ETH Price: $3,040.94 (+1.93%)

Transaction Decoder

Block:
24106977 at Dec-27-2025 10:33:59 PM +UTC
Transaction Fee:
0.00001647966976073 ETH $0.05
Gas Used:
199,210 Gas / 0.082725113 Gwei

Emitted Events:

584 EntryPoint.Deposited( account=0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B, totalDeposit=43653424125228 )
585 EntryPoint.BeforeExecution( )
586 EventsHistory.0x940c4b3549ef0aaff95807dc27f62d88ca15532d1bf535d7d63800f40395d16c( 0x940c4b3549ef0aaff95807dc27f62d88ca15532d1bf535d7d63800f40395d16c, 0x0000000000000000000000000e2906fd2c939dd6667c2e3d2f2521899c5d090b, 0x0000000000000000000000000016ab524fdf4e8289d4066ad6deef8226c637ca, 0x50524f5059000000000000000000000000000000000000000000000000000000, 00000000000000000000000000000000000000000000000000000000b8893600, 0000000000000000000000000000000000000000000000000000000000000060, 0000000000000000000000000000000000000000000000000000000000000002, 0000000000000000000000000000000000000000000000000000000000000000 )
587 PropyToken.Transfer( from=0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B, to=PaymentPROClonable, value=3096000000 )
588 PaymentPROClonable.DefaultPaymentReceived( paymentReferenceHash=A3D69CDA1733690C974A98DDC1A666C3BF3133D9518BD48D9A35396CFF167A7A, sender=0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B, tokenAddress=PropyToken, tokenAmount=3096000000, paymentReference=AddressReservation_ )
589 EntryPoint.UserOperationEvent( userOpHash=2C1B1D414F8917497F492CA71BB7DA558E31A2AFA5F7DE71DDCD88BF2EA22D70, sender=0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B, paymaster=0x00000000...000000000, nonce=30, success=True, actualGasCost=33515878259873, actualGasUsed=252521 )

Account State Difference:

  Address   Before After State Difference Code
0x0e2906fd...99c5d090B 0.006789342871502338 Eth0.006761056811862065 Eth0.000028286059640273
0x331d0775...84c411F84
0x5FF137D4...a026d2789
(Entry Point 0.6.0)
311.85404572966962116 Eth311.85404049985100156 Eth0.0000052298186196
0x77a39416...C4aA7f2eF
0.456996888398655761 Eth
Nonce: 3748
0.457013924607154904 Eth
Nonce: 3749
0.000017036208499143
(BuilderNet)
166.807401560569274722 Eth166.807411521069274722 Eth0.0000099605

Execution Trace

EntryPoint.handleOps( ops=, beneficiary=0x77a39416704617E115b1d7F71E74Dd9C4aA7f2eF )
  • 0x0e2906fd2c939dd6667c2e3d2f2521899c5d090b.3a871cdd( )
    • CoinbaseSmartWallet.validateUserOp( userOp=[{name:sender, type:address, order:1, indexed:false, value:0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B, valueString:0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B}, {name:nonce, type:uint256, order:2, indexed:false, value:30, valueString:30}, {name:initCode, type:bytes, order:3, indexed:false, value:0x, valueString:0x}, {name:callData, type:bytes, order:4, indexed:false, value:0x34FCD5BE0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000200000000000000000000000000016AB524FDF4E8289D4066AD6DEEF8226C637CA000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000064FBE4CA6300000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000013416464726573735265736572766174696F6E5F0000000000000000000000000000000000000000000000000000000000000000000000000000000000, valueString:0x34FCD5BE0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000200000000000000000000000000016AB524FDF4E8289D4066AD6DEEF8226C637CA000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000064FBE4CA6300000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000013416464726573735265736572766174696F6E5F0000000000000000000000000000000000000000000000000000000000000000000000000000000000}, {name:callGasLimit, type:uint256, order:5, indexed:false, value:128383, valueString:128383}, {name:verificationGasLimit, type:uint256, order:6, indexed:false, value:73517, valueString:73517}, {name:preVerificationGas, type:uint256, order:7, indexed:false, value:95952, valueString:95952}, {name:maxFeePerGas, type:uint256, order:8, indexed:false, value:146560789, valueString:146560789}, {name:maxPriorityFeePerGas, type:uint256, order:9, indexed:false, value:100000000, valueString:100000000}, {name:paymasterAndData, type:bytes, order:10, indexed:false, value:0x, valueString:0x}, {name:signature, type:bytes, order:11, indexed:false, value:0x0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000041CC45713B9D669AFAC1DF8D21C0987791B2A4F01EED3034C64A4283CACC93539E2203C72EB28ADC48F535804AEB6B8C3AA63622258C3DC52519B165DFEF4435E51B00000000000000000000000000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000041CC45713B9D669AFAC1DF8D21C0987791B2A4F01EED3034C64A4283CACC93539E2203C72EB28ADC48F535804AEB6B8C3AA63622258C3DC52519B165DFEF4435E51B00000000000000000000000000000000000000000000000000000000000000}], userOpHash=2C1B1D414F8917497F492CA71BB7DA558E31A2AFA5F7DE71DDCD88BF2EA22D70, missingAccountFunds=28286059640273 ) => ( validationData=0 )
      • Null: 0x000...001.2c1b1d41( )
      • ETH 0.000028286059640273 EntryPoint.CALL( )
      • EntryPoint.innerHandleOp( callData=0x34FCD5BE0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000200000000000000000000000000016AB524FDF4E8289D4066AD6DEEF8226C637CA000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000600000000000000000000000000000000000000000000000000000000000000064FBE4CA6300000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000013416464726573735265736572766174696F6E5F0000000000000000000000000000000000000000000000000000000000000000000000000000000000, opInfo=[{name:mUserOp, type:tuple, order:1, indexed:false, value:[{name:sender, type:address, order:1, indexed:false, value:0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B, valueString:0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B}, {name:nonce, type:uint256, order:2, indexed:false, value:30, valueString:30}, {name:callGasLimit, type:uint256, order:3, indexed:false, value:128383, valueString:128383}, {name:verificationGasLimit, type:uint256, order:4, indexed:false, value:73517, valueString:73517}, {name:preVerificationGas, type:uint256, order:5, indexed:false, value:95952, valueString:95952}, {name:paymaster, type:address, order:6, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:maxFeePerGas, type:uint256, order:7, indexed:false, value:146560789, valueString:146560789}, {name:maxPriorityFeePerGas, type:uint256, order:8, indexed:false, value:100000000, valueString:100000000}], valueString:[{name:sender, type:address, order:1, indexed:false, value:0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B, valueString:0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B}, {name:nonce, type:uint256, order:2, indexed:false, value:30, valueString:30}, {name:callGasLimit, type:uint256, order:3, indexed:false, value:128383, valueString:128383}, {name:verificationGasLimit, type:uint256, order:4, indexed:false, value:73517, valueString:73517}, {name:preVerificationGas, type:uint256, order:5, indexed:false, value:95952, valueString:95952}, {name:paymaster, type:address, order:6, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:maxFeePerGas, type:uint256, order:7, indexed:false, value:146560789, valueString:146560789}, {name:maxPriorityFeePerGas, type:uint256, order:8, indexed:false, value:100000000, valueString:100000000}]}, {name:userOpHash, type:bytes32, order:2, indexed:false, value:2C1B1D414F8917497F492CA71BB7DA558E31A2AFA5F7DE71DDCD88BF2EA22D70, valueString:2C1B1D414F8917497F492CA71BB7DA558E31A2AFA5F7DE71DDCD88BF2EA22D70}, {name:prefund, type:uint256, order:3, indexed:false, value:43653424125228, valueString:43653424125228}, {name:contextOffset, type:uint256, order:4, indexed:false, value:96, valueString:96}, {name:preOpGas, type:uint256, order:5, indexed:false, value:141662, valueString:141662}], context=0x ) => ( actualGasCost=33515878259873 )
        • 0x0e2906fd2c939dd6667c2e3d2f2521899c5d090b.34fcd5be( )
          • CoinbaseSmartWallet.executeBatch( calls= )
            • PaymentPROClonable.makeDefaultPayment( _reference=AddressReservation_ )
              • PaymentPROClonable.makeDefaultPayment( _reference=AddressReservation_ )
                • PropyToken.transferFrom( _from=0x0e2906fd2c939Dd6667C2E3D2F2521899c5d090B, _to=0x0016Ab524FdF4E8289d4066aD6deEf8226c637cA, _value=3096000000 ) => ( True )
                • ETH 0.000033515878259873 0x77a39416704617e115b1d7f71e74dd9c4aa7f2ef.CALL( )
                  handleOps[EntryPoint (ln:137)]
                  File 1 of 6: EntryPoint
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Contract module that helps prevent reentrant calls to a function.
                   *
                   * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
                   * available, which can be applied to functions to make sure there are no nested
                   * (reentrant) calls to them.
                   *
                   * Note that because there is a single `nonReentrant` guard, functions marked as
                   * `nonReentrant` may not call one another. This can be worked around by making
                   * those functions `private`, and then adding `external` `nonReentrant` entry
                   * points to them.
                   *
                   * TIP: If you would like to learn more about reentrancy and alternative ways
                   * to protect against it, check out our blog post
                   * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
                   */
                  abstract contract ReentrancyGuard {
                      // Booleans are more expensive than uint256 or any type that takes up a full
                      // word because each write operation emits an extra SLOAD to first read the
                      // slot's contents, replace the bits taken up by the boolean, and then write
                      // back. This is the compiler's defense against contract upgrades and
                      // pointer aliasing, and it cannot be disabled.
                      // The values being non-zero value makes deployment a bit more expensive,
                      // but in exchange the refund on every call to nonReentrant will be lower in
                      // amount. Since refunds are capped to a percentage of the total
                      // transaction's gas, it is best to keep them low in cases like this one, to
                      // increase the likelihood of the full refund coming into effect.
                      uint256 private constant _NOT_ENTERED = 1;
                      uint256 private constant _ENTERED = 2;
                      uint256 private _status;
                      constructor() {
                          _status = _NOT_ENTERED;
                      }
                      /**
                       * @dev Prevents a contract from calling itself, directly or indirectly.
                       * Calling a `nonReentrant` function from another `nonReentrant`
                       * function is not supported. It is possible to prevent this from happening
                       * by making the `nonReentrant` function external, and making it call a
                       * `private` function that does the actual work.
                       */
                      modifier nonReentrant() {
                          _nonReentrantBefore();
                          _;
                          _nonReentrantAfter();
                      }
                      function _nonReentrantBefore() private {
                          // On the first call to nonReentrant, _status will be _NOT_ENTERED
                          require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                          // Any calls to nonReentrant after this point will fail
                          _status = _ENTERED;
                      }
                      function _nonReentrantAfter() private {
                          // By storing the original value once again, a refund is triggered (see
                          // https://eips.ethereum.org/EIPS/eip-2200)
                          _status = _NOT_ENTERED;
                      }
                  }
                  /**
                   ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation.
                   ** Only one instance required on each chain.
                   **/
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  /* solhint-disable avoid-low-level-calls */
                  /* solhint-disable no-inline-assembly */
                  import "../interfaces/IAccount.sol";
                  import "../interfaces/IPaymaster.sol";
                  import "../interfaces/IEntryPoint.sol";
                  import "../utils/Exec.sol";
                  import "./StakeManager.sol";
                  import "./SenderCreator.sol";
                  import "./Helpers.sol";
                  import "./NonceManager.sol";
                  import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
                  contract EntryPoint is IEntryPoint, StakeManager, NonceManager, ReentrancyGuard {
                      using UserOperationLib for UserOperation;
                      SenderCreator private immutable senderCreator = new SenderCreator();
                      // internal value used during simulation: need to query aggregator.
                      address private constant SIMULATE_FIND_AGGREGATOR = address(1);
                      // marker for inner call revert on out of gas
                      bytes32 private constant INNER_OUT_OF_GAS = hex'deaddead';
                      uint256 private constant REVERT_REASON_MAX_LEN = 2048;
                      /**
                       * for simulation purposes, validateUserOp (and validatePaymasterUserOp) must return this value
                       * in case of signature failure, instead of revert.
                       */
                      uint256 public constant SIG_VALIDATION_FAILED = 1;
                      /**
                       * compensate the caller's beneficiary address with the collected fees of all UserOperations.
                       * @param beneficiary the address to receive the fees
                       * @param amount amount to transfer.
                       */
                      function _compensate(address payable beneficiary, uint256 amount) internal {
                          require(beneficiary != address(0), "AA90 invalid beneficiary");
                          (bool success,) = beneficiary.call{value : amount}("");
                          require(success, "AA91 failed send to beneficiary");
                      }
                      /**
                       * execute a user op
                       * @param opIndex index into the opInfo array
                       * @param userOp the userOp to execute
                       * @param opInfo the opInfo filled by validatePrepayment for this userOp.
                       * @return collected the total amount this userOp paid.
                       */
                      function _executeUserOp(uint256 opIndex, UserOperation calldata userOp, UserOpInfo memory opInfo) private returns (uint256 collected) {
                          uint256 preGas = gasleft();
                          bytes memory context = getMemoryBytesFromOffset(opInfo.contextOffset);
                          try this.innerHandleOp(userOp.callData, opInfo, context) returns (uint256 _actualGasCost) {
                              collected = _actualGasCost;
                          } catch {
                              bytes32 innerRevertCode;
                              assembly {
                                  returndatacopy(0, 0, 32)
                                  innerRevertCode := mload(0)
                              }
                              // handleOps was called with gas limit too low. abort entire bundle.
                              if (innerRevertCode == INNER_OUT_OF_GAS) {
                                  //report paymaster, since if it is not deliberately caused by the bundler,
                                  // it must be a revert caused by paymaster.
                                  revert FailedOp(opIndex, "AA95 out of gas");
                              }
                              uint256 actualGas = preGas - gasleft() + opInfo.preOpGas;
                              collected = _handlePostOp(opIndex, IPaymaster.PostOpMode.postOpReverted, opInfo, context, actualGas);
                          }
                      }
                      /**
                       * Execute a batch of UserOperations.
                       * no signature aggregator is used.
                       * if any account requires an aggregator (that is, it returned an aggregator when
                       * performing simulateValidation), then handleAggregatedOps() must be used instead.
                       * @param ops the operations to execute
                       * @param beneficiary the address to receive the fees
                       */
                      function handleOps(UserOperation[] calldata ops, address payable beneficiary) public nonReentrant {
                          uint256 opslen = ops.length;
                          UserOpInfo[] memory opInfos = new UserOpInfo[](opslen);
                      unchecked {
                          for (uint256 i = 0; i < opslen; i++) {
                              UserOpInfo memory opInfo = opInfos[i];
                              (uint256 validationData, uint256 pmValidationData) = _validatePrepayment(i, ops[i], opInfo);
                              _validateAccountAndPaymasterValidationData(i, validationData, pmValidationData, address(0));
                          }
                          uint256 collected = 0;
                          emit BeforeExecution();
                          for (uint256 i = 0; i < opslen; i++) {
                              collected += _executeUserOp(i, ops[i], opInfos[i]);
                          }
                          _compensate(beneficiary, collected);
                      } //unchecked
                      }
                      /**
                       * Execute a batch of UserOperation with Aggregators
                       * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts)
                       * @param beneficiary the address to receive the fees
                       */
                      function handleAggregatedOps(
                          UserOpsPerAggregator[] calldata opsPerAggregator,
                          address payable beneficiary
                      ) public nonReentrant {
                          uint256 opasLen = opsPerAggregator.length;
                          uint256 totalOps = 0;
                          for (uint256 i = 0; i < opasLen; i++) {
                              UserOpsPerAggregator calldata opa = opsPerAggregator[i];
                              UserOperation[] calldata ops = opa.userOps;
                              IAggregator aggregator = opa.aggregator;
                              //address(1) is special marker of "signature error"
                              require(address(aggregator) != address(1), "AA96 invalid aggregator");
                              if (address(aggregator) != address(0)) {
                                  // solhint-disable-next-line no-empty-blocks
                                  try aggregator.validateSignatures(ops, opa.signature) {}
                                  catch {
                                      revert SignatureValidationFailed(address(aggregator));
                                  }
                              }
                              totalOps += ops.length;
                          }
                          UserOpInfo[] memory opInfos = new UserOpInfo[](totalOps);
                          emit BeforeExecution();
                          uint256 opIndex = 0;
                          for (uint256 a = 0; a < opasLen; a++) {
                              UserOpsPerAggregator calldata opa = opsPerAggregator[a];
                              UserOperation[] calldata ops = opa.userOps;
                              IAggregator aggregator = opa.aggregator;
                              uint256 opslen = ops.length;
                              for (uint256 i = 0; i < opslen; i++) {
                                  UserOpInfo memory opInfo = opInfos[opIndex];
                                  (uint256 validationData, uint256 paymasterValidationData) = _validatePrepayment(opIndex, ops[i], opInfo);
                                  _validateAccountAndPaymasterValidationData(i, validationData, paymasterValidationData, address(aggregator));
                                  opIndex++;
                              }
                          }
                          uint256 collected = 0;
                          opIndex = 0;
                          for (uint256 a = 0; a < opasLen; a++) {
                              UserOpsPerAggregator calldata opa = opsPerAggregator[a];
                              emit SignatureAggregatorChanged(address(opa.aggregator));
                              UserOperation[] calldata ops = opa.userOps;
                              uint256 opslen = ops.length;
                              for (uint256 i = 0; i < opslen; i++) {
                                  collected += _executeUserOp(opIndex, ops[i], opInfos[opIndex]);
                                  opIndex++;
                              }
                          }
                          emit SignatureAggregatorChanged(address(0));
                          _compensate(beneficiary, collected);
                      }
                      /// @inheritdoc IEntryPoint
                      function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external override {
                          UserOpInfo memory opInfo;
                          _simulationOnlyValidations(op);
                          (uint256 validationData, uint256 paymasterValidationData) = _validatePrepayment(0, op, opInfo);
                          ValidationData memory data = _intersectTimeRange(validationData, paymasterValidationData);
                          numberMarker();
                          uint256 paid = _executeUserOp(0, op, opInfo);
                          numberMarker();
                          bool targetSuccess;
                          bytes memory targetResult;
                          if (target != address(0)) {
                              (targetSuccess, targetResult) = target.call(targetCallData);
                          }
                          revert ExecutionResult(opInfo.preOpGas, paid, data.validAfter, data.validUntil, targetSuccess, targetResult);
                      }
                      // A memory copy of UserOp static fields only.
                      // Excluding: callData, initCode and signature. Replacing paymasterAndData with paymaster.
                      struct MemoryUserOp {
                          address sender;
                          uint256 nonce;
                          uint256 callGasLimit;
                          uint256 verificationGasLimit;
                          uint256 preVerificationGas;
                          address paymaster;
                          uint256 maxFeePerGas;
                          uint256 maxPriorityFeePerGas;
                      }
                      struct UserOpInfo {
                          MemoryUserOp mUserOp;
                          bytes32 userOpHash;
                          uint256 prefund;
                          uint256 contextOffset;
                          uint256 preOpGas;
                      }
                      /**
                       * inner function to handle a UserOperation.
                       * Must be declared "external" to open a call context, but it can only be called by handleOps.
                       */
                      function innerHandleOp(bytes memory callData, UserOpInfo memory opInfo, bytes calldata context) external returns (uint256 actualGasCost) {
                          uint256 preGas = gasleft();
                          require(msg.sender == address(this), "AA92 internal call only");
                          MemoryUserOp memory mUserOp = opInfo.mUserOp;
                          uint callGasLimit = mUserOp.callGasLimit;
                      unchecked {
                          // handleOps was called with gas limit too low. abort entire bundle.
                          if (gasleft() < callGasLimit + mUserOp.verificationGasLimit + 5000) {
                              assembly {
                                  mstore(0, INNER_OUT_OF_GAS)
                                  revert(0, 32)
                              }
                          }
                      }
                          IPaymaster.PostOpMode mode = IPaymaster.PostOpMode.opSucceeded;
                          if (callData.length > 0) {
                              bool success = Exec.call(mUserOp.sender, 0, callData, callGasLimit);
                              if (!success) {
                                  bytes memory result = Exec.getReturnData(REVERT_REASON_MAX_LEN);
                                  if (result.length > 0) {
                                      emit UserOperationRevertReason(opInfo.userOpHash, mUserOp.sender, mUserOp.nonce, result);
                                  }
                                  mode = IPaymaster.PostOpMode.opReverted;
                              }
                          }
                      unchecked {
                          uint256 actualGas = preGas - gasleft() + opInfo.preOpGas;
                          //note: opIndex is ignored (relevant only if mode==postOpReverted, which is only possible outside of innerHandleOp)
                          return _handlePostOp(0, mode, opInfo, context, actualGas);
                      }
                      }
                      /**
                       * generate a request Id - unique identifier for this request.
                       * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid.
                       */
                      function getUserOpHash(UserOperation calldata userOp) public view returns (bytes32) {
                          return keccak256(abi.encode(userOp.hash(), address(this), block.chainid));
                      }
                      /**
                       * copy general fields from userOp into the memory opInfo structure.
                       */
                      function _copyUserOpToMemory(UserOperation calldata userOp, MemoryUserOp memory mUserOp) internal pure {
                          mUserOp.sender = userOp.sender;
                          mUserOp.nonce = userOp.nonce;
                          mUserOp.callGasLimit = userOp.callGasLimit;
                          mUserOp.verificationGasLimit = userOp.verificationGasLimit;
                          mUserOp.preVerificationGas = userOp.preVerificationGas;
                          mUserOp.maxFeePerGas = userOp.maxFeePerGas;
                          mUserOp.maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                          bytes calldata paymasterAndData = userOp.paymasterAndData;
                          if (paymasterAndData.length > 0) {
                              require(paymasterAndData.length >= 20, "AA93 invalid paymasterAndData");
                              mUserOp.paymaster = address(bytes20(paymasterAndData[: 20]));
                          } else {
                              mUserOp.paymaster = address(0);
                          }
                      }
                      /**
                       * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp.
                       * @dev this method always revert. Successful result is ValidationResult error. other errors are failures.
                       * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data.
                       * @param userOp the user operation to validate.
                       */
                      function simulateValidation(UserOperation calldata userOp) external {
                          UserOpInfo memory outOpInfo;
                          _simulationOnlyValidations(userOp);
                          (uint256 validationData, uint256 paymasterValidationData) = _validatePrepayment(0, userOp, outOpInfo);
                          StakeInfo memory paymasterInfo = _getStakeInfo(outOpInfo.mUserOp.paymaster);
                          StakeInfo memory senderInfo = _getStakeInfo(outOpInfo.mUserOp.sender);
                          StakeInfo memory factoryInfo;
                          {
                              bytes calldata initCode = userOp.initCode;
                              address factory = initCode.length >= 20 ? address(bytes20(initCode[0 : 20])) : address(0);
                              factoryInfo = _getStakeInfo(factory);
                          }
                          ValidationData memory data = _intersectTimeRange(validationData, paymasterValidationData);
                          address aggregator = data.aggregator;
                          bool sigFailed = aggregator == address(1);
                          ReturnInfo memory returnInfo = ReturnInfo(outOpInfo.preOpGas, outOpInfo.prefund,
                              sigFailed, data.validAfter, data.validUntil, getMemoryBytesFromOffset(outOpInfo.contextOffset));
                          if (aggregator != address(0) && aggregator != address(1)) {
                              AggregatorStakeInfo memory aggregatorInfo = AggregatorStakeInfo(aggregator, _getStakeInfo(aggregator));
                              revert ValidationResultWithAggregation(returnInfo, senderInfo, factoryInfo, paymasterInfo, aggregatorInfo);
                          }
                          revert ValidationResult(returnInfo, senderInfo, factoryInfo, paymasterInfo);
                      }
                      function _getRequiredPrefund(MemoryUserOp memory mUserOp) internal pure returns (uint256 requiredPrefund) {
                      unchecked {
                          //when using a Paymaster, the verificationGasLimit is used also to as a limit for the postOp call.
                          // our security model might call postOp eventually twice
                          uint256 mul = mUserOp.paymaster != address(0) ? 3 : 1;
                          uint256 requiredGas = mUserOp.callGasLimit + mUserOp.verificationGasLimit * mul + mUserOp.preVerificationGas;
                          requiredPrefund = requiredGas * mUserOp.maxFeePerGas;
                      }
                      }
                      // create the sender's contract if needed.
                      function _createSenderIfNeeded(uint256 opIndex, UserOpInfo memory opInfo, bytes calldata initCode) internal {
                          if (initCode.length != 0) {
                              address sender = opInfo.mUserOp.sender;
                              if (sender.code.length != 0) revert FailedOp(opIndex, "AA10 sender already constructed");
                              address sender1 = senderCreator.createSender{gas : opInfo.mUserOp.verificationGasLimit}(initCode);
                              if (sender1 == address(0)) revert FailedOp(opIndex, "AA13 initCode failed or OOG");
                              if (sender1 != sender) revert FailedOp(opIndex, "AA14 initCode must return sender");
                              if (sender1.code.length == 0) revert FailedOp(opIndex, "AA15 initCode must create sender");
                              address factory = address(bytes20(initCode[0 : 20]));
                              emit AccountDeployed(opInfo.userOpHash, sender, factory, opInfo.mUserOp.paymaster);
                          }
                      }
                      /**
                       * Get counterfactual sender address.
                       *  Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation.
                       * this method always revert, and returns the address in SenderAddressResult error
                       * @param initCode the constructor code to be passed into the UserOperation.
                       */
                      function getSenderAddress(bytes calldata initCode) public {
                          address sender = senderCreator.createSender(initCode);
                          revert SenderAddressResult(sender);
                      }
                      function _simulationOnlyValidations(UserOperation calldata userOp) internal view {
                          // solhint-disable-next-line no-empty-blocks
                          try this._validateSenderAndPaymaster(userOp.initCode, userOp.sender, userOp.paymasterAndData) {}
                          catch Error(string memory revertReason) {
                              if (bytes(revertReason).length != 0) {
                                  revert FailedOp(0, revertReason);
                              }
                          }
                      }
                      /**
                      * Called only during simulation.
                      * This function always reverts to prevent warm/cold storage differentiation in simulation vs execution.
                      */
                      function _validateSenderAndPaymaster(bytes calldata initCode, address sender, bytes calldata paymasterAndData) external view {
                          if (initCode.length == 0 && sender.code.length == 0) {
                              // it would revert anyway. but give a meaningful message
                              revert("AA20 account not deployed");
                          }
                          if (paymasterAndData.length >= 20) {
                              address paymaster = address(bytes20(paymasterAndData[0 : 20]));
                              if (paymaster.code.length == 0) {
                                  // it would revert anyway. but give a meaningful message
                                  revert("AA30 paymaster not deployed");
                              }
                          }
                          // always revert
                          revert("");
                      }
                      /**
                       * call account.validateUserOp.
                       * revert (with FailedOp) in case validateUserOp reverts, or account didn't send required prefund.
                       * decrement account's deposit if needed
                       */
                      function _validateAccountPrepayment(uint256 opIndex, UserOperation calldata op, UserOpInfo memory opInfo, uint256 requiredPrefund)
                      internal returns (uint256 gasUsedByValidateAccountPrepayment, uint256 validationData) {
                      unchecked {
                          uint256 preGas = gasleft();
                          MemoryUserOp memory mUserOp = opInfo.mUserOp;
                          address sender = mUserOp.sender;
                          _createSenderIfNeeded(opIndex, opInfo, op.initCode);
                          address paymaster = mUserOp.paymaster;
                          numberMarker();
                          uint256 missingAccountFunds = 0;
                          if (paymaster == address(0)) {
                              uint256 bal = balanceOf(sender);
                              missingAccountFunds = bal > requiredPrefund ? 0 : requiredPrefund - bal;
                          }
                          try IAccount(sender).validateUserOp{gas : mUserOp.verificationGasLimit}(op, opInfo.userOpHash, missingAccountFunds)
                          returns (uint256 _validationData) {
                              validationData = _validationData;
                          } catch Error(string memory revertReason) {
                              revert FailedOp(opIndex, string.concat("AA23 reverted: ", revertReason));
                          } catch {
                              revert FailedOp(opIndex, "AA23 reverted (or OOG)");
                          }
                          if (paymaster == address(0)) {
                              DepositInfo storage senderInfo = deposits[sender];
                              uint256 deposit = senderInfo.deposit;
                              if (requiredPrefund > deposit) {
                                  revert FailedOp(opIndex, "AA21 didn't pay prefund");
                              }
                              senderInfo.deposit = uint112(deposit - requiredPrefund);
                          }
                          gasUsedByValidateAccountPrepayment = preGas - gasleft();
                      }
                      }
                      /**
                       * In case the request has a paymaster:
                       * Validate paymaster has enough deposit.
                       * Call paymaster.validatePaymasterUserOp.
                       * Revert with proper FailedOp in case paymaster reverts.
                       * Decrement paymaster's deposit
                       */
                      function _validatePaymasterPrepayment(uint256 opIndex, UserOperation calldata op, UserOpInfo memory opInfo, uint256 requiredPreFund, uint256 gasUsedByValidateAccountPrepayment)
                      internal returns (bytes memory context, uint256 validationData) {
                      unchecked {
                          MemoryUserOp memory mUserOp = opInfo.mUserOp;
                          uint256 verificationGasLimit = mUserOp.verificationGasLimit;
                          require(verificationGasLimit > gasUsedByValidateAccountPrepayment, "AA41 too little verificationGas");
                          uint256 gas = verificationGasLimit - gasUsedByValidateAccountPrepayment;
                          address paymaster = mUserOp.paymaster;
                          DepositInfo storage paymasterInfo = deposits[paymaster];
                          uint256 deposit = paymasterInfo.deposit;
                          if (deposit < requiredPreFund) {
                              revert FailedOp(opIndex, "AA31 paymaster deposit too low");
                          }
                          paymasterInfo.deposit = uint112(deposit - requiredPreFund);
                          try IPaymaster(paymaster).validatePaymasterUserOp{gas : gas}(op, opInfo.userOpHash, requiredPreFund) returns (bytes memory _context, uint256 _validationData){
                              context = _context;
                              validationData = _validationData;
                          } catch Error(string memory revertReason) {
                              revert FailedOp(opIndex, string.concat("AA33 reverted: ", revertReason));
                          } catch {
                              revert FailedOp(opIndex, "AA33 reverted (or OOG)");
                          }
                      }
                      }
                      /**
                       * revert if either account validationData or paymaster validationData is expired
                       */
                      function _validateAccountAndPaymasterValidationData(uint256 opIndex, uint256 validationData, uint256 paymasterValidationData, address expectedAggregator) internal view {
                          (address aggregator, bool outOfTimeRange) = _getValidationData(validationData);
                          if (expectedAggregator != aggregator) {
                              revert FailedOp(opIndex, "AA24 signature error");
                          }
                          if (outOfTimeRange) {
                              revert FailedOp(opIndex, "AA22 expired or not due");
                          }
                          //pmAggregator is not a real signature aggregator: we don't have logic to handle it as address.
                          // non-zero address means that the paymaster fails due to some signature check (which is ok only during estimation)
                          address pmAggregator;
                          (pmAggregator, outOfTimeRange) = _getValidationData(paymasterValidationData);
                          if (pmAggregator != address(0)) {
                              revert FailedOp(opIndex, "AA34 signature error");
                          }
                          if (outOfTimeRange) {
                              revert FailedOp(opIndex, "AA32 paymaster expired or not due");
                          }
                      }
                      function _getValidationData(uint256 validationData) internal view returns (address aggregator, bool outOfTimeRange) {
                          if (validationData == 0) {
                              return (address(0), false);
                          }
                          ValidationData memory data = _parseValidationData(validationData);
                          // solhint-disable-next-line not-rely-on-time
                          outOfTimeRange = block.timestamp > data.validUntil || block.timestamp < data.validAfter;
                          aggregator = data.aggregator;
                      }
                      /**
                       * validate account and paymaster (if defined).
                       * also make sure total validation doesn't exceed verificationGasLimit
                       * this method is called off-chain (simulateValidation()) and on-chain (from handleOps)
                       * @param opIndex the index of this userOp into the "opInfos" array
                       * @param userOp the userOp to validate
                       */
                      function _validatePrepayment(uint256 opIndex, UserOperation calldata userOp, UserOpInfo memory outOpInfo)
                      private returns (uint256 validationData, uint256 paymasterValidationData) {
                          uint256 preGas = gasleft();
                          MemoryUserOp memory mUserOp = outOpInfo.mUserOp;
                          _copyUserOpToMemory(userOp, mUserOp);
                          outOpInfo.userOpHash = getUserOpHash(userOp);
                          // validate all numeric values in userOp are well below 128 bit, so they can safely be added
                          // and multiplied without causing overflow
                          uint256 maxGasValues = mUserOp.preVerificationGas | mUserOp.verificationGasLimit | mUserOp.callGasLimit |
                          userOp.maxFeePerGas | userOp.maxPriorityFeePerGas;
                          require(maxGasValues <= type(uint120).max, "AA94 gas values overflow");
                          uint256 gasUsedByValidateAccountPrepayment;
                          (uint256 requiredPreFund) = _getRequiredPrefund(mUserOp);
                          (gasUsedByValidateAccountPrepayment, validationData) = _validateAccountPrepayment(opIndex, userOp, outOpInfo, requiredPreFund);
                          if (!_validateAndUpdateNonce(mUserOp.sender, mUserOp.nonce)) {
                              revert FailedOp(opIndex, "AA25 invalid account nonce");
                          }
                          //a "marker" where account opcode validation is done and paymaster opcode validation is about to start
                          // (used only by off-chain simulateValidation)
                          numberMarker();
                          bytes memory context;
                          if (mUserOp.paymaster != address(0)) {
                              (context, paymasterValidationData) = _validatePaymasterPrepayment(opIndex, userOp, outOpInfo, requiredPreFund, gasUsedByValidateAccountPrepayment);
                          }
                      unchecked {
                          uint256 gasUsed = preGas - gasleft();
                          if (userOp.verificationGasLimit < gasUsed) {
                              revert FailedOp(opIndex, "AA40 over verificationGasLimit");
                          }
                          outOpInfo.prefund = requiredPreFund;
                          outOpInfo.contextOffset = getOffsetOfMemoryBytes(context);
                          outOpInfo.preOpGas = preGas - gasleft() + userOp.preVerificationGas;
                      }
                      }
                      /**
                       * process post-operation.
                       * called just after the callData is executed.
                       * if a paymaster is defined and its validation returned a non-empty context, its postOp is called.
                       * the excess amount is refunded to the account (or paymaster - if it was used in the request)
                       * @param opIndex index in the batch
                       * @param mode - whether is called from innerHandleOp, or outside (postOpReverted)
                       * @param opInfo userOp fields and info collected during validation
                       * @param context the context returned in validatePaymasterUserOp
                       * @param actualGas the gas used so far by this user operation
                       */
                      function _handlePostOp(uint256 opIndex, IPaymaster.PostOpMode mode, UserOpInfo memory opInfo, bytes memory context, uint256 actualGas) private returns (uint256 actualGasCost) {
                          uint256 preGas = gasleft();
                      unchecked {
                          address refundAddress;
                          MemoryUserOp memory mUserOp = opInfo.mUserOp;
                          uint256 gasPrice = getUserOpGasPrice(mUserOp);
                          address paymaster = mUserOp.paymaster;
                          if (paymaster == address(0)) {
                              refundAddress = mUserOp.sender;
                          } else {
                              refundAddress = paymaster;
                              if (context.length > 0) {
                                  actualGasCost = actualGas * gasPrice;
                                  if (mode != IPaymaster.PostOpMode.postOpReverted) {
                                      IPaymaster(paymaster).postOp{gas : mUserOp.verificationGasLimit}(mode, context, actualGasCost);
                                  } else {
                                      // solhint-disable-next-line no-empty-blocks
                                      try IPaymaster(paymaster).postOp{gas : mUserOp.verificationGasLimit}(mode, context, actualGasCost) {}
                                      catch Error(string memory reason) {
                                          revert FailedOp(opIndex, string.concat("AA50 postOp reverted: ", reason));
                                      }
                                      catch {
                                          revert FailedOp(opIndex, "AA50 postOp revert");
                                      }
                                  }
                              }
                          }
                          actualGas += preGas - gasleft();
                          actualGasCost = actualGas * gasPrice;
                          if (opInfo.prefund < actualGasCost) {
                              revert FailedOp(opIndex, "AA51 prefund below actualGasCost");
                          }
                          uint256 refund = opInfo.prefund - actualGasCost;
                          _incrementDeposit(refundAddress, refund);
                          bool success = mode == IPaymaster.PostOpMode.opSucceeded;
                          emit UserOperationEvent(opInfo.userOpHash, mUserOp.sender, mUserOp.paymaster, mUserOp.nonce, success, actualGasCost, actualGas);
                      } // unchecked
                      }
                      /**
                       * the gas price this UserOp agrees to pay.
                       * relayer/block builder might submit the TX with higher priorityFee, but the user should not
                       */
                      function getUserOpGasPrice(MemoryUserOp memory mUserOp) internal view returns (uint256) {
                      unchecked {
                          uint256 maxFeePerGas = mUserOp.maxFeePerGas;
                          uint256 maxPriorityFeePerGas = mUserOp.maxPriorityFeePerGas;
                          if (maxFeePerGas == maxPriorityFeePerGas) {
                              //legacy mode (for networks that don't support basefee opcode)
                              return maxFeePerGas;
                          }
                          return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
                      }
                      }
                      function min(uint256 a, uint256 b) internal pure returns (uint256) {
                          return a < b ? a : b;
                      }
                      function getOffsetOfMemoryBytes(bytes memory data) internal pure returns (uint256 offset) {
                          assembly {offset := data}
                      }
                      function getMemoryBytesFromOffset(uint256 offset) internal pure returns (bytes memory data) {
                          assembly {data := offset}
                      }
                      //place the NUMBER opcode in the code.
                      // this is used as a marker during simulation, as this OP is completely banned from the simulated code of the
                      // account and paymaster.
                      function numberMarker() internal view {
                          assembly {mstore(0, number())}
                      }
                  }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  /* solhint-disable no-inline-assembly */
                  /**
                   * returned data from validateUserOp.
                   * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
                   * @param aggregator - address(0) - the account validated the signature by itself.
                   *              address(1) - the account failed to validate the signature.
                   *              otherwise - this is an address of a signature aggregator that must be used to validate the signature.
                   * @param validAfter - this UserOp is valid only after this timestamp.
                   * @param validaUntil - this UserOp is valid only up to this timestamp.
                   */
                      struct ValidationData {
                          address aggregator;
                          uint48 validAfter;
                          uint48 validUntil;
                      }
                  //extract sigFailed, validAfter, validUntil.
                  // also convert zero validUntil to type(uint48).max
                      function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
                          address aggregator = address(uint160(validationData));
                          uint48 validUntil = uint48(validationData >> 160);
                          if (validUntil == 0) {
                              validUntil = type(uint48).max;
                          }
                          uint48 validAfter = uint48(validationData >> (48 + 160));
                          return ValidationData(aggregator, validAfter, validUntil);
                      }
                  // intersect account and paymaster ranges.
                      function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
                          ValidationData memory accountValidationData = _parseValidationData(validationData);
                          ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
                          address aggregator = accountValidationData.aggregator;
                          if (aggregator == address(0)) {
                              aggregator = pmValidationData.aggregator;
                          }
                          uint48 validAfter = accountValidationData.validAfter;
                          uint48 validUntil = accountValidationData.validUntil;
                          uint48 pmValidAfter = pmValidationData.validAfter;
                          uint48 pmValidUntil = pmValidationData.validUntil;
                          if (validAfter < pmValidAfter) validAfter = pmValidAfter;
                          if (validUntil > pmValidUntil) validUntil = pmValidUntil;
                          return ValidationData(aggregator, validAfter, validUntil);
                      }
                  /**
                   * helper to pack the return value for validateUserOp
                   * @param data - the ValidationData to pack
                   */
                      function _packValidationData(ValidationData memory data) pure returns (uint256) {
                          return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
                      }
                  /**
                   * helper to pack the return value for validateUserOp, when not using an aggregator
                   * @param sigFailed - true for signature failure, false for success
                   * @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
                   * @param validAfter first timestamp this UserOperation is valid
                   */
                      function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
                          return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
                      }
                  /**
                   * keccak function over calldata.
                   * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
                   */
                      function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
                          assembly {
                              let mem := mload(0x40)
                              let len := data.length
                              calldatacopy(mem, data.offset, len)
                              ret := keccak256(mem, len)
                          }
                      }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  import "../interfaces/IEntryPoint.sol";
                  /**
                   * nonce management functionality
                   */
                  contract NonceManager is INonceManager {
                      /**
                       * The next valid sequence number for a given nonce key.
                       */
                      mapping(address => mapping(uint192 => uint256)) public nonceSequenceNumber;
                      function getNonce(address sender, uint192 key)
                      public view override returns (uint256 nonce) {
                          return nonceSequenceNumber[sender][key] | (uint256(key) << 64);
                      }
                      // allow an account to manually increment its own nonce.
                      // (mainly so that during construction nonce can be made non-zero,
                      // to "absorb" the gas cost of first nonce increment to 1st transaction (construction),
                      // not to 2nd transaction)
                      function incrementNonce(uint192 key) public override {
                          nonceSequenceNumber[msg.sender][key]++;
                      }
                      /**
                       * validate nonce uniqueness for this account.
                       * called just after validateUserOp()
                       */
                      function _validateAndUpdateNonce(address sender, uint256 nonce) internal returns (bool) {
                          uint192 key = uint192(nonce >> 64);
                          uint64 seq = uint64(nonce);
                          return nonceSequenceNumber[sender][key]++ == seq;
                      }
                  }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  /**
                   * helper contract for EntryPoint, to call userOp.initCode from a "neutral" address,
                   * which is explicitly not the entryPoint itself.
                   */
                  contract SenderCreator {
                      /**
                       * call the "initCode" factory to create and return the sender account address
                       * @param initCode the initCode value from a UserOp. contains 20 bytes of factory address, followed by calldata
                       * @return sender the returned address of the created account, or zero address on failure.
                       */
                      function createSender(bytes calldata initCode) external returns (address sender) {
                          address factory = address(bytes20(initCode[0 : 20]));
                          bytes memory initCallData = initCode[20 :];
                          bool success;
                          /* solhint-disable no-inline-assembly */
                          assembly {
                              success := call(gas(), factory, 0, add(initCallData, 0x20), mload(initCallData), 0, 32)
                              sender := mload(0)
                          }
                          if (!success) {
                              sender = address(0);
                          }
                      }
                  }
                  // SPDX-License-Identifier: GPL-3.0-only
                  pragma solidity ^0.8.12;
                  import "../interfaces/IStakeManager.sol";
                  /* solhint-disable avoid-low-level-calls */
                  /* solhint-disable not-rely-on-time */
                  /**
                   * manage deposits and stakes.
                   * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account)
                   * stake is value locked for at least "unstakeDelay" by a paymaster.
                   */
                  abstract contract StakeManager is IStakeManager {
                      /// maps paymaster to their deposits and stakes
                      mapping(address => DepositInfo) public deposits;
                      /// @inheritdoc IStakeManager
                      function getDepositInfo(address account) public view returns (DepositInfo memory info) {
                          return deposits[account];
                      }
                      // internal method to return just the stake info
                      function _getStakeInfo(address addr) internal view returns (StakeInfo memory info) {
                          DepositInfo storage depositInfo = deposits[addr];
                          info.stake = depositInfo.stake;
                          info.unstakeDelaySec = depositInfo.unstakeDelaySec;
                      }
                      /// return the deposit (for gas payment) of the account
                      function balanceOf(address account) public view returns (uint256) {
                          return deposits[account].deposit;
                      }
                      receive() external payable {
                          depositTo(msg.sender);
                      }
                      function _incrementDeposit(address account, uint256 amount) internal {
                          DepositInfo storage info = deposits[account];
                          uint256 newAmount = info.deposit + amount;
                          require(newAmount <= type(uint112).max, "deposit overflow");
                          info.deposit = uint112(newAmount);
                      }
                      /**
                       * add to the deposit of the given account
                       */
                      function depositTo(address account) public payable {
                          _incrementDeposit(account, msg.value);
                          DepositInfo storage info = deposits[account];
                          emit Deposited(account, info.deposit);
                      }
                      /**
                       * add to the account's stake - amount and delay
                       * any pending unstake is first cancelled.
                       * @param unstakeDelaySec the new lock duration before the deposit can be withdrawn.
                       */
                      function addStake(uint32 unstakeDelaySec) public payable {
                          DepositInfo storage info = deposits[msg.sender];
                          require(unstakeDelaySec > 0, "must specify unstake delay");
                          require(unstakeDelaySec >= info.unstakeDelaySec, "cannot decrease unstake time");
                          uint256 stake = info.stake + msg.value;
                          require(stake > 0, "no stake specified");
                          require(stake <= type(uint112).max, "stake overflow");
                          deposits[msg.sender] = DepositInfo(
                              info.deposit,
                              true,
                              uint112(stake),
                              unstakeDelaySec,
                              0
                          );
                          emit StakeLocked(msg.sender, stake, unstakeDelaySec);
                      }
                      /**
                       * attempt to unlock the stake.
                       * the value can be withdrawn (using withdrawStake) after the unstake delay.
                       */
                      function unlockStake() external {
                          DepositInfo storage info = deposits[msg.sender];
                          require(info.unstakeDelaySec != 0, "not staked");
                          require(info.staked, "already unstaking");
                          uint48 withdrawTime = uint48(block.timestamp) + info.unstakeDelaySec;
                          info.withdrawTime = withdrawTime;
                          info.staked = false;
                          emit StakeUnlocked(msg.sender, withdrawTime);
                      }
                      /**
                       * withdraw from the (unlocked) stake.
                       * must first call unlockStake and wait for the unstakeDelay to pass
                       * @param withdrawAddress the address to send withdrawn value.
                       */
                      function withdrawStake(address payable withdrawAddress) external {
                          DepositInfo storage info = deposits[msg.sender];
                          uint256 stake = info.stake;
                          require(stake > 0, "No stake to withdraw");
                          require(info.withdrawTime > 0, "must call unlockStake() first");
                          require(info.withdrawTime <= block.timestamp, "Stake withdrawal is not due");
                          info.unstakeDelaySec = 0;
                          info.withdrawTime = 0;
                          info.stake = 0;
                          emit StakeWithdrawn(msg.sender, withdrawAddress, stake);
                          (bool success,) = withdrawAddress.call{value : stake}("");
                          require(success, "failed to withdraw stake");
                      }
                      /**
                       * withdraw from the deposit.
                       * @param withdrawAddress the address to send withdrawn value.
                       * @param withdrawAmount the amount to withdraw.
                       */
                      function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external {
                          DepositInfo storage info = deposits[msg.sender];
                          require(withdrawAmount <= info.deposit, "Withdraw amount too large");
                          info.deposit = uint112(info.deposit - withdrawAmount);
                          emit Withdrawn(msg.sender, withdrawAddress, withdrawAmount);
                          (bool success,) = withdrawAddress.call{value : withdrawAmount}("");
                          require(success, "failed to withdraw");
                      }
                  }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  import "./UserOperation.sol";
                  interface IAccount {
                      /**
                       * Validate user's signature and nonce
                       * the entryPoint will make the call to the recipient only if this validation call returns successfully.
                       * signature failure should be reported by returning SIG_VALIDATION_FAILED (1).
                       * This allows making a "simulation call" without a valid signature
                       * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure.
                       *
                       * @dev Must validate caller is the entryPoint.
                       *      Must validate the signature and nonce
                       * @param userOp the operation that is about to be executed.
                       * @param userOpHash hash of the user's request data. can be used as the basis for signature.
                       * @param missingAccountFunds missing funds on the account's deposit in the entrypoint.
                       *      This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call.
                       *      The excess is left as a deposit in the entrypoint, for future calls.
                       *      can be withdrawn anytime using "entryPoint.withdrawTo()"
                       *      In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero.
                       * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode
                       *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
                       *         otherwise, an address of an "authorizer" contract.
                       *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
                       *      <6-byte> validAfter - first timestamp this operation is valid
                       *      If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure.
                       *      Note that the validation code cannot use block.timestamp (or block.number) directly.
                       */
                      function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
                      external returns (uint256 validationData);
                  }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  import "./UserOperation.sol";
                  /**
                   * Aggregated Signatures validator.
                   */
                  interface IAggregator {
                      /**
                       * validate aggregated signature.
                       * revert if the aggregated signature does not match the given list of operations.
                       */
                      function validateSignatures(UserOperation[] calldata userOps, bytes calldata signature) external view;
                      /**
                       * validate signature of a single userOp
                       * This method is should be called by bundler after EntryPoint.simulateValidation() returns (reverts) with ValidationResultWithAggregation
                       * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps.
                       * @param userOp the userOperation received from the user.
                       * @return sigForUserOp the value to put into the signature field of the userOp when calling handleOps.
                       *    (usually empty, unless account and aggregator support some kind of "multisig"
                       */
                      function validateUserOpSignature(UserOperation calldata userOp)
                      external view returns (bytes memory sigForUserOp);
                      /**
                       * aggregate multiple signatures into a single value.
                       * This method is called off-chain to calculate the signature to pass with handleOps()
                       * bundler MAY use optimized custom code perform this aggregation
                       * @param userOps array of UserOperations to collect the signatures from.
                       * @return aggregatedSignature the aggregated signature
                       */
                      function aggregateSignatures(UserOperation[] calldata userOps) external view returns (bytes memory aggregatedSignature);
                  }
                  /**
                   ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation.
                   ** Only one instance required on each chain.
                   **/
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  /* solhint-disable avoid-low-level-calls */
                  /* solhint-disable no-inline-assembly */
                  /* solhint-disable reason-string */
                  import "./UserOperation.sol";
                  import "./IStakeManager.sol";
                  import "./IAggregator.sol";
                  import "./INonceManager.sol";
                  interface IEntryPoint is IStakeManager, INonceManager {
                      /***
                       * An event emitted after each successful request
                       * @param userOpHash - unique identifier for the request (hash its entire content, except signature).
                       * @param sender - the account that generates this request.
                       * @param paymaster - if non-null, the paymaster that pays for this request.
                       * @param nonce - the nonce value from the request.
                       * @param success - true if the sender transaction succeeded, false if reverted.
                       * @param actualGasCost - actual amount paid (by account or paymaster) for this UserOperation.
                       * @param actualGasUsed - total gas used by this UserOperation (including preVerification, creation, validation and execution).
                       */
                      event UserOperationEvent(bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed);
                      /**
                       * account "sender" was deployed.
                       * @param userOpHash the userOp that deployed this account. UserOperationEvent will follow.
                       * @param sender the account that is deployed
                       * @param factory the factory used to deploy this account (in the initCode)
                       * @param paymaster the paymaster used by this UserOp
                       */
                      event AccountDeployed(bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster);
                      /**
                       * An event emitted if the UserOperation "callData" reverted with non-zero length
                       * @param userOpHash the request unique identifier.
                       * @param sender the sender of this request
                       * @param nonce the nonce used in the request
                       * @param revertReason - the return bytes from the (reverted) call to "callData".
                       */
                      event UserOperationRevertReason(bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason);
                      /**
                       * an event emitted by handleOps(), before starting the execution loop.
                       * any event emitted before this event, is part of the validation.
                       */
                      event BeforeExecution();
                      /**
                       * signature aggregator used by the following UserOperationEvents within this bundle.
                       */
                      event SignatureAggregatorChanged(address indexed aggregator);
                      /**
                       * a custom revert error of handleOps, to identify the offending op.
                       *  NOTE: if simulateValidation passes successfully, there should be no reason for handleOps to fail on it.
                       *  @param opIndex - index into the array of ops to the failed one (in simulateValidation, this is always zero)
                       *  @param reason - revert reason
                       *      The string starts with a unique code "AAmn", where "m" is "1" for factory, "2" for account and "3" for paymaster issues,
                       *      so a failure can be attributed to the correct entity.
                       *   Should be caught in off-chain handleOps simulation and not happen on-chain.
                       *   Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts.
                       */
                      error FailedOp(uint256 opIndex, string reason);
                      /**
                       * error case when a signature aggregator fails to verify the aggregated signature it had created.
                       */
                      error SignatureValidationFailed(address aggregator);
                      /**
                       * Successful result from simulateValidation.
                       * @param returnInfo gas and time-range returned values
                       * @param senderInfo stake information about the sender
                       * @param factoryInfo stake information about the factory (if any)
                       * @param paymasterInfo stake information about the paymaster (if any)
                       */
                      error ValidationResult(ReturnInfo returnInfo,
                          StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo);
                      /**
                       * Successful result from simulateValidation, if the account returns a signature aggregator
                       * @param returnInfo gas and time-range returned values
                       * @param senderInfo stake information about the sender
                       * @param factoryInfo stake information about the factory (if any)
                       * @param paymasterInfo stake information about the paymaster (if any)
                       * @param aggregatorInfo signature aggregation info (if the account requires signature aggregator)
                       *      bundler MUST use it to verify the signature, or reject the UserOperation
                       */
                      error ValidationResultWithAggregation(ReturnInfo returnInfo,
                          StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo,
                          AggregatorStakeInfo aggregatorInfo);
                      /**
                       * return value of getSenderAddress
                       */
                      error SenderAddressResult(address sender);
                      /**
                       * return value of simulateHandleOp
                       */
                      error ExecutionResult(uint256 preOpGas, uint256 paid, uint48 validAfter, uint48 validUntil, bool targetSuccess, bytes targetResult);
                      //UserOps handled, per aggregator
                      struct UserOpsPerAggregator {
                          UserOperation[] userOps;
                          // aggregator address
                          IAggregator aggregator;
                          // aggregated signature
                          bytes signature;
                      }
                      /**
                       * Execute a batch of UserOperation.
                       * no signature aggregator is used.
                       * if any account requires an aggregator (that is, it returned an aggregator when
                       * performing simulateValidation), then handleAggregatedOps() must be used instead.
                       * @param ops the operations to execute
                       * @param beneficiary the address to receive the fees
                       */
                      function handleOps(UserOperation[] calldata ops, address payable beneficiary) external;
                      /**
                       * Execute a batch of UserOperation with Aggregators
                       * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts)
                       * @param beneficiary the address to receive the fees
                       */
                      function handleAggregatedOps(
                          UserOpsPerAggregator[] calldata opsPerAggregator,
                          address payable beneficiary
                      ) external;
                      /**
                       * generate a request Id - unique identifier for this request.
                       * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid.
                       */
                      function getUserOpHash(UserOperation calldata userOp) external view returns (bytes32);
                      /**
                       * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp.
                       * @dev this method always revert. Successful result is ValidationResult error. other errors are failures.
                       * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data.
                       * @param userOp the user operation to validate.
                       */
                      function simulateValidation(UserOperation calldata userOp) external;
                      /**
                       * gas and return values during simulation
                       * @param preOpGas the gas used for validation (including preValidationGas)
                       * @param prefund the required prefund for this operation
                       * @param sigFailed validateUserOp's (or paymaster's) signature check failed
                       * @param validAfter - first timestamp this UserOp is valid (merging account and paymaster time-range)
                       * @param validUntil - last timestamp this UserOp is valid (merging account and paymaster time-range)
                       * @param paymasterContext returned by validatePaymasterUserOp (to be passed into postOp)
                       */
                      struct ReturnInfo {
                          uint256 preOpGas;
                          uint256 prefund;
                          bool sigFailed;
                          uint48 validAfter;
                          uint48 validUntil;
                          bytes paymasterContext;
                      }
                      /**
                       * returned aggregated signature info.
                       * the aggregator returned by the account, and its current stake.
                       */
                      struct AggregatorStakeInfo {
                          address aggregator;
                          StakeInfo stakeInfo;
                      }
                      /**
                       * Get counterfactual sender address.
                       *  Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation.
                       * this method always revert, and returns the address in SenderAddressResult error
                       * @param initCode the constructor code to be passed into the UserOperation.
                       */
                      function getSenderAddress(bytes memory initCode) external;
                      /**
                       * simulate full execution of a UserOperation (including both validation and target execution)
                       * this method will always revert with "ExecutionResult".
                       * it performs full validation of the UserOperation, but ignores signature error.
                       * an optional target address is called after the userop succeeds, and its value is returned
                       * (before the entire call is reverted)
                       * Note that in order to collect the the success/failure of the target call, it must be executed
                       * with trace enabled to track the emitted events.
                       * @param op the UserOperation to simulate
                       * @param target if nonzero, a target address to call after userop simulation. If called, the targetSuccess and targetResult
                       *        are set to the return from that call.
                       * @param targetCallData callData to pass to target address
                       */
                      function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external;
                  }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  interface INonceManager {
                      /**
                       * Return the next nonce for this sender.
                       * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop)
                       * But UserOp with different keys can come with arbitrary order.
                       *
                       * @param sender the account address
                       * @param key the high 192 bit of the nonce
                       * @return nonce a full nonce to pass for next UserOp with this sender.
                       */
                      function getNonce(address sender, uint192 key)
                      external view returns (uint256 nonce);
                      /**
                       * Manually increment the nonce of the sender.
                       * This method is exposed just for completeness..
                       * Account does NOT need to call it, neither during validation, nor elsewhere,
                       * as the EntryPoint will update the nonce regardless.
                       * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future
                       * UserOperations will not pay extra for the first transaction with a given key.
                       */
                      function incrementNonce(uint192 key) external;
                  }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  import "./UserOperation.sol";
                  /**
                   * the interface exposed by a paymaster contract, who agrees to pay the gas for user's operations.
                   * a paymaster must hold a stake to cover the required entrypoint stake and also the gas for the transaction.
                   */
                  interface IPaymaster {
                      enum PostOpMode {
                          opSucceeded, // user op succeeded
                          opReverted, // user op reverted. still has to pay for gas.
                          postOpReverted //user op succeeded, but caused postOp to revert. Now it's a 2nd call, after user's op was deliberately reverted.
                      }
                      /**
                       * payment validation: check if paymaster agrees to pay.
                       * Must verify sender is the entryPoint.
                       * Revert to reject this request.
                       * Note that bundlers will reject this method if it changes the state, unless the paymaster is trusted (whitelisted)
                       * The paymaster pre-pays using its deposit, and receive back a refund after the postOp method returns.
                       * @param userOp the user operation
                       * @param userOpHash hash of the user's request data.
                       * @param maxCost the maximum cost of this transaction (based on maximum gas and gas price from userOp)
                       * @return context value to send to a postOp
                       *      zero length to signify postOp is not required.
                       * @return validationData signature and time-range of this operation, encoded the same as the return value of validateUserOperation
                       *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
                       *         otherwise, an address of an "authorizer" contract.
                       *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
                       *      <6-byte> validAfter - first timestamp this operation is valid
                       *      Note that the validation code cannot use block.timestamp (or block.number) directly.
                       */
                      function validatePaymasterUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost)
                      external returns (bytes memory context, uint256 validationData);
                      /**
                       * post-operation handler.
                       * Must verify sender is the entryPoint
                       * @param mode enum with the following options:
                       *      opSucceeded - user operation succeeded.
                       *      opReverted  - user op reverted. still has to pay for gas.
                       *      postOpReverted - user op succeeded, but caused postOp (in mode=opSucceeded) to revert.
                       *                       Now this is the 2nd call, after user's op was deliberately reverted.
                       * @param context - the context value returned by validatePaymasterUserOp
                       * @param actualGasCost - actual gas used so far (without this postOp call).
                       */
                      function postOp(PostOpMode mode, bytes calldata context, uint256 actualGasCost) external;
                  }
                  // SPDX-License-Identifier: GPL-3.0-only
                  pragma solidity ^0.8.12;
                  /**
                   * manage deposits and stakes.
                   * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account)
                   * stake is value locked for at least "unstakeDelay" by the staked entity.
                   */
                  interface IStakeManager {
                      event Deposited(
                          address indexed account,
                          uint256 totalDeposit
                      );
                      event Withdrawn(
                          address indexed account,
                          address withdrawAddress,
                          uint256 amount
                      );
                      /// Emitted when stake or unstake delay are modified
                      event StakeLocked(
                          address indexed account,
                          uint256 totalStaked,
                          uint256 unstakeDelaySec
                      );
                      /// Emitted once a stake is scheduled for withdrawal
                      event StakeUnlocked(
                          address indexed account,
                          uint256 withdrawTime
                      );
                      event StakeWithdrawn(
                          address indexed account,
                          address withdrawAddress,
                          uint256 amount
                      );
                      /**
                       * @param deposit the entity's deposit
                       * @param staked true if this entity is staked.
                       * @param stake actual amount of ether staked for this entity.
                       * @param unstakeDelaySec minimum delay to withdraw the stake.
                       * @param withdrawTime - first block timestamp where 'withdrawStake' will be callable, or zero if already locked
                       * @dev sizes were chosen so that (deposit,staked, stake) fit into one cell (used during handleOps)
                       *    and the rest fit into a 2nd cell.
                       *    112 bit allows for 10^15 eth
                       *    48 bit for full timestamp
                       *    32 bit allows 150 years for unstake delay
                       */
                      struct DepositInfo {
                          uint112 deposit;
                          bool staked;
                          uint112 stake;
                          uint32 unstakeDelaySec;
                          uint48 withdrawTime;
                      }
                      //API struct used by getStakeInfo and simulateValidation
                      struct StakeInfo {
                          uint256 stake;
                          uint256 unstakeDelaySec;
                      }
                      /// @return info - full deposit information of given account
                      function getDepositInfo(address account) external view returns (DepositInfo memory info);
                      /// @return the deposit (for gas payment) of the account
                      function balanceOf(address account) external view returns (uint256);
                      /**
                       * add to the deposit of the given account
                       */
                      function depositTo(address account) external payable;
                      /**
                       * add to the account's stake - amount and delay
                       * any pending unstake is first cancelled.
                       * @param _unstakeDelaySec the new lock duration before the deposit can be withdrawn.
                       */
                      function addStake(uint32 _unstakeDelaySec) external payable;
                      /**
                       * attempt to unlock the stake.
                       * the value can be withdrawn (using withdrawStake) after the unstake delay.
                       */
                      function unlockStake() external;
                      /**
                       * withdraw from the (unlocked) stake.
                       * must first call unlockStake and wait for the unstakeDelay to pass
                       * @param withdrawAddress the address to send withdrawn value.
                       */
                      function withdrawStake(address payable withdrawAddress) external;
                      /**
                       * withdraw from the deposit.
                       * @param withdrawAddress the address to send withdrawn value.
                       * @param withdrawAmount the amount to withdraw.
                       */
                      function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external;
                  }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  /* solhint-disable no-inline-assembly */
                  import {calldataKeccak} from "../core/Helpers.sol";
                  /**
                   * User Operation struct
                   * @param sender the sender account of this request.
                       * @param nonce unique value the sender uses to verify it is not a replay.
                       * @param initCode if set, the account contract will be created by this constructor/
                       * @param callData the method call to execute on this account.
                       * @param callGasLimit the gas limit passed to the callData method call.
                       * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
                       * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
                       * @param maxFeePerGas same as EIP-1559 gas parameter.
                       * @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
                       * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
                       * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
                       */
                      struct UserOperation {
                          address sender;
                          uint256 nonce;
                          bytes initCode;
                          bytes callData;
                          uint256 callGasLimit;
                          uint256 verificationGasLimit;
                          uint256 preVerificationGas;
                          uint256 maxFeePerGas;
                          uint256 maxPriorityFeePerGas;
                          bytes paymasterAndData;
                          bytes signature;
                      }
                  /**
                   * Utility functions helpful when working with UserOperation structs.
                   */
                  library UserOperationLib {
                      function getSender(UserOperation calldata userOp) internal pure returns (address) {
                          address data;
                          //read sender from userOp, which is first userOp member (saves 800 gas...)
                          assembly {data := calldataload(userOp)}
                          return address(uint160(data));
                      }
                      //relayer/block builder might submit the TX with higher priorityFee, but the user should not
                      // pay above what he signed for.
                      function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
                      unchecked {
                          uint256 maxFeePerGas = userOp.maxFeePerGas;
                          uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                          if (maxFeePerGas == maxPriorityFeePerGas) {
                              //legacy mode (for networks that don't support basefee opcode)
                              return maxFeePerGas;
                          }
                          return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
                      }
                      }
                      function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
                          address sender = getSender(userOp);
                          uint256 nonce = userOp.nonce;
                          bytes32 hashInitCode = calldataKeccak(userOp.initCode);
                          bytes32 hashCallData = calldataKeccak(userOp.callData);
                          uint256 callGasLimit = userOp.callGasLimit;
                          uint256 verificationGasLimit = userOp.verificationGasLimit;
                          uint256 preVerificationGas = userOp.preVerificationGas;
                          uint256 maxFeePerGas = userOp.maxFeePerGas;
                          uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                          bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);
                          return abi.encode(
                              sender, nonce,
                              hashInitCode, hashCallData,
                              callGasLimit, verificationGasLimit, preVerificationGas,
                              maxFeePerGas, maxPriorityFeePerGas,
                              hashPaymasterAndData
                          );
                      }
                      function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
                          return keccak256(pack(userOp));
                      }
                      function min(uint256 a, uint256 b) internal pure returns (uint256) {
                          return a < b ? a : b;
                      }
                  }
                  // SPDX-License-Identifier: LGPL-3.0-only
                  pragma solidity >=0.7.5 <0.9.0;
                  // solhint-disable no-inline-assembly
                  /**
                   * Utility functions helpful when making different kinds of contract calls in Solidity.
                   */
                  library Exec {
                      function call(
                          address to,
                          uint256 value,
                          bytes memory data,
                          uint256 txGas
                      ) internal returns (bool success) {
                          assembly {
                              success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0)
                          }
                      }
                      function staticcall(
                          address to,
                          bytes memory data,
                          uint256 txGas
                      ) internal view returns (bool success) {
                          assembly {
                              success := staticcall(txGas, to, add(data, 0x20), mload(data), 0, 0)
                          }
                      }
                      function delegateCall(
                          address to,
                          bytes memory data,
                          uint256 txGas
                      ) internal returns (bool success) {
                          assembly {
                              success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0)
                          }
                      }
                      // get returned data from last call or calldelegate
                      function getReturnData(uint256 maxLen) internal pure returns (bytes memory returnData) {
                          assembly {
                              let len := returndatasize()
                              if gt(len, maxLen) {
                                  len := maxLen
                              }
                              let ptr := mload(0x40)
                              mstore(0x40, add(ptr, add(len, 0x20)))
                              mstore(ptr, len)
                              returndatacopy(add(ptr, 0x20), 0, len)
                              returnData := ptr
                          }
                      }
                      // revert with explicit byte array (probably reverted info from call)
                      function revertWithData(bytes memory returnData) internal pure {
                          assembly {
                              revert(add(returnData, 32), mload(returnData))
                          }
                      }
                      function callAndRevert(address to, bytes memory data, uint256 maxLen) internal {
                          bool success = call(to,0,data,gasleft());
                          if (!success) {
                              revertWithData(getReturnData(maxLen));
                          }
                      }
                  }
                  

