ETH Price: $2,425.07 (-2.34%)

Transaction Decoder

Block:
19426083 at Mar-13-2024 12:14:23 PM +UTC
Transaction Fee:
0.007470260900912178 ETH $18.12
Gas Used:
120,366 Gas / 62.062882383 Gwei

Emitted Events:

215 ERC1967Proxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000e1035b9c09f641582a8161495c68d8eaf0dd006b, 0x000000000000000000000000d9655eb871a5f657e2e5d2d07f3ca2d18b4cb78a, 00000000000000000000000000000000000000000000001211ede4974a355555 )
216 ERC1967Proxy.0xa0749e1bd91b704a590d54652ab241875bafecdd428ab0a9b01aeb035682ad2d( 0xa0749e1bd91b704a590d54652ab241875bafecdd428ab0a9b01aeb035682ad2d, 0x0000000000000000000000000000000000000000000000000000000000000008, 0x000000000000000000000000d9655eb871a5f657e2e5d2d07f3ca2d18b4cb78a, 00000000000000000000000000000000000000000000001211ede4974a355555 )

Account State Difference:

  Address   Before After State Difference Code
0x12652C6d...782BB0d10
(Coinbase: MEV Builder)
16.388575038492448979 Eth16.388577304826429153 Eth0.000002266333980174
0xd9655eB8...18b4Cb78A
1.232149552394721044 Eth
Nonce: 261
1.224679291493808866 Eth
Nonce: 262
0.007470260900912178
0xe1035b9C...aF0DD006B

Execution Trace

ERC1967Proxy.14336e1c( )
  • Vesting.claim( )
    • ERC1967Proxy.a9059cbb( )
      • EntangleToken.transfer( to=0xd9655eB871A5f657e2e5D2d07f3cA2d18b4Cb78A, amount=333333333333333333333 ) => ( True )
        File 1 of 4: ERC1967Proxy
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
        pragma solidity ^0.8.20;
        import {Context} from "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * The initial owner is set to the address provided by the deployer. This can
         * later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            /**
             * @dev The caller account is not authorized to perform an operation.
             */
            error OwnableUnauthorizedAccount(address account);
            /**
             * @dev The owner is not a valid owner account. (eg. `address(0)`)
             */
            error OwnableInvalidOwner(address owner);
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
             */
            constructor(address initialOwner) {
                if (initialOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(initialOwner);
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                if (owner() != _msgSender()) {
                    revert OwnableUnauthorizedAccount(_msgSender());
                }
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby disabling any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                if (newOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         */
        interface IERC1967 {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/BeaconProxy.sol)
        pragma solidity ^0.8.20;
        import {IBeacon} from "./IBeacon.sol";
        import {Proxy} from "../Proxy.sol";
        import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
        /**
         * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
         *
         * The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an
         * immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] so that it can be accessed externally.
         *
         * CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust
         * the beacon to not upgrade the implementation maliciously.
         *
         * IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in
         * an inconsistent state where the beacon storage slot does not match the beacon address.
         */
        contract BeaconProxy is Proxy {
            // An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call.
            address private immutable _beacon;
            /**
             * @dev Initializes the proxy with `beacon`.
             *
             * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
             * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
             * constructor.
             *
             * Requirements:
             *
             * - `beacon` must be a contract with the interface {IBeacon}.
             * - If `data` is empty, `msg.value` must be zero.
             */
            constructor(address beacon, bytes memory data) payable {
                ERC1967Utils.upgradeBeaconToAndCall(beacon, data);
                _beacon = beacon;
            }
            /**
             * @dev Returns the current implementation address of the associated beacon.
             */
            function _implementation() internal view virtual override returns (address) {
                return IBeacon(_getBeacon()).implementation();
            }
            /**
             * @dev Returns the beacon.
             */
            function _getBeacon() internal view virtual returns (address) {
                return _beacon;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeacon {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {UpgradeableBeacon} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/UpgradeableBeacon.sol)
        pragma solidity ^0.8.20;
        import {IBeacon} from "./IBeacon.sol";
        import {Ownable} from "../../access/Ownable.sol";
        /**
         * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
         * implementation contract, which is where they will delegate all function calls.
         *
         * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
         */
        contract UpgradeableBeacon is IBeacon, Ownable {
            address private _implementation;
            /**
             * @dev The `implementation` of the beacon is invalid.
             */
            error BeaconInvalidImplementation(address implementation);
            /**
             * @dev Emitted when the implementation returned by the beacon is changed.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Sets the address of the initial implementation, and the initial owner who can upgrade the beacon.
             */
            constructor(address implementation_, address initialOwner) Ownable(initialOwner) {
                _setImplementation(implementation_);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function implementation() public view virtual returns (address) {
                return _implementation;
            }
            /**
             * @dev Upgrades the beacon to a new implementation.
             *
             * Emits an {Upgraded} event.
             *
             * Requirements:
             *
             * - msg.sender must be the owner of the contract.
             * - `newImplementation` must be a contract.
             */
            function upgradeTo(address newImplementation) public virtual onlyOwner {
                _setImplementation(newImplementation);
            }
            /**
             * @dev Sets the implementation contract address for this beacon
             *
             * Requirements:
             *
             * - `newImplementation` must be a contract.
             */
            function _setImplementation(address newImplementation) private {
                if (newImplementation.code.length == 0) {
                    revert BeaconInvalidImplementation(newImplementation);
                }
                _implementation = newImplementation;
                emit Upgraded(newImplementation);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol)
        pragma solidity ^0.8.20;
        import {Proxy} from "../Proxy.sol";
        import {ERC1967Utils} from "./ERC1967Utils.sol";
        /**
         * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
         * implementation address that can be changed. This address is stored in storage in the location specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
         * implementation behind the proxy.
         */
        contract ERC1967Proxy is Proxy {
            /**
             * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
             *
             * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
             * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
             *
             * Requirements:
             *
             * - If `data` is empty, `msg.value` must be zero.
             */
            constructor(address implementation, bytes memory _data) payable {
                ERC1967Utils.upgradeToAndCall(implementation, _data);
            }
            /**
             * @dev Returns the current implementation address.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
             * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
             */
            function _implementation() internal view virtual override returns (address) {
                return ERC1967Utils.getImplementation();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)
        pragma solidity ^0.8.20;
        import {IBeacon} from "../beacon/IBeacon.sol";
        import {Address} from "../../utils/Address.sol";
        import {StorageSlot} from "../../utils/StorageSlot.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         */
        library ERC1967Utils {
            // We re-declare ERC-1967 events here because they can't be used directly from IERC1967.
            // This will be fixed in Solidity 0.8.21. At that point we should remove these events.
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
             */
            // solhint-disable-next-line private-vars-leading-underscore
            bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev The `implementation` of the proxy is invalid.
             */
            error ERC1967InvalidImplementation(address implementation);
            /**
             * @dev The `admin` of the proxy is invalid.
             */
            error ERC1967InvalidAdmin(address admin);
            /**
             * @dev The `beacon` of the proxy is invalid.
             */
            error ERC1967InvalidBeacon(address beacon);
            /**
             * @dev An upgrade function sees `msg.value > 0` that may be lost.
             */
            error ERC1967NonPayable();
            /**
             * @dev Returns the current implementation address.
             */
            function getImplementation() internal view returns (address) {
                return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                if (newImplementation.code.length == 0) {
                    revert ERC1967InvalidImplementation(newImplementation);
                }
                StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Performs implementation upgrade with additional setup call if data is nonempty.
             * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
             * to avoid stuck value in the contract.
             *
             * Emits an {IERC1967-Upgraded} event.
             */
            function upgradeToAndCall(address newImplementation, bytes memory data) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
                if (data.length > 0) {
                    Address.functionDelegateCall(newImplementation, data);
                } else {
                    _checkNonPayable();
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
             */
            // solhint-disable-next-line private-vars-leading-underscore
            bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
             * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
             */
            function getAdmin() internal view returns (address) {
                return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                if (newAdmin == address(0)) {
                    revert ERC1967InvalidAdmin(address(0));
                }
                StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {IERC1967-AdminChanged} event.
             */
            function changeAdmin(address newAdmin) internal {
                emit AdminChanged(getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
             */
            // solhint-disable-next-line private-vars-leading-underscore
            bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function getBeacon() internal view returns (address) {
                return StorageSlot.getAddressSlot(BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                if (newBeacon.code.length == 0) {
                    revert ERC1967InvalidBeacon(newBeacon);
                }
                StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
                address beaconImplementation = IBeacon(newBeacon).implementation();
                if (beaconImplementation.code.length == 0) {
                    revert ERC1967InvalidImplementation(beaconImplementation);
                }
            }
            /**
             * @dev Change the beacon and trigger a setup call if data is nonempty.
             * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
             * to avoid stuck value in the contract.
             *
             * Emits an {IERC1967-BeaconUpgraded} event.
             *
             * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
             * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
             * efficiency.
             */
            function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0) {
                    Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                } else {
                    _checkNonPayable();
                }
            }
            /**
             * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
             * if an upgrade doesn't perform an initialization call.
             */
            function _checkNonPayable() private {
                if (msg.value > 0) {
                    revert ERC1967NonPayable();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
         * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
         * be specified by overriding the virtual {_implementation} function.
         *
         * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
         * different contract through the {_delegate} function.
         *
         * The success and return data of the delegated call will be returned back to the caller of the proxy.
         */
        abstract contract Proxy {
            /**
             * @dev Delegates the current call to `implementation`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _delegate(address implementation) internal virtual {
                assembly {
                    // Copy msg.data. We take full control of memory in this inline assembly
                    // block because it will not return to Solidity code. We overwrite the
                    // Solidity scratch pad at memory position 0.
                    calldatacopy(0, 0, calldatasize())
                    // Call the implementation.
                    // out and outsize are 0 because we don't know the size yet.
                    let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                    // Copy the returned data.
                    returndatacopy(0, 0, returndatasize())
                    switch result
                    // delegatecall returns 0 on error.
                    case 0 {
                        revert(0, returndatasize())
                    }
                    default {
                        return(0, returndatasize())
                    }
                }
            }
            /**
             * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
             * function and {_fallback} should delegate.
             */
            function _implementation() internal view virtual returns (address);
            /**
             * @dev Delegates the current call to the address returned by `_implementation()`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _fallback() internal virtual {
                _delegate(_implementation());
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
             * function in the contract matches the call data.
             */
            fallback() external payable virtual {
                _fallback();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/ProxyAdmin.sol)
        pragma solidity ^0.8.20;
        import {ITransparentUpgradeableProxy} from "./TransparentUpgradeableProxy.sol";
        import {Ownable} from "../../access/Ownable.sol";
        /**
         * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
         * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
         */
        contract ProxyAdmin is Ownable {
            /**
             * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgrade(address)`
             * and `upgradeAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
             * while `upgradeAndCall` will invoke the `receive` function if the second argument is the empty byte string.
             * If the getter returns `"5.0.0"`, only `upgradeAndCall(address,bytes)` is present, and the second argument must
             * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
             * during an upgrade.
             */
            string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
            /**
             * @dev Sets the initial owner who can perform upgrades.
             */
            constructor(address initialOwner) Ownable(initialOwner) {}
            /**
             * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation.
             * See {TransparentUpgradeableProxy-_dispatchUpgradeToAndCall}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             * - If `data` is empty, `msg.value` must be zero.
