  }
                  function payloadLocation(RLPItem memory item) internal pure returns (uint256, uint256) {
                      uint256 offset = _payloadOffset(item.memPtr);
                      uint256 memPtr = item.memPtr + offset;
                      uint256 len = item.len - offset; // data length
                      return (memPtr, len);
                  }
                  /*
                   * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory.
                   * @return keccak256 hash of the item payload.
                   */
                  function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) {
                      (uint256 memPtr, uint256 len) = payloadLocation(item);
                      bytes32 result;
                      assembly {
                          result := keccak256(memPtr, len)
                      }
                      return result;
                  }
                  /** RLPItem conversions into data types **/
                  // @returns raw rlp encoding in bytes
                  function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) {
                      bytes memory result = new bytes(item.len);
                      if (result.length == 0) return result;
                      uint256 ptr;
                      assembly {
                          ptr := add(0x20, result)
                      }
                      copy(item.memPtr, ptr, item.len);
                      return result;
                  }
                  // any non-zero byte is considered true
                  function toBoolean(RLPItem memory item) internal pure returns (bool) {
                      require(item.len == 1);
                      uint256 result;
                      uint256 memPtr = item.memPtr;
                      assembly {
                          result := byte(0, mload(memPtr))
                      }
                      return result == 0 ? false : true;
                  }
                  function toAddress(RLPItem memory item) internal pure returns (address) {
                      // 1 byte for the length prefix
                      require(item.len == 21);
                      return address(uint160(toUint(item)));
                  }
                  function toUint(RLPItem memory item) internal pure returns (uint256) {
                      require(item.len > 0 && item.len <= 33);
                      uint256 offset = _payloadOffset(item.memPtr);
                      uint256 len = item.len - offset;
                      uint256 result;
                      uint256 memPtr = item.memPtr + offset;
                      assembly {
                          result := mload(memPtr)
                          // shfit to the correct location if neccesary
                          if lt(len, 32) {
                              result := div(result, exp(256, sub(32, len)))
                          }
                      }
                      return result;
                  }
                  // enforces 32 byte length
                  function toUintStrict(RLPItem memory item) internal pure returns (uint256) {
                      // one byte prefix
                      require(item.len == 33);
                      uint256 result;
                      uint256 memPtr = item.memPtr + 1;
                      assembly {
                          result := mload(memPtr)
                      }
                      return result;
                  }
                  function toBytes(RLPItem memory item) internal pure returns (bytes memory) {
                      require(item.len > 0);
                      uint256 offset = _payloadOffset(item.memPtr);
                      uint256 len = item.len - offset; // data length
                      bytes memory result = new bytes(len);
                      uint256 destPtr;
                      assembly {
                          destPtr := add(0x20, result)
                      }
                      copy(item.memPtr + offset, destPtr, len);
                      return result;
                  }
                  /*
                   * Private Helpers
                   */
                  // @return number of payload items inside an encoded list.
                  function numItems(RLPItem memory item) private pure returns (uint256) {
                      if (item.len == 0) return 0;
                      uint256 count = 0;
                      uint256 currPtr = item.memPtr + _payloadOffset(item.memPtr);
                      uint256 endPtr = item.memPtr + item.len;
                      while (currPtr < endPtr) {
                          currPtr = currPtr + _itemLength(currPtr); // skip over an item
                          count++;
                      }
                      return count;
                  }
                  // @return entire rlp item byte length
                  function _itemLength(uint256 memPtr) private pure returns (uint256) {
                      uint256 itemLen;
                      uint256 byte0;
                      assembly {
                          byte0 := byte(0, mload(memPtr))
                      }
                      if (byte0 < STRING_SHORT_START) itemLen = 1;
                      else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1;
                      else if (byte0 < LIST_SHORT_START) {
                          assembly {
                              let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is
                              memPtr := add(memPtr, 1) // skip over the first byte
                              /* 32 byte word size */
                              let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len
                              itemLen := add(dataLen, add(byteLen, 1))
                          }