                  File 2 of 6: EventsHistory
                  // This software is a subject to Ambisafe License Agreement.
                  // No use or distribution is allowed without written permission from Ambisafe.
                  // https://ambisafe.com/terms.pdf
                  
                  contract Ambi {
                      function getNodeAddress(bytes32 _nodeName) constant returns(address);
                      function hasRelation(bytes32 _nodeName, bytes32 _relation, address _to) constant returns(bool);
                      function addNode(bytes32 _nodeName, address _nodeAddress) constant returns(bool);
                  }
                  
                  contract AmbiEnabled {
                      Ambi public ambiC;
                      bool public isImmortal;
                      bytes32 public name;
                  
                      modifier checkAccess(bytes32 _role) {
                          if(address(ambiC) != 0x0 && ambiC.hasRelation(name, _role, msg.sender)){
                              _
                          }
                      }
                      
                      function getAddress(bytes32 _name) constant returns (address) {
                          return ambiC.getNodeAddress(_name);
                      }
                  
                      function setAmbiAddress(address _ambi, bytes32 _name) returns (bool){
                          if(address(ambiC) != 0x0){
                              return false;
                          }
                          Ambi ambiContract = Ambi(_ambi);
                          if(ambiContract.getNodeAddress(_name)!=address(this)) {
                              if (!ambiContract.addNode(_name, address(this))){
                                  return false;
                              }
                          }
                          name = _name;
                          ambiC = ambiContract;
                          return true;
                      }
                  
                      function immortality() checkAccess("owner") returns(bool) {
                          isImmortal = true;
                          return true;
                      }
                  
                      function remove() checkAccess("owner") returns(bool) {
                          if (isImmortal) {
                              return false;
                          }
                          selfdestruct(msg.sender);
                          return true;
                      }
                  }
                  
                  library StackDepthLib {
                      // This will probably work with a value of 390 but no need to cut it
                      // that close in the case that the optimizer changes slightly or
                      // something causing that number to rise slightly.
                      uint constant GAS_PER_DEPTH = 400;
                  
                      function checkDepth(address self, uint n) constant returns(bool) {
                          if (n == 0) return true;
                          return self.call.gas(GAS_PER_DEPTH * n)(0x21835af6, n - 1);
                      }
                  
                      function __dig(uint n) constant {
                          if (n == 0) return;
                          if (!address(this).delegatecall(0x21835af6, n - 1)) throw;
                      }
                  }
                  
                  contract Safe {
                      // Should always be placed as first modifier!
                      modifier noValue {
                          if (msg.value > 0) {
                              // Internal Out Of Gas/Throw: revert this transaction too;
                              // Call Stack Depth Limit reached: revert this transaction too;
                              // Recursive Call: safe, no any changes applied yet, we are inside of modifier.
                              _safeSend(msg.sender, msg.value);
                          }
                          _
                      }
                  
                      modifier onlyHuman {
                          if (_isHuman()) {
                              _
                          }
                      }
                  
                      modifier noCallback {
                          if (!isCall) {
                              _
                          }
                      }
                  
                      modifier immutable(address _address) {
                          if (_address == 0) {
                              _
                          }
                      }
                  
                      address stackDepthLib;
                      function setupStackDepthLib(address _stackDepthLib) immutable(address(stackDepthLib)) returns(bool) {
                          stackDepthLib = _stackDepthLib;
                          return true;
                      }
                  
                      modifier requireStackDepth(uint16 _depth) {
                          if (stackDepthLib == 0x0) {
                              throw;
                          }
                          if (_depth > 1023) {
                              throw;
                          }
                          if (!stackDepthLib.delegatecall(0x32921690, stackDepthLib, _depth)) {
                              throw;
                          }
                          _
                      }
                  
                      // Must not be used inside the functions that have noValue() modifier!
                      function _safeFalse() internal noValue() returns(bool) {
                          return false;
                      }
                  
                      function _safeSend(address _to, uint _value) internal {
                          if (!_unsafeSend(_to, _value)) {
                              throw;
                          }
                      }
                  
                      function _unsafeSend(address _to, uint _value) internal returns(bool) {
                          return _to.call.value(_value)();
                      }
                  
                      function _isContract() constant internal returns(bool) {
                          return msg.sender != tx.origin;
                      }
                  
                      function _isHuman() constant internal returns(bool) {
                          return !_isContract();
                      }
                  
                      bool private isCall = false;
                      function _setupNoCallback() internal {
                          isCall = true;
                      }
                  
                      function _finishNoCallback() internal {
                          isCall = false;
                      }
                  }
                  
                  /**
                   * @title Events History universal contract.
                   *
                   * Contract serves as an Events storage and version history for a particular contract type.
                   * Events appear on this contract address but their definitions provided by other contracts/libraries.
                   * Version info is provided for historical and informational purposes.
                   *
                   * Note: all the non constant functions return false instead of throwing in case if state change
                   * didn't happen yet.
                   */
                  contract EventsHistory is AmbiEnabled, Safe {
                      // Event emitter signature to address with Event definiton mapping.
                      mapping(bytes4 => address) public emitters;
                  
                      // Calling contract address to version mapping.
                      mapping(address => uint) public versions;
                  
                      // Version to info mapping.
                      mapping(uint => VersionInfo) public versionInfo;
                  
                      // Latest verion number.
                      uint public latestVersion;
                  
                      struct VersionInfo {
                          uint block;        // Block number in which version has been introduced.
                          address by;        // Contract owner address who added version.
                          address caller;    // Address of this version calling contract.
                          string name;       // Version name, informative.
                          string changelog;  // Version changelog, informative.
                      }
                  
                      /**
                       * Assign emitter address to a specified emit function signature.
                       *
                       * Can be set only once for each signature, and only by contract owner.
                       * Caller contract should be sure that emitter for a particular signature will never change.
                       *
                       * @param _eventSignature signature of the event emitting function.
                       * @param _emitter address with Event definition.
                       *
                       * @return success.
                       */
                      function addEmitter(bytes4 _eventSignature, address _emitter) noValue() checkAccess("admin") returns(bool) {
                          if (emitters[_eventSignature] != 0x0) {
                              return false;
                          }
                          emitters[_eventSignature] = _emitter;
                          return true;
                      }
                  
                      /**
                       * Introduce new caller contract version specifing version information.
                       *
                       * Can be set only once for each caller, and only by contract owner.
                       * Name and changelog should not be empty.
                       *
                       * @param _caller address of the new caller.
                       * @param _name version name.
                       * @param _changelog version changelog.
                       *
                       * @return success.
                       */
                      function addVersion(address _caller, string _name, string _changelog) noValue() checkAccess("admin") returns(bool) {
                          if (versions[_caller] != 0) {
                              return false;
                          }
                          if (bytes(_name).length == 0) {
                              return false;
                          }
                          if (bytes(_changelog).length == 0) {
                              return false;
                          }
                          uint version = ++latestVersion;
                          versions[_caller] = version;
                          versionInfo[version] = VersionInfo(block.number, msg.sender, _caller, _name, _changelog);
                          return true;
                      }
                  
                      /**
                       * Event emitting fallback.
                       *
                       * Can be and only called caller with assigned version.
                       * Resolves msg.sig to an emitter address, and calls it to emit an event.
                       *
                       * Throws if emit function signature is not registered, or call failed.
                       */
                      function () noValue() {
                          if (versions[msg.sender] == 0) {
                              return;
                          }
                          // Internal Out Of Gas/Throw: revert this transaction too;
                          // Call Stack Depth Limit reached: revert this transaction too;
                          // Recursive Call: safe, all changes already made.
                          if (!emitters[msg.sig].delegatecall(msg.data)) {
                              throw;
                          }
                      }
                  }