             */
            function upgradeAndCall(
                ITransparentUpgradeableProxy proxy,
                address implementation,
                bytes memory data
            ) public payable virtual onlyOwner {
                proxy.upgradeToAndCall{value: msg.value}(implementation, data);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/TransparentUpgradeableProxy.sol)
        pragma solidity ^0.8.20;
        import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
        import {ERC1967Proxy} from "../ERC1967/ERC1967Proxy.sol";
        import {IERC1967} from "../../interfaces/IERC1967.sol";
        import {ProxyAdmin} from "./ProxyAdmin.sol";
        /**
         * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
         * does not implement this interface directly, and its upgradeability mechanism is implemented by an internal dispatch
         * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
         * include them in the ABI so this interface must be used to interact with it.
         */
        interface ITransparentUpgradeableProxy is IERC1967 {
            function upgradeToAndCall(address, bytes calldata) external payable;
        }
        /**
         * @dev This contract implements a proxy that is upgradeable through an associated {ProxyAdmin} instance.
         *
         * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
         * clashing], which can potentially be used in an attack, this contract uses the
         * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
         * things that go hand in hand:
         *
         * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
         * that call matches the {ITransparentUpgradeableProxy-upgradeToAndCall} function exposed by the proxy itself.
         * 2. If the admin calls the proxy, it can call the `upgradeToAndCall` function but any other call won't be forwarded to
         * the implementation. If the admin tries to call a function on the implementation it will fail with an error indicating
         * the proxy admin cannot fallback to the target implementation.
         *
         * These properties mean that the admin account can only be used for upgrading the proxy, so it's best if it's a
         * dedicated account that is not used for anything else. This will avoid headaches due to sudden errors when trying to
         * call a function from the proxy implementation. For this reason, the proxy deploys an instance of {ProxyAdmin} and
         * allows upgrades only if they come through it. You should think of the `ProxyAdmin` instance as the administrative
         * interface of the proxy, including the ability to change who can trigger upgrades by transferring ownership.
         *
         * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
         * inherit from that interface, and instead `upgradeToAndCall` is implicitly implemented using a custom dispatch
         * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
         * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
         * implementation.
         *
         * NOTE: This proxy does not inherit from {Context} deliberately. The {ProxyAdmin} of this contract won't send a
         * meta-transaction in any way, and any other meta-transaction setup should be made in the implementation contract.
         *
         * IMPORTANT: This contract avoids unnecessary storage reads by setting the admin only during construction as an
         * immutable variable, preventing any changes thereafter. However, the admin slot defined in ERC-1967 can still be
         * overwritten by the implementation logic pointed to by this proxy. In such cases, the contract may end up in an
         * undesirable state where the admin slot is different from the actual admin.
         *
         * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the
         * compiler will not check that there are no selector conflicts, due to the note above. A selector clash between any new
         * function and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This
         * could render the `upgradeToAndCall` function inaccessible, preventing upgradeability and compromising transparency.
         */
        contract TransparentUpgradeableProxy is ERC1967Proxy {
            // An immutable address for the admin to avoid unnecessary SLOADs before each call
            // at the expense of removing the ability to change the admin once it's set.
            // This is acceptable if the admin is always a ProxyAdmin instance or similar contract
            // with its own ability to transfer the permissions to another account.
            address private immutable _admin;
            /**
             * @dev The proxy caller is the current admin, and can't fallback to the proxy target.
             */
            error ProxyDeniedAdminAccess();
            /**
             * @dev Initializes an upgradeable proxy managed by an instance of a {ProxyAdmin} with an `initialOwner`,
             * backed by the implementation at `_logic`, and optionally initialized with `_data` as explained in
             * {ERC1967Proxy-constructor}.
             */
            constructor(address _logic, address initialOwner, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                _admin = address(new ProxyAdmin(initialOwner));
                // Set the storage value and emit an event for ERC-1967 compatibility
                ERC1967Utils.changeAdmin(_proxyAdmin());
            }
            /**
             * @dev Returns the admin of this proxy.
             */
            function _proxyAdmin() internal virtual returns (address) {
                return _admin;
            }
            /**
             * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior.
             */
            function _fallback() internal virtual override {
                if (msg.sender == _proxyAdmin()) {
                    if (msg.sig != ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                        revert ProxyDeniedAdminAccess();
                    } else {
                        _dispatchUpgradeToAndCall();
                    }
                } else {
                    super._fallback();
                }
            }
            /**
             * @dev Upgrade the implementation of the proxy. See {ERC1967Utils-upgradeToAndCall}.
             *
             * Requirements:
             *
             * - If `data` is empty, `msg.value` must be zero.
             */
            function _dispatchUpgradeToAndCall() private {
                (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
                ERC1967Utils.upgradeToAndCall(newImplementation, data);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev The ETH balance of the account is not enough to perform the operation.
             */
            error AddressInsufficientBalance(address account);
            /**
             * @dev There's no code at `target` (it is not a contract).
             */
            error AddressEmptyCode(address target);
            /**
             * @dev A call to an address target failed. The target may have reverted.
             */
            error FailedInnerCall();
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                if (address(this).balance < amount) {
                    revert AddressInsufficientBalance(address(this));
                }
                (bool success, ) = recipient.call{value: amount}("");
                if (!success) {
                    revert FailedInnerCall();
                }
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason or custom error, it is bubbled
             * up by this function (like regular Solidity function calls). However, if
             * the call reverted with no returned reason, this function reverts with a
             * {FailedInnerCall} error.
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                if (address(this).balance < value) {
                    revert AddressInsufficientBalance(address(this));
                }
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
             * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
             * unsuccessful call.
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata
            ) internal view returns (bytes memory) {
                if (!success) {
                    _revert(returndata);
                } else {
                    // only check if target is a contract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    if (returndata.length == 0 && target.code.length == 0) {
                        revert AddressEmptyCode(target);
                    }
                    return returndata;
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
             * revert reason or with a default {FailedInnerCall} error.
             */
            function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
                if (!success) {
                    _revert(returndata);
                } else {
                    return returndata;
                }
            }
            /**
             * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
             */
            function _revert(bytes memory returndata) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert FailedInnerCall();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.20;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(newImplementation.code.length > 0);
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }
        

        File 2 of 4: ERC1967Proxy
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor() {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
         * proxy whose upgrades are fully controlled by the current implementation.
         */
        interface IERC1822Proxiable {
            /**
             * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
             * address.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy.
             */
            function proxiableUUID() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         *
         * _Available since v4.9._
         */
        interface IERC1967 {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/beacon/BeaconProxy.sol)
        pragma solidity ^0.8.0;
        import "./IBeacon.sol";
        import "../Proxy.sol";
        import "../ERC1967/ERC1967Upgrade.sol";
        /**
         * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
         *
         * The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't
         * conflict with the storage layout of the implementation behind the proxy.
         *
         * _Available since v3.4._
         */
        contract BeaconProxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the proxy with `beacon`.
             *
             * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
             * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
             * constructor.
             *
             * Requirements:
             *
             * - `beacon` must be a contract with the interface {IBeacon}.
             */
            constructor(address beacon, bytes memory data) payable {
                _upgradeBeaconToAndCall(beacon, data, false);
            }
            /**
             * @dev Returns the current beacon address.
             */
            function _beacon() internal view virtual returns (address) {
                return _getBeacon();
            }
            /**
             * @dev Returns the current implementation address of the associated beacon.
             */
            function _implementation() internal view virtual override returns (address) {
                return IBeacon(_getBeacon()).implementation();
            }
            /**
             * @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}.
             *
             * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon.
             *
             * Requirements:
             *
             * - `beacon` must be a contract.
             * - The implementation returned by `beacon` must be a contract.
             */
            function _setBeacon(address beacon, bytes memory data) internal virtual {
                _upgradeBeaconToAndCall(beacon, data, false);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeacon {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/UpgradeableBeacon.sol)
        pragma solidity ^0.8.0;
        import "./IBeacon.sol";
        import "../../access/Ownable.sol";
        import "../../utils/Address.sol";
        /**
         * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
         * implementation contract, which is where they will delegate all function calls.
         *
         * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
         */
        contract UpgradeableBeacon is IBeacon, Ownable {
            address private _implementation;
            /**
             * @dev Emitted when the implementation returned by the beacon is changed.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the
             * beacon.
             */
            constructor(address implementation_) {
                _setImplementation(implementation_);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function implementation() public view virtual override returns (address) {
                return _implementation;
            }
            /**
             * @dev Upgrades the beacon to a new implementation.
             *
             * Emits an {Upgraded} event.
             *
             * Requirements:
             *
             * - msg.sender must be the owner of the contract.
             * - `newImplementation` must be a contract.
             */
            function upgradeTo(address newImplementation) public virtual onlyOwner {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Sets the implementation contract address for this beacon
             *
             * Requirements:
             *
             * - `newImplementation` must be a contract.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract");
                _implementation = newImplementation;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
        pragma solidity ^0.8.0;
        import "../Proxy.sol";
        import "./ERC1967Upgrade.sol";
        /**
         * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
         * implementation address that can be changed. This address is stored in storage in the location specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
         * implementation behind the proxy.
         */
        contract ERC1967Proxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
             *
             * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
             * function call, and allows initializing the storage of the proxy like a Solidity constructor.
             */
            constructor(address _logic, bytes memory _data) payable {
                _upgradeToAndCall(_logic, _data, false);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function _implementation() internal view virtual override returns (address impl) {
                return ERC1967Upgrade._getImplementation();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
        pragma solidity ^0.8.2;
        import "../beacon/IBeacon.sol";
        import "../../interfaces/IERC1967.sol";
        import "../../interfaces/draft-IERC1822.sol";
        import "../../utils/Address.sol";
        import "../../utils/StorageSlot.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         *
         * @custom:oz-upgrades-unsafe-allow delegatecall
         */
        abstract contract ERC1967Upgrade is IERC1967 {
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(
                address newImplementation,
                bytes memory data,
                bool forceCall
            ) internal {
                _upgradeTo(newImplementation);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallUUPS(
                address newImplementation,
                bytes memory data,
                bool forceCall
            ) internal {
                // Upgrades from old implementations will perform a rollback test. This test requires the new
                // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                // this special case will break upgrade paths from old UUPS implementation to new ones.
                if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                    _setImplementation(newImplementation);
                } else {
                    try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                        require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                    } catch {
                        revert("ERC1967Upgrade: new implementation is not UUPS");
                    }
                    _upgradeToAndCall(newImplementation, data, forceCall);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                require(
                    Address.isContract(IBeacon(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(
                address newBeacon,
                bytes memory data,
                bool forceCall
            ) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
         * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
         * be specified by overriding the virtual {_implementation} function.
         *
         * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
         * different contract through the {_delegate} function.
         *
         * The success and return data of the delegated call will be returned back to the caller of the proxy.
         */
        abstract contract Proxy {
            /**
             * @dev Delegates the current call to `implementation`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _delegate(address implementation) internal virtual {
                assembly {
                    // Copy msg.data. We take full control of memory in this inline assembly
                    // block because it will not return to Solidity code. We overwrite the
                    // Solidity scratch pad at memory position 0.
                    calldatacopy(0, 0, calldatasize())
                    // Call the implementation.
                    // out and outsize are 0 because we don't know the size yet.
                    let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                    // Copy the returned data.
                    returndatacopy(0, 0, returndatasize())
                    switch result
                    // delegatecall returns 0 on error.
                    case 0 {
                        revert(0, returndatasize())
                    }
                    default {
                        return(0, returndatasize())
                    }
                }
            }
            /**
             * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
             * and {_fallback} should delegate.
             */
            function _implementation() internal view virtual returns (address);
            /**
             * @dev Delegates the current call to the address returned by `_implementation()`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _fallback() internal virtual {
                _beforeFallback();
                _delegate(_implementation());
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
             * function in the contract matches the call data.
             */
            fallback() external payable virtual {
                _fallback();
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
             * is empty.