                      } else if (byte0 < LIST_LONG_START) {
                          itemLen = byte0 - LIST_SHORT_START + 1;
                      } else {
                          assembly {
                              let byteLen := sub(byte0, 0xf7)
                              memPtr := add(memPtr, 1)
                              let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length
                              itemLen := add(dataLen, add(byteLen, 1))
                          }
                      }
                      return itemLen;
                  }
                  // @return number of bytes until the data
                  function _payloadOffset(uint256 memPtr) private pure returns (uint256) {
                      uint256 byte0;
                      assembly {
                          byte0 := byte(0, mload(memPtr))
                      }
                      if (byte0 < STRING_SHORT_START) return 0;
                      else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1;
                      else if (byte0 < LIST_SHORT_START)
                          // being explicit
                          return byte0 - (STRING_LONG_START - 1) + 1;
                      else return byte0 - (LIST_LONG_START - 1) + 1;
                  }
                  /*
                   * @param src Pointer to source
                   * @param dest Pointer to destination
                   * @param len Amount of memory to copy from the source
                   */
                  function copy(
                      uint256 src,
                      uint256 dest,
                      uint256 len
                  ) private pure {
                      if (len == 0) return;
                      // copy as many word sizes as possible
                      for (; len >= WORD_SIZE; len -= WORD_SIZE) {
                          assembly {
                              mstore(dest, mload(src))
                          }
                          src += WORD_SIZE;
                          dest += WORD_SIZE;
                      }
                      if (len == 0) return;
                      // left over bytes. Mask is used to remove unwanted bytes from the word
                      uint256 mask = 256**(WORD_SIZE - len) - 1;
                      assembly {
                          let srcpart := and(mload(src), not(mask)) // zero out src
                          let destpart := and(mload(dest), mask) // retrieve the bytes
                          mstore(dest, or(destpart, srcpart))
                      }
                  }
              }// SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import {RLPReader} from "./RLPReader.sol";
              library MerklePatriciaProof {
                  /*
                   * @dev Verifies a merkle patricia proof.
                   * @param value The terminating value in the trie.
                   * @param encodedPath The path in the trie leading to value.
                   * @param rlpParentNodes The rlp encoded stack of nodes.
                   * @param root The root hash of the trie.
                   * @return The boolean validity of the proof.
                   */
                  function verify(
                      bytes memory value,
                      bytes memory encodedPath,
                      bytes memory rlpParentNodes,
                      bytes32 root
                  ) internal pure returns (bool) {
                      RLPReader.RLPItem memory item = RLPReader.toRlpItem(rlpParentNodes);
                      RLPReader.RLPItem[] memory parentNodes = RLPReader.toList(item);
                      bytes memory currentNode;
                      RLPReader.RLPItem[] memory currentNodeList;
                      bytes32 nodeKey = root;
                      uint256 pathPtr = 0;
                      bytes memory path = _getNibbleArray(encodedPath);
                      if (path.length == 0) {
                          return false;
                      }
                      for (uint256 i = 0; i < parentNodes.length; i++) {
                          if (pathPtr > path.length) {
                              return false;
                          }
                          currentNode = RLPReader.toRlpBytes(parentNodes[i]);
                          if (nodeKey != keccak256(currentNode)) {
                              return false;
                          }
                          currentNodeList = RLPReader.toList(parentNodes[i]);
                          if (currentNodeList.length == 17) {
                              if (pathPtr == path.length) {
                                  if (keccak256(RLPReader.toBytes(currentNodeList[16])) == keccak256(value)) {
                                      return true;
                                  } else {
                                      return false;
                                  }
                              }
                              uint8 nextPathNibble = uint8(path[pathPtr]);
                              if (nextPathNibble > 16) {
                                  return false;
                              }
                              nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[nextPathNibble]));
                              pathPtr += 1;
                          } else if (currentNodeList.length == 2) {
                              uint256 traversed = _nibblesToTraverse(RLPReader.toBytes(currentNodeList[0]), path, pathPtr);
                              if (pathPtr + traversed == path.length) {
                                  //leaf node
                                  if (keccak256(RLPReader.toBytes(currentNodeList[1])) == keccak256(value)) {
                                      return true;
                                  } else {