                  File 3 of 6: PaymentPROClonable
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
                  pragma solidity ^0.8.0;
                  import "./IAccessControlUpgradeable.sol";
                  import "../utils/ContextUpgradeable.sol";
                  import "../utils/StringsUpgradeable.sol";
                  import "../utils/introspection/ERC165Upgradeable.sol";
                  import {Initializable} from "../proxy/utils/Initializable.sol";
                  /**
                   * @dev Contract module that allows children to implement role-based access
                   * control mechanisms. This is a lightweight version that doesn't allow enumerating role
                   * members except through off-chain means by accessing the contract event logs. Some
                   * applications may benefit from on-chain enumerability, for those cases see
                   * {AccessControlEnumerable}.
                   *
                   * Roles are referred to by their `bytes32` identifier. These should be exposed
                   * in the external API and be unique. The best way to achieve this is by
                   * using `public constant` hash digests:
                   *
                   * ```solidity
                   * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
                   * ```
                   *
                   * Roles can be used to represent a set of permissions. To restrict access to a
                   * function call, use {hasRole}:
                   *
                   * ```solidity
                   * function foo() public {
                   *     require(hasRole(MY_ROLE, msg.sender));
                   *     ...
                   * }
                   * ```
                   *
                   * Roles can be granted and revoked dynamically via the {grantRole} and
                   * {revokeRole} functions. Each role has an associated admin role, and only
                   * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
                   *
                   * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
                   * that only accounts with this role will be able to grant or revoke other
                   * roles. More complex role relationships can be created by using
                   * {_setRoleAdmin}.
                   *
                   * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
                   * grant and revoke this role. Extra precautions should be taken to secure
                   * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
                   * to enforce additional security measures for this role.
                   */
                  abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
                      struct RoleData {
                          mapping(address => bool) members;
                          bytes32 adminRole;
                      }
                      mapping(bytes32 => RoleData) private _roles;
                      bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
                      /**
                       * @dev Modifier that checks that an account has a specific role. Reverts
                       * with a standardized message including the required role.
                       *
                       * The format of the revert reason is given by the following regular expression:
                       *
                       *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
                       *
                       * _Available since v4.1._
                       */
                      modifier onlyRole(bytes32 role) {
                          _checkRole(role);
                          _;
                      }
                      function __AccessControl_init() internal onlyInitializing {
                      }
                      function __AccessControl_init_unchained() internal onlyInitializing {
                      }
                      /**
                       * @dev See {IERC165-supportsInterface}.
                       */
                      function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                          return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
                      }
                      /**
                       * @dev Returns `true` if `account` has been granted `role`.
                       */
                      function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
                          return _roles[role].members[account];
                      }
                      /**
                       * @dev Revert with a standard message if `_msgSender()` is missing `role`.
                       * Overriding this function changes the behavior of the {onlyRole} modifier.
                       *
                       * Format of the revert message is described in {_checkRole}.
                       *
                       * _Available since v4.6._
                       */
                      function _checkRole(bytes32 role) internal view virtual {
                          _checkRole(role, _msgSender());
                      }
                      /**
                       * @dev Revert with a standard message if `account` is missing `role`.
                       *
                       * The format of the revert reason is given by the following regular expression:
                       *
                       *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
                       */
                      function _checkRole(bytes32 role, address account) internal view virtual {
                          if (!hasRole(role, account)) {
                              revert(
                                  string(
                                      abi.encodePacked(
                                          "AccessControl: account ",
                                          StringsUpgradeable.toHexString(account),
                                          " is missing role ",
                                          StringsUpgradeable.toHexString(uint256(role), 32)
                                      )
                                  )
                              );
                          }
                      }
                      /**
                       * @dev Returns the admin role that controls `role`. See {grantRole} and
                       * {revokeRole}.
                       *
                       * To change a role's admin, use {_setRoleAdmin}.
                       */
                      function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
                          return _roles[role].adminRole;
                      }
                      /**
                       * @dev Grants `role` to `account`.
                       *
                       * If `account` had not been already granted `role`, emits a {RoleGranted}
                       * event.
                       *
                       * Requirements:
                       *
                       * - the caller must have ``role``'s admin role.
                       *
                       * May emit a {RoleGranted} event.
                       */
                      function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                          _grantRole(role, account);
                      }
                      /**
                       * @dev Revokes `role` from `account`.
                       *
                       * If `account` had been granted `role`, emits a {RoleRevoked} event.
                       *
                       * Requirements:
                       *
                       * - the caller must have ``role``'s admin role.
                       *
                       * May emit a {RoleRevoked} event.
                       */
                      function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                          _revokeRole(role, account);
                      }
                      /**
                       * @dev Revokes `role` from the calling account.
                       *
                       * Roles are often managed via {grantRole} and {revokeRole}: this function's
                       * purpose is to provide a mechanism for accounts to lose their privileges
                       * if they are compromised (such as when a trusted device is misplaced).
                       *
                       * If the calling account had been revoked `role`, emits a {RoleRevoked}
                       * event.
                       *
                       * Requirements:
                       *
                       * - the caller must be `account`.
                       *
                       * May emit a {RoleRevoked} event.
                       */
                      function renounceRole(bytes32 role, address account) public virtual override {
                          require(account == _msgSender(), "AccessControl: can only renounce roles for self");
                          _revokeRole(role, account);
                      }
                      /**
                       * @dev Grants `role` to `account`.
                       *
                       * If `account` had not been already granted `role`, emits a {RoleGranted}
                       * event. Note that unlike {grantRole}, this function doesn't perform any
                       * checks on the calling account.
                       *
                       * May emit a {RoleGranted} event.
                       *
                       * [WARNING]
                       * ====
                       * This function should only be called from the constructor when setting
                       * up the initial roles for the system.
                       *
                       * Using this function in any other way is effectively circumventing the admin
                       * system imposed by {AccessControl}.
                       * ====
                       *
                       * NOTE: This function is deprecated in favor of {_grantRole}.
                       */
                      function _setupRole(bytes32 role, address account) internal virtual {
                          _grantRole(role, account);
                      }
                      /**
                       * @dev Sets `adminRole` as ``role``'s admin role.
                       *
                       * Emits a {RoleAdminChanged} event.
                       */
                      function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                          bytes32 previousAdminRole = getRoleAdmin(role);
                          _roles[role].adminRole = adminRole;
                          emit RoleAdminChanged(role, previousAdminRole, adminRole);
                      }
                      /**
                       * @dev Grants `role` to `account`.
                       *
                       * Internal function without access restriction.
                       *
                       * May emit a {RoleGranted} event.
                       */
                      function _grantRole(bytes32 role, address account) internal virtual {
                          if (!hasRole(role, account)) {
                              _roles[role].members[account] = true;
                              emit RoleGranted(role, account, _msgSender());
                          }
                      }
                      /**
                       * @dev Revokes `role` from `account`.
                       *
                       * Internal function without access restriction.
                       *
                       * May emit a {RoleRevoked} event.
                       */
                      function _revokeRole(bytes32 role, address account) internal virtual {
                          if (hasRole(role, account)) {
                              _roles[role].members[account] = false;
                              emit RoleRevoked(role, account, _msgSender());
                          }
                      }
                      /**
                       * @dev This empty reserved space is put in place to allow future versions to add new
                       * variables without shifting down storage in the inheritance chain.
                       * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                       */
                      uint256[49] private __gap;
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev External interface of AccessControl declared to support ERC165 detection.
                   */
                  interface IAccessControlUpgradeable {
                      /**
                       * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
                       *
                       * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
                       * {RoleAdminChanged} not being emitted signaling this.
                       *
                       * _Available since v3.1._
                       */
                      event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
                      /**
                       * @dev Emitted when `account` is granted `role`.
                       *
                       * `sender` is the account that originated the contract call, an admin role
                       * bearer except when using {AccessControl-_setupRole}.
                       */
                      event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
                      /**
                       * @dev Emitted when `account` is revoked `role`.
                       *
                       * `sender` is the account that originated the contract call:
                       *   - if using `revokeRole`, it is the admin role bearer
                       *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
                       */
                      event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
                      /**
                       * @dev Returns `true` if `account` has been granted `role`.
                       */
                      function hasRole(bytes32 role, address account) external view returns (bool);
                      /**
                       * @dev Returns the admin role that controls `role`. See {grantRole} and
                       * {revokeRole}.
                       *
                       * To change a role's admin, use {AccessControl-_setRoleAdmin}.
                       */
                      function getRoleAdmin(bytes32 role) external view returns (bytes32);
                      /**
                       * @dev Grants `role` to `account`.
                       *
                       * If `account` had not been already granted `role`, emits a {RoleGranted}
                       * event.
                       *
                       * Requirements:
                       *
                       * - the caller must have ``role``'s admin role.
                       */
                      function grantRole(bytes32 role, address account) external;
                      /**
                       * @dev Revokes `role` from `account`.
                       *
                       * If `account` had been granted `role`, emits a {RoleRevoked} event.
                       *
                       * Requirements:
                       *
                       * - the caller must have ``role``'s admin role.
                       */
                      function revokeRole(bytes32 role, address account) external;
                      /**
                       * @dev Revokes `role` from the calling account.
                       *
                       * Roles are often managed via {grantRole} and {revokeRole}: this function's
                       * purpose is to provide a mechanism for accounts to lose their privileges
                       * if they are compromised (such as when a trusted device is misplaced).
                       *
                       * If the calling account had been granted `role`, emits a {RoleRevoked}
                       * event.
                       *
                       * Requirements:
                       *
                       * - the caller must be `account`.
                       */
                      function renounceRole(bytes32 role, address account) external;
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
                  pragma solidity ^0.8.2;
                  import "../../utils/AddressUpgradeable.sol";
                  /**
                   * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                   * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                   * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                   * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                   *
                   * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                   * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                   * case an upgrade adds a module that needs to be initialized.
                   *
                   * For example:
                   *
                   * [.hljs-theme-light.nopadding]
                   * ```solidity
                   * contract MyToken is ERC20Upgradeable {
                   *     function initialize() initializer public {
                   *         __ERC20_init("MyToken", "MTK");
                   *     }
                   * }
                   *
                   * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                   *     function initializeV2() reinitializer(2) public {
                   *         __ERC20Permit_init("MyToken");
                   *     }
                   * }
                   * ```
                   *
                   * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                   * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                   *
                   * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                   * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                   *
                   * [CAUTION]
                   * ====
                   * Avoid leaving a contract uninitialized.
                   *
                   * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                   * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                   * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                   *
                   * [.hljs-theme-light.nopadding]
                   * ```
                   * /// @custom:oz-upgrades-unsafe-allow constructor
                   * constructor() {
                   *     _disableInitializers();
                   * }
                   * ```
                   * ====
                   */
                  abstract contract Initializable {
                      /**
                       * @dev Indicates that the contract has been initialized.
                       * @custom:oz-retyped-from bool
                       */
                      uint8 private _initialized;
                      /**
                       * @dev Indicates that the contract is in the process of being initialized.
                       */
                      bool private _initializing;
                      /**
                       * @dev Triggered when the contract has been initialized or reinitialized.
                       */
                      event Initialized(uint8 version);
                      /**
                       * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                       * `onlyInitializing` functions can be used to initialize parent contracts.
                       *
                       * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
                       * constructor.
                       *
                       * Emits an {Initialized} event.
                       */
                      modifier initializer() {
                          bool isTopLevelCall = !_initializing;
                          require(
                              (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                              "Initializable: contract is already initialized"
                          );
                          _initialized = 1;
                          if (isTopLevelCall) {
                              _initializing = true;
                          }
                          _;
                          if (isTopLevelCall) {
                              _initializing = false;
                              emit Initialized(1);
                          }
                      }
                      /**
                       * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                       * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                       * used to initialize parent contracts.
                       *
                       * A reinitializer may be used after the original initialization step. This is essential to configure modules that
                       * are added through upgrades and that require initialization.
                       *
                       * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
                       * cannot be nested. If one is invoked in the context of another, execution will revert.
                       *
                       * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                       * a contract, executing them in the right order is up to the developer or operator.
                       *
                       * WARNING: setting the version to 255 will prevent any future reinitialization.
                       *
                       * Emits an {Initialized} event.
                       */
                      modifier reinitializer(uint8 version) {
                          require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                          _initialized = version;
                          _initializing = true;
                          _;
                          _initializing = false;
                          emit Initialized(version);
                      }
                      /**
                       * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                       * {initializer} and {reinitializer} modifiers, directly or indirectly.
                       */
                      modifier onlyInitializing() {
                          require(_initializing, "Initializable: contract is not initializing");
                          _;
                      }
                      /**
                       * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                       * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                       * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                       * through proxies.
                       *
                       * Emits an {Initialized} event the first time it is successfully executed.
                       */
                      function _disableInitializers() internal virtual {
                          require(!_initializing, "Initializable: contract is initializing");
                          if (_initialized != type(uint8).max) {
                              _initialized = type(uint8).max;
                              emit Initialized(type(uint8).max);
                          }
                      }
                      /**
                       * @dev Returns the highest version that has been initialized. See {reinitializer}.
                       */
                      function _getInitializedVersion() internal view returns (uint8) {
                          return _initialized;
                      }
                      /**
                       * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
                       */
                      function _isInitializing() internal view returns (bool) {
                          return _initializing;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Interface of the ERC20 standard as defined in the EIP.
                   */
                  interface IERC20Upgradeable {
                      /**
                       * @dev Emitted when `value` tokens are moved from one account (`from`) to
                       * another (`to`).
                       *
                       * Note that `value` may be zero.
                       */
                      event Transfer(address indexed from, address indexed to, uint256 value);
                      /**
                       * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                       * a call to {approve}. `value` is the new allowance.
                       */
                      event Approval(address indexed owner, address indexed spender, uint256 value);
                      /**
                       * @dev Returns the amount of tokens in existence.
                       */
                      function totalSupply() external view returns (uint256);
                      /**
                       * @dev Returns the amount of tokens owned by `account`.
                       */
                      function balanceOf(address account) external view returns (uint256);
                      /**
                       * @dev Moves `amount` tokens from the caller's account to `to`.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transfer(address to, uint256 amount) external returns (bool);
                      /**
                       * @dev Returns the remaining number of tokens that `spender` will be
                       * allowed to spend on behalf of `owner` through {transferFrom}. This is
                       * zero by default.
                       *
                       * This value changes when {approve} or {transferFrom} are called.
                       */
                      function allowance(address owner, address spender) external view returns (uint256);
                      /**
                       * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * IMPORTANT: Beware that changing an allowance with this method brings the risk
                       * that someone may use both the old and the new allowance by unfortunate
                       * transaction ordering. One possible solution to mitigate this race
                       * condition is to first reduce the spender's allowance to 0 and set the
                       * desired value afterwards:
                       * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                       *
                       * Emits an {Approval} event.
                       */
                      function approve(address spender, uint256 amount) external returns (bool);
                      /**
                       * @dev Moves `amount` tokens from `from` to `to` using the
                       * allowance mechanism. `amount` is then deducted from the caller's
                       * allowance.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transferFrom(address from, address to, uint256 amount) external returns (bool);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol)
                  pragma solidity ^0.8.0;
                  import "./IERC721Upgradeable.sol";
                  import "./IERC721ReceiverUpgradeable.sol";
                  import "./extensions/IERC721MetadataUpgradeable.sol";
                  import "../../utils/AddressUpgradeable.sol";
                  import "../../utils/ContextUpgradeable.sol";
                  import "../../utils/StringsUpgradeable.sol";
                  import "../../utils/introspection/ERC165Upgradeable.sol";
                  import {Initializable} from "../../proxy/utils/Initializable.sol";
                  /**
                   * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
                   * the Metadata extension, but not including the Enumerable extension, which is available separately as
                   * {ERC721Enumerable}.
                   */
                  contract ERC721Upgradeable is Initializable, ContextUpgradeable, ERC165Upgradeable, IERC721Upgradeable, IERC721MetadataUpgradeable {
                      using AddressUpgradeable for address;
                      using StringsUpgradeable for uint256;
                      // Token name
                      string private _name;
                      // Token symbol
                      string private _symbol;
                      // Mapping from token ID to owner address
                      mapping(uint256 => address) private _owners;
                      // Mapping owner address to token count
                      mapping(address => uint256) private _balances;
                      // Mapping from token ID to approved address
                      mapping(uint256 => address) private _tokenApprovals;
                      // Mapping from owner to operator approvals
                      mapping(address => mapping(address => bool)) private _operatorApprovals;
                      /**
                       * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
                       */
                      function __ERC721_init(string memory name_, string memory symbol_) internal onlyInitializing {
                          __ERC721_init_unchained(name_, symbol_);
                      }
                      function __ERC721_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
                          _name = name_;
                          _symbol = symbol_;
                      }
                      /**
                       * @dev See {IERC165-supportsInterface}.
                       */
                      function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165Upgradeable) returns (bool) {
                          return
                              interfaceId == type(IERC721Upgradeable).interfaceId ||
                              interfaceId == type(IERC721MetadataUpgradeable).interfaceId ||
                              super.supportsInterface(interfaceId);
                      }
                      /**
                       * @dev See {IERC721-balanceOf}.
                       */
                      function balanceOf(address owner) public view virtual override returns (uint256) {
                          require(owner != address(0), "ERC721: address zero is not a valid owner");
                          return _balances[owner];
                      }
                      /**
                       * @dev See {IERC721-ownerOf}.
                       */
                      function ownerOf(uint256 tokenId) public view virtual override returns (address) {
                          address owner = _ownerOf(tokenId);
                          require(owner != address(0), "ERC721: invalid token ID");
                          return owner;
                      }
                      /**
                       * @dev See {IERC721Metadata-name}.
                       */
                      function name() public view virtual override returns (string memory) {
                          return _name;
                      }
                      /**
                       * @dev See {IERC721Metadata-symbol}.
                       */
                      function symbol() public view virtual override returns (string memory) {
                          return _symbol;
                      }
                      /**
                       * @dev See {IERC721Metadata-tokenURI}.
                       */
                      function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
                          _requireMinted(tokenId);
                          string memory baseURI = _baseURI();
                          return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
                      }
                      /**
                       * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
                       * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
                       * by default, can be overridden in child contracts.
                       */
                      function _baseURI() internal view virtual returns (string memory) {
                          return "";
                      }
                      /**
                       * @dev See {IERC721-approve}.
                       */
                      function approve(address to, uint256 tokenId) public virtual override {
                          address owner = ERC721Upgradeable.ownerOf(tokenId);
                          require(to != owner, "ERC721: approval to current owner");
                          require(
                              _msgSender() == owner || isApprovedForAll(owner, _msgSender()),
                              "ERC721: approve caller is not token owner or approved for all"
                          );
                          _approve(to, tokenId);
                      }
                      /**
                       * @dev See {IERC721-getApproved}.
                       */
                      function getApproved(uint256 tokenId) public view virtual override returns (address) {
                          _requireMinted(tokenId);
                          return _tokenApprovals[tokenId];
                      }
                      /**
                       * @dev See {IERC721-setApprovalForAll}.
                       */
                      function setApprovalForAll(address operator, bool approved) public virtual override {
                          _setApprovalForAll(_msgSender(), operator, approved);
                      }
                      /**
                       * @dev See {IERC721-isApprovedForAll}.
                       */
                      function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
                          return _operatorApprovals[owner][operator];
                      }
                      /**
                       * @dev See {IERC721-transferFrom}.
                       */
                      function transferFrom(address from, address to, uint256 tokenId) public virtual override {
                          //solhint-disable-next-line max-line-length
                          require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
                          _transfer(from, to, tokenId);
                      }
                      /**
                       * @dev See {IERC721-safeTransferFrom}.
                       */
                      function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
                          safeTransferFrom(from, to, tokenId, "");
                      }
                      /**
                       * @dev See {IERC721-safeTransferFrom}.
                       */
                      function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual override {
                          require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
                          _safeTransfer(from, to, tokenId, data);
                      }
                      /**
                       * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
                       * are aware of the ERC721 protocol to prevent tokens from being forever locked.
                       *
                       * `data` is additional data, it has no specified format and it is sent in call to `to`.
                       *
                       * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
                       * implement alternative mechanisms to perform token transfer, such as signature-based.
                       *
                       * Requirements:
                       *
                       * - `from` cannot be the zero address.
                       * - `to` cannot be the zero address.
                       * - `tokenId` token must exist and be owned by `from`.
                       * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
                       *
                       * Emits a {Transfer} event.
                       */
                      function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
                          _transfer(from, to, tokenId);
                          require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
                      }
                      /**
                       * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
                       */
                      function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
                          return _owners[tokenId];
                      }
                      /**
                       * @dev Returns whether `tokenId` exists.
                       *
                       * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
                       *
                       * Tokens start existing when they are minted (`_mint`),
                       * and stop existing when they are burned (`_burn`).
                       */
                      function _exists(uint256 tokenId) internal view virtual returns (bool) {
                          return _ownerOf(tokenId) != address(0);
                      }
                      /**
                       * @dev Returns whether `spender` is allowed to manage `tokenId`.
                       *
                       * Requirements:
                       *
                       * - `tokenId` must exist.
                       */
                      function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
                          address owner = ERC721Upgradeable.ownerOf(tokenId);
                          return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
                      }
                      /**
                       * @dev Safely mints `tokenId` and transfers it to `to`.
                       *
                       * Requirements:
                       *
                       * - `tokenId` must not exist.
                       * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
                       *
                       * Emits a {Transfer} event.
                       */
                      function _safeMint(address to, uint256 tokenId) internal virtual {
                          _safeMint(to, tokenId, "");
                      }
                      /**
                       * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
                       * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
                       */
                      function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
                          _mint(to, tokenId);
                          require(
                              _checkOnERC721Received(address(0), to, tokenId, data),
                              "ERC721: transfer to non ERC721Receiver implementer"
                          );
                      }
                      /**
                       * @dev Mints `tokenId` and transfers it to `to`.
                       *
                       * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
                       *
                       * Requirements:
                       *
                       * - `tokenId` must not exist.
                       * - `to` cannot be the zero address.
                       *
                       * Emits a {Transfer} event.
                       */
                      function _mint(address to, uint256 tokenId) internal virtual {
                          require(to != address(0), "ERC721: mint to the zero address");
                          require(!_exists(tokenId), "ERC721: token already minted");
                          _beforeTokenTransfer(address(0), to, tokenId, 1);
                          // Check that tokenId was not minted by `_beforeTokenTransfer` hook
                          require(!_exists(tokenId), "ERC721: token already minted");
                          unchecked {
                              // Will not overflow unless all 2**256 token ids are minted to the same owner.
                              // Given that tokens are minted one by one, it is impossible in practice that
                              // this ever happens. Might change if we allow batch minting.
                              // The ERC fails to describe this case.
                              _balances[to] += 1;
                          }
                          _owners[tokenId] = to;
                          emit Transfer(address(0), to, tokenId);
                          _afterTokenTransfer(address(0), to, tokenId, 1);
                      }
                      /**
                       * @dev Destroys `tokenId`.
                       * The approval is cleared when the token is burned.
                       * This is an internal function that does not check if the sender is authorized to operate on the token.
                       *
                       * Requirements:
                       *
                       * - `tokenId` must exist.
                       *
                       * Emits a {Transfer} event.
                       */
                      function _burn(uint256 tokenId) internal virtual {
                          address owner = ERC721Upgradeable.ownerOf(tokenId);
                          _beforeTokenTransfer(owner, address(0), tokenId, 1);
                          // Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
                          owner = ERC721Upgradeable.ownerOf(tokenId);
                          // Clear approvals
                          delete _tokenApprovals[tokenId];
                          unchecked {
                              // Cannot overflow, as that would require more tokens to be burned/transferred
                              // out than the owner initially received through minting and transferring in.
                              _balances[owner] -= 1;
                          }
                          delete _owners[tokenId];
                          emit Transfer(owner, address(0), tokenId);
                          _afterTokenTransfer(owner, address(0), tokenId, 1);
                      }
                      /**
                       * @dev Transfers `tokenId` from `from` to `to`.
                       *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
                       *
                       * Requirements:
                       *
                       * - `to` cannot be the zero address.
                       * - `tokenId` token must be owned by `from`.
                       *
                       * Emits a {Transfer} event.
                       */
                      function _transfer(address from, address to, uint256 tokenId) internal virtual {
                          require(ERC721Upgradeable.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
                          require(to != address(0), "ERC721: transfer to the zero address");
                          _beforeTokenTransfer(from, to, tokenId, 1);
                          // Check that tokenId was not transferred by `_beforeTokenTransfer` hook
                          require(ERC721Upgradeable.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
                          // Clear approvals from the previous owner
                          delete _tokenApprovals[tokenId];
                          unchecked {
                              // `_balances[from]` cannot overflow for the same reason as described in `_burn`:
                              // `from`'s balance is the number of token held, which is at least one before the current
                              // transfer.
                              // `_balances[to]` could overflow in the conditions described in `_mint`. That would require
                              // all 2**256 token ids to be minted, which in practice is impossible.
                              _balances[from] -= 1;
                              _balances[to] += 1;
                          }
                          _owners[tokenId] = to;
                          emit Transfer(from, to, tokenId);
                          _afterTokenTransfer(from, to, tokenId, 1);
                      }
                      /**
                       * @dev Approve `to` to operate on `tokenId`
                       *
                       * Emits an {Approval} event.
                       */
                      function _approve(address to, uint256 tokenId) internal virtual {
                          _tokenApprovals[tokenId] = to;
                          emit Approval(ERC721Upgradeable.ownerOf(tokenId), to, tokenId);
                      }
                      /**
                       * @dev Approve `operator` to operate on all of `owner` tokens
                       *
                       * Emits an {ApprovalForAll} event.
                       */
                      function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
                          require(owner != operator, "ERC721: approve to caller");
                          _operatorApprovals[owner][operator] = approved;
                          emit ApprovalForAll(owner, operator, approved);
                      }
                      /**
                       * @dev Reverts if the `tokenId` has not been minted yet.
                       */
                      function _requireMinted(uint256 tokenId) internal view virtual {
                          require(_exists(tokenId), "ERC721: invalid token ID");
                      }
                      /**
                       * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
                       * The call is not executed if the target address is not a contract.
                       *
                       * @param from address representing the previous owner of the given token ID
                       * @param to target address that will receive the tokens
                       * @param tokenId uint256 ID of the token to be transferred
                       * @param data bytes optional data to send along with the call
                       * @return bool whether the call correctly returned the expected magic value
                       */
                      function _checkOnERC721Received(
                          address from,
                          address to,
                          uint256 tokenId,
                          bytes memory data
                      ) private returns (bool) {
                          if (to.isContract()) {
                              try IERC721ReceiverUpgradeable(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                                  return retval == IERC721ReceiverUpgradeable.onERC721Received.selector;
                              } catch (bytes memory reason) {
                                  if (reason.length == 0) {
                                      revert("ERC721: transfer to non ERC721Receiver implementer");
                                  } else {
                                      /// @solidity memory-safe-assembly
                                      assembly {
                                          revert(add(32, reason), mload(reason))
                                      }
                                  }
                              }
                          } else {
                              return true;
                          }
                      }
                      /**
                       * @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
                       * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
                       *
                       * Calling conditions:
                       *
                       * - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
                       * - When `from` is zero, the tokens will be minted for `to`.
                       * - When `to` is zero, ``from``'s tokens will be burned.
                       * - `from` and `to` are never both zero.
                       * - `batchSize` is non-zero.
                       *
                       * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                       */
                      function _beforeTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
                      /**
                       * @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
                       * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
                       *
                       * Calling conditions:
                       *
                       * - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
                       * - When `from` is zero, the tokens were minted for `to`.
                       * - When `to` is zero, ``from``'s tokens were burned.
                       * - `from` and `to` are never both zero.
                       * - `batchSize` is non-zero.
                       *
                       * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                       */
                      function _afterTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
                      /**
                       * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
                       *
                       * WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
                       * being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
                       * that `ownerOf(tokenId)` is `a`.
                       */
                      // solhint-disable-next-line func-name-mixedcase
                      function __unsafe_increaseBalance(address account, uint256 amount) internal {
                          _balances[account] += amount;
                      }
                      /**
                       * @dev This empty reserved space is put in place to allow future versions to add new
                       * variables without shifting down storage in the inheritance chain.
                       * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                       */
                      uint256[44] private __gap;
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
                  pragma solidity ^0.8.0;
                  import "../IERC721Upgradeable.sol";
                  /**
                   * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
                   * @dev See https://eips.ethereum.org/EIPS/eip-721
                   */
                  interface IERC721MetadataUpgradeable is IERC721Upgradeable {
                      /**
                       * @dev Returns the token collection name.
                       */
                      function name() external view returns (string memory);
                      /**
                       * @dev Returns the token collection symbol.
                       */
                      function symbol() external view returns (string memory);
                      /**
                       * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
                       */
                      function tokenURI(uint256 tokenId) external view returns (string memory);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @title ERC721 token receiver interface
                   * @dev Interface for any contract that wants to support safeTransfers
                   * from ERC721 asset contracts.
                   */
                  interface IERC721ReceiverUpgradeable {
                      /**
                       * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
                       * by `operator` from `from`, this function is called.
                       *
                       * It must return its Solidity selector to confirm the token transfer.
                       * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
                       *
                       * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
                       */
                      function onERC721Received(
                          address operator,
                          address from,
                          uint256 tokenId,
                          bytes calldata data
                      ) external returns (bytes4);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
                  pragma solidity ^0.8.0;
                  import "../../utils/introspection/IERC165Upgradeable.sol";
                  /**
                   * @dev Required interface of an ERC721 compliant contract.
                   */
                  interface IERC721Upgradeable is IERC165Upgradeable {
                      /**
                       * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
                       */
                      event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
                      /**
                       * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
                       */
                      event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
                      /**
                       * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
                       */
                      event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
                      /**
                       * @dev Returns the number of tokens in ``owner``'s account.
                       */
                      function balanceOf(address owner) external view returns (uint256 balance);
                      /**
                       * @dev Returns the owner of the `tokenId` token.
                       *
                       * Requirements:
                       *
                       * - `tokenId` must exist.
                       */
                      function ownerOf(uint256 tokenId) external view returns (address owner);
                      /**
                       * @dev Safely transfers `tokenId` token from `from` to `to`.
                       *
                       * Requirements:
                       *
                       * - `from` cannot be the zero address.
                       * - `to` cannot be the zero address.
                       * - `tokenId` token must exist and be owned by `from`.
                       * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
                       * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
                       *
                       * Emits a {Transfer} event.
                       */
                      function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
                      /**
                       * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
                       * are aware of the ERC721 protocol to prevent tokens from being forever locked.
                       *
                       * Requirements:
                       *
                       * - `from` cannot be the zero address.
                       * - `to` cannot be the zero address.
                       * - `tokenId` token must exist and be owned by `from`.
                       * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
                       * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
                       *
                       * Emits a {Transfer} event.
                       */
                      function safeTransferFrom(address from, address to, uint256 tokenId) external;
                      /**
                       * @dev Transfers `tokenId` token from `from` to `to`.
                       *
                       * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
                       * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
                       * understand this adds an external call which potentially creates a reentrancy vulnerability.
                       *
                       * Requirements:
                       *
                       * - `from` cannot be the zero address.
                       * - `to` cannot be the zero address.
                       * - `tokenId` token must be owned by `from`.
                       * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transferFrom(address from, address to, uint256 tokenId) external;
                      /**
                       * @dev Gives permission to `to` to transfer `tokenId` token to another account.
                       * The approval is cleared when the token is transferred.
                       *
                       * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
                       *
                       * Requirements:
                       *
                       * - The caller must own the token or be an approved operator.
                       * - `tokenId` must exist.
                       *
                       * Emits an {Approval} event.
                       */
                      function approve(address to, uint256 tokenId) external;
                      /**
                       * @dev Approve or remove `operator` as an operator for the caller.
                       * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
                       *
                       * Requirements:
                       *
                       * - The `operator` cannot be the caller.
                       *
                       * Emits an {ApprovalForAll} event.
                       */
                      function setApprovalForAll(address operator, bool approved) external;
                      /**
                       * @dev Returns the account approved for `tokenId` token.
                       *
                       * Requirements:
                       *
                       * - `tokenId` must exist.
                       */
                      function getApproved(uint256 tokenId) external view returns (address operator);
                      /**
                       * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
                       *
                       * See {setApprovalForAll}
                       */
                      function isApprovedForAll(address owner, address operator) external view returns (bool);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
                  pragma solidity ^0.8.1;
                  /**
                   * @dev Collection of functions related to the address type
                   */
                  library AddressUpgradeable {
                      /**
                       * @dev Returns true if `account` is a contract.
                       *
                       * [IMPORTANT]
                       * ====
                       * It is unsafe to assume that an address for which this function returns
                       * false is an externally-owned account (EOA) and not a contract.
                       *
                       * Among others, `isContract` will return false for the following
                       * types of addresses:
                       *
                       *  - an externally-owned account
                       *  - a contract in construction
                       *  - an address where a contract will be created
                       *  - an address where a contract lived, but was destroyed
                       *
                       * Furthermore, `isContract` will also return true if the target contract within
                       * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
                       * which only has an effect at the end of a transaction.
                       * ====
                       *
                       * [IMPORTANT]
                       * ====
                       * You shouldn't rely on `isContract` to protect against flash loan attacks!
                       *
                       * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                       * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                       * constructor.
                       * ====
                       */
                      function isContract(address account) internal view returns (bool) {
                          // This method relies on extcodesize/address.code.length, which returns 0
                          // for contracts in construction, since the code is only stored at the end
                          // of the constructor execution.
                          return account.code.length > 0;
                      }
                      /**
                       * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                       * `recipient`, forwarding all available gas and reverting on errors.
                       *
                       * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                       * of certain opcodes, possibly making contracts go over the 2300 gas limit
                       * imposed by `transfer`, making them unable to receive funds via
                       * `transfer`. {sendValue} removes this limitation.
                       *
                       * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                       *
                       * IMPORTANT: because control is transferred to `recipient`, care must be
                       * taken to not create reentrancy vulnerabilities. Consider using
                       * {ReentrancyGuard} or the
                       * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                       */
                      function sendValue(address payable recipient, uint256 amount) internal {
                          require(address(this).balance >= amount, "Address: insufficient balance");
                          (bool success, ) = recipient.call{value: amount}("");
                          require(success, "Address: unable to send value, recipient may have reverted");
                      }
                      /**
                       * @dev Performs a Solidity function call using a low level `call`. A
                       * plain `call` is an unsafe replacement for a function call: use this
                       * function instead.
                       *
                       * If `target` reverts with a revert reason, it is bubbled up by this
                       * function (like regular Solidity function calls).
                       *
                       * Returns the raw returned data. To convert to the expected return value,
                       * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                       *
                       * Requirements:
                       *
                       * - `target` must be a contract.
                       * - calling `target` with `data` must not revert.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                       * `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, 0, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but also transferring `value` wei to `target`.
                       *
                       * Requirements:
                       *
                       * - the calling contract must have an ETH balance of at least `value`.
                       * - the called Solidity function must be `payable`.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                       * with `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(
                          address target,
                          bytes memory data,
                          uint256 value,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          require(address(this).balance >= value, "Address: insufficient balance for call");
                          (bool success, bytes memory returndata) = target.call{value: value}(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but performing a static call.
                       *
                       * _Available since v3.3._
                       */
                      function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                          return functionStaticCall(target, data, "Address: low-level static call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                       * but performing a static call.
                       *
                       * _Available since v3.3._
                       */
                      function functionStaticCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal view returns (bytes memory) {
                          (bool success, bytes memory returndata) = target.staticcall(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but performing a delegate call.
                       *
                       * _Available since v3.4._
                       */
                      function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                       * but performing a delegate call.
                       *
                       * _Available since v3.4._
                       */
                      function functionDelegateCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          (bool success, bytes memory returndata) = target.delegatecall(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                       * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                       *
                       * _Available since v4.8._
                       */
                      function verifyCallResultFromTarget(
                          address target,
                          bool success,
                          bytes memory returndata,
                          string memory errorMessage
                      ) internal view returns (bytes memory) {
                          if (success) {
                              if (returndata.length == 0) {
                                  // only check isContract if the call was successful and the return data is empty
                                  // otherwise we already know that it was a contract
                                  require(isContract(target), "Address: call to non-contract");
                              }
                              return returndata;
                          } else {
                              _revert(returndata, errorMessage);
                          }
                      }
                      /**
                       * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                       * revert reason or using the provided one.
                       *
                       * _Available since v4.3._
                       */
                      function verifyCallResult(
                          bool success,
                          bytes memory returndata,
                          string memory errorMessage
                      ) internal pure returns (bytes memory) {
                          if (success) {
                              return returndata;
                          } else {
                              _revert(returndata, errorMessage);
                          }
                      }
                      function _revert(bytes memory returndata, string memory errorMessage) private pure {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
                  pragma solidity ^0.8.0;
                  import {Initializable} from "../proxy/utils/Initializable.sol";
                  /**
                   * @dev Provides information about the current execution context, including the
                   * sender of the transaction and its data. While these are generally available
                   * via msg.sender and msg.data, they should not be accessed in such a direct
                   * manner, since when dealing with meta-transactions the account sending and
                   * paying for execution may not be the actual sender (as far as an application
                   * is concerned).
                   *
                   * This contract is only required for intermediate, library-like contracts.
                   */
                  abstract contract ContextUpgradeable is Initializable {
                      function __Context_init() internal onlyInitializing {
                      }
                      function __Context_init_unchained() internal onlyInitializing {
                      }
                      function _msgSender() internal view virtual returns (address) {
                          return msg.sender;
                      }
                      function _msgData() internal view virtual returns (bytes calldata) {
                          return msg.data;
                      }
                      function _contextSuffixLength() internal view virtual returns (uint256) {
                          return 0;
                      }
                      /**
                       * @dev This empty reserved space is put in place to allow future versions to add new
                       * variables without shifting down storage in the inheritance chain.
                       * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                       */
                      uint256[50] private __gap;
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
                  pragma solidity ^0.8.0;
                  import "./IERC165Upgradeable.sol";
                  import {Initializable} from "../../proxy/utils/Initializable.sol";
                  /**
                   * @dev Implementation of the {IERC165} interface.
                   *
                   * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
                   * for the additional interface id that will be supported. For example:
                   *
                   * ```solidity
                   * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                   *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
                   * }
                   * ```
                   *
                   * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
                   */
                  abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
                      function __ERC165_init() internal onlyInitializing {
                      }
                      function __ERC165_init_unchained() internal onlyInitializing {
                      }
                      /**
                       * @dev See {IERC165-supportsInterface}.
                       */
                      function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                          return interfaceId == type(IERC165Upgradeable).interfaceId;
                      }
                      /**
                       * @dev This empty reserved space is put in place to allow future versions to add new
                       * variables without shifting down storage in the inheritance chain.
                       * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                       */
                      uint256[50] private __gap;
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Interface of the ERC165 standard, as defined in the
                   * https://eips.ethereum.org/EIPS/eip-165[EIP].
                   *
                   * Implementers can declare support of contract interfaces, which can then be
                   * queried by others ({ERC165Checker}).
                   *
                   * For an implementation, see {ERC165}.
                   */
                  interface IERC165Upgradeable {
                      /**
                       * @dev Returns true if this contract implements the interface defined by
                       * `interfaceId`. See the corresponding
                       * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
                       * to learn more about how these ids are created.
                       *
                       * This function call must use less than 30 000 gas.
                       */
                      function supportsInterface(bytes4 interfaceId) external view returns (bool);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Standard math utilities missing in the Solidity language.
                   */
                  library MathUpgradeable {
                      enum Rounding {
                          Down, // Toward negative infinity
                          Up, // Toward infinity
                          Zero // Toward zero
                      }
                      /**
                       * @dev Returns the largest of two numbers.
                       */
                      function max(uint256 a, uint256 b) internal pure returns (uint256) {
                          return a > b ? a : b;
                      }
                      /**
                       * @dev Returns the smallest of two numbers.
                       */
                      function min(uint256 a, uint256 b) internal pure returns (uint256) {
                          return a < b ? a : b;
                      }
                      /**
                       * @dev Returns the average of two numbers. The result is rounded towards
                       * zero.
                       */
                      function average(uint256 a, uint256 b) internal pure returns (uint256) {
                          // (a + b) / 2 can overflow.
                          return (a & b) + (a ^ b) / 2;
                      }
                      /**
                       * @dev Returns the ceiling of the division of two numbers.
                       *
                       * This differs from standard division with `/` in that it rounds up instead
                       * of rounding down.
                       */
                      function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                          // (a + b - 1) / b can overflow on addition, so we distribute.
                          return a == 0 ? 0 : (a - 1) / b + 1;
                      }
                      /**
                       * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                       * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                       * with further edits by Uniswap Labs also under MIT license.
                       */
                      function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                          unchecked {
                              // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                              // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                              // variables such that product = prod1 * 2^256 + prod0.
                              uint256 prod0; // Least significant 256 bits of the product
                              uint256 prod1; // Most significant 256 bits of the product
                              assembly {
                                  let mm := mulmod(x, y, not(0))
                                  prod0 := mul(x, y)
                                  prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                              }
                              // Handle non-overflow cases, 256 by 256 division.
                              if (prod1 == 0) {
                                  // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                                  // The surrounding unchecked block does not change this fact.
                                  // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                                  return prod0 / denominator;
                              }
                              // Make sure the result is less than 2^256. Also prevents denominator == 0.
                              require(denominator > prod1, "Math: mulDiv overflow");
                              ///////////////////////////////////////////////
                              // 512 by 256 division.
                              ///////////////////////////////////////////////
                              // Make division exact by subtracting the remainder from [prod1 prod0].
                              uint256 remainder;
                              assembly {
                                  // Compute remainder using mulmod.
                                  remainder := mulmod(x, y, denominator)
                                  // Subtract 256 bit number from 512 bit number.
                                  prod1 := sub(prod1, gt(remainder, prod0))
                                  prod0 := sub(prod0, remainder)
                              }
                              // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                              // See https://cs.stackexchange.com/q/138556/92363.
                              // Does not overflow because the denominator cannot be zero at this stage in the function.
                              uint256 twos = denominator & (~denominator + 1);
                              assembly {
                                  // Divide denominator by twos.
                                  denominator := div(denominator, twos)
                                  // Divide [prod1 prod0] by twos.
                                  prod0 := div(prod0, twos)
                                  // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                  twos := add(div(sub(0, twos), twos), 1)
                              }
                              // Shift in bits from prod1 into prod0.
                              prod0 |= prod1 * twos;
                              // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                              // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                              // four bits. That is, denominator * inv = 1 mod 2^4.
                              uint256 inverse = (3 * denominator) ^ 2;
                              // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                              // in modular arithmetic, doubling the correct bits in each step.
                              inverse *= 2 - denominator * inverse; // inverse mod 2^8
                              inverse *= 2 - denominator * inverse; // inverse mod 2^16
                              inverse *= 2 - denominator * inverse; // inverse mod 2^32
                              inverse *= 2 - denominator * inverse; // inverse mod 2^64
                              inverse *= 2 - denominator * inverse; // inverse mod 2^128
                              inverse *= 2 - denominator * inverse; // inverse mod 2^256
                              // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                              // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                              // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                              // is no longer required.
                              result = prod0 * inverse;
                              return result;
                          }
                      }
                      /**
                       * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                       */
                      function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                          uint256 result = mulDiv(x, y, denominator);
                          if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                              result += 1;
                          }
                          return result;
                      }
                      /**
                       * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
                       *
                       * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                       */
                      function sqrt(uint256 a) internal pure returns (uint256) {
                          if (a == 0) {
                              return 0;
                          }
                          // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                          //
                          // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                          // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                          //
                          // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                          // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                          // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                          //
                          // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                          uint256 result = 1 << (log2(a) >> 1);
                          // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                          // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                          // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                          // into the expected uint128 result.
                          unchecked {
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              return min(result, a / result);
                          }
                      }
                      /**
                       * @notice Calculates sqrt(a), following the selected rounding direction.
                       */
                      function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                          unchecked {
                              uint256 result = sqrt(a);
                              return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                          }
                      }
                      /**
                       * @dev Return the log in base 2, rounded down, of a positive value.
                       * Returns 0 if given 0.
                       */
                      function log2(uint256 value) internal pure returns (uint256) {
                          uint256 result = 0;
                          unchecked {
                              if (value >> 128 > 0) {
                                  value >>= 128;
                                  result += 128;
                              }
                              if (value >> 64 > 0) {
                                  value >>= 64;
                                  result += 64;
                              }
                              if (value >> 32 > 0) {
                                  value >>= 32;
                                  result += 32;
                              }
                              if (value >> 16 > 0) {
                                  value >>= 16;
                                  result += 16;
                              }
                              if (value >> 8 > 0) {
                                  value >>= 8;
                                  result += 8;
                              }
                              if (value >> 4 > 0) {
                                  value >>= 4;
                                  result += 4;
                              }
                              if (value >> 2 > 0) {
                                  value >>= 2;
                                  result += 2;
                              }
                              if (value >> 1 > 0) {
                                  result += 1;
                              }
                          }
                          return result;
                      }
                      /**
                       * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
                       * Returns 0 if given 0.
                       */
                      function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                          unchecked {
                              uint256 result = log2(value);
                              return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                          }
                      }
                      /**
                       * @dev Return the log in base 10, rounded down, of a positive value.
                       * Returns 0 if given 0.
                       */
                      function log10(uint256 value) internal pure returns (uint256) {
                          uint256 result = 0;
                          unchecked {
                              if (value >= 10 ** 64) {
                                  value /= 10 ** 64;
                                  result += 64;
                              }
                              if (value >= 10 ** 32) {
                                  value /= 10 ** 32;
                                  result += 32;
                              }
                              if (value >= 10 ** 16) {
                                  value /= 10 ** 16;
                                  result += 16;
                              }
                              if (value >= 10 ** 8) {
                                  value /= 10 ** 8;
                                  result += 8;
                              }
                              if (value >= 10 ** 4) {
                                  value /= 10 ** 4;
                                  result += 4;
                              }
                              if (value >= 10 ** 2) {
                                  value /= 10 ** 2;
                                  result += 2;
                              }
                              if (value >= 10 ** 1) {
                                  result += 1;
                              }
                          }
                          return result;
                      }
                      /**
                       * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
                       * Returns 0 if given 0.
                       */
                      function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                          unchecked {
                              uint256 result = log10(value);
                              return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                          }
                      }
                      /**
                       * @dev Return the log in base 256, rounded down, of a positive value.
                       * Returns 0 if given 0.
                       *
                       * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
                       */
                      function log256(uint256 value) internal pure returns (uint256) {
                          uint256 result = 0;
                          unchecked {
                              if (value >> 128 > 0) {
                                  value >>= 128;
                                  result += 16;
                              }
                              if (value >> 64 > 0) {
                                  value >>= 64;
                                  result += 8;
                              }
                              if (value >> 32 > 0) {
                                  value >>= 32;
                                  result += 4;
                              }
                              if (value >> 16 > 0) {
                                  value >>= 16;
                                  result += 2;
                              }
                              if (value >> 8 > 0) {
                                  result += 1;
                              }
                          }
                          return result;
                      }
                      /**
                       * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
                       * Returns 0 if given 0.
                       */
                      function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                          unchecked {
                              uint256 result = log256(value);
                              return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Standard signed math utilities missing in the Solidity language.
                   */
                  library SignedMathUpgradeable {
                      /**
                       * @dev Returns the largest of two signed numbers.
                       */
                      function max(int256 a, int256 b) internal pure returns (int256) {
                          return a > b ? a : b;
                      }
                      /**
                       * @dev Returns the smallest of two signed numbers.
                       */
                      function min(int256 a, int256 b) internal pure returns (int256) {
                          return a < b ? a : b;
                      }
                      /**
                       * @dev Returns the average of two signed numbers without overflow.
                       * The result is rounded towards zero.
                       */
                      function average(int256 a, int256 b) internal pure returns (int256) {
                          // Formula from the book "Hacker's Delight"
                          int256 x = (a & b) + ((a ^ b) >> 1);
                          return x + (int256(uint256(x) >> 255) & (a ^ b));
                      }
                      /**
                       * @dev Returns the absolute unsigned value of a signed value.
                       */
                      function abs(int256 n) internal pure returns (uint256) {
                          unchecked {
                              // must be unchecked in order to support `n = type(int256).min`
                              return uint256(n >= 0 ? n : -n);
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
                  pragma solidity ^0.8.0;
                  import "./math/MathUpgradeable.sol";
                  import "./math/SignedMathUpgradeable.sol";
                  /**
                   * @dev String operations.
                   */
                  library StringsUpgradeable {
                      bytes16 private constant _SYMBOLS = "0123456789abcdef";
                      uint8 private constant _ADDRESS_LENGTH = 20;
                      /**
                       * @dev Converts a `uint256` to its ASCII `string` decimal representation.
                       */
                      function toString(uint256 value) internal pure returns (string memory) {
                          unchecked {
                              uint256 length = MathUpgradeable.log10(value) + 1;
                              string memory buffer = new string(length);
                              uint256 ptr;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  ptr := add(buffer, add(32, length))
                              }
                              while (true) {
                                  ptr--;
                                  /// @solidity memory-safe-assembly
                                  assembly {
                                      mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                                  }
                                  value /= 10;
                                  if (value == 0) break;
                              }
                              return buffer;
                          }
                      }
                      /**
                       * @dev Converts a `int256` to its ASCII `string` decimal representation.
                       */
                      function toString(int256 value) internal pure returns (string memory) {
                          return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
                      }
                      /**
                       * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
                       */
                      function toHexString(uint256 value) internal pure returns (string memory) {
                          unchecked {
                              return toHexString(value, MathUpgradeable.log256(value) + 1);
                          }
                      }
                      /**
                       * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
                       */
                      function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                          bytes memory buffer = new bytes(2 * length + 2);
                          buffer[0] = "0";
                          buffer[1] = "x";
                          for (uint256 i = 2 * length + 1; i > 1; --i) {
                              buffer[i] = _SYMBOLS[value & 0xf];
                              value >>= 4;
                          }
                          require(value == 0, "Strings: hex length insufficient");
                          return string(buffer);
                      }
                      /**
                       * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
                       */
                      function toHexString(address addr) internal pure returns (string memory) {
                          return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
                      }
                      /**
                       * @dev Returns true if the two strings are equal.
                       */
                      function equal(string memory a, string memory b) internal pure returns (bool) {
                          return keccak256(bytes(a)) == keccak256(bytes(b));
                      }
                  }
                  //SPDX-License-Identifier: Unlicense
                  pragma solidity ^0.8.0;
                  import "@openzeppelin/contracts-upgradeable/token/ERC721/ERC721Upgradeable.sol";
                  import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
                  import "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
                  contract PaymentPROClonable is AccessControlUpgradeable {
                    event StrictPaymentReceived(bytes32 indexed paymentReferenceHash, address indexed sender, address indexed tokenAddress, uint256 tokenAmount, string paymentReference);
                    event OpenPaymentReceived(bytes32 indexed paymentReferenceHash, address indexed sender, address indexed tokenAddress, uint256 tokenAmount, string paymentReference);
                    event DefaultPaymentReceived(bytes32 indexed paymentReferenceHash, address indexed sender, address indexed tokenAddress, uint256 tokenAmount, string paymentReference);
                    event TokenSwept(address indexed recipient, address indexed sweeper, address indexed tokenAddress, uint256 tokenAmount);
                    event PaymentReferenceCreated(bytes32 indexed paymentReferenceHash, string paymentReference, StrictPayment referencedPaymentEntry);
                    event PaymentReferenceDeleted(bytes32 indexed paymentReferenceHash, string paymentReference);
                    event DefaultPaymentConfigAdjusted(address indexed tokenAddress, uint256 tokenAmount);
                    event ApprovedPaymentToken(address indexed tokenAddress);
                    event ApprovedSweepingToken(address indexed tokenAddress);
                    event ApprovedTokenSweepRecipient(address indexed recipientAddress);
                    event UnapprovedPaymentToken(address indexed tokenAddress);
                    event UnapprovedSweepingToken(address indexed tokenAddress);
                    event UnapprovedTokenSweepRecipient(address indexed recipientAddress);
                    bytes32 public constant APPROVER_ROLE = keccak256("APPROVER_ROLE"); // can manage approvedPaymentTokens / approvedSweepingTokens / approvedSweepRecipients -> 0x408a36151f841709116a4e8aca4e0202874f7f54687dcb863b1ea4672dc9d8cf
                    bytes32 public constant SWEEPER_ROLE = keccak256("SWEEPER_ROLE"); // can sweep tokens -> 0x8aef0597c0be1e090afba1f387ee99f604b5d975ccbed6215cdf146ffd5c49fc
                    bytes32 public constant PAYMENT_MANAGER_ROLE = keccak256("PAYMENT_MANAGER_ROLE"); // can manage default payment configs / strict payments -> 0xa624ddbc4fb31a463e13e6620d62eeaf14248f89110a7fda32b4048499c999a6
                    struct DefaultPaymentConfig {
                      address tokenAddress;
                      uint256 tokenAmount;
                    }
                    struct StrictPayment {
                      string paymentReference;
                      bytes32 paymentReferenceHash;
                      address tokenAddress;
                      uint256 tokenAmount;
                      address payer;
                      bool enforcePayer;
                      bool complete;
                      bool exists;
                    }
                    mapping (bytes32 => StrictPayment) internal strictPayments;
                    mapping (bytes32 => bool) internal referenceReservations;
                    mapping (address => bool) internal approvedPaymentTokens;
                    mapping (address => bool) internal approvedSweepingTokens;
                    mapping (address => bool) internal approvedSweepRecipients;
                    DefaultPaymentConfig public defaultPaymentConfig;
                    bool public isInitialized;
                    function initializeContract(
                      address _roleAdmin,
                      address _approvedPaymentToken,
                      address _approvedSweepingToken,
                      address _approvedTokenSweepRecipient,
                      uint256 _defaultTokenAmount
                    ) external {
                      require(!isInitialized, "ALREADY_INITIALIZED");
                      require(_roleAdmin != address(0), "NO_ZERO_ADDRESS");
                      require(_approvedPaymentToken != address(0), "NO_ZERO_ADDRESS");
                      require(_approvedSweepingToken != address(0), "NO_ZERO_ADDRESS");
                      require(_approvedTokenSweepRecipient != address(0), "NO_ZERO_ADDRESS");
                      require(_defaultTokenAmount > 0, "NO_ZERO_AMOUNT");
                      isInitialized = true;
                      _setupRole(DEFAULT_ADMIN_ROLE, _roleAdmin);
                      _setupRole(APPROVER_ROLE, _roleAdmin);
                      _setupRole(SWEEPER_ROLE, _roleAdmin);
                      _setupRole(PAYMENT_MANAGER_ROLE, _roleAdmin);
                      approvedPaymentTokens[_approvedPaymentToken] = true;
                      emit ApprovedPaymentToken(_approvedPaymentToken);
                      approvedSweepingTokens[_approvedSweepingToken] = true;
                      emit ApprovedSweepingToken(_approvedPaymentToken);
                      approvedSweepRecipients[_approvedTokenSweepRecipient] = true;
                      emit ApprovedTokenSweepRecipient(_approvedTokenSweepRecipient);
                      defaultPaymentConfig = DefaultPaymentConfig(_approvedSweepingToken, _defaultTokenAmount);
                      emit DefaultPaymentConfigAdjusted(_approvedSweepingToken, _defaultTokenAmount);
                    }
                    // ROLE MODIFIERS
                    modifier onlyApprover() {
                      require(hasRole(APPROVER_ROLE, msg.sender), "NOT_APPROVER");
                      _;
                    }
                    modifier onlyPaymentManager() {
                      require(hasRole(PAYMENT_MANAGER_ROLE, msg.sender), "NOT_PAYMENT_MANAGER");
                      _;
                    }
                    modifier onlySweeper() {
                      require(hasRole(SWEEPER_ROLE, msg.sender), "NOT_SWEEPER");
                      _;
                    }
                    // ADMIN FUNCTIONS
                    function setApprovedPaymentToken(address _tokenAddress, bool _validity) external onlyApprover {
                      require(_tokenAddress != address(0), "NO_ZERO_ADDRESS");
                      require(_validity != approvedPaymentTokens[_tokenAddress], "NO_CHANGE");
                      approvedPaymentTokens[_tokenAddress] = _validity;
                      if(_validity) {
                        emit ApprovedPaymentToken(_tokenAddress);
                      } else {
                        emit UnapprovedPaymentToken(_tokenAddress);
                      }
                    }
                    function setApprovedSweepingToken(address _tokenAddress, bool _validity) external onlyApprover {
                      require(_tokenAddress != address(0), "NO_ZERO_ADDRESS");
                      require(_validity != approvedSweepingTokens[_tokenAddress], "NO_CHANGE");
                      approvedSweepingTokens[_tokenAddress] = _validity;
                      if(_validity) {
                        emit ApprovedSweepingToken(_tokenAddress);
                      } else {
                        emit UnapprovedSweepingToken(_tokenAddress);
                      }
                    }
                    function setApprovedSweepRecipient(address _recipientAddress, bool _validity) external onlyApprover {
                      require(_recipientAddress != address(0), "NO_ZERO_ADDRESS");
                      require(_validity != approvedSweepRecipients[_recipientAddress], "NO_CHANGE");
                      approvedSweepRecipients[_recipientAddress] = _validity;
                      if(_validity) {
                        emit ApprovedTokenSweepRecipient(_recipientAddress);
                      } else {
                        emit UnapprovedTokenSweepRecipient(_recipientAddress);
                      }
                    }
                    // PAYMENT MANAGEMENT FUNCTIONS
                    function createStrictPayment(
                      string memory _reference,
                      address _tokenAddress,
                      uint256 _tokenAmount,
                      address _payer,
                      bool _enforcePayer
                    ) external onlyPaymentManager {
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      require(!referenceReservations[_hashedReference], "REFERENCE_ALREADY_RESERVED");
                      require(approvedPaymentTokens[_tokenAddress], "NOT_APPROVED_TOKEN_ADDRESS");
                      require(_tokenAmount > 0, "NO_ZERO_AMOUNT");
                      referenceReservations[_hashedReference] = true;
                      StrictPayment memory newStrictPaymentEntry = StrictPayment(
                        _reference,
                        _hashedReference,
                        _tokenAddress,
                        _tokenAmount,
                        _payer,
                        _enforcePayer,
                        false,
                        true
                      );
                      strictPayments[_hashedReference] = newStrictPaymentEntry;
                      emit PaymentReferenceCreated(_hashedReference, _reference, newStrictPaymentEntry);
                    }
                    function deleteStrictPayment(
                      string memory _reference
                    ) external onlyPaymentManager {
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      require(referenceReservations[_hashedReference], "REFERENCE_NOT_RESERVED");
                      require(strictPayments[_hashedReference].complete == false, "PAYMENT_ALREADY_COMPLETE");
                      referenceReservations[_hashedReference] = false;
                      strictPayments[_hashedReference].exists = false;
                      emit PaymentReferenceDeleted(_hashedReference, _reference);
                    }
                    function setDefaultPaymentConfig(address _tokenAddress, uint256 _tokenAmount) external onlyPaymentManager {
                      require(approvedPaymentTokens[_tokenAddress], "NOT_APPROVED_TOKEN_ADDRESS");
                      require(_tokenAmount > 0, "NO_ZERO_AMOUNT");
                      defaultPaymentConfig = DefaultPaymentConfig(_tokenAddress, _tokenAmount);
                      emit DefaultPaymentConfigAdjusted(_tokenAddress, _tokenAmount);
                    }
                    // SWEEPING / WITHDRAWAL FUNCTIONS
                    function sweepTokenByFullBalance(
                      address _tokenAddress,
                      address _recipientAddress
                    ) external onlySweeper {
                      require(approvedPaymentTokens[_tokenAddress], "NOT_APPROVED_TOKEN_ADDRESS");
                      require(approvedSweepRecipients[_recipientAddress], "NOT_APPROVED_RECIPIENT");
                      IERC20Upgradeable _tokenContract = IERC20Upgradeable(_tokenAddress);
                      uint256 _tokenBalance = _tokenContract.balanceOf(address(this));
                      require(_tokenBalance > 0, "NO_BALANCE");
                      _tokenContract.transfer(_recipientAddress, _tokenBalance);
                      emit TokenSwept(_recipientAddress, msg.sender, _tokenAddress, _tokenBalance);
                    }
                    function sweepTokenByAmount(
                      address _tokenAddress,
                      address _recipientAddress,
                      uint256 _tokenAmount
                    ) external onlySweeper {
                      require(approvedPaymentTokens[_tokenAddress], "NOT_APPROVED_TOKEN_ADDRESS");
                      require(approvedSweepRecipients[_recipientAddress], "NOT_APPROVED_RECIPIENT");
                      require(_tokenAmount > 0, "NO_ZERO_AMOUNT");
                      IERC20Upgradeable _tokenContract = IERC20Upgradeable(_tokenAddress);
                      uint256 _tokenBalance = _tokenContract.balanceOf(address(this));
                      require(_tokenBalance >= _tokenAmount, "INSUFFICIENT_BALANCE");
                      bool success = _tokenContract.transfer(_recipientAddress, _tokenAmount);
                      require(success, "PAYMENT_FAILED");
                      emit TokenSwept(_recipientAddress, msg.sender, _tokenAddress, _tokenAmount);
                    }
                    // PAYMENT FUNCTIONS
                    function makeOpenPayment(
                      address _tokenAddress,
                      uint256 _tokenAmount,
                      string memory _reference
                    ) external {
                      require(approvedPaymentTokens[_tokenAddress], "NOT_APPROVED_TOKEN");
                      require(_tokenAmount > 0, "NO_ZERO_AMOUNT");
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      require(!referenceReservations[_hashedReference], "REFERENCE_RESERVED");
                      bool success = IERC20Upgradeable(_tokenAddress).transferFrom(msg.sender, address(this), _tokenAmount);
                      require(success, "PAYMENT_FAILED");
                      emit OpenPaymentReceived(_hashedReference, msg.sender, _tokenAddress, _tokenAmount, _reference);
                    }
                    function makeDefaultPayment(
                      string memory _reference
                    ) external {
                      require(approvedPaymentTokens[defaultPaymentConfig.tokenAddress], "NOT_APPROVED_TOKEN");
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      require(!referenceReservations[_hashedReference], "REFERENCE_RESERVED");
                      bool success = IERC20Upgradeable(defaultPaymentConfig.tokenAddress).transferFrom(msg.sender, address(this), defaultPaymentConfig.tokenAmount);
                      require(success, "PAYMENT_FAILED");
                      emit DefaultPaymentReceived(_hashedReference, msg.sender, defaultPaymentConfig.tokenAddress, defaultPaymentConfig.tokenAmount, _reference);
                    }
                    function makeStrictPayment(
                      string memory _reference
                    ) external {
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      require(referenceReservations[_hashedReference], "REFERENCE_NOT_RESERVED");
                      StrictPayment storage strictPayment = strictPayments[_hashedReference];
                      require(approvedPaymentTokens[strictPayment.tokenAddress], "NOT_APPROVED_TOKEN");
                      if(strictPayment.enforcePayer) {
                        require(strictPayment.payer == msg.sender, "PAYER_MISMATCH");
                      }
                      strictPayment.complete = true;
                      bool success = IERC20Upgradeable(strictPayment.tokenAddress).transferFrom(msg.sender, address(this), strictPayment.tokenAmount);
                      require(success, "PAYMENT_FAILED");
                      emit StrictPaymentReceived(_hashedReference, msg.sender, strictPayment.tokenAddress, strictPayment.tokenAmount, _reference);
                    }
                    // VIEWS
                    function viewStrictPaymentByStringReference(
                      string memory _reference
                    ) external view returns (StrictPayment memory) {
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      return strictPayments[_hashedReference];
                    }
                    function viewStrictPaymentByHashedReference(
                      bytes32 _hashedReference
                    ) external view returns (StrictPayment memory) {
                      return strictPayments[_hashedReference];
                    }
                  }

                  File 4 of 6: PropyToken
                  /**
                   * This software is a subject to Ambisafe License Agreement.
                   * No use or distribution is allowed without written permission from Ambisafe.
                   * https://www.ambisafe.co/terms-of-use/
                   */
                  
                  pragma solidity 0.4.8;
                  
                  contract EToken2 {
                      function baseUnit(bytes32 _symbol) constant returns(uint8);
                      function name(bytes32 _symbol) constant returns(string);
                      function description(bytes32 _symbol) constant returns(string);
                      function owner(bytes32 _symbol) constant returns(address);
                      function isOwner(address _owner, bytes32 _symbol) constant returns(bool);
                      function totalSupply(bytes32 _symbol) constant returns(uint);
                      function balanceOf(address _holder, bytes32 _symbol) constant returns(uint);
                      function isLocked(bytes32 _symbol) constant returns(bool);
                      function proxyTransferFromToICAPWithReference(address _from, bytes32 _icap, uint _value, string _reference, address _sender) returns(bool);
                      function proxyApprove(address _spender, uint _value, bytes32 _symbol, address _sender) returns(bool);
                      function allowance(address _from, address _spender, bytes32 _symbol) constant returns(uint);
                      function proxyTransferFromWithReference(address _from, address _to, uint _value, bytes32 _symbol, string _reference, address _sender) returns(bool);
                  }
                  
                  contract Asset {
                      function _performTransferWithReference(address _to, uint _value, string _reference, address _sender) returns(bool);
                      function _performTransferToICAPWithReference(bytes32 _icap, uint _value, string _reference, address _sender) returns(bool);
                      function _performApprove(address _spender, uint _value, address _sender) returns(bool);    
                      function _performTransferFromWithReference(address _from, address _to, uint _value, string _reference, address _sender) returns(bool);
                      function _performTransferFromToICAPWithReference(address _from, bytes32 _icap, uint _value, string _reference, address _sender) returns(bool);
                      function _performGeneric(bytes _data, address _sender) payable returns(bytes32) {
                          throw;
                      }
                  }
                  
                  contract ERC20 {
                      event Transfer(address indexed from, address indexed to, uint256 value);
                      event Approval(address indexed from, address indexed spender, uint256 value);
                  
                      function totalSupply() constant returns(uint256 supply);
                      function balanceOf(address _owner) constant returns(uint256 balance);
                      function transfer(address _to, uint256 _value) returns(bool success);
                      function transferFrom(address _from, address _to, uint256 _value) returns(bool success);
                      function approve(address _spender, uint256 _value) returns(bool success);
                      function allowance(address _owner, address _spender) constant returns(uint256 remaining);
                      function decimals() constant returns(uint8);
                  }
                  
                  contract AssetProxyInterface {
                      function _forwardApprove(address _spender, uint _value, address _sender) returns(bool);    
                      function _forwardTransferFromWithReference(address _from, address _to, uint _value, string _reference, address _sender) returns(bool);
                      function _forwardTransferFromToICAPWithReference(address _from, bytes32 _icap, uint _value, string _reference, address _sender) returns(bool);
                  }
                  
                  contract Bytes32 {
                      function _bytes32(string _input) internal constant returns(bytes32 result) {
                          assembly {
                              result := mload(add(_input, 32))
                          }
                      }
                  }
                  