             */
            receive() external payable virtual {
                _fallback();
            }
            /**
             * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
             * call, or as part of the Solidity `fallback` or `receive` functions.
             *
             * If overridden should call `super._beforeFallback()`.
             */
            function _beforeFallback() internal virtual {}
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/ProxyAdmin.sol)
        pragma solidity ^0.8.0;
        import "./TransparentUpgradeableProxy.sol";
        import "../../access/Ownable.sol";
        /**
         * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
         * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
         */
        contract ProxyAdmin is Ownable {
            /**
             * @dev Returns the current implementation of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyImplementation(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("implementation()")) == 0x5c60da1b
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Returns the current admin of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyAdmin(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("admin()")) == 0xf851a440
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Changes the admin of `proxy` to `newAdmin`.
             *
             * Requirements:
             *
             * - This contract must be the current admin of `proxy`.
             */
            function changeProxyAdmin(ITransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
                proxy.changeAdmin(newAdmin);
            }
            /**
             * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgrade(ITransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
                proxy.upgradeTo(implementation);
            }
            /**
             * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
             * {TransparentUpgradeableProxy-upgradeToAndCall}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgradeAndCall(
                ITransparentUpgradeableProxy proxy,
                address implementation,
                bytes memory data
            ) public payable virtual onlyOwner {
                proxy.upgradeToAndCall{value: msg.value}(implementation, data);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/TransparentUpgradeableProxy.sol)
        pragma solidity ^0.8.0;
        import "../ERC1967/ERC1967Proxy.sol";
        /**
         * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
         * does not implement this interface directly, and some of its functions are implemented by an internal dispatch
         * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
         * include them in the ABI so this interface must be used to interact with it.
         */
        interface ITransparentUpgradeableProxy is IERC1967 {
            function admin() external view returns (address);
            function implementation() external view returns (address);
            function changeAdmin(address) external;
            function upgradeTo(address) external;
            function upgradeToAndCall(address, bytes memory) external payable;
        }
        /**
         * @dev This contract implements a proxy that is upgradeable by an admin.
         *
         * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
         * clashing], which can potentially be used in an attack, this contract uses the
         * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
         * things that go hand in hand:
         *
         * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
         * that call matches one of the admin functions exposed by the proxy itself.
         * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
         * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
         * "admin cannot fallback to proxy target".
         *
         * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
         * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
         * to sudden errors when trying to call a function from the proxy implementation.
         *
         * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
         * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
         *
         * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
         * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
         * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
         * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
         * implementation.
         *
         * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
         * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
         * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
         * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
         */
        contract TransparentUpgradeableProxy is ERC1967Proxy {
            /**
             * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
             * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
             */
            constructor(
                address _logic,
                address admin_,
                bytes memory _data
            ) payable ERC1967Proxy(_logic, _data) {
                _changeAdmin(admin_);
            }
            /**
             * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
             *
             * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
             * implementation provides a function with the same selector.
             */
            modifier ifAdmin() {
                if (msg.sender == _getAdmin()) {
                    _;
                } else {
                    _fallback();
                }
            }
            /**
             * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
             */
            function _fallback() internal virtual override {
                if (msg.sender == _getAdmin()) {
                    bytes memory ret;
                    bytes4 selector = msg.sig;
                    if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
                        ret = _dispatchUpgradeTo();
                    } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                        ret = _dispatchUpgradeToAndCall();
                    } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
                        ret = _dispatchChangeAdmin();
                    } else if (selector == ITransparentUpgradeableProxy.admin.selector) {
                        ret = _dispatchAdmin();
                    } else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
                        ret = _dispatchImplementation();
                    } else {
                        revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                    }
                    assembly {
                        return(add(ret, 0x20), mload(ret))
                    }
                } else {
                    super._fallback();
                }
            }
            /**
             * @dev Returns the current admin.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
             */
            function _dispatchAdmin() private returns (bytes memory) {
                _requireZeroValue();
                address admin = _getAdmin();
                return abi.encode(admin);
            }
            /**
             * @dev Returns the current implementation.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
             */
            function _dispatchImplementation() private returns (bytes memory) {
                _requireZeroValue();
                address implementation = _implementation();
                return abi.encode(implementation);
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _dispatchChangeAdmin() private returns (bytes memory) {
                _requireZeroValue();
                address newAdmin = abi.decode(msg.data[4:], (address));
                _changeAdmin(newAdmin);
                return "";
            }
            /**
             * @dev Upgrade the implementation of the proxy.
             */
            function _dispatchUpgradeTo() private returns (bytes memory) {
                _requireZeroValue();
                address newImplementation = abi.decode(msg.data[4:], (address));
                _upgradeToAndCall(newImplementation, bytes(""), false);
                return "";
            }
            /**
             * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
             * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
             * proxied contract.
             */
            function _dispatchUpgradeToAndCall() private returns (bytes memory) {
                (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
                _upgradeToAndCall(newImplementation, data, true);
                return "";
            }
            /**
             * @dev Returns the current admin.
             */
            function _admin() internal view virtual returns (address) {
                return _getAdmin();
            }
            /**
             * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
             * emulate some proxy functions being non-payable while still allowing value to pass through.
             */
            function _requireZeroValue() private {
                require(msg.value == 0);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
        }
        

        File 3 of 4: Vesting
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
        pragma solidity ^0.8.0;
        import "./IAccessControlUpgradeable.sol";
        import "../utils/ContextUpgradeable.sol";
        import "../utils/StringsUpgradeable.sol";
        import "../utils/introspection/ERC165Upgradeable.sol";
        import {Initializable} from "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module that allows children to implement role-based access
         * control mechanisms. This is a lightweight version that doesn't allow enumerating role
         * members except through off-chain means by accessing the contract event logs. Some
         * applications may benefit from on-chain enumerability, for those cases see
         * {AccessControlEnumerable}.
         *
         * Roles are referred to by their `bytes32` identifier. These should be exposed
         * in the external API and be unique. The best way to achieve this is by
         * using `public constant` hash digests:
         *
         * ```solidity
         * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
         * ```
         *
         * Roles can be used to represent a set of permissions. To restrict access to a
         * function call, use {hasRole}:
         *
         * ```solidity
         * function foo() public {
         *     require(hasRole(MY_ROLE, msg.sender));
         *     ...
         * }
         * ```
         *
         * Roles can be granted and revoked dynamically via the {grantRole} and
         * {revokeRole} functions. Each role has an associated admin role, and only
         * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
         *
         * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
         * that only accounts with this role will be able to grant or revoke other
         * roles. More complex role relationships can be created by using
         * {_setRoleAdmin}.
         *
         * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
         * grant and revoke this role. Extra precautions should be taken to secure
         * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
         * to enforce additional security measures for this role.
         */
        abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
            struct RoleData {
                mapping(address => bool) members;
                bytes32 adminRole;
            }
            mapping(bytes32 => RoleData) private _roles;
            bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
            /**
             * @dev Modifier that checks that an account has a specific role. Reverts
             * with a standardized message including the required role.
             *
             * The format of the revert reason is given by the following regular expression:
             *
             *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
             *
             * _Available since v4.1._
             */
            modifier onlyRole(bytes32 role) {
                _checkRole(role);
                _;
            }
            function __AccessControl_init() internal onlyInitializing {
            }
            function __AccessControl_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
            }
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
                return _roles[role].members[account];
            }
            /**
             * @dev Revert with a standard message if `_msgSender()` is missing `role`.
             * Overriding this function changes the behavior of the {onlyRole} modifier.
             *
             * Format of the revert message is described in {_checkRole}.
             *
             * _Available since v4.6._
             */
            function _checkRole(bytes32 role) internal view virtual {
                _checkRole(role, _msgSender());
            }
            /**
             * @dev Revert with a standard message if `account` is missing `role`.
             *
             * The format of the revert reason is given by the following regular expression:
             *
             *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
             */
            function _checkRole(bytes32 role, address account) internal view virtual {
                if (!hasRole(role, account)) {
                    revert(
                        string(
                            abi.encodePacked(
                                "AccessControl: account ",
                                StringsUpgradeable.toHexString(account),
                                " is missing role ",
                                StringsUpgradeable.toHexString(uint256(role), 32)
                            )
                        )
                    );
                }
            }
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
                return _roles[role].adminRole;
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleGranted} event.
             */
            function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                _grantRole(role, account);
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleRevoked} event.
             */
            function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                _revokeRole(role, account);
            }
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been revoked `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             *
             * May emit a {RoleRevoked} event.
             */
            function renounceRole(bytes32 role, address account) public virtual override {
                require(account == _msgSender(), "AccessControl: can only renounce roles for self");
                _revokeRole(role, account);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event. Note that unlike {grantRole}, this function doesn't perform any
             * checks on the calling account.
             *
             * May emit a {RoleGranted} event.
             *
             * [WARNING]
             * ====
             * This function should only be called from the constructor when setting
             * up the initial roles for the system.
             *
             * Using this function in any other way is effectively circumventing the admin
             * system imposed by {AccessControl}.
             * ====
             *
             * NOTE: This function is deprecated in favor of {_grantRole}.
             */
            function _setupRole(bytes32 role, address account) internal virtual {
                _grantRole(role, account);
            }
            /**
             * @dev Sets `adminRole` as ``role``'s admin role.
             *
             * Emits a {RoleAdminChanged} event.
             */
            function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                bytes32 previousAdminRole = getRoleAdmin(role);
                _roles[role].adminRole = adminRole;
                emit RoleAdminChanged(role, previousAdminRole, adminRole);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleGranted} event.
             */
            function _grantRole(bytes32 role, address account) internal virtual {
                if (!hasRole(role, account)) {
                    _roles[role].members[account] = true;
                    emit RoleGranted(role, account, _msgSender());
                }
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleRevoked} event.
             */
            function _revokeRole(bytes32 role, address account) internal virtual {
                if (hasRole(role, account)) {
                    _roles[role].members[account] = false;
                    emit RoleRevoked(role, account, _msgSender());
                }
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev External interface of AccessControl declared to support ERC165 detection.
         */
        interface IAccessControlUpgradeable {
            /**
             * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
             *
             * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
             * {RoleAdminChanged} not being emitted signaling this.
             *
             * _Available since v3.1._
             */
            event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
            /**
             * @dev Emitted when `account` is granted `role`.
             *
             * `sender` is the account that originated the contract call, an admin role
             * bearer except when using {AccessControl-_setupRole}.
             */
            event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Emitted when `account` is revoked `role`.
             *
             * `sender` is the account that originated the contract call:
             *   - if using `revokeRole`, it is the admin role bearer
             *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
             */
            event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) external view returns (bool);
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {AccessControl-_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) external view returns (bytes32);
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function grantRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function revokeRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been granted `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             */
            function renounceRole(bytes32 role, address account) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
         * proxy whose upgrades are fully controlled by the current implementation.
         */
        interface IERC1822ProxiableUpgradeable {
            /**
             * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
             * address.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy.
             */
            function proxiableUUID() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         *
         * _Available since v4.8.3._
         */
        interface IERC1967Upgradeable {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeaconUpgradeable {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
        pragma solidity ^0.8.2;
        import "../beacon/IBeaconUpgradeable.sol";
        import "../../interfaces/IERC1967Upgradeable.sol";
        import "../../interfaces/draft-IERC1822Upgradeable.sol";
        import "../../utils/AddressUpgradeable.sol";
        import "../../utils/StorageSlotUpgradeable.sol";
        import {Initializable} from "../utils/Initializable.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         */
        abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable {
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            function __ERC1967Upgrade_init() internal onlyInitializing {
            }
            function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                _upgradeTo(newImplementation);
                if (data.length > 0 || forceCall) {
                    AddressUpgradeable.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
                // Upgrades from old implementations will perform a rollback test. This test requires the new
                // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                // this special case will break upgrade paths from old UUPS implementation to new ones.
                if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                    _setImplementation(newImplementation);
                } else {
                    try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                        require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                    } catch {
                        revert("ERC1967Upgrade: new implementation is not UUPS");
                    }
                    _upgradeToAndCall(newImplementation, data, forceCall);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                require(
                    AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    AddressUpgradeable.functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
                }
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```solidity
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         *
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts.