                                      return false;
                                  }
                              }
                              //extension node
                              if (traversed == 0) {
                                  return false;
                              }
                              pathPtr += traversed;
                              nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[1]));
                          } else {
                              return false;
                          }
                      }
                  }
                  function _nibblesToTraverse(
                      bytes memory encodedPartialPath,
                      bytes memory path,
                      uint256 pathPtr
                  ) private pure returns (uint256) {
                      uint256 len = 0;
                      // encodedPartialPath has elements that are each two hex characters (1 byte), but partialPath
                      // and slicedPath have elements that are each one hex character (1 nibble)
                      bytes memory partialPath = _getNibbleArray(encodedPartialPath);
                      bytes memory slicedPath = new bytes(partialPath.length);
                      // pathPtr counts nibbles in path
                      // partialPath.length is a number of nibbles
                      for (uint256 i = pathPtr; i < pathPtr + partialPath.length; i++) {
                          bytes1 pathNibble = path[i];
                          slicedPath[i - pathPtr] = pathNibble;
                      }
                      if (keccak256(partialPath) == keccak256(slicedPath)) {
                          len = partialPath.length;
                      } else {
                          len = 0;
                      }
                      return len;
                  }
                  // bytes b must be hp encoded
                  function _getNibbleArray(bytes memory b) internal pure returns (bytes memory) {
                      bytes memory nibbles = "";
                      if (b.length > 0) {
                          uint8 offset;
                          uint8 hpNibble = uint8(_getNthNibbleOfBytes(0, b));
                          if (hpNibble == 1 || hpNibble == 3) {
                              nibbles = new bytes(b.length * 2 - 1);
                              bytes1 oddNibble = _getNthNibbleOfBytes(1, b);
                              nibbles[0] = oddNibble;
                              offset = 1;
                          } else {
                              nibbles = new bytes(b.length * 2 - 2);
                              offset = 0;
                          }
                          for (uint256 i = offset; i < nibbles.length; i++) {
                              nibbles[i] = _getNthNibbleOfBytes(i - offset + 2, b);
                          }
                      }
                      return nibbles;
                  }
                  function _getNthNibbleOfBytes(uint256 n, bytes memory str) private pure returns (bytes1) {
                      return bytes1(n % 2 == 0 ? uint8(str[n / 2]) / 0x10 : uint8(str[n / 2]) % 0x10);
                  }
              }// SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              library Merkle {
                  function checkMembership(
                      bytes32 leaf,
                      uint256 index,
                      bytes32 rootHash,
                      bytes memory proof
                  ) internal pure returns (bool) {
                      require(proof.length % 32 == 0, "Invalid proof length");
                      uint256 proofHeight = proof.length / 32;
                      // Proof of size n means, height of the tree is n+1.
                      // In a tree of height n+1, max #leafs possible is 2 ^ n
                      require(index < 2**proofHeight, "Leaf index is too big");
                      bytes32 proofElement;
                      bytes32 computedHash = leaf;
                      for (uint256 i = 32; i <= proof.length; i += 32) {
                          assembly {
                              proofElement := mload(add(proof, i))
                          }
                          if (index % 2 == 0) {
                              computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
                          } else {
                              computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
                          }
                          index = index / 2;
                      }
                      return computedHash == rootHash;
                  }
              }pragma solidity ^0.8.0;
              import {RLPReader} from "./RLPReader.sol";
              library ExitPayloadReader {
                  using RLPReader for bytes;
                  using RLPReader for RLPReader.RLPItem;
                  uint8 constant WORD_SIZE = 32;
                  struct ExitPayload {
                      RLPReader.RLPItem[] data;
                  }
                  struct Receipt {
                      RLPReader.RLPItem[] data;
                      bytes raw;
                      uint256 logIndex;
                  }
                  struct Log {
                      RLPReader.RLPItem data;
                      RLPReader.RLPItem[] list;
                  }
                  struct LogTopics {
                      RLPReader.RLPItem[] data;
                  }
                  // copy paste of private copy() from RLPReader to avoid changing of existing contracts
                  function copy(
                      uint256 src,
                      uint256 dest,
                      uint256 len
                  ) private pure {
                      if (len == 0) return;
                      // copy as many word sizes as possible