                  /**
                   * @title EToken2 Asset Proxy.
                   *
                   * Proxy implements ERC20 interface and acts as a gateway to a single EToken2 asset.
                   * Proxy adds etoken2Symbol and caller(sender) when forwarding requests to EToken2.
                   * Every request that is made by caller first sent to the specific asset implementation
                   * contract, which then calls back to be forwarded onto EToken2.
                   *
                   * Calls flow: Caller ->
                   *             Proxy.func(...) ->
                   *             Asset._performFunc(..., Caller.address) ->
                   *             Proxy._forwardFunc(..., Caller.address) ->
                   *             Platform.proxyFunc(..., symbol, Caller.address)
                   *
                   * Generic call flow: Caller ->
                   *             Proxy.unknownFunc(...) ->
                   *             Asset._performGeneric(..., Caller.address) ->
                   *             Asset.unknownFunc(...)
                   *
                   * Asset implementation contract is mutable, but each user have an option to stick with
                   * old implementation, through explicit decision made in timely manner, if he doesn't agree
                   * with new rules.
                   * Each user have a possibility to upgrade to latest asset contract implementation, without the
                   * possibility to rollback.
                   *
                   * Note: all the non constant functions return false instead of throwing in case if state change
                   * didn't happen yet.
                   */
                  contract AssetProxy is ERC20, AssetProxyInterface, Bytes32 {
                      // Assigned EToken2, immutable.
                      EToken2 public etoken2;
                  
                      // Assigned symbol, immutable.
                      bytes32 public etoken2Symbol;
                  
                      // Assigned name, immutable. For UI.
                      string public name;
                      string public symbol;
                  
                      /**
                       * Sets EToken2 address, assigns symbol and name.
                       *
                       * Can be set only once.
                       *
                       * @param _etoken2 EToken2 contract address.
                       * @param _symbol assigned symbol.
                       * @param _name assigned name.
                       *
                       * @return success.
                       */
                      function init(EToken2 _etoken2, string _symbol, string _name) returns(bool) {
                          if (address(etoken2) != 0x0) {
                              return false;
                          }
                          etoken2 = _etoken2;
                          etoken2Symbol = _bytes32(_symbol);
                          name = _name;
                          symbol = _symbol;
                          return true;
                      }
                  
                      /**
                       * Only EToken2 is allowed to call.
                       */
                      modifier onlyEToken2() {
                          if (msg.sender == address(etoken2)) {
                              _;
                          }
                      }
                  
                      /**
                       * Only current asset owner is allowed to call.
                       */
                      modifier onlyAssetOwner() {
                          if (etoken2.isOwner(msg.sender, etoken2Symbol)) {
                              _;
                          }
                      }
                  
                      /**
                       * Returns asset implementation contract for current caller.
                       *
                       * @return asset implementation contract.
                       */
                      function _getAsset() internal returns(Asset) {
                          return Asset(getVersionFor(msg.sender));
                      }
                  
                      function recoverTokens(uint _value) onlyAssetOwner() returns(bool) {
                          return this.transferWithReference(msg.sender, _value, 'Tokens recovery');
                      }
                  
                      /**
                       * Returns asset total supply.
                       *
                       * @return asset total supply.
                       */
                      function totalSupply() constant returns(uint) {
                          return etoken2.totalSupply(etoken2Symbol);
                      }
                  
                      /**
                       * Returns asset balance for a particular holder.
                       *
                       * @param _owner holder address.
                       *
                       * @return holder balance.
                       */
                      function balanceOf(address _owner) constant returns(uint) {
                          return etoken2.balanceOf(_owner, etoken2Symbol);
                      }
                  
                      /**
                       * Returns asset allowance from one holder to another.
                       *
                       * @param _from holder that allowed spending.
                       * @param _spender holder that is allowed to spend.
                       *
                       * @return holder to spender allowance.
                       */
                      function allowance(address _from, address _spender) constant returns(uint) {
                          return etoken2.allowance(_from, _spender, etoken2Symbol);
                      }
                  
                      /**
                       * Returns asset decimals.
                       *
                       * @return asset decimals.
                       */
                      function decimals() constant returns(uint8) {
                          return etoken2.baseUnit(etoken2Symbol);
                      }
                  
                      /**
                       * Transfers asset balance from the caller to specified receiver.
                       *
                       * @param _to holder address to give to.
                       * @param _value amount to transfer.
                       *
                       * @return success.
                       */
                      function transfer(address _to, uint _value) returns(bool) {
                          return transferWithReference(_to, _value, '');
                      }
                  
                      /**
                       * Transfers asset balance from the caller to specified receiver adding specified comment.
                       * Resolves asset implementation contract for the caller and forwards there arguments along with
                       * the caller address.
                       *
                       * @param _to holder address to give to.
                       * @param _value amount to transfer.
                       * @param _reference transfer comment to be included in a EToken2's Transfer event.
                       *
                       * @return success.
                       */
                      function transferWithReference(address _to, uint _value, string _reference) returns(bool) {
                          return _getAsset()._performTransferWithReference(_to, _value, _reference, msg.sender);
                      }
                  
                      /**
                       * Transfers asset balance from the caller to specified ICAP.
                       *
                       * @param _icap recipient ICAP to give to.
                       * @param _value amount to transfer.
                       *
                       * @return success.
                       */
                      function transferToICAP(bytes32 _icap, uint _value) returns(bool) {
                          return transferToICAPWithReference(_icap, _value, '');
                      }
                  
                      /**
                       * Transfers asset balance from the caller to specified ICAP adding specified comment.
                       * Resolves asset implementation contract for the caller and forwards there arguments along with
                       * the caller address.
                       *
                       * @param _icap recipient ICAP to give to.
                       * @param _value amount to transfer.
                       * @param _reference transfer comment to be included in a EToken2's Transfer event.
                       *
                       * @return success.
                       */
                      function transferToICAPWithReference(bytes32 _icap, uint _value, string _reference) returns(bool) {
                          return _getAsset()._performTransferToICAPWithReference(_icap, _value, _reference, msg.sender);
                      }
                  
                      /**
                       * Prforms allowance transfer of asset balance between holders.
                       *
                       * @param _from holder address to take from.
                       * @param _to holder address to give to.
                       * @param _value amount to transfer.
                       *
                       * @return success.
                       */
                      function transferFrom(address _from, address _to, uint _value) returns(bool) {
                          return transferFromWithReference(_from, _to, _value, '');
                      }
                  
                      /**
                       * Prforms allowance transfer of asset balance between holders adding specified comment.
                       * Resolves asset implementation contract for the caller and forwards there arguments along with
                       * the caller address.
                       *
                       * @param _from holder address to take from.
                       * @param _to holder address to give to.
                       * @param _value amount to transfer.
                       * @param _reference transfer comment to be included in a EToken2's Transfer event.
                       *
                       * @return success.
                       */
                      function transferFromWithReference(address _from, address _to, uint _value, string _reference) returns(bool) {
                          return _getAsset()._performTransferFromWithReference(_from, _to, _value, _reference, msg.sender);
                      }
                  
                      /**
                       * Performs transfer call on the EToken2 by the name of specified sender.
                       *
                       * Can only be called by asset implementation contract assigned to sender.
                       *
                       * @param _from holder address to take from.
                       * @param _to holder address to give to.
                       * @param _value amount to transfer.
                       * @param _reference transfer comment to be included in a EToken2's Transfer event.
                       * @param _sender initial caller.
                       *
                       * @return success.
                       */
                      function _forwardTransferFromWithReference(address _from, address _to, uint _value, string _reference, address _sender) onlyImplementationFor(_sender) returns(bool) {
                          return etoken2.proxyTransferFromWithReference(_from, _to, _value, etoken2Symbol, _reference, _sender);
                      }
                  
                      /**
                       * Prforms allowance transfer of asset balance between holders.
                       *
                       * @param _from holder address to take from.
                       * @param _icap recipient ICAP address to give to.
                       * @param _value amount to transfer.
                       *
                       * @return success.
                       */
                      function transferFromToICAP(address _from, bytes32 _icap, uint _value) returns(bool) {
                          return transferFromToICAPWithReference(_from, _icap, _value, '');
                      }
                  
                      /**
                       * Prforms allowance transfer of asset balance between holders adding specified comment.
                       * Resolves asset implementation contract for the caller and forwards there arguments along with
                       * the caller address.
                       *
                       * @param _from holder address to take from.
                       * @param _icap recipient ICAP address to give to.
                       * @param _value amount to transfer.
                       * @param _reference transfer comment to be included in a EToken2's Transfer event.
                       *
                       * @return success.
                       */
                      function transferFromToICAPWithReference(address _from, bytes32 _icap, uint _value, string _reference) returns(bool) {
                          return _getAsset()._performTransferFromToICAPWithReference(_from, _icap, _value, _reference, msg.sender);
                      }
                  
                      /**
                       * Performs allowance transfer to ICAP call on the EToken2 by the name of specified sender.
                       *
                       * Can only be called by asset implementation contract assigned to sender.
                       *
                       * @param _from holder address to take from.
                       * @param _icap recipient ICAP address to give to.
                       * @param _value amount to transfer.
                       * @param _reference transfer comment to be included in a EToken2's Transfer event.
                       * @param _sender initial caller.
                       *
                       * @return success.
                       */
                      function _forwardTransferFromToICAPWithReference(address _from, bytes32 _icap, uint _value, string _reference, address _sender) onlyImplementationFor(_sender) returns(bool) {
                          return etoken2.proxyTransferFromToICAPWithReference(_from, _icap, _value, _reference, _sender);
                      }
                  
                      /**
                       * Sets asset spending allowance for a specified spender.
                       * Resolves asset implementation contract for the caller and forwards there arguments along with
                       * the caller address.
                       *
                       * @param _spender holder address to set allowance to.
                       * @param _value amount to allow.
                       *
                       * @return success.
                       */
                      function approve(address _spender, uint _value) returns(bool) {
                          return _getAsset()._performApprove(_spender, _value, msg.sender);
                      }
                  
                      /**
                       * Performs allowance setting call on the EToken2 by the name of specified sender.
                       *
                       * Can only be called by asset implementation contract assigned to sender.
                       *
                       * @param _spender holder address to set allowance to.
                       * @param _value amount to allow.
                       * @param _sender initial caller.
                       *
                       * @return success.
                       */
                      function _forwardApprove(address _spender, uint _value, address _sender) onlyImplementationFor(_sender) returns(bool) {
                          return etoken2.proxyApprove(_spender, _value, etoken2Symbol, _sender);
                      }
                  
                      /**
                       * Emits ERC20 Transfer event on this contract.
                       *
                       * Can only be, and, called by assigned EToken2 when asset transfer happens.
                       */
                      function emitTransfer(address _from, address _to, uint _value) onlyEToken2() {
                          Transfer(_from, _to, _value);
                      }
                  
                      /**
                       * Emits ERC20 Approval event on this contract.
                       *
                       * Can only be, and, called by assigned EToken2 when asset allowance set happens.
                       */
                      function emitApprove(address _from, address _spender, uint _value) onlyEToken2() {
                          Approval(_from, _spender, _value);
                      }
                  
                      /**
                       * Resolves asset implementation contract for the caller and forwards there transaction data,
                       * along with the value. This allows for proxy interface growth.
                       */
                      function () payable {
                          bytes32 result = _getAsset()._performGeneric.value(msg.value)(msg.data, msg.sender);
                          assembly {
                              mstore(0, result)
                              return(0, 32)
                          }
                      }
                  
                      /**
                       * Indicates an upgrade freeze-time start, and the next asset implementation contract.
                       */
                      event UpgradeProposal(address newVersion);
                  
                      // Current asset implementation contract address.
                      address latestVersion;
                  
                      // Proposed next asset implementation contract address.
                      address pendingVersion;
                  
                      // Upgrade freeze-time start.
                      uint pendingVersionTimestamp;
                  
                      // Timespan for users to review the new implementation and make decision.
                      uint constant UPGRADE_FREEZE_TIME = 3 days;
                  
                      // Asset implementation contract address that user decided to stick with.
                      // 0x0 means that user uses latest version.
                      mapping(address => address) userOptOutVersion;
                  
                      /**
                       * Only asset implementation contract assigned to sender is allowed to call.
                       */
                      modifier onlyImplementationFor(address _sender) {
                          if (getVersionFor(_sender) == msg.sender) {
                              _;
                          }
                      }
                  
                      /**
                       * Returns asset implementation contract address assigned to sender.
                       *
                       * @param _sender sender address.
                       *
                       * @return asset implementation contract address.
                       */
                      function getVersionFor(address _sender) constant returns(address) {
                          return userOptOutVersion[_sender] == 0 ? latestVersion : userOptOutVersion[_sender];
                      }
                  
                      /**
                       * Returns current asset implementation contract address.
                       *
                       * @return asset implementation contract address.
                       */
                      function getLatestVersion() constant returns(address) {
                          return latestVersion;
                      }
                  
                      /**
                       * Returns proposed next asset implementation contract address.
                       *
                       * @return asset implementation contract address.
                       */
                      function getPendingVersion() constant returns(address) {
                          return pendingVersion;
                      }
                  
                      /**
                       * Returns upgrade freeze-time start.
                       *
                       * @return freeze-time start.
                       */
                      function getPendingVersionTimestamp() constant returns(uint) {
                          return pendingVersionTimestamp;
                      }
                  
                      /**
                       * Propose next asset implementation contract address.
                       *
                       * Can only be called by current asset owner.
                       *
                       * Note: freeze-time should not be applied for the initial setup.
                       *
                       * @param _newVersion asset implementation contract address.
                       *
                       * @return success.
                       */
                      function proposeUpgrade(address _newVersion) onlyAssetOwner() returns(bool) {
                          // Should not already be in the upgrading process.
                          if (pendingVersion != 0x0) {
                              return false;
                          }
                          // New version address should be other than 0x0.
                          if (_newVersion == 0x0) {
                              return false;
                          }
                          // Don't apply freeze-time for the initial setup.
                          if (latestVersion == 0x0) {
                              latestVersion = _newVersion;
                              return true;
                          }
                          pendingVersion = _newVersion;
                          pendingVersionTimestamp = now;
                          UpgradeProposal(_newVersion);
                          return true;
                      }
                  
                      /**
                       * Cancel the pending upgrade process.
                       *
                       * Can only be called by current asset owner.
                       *
                       * @return success.
                       */
                      function purgeUpgrade() onlyAssetOwner() returns(bool) {
                          if (pendingVersion == 0x0) {
                              return false;
                          }
                          delete pendingVersion;
                          delete pendingVersionTimestamp;
                          return true;
                      }
                  
                      /**
                       * Finalize an upgrade process setting new asset implementation contract address.
                       *
                       * Can only be called after an upgrade freeze-time.
                       *
                       * @return success.
                       */
                      function commitUpgrade() returns(bool) {
                          if (pendingVersion == 0x0) {
                              return false;
                          }
                          if (pendingVersionTimestamp + UPGRADE_FREEZE_TIME > now) {
                              return false;
                          }
                          latestVersion = pendingVersion;
                          delete pendingVersion;
                          delete pendingVersionTimestamp;
                          return true;
                      }
                  
                      /**
                       * Disagree with proposed upgrade, and stick with current asset implementation
                       * until further explicit agreement to upgrade.
                       *
                       * @return success.
                       */
                      function optOut() returns(bool) {
                          if (userOptOutVersion[msg.sender] != 0x0) {
                              return false;
                          }
                          userOptOutVersion[msg.sender] = latestVersion;
                          return true;
                      }
                  
                      /**
                       * Implicitly agree to upgrade to current and future asset implementation upgrades,
                       * until further explicit disagreement.
                       *
                       * @return success.
                       */
                      function optIn() returns(bool) {
                          delete userOptOutVersion[msg.sender];
                          return true;
                      }
                  
                      // Backwards compatibility.
                      function multiAsset() constant returns(EToken2) {
                          return etoken2;
                      }
                  }
                  
                  contract PropyToken is AssetProxy {
                      function change(string _symbol, string _name) onlyAssetOwner() returns(bool) {
                          if (etoken2.isLocked(etoken2Symbol)) {
                              return false;
                          }
                          name = _name;
                          symbol = _symbol;
                          return true;
                      }
                  }