             *
             * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
             * constructor.
             *
             * Emits an {Initialized} event.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * A reinitializer may be used after the original initialization step. This is essential to configure modules that
             * are added through upgrades and that require initialization.
             *
             * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
             * cannot be nested. If one is invoked in the context of another, execution will revert.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             *
             * WARNING: setting the version to 255 will prevent any future reinitialization.
             *
             * Emits an {Initialized} event.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             *
             * Emits an {Initialized} event the first time it is successfully executed.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized != type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
            /**
             * @dev Returns the highest version that has been initialized. See {reinitializer}.
             */
            function _getInitializedVersion() internal view returns (uint8) {
                return _initialized;
            }
            /**
             * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
             */
            function _isInitializing() internal view returns (bool) {
                return _initializing;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)
        pragma solidity ^0.8.0;
        import "../../interfaces/draft-IERC1822Upgradeable.sol";
        import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
        import {Initializable} from "./Initializable.sol";
        /**
         * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
         * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
         *
         * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
         * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
         * `UUPSUpgradeable` with a custom implementation of upgrades.
         *
         * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
         *
         * _Available since v4.1._
         */
        abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
            /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
            address private immutable __self = address(this);
            /**
             * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
             * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
             * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
             * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
             * fail.
             */
            modifier onlyProxy() {
                require(address(this) != __self, "Function must be called through delegatecall");
                require(_getImplementation() == __self, "Function must be called through active proxy");
                _;
            }
            /**
             * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
             * callable on the implementing contract but not through proxies.
             */
            modifier notDelegated() {
                require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
                _;
            }
            function __UUPSUpgradeable_init() internal onlyInitializing {
            }
            function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
             * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
             */
            function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
                return _IMPLEMENTATION_SLOT;
            }
            /**
             * @dev Upgrade the implementation of the proxy to `newImplementation`.
             *
             * Calls {_authorizeUpgrade}.
             *
             * Emits an {Upgraded} event.
             *
             * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
             */
            function upgradeTo(address newImplementation) public virtual onlyProxy {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
            }
            /**
             * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
             * encoded in `data`.
             *
             * Calls {_authorizeUpgrade}.
             *
             * Emits an {Upgraded} event.
             *
             * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
             */
            function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallUUPS(newImplementation, data, true);
            }
            /**
             * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
             * {upgradeTo} and {upgradeToAndCall}.
             *
             * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
             *
             * ```solidity
             * function _authorizeUpgrade(address) internal override onlyOwner {}
             * ```
             */
            function _authorizeUpgrade(address newImplementation) internal virtual;
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
        pragma solidity ^0.8.0;
        import {Initializable} from "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module that helps prevent reentrant calls to a function.
         *
         * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
         * available, which can be applied to functions to make sure there are no nested
         * (reentrant) calls to them.
         *
         * Note that because there is a single `nonReentrant` guard, functions marked as
         * `nonReentrant` may not call one another. This can be worked around by making
         * those functions `private`, and then adding `external` `nonReentrant` entry
         * points to them.
         *
         * TIP: If you would like to learn more about reentrancy and alternative ways
         * to protect against it, check out our blog post
         * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
         */
        abstract contract ReentrancyGuardUpgradeable is Initializable {
            // Booleans are more expensive than uint256 or any type that takes up a full
            // word because each write operation emits an extra SLOAD to first read the
            // slot's contents, replace the bits taken up by the boolean, and then write
            // back. This is the compiler's defense against contract upgrades and
            // pointer aliasing, and it cannot be disabled.
            // The values being non-zero value makes deployment a bit more expensive,
            // but in exchange the refund on every call to nonReentrant will be lower in
            // amount. Since refunds are capped to a percentage of the total
            // transaction's gas, it is best to keep them low in cases like this one, to
            // increase the likelihood of the full refund coming into effect.
            uint256 private constant _NOT_ENTERED = 1;
            uint256 private constant _ENTERED = 2;
            uint256 private _status;
            function __ReentrancyGuard_init() internal onlyInitializing {
                __ReentrancyGuard_init_unchained();
            }
            function __ReentrancyGuard_init_unchained() internal onlyInitializing {
                _status = _NOT_ENTERED;
            }
            /**
             * @dev Prevents a contract from calling itself, directly or indirectly.
             * Calling a `nonReentrant` function from another `nonReentrant`
             * function is not supported. It is possible to prevent this from happening
             * by making the `nonReentrant` function external, and making it call a
             * `private` function that does the actual work.
             */
            modifier nonReentrant() {
                _nonReentrantBefore();
                _;
                _nonReentrantAfter();
            }
            function _nonReentrantBefore() private {
                // On the first call to nonReentrant, _status will be _NOT_ENTERED
                require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                // Any calls to nonReentrant after this point will fail
                _status = _ENTERED;
            }
            function _nonReentrantAfter() private {
                // By storing the original value once again, a refund is triggered (see
                // https://eips.ethereum.org/EIPS/eip-2200)
                _status = _NOT_ENTERED;
            }
            /**
             * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
             * `nonReentrant` function in the call stack.
             */
            function _reentrancyGuardEntered() internal view returns (bool) {
                return _status == _ENTERED;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             *
             * Furthermore, `isContract` will also return true if the target contract within
             * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
             * which only has an effect at the end of a transaction.
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
        pragma solidity ^0.8.0;
        import {Initializable} from "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
        pragma solidity ^0.8.0;
        import "./IERC165Upgradeable.sol";
        import {Initializable} from "../../proxy/utils/Initializable.sol";
        /**
         * @dev Implementation of the {IERC165} interface.
         *
         * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
         * for the additional interface id that will be supported. For example:
         *
         * ```solidity
         * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
         *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
         * }
         * ```
         *
         * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
         */
        abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
            function __ERC165_init() internal onlyInitializing {
            }
            function __ERC165_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IERC165Upgradeable).interfaceId;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165Upgradeable {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library MathUpgradeable {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                        // The surrounding unchecked block does not change this fact.
                        // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1, "Math: mulDiv overflow");
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                //
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                //
                // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                //
                // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1 << (log2(a) >> 1);
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 2, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 128;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 64;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 32;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 16;
                    }
                    if (value >> 8 > 0) {
                        value >>= 8;
                        result += 8;
                    }
                    if (value >> 4 > 0) {
                        value >>= 4;
                        result += 4;
                    }
                    if (value >> 2 > 0) {
                        value >>= 2;
                        result += 2;
                    }
                    if (value >> 1 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 10, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10 ** 64) {
                        value /= 10 ** 64;
                        result += 64;
                    }
                    if (value >= 10 ** 32) {
                        value /= 10 ** 32;
                        result += 32;
                    }
                    if (value >= 10 ** 16) {
                        value /= 10 ** 16;
                        result += 16;
                    }
                    if (value >= 10 ** 8) {
                        value /= 10 ** 8;
                        result += 8;
                    }
                    if (value >= 10 ** 4) {
                        value /= 10 ** 4;
                        result += 4;
                    }
                    if (value >= 10 ** 2) {
                        value /= 10 ** 2;
                        result += 2;
                    }
                    if (value >= 10 ** 1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 256, rounded down, of a positive value.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 16;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 8;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 4;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 2;
                    }
                    if (value >> 8 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMathUpgradeable {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
         * _Available since v4.9 for `string`, `bytes`._
         */
        library StorageSlotUpgradeable {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
        pragma solidity ^0.8.0;
        import "./math/MathUpgradeable.sol";
        import "./math/SignedMathUpgradeable.sol";
        /**
         * @dev String operations.
         */
        library StringsUpgradeable {
            bytes16 private constant _SYMBOLS = "0123456789abcdef";
            uint8 private constant _ADDRESS_LENGTH = 20;
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    uint256 length = MathUpgradeable.log10(value) + 1;
                    string memory buffer = new string(length);
                    uint256 ptr;
                    /// @solidity memory-safe-assembly
                    assembly {
                        ptr := add(buffer, add(32, length))
                    }
                    while (true) {
                        ptr--;
                        /// @solidity memory-safe-assembly
                        assembly {
                            mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                        }
                        value /= 10;
                        if (value == 0) break;
                    }
                    return buffer;
                }
            }
            /**
             * @dev Converts a `int256` to its ASCII `string` decimal representation.
             */
            function toString(int256 value) internal pure returns (string memory) {
                return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    return toHexString(value, MathUpgradeable.log256(value) + 1);
                }
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = _SYMBOLS[value & 0xf];
                    value >>= 4;
                }
                require(value == 0, "Strings: hex length insufficient");
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
            }
            /**
             * @dev Returns true if the two strings are equal.
             */
            function equal(string memory a, string memory b) internal pure returns (bool) {
                return keccak256(bytes(a)) == keccak256(bytes(b));
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
         * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
         *
         * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
         * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
         * need to send a transaction, and thus is not required to hold Ether at all.
         *
         * ==== Security Considerations
         *
         * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
         * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
         * considered as an intention to spend the allowance in any specific way. The second is that because permits have
         * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
         * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
         * generally recommended is:
         *
         * ```solidity
         * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
         *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
         *     doThing(..., value);
         * }
         *
         * function doThing(..., uint256 value) public {
         *     token.safeTransferFrom(msg.sender, address(this), value);
         *     ...
         * }
         * ```
         *
         * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
         * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
         * {SafeERC20-safeTransferFrom}).
         *
         * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
         * contracts should have entry points that don't rely on permit.
         */
        interface IERC20Permit {
            /**
             * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
             * given ``owner``'s signed approval.
             *
             * IMPORTANT: The same issues {IERC20-approve} has related to transaction
             * ordering also apply here.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `deadline` must be a timestamp in the future.
             * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
             * over the EIP712-formatted function arguments.
             * - the signature must use ``owner``'s current nonce (see {nonces}).
             *
             * For more information on the signature format, see the
             * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
             * section].
             *
             * CAUTION: See Security Considerations above.
             */
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
            /**
             * @dev Returns the current nonce for `owner`. This value must be
             * included whenever a signature is generated for {permit}.
             *
             * Every successful call to {permit} increases ``owner``'s nonce by one. This
             * prevents a signature from being used multiple times.
             */
            function nonces(address owner) external view returns (uint256);
            /**
             * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
             */
            // solhint-disable-next-line func-name-mixedcase
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `from` to `to` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 amount) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
        pragma solidity ^0.8.0;
        import "../IERC20.sol";
        import "../extensions/IERC20Permit.sol";
        import "../../../utils/Address.sol";
        /**
         * @title SafeERC20
         * @dev Wrappers around ERC20 operations that throw on failure (when the token
         * contract returns false). Tokens that return no value (and instead revert or
         * throw on failure) are also supported, non-reverting calls are assumed to be
         * successful.
         * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
         * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
         */
        library SafeERC20 {
            using Address for address;
            /**
             * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             */
            function safeTransfer(IERC20 token, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
            }
            /**
             * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
             * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
             */
            function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
            }
            /**
             * @dev Deprecated. This function has issues similar to the ones found in
             * {IERC20-approve}, and its usage is discouraged.
             *
             * Whenever possible, use {safeIncreaseAllowance} and
             * {safeDecreaseAllowance} instead.