                      for (; len >= WORD_SIZE; len -= WORD_SIZE) {
                          assembly {
                              mstore(dest, mload(src))
                          }
                          src += WORD_SIZE;
                          dest += WORD_SIZE;
                      }
                      // left over bytes. Mask is used to remove unwanted bytes from the word
                      uint256 mask = 256**(WORD_SIZE - len) - 1;
                      assembly {
                          let srcpart := and(mload(src), not(mask)) // zero out src
                          let destpart := and(mload(dest), mask) // retrieve the bytes
                          mstore(dest, or(destpart, srcpart))
                      }
                  }
                  function toExitPayload(bytes memory data) internal pure returns (ExitPayload memory) {
                      RLPReader.RLPItem[] memory payloadData = data.toRlpItem().toList();
                      return ExitPayload(payloadData);
                  }
                  function getHeaderNumber(ExitPayload memory payload) internal pure returns (uint256) {
                      return payload.data[0].toUint();
                  }
                  function getBlockProof(ExitPayload memory payload) internal pure returns (bytes memory) {
                      return payload.data[1].toBytes();
                  }
                  function getBlockNumber(ExitPayload memory payload) internal pure returns (uint256) {
                      return payload.data[2].toUint();
                  }
                  function getBlockTime(ExitPayload memory payload) internal pure returns (uint256) {
                      return payload.data[3].toUint();
                  }
                  function getTxRoot(ExitPayload memory payload) internal pure returns (bytes32) {
                      return bytes32(payload.data[4].toUint());
                  }
                  function getReceiptRoot(ExitPayload memory payload) internal pure returns (bytes32) {
                      return bytes32(payload.data[5].toUint());
                  }
                  function getReceipt(ExitPayload memory payload) internal pure returns (Receipt memory receipt) {
                      receipt.raw = payload.data[6].toBytes();
                      RLPReader.RLPItem memory receiptItem = receipt.raw.toRlpItem();
                      if (receiptItem.isList()) {
                          // legacy tx
                          receipt.data = receiptItem.toList();
                      } else {
                          // pop first byte before parsting receipt
                          bytes memory typedBytes = receipt.raw;
                          bytes memory result = new bytes(typedBytes.length - 1);
                          uint256 srcPtr;
                          uint256 destPtr;
                          assembly {
                              srcPtr := add(33, typedBytes)
                              destPtr := add(0x20, result)
                          }
                          copy(srcPtr, destPtr, result.length);
                          receipt.data = result.toRlpItem().toList();
                      }
                      receipt.logIndex = getReceiptLogIndex(payload);
                      return receipt;
                  }
                  function getReceiptProof(ExitPayload memory payload) internal pure returns (bytes memory) {
                      return payload.data[7].toBytes();
                  }
                  function getBranchMaskAsBytes(ExitPayload memory payload) internal pure returns (bytes memory) {
                      return payload.data[8].toBytes();
                  }
                  function getBranchMaskAsUint(ExitPayload memory payload) internal pure returns (uint256) {
                      return payload.data[8].toUint();
                  }
                  function getReceiptLogIndex(ExitPayload memory payload) internal pure returns (uint256) {
                      return payload.data[9].toUint();
                  }
                  // Receipt methods
                  function toBytes(Receipt memory receipt) internal pure returns (bytes memory) {
                      return receipt.raw;
                  }
                  function getLog(Receipt memory receipt) internal pure returns (Log memory) {
                      RLPReader.RLPItem memory logData = receipt.data[3].toList()[receipt.logIndex];
                      return Log(logData, logData.toList());
                  }
                  // Log methods
                  function getEmitter(Log memory log) internal pure returns (address) {
                      return RLPReader.toAddress(log.list[0]);
                  }
                  function getTopics(Log memory log) internal pure returns (LogTopics memory) {
                      return LogTopics(log.list[1].toList());
                  }
                  function getData(Log memory log) internal pure returns (bytes memory) {
                      return log.list[2].toBytes();
                  }
                  function toRlpBytes(Log memory log) internal pure returns (bytes memory) {
                      return log.data.toRlpBytes();
                  }
                  // LogTopics methods
                  function getField(LogTopics memory topics, uint256 index) internal pure returns (RLPReader.RLPItem memory) {
                      return topics.data[index];
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.12 <=0.8.9;
              pragma experimental ABIEncoderV2;
              interface IMessengerWrapper {
                  function sendCrossDomainMessage(bytes memory _calldata) external;
                  function verifySender(address l1BridgeCaller, bytes memory _data) external;
              }