                  File 5 of 6: CoinbaseSmartWallet
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.23;
                  import {IAccount} from "account-abstraction/interfaces/IAccount.sol";
                  import {UserOperation, UserOperationLib} from "account-abstraction/interfaces/UserOperation.sol";
                  import {Receiver} from "solady/accounts/Receiver.sol";
                  import {SignatureCheckerLib} from "solady/utils/SignatureCheckerLib.sol";
                  import {UUPSUpgradeable} from "solady/utils/UUPSUpgradeable.sol";
                  import {WebAuthn} from "webauthn-sol/WebAuthn.sol";
                  import {ERC1271} from "./ERC1271.sol";
                  import {MultiOwnable} from "./MultiOwnable.sol";
                  /// @title Coinbase Smart Wallet
                  ///
                  /// @notice ERC-4337-compatible smart account, based on Solady's ERC4337 account implementation
                  ///         with inspiration from Alchemy's LightAccount and Daimo's DaimoAccount. Verified by z0r0z.eth from (⌘) NANI.eth
                  ///
                  /// @author Coinbase (https://github.com/coinbase/smart-wallet)
                  /// @author Solady (https://github.com/vectorized/solady/blob/main/src/accounts/ERC4337.sol)
                  contract CoinbaseSmartWallet is ERC1271, IAccount, MultiOwnable, UUPSUpgradeable, Receiver {
                      /// @notice A wrapper struct used for signature validation so that callers
                      ///         can identify the owner that signed.
                      struct SignatureWrapper {
                          /// @dev The index of the owner that signed, see `MultiOwnable.ownerAtIndex`
                          uint256 ownerIndex;
                          /// @dev If `MultiOwnable.ownerAtIndex` is an Ethereum address, this should be `abi.encodePacked(r, s, v)`
                          ///      If `MultiOwnable.ownerAtIndex` is a public key, this should be `abi.encode(WebAuthnAuth)`.
                          bytes signatureData;
                      }
                      /// @notice Represents a call to make.
                      struct Call {
                          /// @dev The address to call.
                          address target;
                          /// @dev The value to send when making the call.
                          uint256 value;
                          /// @dev The data of the call.
                          bytes data;
                      }
                      /// @notice Reserved nonce key (upper 192 bits of `UserOperation.nonce`) for cross-chain replayable
                      ///         transactions.
                      ///
                      /// @dev MUST BE the `UserOperation.nonce` key when `UserOperation.calldata` is calling
                      ///      `executeWithoutChainIdValidation`and MUST NOT BE `UserOperation.nonce` key when `UserOperation.calldata` is
                      ///      NOT calling `executeWithoutChainIdValidation`.
                      ///
                      /// @dev Helps enforce sequential sequencing of replayable transactions.
                      uint256 public constant REPLAYABLE_NONCE_KEY = 8453;
                      /// @notice Thrown when `initialize` is called but the account already has had at least one owner.
                      error Initialized();
                      /// @notice Thrown when a call is passed to `executeWithoutChainIdValidation` that is not allowed by
                      ///         `canSkipChainIdValidation`
                      ///
                      /// @param selector The selector of the call.
                      error SelectorNotAllowed(bytes4 selector);
                      /// @notice Thrown in validateUserOp if the key of `UserOperation.nonce` does not match the calldata.
                      ///
                      /// @dev Calls to `this.executeWithoutChainIdValidation` MUST use `REPLAYABLE_NONCE_KEY` and
                      ///      calls NOT to `this.executeWithoutChainIdValidation` MUST NOT use `REPLAYABLE_NONCE_KEY`.
                      ///
                      /// @param key The invalid `UserOperation.nonce` key.
                      error InvalidNonceKey(uint256 key);
                      /// @notice Reverts if the caller is not the EntryPoint.
                      modifier onlyEntryPoint() virtual {
                          if (msg.sender != entryPoint()) {
                              revert Unauthorized();
                          }
                          _;
                      }
                      /// @notice Reverts if the caller is neither the EntryPoint, the owner, nor the account itself.
                      modifier onlyEntryPointOrOwner() virtual {
                          if (msg.sender != entryPoint()) {
                              _checkOwner();
                          }
                          _;
                      }
                      /// @notice Sends to the EntryPoint (i.e. `msg.sender`) the missing funds for this transaction.
                      ///
                      /// @dev Subclass MAY override this modifier for better funds management (e.g. send to the
                      ///      EntryPoint more than the minimum required, so that in future transactions it will not
                      ///      be required to send again).
                      ///
                      /// @param missingAccountFunds The minimum value this modifier should send the EntryPoint which
                      ///                            MAY be zero, in case there is enough deposit, or the userOp has a
                      ///                            paymaster.
                      modifier payPrefund(uint256 missingAccountFunds) virtual {
                          _;
                          assembly ("memory-safe") {
                              if missingAccountFunds {
                                  // Ignore failure (it's EntryPoint's job to verify, not the account's).
                                  pop(call(gas(), caller(), missingAccountFunds, codesize(), 0x00, codesize(), 0x00))
                              }
                          }
                      }
                      constructor() {
                          // Implementation should not be initializable (does not affect proxies which use their own storage).
                          bytes[] memory owners = new bytes[](1);
                          owners[0] = abi.encode(address(0));
                          _initializeOwners(owners);
                      }
                      /// @notice Initializes the account with the `owners`.
                      ///
                      /// @dev Reverts if the account has had at least one owner, i.e. has been initialized.
                      ///
                      /// @param owners Array of initial owners for this account. Each item should be
                      ///               an ABI encoded Ethereum address, i.e. 32 bytes with 12 leading 0 bytes,
                      ///               or a 64 byte public key.
                      function initialize(bytes[] calldata owners) external payable virtual {
                          if (nextOwnerIndex() != 0) {
                              revert Initialized();
                          }
                          _initializeOwners(owners);
                      }
                      /// @inheritdoc IAccount
                      ///
                      /// @notice ERC-4337 `validateUserOp` method. The EntryPoint will
                      ///         call `UserOperation.sender.call(UserOperation.callData)` only if this validation call returns
                      ///         successfully.
                      ///
                      /// @dev Signature failure should be reported by returning 1 (see: `this._isValidSignature`). This
                      ///      allows making a "simulation call" without a valid signature. Other failures (e.g. invalid signature format)
                      ///      should still revert to signal failure.
                      /// @dev Reverts if the `UserOperation.nonce` key is invalid for `UserOperation.calldata`.
                      /// @dev Reverts if the signature format is incorrect or invalid for owner type.
                      ///
                      /// @param userOp              The `UserOperation` to validate.
                      /// @param userOpHash          The `UserOperation` hash, as computed by `EntryPoint.getUserOpHash(UserOperation)`.
                      /// @param missingAccountFunds The missing account funds that must be deposited on the Entrypoint.
                      ///
                      /// @return validationData The encoded `ValidationData` structure:
                      ///                        `(uint256(validAfter) << (160 + 48)) | (uint256(validUntil) << 160) | (success ? 0 : 1)`
                      ///                        where `validUntil` is 0 (indefinite) and `validAfter` is 0.
                      function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
                          external
                          virtual
                          onlyEntryPoint
                          payPrefund(missingAccountFunds)
                          returns (uint256 validationData)
                      {
                          uint256 key = userOp.nonce >> 64;
                          if (bytes4(userOp.callData) == this.executeWithoutChainIdValidation.selector) {
                              userOpHash = getUserOpHashWithoutChainId(userOp);
                              if (key != REPLAYABLE_NONCE_KEY) {
                                  revert InvalidNonceKey(key);
                              }
                          } else {
                              if (key == REPLAYABLE_NONCE_KEY) {
                                  revert InvalidNonceKey(key);
                              }
                          }
                          // Return 0 if the recovered address matches the owner.
                          if (_isValidSignature(userOpHash, userOp.signature)) {
                              return 0;
                          }
                          // Else return 1
                          return 1;
                      }
                      /// @notice Executes `calls` on this account (i.e. self call).
                      ///
                      /// @dev Can only be called by the Entrypoint.
                      /// @dev Reverts if the given call is not authorized to skip the chain ID validtion.
                      /// @dev `validateUserOp()` will recompute the `userOpHash` without the chain ID before validating
                      ///      it if the `UserOperation.calldata` is calling this function. This allows certain UserOperations
                      ///      to be replayed for all accounts sharing the same address across chains. E.g. This may be
                      ///      useful for syncing owner changes.
                      ///
                      /// @param calls An array of calldata to use for separate self calls.
                      function executeWithoutChainIdValidation(bytes[] calldata calls) external payable virtual onlyEntryPoint {
                          for (uint256 i; i < calls.length; i++) {
                              bytes calldata call = calls[i];
                              bytes4 selector = bytes4(call);
                              if (!canSkipChainIdValidation(selector)) {
                                  revert SelectorNotAllowed(selector);
                              }
                              _call(address(this), 0, call);
                          }
                      }
                      /// @notice Executes the given call from this account.
                      ///
                      /// @dev Can only be called by the Entrypoint or an owner of this account (including itself).
                      ///
                      /// @param target The address to call.
                      /// @param value  The value to send with the call.
                      /// @param data   The data of the call.
                      function execute(address target, uint256 value, bytes calldata data)
                          external
                          payable
                          virtual
                          onlyEntryPointOrOwner
                      {
                          _call(target, value, data);
                      }
                      /// @notice Executes batch of `Call`s.
                      ///
                      /// @dev Can only be called by the Entrypoint or an owner of this account (including itself).
                      ///
                      /// @param calls The list of `Call`s to execute.
                      function executeBatch(Call[] calldata calls) external payable virtual onlyEntryPointOrOwner {
                          for (uint256 i; i < calls.length; i++) {
                              _call(calls[i].target, calls[i].value, calls[i].data);
                          }
                      }
                      /// @notice Returns the address of the EntryPoint v0.6.
                      ///
                      /// @return The address of the EntryPoint v0.6
                      function entryPoint() public view virtual returns (address) {
                          return 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789;
                      }
                      /// @notice Computes the hash of the `UserOperation` in the same way as EntryPoint v0.6, but
                      ///         leaves out the chain ID.
                      ///
                      /// @dev This allows accounts to sign a hash that can be used on many chains.
                      ///
                      /// @param userOp The `UserOperation` to compute the hash for.
                      ///
                      /// @return The `UserOperation` hash, which does not depend on chain ID.
                      function getUserOpHashWithoutChainId(UserOperation calldata userOp) public view virtual returns (bytes32) {
                          return keccak256(abi.encode(UserOperationLib.hash(userOp), entryPoint()));
                      }
                      /// @notice Returns the implementation of the ERC1967 proxy.
                      ///
                      /// @return $ The address of implementation contract.
                      function implementation() public view returns (address $) {
                          assembly {
                              $ := sload(_ERC1967_IMPLEMENTATION_SLOT)
                          }
                      }
                      /// @notice Returns whether `functionSelector` can be called in `executeWithoutChainIdValidation`.
                      ///
                      /// @param functionSelector The function selector to check.
                      ////
                      /// @return `true` is the function selector is allowed to skip the chain ID validation, else `false`.
                      function canSkipChainIdValidation(bytes4 functionSelector) public pure returns (bool) {
                          if (
                              functionSelector == MultiOwnable.addOwnerPublicKey.selector
                                  || functionSelector == MultiOwnable.addOwnerAddress.selector
                                  || functionSelector == MultiOwnable.removeOwnerAtIndex.selector
                                  || functionSelector == MultiOwnable.removeLastOwner.selector
                                  || functionSelector == UUPSUpgradeable.upgradeToAndCall.selector
                          ) {
                              return true;
                          }
                          return false;
                      }
                      /// @notice Executes the given call from this account.
                      ///
                      /// @dev Reverts if the call reverted.
                      /// @dev Implementation taken from
                      /// https://github.com/alchemyplatform/light-account/blob/43f625afdda544d5e5af9c370c9f4be0943e4e90/src/common/BaseLightAccount.sol#L125
                      ///
                      /// @param target The target call address.
                      /// @param value  The call value to user.
                      /// @param data   The raw call data.
                      function _call(address target, uint256 value, bytes memory data) internal {
                          (bool success, bytes memory result) = target.call{value: value}(data);
                          if (!success) {
                              assembly ("memory-safe") {
                                  revert(add(result, 32), mload(result))
                              }
                          }
                      }
                      /// @inheritdoc ERC1271
                      ///
                      /// @dev Used by both `ERC1271.isValidSignature` AND `IAccount.validateUserOp` signature validation.
                      /// @dev Reverts if owner at `ownerIndex` is not compatible with `signature` format.
                      ///
                      /// @param signature ABI encoded `SignatureWrapper`.
                      function _isValidSignature(bytes32 hash, bytes calldata signature) internal view virtual override returns (bool) {
                          SignatureWrapper memory sigWrapper = abi.decode(signature, (SignatureWrapper));
                          bytes memory ownerBytes = ownerAtIndex(sigWrapper.ownerIndex);
                          if (ownerBytes.length == 32) {
                              if (uint256(bytes32(ownerBytes)) > type(uint160).max) {
                                  // technically should be impossible given owners can only be added with
                                  // addOwnerAddress and addOwnerPublicKey, but we leave incase of future changes.
                                  revert InvalidEthereumAddressOwner(ownerBytes);
                              }
                              address owner;
                              assembly ("memory-safe") {
                                  owner := mload(add(ownerBytes, 32))
                              }
                              return SignatureCheckerLib.isValidSignatureNow(owner, hash, sigWrapper.signatureData);
                          }
                          if (ownerBytes.length == 64) {
                              (uint256 x, uint256 y) = abi.decode(ownerBytes, (uint256, uint256));
                              WebAuthn.WebAuthnAuth memory auth = abi.decode(sigWrapper.signatureData, (WebAuthn.WebAuthnAuth));
                              return WebAuthn.verify({challenge: abi.encode(hash), requireUV: false, webAuthnAuth: auth, x: x, y: y});
                          }
                          revert InvalidOwnerBytesLength(ownerBytes);
                      }
                      /// @inheritdoc UUPSUpgradeable
                      ///
                      /// @dev Authorization logic is only based on the `msg.sender` being an owner of this account,
                      ///      or `address(this)`.
                      function _authorizeUpgrade(address) internal view virtual override(UUPSUpgradeable) onlyOwner {}
                      /// @inheritdoc ERC1271
                      function _domainNameAndVersion() internal pure override(ERC1271) returns (string memory, string memory) {
                          return ("Coinbase Smart Wallet", "1");
                      }
                  }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  import "./UserOperation.sol";
                  interface IAccount {
                      /**
                       * Validate user's signature and nonce
                       * the entryPoint will make the call to the recipient only if this validation call returns successfully.
                       * signature failure should be reported by returning SIG_VALIDATION_FAILED (1).
                       * This allows making a "simulation call" without a valid signature
                       * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure.
                       *
                       * @dev Must validate caller is the entryPoint.
                       *      Must validate the signature and nonce
                       * @param userOp the operation that is about to be executed.
                       * @param userOpHash hash of the user's request data. can be used as the basis for signature.
                       * @param missingAccountFunds missing funds on the account's deposit in the entrypoint.
                       *      This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call.
                       *      The excess is left as a deposit in the entrypoint, for future calls.
                       *      can be withdrawn anytime using "entryPoint.withdrawTo()"
                       *      In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero.
                       * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode
                       *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
                       *         otherwise, an address of an "authorizer" contract.
                       *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
                       *      <6-byte> validAfter - first timestamp this operation is valid
                       *      If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure.
                       *      Note that the validation code cannot use block.timestamp (or block.number) directly.
                       */
                      function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
                      external returns (uint256 validationData);
                  }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  /* solhint-disable no-inline-assembly */
                  import {calldataKeccak} from "../core/Helpers.sol";
                  /**
                   * User Operation struct
                   * @param sender the sender account of this request.
                       * @param nonce unique value the sender uses to verify it is not a replay.
                       * @param initCode if set, the account contract will be created by this constructor/
                       * @param callData the method call to execute on this account.
                       * @param callGasLimit the gas limit passed to the callData method call.
                       * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
                       * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
                       * @param maxFeePerGas same as EIP-1559 gas parameter.
                       * @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
                       * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
                       * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
                       */
                      struct UserOperation {
                          address sender;
                          uint256 nonce;
                          bytes initCode;
                          bytes callData;
                          uint256 callGasLimit;
                          uint256 verificationGasLimit;
                          uint256 preVerificationGas;
                          uint256 maxFeePerGas;
                          uint256 maxPriorityFeePerGas;
                          bytes paymasterAndData;
                          bytes signature;
                      }
                  /**
                   * Utility functions helpful when working with UserOperation structs.
                   */
                  library UserOperationLib {
                      function getSender(UserOperation calldata userOp) internal pure returns (address) {
                          address data;
                          //read sender from userOp, which is first userOp member (saves 800 gas...)
                          assembly {data := calldataload(userOp)}
                          return address(uint160(data));
                      }
                      //relayer/block builder might submit the TX with higher priorityFee, but the user should not
                      // pay above what he signed for.
                      function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
                      unchecked {
                          uint256 maxFeePerGas = userOp.maxFeePerGas;
                          uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                          if (maxFeePerGas == maxPriorityFeePerGas) {
                              //legacy mode (for networks that don't support basefee opcode)
                              return maxFeePerGas;
                          }
                          return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
                      }
                      }
                      function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
                          address sender = getSender(userOp);
                          uint256 nonce = userOp.nonce;
                          bytes32 hashInitCode = calldataKeccak(userOp.initCode);
                          bytes32 hashCallData = calldataKeccak(userOp.callData);
                          uint256 callGasLimit = userOp.callGasLimit;
                          uint256 verificationGasLimit = userOp.verificationGasLimit;
                          uint256 preVerificationGas = userOp.preVerificationGas;
                          uint256 maxFeePerGas = userOp.maxFeePerGas;
                          uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
                          bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);
                          return abi.encode(
                              sender, nonce,
                              hashInitCode, hashCallData,
                              callGasLimit, verificationGasLimit, preVerificationGas,
                              maxFeePerGas, maxPriorityFeePerGas,
                              hashPaymasterAndData
                          );
                      }
                      function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
                          return keccak256(pack(userOp));
                      }
                      function min(uint256 a, uint256 b) internal pure returns (uint256) {
                          return a < b ? a : b;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.8.4;
                  /// @notice Receiver mixin for ETH and safe-transferred ERC721 and ERC1155 tokens.
                  /// @author Solady (https://github.com/Vectorized/solady/blob/main/src/accounts/Receiver.sol)
                  ///
                  /// @dev Note:
                  /// - Handles all ERC721 and ERC1155 token safety callbacks.
                  /// - Collapses function table gas overhead and code size.
                  /// - Utilizes fallback so unknown calldata will pass on.
                  abstract contract Receiver {
                      /// @dev For receiving ETH.
                      receive() external payable virtual {}
                      /// @dev Fallback function with the `receiverFallback` modifier.
                      fallback() external payable virtual receiverFallback {}
                      /// @dev Modifier for the fallback function to handle token callbacks.
                      modifier receiverFallback() virtual {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let s := shr(224, calldataload(0))
                              // 0x150b7a02: `onERC721Received(address,address,uint256,bytes)`.
                              // 0xf23a6e61: `onERC1155Received(address,address,uint256,uint256,bytes)`.
                              // 0xbc197c81: `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`.
                              if or(eq(s, 0x150b7a02), or(eq(s, 0xf23a6e61), eq(s, 0xbc197c81))) {
                                  mstore(0x20, s) // Store `msg.sig`.
                                  return(0x3c, 0x20) // Return `msg.sig`.
                              }
                          }
                          _;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.8.4;
                  /// @notice Signature verification helper that supports both ECDSA signatures from EOAs
                  /// and ERC1271 signatures from smart contract wallets like Argent and Gnosis safe.
                  /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SignatureCheckerLib.sol)
                  /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/SignatureChecker.sol)
                  ///
                  /// @dev Note:
                  /// - The signature checking functions use the ecrecover precompile (0x1).
                  /// - The `bytes memory signature` variants use the identity precompile (0x4)
                  ///   to copy memory internally.
                  /// - Unlike ECDSA signatures, contract signatures are revocable.
                  /// - As of Solady version 0.0.134, all `bytes signature` variants accept both
                  ///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
                  ///   See: https://eips.ethereum.org/EIPS/eip-2098
                  ///   This is for calldata efficiency on smart accounts prevalent on L2s.
                  ///
                  /// WARNING! Do NOT use signatures as unique identifiers:
                  /// - Use a nonce in the digest to prevent replay attacks on the same contract.
                  /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
                  ///   EIP-712 also enables readable signing of typed data for better user safety.
                  /// This implementation does NOT check if a signature is non-malleable.
                  library SignatureCheckerLib {
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*               SIGNATURE CHECKING OPERATIONS                */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev Returns whether `signature` is valid for `signer` and `hash`.
                      /// If `signer` is a smart contract, the signature is validated with ERC1271.
                      /// Otherwise, the signature is validated with `ECDSA.recover`.
                      function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature)
                          internal
                          view
                          returns (bool isValid)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // Clean the upper 96 bits of `signer` in case they are dirty.
                              for { signer := shr(96, shl(96, signer)) } signer {} {
                                  let m := mload(0x40)
                                  mstore(0x00, hash)
                                  mstore(0x40, mload(add(signature, 0x20))) // `r`.
                                  if eq(mload(signature), 64) {
                                      let vs := mload(add(signature, 0x40))
                                      mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                      mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                      let t :=
                                          staticcall(
                                              gas(), // Amount of gas left for the transaction.
                                              1, // Address of `ecrecover`.
                                              0x00, // Start of input.
                                              0x80, // Size of input.
                                              0x01, // Start of output.
                                              0x20 // Size of output.
                                          )
                                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                                      if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                          isValid := 1
                                          mstore(0x60, 0) // Restore the zero slot.
                                          mstore(0x40, m) // Restore the free memory pointer.
                                          break
                                      }
                                  }
                                  if eq(mload(signature), 65) {
                                      mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                                      mstore(0x60, mload(add(signature, 0x40))) // `s`.
                                      let t :=
                                          staticcall(
                                              gas(), // Amount of gas left for the transaction.
                                              1, // Address of `ecrecover`.
                                              0x00, // Start of input.
                                              0x80, // Size of input.
                                              0x01, // Start of output.
                                              0x20 // Size of output.
                                          )
                                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                                      if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                          isValid := 1
                                          mstore(0x60, 0) // Restore the zero slot.
                                          mstore(0x40, m) // Restore the free memory pointer.
                                          break
                                      }
                                  }
                                  mstore(0x60, 0) // Restore the zero slot.
                                  mstore(0x40, m) // Restore the free memory pointer.
                                  let f := shl(224, 0x1626ba7e)
                                  mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                                  mstore(add(m, 0x04), hash)
                                  let d := add(m, 0x24)
                                  mstore(d, 0x40) // The offset of the `signature` in the calldata.
                                  // Copy the `signature` over.
                                  let n := add(0x20, mload(signature))
                                  pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
                                  // forgefmt: disable-next-item
                                  isValid := and(
                                      // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                      eq(mload(d), f),
                                      // Whether the staticcall does not revert.
                                      // This must be placed at the end of the `and` clause,
                                      // as the arguments are evaluated from right to left.
                                      staticcall(
                                          gas(), // Remaining gas.
                                          signer, // The `signer` address.
                                          m, // Offset of calldata in memory.
                                          add(returndatasize(), 0x44), // Length of calldata in memory.
                                          d, // Offset of returndata.
                                          0x20 // Length of returndata to write.
                                      )
                                  )
                                  break
                              }
                          }
                      }
                      /// @dev Returns whether `signature` is valid for `signer` and `hash`.
                      /// If `signer` is a smart contract, the signature is validated with ERC1271.
                      /// Otherwise, the signature is validated with `ECDSA.recover`.
                      function isValidSignatureNowCalldata(address signer, bytes32 hash, bytes calldata signature)
                          internal
                          view
                          returns (bool isValid)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // Clean the upper 96 bits of `signer` in case they are dirty.
                              for { signer := shr(96, shl(96, signer)) } signer {} {
                                  let m := mload(0x40)
                                  mstore(0x00, hash)
                                  if eq(signature.length, 64) {
                                      let vs := calldataload(add(signature.offset, 0x20))
                                      mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                      mstore(0x40, calldataload(signature.offset)) // `r`.
                                      mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                      let t :=
                                          staticcall(
                                              gas(), // Amount of gas left for the transaction.
                                              1, // Address of `ecrecover`.
                                              0x00, // Start of input.
                                              0x80, // Size of input.
                                              0x01, // Start of output.
                                              0x20 // Size of output.
                                          )
                                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                                      if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                          isValid := 1
                                          mstore(0x60, 0) // Restore the zero slot.
                                          mstore(0x40, m) // Restore the free memory pointer.
                                          break
                                      }
                                  }
                                  if eq(signature.length, 65) {
                                      mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                                      calldatacopy(0x40, signature.offset, 0x40) // `r`, `s`.
                                      let t :=
                                          staticcall(
                                              gas(), // Amount of gas left for the transaction.
                                              1, // Address of `ecrecover`.
                                              0x00, // Start of input.
                                              0x80, // Size of input.
                                              0x01, // Start of output.
                                              0x20 // Size of output.
                                          )
                                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                                      if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                          isValid := 1
                                          mstore(0x60, 0) // Restore the zero slot.
                                          mstore(0x40, m) // Restore the free memory pointer.
                                          break
                                      }
                                  }
                                  mstore(0x60, 0) // Restore the zero slot.
                                  mstore(0x40, m) // Restore the free memory pointer.
                                  let f := shl(224, 0x1626ba7e)
                                  mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                                  mstore(add(m, 0x04), hash)
                                  let d := add(m, 0x24)
                                  mstore(d, 0x40) // The offset of the `signature` in the calldata.
                                  mstore(add(m, 0x44), signature.length)
                                  // Copy the `signature` over.
                                  calldatacopy(add(m, 0x64), signature.offset, signature.length)
                                  // forgefmt: disable-next-item
                                  isValid := and(
                                      // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                      eq(mload(d), f),
                                      // Whether the staticcall does not revert.
                                      // This must be placed at the end of the `and` clause,
                                      // as the arguments are evaluated from right to left.
                                      staticcall(
                                          gas(), // Remaining gas.
                                          signer, // The `signer` address.
                                          m, // Offset of calldata in memory.
                                          add(signature.length, 0x64), // Length of calldata in memory.
                                          d, // Offset of returndata.
                                          0x20 // Length of returndata to write.
                                      )
                                  )
                                  break
                              }
                          }
                      }
                      /// @dev Returns whether the signature (`r`, `vs`) is valid for `signer` and `hash`.
                      /// If `signer` is a smart contract, the signature is validated with ERC1271.
                      /// Otherwise, the signature is validated with `ECDSA.recover`.
                      function isValidSignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
                          internal
                          view
                          returns (bool isValid)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // Clean the upper 96 bits of `signer` in case they are dirty.
                              for { signer := shr(96, shl(96, signer)) } signer {} {
                                  let m := mload(0x40)
                                  mstore(0x00, hash)
                                  mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                  mstore(0x40, r) // `r`.
                                  mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                  let t :=
                                      staticcall(
                                          gas(), // Amount of gas left for the transaction.
                                          1, // Address of `ecrecover`.
                                          0x00, // Start of input.
                                          0x80, // Size of input.
                                          0x01, // Start of output.
                                          0x20 // Size of output.
                                      )
                                  // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                                  if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                      isValid := 1
                                      mstore(0x60, 0) // Restore the zero slot.
                                      mstore(0x40, m) // Restore the free memory pointer.
                                      break
                                  }
                                  let f := shl(224, 0x1626ba7e)
                                  mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                                  mstore(add(m, 0x04), hash)
                                  let d := add(m, 0x24)
                                  mstore(d, 0x40) // The offset of the `signature` in the calldata.
                                  mstore(add(m, 0x44), 65) // Length of the signature.
                                  mstore(add(m, 0x64), r) // `r`.
                                  mstore(add(m, 0x84), mload(0x60)) // `s`.
                                  mstore8(add(m, 0xa4), mload(0x20)) // `v`.
                                  // forgefmt: disable-next-item
                                  isValid := and(
                                      // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                      eq(mload(d), f),
                                      // Whether the staticcall does not revert.
                                      // This must be placed at the end of the `and` clause,
                                      // as the arguments are evaluated from right to left.
                                      staticcall(
                                          gas(), // Remaining gas.
                                          signer, // The `signer` address.
                                          m, // Offset of calldata in memory.
                                          0xa5, // Length of calldata in memory.
                                          d, // Offset of returndata.
                                          0x20 // Length of returndata to write.
                                      )
                                  )
                                  mstore(0x60, 0) // Restore the zero slot.
                                  mstore(0x40, m) // Restore the free memory pointer.
                                  break
                              }
                          }
                      }
                      /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `signer` and `hash`.
                      /// If `signer` is a smart contract, the signature is validated with ERC1271.
                      /// Otherwise, the signature is validated with `ECDSA.recover`.
                      function isValidSignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                          internal
                          view
                          returns (bool isValid)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // Clean the upper 96 bits of `signer` in case they are dirty.
                              for { signer := shr(96, shl(96, signer)) } signer {} {
                                  let m := mload(0x40)
                                  mstore(0x00, hash)
                                  mstore(0x20, and(v, 0xff)) // `v`.
                                  mstore(0x40, r) // `r`.
                                  mstore(0x60, s) // `s`.
                                  let t :=
                                      staticcall(
                                          gas(), // Amount of gas left for the transaction.
                                          1, // Address of `ecrecover`.
                                          0x00, // Start of input.
                                          0x80, // Size of input.
                                          0x01, // Start of output.
                                          0x20 // Size of output.
                                      )
                                  // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                                  if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                                      isValid := 1
                                      mstore(0x60, 0) // Restore the zero slot.
                                      mstore(0x40, m) // Restore the free memory pointer.
                                      break
                                  }
                                  let f := shl(224, 0x1626ba7e)
                                  mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                                  mstore(add(m, 0x04), hash)
                                  let d := add(m, 0x24)
                                  mstore(d, 0x40) // The offset of the `signature` in the calldata.
                                  mstore(add(m, 0x44), 65) // Length of the signature.
                                  mstore(add(m, 0x64), r) // `r`.
                                  mstore(add(m, 0x84), s) // `s`.
                                  mstore8(add(m, 0xa4), v) // `v`.
                                  // forgefmt: disable-next-item
                                  isValid := and(
                                      // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                      eq(mload(d), f),
                                      // Whether the staticcall does not revert.
                                      // This must be placed at the end of the `and` clause,
                                      // as the arguments are evaluated from right to left.
                                      staticcall(
                                          gas(), // Remaining gas.
                                          signer, // The `signer` address.
                                          m, // Offset of calldata in memory.
                                          0xa5, // Length of calldata in memory.
                                          d, // Offset of returndata.
                                          0x20 // Length of returndata to write.
                                      )
                                  )
                                  mstore(0x60, 0) // Restore the zero slot.
                                  mstore(0x40, m) // Restore the free memory pointer.
                                  break
                              }
                          }
                      }
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                     ERC1271 OPERATIONS                     */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
                      function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes memory signature)
                          internal
                          view
                          returns (bool isValid)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let m := mload(0x40)
                              let f := shl(224, 0x1626ba7e)
                              mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                              mstore(add(m, 0x04), hash)
                              let d := add(m, 0x24)
                              mstore(d, 0x40) // The offset of the `signature` in the calldata.
                              // Copy the `signature` over.
                              let n := add(0x20, mload(signature))
                              pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
                              // forgefmt: disable-next-item
                              isValid := and(
                                  // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                  eq(mload(d), f),
                                  // Whether the staticcall does not revert.
                                  // This must be placed at the end of the `and` clause,
                                  // as the arguments are evaluated from right to left.
                                  staticcall(
                                      gas(), // Remaining gas.
                                      signer, // The `signer` address.
                                      m, // Offset of calldata in memory.
                                      add(returndatasize(), 0x44), // Length of calldata in memory.
                                      d, // Offset of returndata.
                                      0x20 // Length of returndata to write.
                                  )
                              )
                          }
                      }
                      /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
                      function isValidERC1271SignatureNowCalldata(
                          address signer,
                          bytes32 hash,
                          bytes calldata signature
                      ) internal view returns (bool isValid) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let m := mload(0x40)
                              let f := shl(224, 0x1626ba7e)
                              mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                              mstore(add(m, 0x04), hash)
                              let d := add(m, 0x24)
                              mstore(d, 0x40) // The offset of the `signature` in the calldata.
                              mstore(add(m, 0x44), signature.length)
                              // Copy the `signature` over.
                              calldatacopy(add(m, 0x64), signature.offset, signature.length)
                              // forgefmt: disable-next-item
                              isValid := and(
                                  // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                  eq(mload(d), f),
                                  // Whether the staticcall does not revert.
                                  // This must be placed at the end of the `and` clause,
                                  // as the arguments are evaluated from right to left.
                                  staticcall(
                                      gas(), // Remaining gas.
                                      signer, // The `signer` address.
                                      m, // Offset of calldata in memory.
                                      add(signature.length, 0x64), // Length of calldata in memory.
                                      d, // Offset of returndata.
                                      0x20 // Length of returndata to write.
                                  )
                              )
                          }
                      }
                      /// @dev Returns whether the signature (`r`, `vs`) is valid for `hash`
                      /// for an ERC1271 `signer` contract.
                      function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
                          internal
                          view
                          returns (bool isValid)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let m := mload(0x40)
                              let f := shl(224, 0x1626ba7e)
                              mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                              mstore(add(m, 0x04), hash)
                              let d := add(m, 0x24)
                              mstore(d, 0x40) // The offset of the `signature` in the calldata.
                              mstore(add(m, 0x44), 65) // Length of the signature.
                              mstore(add(m, 0x64), r) // `r`.
                              mstore(add(m, 0x84), shr(1, shl(1, vs))) // `s`.
                              mstore8(add(m, 0xa4), add(shr(255, vs), 27)) // `v`.
                              // forgefmt: disable-next-item
                              isValid := and(
                                  // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                  eq(mload(d), f),
                                  // Whether the staticcall does not revert.
                                  // This must be placed at the end of the `and` clause,
                                  // as the arguments are evaluated from right to left.
                                  staticcall(
                                      gas(), // Remaining gas.
                                      signer, // The `signer` address.
                                      m, // Offset of calldata in memory.
                                      0xa5, // Length of calldata in memory.
                                      d, // Offset of returndata.
                                      0x20 // Length of returndata to write.
                                  )
                              )
                          }
                      }
                      /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `hash`
                      /// for an ERC1271 `signer` contract.
                      function isValidERC1271SignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                          internal
                          view
                          returns (bool isValid)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let m := mload(0x40)
                              let f := shl(224, 0x1626ba7e)
                              mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                              mstore(add(m, 0x04), hash)
                              let d := add(m, 0x24)
                              mstore(d, 0x40) // The offset of the `signature` in the calldata.
                              mstore(add(m, 0x44), 65) // Length of the signature.
                              mstore(add(m, 0x64), r) // `r`.
                              mstore(add(m, 0x84), s) // `s`.
                              mstore8(add(m, 0xa4), v) // `v`.
                              // forgefmt: disable-next-item
                              isValid := and(
                                  // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                                  eq(mload(d), f),
                                  // Whether the staticcall does not revert.
                                  // This must be placed at the end of the `and` clause,
                                  // as the arguments are evaluated from right to left.
                                  staticcall(
                                      gas(), // Remaining gas.
                                      signer, // The `signer` address.
                                      m, // Offset of calldata in memory.
                                      0xa5, // Length of calldata in memory.
                                      d, // Offset of returndata.
                                      0x20 // Length of returndata to write.
                                  )
                              )
                          }
                      }
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                     HASHING OPERATIONS                     */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev Returns an Ethereum Signed Message, created from a `hash`.
                      /// This produces a hash corresponding to the one signed with the
                      /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
                      /// JSON-RPC method as part of EIP-191.
                      function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              mstore(0x20, hash) // Store into scratch space for keccak256.
                              mstore(0x00, "\\x00\\x00\\x00\\x00\\x19Ethereum Signed Message:\
                  32") // 28 bytes.
                              result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
                          }
                      }
                      /// @dev Returns an Ethereum Signed Message, created from `s`.
                      /// This produces a hash corresponding to the one signed with the
                      /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
                      /// JSON-RPC method as part of EIP-191.
                      /// Note: Supports lengths of `s` up to 999999 bytes.
                      function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let sLength := mload(s)
                              let o := 0x20
                              mstore(o, "\\x19Ethereum Signed Message:\
                  ") // 26 bytes, zero-right-padded.
                              mstore(0x00, 0x00)
                              // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
                              for { let temp := sLength } 1 {} {
                                  o := sub(o, 1)
                                  mstore8(o, add(48, mod(temp, 10)))
                                  temp := div(temp, 10)
                                  if iszero(temp) { break }
                              }
                              let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
                              // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
                              returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
                              mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
                              result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
                              mstore(s, sLength) // Restore the length.
                          }
                      }
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                   EMPTY CALLDATA HELPERS                   */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev Returns an empty calldata bytes.
                      function emptySignature() internal pure returns (bytes calldata signature) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              signature.length := 0
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.8.4;
                  /// @notice UUPS proxy mixin.
                  /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/UUPSUpgradeable.sol)
                  /// @author Modified from OpenZeppelin
                  /// (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol)
                  ///
                  /// Note:
                  /// - This implementation is intended to be used with ERC1967 proxies.
                  /// See: `LibClone.deployERC1967` and related functions.
                  /// - This implementation is NOT compatible with legacy OpenZeppelin proxies
                  /// which do not store the implementation at `_ERC1967_IMPLEMENTATION_SLOT`.
                  abstract contract UUPSUpgradeable {
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                       CUSTOM ERRORS                        */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev The upgrade failed.
                      error UpgradeFailed();
                      /// @dev The call is from an unauthorized call context.
                      error UnauthorizedCallContext();
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                         IMMUTABLES                         */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev For checking if the context is a delegate call.
                      uint256 private immutable __self = uint256(uint160(address(this)));
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                           EVENTS                           */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev Emitted when the proxy's implementation is upgraded.
                      event Upgraded(address indexed implementation);
                      /// @dev `keccak256(bytes("Upgraded(address)"))`.
                      uint256 private constant _UPGRADED_EVENT_SIGNATURE =
                          0xbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b;
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                          STORAGE                           */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev The ERC-1967 storage slot for the implementation in the proxy.
                      /// `uint256(keccak256("eip1967.proxy.implementation")) - 1`.
                      bytes32 internal constant _ERC1967_IMPLEMENTATION_SLOT =
                          0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                      UUPS OPERATIONS                       */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev Please override this function to check if `msg.sender` is authorized
                      /// to upgrade the proxy to `newImplementation`, reverting if not.
                      /// ```
                      ///     function _authorizeUpgrade(address) internal override onlyOwner {}
                      /// ```
                      function _authorizeUpgrade(address newImplementation) internal virtual;
                      /// @dev Returns the storage slot used by the implementation,
                      /// as specified in [ERC1822](https://eips.ethereum.org/EIPS/eip-1822).
                      ///
                      /// Note: The `notDelegated` modifier prevents accidental upgrades to
                      /// an implementation that is a proxy contract.
                      function proxiableUUID() public view virtual notDelegated returns (bytes32) {
                          // This function must always return `_ERC1967_IMPLEMENTATION_SLOT` to comply with ERC1967.
                          return _ERC1967_IMPLEMENTATION_SLOT;
                      }
                      /// @dev Upgrades the proxy's implementation to `newImplementation`.
                      /// Emits a {Upgraded} event.
                      ///
                      /// Note: Passing in empty `data` skips the delegatecall to `newImplementation`.
                      function upgradeToAndCall(address newImplementation, bytes calldata data)
                          public
                          payable
                          virtual
                          onlyProxy
                      {
                          _authorizeUpgrade(newImplementation);
                          /// @solidity memory-safe-assembly
                          assembly {
                              newImplementation := shr(96, shl(96, newImplementation)) // Clears upper 96 bits.
                              mstore(0x01, 0x52d1902d) // `proxiableUUID()`.
                              let s := _ERC1967_IMPLEMENTATION_SLOT
                              // Check if `newImplementation` implements `proxiableUUID` correctly.
                              if iszero(eq(mload(staticcall(gas(), newImplementation, 0x1d, 0x04, 0x01, 0x20)), s)) {
                                  mstore(0x01, 0x55299b49) // `UpgradeFailed()`.
                                  revert(0x1d, 0x04)
                              }
                              // Emit the {Upgraded} event.
                              log2(codesize(), 0x00, _UPGRADED_EVENT_SIGNATURE, newImplementation)
                              sstore(s, newImplementation) // Updates the implementation.
                              // Perform a delegatecall to `newImplementation` if `data` is non-empty.
                              if data.length {
                                  // Forwards the `data` to `newImplementation` via delegatecall.
                                  let m := mload(0x40)
                                  calldatacopy(m, data.offset, data.length)
                                  if iszero(delegatecall(gas(), newImplementation, m, data.length, codesize(), 0x00))
                                  {
                                      // Bubble up the revert if the call reverts.
                                      returndatacopy(m, 0x00, returndatasize())
                                      revert(m, returndatasize())
                                  }
                              }
                          }
                      }
                      /// @dev Requires that the execution is performed through a proxy.
                      modifier onlyProxy() {
                          uint256 s = __self;
                          /// @solidity memory-safe-assembly
                          assembly {
                              // To enable use cases with an immutable default implementation in the bytecode,
                              // (see: ERC6551Proxy), we don't require that the proxy address must match the
                              // value stored in the implementation slot, which may not be initialized.
                              if eq(s, address()) {
                                  mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                                  revert(0x1c, 0x04)
                              }
                          }
                          _;
                      }
                      /// @dev Requires that the execution is NOT performed via delegatecall.
                      /// This is the opposite of `onlyProxy`.
                      modifier notDelegated() {
                          uint256 s = __self;
                          /// @solidity memory-safe-assembly
                          assembly {
                              if iszero(eq(s, address())) {
                                  mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                                  revert(0x1c, 0x04)
                              }
                          }
                          _;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.8.0;
                  import {FCL_ecdsa} from "FreshCryptoLib/FCL_ecdsa.sol";
                  import {FCL_Elliptic_ZZ} from "FreshCryptoLib/FCL_elliptic.sol";
                  import {Base64} from "openzeppelin-contracts/contracts/utils/Base64.sol";
                  import {LibString} from "solady/utils/LibString.sol";
                  /// @title WebAuthn
                  ///
                  /// @notice A library for verifying WebAuthn Authentication Assertions, built off the work
                  ///         of Daimo.
                  ///
                  /// @dev Attempts to use the RIP-7212 precompile for signature verification.
                  ///      If precompile verification fails, it falls back to FreshCryptoLib.
                  ///
                  /// @author Coinbase (https://github.com/base-org/webauthn-sol)
                  /// @author Daimo (https://github.com/daimo-eth/p256-verifier/blob/master/src/WebAuthn.sol)
                  library WebAuthn {
                      using LibString for string;
                      struct WebAuthnAuth {
                          /// @dev The WebAuthn authenticator data.
                          ///      See https://www.w3.org/TR/webauthn-2/#dom-authenticatorassertionresponse-authenticatordata.
                          bytes authenticatorData;
                          /// @dev The WebAuthn client data JSON.
                          ///      See https://www.w3.org/TR/webauthn-2/#dom-authenticatorresponse-clientdatajson.
                          string clientDataJSON;
                          /// @dev The index at which "challenge":"..." occurs in `clientDataJSON`.
                          uint256 challengeIndex;
                          /// @dev The index at which "type":"..." occurs in `clientDataJSON`.
                          uint256 typeIndex;
                          /// @dev The r value of secp256r1 signature
                          uint256 r;
                          /// @dev The s value of secp256r1 signature
                          uint256 s;
                      }
                      /// @dev Bit 0 of the authenticator data struct, corresponding to the "User Present" bit.
                      ///      See https://www.w3.org/TR/webauthn-2/#flags.
                      bytes1 private constant _AUTH_DATA_FLAGS_UP = 0x01;
                      /// @dev Bit 2 of the authenticator data struct, corresponding to the "User Verified" bit.
                      ///      See https://www.w3.org/TR/webauthn-2/#flags.
                      bytes1 private constant _AUTH_DATA_FLAGS_UV = 0x04;
                      /// @dev Secp256r1 curve order / 2 used as guard to prevent signature malleability issue.
                      uint256 private constant _P256_N_DIV_2 = FCL_Elliptic_ZZ.n / 2;
                      /// @dev The precompiled contract address to use for signature verification in the “secp256r1” elliptic curve.
                      ///      See https://github.com/ethereum/RIPs/blob/master/RIPS/rip-7212.md.
                      address private constant _VERIFIER = address(0x100);
                      /// @dev The expected type (hash) in the client data JSON when verifying assertion signatures.
                      ///      See https://www.w3.org/TR/webauthn-2/#dom-collectedclientdata-type
                      bytes32 private constant _EXPECTED_TYPE_HASH = keccak256('"type":"webauthn.get"');
                      ///
                      /// @notice Verifies a Webauthn Authentication Assertion as described
                      /// in https://www.w3.org/TR/webauthn-2/#sctn-verifying-assertion.
                      ///
                      /// @dev We do not verify all the steps as described in the specification, only ones relevant to our context.
                      ///      Please carefully read through this list before usage.
                      ///
                      ///      Specifically, we do verify the following:
                      ///         - Verify that authenticatorData (which comes from the authenticator, such as iCloud Keychain) indicates
                      ///           a well-formed assertion with the user present bit set. If `requireUV` is set, checks that the authenticator
                      ///           enforced user verification. User verification should be required if, and only if, options.userVerification
                      ///           is set to required in the request.
                      ///         - Verifies that the client JSON is of type "webauthn.get", i.e. the client was responding to a request to
                      ///           assert authentication.
                      ///         - Verifies that the client JSON contains the requested challenge.
                      ///         - Verifies that (r, s) constitute a valid signature over both the authenicatorData and client JSON, for public
                      ///            key (x, y).
                      ///
                      ///      We make some assumptions about the particular use case of this verifier, so we do NOT verify the following:
                      ///         - Does NOT verify that the origin in the `clientDataJSON` matches the Relying Party's origin: tt is considered
                      ///           the authenticator's responsibility to ensure that the user is interacting with the correct RP. This is
                      ///           enforced by most high quality authenticators properly, particularly the iCloud Keychain and Google Password
                      ///           Manager were tested.
                      ///         - Does NOT verify That `topOrigin` in `clientDataJSON` is well-formed: We assume it would never be present, i.e.
                      ///           the credentials are never used in a cross-origin/iframe context. The website/app set up should disallow
                      ///           cross-origin usage of the credentials. This is the default behaviour for created credentials in common settings.
                      ///         - Does NOT verify that the `rpIdHash` in `authenticatorData` is the SHA-256 hash of the RP ID expected by the Relying
                      ///           Party: this means that we rely on the authenticator to properly enforce credentials to be used only by the correct RP.
                      ///           This is generally enforced with features like Apple App Site Association and Google Asset Links. To protect from
                      ///           edge cases in which a previously-linked RP ID is removed from the authorised RP IDs, we recommend that messages
                      ///           signed by the authenticator include some expiry mechanism.
                      ///         - Does NOT verify the credential backup state: this assumes the credential backup state is NOT used as part of Relying
                      ///           Party business logic or policy.
                      ///         - Does NOT verify the values of the client extension outputs: this assumes that the Relying Party does not use client
                      ///           extension outputs.
                      ///         - Does NOT verify the signature counter: signature counters are intended to enable risk scoring for the Relying Party.
                      ///           This assumes risk scoring is not used as part of Relying Party business logic or policy.
                      ///         - Does NOT verify the attestation object: this assumes that response.attestationObject is NOT present in the response,
                      ///           i.e. the RP does not intend to verify an attestation.
                      ///
                      /// @param challenge    The challenge that was provided by the relying party.
                      /// @param requireUV    A boolean indicating whether user verification is required.
                      /// @param webAuthnAuth The `WebAuthnAuth` struct.
                      /// @param x            The x coordinate of the public key.
                      /// @param y            The y coordinate of the public key.
                      ///
                      /// @return `true` if the authentication assertion passed validation, else `false`.
                      function verify(bytes memory challenge, bool requireUV, WebAuthnAuth memory webAuthnAuth, uint256 x, uint256 y)
                          internal
                          view
                          returns (bool)
                      {
                          if (webAuthnAuth.s > _P256_N_DIV_2) {
                              // guard against signature malleability
                              return false;
                          }
                          // 11. Verify that the value of C.type is the string webauthn.get.
                          //     bytes("type":"webauthn.get").length = 21
                          string memory _type = webAuthnAuth.clientDataJSON.slice(webAuthnAuth.typeIndex, webAuthnAuth.typeIndex + 21);
                          if (keccak256(bytes(_type)) != _EXPECTED_TYPE_HASH) {
                              return false;
                          }
                          // 12. Verify that the value of C.challenge equals the base64url encoding of options.challenge.
                          bytes memory expectedChallenge = bytes(string.concat('"challenge":"', Base64.encodeURL(challenge), '"'));
                          string memory actualChallenge =
                              webAuthnAuth.clientDataJSON.slice(webAuthnAuth.challengeIndex, webAuthnAuth.challengeIndex + expectedChallenge.length);
                          if (keccak256(bytes(actualChallenge)) != keccak256(expectedChallenge)) {
                              return false;
                          }
                          // Skip 13., 14., 15.
                          // 16. Verify that the UP bit of the flags in authData is set.
                          if (webAuthnAuth.authenticatorData[32] & _AUTH_DATA_FLAGS_UP != _AUTH_DATA_FLAGS_UP) {
                              return false;
                          }
                          // 17. If user verification is required for this assertion, verify that the User Verified bit of the flags in
                          //     authData is set.
                          if (requireUV && (webAuthnAuth.authenticatorData[32] & _AUTH_DATA_FLAGS_UV) != _AUTH_DATA_FLAGS_UV) {
                              return false;
                          }
                          // skip 18.
                          // 19. Let hash be the result of computing a hash over the cData using SHA-256.
                          bytes32 clientDataJSONHash = sha256(bytes(webAuthnAuth.clientDataJSON));
                          // 20. Using credentialPublicKey, verify that sig is a valid signature over the binary concatenation of authData
                          //     and hash.
                          bytes32 messageHash = sha256(abi.encodePacked(webAuthnAuth.authenticatorData, clientDataJSONHash));
                          bytes memory args = abi.encode(messageHash, webAuthnAuth.r, webAuthnAuth.s, x, y);
                          // try the RIP-7212 precompile address
                          (bool success, bytes memory ret) = _VERIFIER.staticcall(args);
                          // staticcall will not revert if address has no code
                          // check return length
                          // note that even if precompile exists, ret.length is 0 when verification returns false
                          // so an invalid signature will be checked twice: once by the precompile and once by FCL.
                          // Ideally this signature failure is simulated offchain and no one actually pay this gas.
                          bool valid = ret.length > 0;
                          if (success && valid) return abi.decode(ret, (uint256)) == 1;
                          return FCL_ecdsa.ecdsa_verify(messageHash, webAuthnAuth.r, webAuthnAuth.s, x, y);
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.8.4;
                  /// @title ERC-1271
                  ///
                  /// @notice Abstract ERC-1271 implementation (based on Solady's) with guards to handle the same
                  ///         signer being used on multiple accounts.
                  ///
                  /// @dev To prevent the same signature from being validated on different accounts owned by the samer signer,
                  ///      we introduce an anti cross-account-replay layer: the original hash is input into a new EIP-712 compliant
                  ///      hash. The domain separator of this outer hash contains the chain id and address of this contract, so that
                  ///      it cannot be used on two accounts (see `replaySafeHash()` for the implementation details).
                  ///
                  /// @author Coinbase (https://github.com/coinbase/smart-wallet)
                  /// @author Solady (https://github.com/vectorized/solady/blob/main/src/accounts/ERC1271.sol)
                  abstract contract ERC1271 {
                      /// @dev Precomputed `typeHash` used to produce EIP-712 compliant hash when applying the anti
                      ///      cross-account-replay layer.
                      ///
                      ///      The original hash must either be:
                      ///         - An EIP-191 hash: keccak256("\\x19Ethereum Signed Message:\
                  " || len(someMessage) || someMessage)
                      ///         - An EIP-712 hash: keccak256("\\x19\\x01" || someDomainSeparator || hashStruct(someStruct))
                      bytes32 private constant _MESSAGE_TYPEHASH = keccak256("CoinbaseSmartWalletMessage(bytes32 hash)");
                      /// @notice Returns information about the `EIP712Domain` used to create EIP-712 compliant hashes.
                      ///
                      /// @dev Follows ERC-5267 (see https://eips.ethereum.org/EIPS/eip-5267).
                      ///
                      /// @return fields The bitmap of used fields.
                      /// @return name The value of the `EIP712Domain.name` field.
                      /// @return version The value of the `EIP712Domain.version` field.
                      /// @return chainId The value of the `EIP712Domain.chainId` field.
                      /// @return verifyingContract The value of the `EIP712Domain.verifyingContract` field.
                      /// @return salt The value of the `EIP712Domain.salt` field.
                      /// @return extensions The list of EIP numbers, that extends EIP-712 with new domain fields.
                      function eip712Domain()
                          external
                          view
                          virtual
                          returns (
                              bytes1 fields,
                              string memory name,
                              string memory version,
                              uint256 chainId,
                              address verifyingContract,
                              bytes32 salt,
                              uint256[] memory extensions
                          )
                      {
                          fields = hex"0f"; // `0b1111`.
                          (name, version) = _domainNameAndVersion();
                          chainId = block.chainid;
                          verifyingContract = address(this);
                          salt = salt; // `bytes32(0)`.
                          extensions = extensions; // `new uint256[](0)`.
                      }
                      /// @notice Validates the `signature` against the given `hash`.
                      ///
                      /// @dev This implementation follows ERC-1271. See https://eips.ethereum.org/EIPS/eip-1271.
                      /// @dev IMPORTANT: Signature verification is performed on the hash produced AFTER applying the anti
                      ///      cross-account-replay layer on the given `hash` (i.e., verification is run on the replay-safe
                      ///      hash version).
                      ///
                      /// @param hash      The original hash.
                      /// @param signature The signature of the replay-safe hash to validate.
                      ///
                      /// @return result `0x1626ba7e` if validation succeeded, else `0xffffffff`.
                      function isValidSignature(bytes32 hash, bytes calldata signature) public view virtual returns (bytes4 result) {
                          if (_isValidSignature({hash: replaySafeHash(hash), signature: signature})) {
                              // bytes4(keccak256("isValidSignature(bytes32,bytes)"))
                              return 0x1626ba7e;
                          }
                          return 0xffffffff;
                      }
                      /// @notice Wrapper around `_eip712Hash()` to produce a replay-safe hash fron the given `hash`.
                      ///
                      /// @dev The returned EIP-712 compliant replay-safe hash is the result of:
                      ///      keccak256(
                      ///         \\x19\\x01 ||
                      ///         this.domainSeparator ||
                      ///         hashStruct(CoinbaseSmartWalletMessage({ hash: `hash`}))
                      ///      )
                      ///
                      /// @param hash The original hash.
                      ///
                      /// @return The corresponding replay-safe hash.
                      function replaySafeHash(bytes32 hash) public view virtual returns (bytes32) {
                          return _eip712Hash(hash);
                      }
                      /// @notice Returns the `domainSeparator` used to create EIP-712 compliant hashes.
                      ///
                      /// @dev Implements domainSeparator = hashStruct(eip712Domain).
                      ///      See https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator.
                      ///
                      /// @return The 32 bytes domain separator result.
                      function domainSeparator() public view returns (bytes32) {
                          (string memory name, string memory version) = _domainNameAndVersion();
                          return keccak256(
                              abi.encode(
                                  keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                                  keccak256(bytes(name)),
                                  keccak256(bytes(version)),
                                  block.chainid,
                                  address(this)
                              )
                          );
                      }
                      /// @notice Returns the EIP-712 typed hash of the `CoinbaseSmartWalletMessage(bytes32 hash)` data structure.
                      ///
                      /// @dev Implements encode(domainSeparator : 𝔹²⁵⁶, message : 𝕊) = "\\x19\\x01" || domainSeparator ||
                      ///      hashStruct(message).
                      /// @dev See https://eips.ethereum.org/EIPS/eip-712#specification.
                      ///
                      /// @param hash The `CoinbaseSmartWalletMessage.hash` field to hash.
                      ////
                      /// @return The resulting EIP-712 hash.
                      function _eip712Hash(bytes32 hash) internal view virtual returns (bytes32) {
                          return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator(), _hashStruct(hash)));
                      }
                      /// @notice Returns the EIP-712 `hashStruct` result of the `CoinbaseSmartWalletMessage(bytes32 hash)` data
                      ///         structure.
                      ///
                      /// @dev Implements hashStruct(s : 𝕊) = keccak256(typeHash || encodeData(s)).
                      /// @dev See https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct.
                      ///
                      /// @param hash The `CoinbaseSmartWalletMessage.hash` field.
                      ///
                      /// @return The EIP-712 `hashStruct` result.
                      function _hashStruct(bytes32 hash) internal view virtual returns (bytes32) {
                          return keccak256(abi.encode(_MESSAGE_TYPEHASH, hash));
                      }
                      /// @notice Returns the domain name and version to use when creating EIP-712 signatures.
                      ///
                      /// @dev MUST be defined by the implementation.
                      ///
                      /// @return name    The user readable name of signing domain.
                      /// @return version The current major version of the signing domain.
                      function _domainNameAndVersion() internal view virtual returns (string memory name, string memory version);
                      /// @notice Validates the `signature` against the given `hash`.
                      ///
                      /// @dev MUST be defined by the implementation.
                      ///
                      /// @param hash      The hash whose signature has been performed on.
                      /// @param signature The signature associated with `hash`.
                      ///
                      /// @return `true` is the signature is valid, else `false`.
                      function _isValidSignature(bytes32 hash, bytes calldata signature) internal view virtual returns (bool);
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.8.18;
                  /// @notice Storage layout used by this contract.
                  ///
                  /// @custom:storage-location erc7201:coinbase.storage.MultiOwnable
                  struct MultiOwnableStorage {
                      /// @dev Tracks the index of the next owner to add.
                      uint256 nextOwnerIndex;
                      /// @dev Tracks number of owners that have been removed.
                      uint256 removedOwnersCount;
                      /// @dev Maps index to owner bytes, used to idenfitied owners via a uint256 index.
                      ///
                      ///      Some uses—-such as signature validation for secp256r1 public key owners—-
                      ///      requires the caller to assert the public key of the caller. To economize calldata,
                      ///      we allow an index to identify an owner, so that the full owner bytes do
                      ///      not need to be passed.
                      ///
                      ///      The `owner` bytes should either be
                      ///         - An ABI encoded Ethereum address
                      ///         - An ABI encoded public key
                      mapping(uint256 index => bytes owner) ownerAtIndex;
                      /// @dev Mapping of bytes to booleans indicating whether or not
                      ///      bytes_ is an owner of this contract.
                      mapping(bytes bytes_ => bool isOwner_) isOwner;
                  }
                  /// @title Multi Ownable
                  ///
                  /// @notice Auth contract allowing multiple owners, each identified as bytes.
                  ///
                  /// @author Coinbase (https://github.com/coinbase/smart-wallet)
                  contract MultiOwnable {
                      /// @dev Slot for the `MultiOwnableStorage` struct in storage.
                      ///      Computed from
                      ///      keccak256(abi.encode(uint256(keccak256("coinbase.storage.MultiOwnable")) - 1)) & ~bytes32(uint256(0xff))
                      ///      Follows ERC-7201 (see https://eips.ethereum.org/EIPS/eip-7201).
                      bytes32 private constant MUTLI_OWNABLE_STORAGE_LOCATION =
                          0x97e2c6aad4ce5d562ebfaa00db6b9e0fb66ea5d8162ed5b243f51a2e03086f00;
                      /// @notice Thrown when the `msg.sender` is not an owner and is trying to call a privileged function.
                      error Unauthorized();
                      /// @notice Thrown when trying to add an already registered owner.
                      ///
                      /// @param owner The owner bytes.
                      error AlreadyOwner(bytes owner);
                      /// @notice Thrown when trying to remove an owner from an index that is empty.
                      ///
                      /// @param index The targeted index for removal.
                      error NoOwnerAtIndex(uint256 index);
                      /// @notice Thrown when `owner` argument does not match owner found at index.
                      ///
                      /// @param index         The index of the owner to be removed.
                      /// @param expectedOwner The owner passed in the remove call.
                      /// @param actualOwner   The actual owner at `index`.
                      error WrongOwnerAtIndex(uint256 index, bytes expectedOwner, bytes actualOwner);
                      /// @notice Thrown when a provided owner is neither 64 bytes long (for public key)
                      ///         nor a ABI encoded address.
                      ///
                      /// @param owner The invalid owner.
                      error InvalidOwnerBytesLength(bytes owner);
                      /// @notice Thrown if a provided owner is 32 bytes long but does not fit in an `address` type.
                      ///
                      /// @param owner The invalid owner.
                      error InvalidEthereumAddressOwner(bytes owner);
                      /// @notice Thrown when removeOwnerAtIndex is called and there is only one current owner.
                      error LastOwner();
                      /// @notice Thrown when removeLastOwner is called and there is more than one current owner.
                      ///
                      /// @param ownersRemaining The number of current owners.
                      error NotLastOwner(uint256 ownersRemaining);
                      /// @notice Emitted when a new owner is registered.
                      ///
                      /// @param index The owner index of the owner added.
                      /// @param owner The owner added.
                      event AddOwner(uint256 indexed index, bytes owner);
                      /// @notice Emitted when an owner is removed.
                      ///
                      /// @param index The owner index of the owner removed.
                      /// @param owner The owner removed.
                      event RemoveOwner(uint256 indexed index, bytes owner);
                      /// @notice Access control modifier ensuring the caller is an authorized owner
                      modifier onlyOwner() virtual {
                          _checkOwner();
                          _;
                      }
                      /// @notice Adds a new Ethereum-address owner.
                      ///
                      /// @param owner The owner address.
                      function addOwnerAddress(address owner) external virtual onlyOwner {
                          _addOwnerAtIndex(abi.encode(owner), _getMultiOwnableStorage().nextOwnerIndex++);
                      }
                      /// @notice Adds a new public-key owner.
                      ///
                      /// @param x The owner public key x coordinate.
                      /// @param y The owner public key y coordinate.
                      function addOwnerPublicKey(bytes32 x, bytes32 y) external virtual onlyOwner {
                          _addOwnerAtIndex(abi.encode(x, y), _getMultiOwnableStorage().nextOwnerIndex++);
                      }
                      /// @notice Removes owner at the given `index`.
                      ///
                      /// @dev Reverts if the owner is not registered at `index`.
                      /// @dev Reverts if there is currently only one owner.
                      /// @dev Reverts if `owner` does not match bytes found at `index`.
                      ///
                      /// @param index The index of the owner to be removed.
                      /// @param owner The ABI encoded bytes of the owner to be removed.
                      function removeOwnerAtIndex(uint256 index, bytes calldata owner) external virtual onlyOwner {
                          if (ownerCount() == 1) {
                              revert LastOwner();
                          }
                          _removeOwnerAtIndex(index, owner);
                      }
                      /// @notice Removes owner at the given `index`, which should be the only current owner.
                      ///
                      /// @dev Reverts if the owner is not registered at `index`.
                      /// @dev Reverts if there is currently more than one owner.
                      /// @dev Reverts if `owner` does not match bytes found at `index`.
                      ///
                      /// @param index The index of the owner to be removed.
                      /// @param owner The ABI encoded bytes of the owner to be removed.
                      function removeLastOwner(uint256 index, bytes calldata owner) external virtual onlyOwner {
                          uint256 ownersRemaining = ownerCount();
                          if (ownersRemaining > 1) {
                              revert NotLastOwner(ownersRemaining);
                          }
                          _removeOwnerAtIndex(index, owner);
                      }
                      /// @notice Checks if the given `account` address is registered as owner.
                      ///
                      /// @param account The account address to check.
                      ///
                      /// @return `true` if the account is an owner else `false`.
                      function isOwnerAddress(address account) public view virtual returns (bool) {
                          return _getMultiOwnableStorage().isOwner[abi.encode(account)];
                      }
                      /// @notice Checks if the given `x`, `y` public key is registered as owner.
                      ///
                      /// @param x The public key x coordinate.
                      /// @param y The public key y coordinate.
                      ///
                      /// @return `true` if the account is an owner else `false`.
                      function isOwnerPublicKey(bytes32 x, bytes32 y) public view virtual returns (bool) {
                          return _getMultiOwnableStorage().isOwner[abi.encode(x, y)];
                      }
                      /// @notice Checks if the given `account` bytes is registered as owner.
                      ///
                      /// @param account The account, should be ABI encoded address or public key.
                      ///
                      /// @return `true` if the account is an owner else `false`.
                      function isOwnerBytes(bytes memory account) public view virtual returns (bool) {
                          return _getMultiOwnableStorage().isOwner[account];
                      }
                      /// @notice Returns the owner bytes at the given `index`.
                      ///
                      /// @param index The index to lookup.
                      ///
                      /// @return The owner bytes (empty if no owner is registered at this `index`).
                      function ownerAtIndex(uint256 index) public view virtual returns (bytes memory) {
                          return _getMultiOwnableStorage().ownerAtIndex[index];
                      }
                      /// @notice Returns the next index that will be used to add a new owner.
                      ///
                      /// @return The next index that will be used to add a new owner.
                      function nextOwnerIndex() public view virtual returns (uint256) {
                          return _getMultiOwnableStorage().nextOwnerIndex;
                      }
                      /// @notice Returns the current number of owners
                      ///
                      /// @return The current owner count
                      function ownerCount() public view virtual returns (uint256) {
                          MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                          return $.nextOwnerIndex - $.removedOwnersCount;
                      }
                      /// @notice Tracks the number of owners removed
                      ///
                      /// @dev Used with `this.nextOwnerIndex` to avoid removing all owners
                      ///
                      /// @return The number of owners that have been removed.
                      function removedOwnersCount() public view virtual returns (uint256) {
                          return _getMultiOwnableStorage().removedOwnersCount;
                      }
                      /// @notice Initialize the owners of this contract.
                      ///
                      /// @dev Intended to be called contract is first deployed and never again.
                      /// @dev Reverts if a provided owner is neither 64 bytes long (for public key) nor a valid address.
                      ///
                      /// @param owners The initial set of owners.
                      function _initializeOwners(bytes[] memory owners) internal virtual {
                          MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                          uint256 nextOwnerIndex_ = $.nextOwnerIndex;
                          for (uint256 i; i < owners.length; i++) {
                              if (owners[i].length != 32 && owners[i].length != 64) {
                                  revert InvalidOwnerBytesLength(owners[i]);
                              }
                              if (owners[i].length == 32 && uint256(bytes32(owners[i])) > type(uint160).max) {
                                  revert InvalidEthereumAddressOwner(owners[i]);
                              }
                              _addOwnerAtIndex(owners[i], nextOwnerIndex_++);
                          }
                          $.nextOwnerIndex = nextOwnerIndex_;
                      }
                      /// @notice Adds an owner at the given `index`.
                      ///
                      /// @dev Reverts if `owner` is already registered as an owner.
                      ///
                      /// @param owner The owner raw bytes to register.
                      /// @param index The index to write to.
                      function _addOwnerAtIndex(bytes memory owner, uint256 index) internal virtual {
                          if (isOwnerBytes(owner)) revert AlreadyOwner(owner);
                          MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                          $.isOwner[owner] = true;
                          $.ownerAtIndex[index] = owner;
                          emit AddOwner(index, owner);
                      }
                      /// @notice Removes owner at the given `index`.
                      ///
                      /// @dev Reverts if the owner is not registered at `index`.
                      /// @dev Reverts if `owner` does not match bytes found at `index`.
                      ///
                      /// @param index The index of the owner to be removed.
                      /// @param owner The ABI encoded bytes of the owner to be removed.
                      function _removeOwnerAtIndex(uint256 index, bytes calldata owner) internal virtual {
                          bytes memory owner_ = ownerAtIndex(index);
                          if (owner_.length == 0) revert NoOwnerAtIndex(index);
                          if (keccak256(owner_) != keccak256(owner)) {
                              revert WrongOwnerAtIndex({index: index, expectedOwner: owner, actualOwner: owner_});
                          }
                          MultiOwnableStorage storage $ = _getMultiOwnableStorage();
                          delete $.isOwner[owner];
                          delete $.ownerAtIndex[index];
                          $.removedOwnersCount++;
                          emit RemoveOwner(index, owner);
                      }
                      /// @notice Checks if the sender is an owner of this contract or the contract itself.
                      ///
                      /// @dev Revert if the sender is not an owner fo the contract itself.
                      function _checkOwner() internal view virtual {
                          if (isOwnerAddress(msg.sender) || (msg.sender == address(this))) {
                              return;
                          }
                          revert Unauthorized();
                      }
                      /// @notice Helper function to get a storage reference to the `MultiOwnableStorage` struct.
                      ///
                      /// @return $ A storage reference to the `MultiOwnableStorage` struct.
                      function _getMultiOwnableStorage() internal pure returns (MultiOwnableStorage storage $) {
                          assembly ("memory-safe") {
                              $.slot := MUTLI_OWNABLE_STORAGE_LOCATION
                          }
                      }
                  }
                  // SPDX-License-Identifier: GPL-3.0
                  pragma solidity ^0.8.12;
                  /* solhint-disable no-inline-assembly */
                  /**
                   * returned data from validateUserOp.
                   * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
                   * @param aggregator - address(0) - the account validated the signature by itself.
                   *              address(1) - the account failed to validate the signature.
                   *              otherwise - this is an address of a signature aggregator that must be used to validate the signature.
                   * @param validAfter - this UserOp is valid only after this timestamp.
                   * @param validaUntil - this UserOp is valid only up to this timestamp.
                   */
                      struct ValidationData {
                          address aggregator;
                          uint48 validAfter;
                          uint48 validUntil;
                      }
                  //extract sigFailed, validAfter, validUntil.
                  // also convert zero validUntil to type(uint48).max
                      function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
                          address aggregator = address(uint160(validationData));
                          uint48 validUntil = uint48(validationData >> 160);
                          if (validUntil == 0) {
                              validUntil = type(uint48).max;
                          }
                          uint48 validAfter = uint48(validationData >> (48 + 160));
                          return ValidationData(aggregator, validAfter, validUntil);
                      }
                  // intersect account and paymaster ranges.
                      function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
                          ValidationData memory accountValidationData = _parseValidationData(validationData);
                          ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
                          address aggregator = accountValidationData.aggregator;
                          if (aggregator == address(0)) {
                              aggregator = pmValidationData.aggregator;
                          }
                          uint48 validAfter = accountValidationData.validAfter;
                          uint48 validUntil = accountValidationData.validUntil;
                          uint48 pmValidAfter = pmValidationData.validAfter;
                          uint48 pmValidUntil = pmValidationData.validUntil;
                          if (validAfter < pmValidAfter) validAfter = pmValidAfter;
                          if (validUntil > pmValidUntil) validUntil = pmValidUntil;
                          return ValidationData(aggregator, validAfter, validUntil);
                      }
                  /**
                   * helper to pack the return value for validateUserOp
                   * @param data - the ValidationData to pack
                   */
                      function _packValidationData(ValidationData memory data) pure returns (uint256) {
                          return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
                      }
                  /**
                   * helper to pack the return value for validateUserOp, when not using an aggregator
                   * @param sigFailed - true for signature failure, false for success
                   * @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
                   * @param validAfter first timestamp this UserOperation is valid
                   */
                      function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
                          return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
                      }
                  /**
                   * keccak function over calldata.
                   * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
                   */
                      function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
                          assembly {
                              let mem := mload(0x40)
                              let len := data.length
                              calldatacopy(mem, data.offset, len)
                              ret := keccak256(mem, len)
                          }
                      }
                  //********************************************************************************************/
                  //  ___           _       ___               _         _    _ _
                  // | __| _ ___ __| |_    / __|_ _ _  _ _ __| |_ ___  | |  (_) |__
                  // | _| '_/ -_|_-< ' \\  | (__| '_| || | '_ \\  _/ _ \\ | |__| | '_ \\
                  // |_||_| \\___/__/_||_|  \\___|_|  \\_, | .__/\\__\\___/ |____|_|_.__/
                  //                                |__/|_|
                  ///* Copyright (C) 2022 - Renaud Dubois - This file is part of FCL (Fresh CryptoLib) project
                  ///* License: This software is licensed under MIT License
                  ///* This Code may be reused including license and copyright notice.
                  ///* See LICENSE file at the root folder of the project.
                  ///* FILE: FCL_ecdsa.sol
                  ///*
                  ///*
                  ///* DESCRIPTION: ecdsa verification implementation
                  ///*
                  //**************************************************************************************/
                  //* WARNING: this code SHALL not be used for non prime order curves for security reasons.
                  // Code is optimized for a=-3 only curves with prime order, constant like -1, -2 shall be replaced
                  // if ever used for other curve than sec256R1
                  // SPDX-License-Identifier: MIT
                  pragma solidity >=0.8.19 <0.9.0;
                  import {FCL_Elliptic_ZZ} from "./FCL_elliptic.sol";
                  library FCL_ecdsa {
                      // Set parameters for curve sec256r1.public
                        //curve order (number of points)
                      uint256 constant n = FCL_Elliptic_ZZ.n;
                    
                      /**
                       * @dev ECDSA verification, given , signature, and public key.
                       */
                      /**
                       * @dev ECDSA verification, given , signature, and public key, no calldata version
                       */
                      function ecdsa_verify(bytes32 message, uint256 r, uint256 s, uint256 Qx, uint256 Qy)  internal view returns (bool){
                          if (r == 0 || r >= FCL_Elliptic_ZZ.n || s == 0 || s >= FCL_Elliptic_ZZ.n) {
                              return false;
                          }
                          
                          if (!FCL_Elliptic_ZZ.ecAff_isOnCurve(Qx, Qy)) {
                              return false;
                          }
                          uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                          uint256 scalar_u = mulmod(uint256(message), sInv, FCL_Elliptic_ZZ.n);
                          uint256 scalar_v = mulmod(r, sInv, FCL_Elliptic_ZZ.n);
                          uint256 x1;
                          x1 = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S_asm(Qx, Qy, scalar_u, scalar_v);
                          x1= addmod(x1, n-r,n );
                      
                          return x1 == 0;
                      }
                      function ec_recover_r1(uint256 h, uint256 v, uint256 r, uint256 s) internal view returns (address)
                      {
                           if (r == 0 || r >= FCL_Elliptic_ZZ.n || s == 0 || s >= FCL_Elliptic_ZZ.n) {
                              return address(0);
                          }
                          uint256 y=FCL_Elliptic_ZZ.ec_Decompress(r, v-27);
                          uint256 rinv=FCL_Elliptic_ZZ.FCL_nModInv(r);
                          uint256 u1=mulmod(FCL_Elliptic_ZZ.n-addmod(0,h,FCL_Elliptic_ZZ.n), rinv,FCL_Elliptic_ZZ.n);//-hr^-1
                          uint256 u2=mulmod(s, rinv,FCL_Elliptic_ZZ.n);//sr^-1
                          uint256 Qx;
                          uint256 Qy;
                          (Qx,Qy)=FCL_Elliptic_ZZ.ecZZ_mulmuladd(r,y, u1, u2);
                          return address(uint160(uint256(keccak256(abi.encodePacked(Qx, Qy)))));
                      }
                      function ecdsa_precomputed_verify(bytes32 message, uint256 r, uint256 s, address Shamir8)
                          internal view
                          returns (bool)
                      {
                         