             */
            function safeApprove(IERC20 token, address spender, uint256 value) internal {
                // safeApprove should only be called when setting an initial allowance,
                // or when resetting it to zero. To increase and decrease it, use
                // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                require(
                    (value == 0) || (token.allowance(address(this), spender) == 0),
                    "SafeERC20: approve from non-zero to non-zero allowance"
                );
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
            }
            /**
             * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             */
            function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                uint256 oldAllowance = token.allowance(address(this), spender);
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
            }
            /**
             * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             */
            function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                unchecked {
                    uint256 oldAllowance = token.allowance(address(this), spender);
                    require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
                }
            }
            /**
             * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
             * to be set to zero before setting it to a non-zero value, such as USDT.
             */
            function forceApprove(IERC20 token, address spender, uint256 value) internal {
                bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
                if (!_callOptionalReturnBool(token, approvalCall)) {
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                    _callOptionalReturn(token, approvalCall);
                }
            }
            /**
             * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
             * Revert on invalid signature.
             */
            function safePermit(
                IERC20Permit token,
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal {
                uint256 nonceBefore = token.nonces(owner);
                token.permit(owner, spender, value, deadline, v, r, s);
                uint256 nonceAfter = token.nonces(owner);
                require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             */
            function _callOptionalReturn(IERC20 token, bytes memory data) private {
                // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                // the target address contains contract code and also asserts for success in the low-level call.
                bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             *
             * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
             */
            function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
                // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
                // and not revert is the subcall reverts.
                (bool success, bytes memory returndata) = address(token).call(data);
                return
                    success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             *
             * Furthermore, `isContract` will also return true if the target contract within
             * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
             * which only has an effect at the end of a transaction.
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev These functions deal with verification of Merkle Tree proofs.
         *
         * The tree and the proofs can be generated using our
         * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
         * You will find a quickstart guide in the readme.
         *
         * WARNING: You should avoid using leaf values that are 64 bytes long prior to
         * hashing, or use a hash function other than keccak256 for hashing leaves.
         * This is because the concatenation of a sorted pair of internal nodes in
         * the merkle tree could be reinterpreted as a leaf value.
         * OpenZeppelin's JavaScript library generates merkle trees that are safe
         * against this attack out of the box.
         */
        library MerkleProof {
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             */
            function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
                return processProof(proof, leaf) == root;
            }
            /**
             * @dev Calldata version of {verify}
             *
             * _Available since v4.7._
             */
            function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
                return processProofCalldata(proof, leaf) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leafs & pre-images are assumed to be sorted.
             *
             * _Available since v4.4._
             */
            function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = _hashPair(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Calldata version of {processProof}
             *
             * _Available since v4.7._
             */
            function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = _hashPair(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
             * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
             *
             * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * _Available since v4.7._
             */
            function multiProofVerify(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32 root,
                bytes32[] memory leaves
            ) internal pure returns (bool) {
                return processMultiProof(proof, proofFlags, leaves) == root;
            }
            /**
             * @dev Calldata version of {multiProofVerify}
             *
             * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * _Available since v4.7._
             */
            function multiProofVerifyCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32 root,
                bytes32[] memory leaves
            ) internal pure returns (bool) {
                return processMultiProofCalldata(proof, proofFlags, leaves) == root;
            }
            /**
             * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
             * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
             * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
             * respectively.
             *
             * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
             * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
             * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
             *
             * _Available since v4.7._
             */
            function processMultiProof(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32[] memory leaves
            ) internal pure returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 proofLen = proof.length;
                uint256 totalHashes = proofFlags.length;
                // Check proof validity.
                require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](totalHashes);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < totalHashes; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = _hashPair(a, b);
                }
                if (totalHashes > 0) {
                    require(proofPos == proofLen, "MerkleProof: invalid multiproof");
                    unchecked {
                        return hashes[totalHashes - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
            /**
             * @dev Calldata version of {processMultiProof}.
             *
             * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * _Available since v4.7._
             */
            function processMultiProofCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32[] memory leaves
            ) internal pure returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 proofLen = proof.length;
                uint256 totalHashes = proofFlags.length;
                // Check proof validity.
                require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](totalHashes);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < totalHashes; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = _hashPair(a, b);
                }
                if (totalHashes > 0) {
                    require(proofPos == proofLen, "MerkleProof: invalid multiproof");
                    unchecked {
                        return hashes[totalHashes - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
            function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
                return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
            }
            function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x00, a)
                    mstore(0x20, b)
                    value := keccak256(0x00, 0x40)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.22;
        import { MerkleProof } from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
        library MerklePass {
            error InvalidLeaf();
            function isValid(
                bytes32[] calldata proof,
                bytes32 leaf,
                bytes32 root,
                uint256 amount
            ) internal view returns (bool) {
                verifyLeaf(msg.sender, amount, leaf);
                return MerkleProof.verifyCalldata(proof, root, leaf);
            }
            // check that amount passed is the same as amount was generated 
            function verifyLeaf(
                address user,
                uint256 amount,
                bytes32 leaf
            ) private pure {
                bytes32 _hash = keccak256(abi.encode(user, amount));
                if (_hash != leaf) {
                    revert InvalidLeaf();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.22;
        import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
        import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
        import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
        import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
        import {MerklePass} from "./MerklePass.sol";
        /**
         * @title  Vesting contract for Entangle Token $NGL
         */
        contract Vesting is
            Initializable,
            UUPSUpgradeable,
            AccessControlUpgradeable,
            ReentrancyGuardUpgradeable
        {
            using SafeERC20 for IERC20;
            // =========================================
            //          ERRORS AND EVENTS
            // =========================================
            error ClaimingBlocked();
            error InvalidProof();
            error InvalidStart();
            error ClaimingClosed();
            error ZeroClaim();
            error InvalidParams();   
            error InvalidConfigData();
            event Claimed(uint8 indexed bucketId, address indexed user, uint256 amount);
            // =========================================
            //              STORAGE
            // =========================================
            bytes32 public constant UPGRADER_ROLE = keccak256("UPGRADER_ROLE");
            IERC20    public ngl;
            uint256   public start;
            bytes32[] public roots;
            bool public circuitBreakerEnabled;
            struct Config {
                bool    claimingBlocked;
                uint256 tgePercent;
                uint256 cliff;
                uint256 vestingDuration;
            }
            struct UserData {
                bool configSet;
                mapping(uint8 => uint256) claimed;
            }
            mapping(address user => UserData) public userData;
            mapping(uint8 id => Config) public buckets;
            mapping(address user => mapping(uint8 bucket => Config)) public personalConfigs;
            /// @custom:oz-upgrades-unsafe-allow constructor
            constructor() {
                _disableInitializers();
            }
            function initialize(
                address _ngl,
                bytes32[] calldata _roots
            ) public initializer {
                __AccessControl_init();
                __UUPSUpgradeable_init();
                __ReentrancyGuard_init();
                _grantRole(DEFAULT_ADMIN_ROLE, _msgSender());
                _grantRole(UPGRADER_ROLE, _msgSender());
                ngl = IERC20(_ngl);
                roots = _roots;
            }
            /**
             * @notice claim tokens during the vesting from different buckets
             * @param bucketIds bucket ids
             * @param amountListed whole amount of user in diff buckets
             * @param leafs user leafs
             * @param proofs merkle proofs
             */
            function claimBatch(
                uint8[] calldata bucketIds,
                uint256[] calldata amountListed,
                bytes32[] calldata leafs,
                bytes32[][] calldata proofs
            ) external {
                uint256 len = amountListed.length;
                if (len != bucketIds.length || len != leafs.length || len != proofs.length) {
                    revert InvalidParams();
                }
                for (uint256 i = 0; i < len; i++) {
                    claim(bucketIds[i], amountListed[i], leafs[i], proofs[i]);
                }
            }
            /**
             * @notice claim tokens during the vesting
             * @dev start shifted with cliff
             * @param bucketId bucket id
             * @param amountListed whole amount of user
             * @param leaf user leaf
             * @param proof merkle proof
             */
            function claim(
                uint8 bucketId,
                uint256 amountListed,
                bytes32 leaf,
                bytes32[] calldata proof
            )
                public
                nonReentrant
            {
                if (circuitBreakerEnabled) {
                    revert ClaimingBlocked();
                }
                bool treeStatus = MerklePass.isValid(proof, leaf, roots[bucketId], amountListed);
                if (!treeStatus) {
                    revert InvalidProof();
                }
                uint256 availableAmount = getAvailableAmount(_msgSender(), amountListed, bucketId);
                if (availableAmount  == 0) {
                    revert ZeroClaim();
                }
                userData[_msgSender()].claimed[bucketId] += availableAmount;
                ngl.safeTransfer(_msgSender(), availableAmount);
                emit Claimed(bucketId, _msgSender(), availableAmount);
            }
            // =========================================
            //              GETTERS
            // =========================================
            /**
             * @notice Function for getting available amount 
             * @dev should be used on FE also 
             * @param user user wallet address
             * @param amountListed amount listed for vesting
             * @param bucketId bucketId
             */
            function getAvailableAmount(address user, uint256 amountListed, uint8 bucketId) public view returns (uint256 result) {
                if (block.timestamp < start) {
                    return 0;
                }
                
                Config storage cfg;
                if (!userData[user].configSet) {
                    cfg = buckets[bucketId];
                } else {
                    cfg = personalConfigs[user][bucketId];
                }
                if (cfg.claimingBlocked) {
                    return 0;
                }
                result = (amountListed * cfg.tgePercent) / 10000;
                uint256 vestStart = start + cfg.cliff;
                if (block.timestamp > vestStart + 1 days) {
                    uint256 availableForVesting = amountListed - result;
                    uint256 vestingPeriodToClaim = ((block.timestamp - vestStart) / 1 days) * 1 days;
                    if (vestingPeriodToClaim < cfg.vestingDuration) {
                        result += (availableForVesting / (cfg.vestingDuration / vestingPeriodToClaim));
                    } else {
                        result = amountListed;
                    }
                }
                result -= userData[_msgSender()].claimed[bucketId];
            }
            /**
             * @notice Function for getting amount claimed from bucket 
             * @param bucketId bucket id
             * @param user user wallet address
             */
            function getUserClaimFromBucket(
                uint8 bucketId,
                address user
            ) external view returns (uint256 claimed) {
                claimed = userData[user].claimed[bucketId];
            }
            /**
             * @notice Function for checking if claim is blocked
             * @param user user wallet address
             * @param bucketId bucket id
             */
            function isBlocked(address user, uint8 bucketId) external view returns (bool) {
                if (userData[user].configSet) {
                    return personalConfigs[user][bucketId].claimingBlocked;
                } else {
                    return buckets[bucketId].claimingBlocked;
                }
            }
            // =========================================
            //              ADMIN
            // =========================================
            /**
             * @notice Sets start time
             * @dev start can be moved beforehand based on tge
             * @param _newStart start time of vesting period
             */
            function setStart(
                uint256 _newStart
            ) external onlyRole(DEFAULT_ADMIN_ROLE) {
                if (
                    (start != 0 && start < block.timestamp) ||
                    _newStart < block.timestamp
                ) {
                    revert InvalidStart();
                }
                start = _newStart;
            }
            /**
             * @notice Stops claiming for users
             * @param users array of users
             * @param bucketIds array of bucket ids
             * @param statuses array of statuses
             */
            function setClaimingBlockedUsers(
                address[] calldata users,
                uint8[] calldata bucketIds,
                bool[] calldata statuses
            ) external onlyRole(DEFAULT_ADMIN_ROLE) {
                uint256 len = users.length;
                for (uint256 i = 0; i < len; i++) {
                    if (!userData[users[i]].configSet) {
                        personalConfigs[users[i]][bucketIds[i]] = buckets[bucketIds[i]];
                        userData[users[i]].configSet = true;
                    }
                    personalConfigs[users[i]][bucketIds[i]].claimingBlocked = statuses[i];
                }
            }
            /**
             * @notice Stops claiming for all those with bucket config
             * @param bucketId bucket id
             * @param status status
             */
            function setClaimingBlockedBucket(
                uint8 bucketId,
                bool status
            ) external onlyRole(DEFAULT_ADMIN_ROLE) {
                buckets[bucketId].claimingBlocked = status;
            }
            /**
             * @notice Set buckets
             * @param bucketIds array of bucket ids
             * @param configs array of configs for bucket
             */
            function addBucketConfigs(
                uint8[] calldata bucketIds,
                Config[] calldata configs
            ) external onlyRole(DEFAULT_ADMIN_ROLE) {
                uint256 len = configs.length;
                for (uint8 i = 0; i < len; i++) {
                    if (configs[i].tgePercent > 10000) {
                        revert InvalidConfigData();
                    }
                    buckets[bucketIds[i]] = configs[i];
                }
            }
            /**
             * @notice set personal configs
             * @param users array of users
             * @param bucketIds array of bucket ids
             * @param configs personal configs
             */
            function addPersonalConfigs(
                address[] calldata users,
                uint8[] calldata bucketIds,
                Config[] calldata configs
            ) external onlyRole(DEFAULT_ADMIN_ROLE) {
                uint256 len = configs.length;
                for (uint256 i = 0; i < len; i++) {
                    userData[users[i]].configSet = true;
                    if (configs[i].tgePercent > 10000) {
                        revert InvalidConfigData();
                    }
                    personalConfigs[users[i]][bucketIds[i]] = configs[i];
                }
            }
            /**
             * @notice changes root
             * @param index index of root
             * @param _root new root
             */
            function changeRoot(
                uint256 index,
                bytes32 _root
            ) external onlyRole(DEFAULT_ADMIN_ROLE) {
                roots[index] = _root;
            }
            function setCircuitBreaker(
                bool status
            ) external onlyRole(DEFAULT_ADMIN_ROLE) {
                circuitBreakerEnabled = status;
            }
            // =========================================
            //              UPGRADES
            // =========================================
            function _authorizeUpgrade(
                address newImplementation
            ) internal override onlyRole(UPGRADER_ROLE) {}
        }
        

        File 4 of 4: EntangleToken
        //SPDX-License-Identifier: BSL 1.1
        pragma solidity 0.8.19;
        interface IProposer {
            function addAllowedProposer(address _proposer) external;
            function removeAllowedProposer(address _proposer) external;
            function propose(
                bytes32 protocolId,
                uint256 dstChainId,
                bytes calldata protocolAddress,
                bytes calldata functionSelector,
                bytes calldata params
            ) external;
            function proposeInOrder(
                bytes32 protocolId,
                uint256 dstChainId,
                bytes calldata protocolAddress,
                bytes calldata functionSelector,
                bytes calldata params
            ) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
        pragma solidity ^0.8.0;
        import "./IAccessControlUpgradeable.sol";
        import "../utils/ContextUpgradeable.sol";
        import "../utils/StringsUpgradeable.sol";
        import "../utils/introspection/ERC165Upgradeable.sol";
        import {Initializable} from "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module that allows children to implement role-based access
         * control mechanisms. This is a lightweight version that doesn't allow enumerating role
         * members except through off-chain means by accessing the contract event logs. Some
         * applications may benefit from on-chain enumerability, for those cases see
         * {AccessControlEnumerable}.