                          if (r == 0 || r >= n || s == 0 || s >= n) {
                              return false;
                          }
                          /* Q is pushed via the contract at address Shamir8 assumed to be correct
                          if (!isOnCurve(Q[0], Q[1])) {
                              return false;
                          }*/
                          uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                          uint256 X;
                          //Shamir 8 dimensions
                          X = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S8_extcode(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), Shamir8);
                          X= addmod(X, n-r,n );
                          return X == 0;
                      } //end  ecdsa_precomputed_verify()
                       function ecdsa_precomputed_verify(bytes32 message, uint256[2] calldata rs, address Shamir8)
                          internal view
                          returns (bool)
                      {
                          uint256 r = rs[0];
                          uint256 s = rs[1];
                          if (r == 0 || r >= n || s == 0 || s >= n) {
                              return false;
                          }
                          /* Q is pushed via the contract at address Shamir8 assumed to be correct
                          if (!isOnCurve(Q[0], Q[1])) {
                              return false;
                          }*/
                          uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);
                          uint256 X;
                          //Shamir 8 dimensions
                          X = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S8_extcode(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), Shamir8);
                          X= addmod(X, n-r,n );
                          return X == 0;
                      } //end  ecdsa_precomputed_verify()
                  }
                  //********************************************************************************************/
                  //  ___           _       ___               _         _    _ _
                  // | __| _ ___ __| |_    / __|_ _ _  _ _ __| |_ ___  | |  (_) |__
                  // | _| '_/ -_|_-< ' \\  | (__| '_| || | '_ \\  _/ _ \\ | |__| | '_ \\
                  // |_||_| \\___/__/_||_|  \\___|_|  \\_, | .__/\\__\\___/ |____|_|_.__/
                  //                                |__/|_|
                  ///* Copyright (C) 2022 - Renaud Dubois - This file is part of FCL (Fresh CryptoLib) project
                  ///* License: This software is licensed under MIT License
                  ///* This Code may be reused including license and copyright notice.
                  ///* See LICENSE file at the root folder of the project.
                  ///* FILE: FCL_elliptic.sol
                  ///*
                  ///*
                  ///* DESCRIPTION: modified XYZZ system coordinates for EVM elliptic point multiplication
                  ///*  optimization
                  ///*
                  //**************************************************************************************/
                  //* WARNING: this code SHALL not be used for non prime order curves for security reasons.
                  // Code is optimized for a=-3 only curves with prime order, constant like -1, -2 shall be replaced
                  // if ever used for other curve than sec256R1
                  // SPDX-License-Identifier: MIT
                  pragma solidity >=0.8.19 <0.9.0;
                  library FCL_Elliptic_ZZ {
                      // Set parameters for curve sec256r1.
                      // address of the ModExp precompiled contract (Arbitrary-precision exponentiation under modulo)
                      address constant MODEXP_PRECOMPILE = 0x0000000000000000000000000000000000000005;
                      //curve prime field modulus
                      uint256 constant p = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
                      //short weierstrass first coefficient
                      uint256 constant a = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC;
                      //short weierstrass second coefficient
                      uint256 constant b = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B;
                      //generating point affine coordinates
                      uint256 constant gx = 0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296;
                      uint256 constant gy = 0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5;
                      //curve order (number of points)
                      uint256 constant n = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551;
                      /* -2 mod p constant, used to speed up inversion and doubling (avoid negation)*/
                      uint256 constant minus_2 = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFD;
                      /* -2 mod n constant, used to speed up inversion*/
                      uint256 constant minus_2modn = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC63254F;
                      uint256 constant minus_1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                      //P+1 div 4
                      uint256 constant pp1div4=0x3fffffffc0000000400000000000000000000000400000000000000000000000;
                      //arbitrary constant to express no quadratic residuosity
                      uint256 constant _NOTSQUARE=0xFFFFFFFF00000002000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
                      uint256 constant _NOTONCURVE=0xFFFFFFFF00000003000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
                      /**
                       * /* inversion mod n via a^(n-2), use of precompiled using little Fermat theorem
                       */
                      function FCL_nModInv(uint256 u) internal view returns (uint256 result) {
                          assembly {
                              let pointer := mload(0x40)
                              // Define length of base, exponent and modulus. 0x20 == 32 bytes
                              mstore(pointer, 0x20)
                              mstore(add(pointer, 0x20), 0x20)
                              mstore(add(pointer, 0x40), 0x20)
                              // Define variables base, exponent and modulus
                              mstore(add(pointer, 0x60), u)
                              mstore(add(pointer, 0x80), minus_2modn)
                              mstore(add(pointer, 0xa0), n)
                              // Call the precompiled contract 0x05 = ModExp
                              if iszero(staticcall(not(0), 0x05, pointer, 0xc0, pointer, 0x20)) { revert(0, 0) }
                              result := mload(pointer)
                          }
                      }
                      /**
                       * /* @dev inversion mod nusing little Fermat theorem via a^(n-2), use of precompiled
                       */
                      function FCL_pModInv(uint256 u) internal view returns (uint256 result) {
                          assembly {
                              let pointer := mload(0x40)
                              // Define length of base, exponent and modulus. 0x20 == 32 bytes
                              mstore(pointer, 0x20)
                              mstore(add(pointer, 0x20), 0x20)
                              mstore(add(pointer, 0x40), 0x20)
                              // Define variables base, exponent and modulus
                              mstore(add(pointer, 0x60), u)
                              mstore(add(pointer, 0x80), minus_2)
                              mstore(add(pointer, 0xa0), p)
                              // Call the precompiled contract 0x05 = ModExp
                              if iszero(staticcall(not(0), 0x05, pointer, 0xc0, pointer, 0x20)) { revert(0, 0) }
                              result := mload(pointer)
                          }
                      }
                      //Coron projective shuffling, take as input alpha as blinding factor
                     function ecZZ_Coronize(uint256 alpha, uint256 x, uint256 y,  uint256 zz, uint256 zzz) internal pure  returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3)
                     {
                         
                          uint256 alpha2=mulmod(alpha,alpha,p);
                         
                          x3=mulmod(alpha2, x,p); //alpha^-2.x
                          y3=mulmod(mulmod(alpha, alpha2,p), y,p);
                          zz3=mulmod(zz,alpha2,p);//alpha^2 zz
                          zzz3=mulmod(zzz,mulmod(alpha, alpha2,p),p);//alpha^3 zzz
                          
                          return (x3, y3, zz3, zzz3);
                     }
                   function ecZZ_Add(uint256 x1, uint256 y1, uint256 zz1, uint256 zzz1, uint256 x2, uint256 y2, uint256 zz2, uint256 zzz2) internal pure  returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3)
                    {
                      uint256 u1=mulmod(x1,zz2,p); // U1 = X1*ZZ2
                      uint256 u2=mulmod(x2, zz1,p);               //  U2 = X2*ZZ1
                      u2=addmod(u2, p-u1, p);//  P = U2-U1
                      x1=mulmod(u2, u2, p);//PP
                      x2=mulmod(x1, u2, p);//PPP
                      
                      zz3=mulmod(x1, mulmod(zz1, zz2, p),p);//ZZ3 = ZZ1*ZZ2*PP  
                      zzz3=mulmod(zzz1, mulmod(zzz2, x2, p),p);//ZZZ3 = ZZZ1*ZZZ2*PPP
                      zz1=mulmod(y1, zzz2,p);  // S1 = Y1*ZZZ2
                      zz2=mulmod(y2, zzz1, p);    // S2 = Y2*ZZZ1 
                      zz2=addmod(zz2, p-zz1, p);//R = S2-S1
                      zzz1=mulmod(u1, x1,p); //Q = U1*PP
                      x3= addmod(addmod(mulmod(zz2, zz2, p), p-x2,p), mulmod(minus_2, zzz1,p),p); //X3 = R2-PPP-2*Q
                      y3=addmod( mulmod(zz2, addmod(zzz1, p-x3, p),p), p-mulmod(zz1, x2, p),p);//R*(Q-X3)-S1*PPP
                      return (x3, y3, zz3, zzz3);
                    }
                  /// @notice Calculate one modular square root of a given integer. Assume that p=3 mod 4.
                  /// @dev Uses the ModExp precompiled contract at address 0x05 for fast computation using little Fermat theorem
                  /// @param self The integer of which to find the modular inverse
                  /// @return result The modular inverse of the input integer. If the modular inverse doesn't exist, it revert the tx
                  function SqrtMod(uint256 self) internal view returns (uint256 result){
                   assembly ("memory-safe") {
                          // load the free memory pointer value
                          let pointer := mload(0x40)
                          // Define length of base (Bsize)
                          mstore(pointer, 0x20)
                          // Define the exponent size (Esize)
                          mstore(add(pointer, 0x20), 0x20)
                          // Define the modulus size (Msize)
                          mstore(add(pointer, 0x40), 0x20)
                          // Define variables base (B)
                          mstore(add(pointer, 0x60), self)
                          // Define the exponent (E)
                          mstore(add(pointer, 0x80), pp1div4)
                          // We save the point of the last argument, it will be override by the result
                          // of the precompile call in order to avoid paying for the memory expansion properly
                          let _result := add(pointer, 0xa0)
                          // Define the modulus (M)
                          mstore(_result, p)
                          // Call the precompiled ModExp (0x05) https://www.evm.codes/precompiled#0x05
                          if iszero(
                              staticcall(
                                  not(0), // amount of gas to send
                                  MODEXP_PRECOMPILE, // target
                                  pointer, // argsOffset
                                  0xc0, // argsSize (6 * 32 bytes)
                                  _result, // retOffset (we override M to avoid paying for the memory expansion)
                                  0x20 // retSize (32 bytes)
                              )
                          ) { revert(0, 0) }
                    result := mload(_result)
                  //  result :=addmod(result,0,p)
                   }
                     if(mulmod(result,result,p)!=self){
                       result=_NOTSQUARE;
                     }
                    
                     return result;
                  }
                      /**
                       * /* @dev Convert from affine rep to XYZZ rep
                       */
                      function ecAff_SetZZ(uint256 x0, uint256 y0) internal pure returns (uint256[4] memory P) {
                          unchecked {
                              P[2] = 1; //ZZ
                              P[3] = 1; //ZZZ
                              P[0] = x0;
                              P[1] = y0;
                          }
                      }
                      function ec_Decompress(uint256 x, uint256 parity) internal view returns(uint256 y){ 
                          uint256 y2=mulmod(x,mulmod(x,x,p),p);//x3
                          y2=addmod(b,addmod(y2,mulmod(x,a,p),p),p);//x3+ax+b
                          y=SqrtMod(y2);
                          if(y==_NOTSQUARE){
                             return _NOTONCURVE;
                          }
                          if((y&1)!=(parity&1)){
                              y=p-y;
                          }
                      }
                      /**
                       * /* @dev Convert from XYZZ rep to affine rep
                       */
                      /*    https://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz-3.html#addition-add-2008-s*/
                      function ecZZ_SetAff(uint256 x, uint256 y, uint256 zz, uint256 zzz) internal view returns (uint256 x1, uint256 y1) {
                          uint256 zzzInv = FCL_pModInv(zzz); //1/zzz
                          y1 = mulmod(y, zzzInv, p); //Y/zzz
                          uint256 _b = mulmod(zz, zzzInv, p); //1/z
                          zzzInv = mulmod(_b, _b, p); //1/zz
                          x1 = mulmod(x, zzzInv, p); //X/zz
                      }
                      /**
                       * /* @dev Sutherland2008 doubling
                       */
                      /* The "dbl-2008-s-1" doubling formulas */
                      function ecZZ_Dbl(uint256 x, uint256 y, uint256 zz, uint256 zzz)
                          internal
                          pure
                          returns (uint256 P0, uint256 P1, uint256 P2, uint256 P3)
                      {
                          unchecked {
                              assembly {
                                  P0 := mulmod(2, y, p) //U = 2*Y1
                                  P2 := mulmod(P0, P0, p) // V=U^2
                                  P3 := mulmod(x, P2, p) // S = X1*V
                                  P1 := mulmod(P0, P2, p) // W=UV
                                  P2 := mulmod(P2, zz, p) //zz3=V*ZZ1
                                  zz := mulmod(3, mulmod(addmod(x, sub(p, zz), p), addmod(x, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                  P0 := addmod(mulmod(zz, zz, p), mulmod(minus_2, P3, p), p) //X3=M^2-2S
                                  x := mulmod(zz, addmod(P3, sub(p, P0), p), p) //M(S-X3)
                                  P3 := mulmod(P1, zzz, p) //zzz3=W*zzz1
                                  P1 := addmod(x, sub(p, mulmod(P1, y, p)), p) //Y3= M(S-X3)-W*Y1
                              }
                          }
                          return (P0, P1, P2, P3);
                      }
                      /**
                       * @dev Sutherland2008 add a ZZ point with a normalized point and greedy formulae
                       * warning: assume that P1(x1,y1)!=P2(x2,y2), true in multiplication loop with prime order (cofactor 1)
                       */
                      function ecZZ_AddN(uint256 x1, uint256 y1, uint256 zz1, uint256 zzz1, uint256 x2, uint256 y2)
                          internal
                          pure
                          returns (uint256 P0, uint256 P1, uint256 P2, uint256 P3)
                      {
                          unchecked {
                              if (y1 == 0) {
                                  return (x2, y2, 1, 1);
                              }
                              assembly {
                                  y1 := sub(p, y1)
                                  y2 := addmod(mulmod(y2, zzz1, p), y1, p)
                                  x2 := addmod(mulmod(x2, zz1, p), sub(p, x1), p)
                                  P0 := mulmod(x2, x2, p) //PP = P^2
                                  P1 := mulmod(P0, x2, p) //PPP = P*PP
                                  P2 := mulmod(zz1, P0, p) ////ZZ3 = ZZ1*PP
                                  P3 := mulmod(zzz1, P1, p) ////ZZZ3 = ZZZ1*PPP
                                  zz1 := mulmod(x1, P0, p) //Q = X1*PP
                                  P0 := addmod(addmod(mulmod(y2, y2, p), sub(p, P1), p), mulmod(minus_2, zz1, p), p) //R^2-PPP-2*Q
                                  P1 := addmod(mulmod(addmod(zz1, sub(p, P0), p), y2, p), mulmod(y1, P1, p), p) //R*(Q-X3)
                              }
                              //end assembly
                          } //end unchecked
                          return (P0, P1, P2, P3);
                      }
                      /**
                       * @dev Return the zero curve in XYZZ coordinates.
                       */
                      function ecZZ_SetZero() internal pure returns (uint256 x, uint256 y, uint256 zz, uint256 zzz) {
                          return (0, 0, 0, 0);
                      }
                      /**
                       * @dev Check if point is the neutral of the curve
                       */
                      // uint256 x0, uint256 y0, uint256 zz0, uint256 zzz0
                      function ecZZ_IsZero(uint256, uint256 y0, uint256, uint256) internal pure returns (bool) {
                          return y0 == 0;
                      }
                      /**
                       * @dev Return the zero curve in affine coordinates. Compatible with the double formulae (no special case)
                       */
                      function ecAff_SetZero() internal pure returns (uint256 x, uint256 y) {
                          return (0, 0);
                      }
                      /**
                       * @dev Check if the curve is the zero curve in affine rep.
                       */
                      // uint256 x, uint256 y)
                      function ecAff_IsZero(uint256, uint256 y) internal pure returns (bool flag) {
                          return (y == 0);
                      }
                      /**
                       * @dev Check if a point in affine coordinates is on the curve (reject Neutral that is indeed on the curve).
                       */
                      function ecAff_isOnCurve(uint256 x, uint256 y) internal pure returns (bool) {
                          if (x >= p || y >= p || ((x == 0) && (y == 0))) {
                              return false;
                          }
                          unchecked {
                              uint256 LHS = mulmod(y, y, p); // y^2
                              uint256 RHS = addmod(mulmod(mulmod(x, x, p), x, p), mulmod(x, a, p), p); // x^3+ax
                              RHS = addmod(RHS, b, p); // x^3 + a*x + b
                              return LHS == RHS;
                          }
                      }
                      /**
                       * @dev Add two elliptic curve points in affine coordinates. Deal with P=Q
                       */
                      function ecAff_add(uint256 x0, uint256 y0, uint256 x1, uint256 y1) internal view returns (uint256, uint256) {
                          uint256 zz0;
                          uint256 zzz0;
                          if (ecAff_IsZero(x0, y0)) return (x1, y1);
                          if (ecAff_IsZero(x1, y1)) return (x0, y0);
                          if((x0==x1)&&(y0==y1)) {
                              (x0, y0, zz0, zzz0) = ecZZ_Dbl(x0, y0,1,1);
                          }
                          else{
                              (x0, y0, zz0, zzz0) = ecZZ_AddN(x0, y0, 1, 1, x1, y1);
                          }
                          return ecZZ_SetAff(x0, y0, zz0, zzz0);
                      }
                      /**
                       * @dev Computation of uG+vQ using Strauss-Shamir's trick, G basepoint, Q public key
                       *       Returns only x for ECDSA use            
                       *      */
                      function ecZZ_mulmuladd_S_asm(
                          uint256 Q0,
                          uint256 Q1, //affine rep for input point Q
                          uint256 scalar_u,
                          uint256 scalar_v
                      ) internal view returns (uint256 X) {
                          uint256 zz;
                          uint256 zzz;
                          uint256 Y;
                          uint256 index = 255;
                          uint256 H0;
                          uint256 H1;
                          unchecked {
                              if (scalar_u == 0 && scalar_v == 0) return 0;
                              (H0, H1) = ecAff_add(gx, gy, Q0, Q1); 
                              if((H0==0)&&(H1==0))//handling Q=-G
                              {
                                  scalar_u=addmod(scalar_u, n-scalar_v, n);
                                  scalar_v=0;
                                  if (scalar_u == 0 && scalar_v == 0) return 0;
                              }
                              assembly {
                                  for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
                                      index := sub(index, 1)
                                      T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                  } {}
                                  zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                  if eq(zz, 1) {
                                      X := gx
                                      Y := gy
                                  }
                                  if eq(zz, 2) {
                                      X := Q0
                                      Y := Q1
                                  }
                                  if eq(zz, 3) {
                                      X := H0
                                      Y := H1
                                  }
                                  index := sub(index, 1)
                                  zz := 1
                                  zzz := 1
                                  for {} gt(minus_1, index) { index := sub(index, 1) } {
                                      // inlined EcZZ_Dbl
                                      let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                                      let T2 := mulmod(T1, T1, p) // V=U^2
                                      let T3 := mulmod(X, T2, p) // S = X1*V
                                      T1 := mulmod(T1, T2, p) // W=UV
                                      let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                      zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                      zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                      X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                      T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                                      Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                                      {
                                          //value of dibit
                                          T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                          if iszero(T4) {
                                              Y := sub(p, Y) //restore the -Y inversion
                                              continue
                                          } // if T4!=0
                                          if eq(T4, 1) {
                                              T1 := gx
                                              T2 := gy
                                          }
                                          if eq(T4, 2) {
                                              T1 := Q0
                                              T2 := Q1
                                          }
                                          if eq(T4, 3) {
                                              T1 := H0
                                              T2 := H1
                                          }
                                          if iszero(zz) {
                                              X := T1
                                              Y := T2
                                              zz := 1
                                              zzz := 1
                                              continue
                                          }
                                          // inlined EcZZ_AddN
                                          //T3:=sub(p, Y)
                                          //T3:=Y
                                          let y2 := addmod(mulmod(T2, zzz, p), Y, p) //R
                                          T2 := addmod(mulmod(T1, zz, p), sub(p, X), p) //P
                                          //special extremely rare case accumulator where EcAdd is replaced by EcDbl, no need to optimize this
                                          //todo : construct edge vector case
                                          if iszero(y2) {
                                              if iszero(T2) {
                                                  T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                                  T2 := mulmod(T1, T1, p) // V=U^2
                                                  T3 := mulmod(X, T2, p) // S = X1*V
                                                  T1 := mulmod(T1, T2, p) // W=UV
                                                  y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                                  T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                                  zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                                  zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                                  X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                                  T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                                  Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                                  continue
                                              }
                                          }
                                          T4 := mulmod(T2, T2, p) //PP
                                          let TT1 := mulmod(T4, T2, p) //PPP, this one could be spared, but adding this register spare gas
                                          zz := mulmod(zz, T4, p)
                                          zzz := mulmod(zzz, TT1, p) //zz3=V*ZZ1
                                          let TT2 := mulmod(X, T4, p)
                                          T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(minus_2, TT2, p), p)
                                          Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)
                                          X := T4
                                      }
                                  } //end loop
                                  let T := mload(0x40)
                                  mstore(add(T, 0x60), zz)
                                  //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                                  //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                                  // Define length of base, exponent and modulus. 0x20 == 32 bytes
                                  mstore(T, 0x20)
                                  mstore(add(T, 0x20), 0x20)
                                  mstore(add(T, 0x40), 0x20)
                                  // Define variables base, exponent and modulus
                                  //mstore(add(pointer, 0x60), u)
                                  mstore(add(T, 0x80), minus_2)
                                  mstore(add(T, 0xa0), p)
                                  // Call the precompiled contract 0x05 = ModExp
                                  if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                                  //Y:=mulmod(Y,zzz,p)//Y/zzz
                                  //zz :=mulmod(zz, mload(T),p) //1/z
                                  //zz:= mulmod(zz,zz,p) //1/zz
                                  X := mulmod(X, mload(T), p) //X/zz
                              } //end assembly
                          } //end unchecked
                          return X;
                      }
                      /**
                       * @dev Computation of uG+vQ using Strauss-Shamir's trick, G basepoint, Q public key
                       *       Returns affine representation of point (normalized)       
                       *      */
                      function ecZZ_mulmuladd(
                          uint256 Q0,
                          uint256 Q1, //affine rep for input point Q
                          uint256 scalar_u,
                          uint256 scalar_v
                      ) internal view returns (uint256 X, uint256 Y) {
                          uint256 zz;
                          uint256 zzz;
                          uint256 index = 255;
                          uint256[6] memory T;
                          uint256[2] memory H;
                   
                          unchecked {
                              if (scalar_u == 0 && scalar_v == 0) return (0,0);
                              (H[0], H[1]) = ecAff_add(gx, gy, Q0, Q1); //will not work if Q=P, obvious forbidden private key
                              assembly {
                                  for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
                                      index := sub(index, 1)
                                      T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                  } {}
                                  zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                  if eq(zz, 1) {
                                      X := gx
                                      Y := gy
                                  }
                                  if eq(zz, 2) {
                                      X := Q0
                                      Y := Q1
                                  }
                                  if eq(zz, 3) {
                                      Y := mload(add(H,32))
                                      X := mload(H)
                                  }
                                  index := sub(index, 1)
                                  zz := 1
                                  zzz := 1
                                  for {} gt(minus_1, index) { index := sub(index, 1) } {
                                      // inlined EcZZ_Dbl
                                      let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                                      let T2 := mulmod(T1, T1, p) // V=U^2
                                      let T3 := mulmod(X, T2, p) // S = X1*V
                                      T1 := mulmod(T1, T2, p) // W=UV
                                      let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                      zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                      zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                      X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                      T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                                      Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                                      {
                                          //value of dibit
                                          T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                                          if iszero(T4) {
                                              Y := sub(p, Y) //restore the -Y inversion
                                              continue
                                          } // if T4!=0
                                          if eq(T4, 1) {
                                              T1 := gx
                                              T2 := gy
                                          }
                                          if eq(T4, 2) {
                                              T1 := Q0
                                              T2 := Q1
                                          }
                                          if eq(T4, 3) {
                                              T1 := mload(H)
                                              T2 := mload(add(H,32))
                                          }
                                          if iszero(zz) {
                                              X := T1
                                              Y := T2
                                              zz := 1
                                              zzz := 1
                                              continue
                                          }
                                          // inlined EcZZ_AddN
                                          //T3:=sub(p, Y)
                                          //T3:=Y
                                          let y2 := addmod(mulmod(T2, zzz, p), Y, p) //R
                                          T2 := addmod(mulmod(T1, zz, p), sub(p, X), p) //P
                                          //special extremely rare case accumulator where EcAdd is replaced by EcDbl, no need to optimize this
                                          //todo : construct edge vector case
                                          if iszero(y2) {
                                              if iszero(T2) {
                                                  T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                                  T2 := mulmod(T1, T1, p) // V=U^2
                                                  T3 := mulmod(X, T2, p) // S = X1*V
                                                  T1 := mulmod(T1, T2, p) // W=UV
                                                  y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                                  T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                                  zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                                  zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                                  X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                                  T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                                  Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                                  continue
                                              }
                                          }
                                          T4 := mulmod(T2, T2, p) //PP
                                          let TT1 := mulmod(T4, T2, p) //PPP, this one could be spared, but adding this register spare gas
                                          zz := mulmod(zz, T4, p)
                                          zzz := mulmod(zzz, TT1, p) //zz3=V*ZZ1
                                          let TT2 := mulmod(X, T4, p)
                                          T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(minus_2, TT2, p), p)
                                          Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)
                                          X := T4
                                      }
                                  } //end loop
                                  mstore(add(T, 0x60), zzz)
                                  //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                                  //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                                  // Define length of base, exponent and modulus. 0x20 == 32 bytes
                                  mstore(T, 0x20)
                                  mstore(add(T, 0x20), 0x20)
                                  mstore(add(T, 0x40), 0x20)
                                  // Define variables base, exponent and modulus
                                  //mstore(add(pointer, 0x60), u)
                                  mstore(add(T, 0x80), minus_2)
                                  mstore(add(T, 0xa0), p)
                                  // Call the precompiled contract 0x05 = ModExp
                                  if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                                  Y:=mulmod(Y,mload(T),p)//Y/zzz
                                  zz :=mulmod(zz, mload(T),p) //1/z
                                  zz:= mulmod(zz,zz,p) //1/zz
                                  X := mulmod(X, zz, p) //X/zz
                              } //end assembly
                          } //end unchecked
                          return (X,Y);
                      }
                      //8 dimensions Shamir's trick, using precomputations stored in Shamir8,  stored as Bytecode of an external
                      //contract at given address dataPointer
                      //(thx to Lakhdar https://github.com/Kelvyne for EVM storage explanations and tricks)
                      // the external tool to generate tables from public key is in the /sage directory
                      function ecZZ_mulmuladd_S8_extcode(uint256 scalar_u, uint256 scalar_v, address dataPointer)
                          internal view
                          returns (uint256 X /*, uint Y*/ )
                      {
                          unchecked {
                              uint256 zz; // third and  coordinates of the point
                              uint256[6] memory T;
                              zz = 256; //start index
                              while (T[0] == 0) {
                                  zz = zz - 1;
                                  //tbd case of msb octobit is null
                                  T[0] = 64
                                      * (
                                          128 * ((scalar_v >> zz) & 1) + 64 * ((scalar_v >> (zz - 64)) & 1)
                                              + 32 * ((scalar_v >> (zz - 128)) & 1) + 16 * ((scalar_v >> (zz - 192)) & 1)
                                              + 8 * ((scalar_u >> zz) & 1) + 4 * ((scalar_u >> (zz - 64)) & 1)
                                              + 2 * ((scalar_u >> (zz - 128)) & 1) + ((scalar_u >> (zz - 192)) & 1)
                                      );
                              }
                              assembly {
                                  extcodecopy(dataPointer, T, mload(T), 64)
                                  let index := sub(zz, 1)
                                  X := mload(T)
                                  let Y := mload(add(T, 32))
                                  let zzz := 1
                                  zz := 1
                                  //loop over 1/4 of scalars thx to Shamir's trick over 8 points
                                  for {} gt(index, 191) { index := add(index, 191) } {
                                      //inline Double
                                      {
                                          let TT1 := mulmod(2, Y, p) //U = 2*Y1, y free
                                          let T2 := mulmod(TT1, TT1, p) // V=U^2
                                          let T3 := mulmod(X, T2, p) // S = X1*V
                                          let T1 := mulmod(TT1, T2, p) // W=UV
                                          let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                          zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                          zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                          X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                          //T2:=mulmod(T4,addmod(T3, sub(p, X),p),p)//M(S-X3)
                                          let T5 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                                          //Y:= addmod(T2, sub(p, mulmod(T1, Y ,p)),p  )//Y3= M(S-X3)-W*Y1
                                          Y := addmod(mulmod(T1, Y, p), T5, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                                          /* compute element to access in precomputed table */
                                      }
                                      {
                                          let T4 := add(shl(13, and(shr(index, scalar_v), 1)), shl(9, and(shr(index, scalar_u), 1)))
                                          let index2 := sub(index, 64)
                                          let T3 :=
                                              add(T4, add(shl(12, and(shr(index2, scalar_v), 1)), shl(8, and(shr(index2, scalar_u), 1))))
                                          let index3 := sub(index2, 64)
                                          let T2 :=
                                              add(T3, add(shl(11, and(shr(index3, scalar_v), 1)), shl(7, and(shr(index3, scalar_u), 1))))
                                          index := sub(index3, 64)
                                          let T1 :=
                                              add(T2, add(shl(10, and(shr(index, scalar_v), 1)), shl(6, and(shr(index, scalar_u), 1))))
                                          //tbd: check validity of formulae with (0,1) to remove conditional jump
                                          if iszero(T1) {
                                              Y := sub(p, Y)
                                              continue
                                          }
                                          extcodecopy(dataPointer, T, T1, 64)
                                      }
                                      {
                                          /* Access to precomputed table using extcodecopy hack */
                                          // inlined EcZZ_AddN
                                          if iszero(zz) {
                                              X := mload(T)
                                              Y := mload(add(T, 32))
                                              zz := 1
                                              zzz := 1
                                              continue
                                          }
                                          let y2 := addmod(mulmod(mload(add(T, 32)), zzz, p), Y, p)
                                          let T2 := addmod(mulmod(mload(T), zz, p), sub(p, X), p)
                                          //special case ecAdd(P,P)=EcDbl
                                          if iszero(y2) {
                                              if iszero(T2) {
                                                  let T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                                  T2 := mulmod(T1, T1, p) // V=U^2
                                                  let T3 := mulmod(X, T2, p) // S = X1*V
                                                  T1 := mulmod(T1, T2, p) // W=UV
                                                  y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                                  let T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)
                                                  zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                                  zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                                  X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                                  T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)
                                                  Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1
                                                  continue
                                              }
                                          }
                                          let T4 := mulmod(T2, T2, p)
                                          let T1 := mulmod(T4, T2, p) //
                                          zz := mulmod(zz, T4, p)
                                          //zzz3=V*ZZ1
                                          zzz := mulmod(zzz, T1, p) // W=UV/
                                          let zz1 := mulmod(X, T4, p)
                                          X := addmod(addmod(mulmod(y2, y2, p), sub(p, T1), p), mulmod(minus_2, zz1, p), p)
                                          Y := addmod(mulmod(addmod(zz1, sub(p, X), p), y2, p), mulmod(Y, T1, p), p)
                                      }
                                  } //end loop
                                  mstore(add(T, 0x60), zz)
                                  //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                                  //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                                  // Define length of base, exponent and modulus. 0x20 == 32 bytes
                                  mstore(T, 0x20)
                                  mstore(add(T, 0x20), 0x20)
                                  mstore(add(T, 0x40), 0x20)
                                  // Define variables base, exponent and modulus
                                  //mstore(add(pointer, 0x60), u)
                                  mstore(add(T, 0x80), minus_2)
                                  mstore(add(T, 0xa0), p)
                                  // Call the precompiled contract 0x05 = ModExp
                                  if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                                  zz := mload(T)
                                  X := mulmod(X, zz, p) //X/zz
                              }
                          } //end unchecked
                      }
                     