         *
         * Roles are referred to by their `bytes32` identifier. These should be exposed
         * in the external API and be unique. The best way to achieve this is by
         * using `public constant` hash digests:
         *
         * ```solidity
         * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
         * ```
         *
         * Roles can be used to represent a set of permissions. To restrict access to a
         * function call, use {hasRole}:
         *
         * ```solidity
         * function foo() public {
         *     require(hasRole(MY_ROLE, msg.sender));
         *     ...
         * }
         * ```
         *
         * Roles can be granted and revoked dynamically via the {grantRole} and
         * {revokeRole} functions. Each role has an associated admin role, and only
         * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
         *
         * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
         * that only accounts with this role will be able to grant or revoke other
         * roles. More complex role relationships can be created by using
         * {_setRoleAdmin}.
         *
         * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
         * grant and revoke this role. Extra precautions should be taken to secure
         * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
         * to enforce additional security measures for this role.
         */
        abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
            struct RoleData {
                mapping(address => bool) members;
                bytes32 adminRole;
            }
            mapping(bytes32 => RoleData) private _roles;
            bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
            /**
             * @dev Modifier that checks that an account has a specific role. Reverts
             * with a standardized message including the required role.
             *
             * The format of the revert reason is given by the following regular expression:
             *
             *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
             *
             * _Available since v4.1._
             */
            modifier onlyRole(bytes32 role) {
                _checkRole(role);
                _;
            }
            function __AccessControl_init() internal onlyInitializing {
            }
            function __AccessControl_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
            }
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
                return _roles[role].members[account];
            }
            /**
             * @dev Revert with a standard message if `_msgSender()` is missing `role`.
             * Overriding this function changes the behavior of the {onlyRole} modifier.
             *
             * Format of the revert message is described in {_checkRole}.
             *
             * _Available since v4.6._
             */
            function _checkRole(bytes32 role) internal view virtual {
                _checkRole(role, _msgSender());
            }
            /**
             * @dev Revert with a standard message if `account` is missing `role`.
             *
             * The format of the revert reason is given by the following regular expression:
             *
             *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
             */
            function _checkRole(bytes32 role, address account) internal view virtual {
                if (!hasRole(role, account)) {
                    revert(
                        string(
                            abi.encodePacked(
                                "AccessControl: account ",
                                StringsUpgradeable.toHexString(account),
                                " is missing role ",
                                StringsUpgradeable.toHexString(uint256(role), 32)
                            )
                        )
                    );
                }
            }
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
                return _roles[role].adminRole;
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleGranted} event.
             */
            function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                _grantRole(role, account);
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleRevoked} event.
             */
            function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                _revokeRole(role, account);
            }
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been revoked `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             *
             * May emit a {RoleRevoked} event.
             */
            function renounceRole(bytes32 role, address account) public virtual override {
                require(account == _msgSender(), "AccessControl: can only renounce roles for self");
                _revokeRole(role, account);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event. Note that unlike {grantRole}, this function doesn't perform any
             * checks on the calling account.
             *
             * May emit a {RoleGranted} event.
             *
             * [WARNING]
             * ====
             * This function should only be called from the constructor when setting
             * up the initial roles for the system.
             *
             * Using this function in any other way is effectively circumventing the admin
             * system imposed by {AccessControl}.
             * ====
             *
             * NOTE: This function is deprecated in favor of {_grantRole}.
             */
            function _setupRole(bytes32 role, address account) internal virtual {
                _grantRole(role, account);
            }
            /**
             * @dev Sets `adminRole` as ``role``'s admin role.
             *
             * Emits a {RoleAdminChanged} event.
             */
            function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                bytes32 previousAdminRole = getRoleAdmin(role);
                _roles[role].adminRole = adminRole;
                emit RoleAdminChanged(role, previousAdminRole, adminRole);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleGranted} event.
             */
            function _grantRole(bytes32 role, address account) internal virtual {
                if (!hasRole(role, account)) {
                    _roles[role].members[account] = true;
                    emit RoleGranted(role, account, _msgSender());
                }
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleRevoked} event.
             */
            function _revokeRole(bytes32 role, address account) internal virtual {
                if (hasRole(role, account)) {
                    _roles[role].members[account] = false;
                    emit RoleRevoked(role, account, _msgSender());
                }
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev External interface of AccessControl declared to support ERC165 detection.
         */
        interface IAccessControlUpgradeable {
            /**
             * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
             *
             * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
             * {RoleAdminChanged} not being emitted signaling this.
             *
             * _Available since v3.1._
             */
            event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
            /**
             * @dev Emitted when `account` is granted `role`.
             *
             * `sender` is the account that originated the contract call, an admin role
             * bearer except when using {AccessControl-_setupRole}.
             */
            event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Emitted when `account` is revoked `role`.
             *
             * `sender` is the account that originated the contract call:
             *   - if using `revokeRole`, it is the admin role bearer
             *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
             */
            event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) external view returns (bool);
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {AccessControl-_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) external view returns (bytes32);
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function grantRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function revokeRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been granted `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             */
            function renounceRole(bytes32 role, address account) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
         * proxy whose upgrades are fully controlled by the current implementation.
         */
        interface IERC1822ProxiableUpgradeable {
            /**
             * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
             * address.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy.
             */
            function proxiableUUID() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         *
         * _Available since v4.8.3._
         */
        interface IERC1967Upgradeable {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeaconUpgradeable {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
        pragma solidity ^0.8.2;
        import "../beacon/IBeaconUpgradeable.sol";
        import "../../interfaces/IERC1967Upgradeable.sol";
        import "../../interfaces/draft-IERC1822Upgradeable.sol";
        import "../../utils/AddressUpgradeable.sol";
        import "../../utils/StorageSlotUpgradeable.sol";
        import {Initializable} from "../utils/Initializable.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         */
        abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable {
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            function __ERC1967Upgrade_init() internal onlyInitializing {
            }
            function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                _upgradeTo(newImplementation);
                if (data.length > 0 || forceCall) {
                    AddressUpgradeable.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
                // Upgrades from old implementations will perform a rollback test. This test requires the new
                // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                // this special case will break upgrade paths from old UUPS implementation to new ones.
                if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                    _setImplementation(newImplementation);
                } else {
                    try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                        require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                    } catch {
                        revert("ERC1967Upgrade: new implementation is not UUPS");
                    }
                    _upgradeToAndCall(newImplementation, data, forceCall);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                require(
                    AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    AddressUpgradeable.functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
                }
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```solidity
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         *
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts.
             *
             * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
             * constructor.
             *
             * Emits an {Initialized} event.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * A reinitializer may be used after the original initialization step. This is essential to configure modules that
             * are added through upgrades and that require initialization.
             *
             * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
             * cannot be nested. If one is invoked in the context of another, execution will revert.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             *
             * WARNING: setting the version to 255 will prevent any future reinitialization.
             *
             * Emits an {Initialized} event.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             *
             * Emits an {Initialized} event the first time it is successfully executed.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized != type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
            /**
             * @dev Returns the highest version that has been initialized. See {reinitializer}.
             */
            function _getInitializedVersion() internal view returns (uint8) {
                return _initialized;
            }
            /**
             * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
             */
            function _isInitializing() internal view returns (bool) {
                return _initializing;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)
        pragma solidity ^0.8.0;
        import "../../interfaces/draft-IERC1822Upgradeable.sol";
        import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
        import {Initializable} from "./Initializable.sol";
        /**
         * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
         * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
         *
         * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
         * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
         * `UUPSUpgradeable` with a custom implementation of upgrades.
         *
         * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
         *
         * _Available since v4.1._
         */
        abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
            /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
            address private immutable __self = address(this);
            /**
             * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
             * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
             * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
             * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
             * fail.
             */
            modifier onlyProxy() {
                require(address(this) != __self, "Function must be called through delegatecall");
                require(_getImplementation() == __self, "Function must be called through active proxy");
                _;
            }
            /**
             * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
             * callable on the implementing contract but not through proxies.
             */
            modifier notDelegated() {
                require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
                _;
            }
            function __UUPSUpgradeable_init() internal onlyInitializing {
            }
            function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
             * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
             */
            function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
                return _IMPLEMENTATION_SLOT;
            }
            /**
             * @dev Upgrade the implementation of the proxy to `newImplementation`.