                      // improving the extcodecopy trick : append array at end of contract
                      function ecZZ_mulmuladd_S8_hackmem(uint256 scalar_u, uint256 scalar_v, uint256 dataPointer)
                          internal view
                          returns (uint256 X /*, uint Y*/ )
                      {
                          uint256 zz; // third and  coordinates of the point
                          uint256[6] memory T;
                          zz = 256; //start index
                          unchecked {
                              while (T[0] == 0) {
                                  zz = zz - 1;
                                  //tbd case of msb octobit is null
                                  T[0] = 64
                                      * (
                                          128 * ((scalar_v >> zz) & 1) + 64 * ((scalar_v >> (zz - 64)) & 1)
                                              + 32 * ((scalar_v >> (zz - 128)) & 1) + 16 * ((scalar_v >> (zz - 192)) & 1)
                                              + 8 * ((scalar_u >> zz) & 1) + 4 * ((scalar_u >> (zz - 64)) & 1)
                                              + 2 * ((scalar_u >> (zz - 128)) & 1) + ((scalar_u >> (zz - 192)) & 1)
                                      );
                              }
                              assembly {
                                  codecopy(T, add(mload(T), dataPointer), 64)
                                  X := mload(T)
                                  let Y := mload(add(T, 32))
                                  let zzz := 1
                                  zz := 1
                                  //loop over 1/4 of scalars thx to Shamir's trick over 8 points
                                  for { let index := 254 } gt(index, 191) { index := add(index, 191) } {
                                      let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                                      let T2 := mulmod(T1, T1, p) // V=U^2
                                      let T3 := mulmod(X, T2, p) // S = X1*V
                                      T1 := mulmod(T1, T2, p) // W=UV
                                      let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                                      zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                      zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free
                                      X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                      //T2:=mulmod(T4,addmod(T3, sub(p, X),p),p)//M(S-X3)
                                      T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                                      //Y:= addmod(T2, sub(p, mulmod(T1, Y ,p)),p  )//Y3= M(S-X3)-W*Y1
                                      Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd
                                      /* compute element to access in precomputed table */
                                      T4 := add(shl(13, and(shr(index, scalar_v), 1)), shl(9, and(shr(index, scalar_u), 1)))
                                      index := sub(index, 64)
                                      T4 := add(T4, add(shl(12, and(shr(index, scalar_v), 1)), shl(8, and(shr(index, scalar_u), 1))))
                                      index := sub(index, 64)
                                      T4 := add(T4, add(shl(11, and(shr(index, scalar_v), 1)), shl(7, and(shr(index, scalar_u), 1))))
                                      index := sub(index, 64)
                                      T4 := add(T4, add(shl(10, and(shr(index, scalar_v), 1)), shl(6, and(shr(index, scalar_u), 1))))
                                      //index:=add(index,192), restore index, interleaved with loop
                                      //tbd: check validity of formulae with (0,1) to remove conditional jump
                                      if iszero(T4) {
                                          Y := sub(p, Y)
                                          continue
                                      }
                                      {
                                          /* Access to precomputed table using extcodecopy hack */
                                          codecopy(T, add(T4, dataPointer), 64)
                                          // inlined EcZZ_AddN
                                          let y2 := addmod(mulmod(mload(add(T, 32)), zzz, p), Y, p)
                                          T2 := addmod(mulmod(mload(T), zz, p), sub(p, X), p)
                                          T4 := mulmod(T2, T2, p)
                                          T1 := mulmod(T4, T2, p)
                                          T2 := mulmod(zz, T4, p) // W=UV
                                          zzz := mulmod(zzz, T1, p) //zz3=V*ZZ1
                                          let zz1 := mulmod(X, T4, p)
                                          T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, T1), p), mulmod(minus_2, zz1, p), p)
                                          Y := addmod(mulmod(addmod(zz1, sub(p, T4), p), y2, p), mulmod(Y, T1, p), p)
                                          zz := T2
                                          X := T4
                                      }
                                  } //end loop
                                  mstore(add(T, 0x60), zz)
                                  //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                                  //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                                  // Define length of base, exponent and modulus. 0x20 == 32 bytes
                                  mstore(T, 0x20)
                                  mstore(add(T, 0x20), 0x20)
                                  mstore(add(T, 0x40), 0x20)
                                  // Define variables base, exponent and modulus
                                  //mstore(add(pointer, 0x60), u)
                                  mstore(add(T, 0x80), minus_2)
                                  mstore(add(T, 0xa0), p)
                                  // Call the precompiled contract 0x05 = ModExp
                                  if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }
                                  zz := mload(T)
                                  X := mulmod(X, zz, p) //X/zz
                              }
                          } //end unchecked
                      }
                      /**
                       * @dev ECDSA verification using a precomputed table of multiples of P and Q stored in contract at address Shamir8
                       *     generation of contract bytecode for precomputations is done using sagemath code
                       *     (see sage directory, WebAuthn_precompute.sage)
                       */
                      /**
                       * @dev ECDSA verification using a precomputed table of multiples of P and Q appended at end of contract at address endcontract
                       *     generation of contract bytecode for precomputations is done using sagemath code
                       *     (see sage directory, WebAuthn_precompute.sage)
                       */
                      function ecdsa_precomputed_hackmem(bytes32 message, uint256[2] calldata rs, uint256 endcontract)
                          internal view
                          returns (bool)
                      {
                          uint256 r = rs[0];
                          uint256 s = rs[1];
                          if (r == 0 || r >= n || s == 0 || s >= n) {
                              return false;
                          }
                          /* Q is pushed via bytecode assumed to be correct
                          if (!isOnCurve(Q[0], Q[1])) {
                              return false;
                          }*/
                          uint256 sInv = FCL_nModInv(s);
                          uint256 X;
                          //Shamir 8 dimensions
                          X = ecZZ_mulmuladd_S8_hackmem(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), endcontract);
                          assembly {
                              X := addmod(X, sub(n, r), n)
                          }
                          return X == 0;
                      } //end  ecdsa_precomputed_verify()
                  } //EOF
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v5.0.2) (utils/Base64.sol)
                  pragma solidity ^0.8.20;
                  /**
                   * @dev Provides a set of functions to operate with Base64 strings.
                   */
                  library Base64 {
                      /**
                       * @dev Base64 Encoding/Decoding Table
                       * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
                       */
                      string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
                      string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
                      /**
                       * @dev Converts a `bytes` to its Bytes64 `string` representation.
                       */
                      function encode(bytes memory data) internal pure returns (string memory) {
                          return _encode(data, _TABLE, true);
                      }
                      /**
                       * @dev Converts a `bytes` to its Bytes64Url `string` representation.
                       */
                      function encodeURL(bytes memory data) internal pure returns (string memory) {
                          return _encode(data, _TABLE_URL, false);
                      }
                      /**
                       * @dev Internal table-agnostic conversion
                       */
                      function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
                          /**
                           * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
                           * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
                           */
                          if (data.length == 0) return "";
                          // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
                          // multiplied by 4 so that it leaves room for padding the last chunk
                          // - `data.length + 2`  -> Round up
                          // - `/ 3`              -> Number of 3-bytes chunks
                          // - `4 *`              -> 4 characters for each chunk
                          // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
                          // opposed to when padding is required to fill the last chunk.
                          // - `4 *`              -> 4 characters for each chunk
                          // - `data.length + 2`  -> Round up
                          // - `/ 3`              -> Number of 3-bytes chunks
                          uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;
                          string memory result = new string(resultLength);
                          /// @solidity memory-safe-assembly
                          assembly {
                              // Prepare the lookup table (skip the first "length" byte)
                              let tablePtr := add(table, 1)
                              // Prepare result pointer, jump over length
                              let resultPtr := add(result, 0x20)
                              let dataPtr := data
                              let endPtr := add(data, mload(data))
                              // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
                              // set it to zero to make sure no dirty bytes are read in that section.
                              let afterPtr := add(endPtr, 0x20)
                              let afterCache := mload(afterPtr)
                              mstore(afterPtr, 0x00)
                              // Run over the input, 3 bytes at a time
                              for {
                              } lt(dataPtr, endPtr) {
                              } {
                                  // Advance 3 bytes
                                  dataPtr := add(dataPtr, 3)
                                  let input := mload(dataPtr)
                                  // To write each character, shift the 3 byte (24 bits) chunk
                                  // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                                  // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                                  // Use this as an index into the lookup table, mload an entire word
                                  // so the desired character is in the least significant byte, and
                                  // mstore8 this least significant byte into the result and continue.
                                  mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                                  resultPtr := add(resultPtr, 1) // Advance
                                  mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                                  resultPtr := add(resultPtr, 1) // Advance
                                  mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                                  resultPtr := add(resultPtr, 1) // Advance
                                  mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                                  resultPtr := add(resultPtr, 1) // Advance
                              }
                              // Reset the value that was cached
                              mstore(afterPtr, afterCache)
                              if withPadding {
                                  // When data `bytes` is not exactly 3 bytes long
                                  // it is padded with `=` characters at the end
                                  switch mod(mload(data), 3)
                                  case 1 {
                                      mstore8(sub(resultPtr, 1), 0x3d)
                                      mstore8(sub(resultPtr, 2), 0x3d)
                                  }
                                  case 2 {
                                      mstore8(sub(resultPtr, 1), 0x3d)
                                  }
                              }
                          }
                          return result;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.8.4;
                  /// @notice Library for converting numbers into strings and other string operations.
                  /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
                  /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
                  ///
                  /// @dev Note:
                  /// For performance and bytecode compactness, most of the string operations are restricted to
                  /// byte strings (7-bit ASCII), except where otherwise specified.
                  /// Usage of byte string operations on charsets with runes spanning two or more bytes
                  /// can lead to undefined behavior.
                  library LibString {
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                        CUSTOM ERRORS                       */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev The length of the output is too small to contain all the hex digits.
                      error HexLengthInsufficient();
                      /// @dev The length of the string is more than 32 bytes.
                      error TooBigForSmallString();
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                         CONSTANTS                          */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev The constant returned when the `search` is not found in the string.
                      uint256 internal constant NOT_FOUND = type(uint256).max;
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                     DECIMAL OPERATIONS                     */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev Returns the base 10 decimal representation of `value`.
                      function toString(uint256 value) internal pure returns (string memory str) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                              // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                              // We will need 1 word for the trailing zeros padding, 1 word for the length,
                              // and 3 words for a maximum of 78 digits.
                              str := add(mload(0x40), 0x80)
                              // Update the free memory pointer to allocate.
                              mstore(0x40, add(str, 0x20))
                              // Zeroize the slot after the string.
                              mstore(str, 0)
                              // Cache the end of the memory to calculate the length later.
                              let end := str
                              let w := not(0) // Tsk.
                              // We write the string from rightmost digit to leftmost digit.
                              // The following is essentially a do-while loop that also handles the zero case.
                              for { let temp := value } 1 {} {
                                  str := add(str, w) // `sub(str, 1)`.
                                  // Write the character to the pointer.
                                  // The ASCII index of the '0' character is 48.
                                  mstore8(str, add(48, mod(temp, 10)))
                                  // Keep dividing `temp` until zero.
                                  temp := div(temp, 10)
                                  if iszero(temp) { break }
                              }
                              let length := sub(end, str)
                              // Move the pointer 32 bytes leftwards to make room for the length.
                              str := sub(str, 0x20)
                              // Store the length.
                              mstore(str, length)
                          }
                      }
                      /// @dev Returns the base 10 decimal representation of `value`.
                      function toString(int256 value) internal pure returns (string memory str) {
                          if (value >= 0) {
                              return toString(uint256(value));
                          }
                          unchecked {
                              str = toString(~uint256(value) + 1);
                          }
                          /// @solidity memory-safe-assembly
                          assembly {
                              // We still have some spare memory space on the left,
                              // as we have allocated 3 words (96 bytes) for up to 78 digits.
                              let length := mload(str) // Load the string length.
                              mstore(str, 0x2d) // Store the '-' character.
                              str := sub(str, 1) // Move back the string pointer by a byte.
                              mstore(str, add(length, 1)) // Update the string length.
                          }
                      }
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                   HEXADECIMAL OPERATIONS                   */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev Returns the hexadecimal representation of `value`,
                      /// left-padded to an input length of `length` bytes.
                      /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
                      /// giving a total length of `length * 2 + 2` bytes.
                      /// Reverts if `length` is too small for the output to contain all the digits.
                      function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
                          str = toHexStringNoPrefix(value, length);
                          /// @solidity memory-safe-assembly
                          assembly {
                              let strLength := add(mload(str), 2) // Compute the length.
                              mstore(str, 0x3078) // Write the "0x" prefix.
                              str := sub(str, 2) // Move the pointer.
                              mstore(str, strLength) // Write the length.
                          }
                      }
                      /// @dev Returns the hexadecimal representation of `value`,
                      /// left-padded to an input length of `length` bytes.
                      /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
                      /// giving a total length of `length * 2` bytes.
                      /// Reverts if `length` is too small for the output to contain all the digits.
                      function toHexStringNoPrefix(uint256 value, uint256 length)
                          internal
                          pure
                          returns (string memory str)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
                              // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
                              // We add 0x20 to the total and round down to a multiple of 0x20.
                              // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
                              str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
                              // Allocate the memory.
                              mstore(0x40, add(str, 0x20))
                              // Zeroize the slot after the string.
                              mstore(str, 0)
                              // Cache the end to calculate the length later.
                              let end := str
                              // Store "0123456789abcdef" in scratch space.
                              mstore(0x0f, 0x30313233343536373839616263646566)
                              let start := sub(str, add(length, length))
                              let w := not(1) // Tsk.
                              let temp := value
                              // We write the string from rightmost digit to leftmost digit.
                              // The following is essentially a do-while loop that also handles the zero case.
                              for {} 1 {} {
                                  str := add(str, w) // `sub(str, 2)`.
                                  mstore8(add(str, 1), mload(and(temp, 15)))
                                  mstore8(str, mload(and(shr(4, temp), 15)))
                                  temp := shr(8, temp)
                                  if iszero(xor(str, start)) { break }
                              }
                              if temp {
                                  mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                                  revert(0x1c, 0x04)
                              }
                              // Compute the string's length.
                              let strLength := sub(end, str)
                              // Move the pointer and write the length.
                              str := sub(str, 0x20)
                              mstore(str, strLength)
                          }
                      }
                      /// @dev Returns the hexadecimal representation of `value`.
                      /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
                      /// As address are 20 bytes long, the output will left-padded to have
                      /// a length of `20 * 2 + 2` bytes.
                      function toHexString(uint256 value) internal pure returns (string memory str) {
                          str = toHexStringNoPrefix(value);
                          /// @solidity memory-safe-assembly
                          assembly {
                              let strLength := add(mload(str), 2) // Compute the length.
                              mstore(str, 0x3078) // Write the "0x" prefix.
                              str := sub(str, 2) // Move the pointer.
                              mstore(str, strLength) // Write the length.
                          }
                      }
                      /// @dev Returns the hexadecimal representation of `value`.
                      /// The output is prefixed with "0x".
                      /// The output excludes leading "0" from the `toHexString` output.
                      /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
                      function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
                          str = toHexStringNoPrefix(value);
                          /// @solidity memory-safe-assembly
                          assembly {
                              let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                              let strLength := add(mload(str), 2) // Compute the length.
                              mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
                              str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
                              mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                          }
                      }
                      /// @dev Returns the hexadecimal representation of `value`.
                      /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
                      /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
                      function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                          str = toHexStringNoPrefix(value);
                          /// @solidity memory-safe-assembly
                          assembly {
                              let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                              let strLength := mload(str) // Get the length.
                              str := add(str, o) // Move the pointer, accounting for leading zero.
                              mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                          }
                      }
                      /// @dev Returns the hexadecimal representation of `value`.
                      /// The output is encoded using 2 hexadecimal digits per byte.
                      /// As address are 20 bytes long, the output will left-padded to have
                      /// a length of `20 * 2` bytes.
                      function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                              // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
                              // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
                              str := add(mload(0x40), 0x80)
                              // Allocate the memory.
                              mstore(0x40, add(str, 0x20))
                              // Zeroize the slot after the string.
                              mstore(str, 0)
                              // Cache the end to calculate the length later.
                              let end := str
                              // Store "0123456789abcdef" in scratch space.
                              mstore(0x0f, 0x30313233343536373839616263646566)
                              let w := not(1) // Tsk.
                              // We write the string from rightmost digit to leftmost digit.
                              // The following is essentially a do-while loop that also handles the zero case.
                              for { let temp := value } 1 {} {
                                  str := add(str, w) // `sub(str, 2)`.
                                  mstore8(add(str, 1), mload(and(temp, 15)))
                                  mstore8(str, mload(and(shr(4, temp), 15)))
                                  temp := shr(8, temp)
                                  if iszero(temp) { break }
                              }
                              // Compute the string's length.
                              let strLength := sub(end, str)
                              // Move the pointer and write the length.
                              str := sub(str, 0x20)
                              mstore(str, strLength)
                          }
                      }
                      /// @dev Returns the hexadecimal representation of `value`.
                      /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
                      /// and the alphabets are capitalized conditionally according to
                      /// https://eips.ethereum.org/EIPS/eip-55
                      function toHexStringChecksummed(address value) internal pure returns (string memory str) {
                          str = toHexString(value);
                          /// @solidity memory-safe-assembly
                          assembly {
                              let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
                              let o := add(str, 0x22)
                              let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
                              let t := shl(240, 136) // `0b10001000 << 240`
                              for { let i := 0 } 1 {} {
                                  mstore(add(i, i), mul(t, byte(i, hashed)))
                                  i := add(i, 1)
                                  if eq(i, 20) { break }
                              }
                              mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
                              o := add(o, 0x20)
                              mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
                          }
                      }
                      /// @dev Returns the hexadecimal representation of `value`.
                      /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
                      function toHexString(address value) internal pure returns (string memory str) {
                          str = toHexStringNoPrefix(value);
                          /// @solidity memory-safe-assembly
                          assembly {
                              let strLength := add(mload(str), 2) // Compute the length.
                              mstore(str, 0x3078) // Write the "0x" prefix.
                              str := sub(str, 2) // Move the pointer.
                              mstore(str, strLength) // Write the length.
                          }
                      }
                      /// @dev Returns the hexadecimal representation of `value`.
                      /// The output is encoded using 2 hexadecimal digits per byte.
                      function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              str := mload(0x40)
                              // Allocate the memory.
                              // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                              // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
                              // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
                              mstore(0x40, add(str, 0x80))
                              // Store "0123456789abcdef" in scratch space.
                              mstore(0x0f, 0x30313233343536373839616263646566)
                              str := add(str, 2)
                              mstore(str, 40)
                              let o := add(str, 0x20)
                              mstore(add(o, 40), 0)
                              value := shl(96, value)
                              // We write the string from rightmost digit to leftmost digit.
                              // The following is essentially a do-while loop that also handles the zero case.
                              for { let i := 0 } 1 {} {
                                  let p := add(o, add(i, i))
                                  let temp := byte(i, value)
                                  mstore8(add(p, 1), mload(and(temp, 15)))
                                  mstore8(p, mload(shr(4, temp)))
                                  i := add(i, 1)
                                  if eq(i, 20) { break }
                              }
                          }
                      }
                      /// @dev Returns the hex encoded string from the raw bytes.
                      /// The output is encoded using 2 hexadecimal digits per byte.
                      function toHexString(bytes memory raw) internal pure returns (string memory str) {
                          str = toHexStringNoPrefix(raw);
                          /// @solidity memory-safe-assembly
                          assembly {
                              let strLength := add(mload(str), 2) // Compute the length.
                              mstore(str, 0x3078) // Write the "0x" prefix.
                              str := sub(str, 2) // Move the pointer.
                              mstore(str, strLength) // Write the length.
                          }
                      }
                      /// @dev Returns the hex encoded string from the raw bytes.
                      /// The output is encoded using 2 hexadecimal digits per byte.
                      function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let length := mload(raw)
                              str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
                              mstore(str, add(length, length)) // Store the length of the output.
                              // Store "0123456789abcdef" in scratch space.
                              mstore(0x0f, 0x30313233343536373839616263646566)
                              let o := add(str, 0x20)
                              let end := add(raw, length)
                              for {} iszero(eq(raw, end)) {} {
                                  raw := add(raw, 1)
                                  mstore8(add(o, 1), mload(and(mload(raw), 15)))
                                  mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                                  o := add(o, 2)
                              }
                              mstore(o, 0) // Zeroize the slot after the string.
                              mstore(0x40, add(o, 0x20)) // Allocate the memory.
                          }
                      }
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                   RUNE STRING OPERATIONS                   */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      /// @dev Returns the number of UTF characters in the string.
                      function runeCount(string memory s) internal pure returns (uint256 result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              if mload(s) {
                                  mstore(0x00, div(not(0), 255))
                                  mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                                  let o := add(s, 0x20)
                                  let end := add(o, mload(s))
                                  for { result := 1 } 1 { result := add(result, 1) } {
                                      o := add(o, byte(0, mload(shr(250, mload(o)))))
                                      if iszero(lt(o, end)) { break }
                                  }
                              }
                          }
                      }
                      /// @dev Returns if this string is a 7-bit ASCII string.
                      /// (i.e. all characters codes are in [0..127])
                      function is7BitASCII(string memory s) internal pure returns (bool result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let mask := shl(7, div(not(0), 255))
                              result := 1
                              let n := mload(s)
                              if n {
                                  let o := add(s, 0x20)
                                  let end := add(o, n)
                                  let last := mload(end)
                                  mstore(end, 0)
                                  for {} 1 {} {
                                      if and(mask, mload(o)) {
                                          result := 0
                                          break
                                      }
                                      o := add(o, 0x20)
                                      if iszero(lt(o, end)) { break }
                                  }
                                  mstore(end, last)
                              }
                          }
                      }
                      /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                      /*                   BYTE STRING OPERATIONS                   */
                      /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                      // For performance and bytecode compactness, byte string operations are restricted
                      // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
                      // Usage of byte string operations on charsets with runes spanning two or more bytes
                      // can lead to undefined behavior.
                      /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
                      function replace(string memory subject, string memory search, string memory replacement)
                          internal
                          pure
                          returns (string memory result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let subjectLength := mload(subject)
                              let searchLength := mload(search)
                              let replacementLength := mload(replacement)
                              subject := add(subject, 0x20)
                              search := add(search, 0x20)
                              replacement := add(replacement, 0x20)
                              result := add(mload(0x40), 0x20)
                              let subjectEnd := add(subject, subjectLength)
                              if iszero(gt(searchLength, subjectLength)) {
                                  let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                                  let h := 0
                                  if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                                  let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                                  let s := mload(search)
                                  for {} 1 {} {
                                      let t := mload(subject)
                                      // Whether the first `searchLength % 32` bytes of
                                      // `subject` and `search` matches.
                                      if iszero(shr(m, xor(t, s))) {
                                          if h {
                                              if iszero(eq(keccak256(subject, searchLength), h)) {
                                                  mstore(result, t)
                                                  result := add(result, 1)
                                                  subject := add(subject, 1)
                                                  if iszero(lt(subject, subjectSearchEnd)) { break }
                                                  continue
                                              }
                                          }
                                          // Copy the `replacement` one word at a time.
                                          for { let o := 0 } 1 {} {
                                              mstore(add(result, o), mload(add(replacement, o)))
                                              o := add(o, 0x20)
                                              if iszero(lt(o, replacementLength)) { break }
                                          }
                                          result := add(result, replacementLength)
                                          subject := add(subject, searchLength)
                                          if searchLength {
                                              if iszero(lt(subject, subjectSearchEnd)) { break }
                                              continue
                                          }
                                      }
                                      mstore(result, t)
                                      result := add(result, 1)
                                      subject := add(subject, 1)
                                      if iszero(lt(subject, subjectSearchEnd)) { break }
                                  }
                              }
                              let resultRemainder := result
                              result := add(mload(0x40), 0x20)
                              let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
                              // Copy the rest of the string one word at a time.
                              for {} lt(subject, subjectEnd) {} {
                                  mstore(resultRemainder, mload(subject))
                                  resultRemainder := add(resultRemainder, 0x20)
                                  subject := add(subject, 0x20)
                              }
                              result := sub(result, 0x20)
                              let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
                              mstore(last, 0)
                              mstore(0x40, add(last, 0x20)) // Allocate the memory.
                              mstore(result, k) // Store the length.
                          }
                      }
                      /// @dev Returns the byte index of the first location of `search` in `subject`,
                      /// searching from left to right, starting from `from`.
                      /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                      function indexOf(string memory subject, string memory search, uint256 from)
                          internal
                          pure
                          returns (uint256 result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              for { let subjectLength := mload(subject) } 1 {} {
                                  if iszero(mload(search)) {
                                      if iszero(gt(from, subjectLength)) {
                                          result := from
                                          break
                                      }
                                      result := subjectLength
                                      break
                                  }
                                  let searchLength := mload(search)
                                  let subjectStart := add(subject, 0x20)
                                  result := not(0) // Initialize to `NOT_FOUND`.
                                  subject := add(subjectStart, from)
                                  let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
                                  let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                                  let s := mload(add(search, 0x20))
                                  if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
                                  if iszero(lt(searchLength, 0x20)) {
                                      for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                          if iszero(shr(m, xor(mload(subject), s))) {
                                              if eq(keccak256(subject, searchLength), h) {
                                                  result := sub(subject, subjectStart)
                                                  break
                                              }
                                          }
                                          subject := add(subject, 1)
                                          if iszero(lt(subject, end)) { break }
                                      }
                                      break
                                  }
                                  for {} 1 {} {
                                      if iszero(shr(m, xor(mload(subject), s))) {
                                          result := sub(subject, subjectStart)
                                          break
                                      }
                                      subject := add(subject, 1)
                                      if iszero(lt(subject, end)) { break }
                                  }
                                  break
                              }
                          }
                      }
                      /// @dev Returns the byte index of the first location of `search` in `subject`,
                      /// searching from left to right.
                      /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                      function indexOf(string memory subject, string memory search)
                          internal
                          pure
                          returns (uint256 result)
                      {
                          result = indexOf(subject, search, 0);
                      }
                      /// @dev Returns the byte index of the first location of `search` in `subject`,
                      /// searching from right to left, starting from `from`.
                      /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                      function lastIndexOf(string memory subject, string memory search, uint256 from)
                          internal
                          pure
                          returns (uint256 result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              for {} 1 {} {
                                  result := not(0) // Initialize to `NOT_FOUND`.
                                  let searchLength := mload(search)
                                  if gt(searchLength, mload(subject)) { break }
                                  let w := result
                                  let fromMax := sub(mload(subject), searchLength)
                                  if iszero(gt(fromMax, from)) { from := fromMax }
                                  let end := add(add(subject, 0x20), w)
                                  subject := add(add(subject, 0x20), from)
                                  if iszero(gt(subject, end)) { break }
                                  // As this function is not too often used,
                                  // we shall simply use keccak256 for smaller bytecode size.
                                  for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                      if eq(keccak256(subject, searchLength), h) {
                                          result := sub(subject, add(end, 1))
                                          break
                                      }
                                      subject := add(subject, w) // `sub(subject, 1)`.
                                      if iszero(gt(subject, end)) { break }
                                  }
                                  break
                              }
                          }
                      }
                      /// @dev Returns the byte index of the first location of `search` in `subject`,
                      /// searching from right to left.
                      /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                      function lastIndexOf(string memory subject, string memory search)
                          internal
                          pure
                          returns (uint256 result)
                      {
                          result = lastIndexOf(subject, search, uint256(int256(-1)));
                      }
                      /// @dev Returns true if `search` is found in `subject`, false otherwise.
                      function contains(string memory subject, string memory search) internal pure returns (bool) {
                          return indexOf(subject, search) != NOT_FOUND;
                      }
                      /// @dev Returns whether `subject` starts with `search`.
                      function startsWith(string memory subject, string memory search)
                          internal
                          pure
                          returns (bool result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let searchLength := mload(search)
                              // Just using keccak256 directly is actually cheaper.
                              // forgefmt: disable-next-item
                              result := and(
                                  iszero(gt(searchLength, mload(subject))),
                                  eq(
                                      keccak256(add(subject, 0x20), searchLength),
                                      keccak256(add(search, 0x20), searchLength)
                                  )
                              )
                          }
                      }
                      /// @dev Returns whether `subject` ends with `search`.
                      function endsWith(string memory subject, string memory search)
                          internal
                          pure
                          returns (bool result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let searchLength := mload(search)
                              let subjectLength := mload(subject)
                              // Whether `search` is not longer than `subject`.
                              let withinRange := iszero(gt(searchLength, subjectLength))
                              // Just using keccak256 directly is actually cheaper.
                              // forgefmt: disable-next-item
                              result := and(
                                  withinRange,
                                  eq(
                                      keccak256(
                                          // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                                          add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                                          searchLength
                                      ),
                                      keccak256(add(search, 0x20), searchLength)
                                  )
                              )
                          }
                      }
                      /// @dev Returns `subject` repeated `times`.
                      function repeat(string memory subject, uint256 times)
                          internal
                          pure
                          returns (string memory result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let subjectLength := mload(subject)
                              if iszero(or(iszero(times), iszero(subjectLength))) {
                                  subject := add(subject, 0x20)
                                  result := mload(0x40)
                                  let output := add(result, 0x20)
                                  for {} 1 {} {
                                      // Copy the `subject` one word at a time.
                                      for { let o := 0 } 1 {} {
                                          mstore(add(output, o), mload(add(subject, o)))
                                          o := add(o, 0x20)
                                          if iszero(lt(o, subjectLength)) { break }
                                      }
                                      output := add(output, subjectLength)
                                      times := sub(times, 1)
                                      if iszero(times) { break }
                                  }
                                  mstore(output, 0) // Zeroize the slot after the string.
                                  let resultLength := sub(output, add(result, 0x20))
                                  mstore(result, resultLength) // Store the length.
                                  // Allocate the memory.
                                  mstore(0x40, add(result, add(resultLength, 0x20)))
                              }
                          }
                      }
                      /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
                      /// `start` and `end` are byte offsets.
                      function slice(string memory subject, uint256 start, uint256 end)
                          internal
                          pure
                          returns (string memory result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let subjectLength := mload(subject)
                              if iszero(gt(subjectLength, end)) { end := subjectLength }
                              if iszero(gt(subjectLength, start)) { start := subjectLength }
                              if lt(start, end) {
                                  result := mload(0x40)
                                  let resultLength := sub(end, start)
                                  mstore(result, resultLength)
                                  subject := add(subject, start)
                                  let w := not(0x1f)
                                  // Copy the `subject` one word at a time, backwards.
                                  for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                                      mstore(add(result, o), mload(add(subject, o)))
                                      o := add(o, w) // `sub(o, 0x20)`.
                                      if iszero(o) { break }
                                  }
                                  // Zeroize the slot after the string.
                                  mstore(add(add(result, 0x20), resultLength), 0)
                                  // Allocate memory for the length and the bytes,
                                  // rounded up to a multiple of 32.
                                  mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
                              }
                          }
                      }
                      /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
                      /// `start` is a byte offset.
                      function slice(string memory subject, uint256 start)
                          internal
                          pure
                          returns (string memory result)
                      {
                          result = slice(subject, start, uint256(int256(-1)));
                      }
                      /// @dev Returns all the indices of `search` in `subject`.
                      /// The indices are byte offsets.
                      function indicesOf(string memory subject, string memory search)
                          internal
                          pure
                          returns (uint256[] memory result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let subjectLength := mload(subject)
                              let searchLength := mload(search)
                              if iszero(gt(searchLength, subjectLength)) {
                                  subject := add(subject, 0x20)
                                  search := add(search, 0x20)
                                  result := add(mload(0x40), 0x20)
                                  let subjectStart := subject
                                  let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                                  let h := 0
                                  if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                                  let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                                  let s := mload(search)
                                  for {} 1 {} {
                                      let t := mload(subject)
                                      // Whether the first `searchLength % 32` bytes of
                                      // `subject` and `search` matches.
                                      if iszero(shr(m, xor(t, s))) {
                                          if h {
                                              if iszero(eq(keccak256(subject, searchLength), h)) {
                                                  subject := add(subject, 1)
                                                  if iszero(lt(subject, subjectSearchEnd)) { break }
                                                  continue
                                              }
                                          }
                                          // Append to `result`.
                                          mstore(result, sub(subject, subjectStart))
                                          result := add(result, 0x20)
                                          // Advance `subject` by `searchLength`.
                                          subject := add(subject, searchLength)
                                          if searchLength {
                                              if iszero(lt(subject, subjectSearchEnd)) { break }
                                              continue
                                          }
                                      }
                                      subject := add(subject, 1)
                                      if iszero(lt(subject, subjectSearchEnd)) { break }
                                  }
                                  let resultEnd := result
                                  // Assign `result` to the free memory pointer.
                                  result := mload(0x40)
                                  // Store the length of `result`.
                                  mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                                  // Allocate memory for result.
                                  // We allocate one more word, so this array can be recycled for {split}.
                                  mstore(0x40, add(resultEnd, 0x20))
                              }
                          }
                      }
                      /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
                      function split(string memory subject, string memory delimiter)
                          internal
                          pure
                          returns (string[] memory result)
                      {
                          uint256[] memory indices = indicesOf(subject, delimiter);
                          /// @solidity memory-safe-assembly
                          assembly {
                              let w := not(0x1f)
                              let indexPtr := add(indices, 0x20)
                              let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
                              mstore(add(indicesEnd, w), mload(subject))
                              mstore(indices, add(mload(indices), 1))
                              let prevIndex := 0
                              for {} 1 {} {
                                  let index := mload(indexPtr)
                                  mstore(indexPtr, 0x60)
                                  if iszero(eq(index, prevIndex)) {
                                      let element := mload(0x40)
                                      let elementLength := sub(index, prevIndex)
                                      mstore(element, elementLength)
                                      // Copy the `subject` one word at a time, backwards.
                                      for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                                          mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                                          o := add(o, w) // `sub(o, 0x20)`.
                                          if iszero(o) { break }
                                      }
                                      // Zeroize the slot after the string.
                                      mstore(add(add(element, 0x20), elementLength), 0)
                                      // Allocate memory for the length and the bytes,
                                      // rounded up to a multiple of 32.
                                      mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                                      // Store the `element` into the array.
                                      mstore(indexPtr, element)
                                  }
                                  prevIndex := add(index, mload(delimiter))
                                  indexPtr := add(indexPtr, 0x20)
                                  if iszero(lt(indexPtr, indicesEnd)) { break }
                              }
                              result := indices
                              if iszero(mload(delimiter)) {
                                  result := add(indices, 0x20)
                                  mstore(result, sub(mload(indices), 2))
                              }
                          }
                      }
                      /// @dev Returns a concatenated string of `a` and `b`.
                      /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
                      function concat(string memory a, string memory b)
                          internal
                          pure
                          returns (string memory result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let w := not(0x1f)
                              result := mload(0x40)
                              let aLength := mload(a)
                              // Copy `a` one word at a time, backwards.
                              for { let o := and(add(aLength, 0x20), w) } 1 {} {
                                  mstore(add(result, o), mload(add(a, o)))
                                  o := add(o, w) // `sub(o, 0x20)`.
                                  if iszero(o) { break }
                              }
                              let bLength := mload(b)
                              let output := add(result, aLength)
                              // Copy `b` one word at a time, backwards.
                              for { let o := and(add(bLength, 0x20), w) } 1 {} {
                                  mstore(add(output, o), mload(add(b, o)))
                                  o := add(o, w) // `sub(o, 0x20)`.
                                  if iszero(o) { break }
                              }
                              let totalLength := add(aLength, bLength)
                              let last := add(add(result, 0x20), totalLength)
                              // Zeroize the slot after the string.
                              mstore(last, 0)
                              // Stores the length.
                              mstore(result, totalLength)
                              // Allocate memory for the length and the bytes,
                              // rounded up to a multiple of 32.
                              mstore(0x40, and(add(last, 0x1f), w))
                          }
                      }
                      /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
                      /// WARNING! This function is only compatible with 7-bit ASCII strings.
                      function toCase(string memory subject, bool toUpper)
                          internal
                          pure
                          returns (string memory result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let length := mload(subject)
                              if length {
                                  result := add(mload(0x40), 0x20)
                                  subject := add(subject, 1)
                                  let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                                  let w := not(0)
                                  for { let o := length } 1 {} {
                                      o := add(o, w)
                                      let b := and(0xff, mload(add(subject, o)))
                                      mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                                      if iszero(o) { break }
                                  }
                                  result := mload(0x40)
                                  mstore(result, length) // Store the length.
                                  let last := add(add(result, 0x20), length)
                                  mstore(last, 0) // Zeroize the slot after the string.
                                  mstore(0x40, add(last, 0x20)) // Allocate the memory.
                              }
                          }
                      }
                      /// @dev Returns a string from a small bytes32 string.
                      /// `s` must be null-terminated, or behavior will be undefined.
                      function fromSmallString(bytes32 s) internal pure returns (string memory result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              result := mload(0x40)
                              let n := 0
                              for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\\0'.
                              mstore(result, n)
                              let o := add(result, 0x20)
                              mstore(o, s)
                              mstore(add(o, n), 0)
                              mstore(0x40, add(result, 0x40))
                          }
                      }
                      /// @dev Returns the small string, with all bytes after the first null byte zeroized.
                      function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\\0'.
                              mstore(0x00, s)
                              mstore(result, 0x00)
                              result := mload(0x00)
                          }
                      }
                      /// @dev Returns the string as a normalized null-terminated small string.
                      function toSmallString(string memory s) internal pure returns (bytes32 result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              result := mload(s)
                              if iszero(lt(result, 33)) {
                                  mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                                  revert(0x1c, 0x04)
                              }
                              result := shl(shl(3, sub(32, result)), mload(add(s, result)))
                          }
                      }
                      /// @dev Returns a lowercased copy of the string.
                      /// WARNING! This function is only compatible with 7-bit ASCII strings.
                      function lower(string memory subject) internal pure returns (string memory result) {
                          result = toCase(subject, false);
                      }
                      /// @dev Returns an UPPERCASED copy of the string.
                      /// WARNING! This function is only compatible with 7-bit ASCII strings.
                      function upper(string memory subject) internal pure returns (string memory result) {
                          result = toCase(subject, true);
                      }
                      /// @dev Escapes the string to be used within HTML tags.
                      function escapeHTML(string memory s) internal pure returns (string memory result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let end := add(s, mload(s))
                              result := add(mload(0x40), 0x20)
                              // Store the bytes of the packed offsets and strides into the scratch space.
                              // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
                              mstore(0x1f, 0x900094)
                              mstore(0x08, 0xc0000000a6ab)
                              // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
                              mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
                              for {} iszero(eq(s, end)) {} {
                                  s := add(s, 1)
                                  let c := and(mload(s), 0xff)
                                  // Not in `["\\"","'","&","<",">"]`.
                                  if iszero(and(shl(c, 1), 0x500000c400000000)) {
                                      mstore8(result, c)
                                      result := add(result, 1)
                                      continue
                                  }
                                  let t := shr(248, mload(c))
                                  mstore(result, mload(and(t, 0x1f)))
                                  result := add(result, shr(5, t))
                              }
                              let last := result
                              mstore(last, 0) // Zeroize the slot after the string.
                              result := mload(0x40)
                              mstore(result, sub(last, add(result, 0x20))) // Store the length.
                              mstore(0x40, add(last, 0x20)) // Allocate the memory.
                          }
                      }
                      /// @dev Escapes the string to be used within double-quotes in a JSON.
                      /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
                      function escapeJSON(string memory s, bool addDoubleQuotes)
                          internal
                          pure
                          returns (string memory result)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let end := add(s, mload(s))
                              result := add(mload(0x40), 0x20)
                              if addDoubleQuotes {
                                  mstore8(result, 34)
                                  result := add(1, result)
                              }
                              // Store "\\\\u0000" in scratch space.
                              // Store "0123456789abcdef" in scratch space.
                              // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
                              // into the scratch space.
                              mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
                              // Bitmask for detecting `["\\"","\\\\"]`.
                              let e := or(shl(0x22, 1), shl(0x5c, 1))
                              for {} iszero(eq(s, end)) {} {
                                  s := add(s, 1)
                                  let c := and(mload(s), 0xff)
                                  if iszero(lt(c, 0x20)) {
                                      if iszero(and(shl(c, 1), e)) {
                                          // Not in `["\\"","\\\\"]`.
                                          mstore8(result, c)
                                          result := add(result, 1)
                                          continue
                                      }
                                      mstore8(result, 0x5c) // "\\\\".
                                      mstore8(add(result, 1), c)
                                      result := add(result, 2)
                                      continue
                                  }
                                  if iszero(and(shl(c, 1), 0x3700)) {
                                      // Not in `["\\b","\\t","\
                  ","\\f","\\d"]`.
                                      mstore8(0x1d, mload(shr(4, c))) // Hex value.
                                      mstore8(0x1e, mload(and(c, 15))) // Hex value.
                                      mstore(result, mload(0x19)) // "\\\\u00XX".
                                      result := add(result, 6)
                                      continue
                                  }
                                  mstore8(result, 0x5c) // "\\\\".
                                  mstore8(add(result, 1), mload(add(c, 8)))
                                  result := add(result, 2)
                              }
                              if addDoubleQuotes {
                                  mstore8(result, 34)
                                  result := add(1, result)
                              }
                              let last := result
                              mstore(last, 0) // Zeroize the slot after the string.
                              result := mload(0x40)
                              mstore(result, sub(last, add(result, 0x20))) // Store the length.
                              mstore(0x40, add(last, 0x20)) // Allocate the memory.
                          }
                      }
                      /// @dev Escapes the string to be used within double-quotes in a JSON.
                      function escapeJSON(string memory s) internal pure returns (string memory result) {
                          result = escapeJSON(s, false);
                      }
                      /// @dev Returns whether `a` equals `b`.
                      function eq(string memory a, string memory b) internal pure returns (bool result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
                          }
                      }
                      /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
                      function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // These should be evaluated on compile time, as far as possible.
                              let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
                              let x := not(or(m, or(b, add(m, and(b, m)))))
                              let r := shl(7, iszero(iszero(shr(128, x))))
                              r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
                              r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                              r := or(r, shl(4, lt(0xffff, shr(r, x))))
                              r := or(r, shl(3, lt(0xff, shr(r, x))))
                              // forgefmt: disable-next-item
                              result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                                  xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
                          }
                      }
                      /// @dev Packs a single string with its length into a single word.
                      /// Returns `bytes32(0)` if the length is zero or greater than 31.
                      function packOne(string memory a) internal pure returns (bytes32 result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // We don't need to zero right pad the string,
                              // since this is our own custom non-standard packing scheme.
                              result :=
                                  mul(
                                      // Load the length and the bytes.
                                      mload(add(a, 0x1f)),
                                      // `length != 0 && length < 32`. Abuses underflow.
                                      // Assumes that the length is valid and within the block gas limit.
                                      lt(sub(mload(a), 1), 0x1f)
                                  )
                          }
                      }
                      /// @dev Unpacks a string packed using {packOne}.
                      /// Returns the empty string if `packed` is `bytes32(0)`.
                      /// If `packed` is not an output of {packOne}, the output behavior is undefined.
                      function unpackOne(bytes32 packed) internal pure returns (string memory result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // Grab the free memory pointer.
                              result := mload(0x40)
                              // Allocate 2 words (1 for the length, 1 for the bytes).
                              mstore(0x40, add(result, 0x40))
                              // Zeroize the length slot.
                              mstore(result, 0)
                              // Store the length and bytes.
                              mstore(add(result, 0x1f), packed)
                              // Right pad with zeroes.
                              mstore(add(add(result, 0x20), mload(result)), 0)
                          }
                      }
                      /// @dev Packs two strings with their lengths into a single word.
                      /// Returns `bytes32(0)` if combined length is zero or greater than 30.
                      function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
                          /// @solidity memory-safe-assembly
                          assembly {
                              let aLength := mload(a)
                              // We don't need to zero right pad the strings,
                              // since this is our own custom non-standard packing scheme.
                              result :=
                                  mul(
                                      // Load the length and the bytes of `a` and `b`.
                                      or(
                                          shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                                          mload(sub(add(b, 0x1e), aLength))
                                      ),
                                      // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                                      // Assumes that the lengths are valid and within the block gas limit.
                                      lt(sub(add(aLength, mload(b)), 1), 0x1e)
                                  )
                          }
                      }
                      /// @dev Unpacks strings packed using {packTwo}.
                      /// Returns the empty strings if `packed` is `bytes32(0)`.
                      /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
                      function unpackTwo(bytes32 packed)
                          internal
                          pure
                          returns (string memory resultA, string memory resultB)
                      {
                          /// @solidity memory-safe-assembly
                          assembly {
                              // Grab the free memory pointer.
                              resultA := mload(0x40)
                              resultB := add(resultA, 0x40)
                              // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
                              mstore(0x40, add(resultB, 0x40))
                              // Zeroize the length slots.
                              mstore(resultA, 0)
                              mstore(resultB, 0)
                              // Store the lengths and bytes.
                              mstore(add(resultA, 0x1f), packed)
                              mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
                              // Right pad with zeroes.
                              mstore(add(add(resultA, 0x20), mload(resultA)), 0)
                              mstore(add(add(resultB, 0x20), mload(resultB)), 0)
                          }
                      }
                      /// @dev Directly returns `a` without copying.
                      function directReturn(string memory a) internal pure {
                          assembly {
                              // Assumes that the string does not start from the scratch space.
                              let retStart := sub(a, 0x20)
                              let retSize := add(mload(a), 0x40)
                              // Right pad with zeroes. Just in case the string is produced
                              // by a method that doesn't zero right pad.
                              mstore(add(retStart, retSize), 0)
                              // Store the return offset.
                              mstore(retStart, 0x20)
                              // End the transaction, returning the string.
                              return(retStart, retSize)
                          }
                      }
                  }
                  