             *
             * Calls {_authorizeUpgrade}.
             *
             * Emits an {Upgraded} event.
             *
             * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
             */
            function upgradeTo(address newImplementation) public virtual onlyProxy {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
            }
            /**
             * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
             * encoded in `data`.
             *
             * Calls {_authorizeUpgrade}.
             *
             * Emits an {Upgraded} event.
             *
             * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
             */
            function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallUUPS(newImplementation, data, true);
            }
            /**
             * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
             * {upgradeTo} and {upgradeToAndCall}.
             *
             * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
             *
             * ```solidity
             * function _authorizeUpgrade(address) internal override onlyOwner {}
             * ```
             */
            function _authorizeUpgrade(address newImplementation) internal virtual;
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
        pragma solidity ^0.8.0;
        import "../utils/ContextUpgradeable.sol";
        import {Initializable} from "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which allows children to implement an emergency stop
         * mechanism that can be triggered by an authorized account.
         *
         * This module is used through inheritance. It will make available the
         * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
         * the functions of your contract. Note that they will not be pausable by
         * simply including this module, only once the modifiers are put in place.
         */
        abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
            /**
             * @dev Emitted when the pause is triggered by `account`.
             */
            event Paused(address account);
            /**
             * @dev Emitted when the pause is lifted by `account`.
             */
            event Unpaused(address account);
            bool private _paused;
            /**
             * @dev Initializes the contract in unpaused state.
             */
            function __Pausable_init() internal onlyInitializing {
                __Pausable_init_unchained();
            }
            function __Pausable_init_unchained() internal onlyInitializing {
                _paused = false;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is not paused.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            modifier whenNotPaused() {
                _requireNotPaused();
                _;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is paused.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            modifier whenPaused() {
                _requirePaused();
                _;
            }
            /**
             * @dev Returns true if the contract is paused, and false otherwise.
             */
            function paused() public view virtual returns (bool) {
                return _paused;
            }
            /**
             * @dev Throws if the contract is paused.
             */
            function _requireNotPaused() internal view virtual {
                require(!paused(), "Pausable: paused");
            }
            /**
             * @dev Throws if the contract is not paused.
             */
            function _requirePaused() internal view virtual {
                require(paused(), "Pausable: not paused");
            }
            /**
             * @dev Triggers stopped state.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            function _pause() internal virtual whenNotPaused {
                _paused = true;
                emit Paused(_msgSender());
            }
            /**
             * @dev Returns to normal state.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            function _unpause() internal virtual whenPaused {
                _paused = false;
                emit Unpaused(_msgSender());
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
        pragma solidity ^0.8.0;
        import "./IERC20Upgradeable.sol";
        import "./extensions/IERC20MetadataUpgradeable.sol";
        import "../../utils/ContextUpgradeable.sol";
        import {Initializable} from "../../proxy/utils/Initializable.sol";
        /**
         * @dev Implementation of the {IERC20} interface.
         *
         * This implementation is agnostic to the way tokens are created. This means
         * that a supply mechanism has to be added in a derived contract using {_mint}.
         * For a generic mechanism see {ERC20PresetMinterPauser}.
         *
         * TIP: For a detailed writeup see our guide
         * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
         * to implement supply mechanisms].
         *
         * The default value of {decimals} is 18. To change this, you should override
         * this function so it returns a different value.
         *
         * We have followed general OpenZeppelin Contracts guidelines: functions revert
         * instead returning `false` on failure. This behavior is nonetheless
         * conventional and does not conflict with the expectations of ERC20
         * applications.
         *
         * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
         * This allows applications to reconstruct the allowance for all accounts just
         * by listening to said events. Other implementations of the EIP may not emit
         * these events, as it isn't required by the specification.
         *
         * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
         * functions have been added to mitigate the well-known issues around setting
         * allowances. See {IERC20-approve}.
         */
        contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
            mapping(address => uint256) private _balances;
            mapping(address => mapping(address => uint256)) private _allowances;
            uint256 private _totalSupply;
            string private _name;
            string private _symbol;
            /**
             * @dev Sets the values for {name} and {symbol}.
             *
             * All two of these values are immutable: they can only be set once during
             * construction.
             */
            function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
                __ERC20_init_unchained(name_, symbol_);
            }
            function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
                _name = name_;
                _symbol = symbol_;
            }
            /**
             * @dev Returns the name of the token.
             */
            function name() public view virtual override returns (string memory) {
                return _name;
            }
            /**
             * @dev Returns the symbol of the token, usually a shorter version of the
             * name.
             */
            function symbol() public view virtual override returns (string memory) {
                return _symbol;
            }
            /**
             * @dev Returns the number of decimals used to get its user representation.
             * For example, if `decimals` equals `2`, a balance of `505` tokens should
             * be displayed to a user as `5.05` (`505 / 10 ** 2`).
             *
             * Tokens usually opt for a value of 18, imitating the relationship between
             * Ether and Wei. This is the default value returned by this function, unless
             * it's overridden.
             *
             * NOTE: This information is only used for _display_ purposes: it in
             * no way affects any of the arithmetic of the contract, including
             * {IERC20-balanceOf} and {IERC20-transfer}.
             */
            function decimals() public view virtual override returns (uint8) {
                return 18;
            }
            /**
             * @dev See {IERC20-totalSupply}.
             */
            function totalSupply() public view virtual override returns (uint256) {
                return _totalSupply;
            }
            /**
             * @dev See {IERC20-balanceOf}.
             */
            function balanceOf(address account) public view virtual override returns (uint256) {
                return _balances[account];
            }
            /**
             * @dev See {IERC20-transfer}.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - the caller must have a balance of at least `amount`.
             */
            function transfer(address to, uint256 amount) public virtual override returns (bool) {
                address owner = _msgSender();
                _transfer(owner, to, amount);
                return true;
            }
            /**
             * @dev See {IERC20-allowance}.
             */
            function allowance(address owner, address spender) public view virtual override returns (uint256) {
                return _allowances[owner][spender];
            }
            /**
             * @dev See {IERC20-approve}.
             *
             * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
             * `transferFrom`. This is semantically equivalent to an infinite approval.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function approve(address spender, uint256 amount) public virtual override returns (bool) {
                address owner = _msgSender();
                _approve(owner, spender, amount);
                return true;
            }
            /**
             * @dev See {IERC20-transferFrom}.
             *
             * Emits an {Approval} event indicating the updated allowance. This is not
             * required by the EIP. See the note at the beginning of {ERC20}.
             *
             * NOTE: Does not update the allowance if the current allowance
             * is the maximum `uint256`.
             *
             * Requirements:
             *
             * - `from` and `to` cannot be the zero address.
             * - `from` must have a balance of at least `amount`.
             * - the caller must have allowance for ``from``'s tokens of at least
             * `amount`.
             */
            function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
                address spender = _msgSender();
                _spendAllowance(from, spender, amount);
                _transfer(from, to, amount);
                return true;
            }
            /**
             * @dev Atomically increases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                address owner = _msgSender();
                _approve(owner, spender, allowance(owner, spender) + addedValue);
                return true;
            }
            /**
             * @dev Atomically decreases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `spender` must have allowance for the caller of at least
             * `subtractedValue`.
             */
            function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                address owner = _msgSender();
                uint256 currentAllowance = allowance(owner, spender);
                require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                unchecked {
                    _approve(owner, spender, currentAllowance - subtractedValue);
                }
                return true;
            }
            /**
             * @dev Moves `amount` of tokens from `from` to `to`.
             *
             * This internal function is equivalent to {transfer}, and can be used to
             * e.g. implement automatic token fees, slashing mechanisms, etc.
             *
             * Emits a {Transfer} event.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `from` must have a balance of at least `amount`.
             */
            function _transfer(address from, address to, uint256 amount) internal virtual {
                require(from != address(0), "ERC20: transfer from the zero address");
                require(to != address(0), "ERC20: transfer to the zero address");
                _beforeTokenTransfer(from, to, amount);
                uint256 fromBalance = _balances[from];
                require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                unchecked {
                    _balances[from] = fromBalance - amount;
                    // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                    // decrementing then incrementing.
                    _balances[to] += amount;
                }
                emit Transfer(from, to, amount);
                _afterTokenTransfer(from, to, amount);
            }
            /** @dev Creates `amount` tokens and assigns them to `account`, increasing
             * the total supply.
             *
             * Emits a {Transfer} event with `from` set to the zero address.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             */
            function _mint(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: mint to the zero address");
                _beforeTokenTransfer(address(0), account, amount);
                _totalSupply += amount;
                unchecked {
                    // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                    _balances[account] += amount;
                }
                emit Transfer(address(0), account, amount);
                _afterTokenTransfer(address(0), account, amount);
            }
            /**
             * @dev Destroys `amount` tokens from `account`, reducing the
             * total supply.
             *
             * Emits a {Transfer} event with `to` set to the zero address.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             * - `account` must have at least `amount` tokens.
             */
            function _burn(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: burn from the zero address");
                _beforeTokenTransfer(account, address(0), amount);
                uint256 accountBalance = _balances[account];
                require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                unchecked {
                    _balances[account] = accountBalance - amount;
                    // Overflow not possible: amount <= accountBalance <= totalSupply.
                    _totalSupply -= amount;
                }
                emit Transfer(account, address(0), amount);
                _afterTokenTransfer(account, address(0), amount);
            }
            /**
             * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
             *
             * This internal function is equivalent to `approve`, and can be used to
             * e.g. set automatic allowances for certain subsystems, etc.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `owner` cannot be the zero address.
             * - `spender` cannot be the zero address.
             */
            function _approve(address owner, address spender, uint256 amount) internal virtual {
                require(owner != address(0), "ERC20: approve from the zero address");
                require(spender != address(0), "ERC20: approve to the zero address");
                _allowances[owner][spender] = amount;
                emit Approval(owner, spender, amount);
            }
            /**
             * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
             *
             * Does not update the allowance amount in case of infinite allowance.
             * Revert if not enough allowance is available.
             *
             * Might emit an {Approval} event.
             */
            function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
                uint256 currentAllowance = allowance(owner, spender);
                if (currentAllowance != type(uint256).max) {
                    require(currentAllowance >= amount, "ERC20: insufficient allowance");
                    unchecked {
                        _approve(owner, spender, currentAllowance - amount);
                    }
                }
            }
            /**
             * @dev Hook that is called before any transfer of tokens. This includes
             * minting and burning.
             *
             * Calling conditions:
             *
             * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * will be transferred to `to`.
             * - when `from` is zero, `amount` tokens will be minted for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
             * - `from` and `to` are never both zero.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
            /**
             * @dev Hook that is called after any transfer of tokens. This includes
             * minting and burning.
             *
             * Calling conditions:
             *
             * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * has been transferred to `to`.
             * - when `from` is zero, `amount` tokens have been minted for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
             * - `from` and `to` are never both zero.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[45] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
        pragma solidity ^0.8.0;
        import "../IERC20Upgradeable.sol";
        /**
         * @dev Interface for the optional metadata functions from the ERC20 standard.
         *
         * _Available since v4.1._
         */
        interface IERC20MetadataUpgradeable is IERC20Upgradeable {
            /**
             * @dev Returns the name of the token.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the symbol of the token.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the decimals places of the token.
             */
            function decimals() external view returns (uint8);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20Upgradeable {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `from` to `to` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 amount) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             *
             * Furthermore, `isContract` will also return true if the target contract within
             * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
             * which only has an effect at the end of a transaction.
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
        pragma solidity ^0.8.0;
        import {Initializable} from "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
        pragma solidity ^0.8.0;
        import "./IERC165Upgradeable.sol";
        import {Initializable} from "../../proxy/utils/Initializable.sol";
        /**
         * @dev Implementation of the {IERC165} interface.