                  File 6 of 6: PaymentPROClonable
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
                  pragma solidity ^0.8.0;
                  import "./IAccessControlUpgradeable.sol";
                  import "../utils/ContextUpgradeable.sol";
                  import "../utils/StringsUpgradeable.sol";
                  import "../utils/introspection/ERC165Upgradeable.sol";
                  import {Initializable} from "../proxy/utils/Initializable.sol";
                  /**
                   * @dev Contract module that allows children to implement role-based access
                   * control mechanisms. This is a lightweight version that doesn't allow enumerating role
                   * members except through off-chain means by accessing the contract event logs. Some
                   * applications may benefit from on-chain enumerability, for those cases see
                   * {AccessControlEnumerable}.
                   *
                   * Roles are referred to by their `bytes32` identifier. These should be exposed
                   * in the external API and be unique. The best way to achieve this is by
                   * using `public constant` hash digests:
                   *
                   * ```solidity
                   * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
                   * ```
                   *
                   * Roles can be used to represent a set of permissions. To restrict access to a
                   * function call, use {hasRole}:
                   *
                   * ```solidity
                   * function foo() public {
                   *     require(hasRole(MY_ROLE, msg.sender));
                   *     ...
                   * }
                   * ```
                   *
                   * Roles can be granted and revoked dynamically via the {grantRole} and
                   * {revokeRole} functions. Each role has an associated admin role, and only
                   * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
                   *
                   * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
                   * that only accounts with this role will be able to grant or revoke other
                   * roles. More complex role relationships can be created by using
                   * {_setRoleAdmin}.
                   *
                   * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
                   * grant and revoke this role. Extra precautions should be taken to secure
                   * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
                   * to enforce additional security measures for this role.
                   */
                  abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
                      struct RoleData {
                          mapping(address => bool) members;
                          bytes32 adminRole;
                      }
                      mapping(bytes32 => RoleData) private _roles;
                      bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
                      /**
                       * @dev Modifier that checks that an account has a specific role. Reverts
                       * with a standardized message including the required role.
                       *
                       * The format of the revert reason is given by the following regular expression:
                       *
                       *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
                       *
                       * _Available since v4.1._
                       */
                      modifier onlyRole(bytes32 role) {
                          _checkRole(role);
                          _;
                      }
                      function __AccessControl_init() internal onlyInitializing {
                      }
                      function __AccessControl_init_unchained() internal onlyInitializing {
                      }
                      /**
                       * @dev See {IERC165-supportsInterface}.
                       */
                      function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                          return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
                      }
                      /**
                       * @dev Returns `true` if `account` has been granted `role`.
                       */
                      function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
                          return _roles[role].members[account];
                      }
                      /**
                       * @dev Revert with a standard message if `_msgSender()` is missing `role`.
                       * Overriding this function changes the behavior of the {onlyRole} modifier.
                       *
                       * Format of the revert message is described in {_checkRole}.
                       *
                       * _Available since v4.6._
                       */
                      function _checkRole(bytes32 role) internal view virtual {
                          _checkRole(role, _msgSender());
                      }
                      /**
                       * @dev Revert with a standard message if `account` is missing `role`.
                       *
                       * The format of the revert reason is given by the following regular expression:
                       *
                       *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
                       */
                      function _checkRole(bytes32 role, address account) internal view virtual {
                          if (!hasRole(role, account)) {
                              revert(
                                  string(
                                      abi.encodePacked(
                                          "AccessControl: account ",
                                          StringsUpgradeable.toHexString(account),
                                          " is missing role ",
                                          StringsUpgradeable.toHexString(uint256(role), 32)
                                      )
                                  )
                              );
                          }
                      }
                      /**
                       * @dev Returns the admin role that controls `role`. See {grantRole} and
                       * {revokeRole}.
                       *
                       * To change a role's admin, use {_setRoleAdmin}.
                       */
                      function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
                          return _roles[role].adminRole;
                      }
                      /**
                       * @dev Grants `role` to `account`.
                       *
                       * If `account` had not been already granted `role`, emits a {RoleGranted}
                       * event.
                       *
                       * Requirements:
                       *
                       * - the caller must have ``role``'s admin role.
                       *
                       * May emit a {RoleGranted} event.
                       */
                      function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                          _grantRole(role, account);
                      }
                      /**
                       * @dev Revokes `role` from `account`.
                       *
                       * If `account` had been granted `role`, emits a {RoleRevoked} event.
                       *
                       * Requirements:
                       *
                       * - the caller must have ``role``'s admin role.
                       *
                       * May emit a {RoleRevoked} event.
                       */
                      function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                          _revokeRole(role, account);
                      }
                      /**
                       * @dev Revokes `role` from the calling account.
                       *
                       * Roles are often managed via {grantRole} and {revokeRole}: this function's
                       * purpose is to provide a mechanism for accounts to lose their privileges
                       * if they are compromised (such as when a trusted device is misplaced).
                       *
                       * If the calling account had been revoked `role`, emits a {RoleRevoked}
                       * event.
                       *
                       * Requirements:
                       *
                       * - the caller must be `account`.
                       *
                       * May emit a {RoleRevoked} event.
                       */
                      function renounceRole(bytes32 role, address account) public virtual override {
                          require(account == _msgSender(), "AccessControl: can only renounce roles for self");
                          _revokeRole(role, account);
                      }
                      /**
                       * @dev Grants `role` to `account`.
                       *
                       * If `account` had not been already granted `role`, emits a {RoleGranted}
                       * event. Note that unlike {grantRole}, this function doesn't perform any
                       * checks on the calling account.
                       *
                       * May emit a {RoleGranted} event.
                       *
                       * [WARNING]
                       * ====
                       * This function should only be called from the constructor when setting
                       * up the initial roles for the system.
                       *
                       * Using this function in any other way is effectively circumventing the admin
                       * system imposed by {AccessControl}.
                       * ====
                       *
                       * NOTE: This function is deprecated in favor of {_grantRole}.
                       */
                      function _setupRole(bytes32 role, address account) internal virtual {
                          _grantRole(role, account);
                      }
                      /**
                       * @dev Sets `adminRole` as ``role``'s admin role.
                       *
                       * Emits a {RoleAdminChanged} event.
                       */
                      function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                          bytes32 previousAdminRole = getRoleAdmin(role);
                          _roles[role].adminRole = adminRole;
                          emit RoleAdminChanged(role, previousAdminRole, adminRole);
                      }
                      /**
                       * @dev Grants `role` to `account`.
                       *
                       * Internal function without access restriction.
                       *
                       * May emit a {RoleGranted} event.
                       */
                      function _grantRole(bytes32 role, address account) internal virtual {
                          if (!hasRole(role, account)) {
                              _roles[role].members[account] = true;
                              emit RoleGranted(role, account, _msgSender());
                          }
                      }
                      /**
                       * @dev Revokes `role` from `account`.
                       *
                       * Internal function without access restriction.
                       *
                       * May emit a {RoleRevoked} event.
                       */
                      function _revokeRole(bytes32 role, address account) internal virtual {
                          if (hasRole(role, account)) {
                              _roles[role].members[account] = false;
                              emit RoleRevoked(role, account, _msgSender());
                          }
                      }
                      /**
                       * @dev This empty reserved space is put in place to allow future versions to add new
                       * variables without shifting down storage in the inheritance chain.
                       * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                       */
                      uint256[49] private __gap;
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev External interface of AccessControl declared to support ERC165 detection.
                   */
                  interface IAccessControlUpgradeable {
                      /**
                       * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
                       *
                       * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
                       * {RoleAdminChanged} not being emitted signaling this.
                       *
                       * _Available since v3.1._
                       */
                      event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
                      /**
                       * @dev Emitted when `account` is granted `role`.
                       *
                       * `sender` is the account that originated the contract call, an admin role
                       * bearer except when using {AccessControl-_setupRole}.
                       */
                      event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
                      /**
                       * @dev Emitted when `account` is revoked `role`.
                       *
                       * `sender` is the account that originated the contract call:
                       *   - if using `revokeRole`, it is the admin role bearer
                       *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
                       */
                      event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
                      /**
                       * @dev Returns `true` if `account` has been granted `role`.
                       */
                      function hasRole(bytes32 role, address account) external view returns (bool);
                      /**
                       * @dev Returns the admin role that controls `role`. See {grantRole} and
                       * {revokeRole}.
                       *
                       * To change a role's admin, use {AccessControl-_setRoleAdmin}.
                       */
                      function getRoleAdmin(bytes32 role) external view returns (bytes32);
                      /**
                       * @dev Grants `role` to `account`.
                       *
                       * If `account` had not been already granted `role`, emits a {RoleGranted}
                       * event.
                       *
                       * Requirements:
                       *
                       * - the caller must have ``role``'s admin role.
                       */
                      function grantRole(bytes32 role, address account) external;
                      /**
                       * @dev Revokes `role` from `account`.
                       *
                       * If `account` had been granted `role`, emits a {RoleRevoked} event.
                       *
                       * Requirements:
                       *
                       * - the caller must have ``role``'s admin role.
                       */
                      function revokeRole(bytes32 role, address account) external;
                      /**
                       * @dev Revokes `role` from the calling account.
                       *
                       * Roles are often managed via {grantRole} and {revokeRole}: this function's
                       * purpose is to provide a mechanism for accounts to lose their privileges
                       * if they are compromised (such as when a trusted device is misplaced).
                       *
                       * If the calling account had been granted `role`, emits a {RoleRevoked}
                       * event.
                       *
                       * Requirements:
                       *
                       * - the caller must be `account`.
                       */
                      function renounceRole(bytes32 role, address account) external;
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
                  pragma solidity ^0.8.2;
                  import "../../utils/AddressUpgradeable.sol";
                  /**
                   * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                   * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                   * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                   * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                   *
                   * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                   * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                   * case an upgrade adds a module that needs to be initialized.
                   *
                   * For example:
                   *
                   * [.hljs-theme-light.nopadding]
                   * ```solidity
                   * contract MyToken is ERC20Upgradeable {
                   *     function initialize() initializer public {
                   *         __ERC20_init("MyToken", "MTK");
                   *     }
                   * }
                   *
                   * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                   *     function initializeV2() reinitializer(2) public {
                   *         __ERC20Permit_init("MyToken");
                   *     }
                   * }
                   * ```
                   *
                   * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                   * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                   *
                   * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                   * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                   *
                   * [CAUTION]
                   * ====
                   * Avoid leaving a contract uninitialized.
                   *
                   * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                   * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                   * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                   *
                   * [.hljs-theme-light.nopadding]
                   * ```
                   * /// @custom:oz-upgrades-unsafe-allow constructor
                   * constructor() {
                   *     _disableInitializers();
                   * }
                   * ```
                   * ====
                   */
                  abstract contract Initializable {
                      /**
                       * @dev Indicates that the contract has been initialized.
                       * @custom:oz-retyped-from bool
                       */
                      uint8 private _initialized;
                      /**
                       * @dev Indicates that the contract is in the process of being initialized.
                       */
                      bool private _initializing;
                      /**
                       * @dev Triggered when the contract has been initialized or reinitialized.
                       */
                      event Initialized(uint8 version);
                      /**
                       * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                       * `onlyInitializing` functions can be used to initialize parent contracts.
                       *
                       * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
                       * constructor.
                       *
                       * Emits an {Initialized} event.
                       */
                      modifier initializer() {
                          bool isTopLevelCall = !_initializing;
                          require(
                              (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                              "Initializable: contract is already initialized"
                          );
                          _initialized = 1;
                          if (isTopLevelCall) {
                              _initializing = true;
                          }
                          _;
                          if (isTopLevelCall) {
                              _initializing = false;
                              emit Initialized(1);
                          }
                      }
                      /**
                       * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                       * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                       * used to initialize parent contracts.
                       *
                       * A reinitializer may be used after the original initialization step. This is essential to configure modules that
                       * are added through upgrades and that require initialization.
                       *
                       * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
                       * cannot be nested. If one is invoked in the context of another, execution will revert.
                       *
                       * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                       * a contract, executing them in the right order is up to the developer or operator.
                       *
                       * WARNING: setting the version to 255 will prevent any future reinitialization.
                       *
                       * Emits an {Initialized} event.
                       */
                      modifier reinitializer(uint8 version) {
                          require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                          _initialized = version;
                          _initializing = true;
                          _;
                          _initializing = false;
                          emit Initialized(version);
                      }
                      /**
                       * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                       * {initializer} and {reinitializer} modifiers, directly or indirectly.
                       */
                      modifier onlyInitializing() {
                          require(_initializing, "Initializable: contract is not initializing");
                          _;
                      }
                      /**
                       * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                       * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                       * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                       * through proxies.
                       *
                       * Emits an {Initialized} event the first time it is successfully executed.
                       */
                      function _disableInitializers() internal virtual {
                          require(!_initializing, "Initializable: contract is initializing");
                          if (_initialized != type(uint8).max) {
                              _initialized = type(uint8).max;
                              emit Initialized(type(uint8).max);
                          }
                      }
                      /**
                       * @dev Returns the highest version that has been initialized. See {reinitializer}.
                       */
                      function _getInitializedVersion() internal view returns (uint8) {
                          return _initialized;
                      }
                      /**
                       * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
                       */
                      function _isInitializing() internal view returns (bool) {
                          return _initializing;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Interface of the ERC20 standard as defined in the EIP.
                   */
                  interface IERC20Upgradeable {
                      /**
                       * @dev Emitted when `value` tokens are moved from one account (`from`) to
                       * another (`to`).
                       *
                       * Note that `value` may be zero.
                       */
                      event Transfer(address indexed from, address indexed to, uint256 value);
                      /**
                       * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                       * a call to {approve}. `value` is the new allowance.
                       */
                      event Approval(address indexed owner, address indexed spender, uint256 value);
                      /**
                       * @dev Returns the amount of tokens in existence.
                       */
                      function totalSupply() external view returns (uint256);
                      /**
                       * @dev Returns the amount of tokens owned by `account`.
                       */
                      function balanceOf(address account) external view returns (uint256);
                      /**
                       * @dev Moves `amount` tokens from the caller's account to `to`.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transfer(address to, uint256 amount) external returns (bool);
                      /**
                       * @dev Returns the remaining number of tokens that `spender` will be
                       * allowed to spend on behalf of `owner` through {transferFrom}. This is
                       * zero by default.
                       *
                       * This value changes when {approve} or {transferFrom} are called.
                       */
                      function allowance(address owner, address spender) external view returns (uint256);
                      /**
                       * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * IMPORTANT: Beware that changing an allowance with this method brings the risk
                       * that someone may use both the old and the new allowance by unfortunate
                       * transaction ordering. One possible solution to mitigate this race
                       * condition is to first reduce the spender's allowance to 0 and set the
                       * desired value afterwards:
                       * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                       *
                       * Emits an {Approval} event.
                       */
                      function approve(address spender, uint256 amount) external returns (bool);
                      /**
                       * @dev Moves `amount` tokens from `from` to `to` using the
                       * allowance mechanism. `amount` is then deducted from the caller's
                       * allowance.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transferFrom(address from, address to, uint256 amount) external returns (bool);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol)
                  pragma solidity ^0.8.0;
                  import "./IERC721Upgradeable.sol";
                  import "./IERC721ReceiverUpgradeable.sol";
                  import "./extensions/IERC721MetadataUpgradeable.sol";
                  import "../../utils/AddressUpgradeable.sol";
                  import "../../utils/ContextUpgradeable.sol";
                  import "../../utils/StringsUpgradeable.sol";
                  import "../../utils/introspection/ERC165Upgradeable.sol";
                  import {Initializable} from "../../proxy/utils/Initializable.sol";
                  /**
                   * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
                   * the Metadata extension, but not including the Enumerable extension, which is available separately as
                   * {ERC721Enumerable}.
                   */
                  contract ERC721Upgradeable is Initializable, ContextUpgradeable, ERC165Upgradeable, IERC721Upgradeable, IERC721MetadataUpgradeable {
                      using AddressUpgradeable for address;
                      using StringsUpgradeable for uint256;
                      // Token name
                      string private _name;
                      // Token symbol
                      string private _symbol;
                      // Mapping from token ID to owner address
                      mapping(uint256 => address) private _owners;
                      // Mapping owner address to token count
                      mapping(address => uint256) private _balances;
                      // Mapping from token ID to approved address
                      mapping(uint256 => address) private _tokenApprovals;
                      // Mapping from owner to operator approvals
                      mapping(address => mapping(address => bool)) private _operatorApprovals;
                      /**
                       * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
                       */
                      function __ERC721_init(string memory name_, string memory symbol_) internal onlyInitializing {
                          __ERC721_init_unchained(name_, symbol_);
                      }
                      function __ERC721_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
                          _name = name_;
                          _symbol = symbol_;
                      }
                      /**
                       * @dev See {IERC165-supportsInterface}.
                       */
                      function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165Upgradeable) returns (bool) {
                          return
                              interfaceId == type(IERC721Upgradeable).interfaceId ||
                              interfaceId == type(IERC721MetadataUpgradeable).interfaceId ||
                              super.supportsInterface(interfaceId);
                      }
                      /**
                       * @dev See {IERC721-balanceOf}.
                       */
                      function balanceOf(address owner) public view virtual override returns (uint256) {
                          require(owner != address(0), "ERC721: address zero is not a valid owner");
                          return _balances[owner];
                      }
                      /**
                       * @dev See {IERC721-ownerOf}.
                       */
                      function ownerOf(uint256 tokenId) public view virtual override returns (address) {
                          address owner = _ownerOf(tokenId);
                          require(owner != address(0), "ERC721: invalid token ID");
                          return owner;
                      }
                      /**
                       * @dev See {IERC721Metadata-name}.
                       */
                      function name() public view virtual override returns (string memory) {
                          return _name;
                      }
                      /**
                       * @dev See {IERC721Metadata-symbol}.
                       */
                      function symbol() public view virtual override returns (string memory) {
                          return _symbol;
                      }
                      /**
                       * @dev See {IERC721Metadata-tokenURI}.
                       */
                      function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
                          _requireMinted(tokenId);
                          string memory baseURI = _baseURI();
                          return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
                      }
                      /**
                       * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
                       * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
                       * by default, can be overridden in child contracts.
                       */
                      function _baseURI() internal view virtual returns (string memory) {
                          return "";
                      }
                      /**
                       * @dev See {IERC721-approve}.
                       */
                      function approve(address to, uint256 tokenId) public virtual override {
                          address owner = ERC721Upgradeable.ownerOf(tokenId);
                          require(to != owner, "ERC721: approval to current owner");
                          require(
                              _msgSender() == owner || isApprovedForAll(owner, _msgSender()),
                              "ERC721: approve caller is not token owner or approved for all"
                          );
                          _approve(to, tokenId);
                      }
                      /**
                       * @dev See {IERC721-getApproved}.
                       */
                      function getApproved(uint256 tokenId) public view virtual override returns (address) {
                          _requireMinted(tokenId);
                          return _tokenApprovals[tokenId];
                      }
                      /**
                       * @dev See {IERC721-setApprovalForAll}.
                       */
                      function setApprovalForAll(address operator, bool approved) public virtual override {
                          _setApprovalForAll(_msgSender(), operator, approved);
                      }
                      /**
                       * @dev See {IERC721-isApprovedForAll}.
                       */
                      function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
                          return _operatorApprovals[owner][operator];
                      }
                      /**
                       * @dev See {IERC721-transferFrom}.
                       */
                      function transferFrom(address from, address to, uint256 tokenId) public virtual override {
                          //solhint-disable-next-line max-line-length
                          require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
                          _transfer(from, to, tokenId);
                      }
                      /**
                       * @dev See {IERC721-safeTransferFrom}.
                       */
                      function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
                          safeTransferFrom(from, to, tokenId, "");
                      }
                      /**
                       * @dev See {IERC721-safeTransferFrom}.
                       */
                      function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual override {
                          require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
                          _safeTransfer(from, to, tokenId, data);
                      }
                      /**
                       * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
                       * are aware of the ERC721 protocol to prevent tokens from being forever locked.
                       *
                       * `data` is additional data, it has no specified format and it is sent in call to `to`.
                       *
                       * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
                       * implement alternative mechanisms to perform token transfer, such as signature-based.
                       *
                       * Requirements:
                       *
                       * - `from` cannot be the zero address.
                       * - `to` cannot be the zero address.
                       * - `tokenId` token must exist and be owned by `from`.
                       * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
                       *
                       * Emits a {Transfer} event.
                       */
                      function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
                          _transfer(from, to, tokenId);
                          require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
                      }
                      /**
                       * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
                       */
                      function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
                          return _owners[tokenId];
                      }
                      /**
                       * @dev Returns whether `tokenId` exists.
                       *
                       * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
                       *
                       * Tokens start existing when they are minted (`_mint`),
                       * and stop existing when they are burned (`_burn`).
                       */
                      function _exists(uint256 tokenId) internal view virtual returns (bool) {
                          return _ownerOf(tokenId) != address(0);
                      }
                      /**
                       * @dev Returns whether `spender` is allowed to manage `tokenId`.
                       *
                       * Requirements:
                       *
                       * - `tokenId` must exist.
                       */
                      function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
                          address owner = ERC721Upgradeable.ownerOf(tokenId);
                          return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
                      }
                      /**
                       * @dev Safely mints `tokenId` and transfers it to `to`.
                       *
                       * Requirements:
                       *
                       * - `tokenId` must not exist.
                       * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
                       *
                       * Emits a {Transfer} event.
                       */
                      function _safeMint(address to, uint256 tokenId) internal virtual {
                          _safeMint(to, tokenId, "");
                      }
                      /**
                       * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
                       * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
                       */
                      function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
                          _mint(to, tokenId);
                          require(
                              _checkOnERC721Received(address(0), to, tokenId, data),
                              "ERC721: transfer to non ERC721Receiver implementer"
                          );
                      }
                      /**
                       * @dev Mints `tokenId` and transfers it to `to`.
                       *
                       * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
                       *
                       * Requirements:
                       *
                       * - `tokenId` must not exist.
                       * - `to` cannot be the zero address.
                       *
                       * Emits a {Transfer} event.
                       */
                      function _mint(address to, uint256 tokenId) internal virtual {
                          require(to != address(0), "ERC721: mint to the zero address");
                          require(!_exists(tokenId), "ERC721: token already minted");
                          _beforeTokenTransfer(address(0), to, tokenId, 1);
                          // Check that tokenId was not minted by `_beforeTokenTransfer` hook
                          require(!_exists(tokenId), "ERC721: token already minted");
                          unchecked {
                              // Will not overflow unless all 2**256 token ids are minted to the same owner.
                              // Given that tokens are minted one by one, it is impossible in practice that
                              // this ever happens. Might change if we allow batch minting.
                              // The ERC fails to describe this case.
                              _balances[to] += 1;
                          }
                          _owners[tokenId] = to;
                          emit Transfer(address(0), to, tokenId);
                          _afterTokenTransfer(address(0), to, tokenId, 1);
                      }
                      /**
                       * @dev Destroys `tokenId`.
                       * The approval is cleared when the token is burned.
                       * This is an internal function that does not check if the sender is authorized to operate on the token.
                       *
                       * Requirements:
                       *
                       * - `tokenId` must exist.
                       *
                       * Emits a {Transfer} event.
                       */
                      function _burn(uint256 tokenId) internal virtual {
                          address owner = ERC721Upgradeable.ownerOf(tokenId);
                          _beforeTokenTransfer(owner, address(0), tokenId, 1);
                          // Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
                          owner = ERC721Upgradeable.ownerOf(tokenId);
                          // Clear approvals
                          delete _tokenApprovals[tokenId];
                          unchecked {
                              // Cannot overflow, as that would require more tokens to be burned/transferred
                              // out than the owner initially received through minting and transferring in.
                              _balances[owner] -= 1;
                          }
                          delete _owners[tokenId];
                          emit Transfer(owner, address(0), tokenId);
                          _afterTokenTransfer(owner, address(0), tokenId, 1);
                      }
                      /**
                       * @dev Transfers `tokenId` from `from` to `to`.
                       *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
                       *
                       * Requirements:
                       *
                       * - `to` cannot be the zero address.
                       * - `tokenId` token must be owned by `from`.
                       *
                       * Emits a {Transfer} event.
                       */
                      function _transfer(address from, address to, uint256 tokenId) internal virtual {
                          require(ERC721Upgradeable.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
                          require(to != address(0), "ERC721: transfer to the zero address");
                          _beforeTokenTransfer(from, to, tokenId, 1);
                          // Check that tokenId was not transferred by `_beforeTokenTransfer` hook
                          require(ERC721Upgradeable.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
                          // Clear approvals from the previous owner
                          delete _tokenApprovals[tokenId];
                          unchecked {
                              // `_balances[from]` cannot overflow for the same reason as described in `_burn`:
                              // `from`'s balance is the number of token held, which is at least one before the current
                              // transfer.
                              // `_balances[to]` could overflow in the conditions described in `_mint`. That would require
                              // all 2**256 token ids to be minted, which in practice is impossible.
                              _balances[from] -= 1;
                              _balances[to] += 1;
                          }
                          _owners[tokenId] = to;
                          emit Transfer(from, to, tokenId);
                          _afterTokenTransfer(from, to, tokenId, 1);
                      }
                      /**
                       * @dev Approve `to` to operate on `tokenId`
                       *
                       * Emits an {Approval} event.
                       */
                      function _approve(address to, uint256 tokenId) internal virtual {
                          _tokenApprovals[tokenId] = to;
                          emit Approval(ERC721Upgradeable.ownerOf(tokenId), to, tokenId);
                      }
                      /**
                       * @dev Approve `operator` to operate on all of `owner` tokens
                       *
                       * Emits an {ApprovalForAll} event.
                       */
                      function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
                          require(owner != operator, "ERC721: approve to caller");
                          _operatorApprovals[owner][operator] = approved;
                          emit ApprovalForAll(owner, operator, approved);
                      }
                      /**
                       * @dev Reverts if the `tokenId` has not been minted yet.
                       */
                      function _requireMinted(uint256 tokenId) internal view virtual {
                          require(_exists(tokenId), "ERC721: invalid token ID");
                      }
                      /**
                       * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
                       * The call is not executed if the target address is not a contract.
                       *
                       * @param from address representing the previous owner of the given token ID
                       * @param to target address that will receive the tokens
                       * @param tokenId uint256 ID of the token to be transferred
                       * @param data bytes optional data to send along with the call
                       * @return bool whether the call correctly returned the expected magic value
                       */
                      function _checkOnERC721Received(
                          address from,
                          address to,
                          uint256 tokenId,
                          bytes memory data
                      ) private returns (bool) {
                          if (to.isContract()) {
                              try IERC721ReceiverUpgradeable(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                                  return retval == IERC721ReceiverUpgradeable.onERC721Received.selector;
                              } catch (bytes memory reason) {
                                  if (reason.length == 0) {
                                      revert("ERC721: transfer to non ERC721Receiver implementer");
                                  } else {
                                      /// @solidity memory-safe-assembly
                                      assembly {
                                          revert(add(32, reason), mload(reason))
                                      }
                                  }
                              }
                          } else {
                              return true;
                          }
                      }
                      /**
                       * @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
                       * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
                       *
                       * Calling conditions:
                       *
                       * - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
                       * - When `from` is zero, the tokens will be minted for `to`.
                       * - When `to` is zero, ``from``'s tokens will be burned.
                       * - `from` and `to` are never both zero.
                       * - `batchSize` is non-zero.
                       *
                       * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                       */
                      function _beforeTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
                      /**
                       * @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
                       * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
                       *
                       * Calling conditions:
                       *
                       * - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
                       * - When `from` is zero, the tokens were minted for `to`.
                       * - When `to` is zero, ``from``'s tokens were burned.
                       * - `from` and `to` are never both zero.
                       * - `batchSize` is non-zero.
                       *
                       * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                       */
                      function _afterTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
                      /**
                       * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
                       *
                       * WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
                       * being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
                       * that `ownerOf(tokenId)` is `a`.
                       */
                      // solhint-disable-next-line func-name-mixedcase
                      function __unsafe_increaseBalance(address account, uint256 amount) internal {
                          _balances[account] += amount;
                      }
                      /**
                       * @dev This empty reserved space is put in place to allow future versions to add new
                       * variables without shifting down storage in the inheritance chain.
                       * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                       */
                      uint256[44] private __gap;
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
                  pragma solidity ^0.8.0;
                  import "../IERC721Upgradeable.sol";
                  /**
                   * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
                   * @dev See https://eips.ethereum.org/EIPS/eip-721
                   */
                  interface IERC721MetadataUpgradeable is IERC721Upgradeable {
                      /**
                       * @dev Returns the token collection name.
                       */
                      function name() external view returns (string memory);
                      /**
                       * @dev Returns the token collection symbol.
                       */
                      function symbol() external view returns (string memory);
                      /**
                       * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
                       */
                      function tokenURI(uint256 tokenId) external view returns (string memory);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @title ERC721 token receiver interface
                   * @dev Interface for any contract that wants to support safeTransfers
                   * from ERC721 asset contracts.
                   */
                  interface IERC721ReceiverUpgradeable {
                      /**
                       * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
                       * by `operator` from `from`, this function is called.
                       *
                       * It must return its Solidity selector to confirm the token transfer.
                       * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
                       *
                       * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
                       */
                      function onERC721Received(
                          address operator,
                          address from,
                          uint256 tokenId,
                          bytes calldata data
                      ) external returns (bytes4);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
                  pragma solidity ^0.8.0;
                  import "../../utils/introspection/IERC165Upgradeable.sol";
                  /**
                   * @dev Required interface of an ERC721 compliant contract.
                   */
                  interface IERC721Upgradeable is IERC165Upgradeable {
                      /**
                       * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
                       */
                      event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
                      /**
                       * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
                       */
                      event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
                      /**
                       * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
                       */
                      event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
                      /**
                       * @dev Returns the number of tokens in ``owner``'s account.
                       */
                      function balanceOf(address owner) external view returns (uint256 balance);
                      /**
                       * @dev Returns the owner of the `tokenId` token.
                       *
                       * Requirements:
                       *
                       * - `tokenId` must exist.
                       */
                      function ownerOf(uint256 tokenId) external view returns (address owner);
                      /**
                       * @dev Safely transfers `tokenId` token from `from` to `to`.
                       *
                       * Requirements:
                       *
                       * - `from` cannot be the zero address.
                       * - `to` cannot be the zero address.
                       * - `tokenId` token must exist and be owned by `from`.
                       * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
                       * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
                       *
                       * Emits a {Transfer} event.
                       */
                      function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
                      /**
                       * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
                       * are aware of the ERC721 protocol to prevent tokens from being forever locked.
                       *
                       * Requirements:
                       *
                       * - `from` cannot be the zero address.
                       * - `to` cannot be the zero address.
                       * - `tokenId` token must exist and be owned by `from`.
                       * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
                       * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
                       *
                       * Emits a {Transfer} event.
                       */
                      function safeTransferFrom(address from, address to, uint256 tokenId) external;
                      /**
                       * @dev Transfers `tokenId` token from `from` to `to`.
                       *
                       * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
                       * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
                       * understand this adds an external call which potentially creates a reentrancy vulnerability.
                       *
                       * Requirements:
                       *
                       * - `from` cannot be the zero address.
                       * - `to` cannot be the zero address.
                       * - `tokenId` token must be owned by `from`.
                       * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transferFrom(address from, address to, uint256 tokenId) external;
                      /**
                       * @dev Gives permission to `to` to transfer `tokenId` token to another account.
                       * The approval is cleared when the token is transferred.
                       *
                       * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
                       *
                       * Requirements:
                       *
                       * - The caller must own the token or be an approved operator.
                       * - `tokenId` must exist.
                       *
                       * Emits an {Approval} event.
                       */
                      function approve(address to, uint256 tokenId) external;
                      /**
                       * @dev Approve or remove `operator` as an operator for the caller.
                       * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
                       *
                       * Requirements:
                       *
                       * - The `operator` cannot be the caller.
                       *
                       * Emits an {ApprovalForAll} event.
                       */
                      function setApprovalForAll(address operator, bool approved) external;
                      /**
                       * @dev Returns the account approved for `tokenId` token.
                       *
                       * Requirements:
                       *
                       * - `tokenId` must exist.
                       */
                      function getApproved(uint256 tokenId) external view returns (address operator);
                      /**
                       * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
                       *
                       * See {setApprovalForAll}
                       */
                      function isApprovedForAll(address owner, address operator) external view returns (bool);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
                  pragma solidity ^0.8.1;
                  /**
                   * @dev Collection of functions related to the address type
                   */
                  library AddressUpgradeable {
                      /**
                       * @dev Returns true if `account` is a contract.
                       *
                       * [IMPORTANT]
                       * ====
                       * It is unsafe to assume that an address for which this function returns
                       * false is an externally-owned account (EOA) and not a contract.
                       *
                       * Among others, `isContract` will return false for the following
                       * types of addresses:
                       *
                       *  - an externally-owned account
                       *  - a contract in construction
                       *  - an address where a contract will be created
                       *  - an address where a contract lived, but was destroyed
                       *
                       * Furthermore, `isContract` will also return true if the target contract within
                       * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
                       * which only has an effect at the end of a transaction.
                       * ====
                       *
                       * [IMPORTANT]
                       * ====
                       * You shouldn't rely on `isContract` to protect against flash loan attacks!
                       *
                       * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                       * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                       * constructor.
                       * ====
                       */
                      function isContract(address account) internal view returns (bool) {
                          // This method relies on extcodesize/address.code.length, which returns 0
                          // for contracts in construction, since the code is only stored at the end
                          // of the constructor execution.
                          return account.code.length > 0;
                      }
                      /**
                       * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                       * `recipient`, forwarding all available gas and reverting on errors.
                       *
                       * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                       * of certain opcodes, possibly making contracts go over the 2300 gas limit
                       * imposed by `transfer`, making them unable to receive funds via
                       * `transfer`. {sendValue} removes this limitation.
                       *
                       * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                       *
                       * IMPORTANT: because control is transferred to `recipient`, care must be
                       * taken to not create reentrancy vulnerabilities. Consider using
                       * {ReentrancyGuard} or the
                       * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                       */
                      function sendValue(address payable recipient, uint256 amount) internal {
                          require(address(this).balance >= amount, "Address: insufficient balance");
                          (bool success, ) = recipient.call{value: amount}("");
                          require(success, "Address: unable to send value, recipient may have reverted");
                      }
                      /**
                       * @dev Performs a Solidity function call using a low level `call`. A
                       * plain `call` is an unsafe replacement for a function call: use this
                       * function instead.
                       *
                       * If `target` reverts with a revert reason, it is bubbled up by this
                       * function (like regular Solidity function calls).
                       *
                       * Returns the raw returned data. To convert to the expected return value,
                       * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                       *
                       * Requirements:
                       *
                       * - `target` must be a contract.
                       * - calling `target` with `data` must not revert.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                       * `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, 0, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but also transferring `value` wei to `target`.
                       *
                       * Requirements:
                       *
                       * - the calling contract must have an ETH balance of at least `value`.
                       * - the called Solidity function must be `payable`.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                       * with `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(
                          address target,
                          bytes memory data,
                          uint256 value,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          require(address(this).balance >= value, "Address: insufficient balance for call");
                          (bool success, bytes memory returndata) = target.call{value: value}(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but performing a static call.
                       *
                       * _Available since v3.3._
                       */
                      function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                          return functionStaticCall(target, data, "Address: low-level static call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                       * but performing a static call.
                       *
                       * _Available since v3.3._
                       */
                      function functionStaticCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal view returns (bytes memory) {
                          (bool success, bytes memory returndata) = target.staticcall(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but performing a delegate call.
                       *
                       * _Available since v3.4._
                       */
                      function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                       * but performing a delegate call.
                       *
                       * _Available since v3.4._
                       */
                      function functionDelegateCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          (bool success, bytes memory returndata) = target.delegatecall(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                       * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                       *
                       * _Available since v4.8._
                       */
                      function verifyCallResultFromTarget(
                          address target,
                          bool success,
                          bytes memory returndata,
                          string memory errorMessage
                      ) internal view returns (bytes memory) {
                          if (success) {
                              if (returndata.length == 0) {
                                  // only check isContract if the call was successful and the return data is empty
                                  // otherwise we already know that it was a contract
                                  require(isContract(target), "Address: call to non-contract");
                              }
                              return returndata;
                          } else {
                              _revert(returndata, errorMessage);
                          }
                      }
                      /**
                       * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                       * revert reason or using the provided one.
                       *
                       * _Available since v4.3._
                       */
                      function verifyCallResult(
                          bool success,
                          bytes memory returndata,
                          string memory errorMessage
                      ) internal pure returns (bytes memory) {
                          if (success) {
                              return returndata;
                          } else {
                              _revert(returndata, errorMessage);
                          }
                      }
                      function _revert(bytes memory returndata, string memory errorMessage) private pure {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
                  pragma solidity ^0.8.0;
                  import {Initializable} from "../proxy/utils/Initializable.sol";
                  /**
                   * @dev Provides information about the current execution context, including the
                   * sender of the transaction and its data. While these are generally available
                   * via msg.sender and msg.data, they should not be accessed in such a direct
                   * manner, since when dealing with meta-transactions the account sending and
                   * paying for execution may not be the actual sender (as far as an application
                   * is concerned).
                   *
                   * This contract is only required for intermediate, library-like contracts.
                   */
                  abstract contract ContextUpgradeable is Initializable {
                      function __Context_init() internal onlyInitializing {
                      }
                      function __Context_init_unchained() internal onlyInitializing {
                      }
                      function _msgSender() internal view virtual returns (address) {
                          return msg.sender;
                      }
                      function _msgData() internal view virtual returns (bytes calldata) {
                          return msg.data;
                      }
                      function _contextSuffixLength() internal view virtual returns (uint256) {
                          return 0;
                      }
                      /**
                       * @dev This empty reserved space is put in place to allow future versions to add new
                       * variables without shifting down storage in the inheritance chain.
                       * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                       */
                      uint256[50] private __gap;
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
                  pragma solidity ^0.8.0;
                  import "./IERC165Upgradeable.sol";
                  import {Initializable} from "../../proxy/utils/Initializable.sol";
                  /**
                   * @dev Implementation of the {IERC165} interface.
                   *
                   * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
                   * for the additional interface id that will be supported. For example:
                   *
                   * ```solidity
                   * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                   *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
                   * }
                   * ```
                   *
                   * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
                   */
                  abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
                      function __ERC165_init() internal onlyInitializing {
                      }
                      function __ERC165_init_unchained() internal onlyInitializing {
                      }
                      /**
                       * @dev See {IERC165-supportsInterface}.
                       */
                      function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                          return interfaceId == type(IERC165Upgradeable).interfaceId;
                      }
                      /**
                       * @dev This empty reserved space is put in place to allow future versions to add new
                       * variables without shifting down storage in the inheritance chain.
                       * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                       */
                      uint256[50] private __gap;
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Interface of the ERC165 standard, as defined in the
                   * https://eips.ethereum.org/EIPS/eip-165[EIP].
                   *
                   * Implementers can declare support of contract interfaces, which can then be
                   * queried by others ({ERC165Checker}).
                   *
                   * For an implementation, see {ERC165}.
                   */
                  interface IERC165Upgradeable {
                      /**
                       * @dev Returns true if this contract implements the interface defined by
                       * `interfaceId`. See the corresponding
                       * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
                       * to learn more about how these ids are created.
                       *
                       * This function call must use less than 30 000 gas.
                       */
                      function supportsInterface(bytes4 interfaceId) external view returns (bool);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Standard math utilities missing in the Solidity language.
                   */
                  library MathUpgradeable {
                      enum Rounding {
                          Down, // Toward negative infinity
                          Up, // Toward infinity
                          Zero // Toward zero
                      }
                      /**
                       * @dev Returns the largest of two numbers.
                       */
                      function max(uint256 a, uint256 b) internal pure returns (uint256) {
                          return a > b ? a : b;
                      }
                      /**
                       * @dev Returns the smallest of two numbers.
                       */
                      function min(uint256 a, uint256 b) internal pure returns (uint256) {
                          return a < b ? a : b;
                      }
                      /**
                       * @dev Returns the average of two numbers. The result is rounded towards
                       * zero.
                       */
                      function average(uint256 a, uint256 b) internal pure returns (uint256) {
                          // (a + b) / 2 can overflow.
                          return (a & b) + (a ^ b) / 2;
                      }
                      /**
                       * @dev Returns the ceiling of the division of two numbers.
                       *
                       * This differs from standard division with `/` in that it rounds up instead
                       * of rounding down.
                       */
                      function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                          // (a + b - 1) / b can overflow on addition, so we distribute.
                          return a == 0 ? 0 : (a - 1) / b + 1;
                      }
                      /**
                       * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                       * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                       * with further edits by Uniswap Labs also under MIT license.
                       */
                      function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                          unchecked {
                              // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                              // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                              // variables such that product = prod1 * 2^256 + prod0.
                              uint256 prod0; // Least significant 256 bits of the product
                              uint256 prod1; // Most significant 256 bits of the product
                              assembly {
                                  let mm := mulmod(x, y, not(0))
                                  prod0 := mul(x, y)
                                  prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                              }
                              // Handle non-overflow cases, 256 by 256 division.
                              if (prod1 == 0) {
                                  // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                                  // The surrounding unchecked block does not change this fact.
                                  // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                                  return prod0 / denominator;
                              }
                              // Make sure the result is less than 2^256. Also prevents denominator == 0.
                              require(denominator > prod1, "Math: mulDiv overflow");
                              ///////////////////////////////////////////////
                              // 512 by 256 division.
                              ///////////////////////////////////////////////
                              // Make division exact by subtracting the remainder from [prod1 prod0].
                              uint256 remainder;
                              assembly {
                                  // Compute remainder using mulmod.
                                  remainder := mulmod(x, y, denominator)
                                  // Subtract 256 bit number from 512 bit number.
                                  prod1 := sub(prod1, gt(remainder, prod0))
                                  prod0 := sub(prod0, remainder)
                              }
                              // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                              // See https://cs.stackexchange.com/q/138556/92363.
                              // Does not overflow because the denominator cannot be zero at this stage in the function.
                              uint256 twos = denominator & (~denominator + 1);
                              assembly {
                                  // Divide denominator by twos.
                                  denominator := div(denominator, twos)
                                  // Divide [prod1 prod0] by twos.
                                  prod0 := div(prod0, twos)
                                  // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                  twos := add(div(sub(0, twos), twos), 1)
                              }
                              // Shift in bits from prod1 into prod0.
                              prod0 |= prod1 * twos;
                              // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                              // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                              // four bits. That is, denominator * inv = 1 mod 2^4.
                              uint256 inverse = (3 * denominator) ^ 2;
                              // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                              // in modular arithmetic, doubling the correct bits in each step.
                              inverse *= 2 - denominator * inverse; // inverse mod 2^8
                              inverse *= 2 - denominator * inverse; // inverse mod 2^16
                              inverse *= 2 - denominator * inverse; // inverse mod 2^32
                              inverse *= 2 - denominator * inverse; // inverse mod 2^64
                              inverse *= 2 - denominator * inverse; // inverse mod 2^128
                              inverse *= 2 - denominator * inverse; // inverse mod 2^256
                              // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                              // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                              // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                              // is no longer required.
                              result = prod0 * inverse;
                              return result;
                          }
                      }
                      /**
                       * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                       */
                      function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                          uint256 result = mulDiv(x, y, denominator);
                          if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                              result += 1;
                          }
                          return result;
                      }
                      /**
                       * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
                       *
                       * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                       */
                      function sqrt(uint256 a) internal pure returns (uint256) {
                          if (a == 0) {
                              return 0;
                          }
                          // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                          //
                          // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                          // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                          //
                          // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                          // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                          // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                          //
                          // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                          uint256 result = 1 << (log2(a) >> 1);
                          // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                          // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                          // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                          // into the expected uint128 result.
                          unchecked {
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              result = (result + a / result) >> 1;
                              return min(result, a / result);
                          }
                      }
                      /**
                       * @notice Calculates sqrt(a), following the selected rounding direction.
                       */
                      function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                          unchecked {
                              uint256 result = sqrt(a);
                              return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                          }
                      }
                      /**
                       * @dev Return the log in base 2, rounded down, of a positive value.
                       * Returns 0 if given 0.
                       */
                      function log2(uint256 value) internal pure returns (uint256) {
                          uint256 result = 0;
                          unchecked {
                              if (value >> 128 > 0) {
                                  value >>= 128;
                                  result += 128;
                              }
                              if (value >> 64 > 0) {
                                  value >>= 64;
                                  result += 64;
                              }
                              if (value >> 32 > 0) {
                                  value >>= 32;
                                  result += 32;
                              }
                              if (value >> 16 > 0) {
                                  value >>= 16;
                                  result += 16;
                              }
                              if (value >> 8 > 0) {
                                  value >>= 8;
                                  result += 8;
                              }
                              if (value >> 4 > 0) {
                                  value >>= 4;
                                  result += 4;
                              }
                              if (value >> 2 > 0) {
                                  value >>= 2;
                                  result += 2;
                              }
                              if (value >> 1 > 0) {
                                  result += 1;
                              }
                          }
                          return result;
                      }
                      /**
                       * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
                       * Returns 0 if given 0.
                       */
                      function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                          unchecked {
                              uint256 result = log2(value);
                              return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                          }
                      }
                      /**
                       * @dev Return the log in base 10, rounded down, of a positive value.
                       * Returns 0 if given 0.
                       */
                      function log10(uint256 value) internal pure returns (uint256) {
                          uint256 result = 0;
                          unchecked {
                              if (value >= 10 ** 64) {
                                  value /= 10 ** 64;
                                  result += 64;
                              }
                              if (value >= 10 ** 32) {
                                  value /= 10 ** 32;
                                  result += 32;
                              }
                              if (value >= 10 ** 16) {
                                  value /= 10 ** 16;
                                  result += 16;
                              }
                              if (value >= 10 ** 8) {
                                  value /= 10 ** 8;
                                  result += 8;
                              }
                              if (value >= 10 ** 4) {
                                  value /= 10 ** 4;
                                  result += 4;
                              }
                              if (value >= 10 ** 2) {
                                  value /= 10 ** 2;
                                  result += 2;
                              }
                              if (value >= 10 ** 1) {
                                  result += 1;
                              }
                          }
                          return result;
                      }
                      /**
                       * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
                       * Returns 0 if given 0.
                       */
                      function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                          unchecked {
                              uint256 result = log10(value);
                              return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                          }
                      }
                      /**
                       * @dev Return the log in base 256, rounded down, of a positive value.
                       * Returns 0 if given 0.
                       *
                       * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
                       */
                      function log256(uint256 value) internal pure returns (uint256) {
                          uint256 result = 0;
                          unchecked {
                              if (value >> 128 > 0) {
                                  value >>= 128;
                                  result += 16;
                              }
                              if (value >> 64 > 0) {
                                  value >>= 64;
                                  result += 8;
                              }
                              if (value >> 32 > 0) {
                                  value >>= 32;
                                  result += 4;
                              }
                              if (value >> 16 > 0) {
                                  value >>= 16;
                                  result += 2;
                              }
                              if (value >> 8 > 0) {
                                  result += 1;
                              }
                          }
                          return result;
                      }
                      /**
                       * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
                       * Returns 0 if given 0.
                       */
                      function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                          unchecked {
                              uint256 result = log256(value);
                              return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Standard signed math utilities missing in the Solidity language.
                   */
                  library SignedMathUpgradeable {
                      /**
                       * @dev Returns the largest of two signed numbers.
                       */
                      function max(int256 a, int256 b) internal pure returns (int256) {
                          return a > b ? a : b;
                      }
                      /**
                       * @dev Returns the smallest of two signed numbers.
                       */
                      function min(int256 a, int256 b) internal pure returns (int256) {
                          return a < b ? a : b;
                      }
                      /**
                       * @dev Returns the average of two signed numbers without overflow.
                       * The result is rounded towards zero.
                       */
                      function average(int256 a, int256 b) internal pure returns (int256) {
                          // Formula from the book "Hacker's Delight"
                          int256 x = (a & b) + ((a ^ b) >> 1);
                          return x + (int256(uint256(x) >> 255) & (a ^ b));
                      }
                      /**
                       * @dev Returns the absolute unsigned value of a signed value.
                       */
                      function abs(int256 n) internal pure returns (uint256) {
                          unchecked {
                              // must be unchecked in order to support `n = type(int256).min`
                              return uint256(n >= 0 ? n : -n);
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
                  pragma solidity ^0.8.0;
                  import "./math/MathUpgradeable.sol";
                  import "./math/SignedMathUpgradeable.sol";
                  /**
                   * @dev String operations.
                   */
                  library StringsUpgradeable {
                      bytes16 private constant _SYMBOLS = "0123456789abcdef";
                      uint8 private constant _ADDRESS_LENGTH = 20;
                      /**
                       * @dev Converts a `uint256` to its ASCII `string` decimal representation.
                       */
                      function toString(uint256 value) internal pure returns (string memory) {
                          unchecked {
                              uint256 length = MathUpgradeable.log10(value) + 1;
                              string memory buffer = new string(length);
                              uint256 ptr;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  ptr := add(buffer, add(32, length))
                              }
                              while (true) {
                                  ptr--;
                                  /// @solidity memory-safe-assembly
                                  assembly {
                                      mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                                  }
                                  value /= 10;
                                  if (value == 0) break;
                              }
                              return buffer;
                          }
                      }
                      /**
                       * @dev Converts a `int256` to its ASCII `string` decimal representation.
                       */
                      function toString(int256 value) internal pure returns (string memory) {
                          return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
                      }
                      /**
                       * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
                       */
                      function toHexString(uint256 value) internal pure returns (string memory) {
                          unchecked {
                              return toHexString(value, MathUpgradeable.log256(value) + 1);
                          }
                      }
                      /**
                       * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
                       */
                      function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                          bytes memory buffer = new bytes(2 * length + 2);
                          buffer[0] = "0";
                          buffer[1] = "x";
                          for (uint256 i = 2 * length + 1; i > 1; --i) {
                              buffer[i] = _SYMBOLS[value & 0xf];
                              value >>= 4;
                          }
                          require(value == 0, "Strings: hex length insufficient");
                          return string(buffer);
                      }
                      /**
                       * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
                       */
                      function toHexString(address addr) internal pure returns (string memory) {
                          return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
                      }
                      /**
                       * @dev Returns true if the two strings are equal.
                       */
                      function equal(string memory a, string memory b) internal pure returns (bool) {
                          return keccak256(bytes(a)) == keccak256(bytes(b));
                      }
                  }
                  //SPDX-License-Identifier: Unlicense
                  pragma solidity ^0.8.0;
                  import "@openzeppelin/contracts-upgradeable/token/ERC721/ERC721Upgradeable.sol";
                  import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
                  import "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
                  contract PaymentPROClonable is AccessControlUpgradeable {
                    event StrictPaymentReceived(bytes32 indexed paymentReferenceHash, address indexed sender, address indexed tokenAddress, uint256 tokenAmount, string paymentReference);
                    event OpenPaymentReceived(bytes32 indexed paymentReferenceHash, address indexed sender, address indexed tokenAddress, uint256 tokenAmount, string paymentReference);
                    event DefaultPaymentReceived(bytes32 indexed paymentReferenceHash, address indexed sender, address indexed tokenAddress, uint256 tokenAmount, string paymentReference);
                    event TokenSwept(address indexed recipient, address indexed sweeper, address indexed tokenAddress, uint256 tokenAmount);
                    event PaymentReferenceCreated(bytes32 indexed paymentReferenceHash, string paymentReference, StrictPayment referencedPaymentEntry);
                    event PaymentReferenceDeleted(bytes32 indexed paymentReferenceHash, string paymentReference);
                    event DefaultPaymentConfigAdjusted(address indexed tokenAddress, uint256 tokenAmount);
                    event ApprovedPaymentToken(address indexed tokenAddress);
                    event ApprovedSweepingToken(address indexed tokenAddress);
                    event ApprovedTokenSweepRecipient(address indexed recipientAddress);
                    event UnapprovedPaymentToken(address indexed tokenAddress);
                    event UnapprovedSweepingToken(address indexed tokenAddress);
                    event UnapprovedTokenSweepRecipient(address indexed recipientAddress);
                    bytes32 public constant APPROVER_ROLE = keccak256("APPROVER_ROLE"); // can manage approvedPaymentTokens / approvedSweepingTokens / approvedSweepRecipients -> 0x408a36151f841709116a4e8aca4e0202874f7f54687dcb863b1ea4672dc9d8cf
                    bytes32 public constant SWEEPER_ROLE = keccak256("SWEEPER_ROLE"); // can sweep tokens -> 0x8aef0597c0be1e090afba1f387ee99f604b5d975ccbed6215cdf146ffd5c49fc
                    bytes32 public constant PAYMENT_MANAGER_ROLE = keccak256("PAYMENT_MANAGER_ROLE"); // can manage default payment configs / strict payments -> 0xa624ddbc4fb31a463e13e6620d62eeaf14248f89110a7fda32b4048499c999a6
                    struct DefaultPaymentConfig {
                      address tokenAddress;
                      uint256 tokenAmount;
                    }
                    struct StrictPayment {
                      string paymentReference;
                      bytes32 paymentReferenceHash;
                      address tokenAddress;
                      uint256 tokenAmount;
                      address payer;
                      bool enforcePayer;
                      bool complete;
                      bool exists;
                    }
                    mapping (bytes32 => StrictPayment) internal strictPayments;
                    mapping (bytes32 => bool) internal referenceReservations;
                    mapping (address => bool) internal approvedPaymentTokens;
                    mapping (address => bool) internal approvedSweepingTokens;
                    mapping (address => bool) internal approvedSweepRecipients;
                    DefaultPaymentConfig public defaultPaymentConfig;
                    bool public isInitialized;
                    function initializeContract(
                      address _roleAdmin,
                      address _approvedPaymentToken,
                      address _approvedSweepingToken,
                      address _approvedTokenSweepRecipient,
                      uint256 _defaultTokenAmount
                    ) external {
                      require(!isInitialized, "ALREADY_INITIALIZED");
                      require(_roleAdmin != address(0), "NO_ZERO_ADDRESS");
                      require(_approvedPaymentToken != address(0), "NO_ZERO_ADDRESS");
                      require(_approvedSweepingToken != address(0), "NO_ZERO_ADDRESS");
                      require(_approvedTokenSweepRecipient != address(0), "NO_ZERO_ADDRESS");
                      require(_defaultTokenAmount > 0, "NO_ZERO_AMOUNT");
                      isInitialized = true;
                      _setupRole(DEFAULT_ADMIN_ROLE, _roleAdmin);
                      _setupRole(APPROVER_ROLE, _roleAdmin);
                      _setupRole(SWEEPER_ROLE, _roleAdmin);
                      _setupRole(PAYMENT_MANAGER_ROLE, _roleAdmin);
                      approvedPaymentTokens[_approvedPaymentToken] = true;
                      emit ApprovedPaymentToken(_approvedPaymentToken);
                      approvedSweepingTokens[_approvedSweepingToken] = true;
                      emit ApprovedSweepingToken(_approvedPaymentToken);
                      approvedSweepRecipients[_approvedTokenSweepRecipient] = true;
                      emit ApprovedTokenSweepRecipient(_approvedTokenSweepRecipient);
                      defaultPaymentConfig = DefaultPaymentConfig(_approvedSweepingToken, _defaultTokenAmount);
                      emit DefaultPaymentConfigAdjusted(_approvedSweepingToken, _defaultTokenAmount);
                    }
                    // ROLE MODIFIERS
                    modifier onlyApprover() {
                      require(hasRole(APPROVER_ROLE, msg.sender), "NOT_APPROVER");
                      _;
                    }
                    modifier onlyPaymentManager() {
                      require(hasRole(PAYMENT_MANAGER_ROLE, msg.sender), "NOT_PAYMENT_MANAGER");
                      _;
                    }
                    modifier onlySweeper() {
                      require(hasRole(SWEEPER_ROLE, msg.sender), "NOT_SWEEPER");
                      _;
                    }
                    // ADMIN FUNCTIONS
                    function setApprovedPaymentToken(address _tokenAddress, bool _validity) external onlyApprover {
                      require(_tokenAddress != address(0), "NO_ZERO_ADDRESS");
                      require(_validity != approvedPaymentTokens[_tokenAddress], "NO_CHANGE");
                      approvedPaymentTokens[_tokenAddress] = _validity;
                      if(_validity) {
                        emit ApprovedPaymentToken(_tokenAddress);
                      } else {
                        emit UnapprovedPaymentToken(_tokenAddress);
                      }
                    }
                    function setApprovedSweepingToken(address _tokenAddress, bool _validity) external onlyApprover {
                      require(_tokenAddress != address(0), "NO_ZERO_ADDRESS");
                      require(_validity != approvedSweepingTokens[_tokenAddress], "NO_CHANGE");
                      approvedSweepingTokens[_tokenAddress] = _validity;
                      if(_validity) {
                        emit ApprovedSweepingToken(_tokenAddress);
                      } else {
                        emit UnapprovedSweepingToken(_tokenAddress);
                      }
                    }
                    function setApprovedSweepRecipient(address _recipientAddress, bool _validity) external onlyApprover {
                      require(_recipientAddress != address(0), "NO_ZERO_ADDRESS");
                      require(_validity != approvedSweepRecipients[_recipientAddress], "NO_CHANGE");
                      approvedSweepRecipients[_recipientAddress] = _validity;
                      if(_validity) {
                        emit ApprovedTokenSweepRecipient(_recipientAddress);
                      } else {
                        emit UnapprovedTokenSweepRecipient(_recipientAddress);
                      }
                    }
                    // PAYMENT MANAGEMENT FUNCTIONS
                    function createStrictPayment(
                      string memory _reference,
                      address _tokenAddress,
                      uint256 _tokenAmount,
                      address _payer,
                      bool _enforcePayer
                    ) external onlyPaymentManager {
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      require(!referenceReservations[_hashedReference], "REFERENCE_ALREADY_RESERVED");
                      require(approvedPaymentTokens[_tokenAddress], "NOT_APPROVED_TOKEN_ADDRESS");
                      require(_tokenAmount > 0, "NO_ZERO_AMOUNT");
                      referenceReservations[_hashedReference] = true;
                      StrictPayment memory newStrictPaymentEntry = StrictPayment(
                        _reference,
                        _hashedReference,
                        _tokenAddress,
                        _tokenAmount,
                        _payer,
                        _enforcePayer,
                        false,
                        true
                      );
                      strictPayments[_hashedReference] = newStrictPaymentEntry;
                      emit PaymentReferenceCreated(_hashedReference, _reference, newStrictPaymentEntry);
                    }
                    function deleteStrictPayment(
                      string memory _reference
                    ) external onlyPaymentManager {
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      require(referenceReservations[_hashedReference], "REFERENCE_NOT_RESERVED");
                      require(strictPayments[_hashedReference].complete == false, "PAYMENT_ALREADY_COMPLETE");
                      referenceReservations[_hashedReference] = false;
                      strictPayments[_hashedReference].exists = false;
                      emit PaymentReferenceDeleted(_hashedReference, _reference);
                    }
                    function setDefaultPaymentConfig(address _tokenAddress, uint256 _tokenAmount) external onlyPaymentManager {
                      require(approvedPaymentTokens[_tokenAddress], "NOT_APPROVED_TOKEN_ADDRESS");
                      require(_tokenAmount > 0, "NO_ZERO_AMOUNT");
                      defaultPaymentConfig = DefaultPaymentConfig(_tokenAddress, _tokenAmount);
                      emit DefaultPaymentConfigAdjusted(_tokenAddress, _tokenAmount);
                    }
                    // SWEEPING / WITHDRAWAL FUNCTIONS
                    function sweepTokenByFullBalance(
                      address _tokenAddress,
                      address _recipientAddress
                    ) external onlySweeper {
                      require(approvedPaymentTokens[_tokenAddress], "NOT_APPROVED_TOKEN_ADDRESS");
                      require(approvedSweepRecipients[_recipientAddress], "NOT_APPROVED_RECIPIENT");
                      IERC20Upgradeable _tokenContract = IERC20Upgradeable(_tokenAddress);
                      uint256 _tokenBalance = _tokenContract.balanceOf(address(this));
                      require(_tokenBalance > 0, "NO_BALANCE");
                      _tokenContract.transfer(_recipientAddress, _tokenBalance);
                      emit TokenSwept(_recipientAddress, msg.sender, _tokenAddress, _tokenBalance);
                    }
                    function sweepTokenByAmount(
                      address _tokenAddress,
                      address _recipientAddress,
                      uint256 _tokenAmount
                    ) external onlySweeper {
                      require(approvedPaymentTokens[_tokenAddress], "NOT_APPROVED_TOKEN_ADDRESS");
                      require(approvedSweepRecipients[_recipientAddress], "NOT_APPROVED_RECIPIENT");
                      require(_tokenAmount > 0, "NO_ZERO_AMOUNT");
                      IERC20Upgradeable _tokenContract = IERC20Upgradeable(_tokenAddress);
                      uint256 _tokenBalance = _tokenContract.balanceOf(address(this));
                      require(_tokenBalance >= _tokenAmount, "INSUFFICIENT_BALANCE");
                      bool success = _tokenContract.transfer(_recipientAddress, _tokenAmount);
                      require(success, "PAYMENT_FAILED");
                      emit TokenSwept(_recipientAddress, msg.sender, _tokenAddress, _tokenAmount);
                    }
                    // PAYMENT FUNCTIONS
                    function makeOpenPayment(
                      address _tokenAddress,
                      uint256 _tokenAmount,
                      string memory _reference
                    ) external {
                      require(approvedPaymentTokens[_tokenAddress], "NOT_APPROVED_TOKEN");
                      require(_tokenAmount > 0, "NO_ZERO_AMOUNT");
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      require(!referenceReservations[_hashedReference], "REFERENCE_RESERVED");
                      bool success = IERC20Upgradeable(_tokenAddress).transferFrom(msg.sender, address(this), _tokenAmount);
                      require(success, "PAYMENT_FAILED");
                      emit OpenPaymentReceived(_hashedReference, msg.sender, _tokenAddress, _tokenAmount, _reference);
                    }
                    function makeDefaultPayment(
                      string memory _reference
                    ) external {
                      require(approvedPaymentTokens[defaultPaymentConfig.tokenAddress], "NOT_APPROVED_TOKEN");
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      require(!referenceReservations[_hashedReference], "REFERENCE_RESERVED");
                      bool success = IERC20Upgradeable(defaultPaymentConfig.tokenAddress).transferFrom(msg.sender, address(this), defaultPaymentConfig.tokenAmount);
                      require(success, "PAYMENT_FAILED");
                      emit DefaultPaymentReceived(_hashedReference, msg.sender, defaultPaymentConfig.tokenAddress, defaultPaymentConfig.tokenAmount, _reference);
                    }
                    function makeStrictPayment(
                      string memory _reference
                    ) external {
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      require(referenceReservations[_hashedReference], "REFERENCE_NOT_RESERVED");
                      StrictPayment storage strictPayment = strictPayments[_hashedReference];
                      require(approvedPaymentTokens[strictPayment.tokenAddress], "NOT_APPROVED_TOKEN");
                      if(strictPayment.enforcePayer) {
                        require(strictPayment.payer == msg.sender, "PAYER_MISMATCH");
                      }
                      strictPayment.complete = true;
                      bool success = IERC20Upgradeable(strictPayment.tokenAddress).transferFrom(msg.sender, address(this), strictPayment.tokenAmount);
                      require(success, "PAYMENT_FAILED");
                      emit StrictPaymentReceived(_hashedReference, msg.sender, strictPayment.tokenAddress, strictPayment.tokenAmount, _reference);
                    }
                    // VIEWS
                    function viewStrictPaymentByStringReference(
                      string memory _reference
                    ) external view returns (StrictPayment memory) {
                      bytes32 _hashedReference = keccak256(abi.encodePacked(_reference));
                      return strictPayments[_hashedReference];
                    }
                    function viewStrictPaymentByHashedReference(
                      bytes32 _hashedReference
                    ) external view returns (StrictPayment memory) {
                      return strictPayments[_hashedReference];
                    }
                  }