         *
         * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
         * for the additional interface id that will be supported. For example:
         *
         * ```solidity
         * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
         *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
         * }
         * ```
         *
         * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
         */
        abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
            function __ERC165_init() internal onlyInitializing {
            }
            function __ERC165_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IERC165Upgradeable).interfaceId;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165Upgradeable {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library MathUpgradeable {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                        // The surrounding unchecked block does not change this fact.
                        // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1, "Math: mulDiv overflow");
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                //
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                //
                // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                //
                // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1 << (log2(a) >> 1);
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 2, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 128;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 64;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 32;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 16;
                    }
                    if (value >> 8 > 0) {
                        value >>= 8;
                        result += 8;
                    }
                    if (value >> 4 > 0) {
                        value >>= 4;
                        result += 4;
                    }
                    if (value >> 2 > 0) {
                        value >>= 2;
                        result += 2;
                    }
                    if (value >> 1 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 10, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10 ** 64) {
                        value /= 10 ** 64;
                        result += 64;
                    }
                    if (value >= 10 ** 32) {
                        value /= 10 ** 32;
                        result += 32;
                    }
                    if (value >= 10 ** 16) {
                        value /= 10 ** 16;
                        result += 16;
                    }
                    if (value >= 10 ** 8) {
                        value /= 10 ** 8;
                        result += 8;
                    }
                    if (value >= 10 ** 4) {
                        value /= 10 ** 4;
                        result += 4;
                    }
                    if (value >= 10 ** 2) {
                        value /= 10 ** 2;
                        result += 2;
                    }
                    if (value >= 10 ** 1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 256, rounded down, of a positive value.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 16;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 8;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 4;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 2;
                    }
                    if (value >> 8 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMathUpgradeable {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
         * _Available since v4.9 for `string`, `bytes`._
         */
        library StorageSlotUpgradeable {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
        pragma solidity ^0.8.0;
        import "./math/MathUpgradeable.sol";
        import "./math/SignedMathUpgradeable.sol";
        /**
         * @dev String operations.
         */
        library StringsUpgradeable {
            bytes16 private constant _SYMBOLS = "0123456789abcdef";
            uint8 private constant _ADDRESS_LENGTH = 20;
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    uint256 length = MathUpgradeable.log10(value) + 1;
                    string memory buffer = new string(length);
                    uint256 ptr;
                    /// @solidity memory-safe-assembly
                    assembly {
                        ptr := add(buffer, add(32, length))
                    }
                    while (true) {
                        ptr--;
                        /// @solidity memory-safe-assembly
                        assembly {
                            mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                        }
                        value /= 10;
                        if (value == 0) break;
                    }
                    return buffer;
                }
            }
            /**
             * @dev Converts a `int256` to its ASCII `string` decimal representation.
             */
            function toString(int256 value) internal pure returns (string memory) {
                return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    return toHexString(value, MathUpgradeable.log256(value) + 1);
                }
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = _SYMBOLS[value & 0xf];
                    value >>= 4;
                }
                require(value == 0, "Strings: hex length insufficient");
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
            }
            /**
             * @dev Returns true if the two strings are equal.
             */
            function equal(string memory a, string memory b) internal pure returns (bool) {
                return keccak256(bytes(a)) == keccak256(bytes(b));
            }
        }
        // SPDX-License-Identifier: BSL 1.1
        pragma solidity ^0.8.15;
        import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol";
        import "@entangle_protocol/oracle-sdk/contracts/IProposer.sol";
        error EntangleToken__E1(); //aggregationSpotter is already set : EntangleToken
        error EntangleToken__E2(); //bridgeRouterAddress is already set : EntangleToken
        error EntangleToken__E3(); //Arguments lentgh missmatch
        error EntangleToken__E4(); //Increase/decrease allowance is deprecated
        error EntangleToken__E5(); //Bridge is not active yet, aggregationSpotter not set : EntangleToken
        error EntangleToken__E6(); //Bridge is not active yet, bridgeRouterAddress not set : EntangleToken
        error EntangleToken__E7(); //Cannot bridge to the same chain
        error EntangleToken__E8(); //Amount is less than min amount
        error EntangleToken__E9(); //The bridge and extract is available only for EOB
        /// @title EntangleToken
        /// @notice Represents an *NGL token used for bridging operations between different chains.
        contract EntangleToken is Initializable, ERC20Upgradeable, PausableUpgradeable, AccessControlUpgradeable, UUPSUpgradeable {
            bytes32 public constant ADMIN = keccak256("ADMIN");
            bytes32 public constant SPOTTER = keccak256("SPOTTER");
            bytes32 public constant LAZY = keccak256("LAZY");
            bytes32 public constant BURNER = keccak256("BURNER");
            
            IProposer aggregationSpotter;
            address lazySpotter;
            bytes bridgeRouterAddress;
            bytes32 protocolId;
            uint256 eobChainId;
            address feeCollector;
            mapping(uint256 destChainId => uint256 minAmount) minBridgeAmounts;
            /// @custom:oz-upgrades-unsafe-allow constructor
            constructor() {
                _disableInitializers();
            }
            function initialize(
                string memory name,
                string memory symbol,
                bytes32 _protocolId,
                uint256 _eobChainId,
                address _admin,
                address _startReceipient,
                uint256 _startAmount
            )
                initializer public
            {
                __ERC20_init(name,symbol);
                __Pausable_init();
                __AccessControl_init();
                __UUPSUpgradeable_init();
                _setRoleAdmin(ADMIN, ADMIN);
                _setRoleAdmin(BURNER, ADMIN);
                _grantRole(ADMIN, _admin);
                protocolId = _protocolId;
                eobChainId = _eobChainId;
                _mint(_startReceipient, _startAmount);
            }
            /// @notice Grants the LAZY role.
            /// @param _lazySpotter The address of the lazy spotter.
            function setLazySpotter(address _lazySpotter) external onlyRole(ADMIN) {
                if (lazySpotter != address(0)) revert EntangleToken__E1();
                lazySpotter = _lazySpotter;
                _grantRole(LAZY, _lazySpotter);
            }
            /// @notice Sets the aggregation spotter address.
            /// This value can only be set ONCE.
            /// @param _as The address of the aggregation spotter.
            function setAggregationSpotter(address _as) external onlyRole(ADMIN) {
                if (address(aggregationSpotter) != address(0)) revert EntangleToken__E1();
                aggregationSpotter = IProposer(_as);
                _grantRole(SPOTTER, _as);
            }
            /// @notice Sets the bridge router address.
            /// This value can only be set ONCE.
            /// @param _bridgeRouterAddress The address of the bridge router.
            function setBridgeRouterAddress(address _bridgeRouterAddress) external onlyRole(ADMIN) {
                if (bridgeRouterAddress.length != 0) revert EntangleToken__E2();
                bridgeRouterAddress = abi.encode(_bridgeRouterAddress);
            }
            /// @notice Sets the fee collector address.
            /// @param _feeCollector The address of the fee collector.
            function setFeeCollector(address _feeCollector) external onlyRole(ADMIN) {
                feeCollector = _feeCollector;
            }
            /// @notice Sets the minimum amount of tokens that can be bridged.
            /// @param chainIds The IDs of the chains.
            /// @param minAmounts The minimum amounts of tokens that can be bridged to chains
            function setMinBridgeAmount(uint256[] memory chainIds, uint256[] memory minAmounts) public onlyRole(ADMIN) {
                if (chainIds.length != minAmounts.length) revert EntangleToken__E3();
                uint256 chainIdsLen = chainIds.length;
                for (uint256 i; i < chainIdsLen; ++i) {
                    uint256 key = chainIds[i];
                    uint256 value = minAmounts[i];
                    minBridgeAmounts[key] = value;
                }
            }
            /// @notice Pauses token bridging.
            function pauseBridge() external onlyRole(ADMIN) {
                _pause();
            }
            /// @notice Unpauses token bridging.
            function unpauseBridge() external onlyRole(ADMIN) {
                _unpause();
            }
            /// @notice Deprecated function: Reverts as increaseAllowance is deprecated.
            function increaseAllowance() public pure {
                revert EntangleToken__E4();
            }
            /// @notice Deprecated function: Reverts as decreaseAllowance is deprecated.
            function decreaseAllowance() public pure {
                revert EntangleToken__E4();
            }
            /// @notice Event emitted upon successful token bridging.
            event BridgeDone(address to, uint256 amount, bytes32 txhash, uint256 fromChain, bytes32 marker);
            /// @notice LazySpotter mint function for message with tokens
            /// @param _to The recipient address
            /// @param _amount The amount of tokens to mint
            function lazyMint(address _to, uint256 _amount) external onlyRole(LAZY) whenNotPaused {
                _mint(_to, _amount);
            }
            /// @notice LazySpotter burn function for message with tokens
            /// @param _amount The amount of tokens to mint
            function lazyBurn(uint256 _amount) external onlyRole(LAZY) whenNotPaused {
                _burn(_msgSender(), _amount);
            }
            /// @notice Redeems tokens on the receiving chain after a successful bridge operation.
            /// @param b Keeper encoded data, real params below
            /// @custom:param _to The recipient address in bytes
            /// @custom:param _amount The amount of tokens to transfer.
            /// @custom:param _fee The fee deducted from the transferred amount.
            /// @custom:param _txhash The transaction hash from the sending chain.
            /// @custom:param _fromChain The ID of the sending chain.
            function redeem(bytes calldata b) external onlyRole(SPOTTER) whenNotPaused {
                (, , , , bytes memory params) = abi.decode(b, (bytes32, uint256, uint256, bytes32, bytes));
                (bytes memory _to, uint256 _amount, uint256 _fee, bytes32 _txhash, uint256 _fromChain, bytes32 _marker) = abi.decode(
                    params,
                    (bytes, uint256, uint256, bytes32, uint256, bytes32)
                );
                address to = abi.decode(_to, (address));
                _mint(to, _amount - _fee);
                _mint(feeCollector, _fee);
                emit BridgeDone(to, _amount, _txhash, _fromChain, _marker);
            }
            /// @notice Initiates the token bridging operation between chains.
            /// @param _chainIdTo The ID of the target chain for token bridging.
            /// @param _to The address of the recipient on the target chain.
            /// @param _amount The amount of tokens to bridge.
            /// @param _marker The marker for the currect bridge operation.
            function bridge(uint256 _chainIdTo, bytes memory _to, uint256 _amount, bool unwrap, bytes32 _marker) external whenNotPaused {
                if (address(aggregationSpotter) == address(0)) revert EntangleToken__E5();
                if (bridgeRouterAddress.length == 0) revert EntangleToken__E6();
                if (_chainIdTo == block.chainid) revert EntangleToken__E7();
                if (_amount < minBridgeAmounts[_chainIdTo]) revert EntangleToken__E8();
                if (unwrap && _chainIdTo != eobChainId) revert EntangleToken__E9();
                _burn(msg.sender, _amount);
                aggregationSpotter.propose(
                    protocolId,
                    eobChainId,
                    bridgeRouterAddress,
                    abi.encode(bytes4(keccak256("bridge(bytes)"))),
                    abi.encode(abi.encode(msg.sender), _chainIdTo, _to, _amount, unwrap, _marker)
                );
            }
            /// @notice Burns a specified amount of tokens.
            /// Only the burner role can execute this function.
            /// @param _amount The amount of wrapped tokens to burn.
            function burn(uint256 _amount) external onlyRole(BURNER) {
                _burn(msg.sender, _amount);
            }
            function _authorizeUpgrade(address newImplementation)
                internal
                onlyRole(ADMIN)
                override
            {}
        }